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Chapter 1
Overview: The Pathobiology of Head and Neck
Cancer

Barbara Burtness and Erica A. Golemis

Abstract Squamous cell cancers arising in the head and neck, from the nasopharynx
to the subglottic larynx, are frequently devastating cancers that afflict patients around
the world. Early stage cancers are readily cured with surgery or radiation. In contrast,
locally advanced or metastatic cancers require morbid multimodality therapy and
nonetheless have high recurrence rates. As this book addresses this difficult disease,
it has three main goals. First, it seeks to provide an introduction to the etiology and
subclasses of squamous cell carcinomas of the head and neck (SCCHNs), in the
context of how these differences affect prognosis. Second, it attempts to summarize
the current state of understanding of the genetic, epigenetic, and protein expression
changes associated with the various classes of SCCHN. Third, it seeks to define
potential therapeutic targets for improved management of the disease in the future.

Keywords Head and neck cancer · Human papillomavirus · Epidermal growth factor
receptor (EGFR) · DNA repair · Hypoxia · c-MET · Insulin growth factor receptor
(IGF1R) · Notch · Genomics
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locally advanced or metastatic cancers require morbid multimodality therapy and
nonetheless have high recurrence rates. As this book addresses this difficult disease,
it has three main goals. First, it seeks to provide an introduction to the etiology and
subclasses of squamous cell carcinomas of the head and neck (SCCHNs), in the
context of how these differences affect prognosis. Second, it attempts to summarize
the current state of understanding of the genetic, epigenetic, and protein expression
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2 B. Burtness and E. A. Golemis

changes associated with the various classes of SCCHN. Third, it seeks to define
potential therapeutic targets for improved management of the disease in the future.

To provide a brief overview, we begin by introducing the changing epidemiol-
ogy of SCCHN. Historically, habitual exposures such as tobacco, alcohol, and maté
have contributed to onset of SCCHN. However, a rising proportion of oropharynx
cancers arise from transforming human papillomavirus (HPV) infection [1]. Al-
though these commonly present at a more advanced nodal stage than HPV-negative
tumors, HPV-positive tumors are treatment-responsive, with a high cure rate relative
to HPV-negative tumors [2]. Chapter 2 (Psyrri) contrasts the molecular features of
HPV-positive versus HPV-negative, predominantly exposure-related SCCHN. Com-
plementing this discussion, Chap. 3 (Ragin) presents the epidemiology of the various
types of HPV that contribute to SCCHN pathogenesis and assesses the potential for
targeting viral oncoproteins.

The differences in etiology, biomolecular signatures, treatment responsiveness,
and prognosis seen between HPV-associated and HPV-negative SCCHN result in dif-
ferent research questions for each type of head and neck cancer. For HPV-associated
SCCHNs, it will be necessary to identify biomarkers to distinguish between patients
with near certainty of cure and those—perhaps most commonly smokers—with HPV-
associated cancer but a higher risk of recurrence [3]. Reduced treatment intensity and
concomitant reduction of treatment-related morbidity may be achievable for the for-
mer; novel therapies must be evaluated for the latter. In contrast, treatment outcomes
have not advanced substantially for patients with HPV-negative SCCHN, despite
several decades of research into increasingly intense, long duration, multimodality
treatments. These patients need treatments that exploit our advancing understanding
of the biology of head and neck cancer. Hence, the remainder of the volume reviews
in detail protein signaling pathways and targets of potential therapeutic significance.

The monoclonal antibody cetuximab is the first molecularly targeted therapy
proven to advance survival in head and neck cancer [4–6]. Cetuximab targets the
extracellular domain of the epidermal growth factor receptor (EGFR, also known as
ERBB1): The role of EGFR and the other ERBB proteins (ERBB2/HER2, ERBB3,
and ERBB4) is reviewed in Chap. 4 (Golemis), along with evidence that upregu-
lation of receptor tyrosine kinases (RTKs) with partially redundant function may
provide resistance to cetuximab and more recently developed EGFR-targeting ther-
apies. In particular, abnormal expression and activation of the RTKs c-MET [7] and
the insulin-like growth factor receptor-1 receptor (IGF1R) [8] are emerging as rele-
vant to the pathology of SCCHN and may prove to be important therapeutic targets
in this disease. C-MET is discussed in Chap. 5 (Seiwert) and IGF1R in Chap. 6
(Rosenzweig).

