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Ill-Posed Problems

For problems in mathematical physics, Hadamard postulated three properties
that he deemed to be of central importance:

1. Existence of a solution,
2. Uniqueness of a solution,
3. Continuous dependence of the solution on the data.

A problem satisfying all three of these requirements is called well-posed. To be
more precise, we make the following definition: let A : U → V be an operator
from a subset U of a normed space X into a subset V of a normed space Y .
The equation Aϕ = f is called well-posed if A is bijective and A−1 : V → U
is continuous. Otherwise, Aϕ = f is called ill-posed or improperly posed .
Contrary to Hadamard’s point of view, in recent years it has become clear
that many important problems of mathematical physics are in fact ill-posed!
In particular, all of the inverse scattering problems considered in this book are
ill-posed, and for this reason we devote a short chapter to the mathematical
theory of ill-posed problems. But first we present a simple example of an
ill-posed problem.

Example 2.1. Consider the initial-boundary value problem

∂u

∂t
=
∂2u

∂x2
in [0, π]× [0, T ]

u(0, t) = u(π, t) = 0 , 0 ≤ t ≤ T

u(x, 0) = ϕ(x) , 0 ≤ x ≤ π ,

where ϕ ∈ C[0, π] is a given function. Then, by separation of variables, we
obtain the solution

u(x, t) =

∞∑

1

ane
−n2t sinnx,

an =
2

π

∫ π

0

ϕ(y) sinny dy ,
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28 2 Ill-Posed Problems

and it is not difficult to show that this solution is unique and depends
continuously on the initial data with respect to the maximum norm, i.e.,

max
[0,π]×[0,T ]

|u(x, t)| ≤ Cmax
[0,π]

|ϕ(x)|

for some positive constant C [43]. Now consider the inverse problem of
determining ϕ from f := u(·, T ). In this case,

u(x, t) =

∞∑

1

bne
n2(T−t) sinnx ,

bn =
2

π

∫ π

0

f(y) sinny dy ,

and hence

‖ϕ‖2 =
2

π

∞∑

1

|bn|2 e2n2T ,

which is infinite unless the bn decay extremely rapidly. Even if this is the case,
small perturbations of f (and hence of the bn) will result in the nonexistence
of a solution! Note that the inverse problem can be written as an integral
equation of the first kind with smooth kernel:

∫ π

0

K(x, y)ϕ(y) dy = f(x) , 0 ≤ x ≤ π ,

where

K(x, y) =
2

π

∞∑

1

e−n2T sinnx sinny , 0 ≤ x, y ≤ π.

In particular, the preceding integral operator is compact in any reasonable
function space, for example, L2[0, π]. ��
Theorem 2.2. Let X and Y be normed spaces, and let A : X → Y be a
compact operator. Then Aϕ = f is ill-posed if X is not of finite dimension.

Proof. Assume A−1 exists and is continuous. Then I = A−1A : X → X is
compact, and hence, by Theorem 1.20 X , is finite dimensional. ��

We will now proceed, again following [111], to present the basic mathe-
matical ideas for treating ill-posed problems. For a more detailed discussion
we refer the reader to [71, 98, 111], and, in particular, [68].

2.1 Regularization Methods

Methods for constructing a stable approximate solution to an ill-posed prob-
lem are called regularization methods. In particular, for A a bounded linear
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operator, we want to approximate the solution ϕ of Aϕ = f from a knowledge
of a perturbed right-hand side with a known error level

∥∥f − f δ
∥∥ ≤ δ.

When f ∈ A(X), then, if A is injective, there exists a unique solution ϕ of
Aϕ = f . However, in general we cannot expect that f δ ∈ A(X). How do
we construct a reasonable approximation ϕδ to ϕ that depends continuously
on f δ?

Definition 2.3. Let X and Y be normed spaces, and let A : X → Y be an
injective bounded linear operator. Then a family of bounded linear operators
Rα : Y → X , α > 0, such that

lim
α→0

RαAϕ = ϕ

for every ϕ ∈ X , is called a regularization scheme for A. The parameter α is
called the regularization parameter .

We clearly have that Rαf → A−1f as α → 0 for every f ∈ A(X). The
following theorem shows that for compact operators this convergence cannot
be uniform.

Theorem 2.4. Let X and Y be normed spaces, let A : X → Y be an injective
compact operator, and assume X has infinite dimension. Then the operators
Rα cannot be uniformly bounded with respect to α as α → 0 and RαA cannot
be norm convergent as α→ 0.

Proof. Assume ‖Rα‖ ≤ C as α → 0. Then, since Rαf → A−1f as α → 0 for
every f ∈ A(X), we have that

∥∥A−1f
∥∥ ≤ C ‖f‖, and hence A−1 is bounded

on A(X). But this implies I = A−1A is compact on X , which contradicts the
fact that X has infinite dimension.

