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Scattering by Imperfect Conductors

In this chapter we consider a very simple scattering problem corresponding
to the scattering of a time-harmonic plane wave by an imperfect conductor.
Although the problem is simple compared to most problems in scattering the-
ory, its mathematical resolution took many years to accomplish and was the
focus of energy of some of the outstanding mathematicians of the twentieth
century, in particular Kupradze, Rellich, Vekua, Müller, and Weyl. Indeed, the
solution of the full three-dimensional problem was not fully realized until 1981
(cf. Sect. 9.5 of [54]). Here we will content ourselves with the two-dimensional
scalar problem and its solution by the method of integral equations. As will
be seen, the main difficulty of this approach is the presence of eigenvalues of
the interior Dirichlet problem for the Helmholtz equation, and we will over-
come this difficulty using the ideas of Jones [96], Ursell [156], and Kleinman
and Roach [109].

The plan of this chapter is as follows. We begin by considering Maxwell’s
equations and then derive the scalar impedance boundary value problem
corresponding to the scattering of a time-harmonic plane wave by an imper-
fectly conducting infinite cylinder. After a brief detour to discuss the relevant
properties of Bessel and Hankel functions that will be needed in the sequel,
we proceed to show that our scattering problem is well posed by deriving
Rellich’s lemma and using the method of modified single layer potentials. We
will conclude this chapter by giving a brief discussion on weak solutions of the
Helmholtz equation. (This theme will be revisited in greater detail in Chap. 5).

3.1 Maxwell’s Equations

Consider electromagnetic wave propagation in a homogeneous, isotropic,
nonconducting medium in R

3 with electric permittivity ε and magnetic per-
meability μ. A time-harmonic electromagnetic wave with frequency ω > 0 is
described by the electric and magnetic fields
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46 3 Scattering by Imperfect Conductors

E(x, t) = ε−1/2E(x)e−iωt ,

H(x, t) = μ−1/2H(x)e−iωt ,
(3.1)

where x ∈ R
3 and E and H satisfy Maxwell’s equations

curlE + μ
∂H
∂t

= 0 ,

curlH− ε
∂E
∂t

= 0.

(3.2)

In particular, from (3.1) and (3.2) we see that E and H must satisfy

curlE − ikH = 0 ,

curlH + ikE = 0 ,
(3.3)

where the wave number k is defined by k = ω
√
εμ.

Now assume that a time -monic electromagnetic plane wave (factoring out
e−iωt)

Ei(x) = Ei(x; d, p) =
1

k2
curl curlpeikx·d ,

Hi(x) = Hi(x; d, p) =
1

ik
curl peikx·d ,

(3.4)

where d is a constant unit vector and p is the (constant) polarization vector,
is an incident field that is scattered by an obstacle D that is an imperfect
conductor, i.e., the electromagnetic field penetrates D by only a small amount.
Let the total fields E and H be given by

E = Ei + Es ,

H = Hi +Hs ,
(3.5)

where Es(x) = Es(x; d, p) and Hs(x) = Hs(x; d, p) are the scattered fields
that arise due to the presence of the obstacle D. Then Es, Hs must be an
“outgoing” wave that satisfies the Silver–Müller radiation condition

lim
r→∞ (Hs × x− rEs) = 0 , (3.6)

where r = |x|. Since D is an imperfect conductor, on the boundary ∂D the
field E must satisfy the boundary condition

ν × curlE − iλ(ν × E)× ν = 0 , (3.7)

where λ = λ(x) > 0 is the surface impedance defined on ∂D. Then the
mathematical problem associated with the scattering of time-harmonic plane
waves by an imperfect conductor is to find a solution E, H of Maxwell’s
equations (3.3) in the exterior of D such that (3.4)–(3.7) are satisfied. In
particular, (3.3)–(3.7) define a scattering problem for Maxwell’s equations.
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Now consider the scattering due to an infinite cylinder with cross section
D and axis on the x3-coordinate axis where x = (x1, x2, x3) ∈ R

3. Assume
E = (0, 0, E3), p = (0, 0, 1), and d = (d1, d2, 0), i.e.,

Ei(x) = eikx·dê3 ,

where ê3 is the unit vector in the positive x3 direction. Then E and H
will be independent of x3, and from Maxwell’s equations we have that
H = (H1, H2, 0), where E3, H1, and H2 satisfy

∂E3

∂x2
= ikH1 ,

∂E3

∂x1
= −ikH2 ,

∂H2

∂x1
− ∂H1

∂x2
= −ikE3.