Now assume that RαA is norm convergent as α → 0, i.e., ‖RαA− I‖ → 0
as α → 0. Then there exists α > 0 such that ‖RαA− I‖ < 1

2 , and hence for
every f ∈ A(X) we have that

∥∥A−1f
∥∥ =

∥∥A−1f −RαAA
−1f +Rαf

∥∥

≤ ∥∥A−1f −RαAA
−1f

∥∥+ ‖Rαf‖
≤ ‖I −RαA‖

∥∥A−1f
∥∥+ ‖Rα‖ ‖f‖

≤ 1

2

∥∥A−1f
∥∥+ ‖Rα‖ ‖f‖ .

Hence
∥∥A−1f

∥∥ ≤ 2 ‖Rα‖ ‖f‖, i.e., A−1 : A(X) → X is bounded and we again
have arrived at a contradiction. ��

A regularization scheme approximates the solution ϕ of Aϕ = f by
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ϕδ
α := Rαf

δ.

Writing

ϕδ
α − ϕ = Rαf

δ −Rαf +RαAϕ− ϕ ,

we have the estimate

∥∥ϕδ
α − ϕ

∥∥ ≤ δ ‖Rα‖+ ‖RαAϕ− ϕ‖ .

By Theorem 2.4, the first term on the right-hand side is large for α small,
whereas the second term on the right-hand side is large if α is not small! So
how do we choose α? A reasonable strategy is to choose α = α(δ) such that
ϕδ
α → ϕ as δ → 0.

Definition 2.5. A strategy for a regularization scheme Rα, α > 0, i.e., a
method for choosing the regularization parameter α = α(δ), is called regular
if for every f ∈ A(X) and all f δ ∈ Y such that

∥∥f δ − f
∥∥ ≤ δ we have that

Rα(δ)f
δ → A−1f

as δ → 0.

A natural strategy for choosing α = α(δ) is the discrepancy principle of
Morozov [130], i.e., the residual

∥∥Aϕδ
α − f δ

∥∥ should not be smaller than the
accuracy of the measurements of f . In particular, α = α(δ) should be chosen
such that

∥∥ARαf
δ − f δ

∥∥ = γδ for some constant γ ≥ 1. Given a regularization
scheme, the question, of course, is whether or not such a strategy is regular.

2.2 Singular Value Decomposition

HenceforthX and Y will always be infinite-dimensional Hilbert spaces and A :
X → Y , A 	= 0, will always be a compact operator. Note that A∗A : X → X is
compact and self-adjoint. Hence, by the Hilbert–Schmidt theorem, there exists
at most a countable set of eigenvalues {λn}∞1 , of A∗A and if A∗Aϕn = λnϕn

then (A∗Aϕn, ϕn) = λn ‖ϕn‖2, i.e., ‖Aϕn‖2 = λn ‖ϕn‖2, which implies that
λn ≥ 0 for n = 1, 2, · · · . The nonnegative square roots of the eigenvalues of
A∗A are called the singular values of A.

Theorem 2.6. Let {μn}∞1 be the sequence of nonzero singular values of the
compact operator A : X → Y ordered such that

μ1 ≥ μ2 ≥ μ3 ≥ · · · .

Then there exist orthonormal sequences {ϕn}∞1 in X and {gn}∞1 in Y such
that

Aϕn = μngn , A∗gn = μnϕn.
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For every ϕ ∈ X we have the singular value decomposition

ϕ =

∞∑

1

(ϕ, ϕn)ϕn + Pϕ ,

where P : X → N(A) is the orthogonal projection operator of X onto N(A)
and

Aϕ =

∞∑

1

μn(ϕ, ϕn)gn.

The system (μn, ϕn, gn) is called a singular system of A.

Proof. Let {ϕn}∞1 be the orthonormal eigenelements of A∗A corresponding
to {μn}∞1 , i.e.,

A∗Aϕn = μ2
nϕn ,

and define a second orthonormal sequence by

gn :=
1

μn
Aϕn.

Then Aϕn = μngn and A∗gn = μnϕn. The Hilbert–Schmidt theorem implies
that

ϕ =

∞∑

1

(ϕ, ϕn)ϕn + Pϕ ,

where P : X → N(A∗A) is the orthogonal projection operator of X onto
N(A∗A). But ψ ∈ N(A∗A) implies that (Aψ,Aψ) = (ψ,A∗Aψ) = 0, and
hence N(A∗A) = N(A). Finally, applying A to the preceding expansion (first
apply A to the partial sum and then take the limit), we have that

Aϕ =

∞∑

1

μn(ϕ, ϕn)gn.

��
We now come to the main result that will be needed to study compact

operator equations of the first kind, i.e., equations of the form Aϕ = f , where
A is a compact operator.

Theorem 2.7 (Picard’s Theorem). Let A : X → Y be a compact operator
with singular system (μn, ϕn, gn). Then the equation Aϕ = f is solvable if and
only if f ∈ N(A∗)⊥ and

∞∑

1

1

μ2
n

|(f, gn)|2 <∞. (2.1)

In this case a solution to Aϕ = f is given by
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ϕ =
∞∑

1

1

μn
(f, gn)ϕn.

Proof. The necessity of f ∈ N(A∗)⊥ follows from Theorem 1.29. If ϕ is a
solution of Aϕ = f , then

μn(ϕ, ϕn) = (ϕ,A∗gn) = (Aϕ, gn) = (f, gn).

But from the singular value decomposition of ϕ we have that

‖ϕ‖2 =

∞∑

1

|(ϕ, ϕn)|2 + ‖Pϕ‖2 ,

and hence
∞∑

1

1

μ2
n

|(f, gn)|2 =

∞∑

1

|(ϕ, ϕn)|2 ≤ ‖ϕ‖2 ,

which implies the necessity of condition (2.1).
Conversely, assume that f ∈ N(A∗)⊥ and (2.1) is satisfied. Then from (2.1)

we have that

ϕ :=

∞∑

1

1

μn
(f, gn)ϕn

converges in the Hilbert space X . Applying A to this series we have that

Aϕ =
∞∑

1

(f, gn)gn.

But, since f ∈ N(A∗)⊥, this is the singular value decomposition of f corre-
sponding to the operator A∗, and hence Aϕ = f . ��

Note that Picard’s theorem illustrates the ill-posed nature of the equation
Aϕ = f . In particular, setting f δ = f + δgn we obtain a solution of Aϕδ = f δ

given by ϕδ = ϕ+ δϕn/μn. Hence, if A(X) is not finite dimensional, then

∥∥ϕδ − ϕ
∥∥

‖f δ − f‖ =
1

μn
→ ∞

since, by Theorem 1.14, we have that μn → 0. We say that Aϕ = f is mildly
ill-posed if the singular values decay slowly to zero and severely ill-posed if they
decay very rapidly (for example, exponentially). All of the inverse scattering
problems considered in this book are severely ill-posed.

Henceforth, to focus on ill-posed problems, we will always assume that
A(X) is infinite dimensional, i.e., the set of singular values is an infinite set.
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Example 2.8. Consider the case of the backward heat equation discussed in
Example 2.1. The problem considered in this example is equivalent to solving
the compact operator equation Aϕ = f , where

(Aϕ)(x) :=

∫ π

0

K(x, y)ϕ(y) dy , 0 ≤ x ≤ π,

and

K(x, y) :=
2

π

∞∑

1

e−n2T sinnx sinny.

Then A is easily seen to be self-adjoint with eigenvalues given by λn = e−n2T .
Hence μn = λn, and the compact operator equation Aϕ = f is severely
ill posed. ��

Picard’s theorem suggests trying to regularize Aϕ = f by damping or
filtering out the influence of the higher-order terms in the solution ϕ given by

ϕ =

∞∑

1

1

μn
(f, gn)ϕn.

The following theorem does exactly that. We will subsequently consider two
specific regularization schemes by making specific choices of the function q,
which appears in the theorem.

Theorem 2.9. Let A : X → Y be an injective compact operator with singular
system (μn, ϕn, gn), and let q : (0,∞) × (0, ‖A‖] → R be a bounded function
such that for every α > 0 there exists a positive constant c(α) such that

|q(α, μ)| ≤ c(α)μ , 0 < μ ≤ ‖A‖ ,
and

lim
α→0

q(α, μ) = 1 , 0 < μ ≤ ‖A‖ .
Then the bounded linear operators Rα : Y → X, α > 0, defined by

Rαf :=
∞∑

1

1

μn
q(α, μn)(f, gn)ϕn

for f ∈ Y , describe a regularization scheme with

‖Rα‖ ≤ c(α).