In particular,

ΔE3 + k2E3 = 0 in R
2 \ D̄. (3.8)

In order for Es
3 to be “outgoing,” we require that Es

3 satisfy the Sommerfeld
radiation condition

lim
r→∞

√
r

(
∂Es

3

∂r
− ikEs

3

)
= 0. (3.9)

Finally, we need to determine the boundary condition satisfied by

E3(x) = eikx·d + Es
3(x) , (3.10)

where now x ∈ R
2. To this end, we compute for E = (0, 0, E3) and ν =

(ν1, ν2, 0) that ν × curlE = (0, 0,−∂E3/∂ν) and (ν × E)× ν = E. This then
implies that (3.7) becomes

∂E3

∂ν
+ iλE3 = 0. (3.11)

Equations (3.8)–(3.11) provide the mathematical formulation of the scattering
of a time-harmonic electromagnetic plane wave by an imperfectly conducting
infinite cylinder, and it is this problem that will concern us for the rest of this
chapter.

3.2 Bessel Functions

We begin our study of the scattering problem (3.8)–(3.11) by examining
special solutions of the Helmholtz equation (3.8). In particular, if we look
for solutions to (3.8) in the form
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E3(x) = y(kr)einθ , n = 0,±1,±2, · · · ,

where (r, θ) are cylindrical coordinates, we find that y(r) is a solution of
Bessel’s equation

y′′ +
1

r
y′ +

(
1− ν2

r2

)
y = 0 (3.12)

for ν = n. For arbitrary real ν we see by direct calculation and the ratio test
that

Jν(r) :=

∞∑
k=0

(−1)k

k!Γ (k + ν + 1)

( r
2

)ν+2k

, (3.13)

where Γ denotes the gamma function, is a solution of Bessel’s equation for
0 ≤ r <∞. Jν is called a Bessel function of order ν. For ν = −n, n = 1, 2, · · · ,
the first n terms of (3.13) vanish, and hence

J−n(r) =
∞∑

k=n

(−1)k

k!(k − n)!

( r
2

)−n+2k

=

∞∑
s=0

(−1)n+s

(n+ s)!s!

(r
2

)n+2s

= (−1)nJn(r) ,

which shows that Jn and J−n are linearly dependent. However, if ν �= n, then
it is easily seen that Jν and J−ν are linearly independent solutions of Bessel’s
equation.

Unfortunately, we are interested precisely in the case where ν = n, and
hence we must find a second linearly independent solution of Bessel’s equation.
This is easily done using Frobenius’ method, and for n = 0, 1, 2, · · · we obtain
the desired second solution to be given by

Yn(r) :=
2

π
Jn(r) log

r

2
− 1

π

n−1∑
k=0

(n− k − 1)!

k!

( r
2

)2k−n

− 1

π

∞∑
k=0

(−1)k
(
r
2

)n+2k

k! (n+ k)!
[ψ(k + 1) + ψ(k + n+ 1)] ,

(3.14)

where ψ(1) = −γ, ψ(m + 1) = −γ + 1 + 1
2 + · · · + 1

m for m = 1, 2, · · · ,
γ = 0.57721566 · · · is Euler’s constant, and the finite sum is set equal to zero
if n = 0. From (3.13) and (3.14) we see that

Jn(r) =
1

n!

( r
2

)n [
1 +O(r2)

]
, r → 0 , (3.15)

and, for n ≥ 1,
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Yn(r) = − (n− 1)!

π

( r
2

)−n
{
1 +O(r2 log r), n = 1,

1 +O(r2), n > 1,
r → 0 , (3.16)

whereas for n = 0 we have that

Y0(r) =
2

π
log r +O(1) , r → 0. (3.17)

Note that in (3.15) and (3.16) the constant implicit in the order term is
independent of n for n > 1. Finally, for n a positive integer we define Y−n by

Y−n(r) = (−1)nYn(r) ,

which implies that Jn and Yn are linearly independent for all integers n =
0,±1,±2, · · · . The function Yn is called the Neumann function of order n.