Proof. Noting that from the singular value decomposition of f with respect
to the operator A∗ we have that

‖f‖2 =

∞∑

1

|(f, gn)|2 + ‖Pf‖2 ,
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where P : X → N(A∗) is the orthogonal projection of X onto N(A∗), we see
that for every f ∈ Y we have that

‖Rαf‖2 =

∞∑

1

1

μ2
n

|q(α, μn)|2 |(f, gn)|2

≤ |c(α)|2
∞∑

1

|(f, gn)|2

≤ |c(α)|2 ‖f‖2 ,
and hence ‖Rα‖ ≤ c(α). From

(RαAϕ,ϕn) =
1

μn
q(α, μn)(Aϕ, gn)

= q(α, μn)(ϕ, ϕn)

and the singular value decomposition for RαAϕ−ϕ we obtain, using the fact
that A is injective, that

‖RαAϕ− ϕ‖2 =

∞∑

1

|(RαAϕ− ϕ, ϕn)|2

=
∞∑

1

|q(α, μn)− 1|2 |(ϕ, ϕn)|2 .

Now let ϕ ∈ X , ϕ 	= 0, and let M be a bound for q. We first note that for
every ε > 0 there exists N = N(ε) such that

∞∑

N+1

|(ϕ, ϕn)|2 < ε

2(M + 1)2
.

Since limα→0 q(α, μ) = 1, there exists α0 = α0(ε) such that

|q(α, μn)− 1|2 < ε

2 ‖ϕ‖2

for n = 1, 2, · · · , N and all α such that 0 < α ≤ α0. We now have that, for
0 < α ≤ α0,

‖RαAϕ− ϕ‖2 =

N∑

1

|q(α, μn)− 1|2 |(ϕ, ϕn)|2

+

∞∑

N+1

|q(α, μn)− 1|2 |(ϕ, ϕn)|2

≤ ε

2 ‖ϕ‖2
N∑

1

|(ϕ, ϕn)|2 + ε

2
.
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But, since A is injective,

‖ϕ‖2 =

∞∑

1

|(ϕ, ϕn)|2 ,

and hence ‖RαAϕ− ϕ‖2 ≤ ε for 0 < α ≤ α0. We can now conclude that
RαAϕ→ ϕ as α→ 0 for every ϕ ∈ X and the theorem is proved. ��

A particular choice of q now leads to our first regularization scheme, the
spectral cutoff method .

Theorem 2.10. Let A : X → Y be an injective compact operator with
singular system (μn, ϕn, gn). Then the spectral cutoff

Rmf :=
∑

μn≥μm

1

μn
(f, gn)ϕn

describes a regularization scheme with regularization parameter m → ∞ and
‖Rm‖ = 1/μm.

Proof. Choose q such that q(m,μ) = 1 for μ ≥ μm and q(m,μ) = 0 for
μ < μm. Then, since μm → 0 as m → ∞, the conditions of the previous
theorem are clearly satisfied with c(m) = 1

μm
. Hence ‖Rm‖ ≤ 1

μm
. Equality

follows from the identity Rmgm = ϕm/μm. ��
We conclude this section by establishing a discrepancy principle for the

spectral cutoff regularization scheme.

Theorem 2.11. Let A : X → Y be an injective compact operator with dense
range in Y , and let f ∈ Y and δ > 0. Then there exists a smallest integer m
such that

‖ARmf − f‖ ≤ δ.

Proof. Since A(X) = Y , A∗ is injective. Hence the singular value decomposi-
tion with the singular system (μn, gn, ϕn) for A

∗ implies that for every f ∈ Y
we have that

f =

∞∑

1

(f, gn)gn. (2.2)

Hence

‖(ARm − I)f‖2 =
∑

μn<μm

|(f, gn)|2 → 0 (2.3)

as m → ∞. In particular, there exists a smallest integer m = m(δ) such that
‖ARmf − f‖ ≤ δ. ��
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Note that from (2.2) and (2.3) we have that

‖ARmf − f‖2 = ‖f‖2 −
∑

μn≥μm

|(f, gn)|2 . (2.4)

In particular, m(δ) is determined by the condition that m(δ) is the smallest
value of m such that the right-hand side of (2.4) is less than or equal to δ2.
For example, in the case of the backward heat equation (Example 2.1) we
have that gn(x) =

√
2/π sinnx, and hence m is determined by the condition

that m is the smallest integer such that

‖f‖2 −
m∑

1

|bn|2 ≤ δ2,

where the bn are the Fourier coefficients of f .
It can be shown that the preceding discrepancy principle for the spectral

cutoff method is regular (Theorem 15.26 of [111]).

2.3 Tikhonov Regularization

We now introduce and study the most popular regularization scheme in the
field of ill-posed problems.

Theorem 2.12. Let A : X → Y be a compact operator. Then for every α > 0
the operator αI + A∗A : X → X is bijective and has a bounded inverse.
Furthermore, if A is injective, then

Rα := (αI +A∗A)−1A∗

describes a regularization scheme with ‖Rα‖ ≤ 1/2
√
α.

Proof. From

α ‖ϕ‖2 ≤ (αϕ+A∗Aϕ,ϕ)

for ϕ ∈ X we can conclude that for α > 0 the operator αI +A∗A is injective.
Hence, since A∗A is a compact operator, by Riesz’s theorem we have that
(αI +A∗A)−1 exists and is bounded.

Now assume that A is injective, and let (μn, ϕn, gn) be a singular system
for A. Then for f ∈ Y the unique solution ϕα of

αϕα +A∗Aϕα = A∗f

is given by

ϕα =

∞∑

1

μn

α+ μ2
n

(f, gn)ϕn ,
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i.e., Rα can be written in the form

Rαf =

∞∑

1

1

μn
q(α, μn)(f, gn)ϕn ,

where

q(α, μ) =
μ2

α+ μ2
.

Since 0 < q(α, μ) < 1 and
√
αμ ≤ (

α+ μ2
)
/2, we have that |q(α, μ)| ≤

μ/2
√
α, and the theorem follows from Theorem 2.9. ��

The next theorem shows that the function ϕα = Rαf can be obtained as
the solution of an optimization problem.

Theorem 2.13. Let A : X → Y be a compact operator, and let α > 0. Then
for every f ∈ Y there exists a unique ϕα ∈ X such that

‖Aϕα − f‖2 + α ‖ϕα‖2 = inf
ϕ∈X

{
‖Aϕ− f‖2 + α ‖ϕ‖2

}
.

The minimizer is the unique solution of αϕα +A∗Aϕα = A∗f .

Proof. From

‖Aϕ− f‖2 + α ‖ϕ‖2 = ‖Aϕα − f‖2 + α ‖ϕα‖2
+ 2Re(ϕ− ϕα, αϕα +A∗Aϕα −A∗f)

+ ‖A(ϕ− ϕα)‖2 + α ‖ϕ− ϕα‖2 ,
which is valid for every ϕ, ϕα ∈ X , we see that if ϕα satisfies αϕα+A

∗Aϕα =
A∗f , then ϕα minimizes the Tikhonov functional

‖Aϕ− f‖2 + α ‖ϕ‖2 .
On the other hand, if ϕα is a minimizer of the Tikhonov functional, then set

ψ := αϕα +A∗Aϕα −A∗f

and assume that ψ 	= 0. Then for ϕ := ϕα − tψ, with t a real number, we
have that

‖Aϕ− f‖2 + α ‖ϕ‖2 = ‖Aϕα − f‖2 + α ‖ϕα‖2

− 2t ‖ψ‖2 + t2(‖Aψ‖2 + α ‖ψ‖2). (2.5)

The minimum of the right-hand side of (2.5) occurs when

t =
‖ψ‖2

‖Aψ‖2 + α ‖ψ‖2 ,

and for this t we have that ‖Aϕ − f‖2+α ‖ϕ‖2 < ‖Aϕα − f‖2+α ‖ϕα‖2, which
contradicts the definition of ϕα. Hence ψ = 0, i.e., αϕα +A∗Aϕα = A∗f . ��
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By the interpretation of Tikhonov regularization as the minimizer of the
Tikhonov functional, its solution ϕα keeps the residual ‖Aϕα − f‖2 small and

is stabilized through the penalty term α ‖ϕα‖2. This suggests the following
two constrained optimization problems:

Minimum norm solution: for a given δ > 0 minimize ‖ϕ‖ such that
‖Aϕ− f‖ ≤ δ.
Quasi-solutions : for a given ρ > 0 minimize ‖Aϕ− f‖ such that ‖ϕ‖ ≤ ρ.

We begin with the idea of a minimum norm solution and view this as a
discrepancy principle for choosing ϕ in a Tikhonov regularization.

Theorem 2.14. Let A : X → Y be an injective compact operator with dense
range in Y , and let f ∈ Y with ‖f‖ > δ > 0. Then there exists a unique α
such that

‖ARαf − f‖ = δ.

Proof. We must show that

F (α) := ‖ARαf − f‖2 − δ2

has a unique zero. As in Theorem 2.11, we have that

f =

∞∑

1

(f, gn)gn,

and for ϕα = Rαf we have that

ϕα =

∞∑

1

μn

α+ μ2
n

(f, gn)ϕn.

Hence

F (α) =

∞∑

1

α2

(α+ μ2
n)

2
|(f, gn)|2 − δ2.

Since F is a continuous function of α and strictly monotonically increasing
with limits F (α) → −δ2 as α → 0 and F (α) → ‖f‖2 − δ2 > 0 as α → ∞, F
has exactly one zero α = α(δ). ��

To prove the regularity of the foregoing discrepancy principle for Tikhonov
regularizations, we need to introduce the concept of weak convergence.