Of considerable importance to us in the sequel are the Hankel functions

H
(1)
n and H

(2)
n of the first and second kind of order n, respectively, which are

defined by

H(1)
n (r) := Jn(r) + iYn(r) ,

H(2)
n (r) := Jn(r) − iYn(r)

(3.18)

for n = 0,±1,±2, · · · , 0 < r <∞. H
(1)
n and H

(2)
n clearly define a second pair

of linearly independent solutions to Bessel’s equation.
Now let y1 and y2 be any two solutions of Bessel’s equation

(ry′1)
′ +
(
r − ν2

r

)
y1 = 0 , (3.19)

(ry′2)
′ +
(
r − ν2

r

)
y2 = 0 , (3.20)

and define the Wronskian by

W (y1, y2) :=

∣∣∣∣y1 y2y′1 y
′
2

∣∣∣∣ .
Then multiplying (3.19) by y2 and subtracting it from (3.20) multiplied by y1
we see that

d

dr
(rW ) = 0 ,

and hence

W (y1, y2) =
C

r
,

where C is a constant. The constant C can be computed by

C = lim
r→0

rW (y1, y2).
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In particular, making use of (3.15)–(3.18) we find that

W (Jn, H
(1)
n ) =

2i

πr
, (3.21)

W (H(1)
n , H(2)

n ) = − 4i

πr
. (3.22)

We now note that for 0 ≤ r <∞, 0 < |t| <∞, we have that

ert/2e−r/2t =

∞∑
j=0

rjtj

2jj!

∞∑
k=0

(−1)krk

2ktkk!
,

and, setting j − k = n, we have that

er/2(t−1/t) =
∞∑

n=−∞

[ ∞∑
k=0

(−1)krn+2k

2n+2k(n+ k)!k!

]
tn

=
∞∑
−∞

Jn(r)t
n.

(3.23)

Setting t = ieiθ in (3.23) gives the Jacobi–Anger expansion

eir cos θ =

∞∑
−∞

inJn(r)e
inθ . (3.24)

In the remaining chapters of this book we will often be interested in entire
solutions of the Helmholtz equation of the form

vg(x) :=

∫ 2π

0

eikr cos(θ−φ)g(φ) dφ , (3.25)

where g ∈ L2[0, 2π]. The function vg is called a Herglotz wave function with
kernel g. These functions were first introduced by Herglotz in a lecture in 1945
in Göttingen and were subsequently studied by Magnus [125], Müller [131],
and Hartman and Wilcox [83]. From (3.25) and the Jacobi–Anger expansion,
we see that since g has the Fourier expansion

g(φ) =
1

2π

∞∑
−∞

an(−i)neinφ ,

where ∞∑
−∞

|an|2 <∞ , (3.26)

vg is a Herglotz wave function if and only if vg has an expansion of the form
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vg(x) =
∞∑
−∞

anJn(kr)e
inθ

such that (3.26) is valid. Note that vg is identically zero if and only if g = 0.
Finally, we note the asymptotic relations [121]

Jn(r) =

√
2

πr
cos
(
r − nπ

2
− π

4

)
+O(r−3/2), r → ∞ ,

H(1)
n (r) =

√
2

πr
exp i

(
r − nπ

2
− π

4

)
+O(r−3/2), r → ∞ ,

(3.27)

and the addition formula [121]

H
(1)
0 (k |x− y|) =

∞∑
−∞

H(1)
n (k |x|)Jn(k |y|)einθ , (3.28)

which is uniformly convergent together with its first derivatives on compact
subsets of |x| > |y|, and θ denotes the angle between x and y.

3.3 Direct Scattering Problem

We will now show that the scattering problem for an imperfect conductor in R
2

is well posed. We will always assume that D ⊂ R
2 is a bounded domain con-

taining the origin with connected complement such that ∂D is in class C2. Our
aim is to show the existence of a unique solution u ∈ C2(R2 \ D̄) ∩ C(R2 \D)
of the exterior impedance boundary value problem

Δu + k2u = 0 in R
2 \ D̄ , (3.29)

u(x) = eikx·d + us(x) , (3.30)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0 , (3.31)

∂u

∂ν
+ iλu = 0 on ∂D , (3.32)

where (3.32) is assumed in the sense of uniform convergence as x → ∂D,
λ ∈ C(∂D), λ(x) > 0 for x ∈ ∂D, ν is the unit outward normal to ∂D, and
the Sommerfeld radiation condition (3.31) is assumed to hold uniformly in θ,
where k > 0 is the wave number and (r, θ) are polar coordinates. We also
want to show that the solution u of (3.29)–(3.32) depends continuously on the
incident field ui in an appropriate norm.