Definition 2.15. A sequence {ϕn} in X is said to be weakly convergent to
ϕ ∈ X if

lim
n→∞(ψ, ϕn) = (ψ, ϕ)

for every ψ ∈ X and we write ϕn ⇀ ϕ, n→ ∞.
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Note that norm convergence ϕn → ϕ, n → ∞, always implies weak
convergence, but, as the following example shows, the converse is generally
false.

Example 2.16. Let 2 be the space of all sequences {an}∞1 , an ∈ C, such that

∞∑

1

|an|2 <∞. (2.6)

It is easily shown that, with componentwise addition and scalar multiplication,
2 is a Hilbert space with inner product

(a, b) =

∞∑

1

anb̄n,

where a = {an}∞1 and b = {bn}∞1 . In 2 we now define the sequence {ϕn}
by ϕn = (0, 0, 0, · · · , 1, 0, · · · ), where the one appears in the nth entry. Then
{ϕn} is not norm convergent since ‖ϕn − ϕm‖ =

√
2 for m 	= n, and hence

{ϕn} is not a Cauchy sequence. On the other hand, for ψ = {an} ∈ 2 we
have that (ψ, ϕn) = an → 0 as n → ∞ due to the convergence of the series
in (2.6). Hence {ϕn} is weakly convergent to zero in 2.

Theorem 2.17. Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Proof. Let {ϕn} be a bounded sequence, ‖ϕn‖ ≤ C. Then for each integer m
the sequence (ϕm, ϕn) is bounded for all n. Hence by the Bolzano–Weierstrass
theorem and a diagonalization process (cf. the proof of Theorem 1.17) we can
select a subsequence {ϕn(k)} such that (ϕm, ϕn(k)) converges as k → ∞ for
every integer m. Thus the linear functional F defined by

F (ψ) := lim
k→∞

(ψ, ϕn(k))

is well defined on U := span{ϕm} and, by continuity, on Ū . Now let P :
X → Ū be the orthogonal projection operator, and for arbitrary ψ ∈ X write
ψ = Pψ + (I − P )ψ. For arbitrary ψ ∈ X define F (ψ) by

F (ψ) := lim
k→∞

(ψ, ϕn(k)) = lim
k→∞

[
(Pψ, ϕn(k)) +

(
(I − P )ψ, ϕn(k)

)]

= lim
k→∞

(
Pψ, ϕn(k)

)
,

where we have used the easily verifiable fact that P is self-adjoint. Thus F is
defined on all ofX . Furthermore, ‖F‖ ≤ C. Hence, by the Riesz representation
theorem, there exists a unique ϕ ∈ X such that F (ψ) = (ψ, ϕ) for every
ψ ∈ X . We can now conclude that limk→∞(ψ, ϕn(k)) = (ψ, ϕ) for every ψ ∈ X ,
i.e., ϕn(k) is weakly convergent to ϕ as k → ∞. ��
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We are now in a position to show that the discrepancy principle of
Theorem 2.14 is regular.

Theorem 2.18. Let A : X → Y be an injective compact operator with dense
range in Y . Let f ∈ A(X) and f δ ∈ Y satisfy

∥∥f δ − f
∥∥ ≤ δ <

∥∥f δ
∥∥ with

δ > 0. Then there exists a unique α = α(δ) such that

∥∥ARα(δ)f
δ − f δ

∥∥ = δ

and

Rα(δ)f
δ → A−1f

as δ → 0.

Proof. In view of Theorem 2.14, we only need to establish convergence. Since
ϕδ = Rα(δ)f

δ minimizes the Tikhonov functional, we have that

δ2 + α
∥∥ϕδ

∥∥2 =
∥∥Aϕδ − f δ

∥∥2 + α
∥∥ϕδ

∥∥2

≤ ∥∥AA−1f − f δ
∥∥2 + α

∥∥A−1f
∥∥2

≤ δ2 + α
∥∥A−1f

∥∥2
,

and hence
∥∥ϕδ

∥∥ ≤ ∥∥A−1f
∥∥. Now let g ∈ Y . Then

∣∣(Aϕδ − f, g)
∣∣ ≤ (∥∥Aϕδ − f δ

∥∥+
∥∥f δ − f

∥∥) ‖g‖
≤ 2δ ‖g‖ → 0 (2.7)

as δ → 0. Since A is injective, A∗(Y ) is dense in X , and hence for every ψ ∈ X
there exists a sequence {gn} in Y such that A∗gn → ψ. Then