We define the (radiating) fundamental solution to the Helmholtz
equation by

Φ(x, y) :=
i

4
H

(1)
0 (k |x− y|) (3.33)
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and note that Φ(x, y) satisfies the Sommerfeld radiation condition with respect
to both x and y, and as |x− y| → 0 we have that

Φ(x, y) =
1

2π
log

1

|x− y| +O(1). (3.34)

Theorem 3.1 (Representation Theorem). Let us ∈ C2(R2 \ D̄)∩C(R2 \
D) be a solution of the Helmholtz equation in the exterior of D satisfying the
Sommerfeld radiation condition and such that ∂u/∂ν exists in the sense of
uniform convergence as x→ ∂D. Then for x ∈ R

2 \ D̄ we have that

us(x) =

∫
∂D

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y).

Proof. Let x ∈ R
2 \ D̄, and circumscribe it with a disk

Ωx,ε := {y : |x− y| < ε} ,
where Ωx,ε ⊂ R

2 \ D̄. Let ΩR be a disk of radius R centered at the origin and
containing D and Ωx,ε in its interior. Then from Green’s second identity we
have that∫

∂D+∂Ωx,ε+∂ΩR

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y) = 0.

From the definition of the Hankel function, we have that

d

dr
H

(1)
0 (r) = −H(1)

1 (r) ,

and hence on ∂Ωx,ε we have that

∂

∂ν(y)
Φ(x, y) =

1

2π

1

|x− y| +O(|x− y| log |x− y|). (3.35)

Using (3.34) and (3.35) and letting ε→ 0 we see that

us(x) =

∫
∂D

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y)

−
∫
|y|=R

(
us(y)

∂

∂ν(y)
Φ(x, y)− ∂us

∂ν
(y)Φ(x, y)

)
ds(y) ,

(3.36)

where as usual ν is the unit outward normal to the boundary of the (interior)
domain. Hence to establish the theorem we must show that the second integral
tends to zero as R→ ∞.

We first show that

lim
R→∞

∫
|y|=R

|us|2 ds = O(1). (3.37)
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To this end, from the Sommerfeld radiation condition we have that

0 = lim
R→∞

∫
|y|=R

∣∣∣∣∂u
s

∂r
− ikus

∣∣∣∣
2

ds

= lim
R→∞

∫
|y|=R

(∣∣∣∣∂u
s

∂r

∣∣∣∣
2

+ k2 |us|2 + 2k Im

(
us
∂us

∂r

))
ds.

(3.38)

Green’s first identity applied to DR = ΩR \ D̄ gives

∫
|y|=R

us
∂us

∂r
ds =

∫
∂D

us
∂us

∂ν
ds− k2

∫
DR

|us|2 dy +
∫
DR

|gradus|2 dy ,

and hence from (3.38) we have that

lim
R→∞

∫
|y|=R

(∣∣∣∣∂u
s

∂r

∣∣∣∣
2

+ k2 |us|2
)
ds = −2k Im

∫
∂D

us
∂us

∂ν
ds , (3.39)

and from this we can conclude that (3.37) is true.
To complete the proof, we now note the identity∫

|y|=R

(
us(y)

∂

∂ν(y)
Φ(x, y) − ∂us

∂ν
(y)Φ(x, y)

)
ds(y) =

=

∫
|y|=R

us(y)

(
∂

∂ |y|Φ(x, y)− ikΦ(x, y)

)
ds(y)

−
∫
|y|=R

Φ(x, y)

(
∂us

∂ |y| (y)− ikus(y)

)
ds(y).