(ϕδ − ϕ, ψ) = (ϕδ − ϕ,A∗gn) + (ϕδ − ϕ, ψ −A∗gn) (2.8)

and, for every ε > 0,

∣∣(ϕδ − ϕ, ψ −A∗gn)
∣∣ ≤ ∥∥ϕδ − ϕ

∥∥ ‖ψ −A∗gn‖ < ε

2
(2.9)

for all δ > 0 and N > N0 since
∥∥ϕδ − ϕ

∥∥ is bounded. Hence for N > N0 and
δ sufficiently small we have from (2.7)–(2.9) that

∣∣(ϕδ − ϕ, ψ)
∣∣ ≤ ∣∣(ϕδ − ϕ,A∗gn)

∣∣+
∣∣(ϕδ − ϕ, ψ −A∗gn)

∣∣

≤ ∣∣(Aϕδ − f, gn)
∣∣+ ε

2
≤ ε ,

where we have set f = Aϕ. We can now conclude that ϕδ ⇀ A−1f as δ → 0.
Then, again using the fact that

∥∥ϕδ
∥∥ ≤ ∥∥A−1f

∥∥, we have that
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∥∥ϕδ −A−1f
∥∥2 =

∥∥ϕδ
∥∥2 − 2Re

(
ϕδ, A−1f

)
+
∥∥A−1f

∥∥2 (2.10)

≤ 2
(∥∥A−1f

∥∥2 − Re
(
ϕδ, A−1f

)) → 0

as δ → 0, and the proof is complete. ��
Under additional conditions on f , which may be viewed as a regularity

condition on f , we can obtain results on the order of convergence.

Theorem 2.19. Under the assumptions of Theorem 2.18, if f ∈ AA∗(Y ),
then ∥∥ϕδ −A−1f

∥∥ = O
(
δ1/2

)
, δ → 0.s

Proof. We have that A−1f = A∗g for some g ∈ Y . Then from (2.10) we have
that

∥∥ϕδ −A−1f
∥∥2 ≤ 2

(∥∥A−1f
∥∥2 − Re

(
ϕδ, A−1f

))

= 2Re
(
A−1f − ϕδ, A−1f

)

= 2Re
(
f −Aϕδ, g

)

≤ 2
(∥∥f − f δ

∥∥+
∥∥f δ −Aϕδ

∥∥) ‖g‖
≤ 4δ ‖g‖ ,

and the theorem follows. ��
Tikhonov regularization methods also apply to cases where both the

operator and the right-hand side are perturbed, i.e., both the operator and
the right-hand side are “noisy.” In particular, consider the operator equation
Ahϕ = f δ, Ah : X → Y , where ‖Ah −A‖ ≤ h and

∥∥f − f δ
∥∥ ≤ δ, respectively.

Then the Tikhonov regularization operator is given by

Rα := (αI +A∗
hAh)

−1
A∗

h ,

and the regularization solution ϕα := Rαf
δ is found by minimizing the

Tikhonov functional ∥∥Ahϕ− f δ
∥∥+ α ‖ϕ‖ .

The regularization parameter α = α(δ, h) is determined from the equation

∥∥Ahϕα − f δ
∥∥2 =

(
δ + h ‖ϕα‖2

)
.

Then all of the results obtained earlier in the case where A is not noisy can
be generalized to the present case where both A and f are noisy. For details
we refer the reader to [130].

We now turn our attention to the method of quasi-solutions.
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Theorem 2.20. Let A : X → Y be an injective compact operator and let
ρ > 0. Then for every f ∈ Y there exists a unique ϕ0 ∈ X with ‖ϕ0‖ ≤ ρ
such that

‖Aϕ0 − f‖ ≤ ‖Aϕ− f‖
for all ϕ satisfying ‖ϕ‖ ≤ ρ. The element ϕ0 is called the quasi-solution of
Aϕ = f with constraint ρ.

Proof. We note that ϕ0 is a quasi-solution with constraint ρ if and only if Aϕ0

is a best approximation to f with respect to the set V := {Aϕ : ‖ϕ‖ ≤ ρ}.
Since A is linear, V is clearly convex, i.e., λϕ1+(1−λ)ϕ2 ∈ V for all ϕ1, ϕ2 ∈ V
and 0 ≤ λ ≤ 1. Suppose there were two best approximations to f , i.e., there
exist v1, v2 ∈ V such that

‖f − v1‖ = ‖f − v2‖ = inf
v∈V

‖f − v‖ .

Then, since V is convex, 1
2 (v1 + v2) ∈ V , and hence

∥∥∥∥f − v1 + v2
2

∥∥∥∥ ≥ ‖f − v1‖ .

By the parallelogram equality we now have that

‖v1 − v2‖2 = 2 ‖f − v1‖2 + 2 ‖f − v2‖2

− 4

∥∥∥∥f − v1 + v2
2

∥∥∥∥
2

≤ 0 ,

and hence v1 = v2. Thus if there were two quasi-solutions ϕ1 and ϕ2, then
Aϕ1 = Aϕ2. But since A is injective ϕ1 = ϕ2, i.e., the quasi-solution, if it
exists, is unique.