(3.40)

Applying the Cauchy–Schwarz inequality to each of the integrals on the right-
hand side of (3.40) and using (3.37), the facts that Φ(x, y) = O(1/

√
R) and Φ

and us satisfy the Sommerfeld radiation condition we have that

lim
R→∞

∫
|y|=R

(
us(y)

∂

∂ν(y)
Φ(x, y) − ∂us

∂ν
(y)Φ(x, y)

)
ds(y) = 0 ,

and the proof is complete. ��
Now let D be a bounded domain with C2 boundary ∂D and u ∈

C2(D) ∩ C1(D̄) a solution of the Helmholtz equation in D. Then, using the
techniques of the proof of the preceding theorem, it can easily be shown that
for x ∈ D we have the representation formula

u(x) =

∫
∂D

(
∂u

∂ν
(y)Φ(x, y) − u(y)

∂

∂ν(y)
Φ(x, y)

)
ds(y). (3.41)

Hence, since Φ(x, y) is a real-analytic function of x1 and x2, where x = (x1, x2)
and x �= y, we have that u is real-analytic in D. This proves the following
theorem.
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Theorem 3.2. Solutions of the Helmholtz equation are real-analytic functions
of their independent variables.

The identity theorem for real-analytic functions [95] and Theorem 3.2 imply
that solutions of the Helmholtz equation satisfy the unique continuation prin-
ciple, i.e., if u is a solution of the Helmholtz equation in a domain D and
u(x) = 0 for x in a neighborhood of a point x0 ∈ D, then u(x) = 0 for all x
in D.

We are now in a position to show that if a solution to the scattering
problem (3.29)–(3.32) exists, then it is unique.

Theorem 3.3. Let us ∈ C2(R2 \ D̄) ∩ C(R2 \D) be a solution of the Helmholtz
equation in R

2 \ D̄ satisfying the Sommerfeld radiation condition and the
boundary condition ∂us/∂ν + iλus = 0 on ∂D (in the sense of uniform con-
vergence as x→ ∂D). Then us = 0.

Proof. Let Ω be a disk centered at the origin and containing D in its interior.
Then from Green’s second identity, the fact that R and λ are real, and hence

∂us

∂ν
+ iλus =

∂us

∂ν
− iλus = 0 on ∂D ,

we have that∫
∂Ω

(
us
∂us

∂r
− us

∂us

∂r

)
ds =

∫
∂D

(
us
∂us

∂ν
− us

∂us

∂ν

)
ds

= −2i

∫
∂D

λ |us|2 ds.
(3.42)

But since, by Theorem 3.2, us ∈ C∞(R2 \ D̄) (in fact real-analytic), we have
that, for x ∈ R

2 \Ω, us can be expanded in a Fourier series

us(r, θ) =

∞∑
−∞

an(r)e
inθ ,

an(r) =
1

2π

∫ 2π

0

us(r, θ)e−inθ dθ ,

(3.43)

where the series and its derivatives with respect to r are absolutely and uni-
formly convergent on compact subsets of R2\Ω. In particular, it can be verified
directly that an(r) is a solution of Bessel’s equation and, since us satisfies the
Sommerfeld radiation condition,

an(r) = αnH
(1)
n (kr) , (3.44)

where the αn are constants. Substituting (3.43) and (3.44) into (3.42) and

integrating termwise, we see from the fact that H
(1)
n (kr) = H

(2)
n (kr) and the

Wronskian formula (3.22) that
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8i
∞∑
−∞

|αn|2 = −2i

∫
∂D

λ |us|2 ds.

Since λ > 0, we can now conclude that αn = 0 for every integer n, and hence
us(x) = 0 for x ∈ R

2 \ Ω. By Theorem 3.2 and the identity theorem for real-
analytic functions, we can now conclude that us(x) = 0 for x ∈ R

2 \ D̄. ��
Corollary 3.4. If the solution of the scattering problem (3.29)–(3.32) exists,
then it is unique.

Proof. If two solutions u1 and u2 exist, then their difference us = u1 − u2
satisfies the hypothesis of Theorem 3.3, and hence us = 0, i.e., u1 = u2. ��

The next theorem is a classic result in scattering theory that was first
proved by Rellich [143] and Vekua [157] in 1943. Due, perhaps, to wartime
conditions, Vekua’s paper remained unknown in the West, and the result is
commonly attributed only to Rellich.

Theorem 3.5 (Rellich’s Lemma). Let u ∈ C2(R2 \ D̄) be a solution of the
Helmholtz equation satisfying

lim
R→∞

∫
|y|=R

|u|2 ds = 0.

Then u = 0 in R
2 \ D̄.

Proof. Let Ω be a disk centered at the origin and containing D in its interior.
Then, as in Theorem 3.3, we have that for x ∈ R

2 \Ω

u(r, θ) =

∞∑
−∞

an(r)e
inθ ,

an(r) =
1

2π

∫ 2π

0

u(r, θ)e−inθ dθ ,

and an(r) is a solution of Bessel’s equation, i.e.,

an(r) = αnH
(1)
n (kr) + βnH

(2)
n (kr) , (3.45)

where the αn and βn are constants. By Parseval’s equality, we have that

∫
|y|=R

|u|2 ds = 2πR

∞∑
−∞

|an(R)|2 ,

and hence, from the hypothesis of the theorem,

lim
R→∞

R |an(R)|2 = 0. (3.46)
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From (3.45), the asymptotic expansion of H
(1)
n (kr) given by (3.27), and the

fact that H
(1)
n (kr) = H

(2)
n (kr), we see from (3.46) that αn = βn = 0 for every

n, and hence u = 0 in R
2 \ Ω. By Theorem 3.2 and the identity theorem for

real-analytic functions, we can now conclude as in Theorem 3.3 that u(x) = 0
for x ∈ R

2 \ D̄. ��
Theorem 3.6. Let us ∈ C2(R2 \ D̄) ∩ C(R2 \ D) be a radiating solution of
the Helmholtz equation such that ∂u

∂ν (x) converges uniformly as x→ ∂D and

Im

∫
∂D

us
∂us

∂ν
ds ≥ 0.

Then us = 0 in R
2 \ D̄.

Proof. This follows from identity (3.39) and Rellich’s lemma. ��
We now want to use the method of integral equations to establish the

existence of a solution to the scattering problem (3.29)–(3.32). To this end,
we note that the single layer potential

us(x) =

∫
∂D

ϕ(y)Φ(x, y) ds(y), x ∈ R
2 \ ∂D (3.47)

with continuous density ϕ satisfies the Sommerfeld radiation condition, is a
solution of the Helmholtz equation in R

2\∂D, is continuous in R
2, and satisfies

the discontinuity property [111, 127]

∂us±
∂ν

(x) =

∫
∂D

ϕ(y)
∂

∂ν(x)
Φ(x, y) ds(y)∓ 1

2
ϕ(x), x ∈ ∂D,

where

∂us±
∂ν

(x) := lim
h→0

ν(x) · ∇u (x± hν(x)) .

(For future reference, we note that these properties of the single layer potential
are also valid for ϕ ∈ H−1/2(∂D), where the integrals are interpreted in the
sense of duality pairing [111,127].) In particular, (3.47) will solve the scattering
problem (3.29)–(3.32) provided

ϕ(x)− 2

∫
∂D

ϕ(y)
∂

∂ν(x)
Φ(x, y) ds(y) − 2iλ(x)

∫
∂D

ϕ(y)Φ(x, y) ds(y)

= 2

[
∂ui

∂ν
(x) + iλ(x)ui(x)

]
, x ∈ ∂D,

(3.48)

where ui(x) = eikx·d. Hence, to establish the existence of a solution to the
scattering problem (3.29)–(3.32), it suffices to show the existence of a solution
to (3.48) in the normed space C(∂D) (Example 1.3).
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To this end, we first note that the integral operators in (3.48) are com-
pact. This can easily be shown by approximating each of the kernels K(x, y)
in (3.48) by

Kn(x, y) :=

{
h(n |x− y|)K(x, y), x �= y,

0, x = y,

where

h(t) :=

⎧⎪⎨
⎪⎩
0, 0 ≤ t ≤ 1

2 ,

2t− 1, 1
2 ≤ t ≤ 1,

1, 1 ≤ t <∞
and using Theorem 1.17 and the fact that integral operators with continuous
kernels are compact operators on C(∂D) (cf. Theorem 2.21 of [111]). Hence,
by Riesz’s theorem, it suffices to show that the homogeneous equation has
only a trivial solution. But this is in general not the case! In particular, let
k2 be a Dirichlet eigenvalue, i.e., there exists u ∈ C2(D) ∩ C(D̄), with u not
identically zero, such that

Δu+ k2u = 0 in D,

u = 0 on ∂D.