To prove the existence of a quasi-solution, let {ϕn} be a minimizing
sequence, i.e., ‖ϕn‖ ≤ ρ, and

lim
n→∞ ‖Aϕn − f‖ = inf

‖ϕ‖≤ρ
‖Aϕ− f‖ . (2.11)

By Theorem 2.17, there exists a weakly convergent subsequence of {ϕn}, and
without loss of generality we assume that ϕn ⇀ ϕ0 as n → ∞ for some
ϕ0 ∈ X . We will show that Aϕn → Aϕ0 as n→ ∞. Since for every ϕ ∈ X we
have that

lim
n→∞ (Aϕn, ϕ) = lim

n→∞ (ϕn, A
∗ϕ) = (ϕ0, A

∗ϕ) = (Aϕ0, ϕ) ,

we can conclude that Aϕn ⇀ Aϕ0. Now suppose that Aϕn does not converge
to Aϕ0. Then {Aϕn} has a subsequence such that

∥∥Aϕn(k) −Aϕ0

∥∥ ≥ δ for
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some δ > 0. Since ‖ϕn‖ ≤ ρ and A is compact, {Aϕn(k)} has a convergent
subsequence that we again call {Aϕn(k)}. But since convergent sequences are
also weakly convergent and have the same limit, Aϕn(k) → Aϕ0, which is a
contradiction. Hence Aϕn → Aϕ0. From (2.11) we can now conclude that

‖Aϕ0 − f‖ = inf
‖ϕ‖≤ρ

‖Aϕ− f‖ ,

and since ‖ϕ0‖2 = limn→∞ (ϕn, ϕ0) ≤ ρ ‖ϕ0‖, we have that ‖ϕ0‖ ≤ ρ. This
completes the proof of the theorem. ��

We next show that under appropriate assumptions the method of quasi-
solutions is regular.

Theorem 2.21. Let A : X → Y be an injective compact operator with dense
range, and let f ∈ A(X) and ρ ≥ ∥∥A−1f

∥∥. For f δ ∈ Y with
∥∥f δ − f

∥∥ ≤ δ,
let ϕδ be the quasi-solution to Aϕ = f δ with constraint ρ. Then ϕδ ⇀ A−1f
as δ → 0, and if ρ =

∥∥A−1f
∥∥, then ϕδ → A−1f as δ → 0.

Proof. Let g ∈ Y . Then, since
∥∥A−1f

∥∥ ≤ ρ and
∥∥Aϕδ − f δ

∥∥ ≤ ∥∥Aϕ− f δ
∥∥ for

f = Aϕ, we have that
∣∣(Aϕδ − f, g

)∣∣ ≤ (∥∥Aϕδ − f δ
∥∥+

∥∥f δ − f
∥∥) ‖g‖

≤ (∥∥AA−1f − f δ
∥∥+

∥∥f δ − f
∥∥) ‖g‖ (2.12)

≤ 2δ ‖g‖ .
Hence

(
Aϕδ − f, g

)
=

(
ϕδ −A−1f,A∗g

) → 0 as δ → 0 for every g ∈ Y . Since
A is injective, A∗(Y ) is dense in X , and we can conclude that ϕδ ⇀ A−1f as
δ → 0 (cf. the proof of Theorem 2.18).

When ρ =
∥∥A−1f

∥∥, we have (using
∥∥ϕδ

∥∥ ≤ ρ =
∥∥A−1f

∥∥) that
∥∥ϕδ −A−1f

∥∥2 =
∥∥ϕδ

∥∥2 − 2Re
(
ϕδ, A−1f

)
+
∥∥A−1f

∥∥2 (2.13)

≤ 2Re
(
A−1f − ϕδ, A−1f

) → 0

as δ → 0. ��
Note that for regularity we need to know a priori the norm of the solution

to the noise-free equation.

Theorem 2.22. Under the assumptions of Theorem 2.21, if f ∈ AA∗(Y ) and
ρ =

∥∥A−1f
∥∥, then

∥∥ϕδ −A−1f
∥∥ = O

(
δ1/2

)
, δ → 0.

Proof. We can write A−1f = A∗g for some g ∈ Y . From (2.12) and (2.13)

we have that
∥∥ϕδ −A−1f

∥∥2 ≤ 2Re
(
f −Aϕδ, g

) ≤ 4δ ‖g‖, and the theorem
follows. ��


	2 Ill-Posed Problems
	2.1 Regularization Methods
	2.2 Singular Value Decomposition
	2.3 Tikhonov Regularization