It can be shown that u ∈ C1(D̄) [51] and ∂u/∂ν is not identically zero since, if
it were, then by the representation formula (3.41) u would be identically zero,
which it is not by assumption. Hence for ϕ := ∂u/∂ν we have from Green’s
second identity that

∫
∂D

ϕ(y)Φ(x, y) ds(y) = 0, x ∈ R
2 \ D̄ (3.49)

and, by continuity, for x ∈ R
2 \D. Hence, using the previously stated discon-

tinuity properties for single layer potentials, we have that

ϕ(x)− 2

∫
∂D

ϕ(y)
∂

∂ν(x)
Φ(x, y) ds(y) = 0, x ∈ ∂D. (3.50)

Equations (3.49) and (3.50) now imply that ϕ is a nontrivial solution of the
homogeneous equation corresponding to (3.48). Thus we cannot use Riesz’s
theorem to establish the existence of a solution to (3.48).

To obtain an integral equation that is uniquely solvable for all values of
the wave number k, we need to modify the kernel of the representation (3.47).
We will do this following the ideas of [96, 109, 156]. We begin by defining the
function χ = χ(x, y) by

χ(x, y) :=
i

4

∞∑
−∞

anH
(1)
n (kr)H(1)

n (kry)e
in(θ−θy), (3.51)
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where x has polar coordinates (r, θ), y has polar coordinates (ry , θy), and
the coefficients an are chosen such that the series converges for |x| , |y| > R,
where ΩR := {x : |x| ≤ R} ⊂ D. The fact that this can be done follows
from (3.15), (3.16), and (3.18) and the fact that

H
(1)
−n(kr) = (−1)nH(1)

n (kr)

for n = 0, 1, 2, 3, · · · . In particular these equations imply that

∣∣∣H(1)
n (kr)

∣∣∣ = O

(
2|n| (|n| − 1)!

(kr)|n|

)

for n = ±1,±2, · · · and r on compact subsets of (0,∞). Defining

Γ (x, y) := Φ(x, y) + χ(x, y)

we now see that the modified single layer potential

us(x) :=

∫
∂D

ϕ(y)Γ (x, y) ds(y) (3.52)

for continuous density ϕ and x ∈ R
2\(∂D∪ΩR) satisfies the Sommerfeld radi-

ation condition, is a solution of the Helmholtz equation in R
2\(∂D∪ΩR), and

satisfies the same discontinuity properties as the single layer potential (3.47).
Hence (3.52) will solve the scattering problem (3.29)–(3.32) provided ϕ sat-
isfies (3.48), with Φ replaced by Γ . By Riesz’s theorem, a solution of this
equation exists if the corresponding homogeneous equation only has a trivial
solution.

Let ϕ be a solution of this homogeneous equation. Then (3.52) will be a
solution of (3.29)–(3.32) with eikx·d set equal to zero and hence, by Corol-
lary 3.4, we have that if us is defined by (3.52), then us(x) = 0 for x ∈ R

2 \ D̄.
By the continuity of (3.52) across ∂D, us is a solution of the Helmholtz equa-
tion in D \ ΩR, u

s ∈ C2(D \ Ω̄R) ∩ C(D̄ \ΩR), and us(x) = 0 for x ∈ ∂D.
From (3.51), (3.52), and the addition formula for Bessel functions, we see that
there exist constants αn such that for R1 ≤ |x| ≤ R2, where R < R1 < R2

and {x : |x| < R2} ⊂ D, we can represent us in the form

us(x) =

∞∑
−∞

αn

{
Jn(kr) + anH

(1)
n (kr)

}
einθ.

Since

us+(x) := lim
x→∂D
x∈D

us(x),

∂us+
∂ν

(x) := lim
x→∂D
x∈D

∂us

∂ν
(x)
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exist and are continuous, we can apply Green’s second identity to us and ūs

over D \ {x : |x| ≤ R1} and use the Wronskian relations (3.21) and (3.22) to
see that

0 =

∫
∂D

(
us+

∂ūs+
∂ν

− ūs+
∂us+
∂ν

)
ds =

∫
|x|=R1

(
us
∂ūs

∂ν
− ūs

∂us

∂ν

)
ds

= 2i
∞∑
−∞

|αn|2
(
1− |1 + 2an|2

)
.

Hence, if either |1 + 2an| < 1 or |1 + 2an| > 1 for n = 0,±1,±2, · · · , then
αn = 0 for n = 0,±1,±2, · · · , i.e., us(x) = 0 for R1 ≤ |x| ≤ R2. By Theo-
rem 3.2 and the identity theorem for real-analytic functions, we can now con-
clude that us(x) = 0 for x ∈ D \ΩR. Recalling that us(x) = 0 for x ∈ R

2 \ D̄,
we now see from the discontinuity property of single layer potentials that

0 =
∂us−
∂ν

− ∂us+
∂ν

(x) = ϕ(x),

i.e., the homogeneous equation under consideration only has the trivial solu-
tion ϕ = 0. Hence, by Riesz’s theorem, the corresponding inhomogeneous
equation has a unique solution that depends continuously on the right-
hand side.

Theorem 3.7. There exists a unique solution of the scattering problem (3.29)–
(3.32) that depends continuously on ui(x)=eikx·d in C1(∂D).

It is often important to find a solution of (3.29)–(3.32) in a larger space
than C2(R2 \ D̄) ∩ C1(R2 \D). To this end, let ΩR := {x : |x| < R}, and
define the Sobolev spaces

H1
loc(R

2 \ D̄) := {u : u ∈ H1
(
(R2 \ D̄) ∩ΩR

)
for every R > 0

such that (R2 \D) ∩ΩR �= ∅},
H1

com(R2 \ D̄) := {u : u ∈ H1(R2 \ D̄), u is identically

zero outside some ball centered at

the origin}.

We recall that H−p(∂D), 0 ≤ p < ∞, is the dual space of Hp(∂D) and, for
f ∈ H−p(∂D) and v ∈ Hp(∂D),

∫
∂D

fv ds := f(v)

is defined by duality pairing.
Then, for f ∈ H−1/2(∂D), a weak solution of
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Δu + k2u = 0 in R
2 \ D̄, (3.53)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, (3.54)

∂u

∂ν
+ iλu = f on ∂D (3.55)

is defined as a function u ∈ H1
loc(R

2 \ D̄) such that

−
∫
R2\D̄

(∇u · ∇v − k2uv
)
dx+ i

∫
∂D

λuv ds =

∫
∂D

fv ds (3.56)

for all v ∈ H1
com(R2 \ D̄) such that u satisfies the Sommerfeld radiation con-

dition (3.54). Note that by the trace theorem we have that v|∂D ∈ H1/2(∂D)
is well defined, and hence the integral on the right-hand side of (3.56) is well
defined by duality pairing. The radiation condition also makes sense in the
weak case since, by regularity results for elliptic equations [127], any weak
solution is automatically infinitely differentiable in R

2 \ D̄. It is easily verified
that if u ∈ C2(R2 \ D̄) ∩ C1(R2 \D) is a solution of (3.53)–(3.55), then u
is also a weak solution of (3.53)–(3.55), i.e., u satisfies (3.56). The following
theorem will be proved in Chap. 8.

Theorem 3.8. There exists a unique weak solution of the scattering prob-
lem (3.53)–(3.55), and the mapping taking the boundary data f ∈ H−1/2(∂D)
onto the solution u ∈ H1((R2 \ D̄) \ Ω̄R) is bounded for every R such that
(R2 \ D̄) ∩ΩR �= ∅.

In an analogous manner, we can define a weak solution of the Helmholtz
equation in a bounded domain D to be any function u ∈ H1(D) such that

∫
D

(∇u · ∇v − k2uv
)
dx = 0

for all v ∈ H1(D) such that v = 0 on ∂D in the sense of the trace theorem.
The following theorems will be useful in the sequel, but we will delay their
proofs until Chap. 5, where they will constitute a basic part of the analysis of
that chapter.

Theorem 3.9. Let D be a bounded domain with C2 boundary ∂D such that
k2 is not a Dirichlet eigenvalue for D. Then for every f ∈ H1/2(∂D) there
exists a unique weak solution u ∈ H1(D) of the Helmholtz equation in D such
that u = f on ∂D in the sense of the trace theorem. Furthermore, the mapping
taking f onto u is bounded.

Theorem 3.10. Let u ∈ H1(D) and Δu ∈ L2(D) in a bounded domain D
with C2 boundary ∂D having unit outward normal ν. Then there exists a
positive constant C independent of u such that
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∥∥∥∥
H−1/2(∂D)

≤ C ‖u‖H1(D) .

Finally, we note that Green’s identities and the representation formulas for
exterior and interior domains remain valid for weak solutions of the Helmholtz
equation, and we refer the reader to Chap. 5 for a proof of this fact.
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