A common feature of RTKs is their activation of downstream effector pathways
that support tumor growth, survival, and resistance to therapy. In the case of SCCHN,
some of the most important of the effectors are themselves mutated or otherwise con-
stitutively activated. Chapter 7 (Chung) describes mutational and indirect activation
of the PTEN-PI3K-AKT-mTOR [9] signaling axis in SCCHN, and efforts to tar-
get proteins in this pathway. Chapter 8 (Grandis) addresses the role of constitutive
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Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signal-
ing [10] observed in a subset of SCCHNs and the challenges involved in developing
therapeutics to target these non-catalytic signaling proteins.

For SCCHN as for many other solid tumors, the chances of successful treat-
ment diminish with more advanced stage. Tumor invasion depends in part on
epithelial-mesenchymal transition (EMT), which occurs in response to activation of
transforming growth factor β (TGFβ) [11], a transmembrane serine-threonine kinase,
and its canonical and non-canonical effectors. EMT alters cell shape and expression
of differentiation-associated markers, increases motility and invasion, and intrigu-
ingly is linked to the acquisition of stem cell-like features that commonly indicate
drug resistance. A current assessment of the complex signaling pathways involved in
this malignant progression in SCCHN is summarized in Chap. 9 (Wang). Separately,
the Wnt/β-catenin signaling pathway [12] provides an independent input into cell
differentiation status and can also affect EMT and therapeutic resistance. A growing
body of evidence supports the common deregulation of expression of Wnt signaling
proteins in SCCHN, with early efforts to evaluate therapeutic agents targeting some
signaling intermediates. Chapter 10 (Gutkind) outlines Wnt/β-catenin signaling in
detail, emphasizing HPV-negative tumors, while Chap. 11 (Psyrri) evaluates specific
relevance of this signaling pathway in HPV-positive SCCHN.

While targeted therapies are a focus of much interest, the mainstay of clinical
management of advanced head and neck cancers remains multimodality manage-
ment incorporating radiation and cytotoxic agents. As these therapies can induce
very significant morbidity, it is critical to better understand genetic factors underly-
ing the differential susceptibility of individual tumors to treatment, allowing better
stratification of patients for dose deintensification or intensification. TP53 is a major
regulator of response to DNA damage in many tumors, including head and neck
[13]: Chap. 12 (Koch) summarizes our current understanding of the profile of p53
mutation in the context of SCCHN treatment. Cells typically respond to DNA dam-
age by activating multiple discrete DNA repair complexes that correct double and
single strand breaks, DNA crosslinking, and the presence of defective bases [14].
As outlined in Chap. 13 (Mehra), a growing number of studies have determined that
some of the proteins that mediate these repair processes are overexpressed in subsets
of SCCHN tumors, predicting poor response to therapy and poor prognosis. Chapter
14 (Le) provides a contrasting focus on the issue of resistance to irradiation and the
emerging role of hypoxia in this process.

The entire field of cancer biology is being transformed by the application of pow-
erful new technologies that are elucidating the genome and epigenome. Chapter 15
(Myers) summarizes the results of the first massive analyses of SCCHN tumor
genomes [15, 16]. These resulted in the first identification of mutations in Notch
as contributing to tumor etiology and yielded numerous other insights into the
mutational landscape associated with the pathogenesis of head and neck tumors.
Chapter 16 (Califano) matches this analysis with in depth examination of the char-
acteristic mRNA and microRNA (miRNA) expression profiles in SCCHN [17, 18].
The final Chap. 17 (Burtness) summarizes phase I–III clinical trials, ongoing in 2013
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to study incorporation of new molecularly targeted agents as well as immune check-
point inhibitors into the management of HPV-negative cancers, with projections for
the future.

As of 2014, there is no magic bullet for head and neck cancer. However, as
the chapters collected here make clear, the advances in understanding over the past
decade have been immense. Within the next few years, we are on a clear course to
have rich profiling at the DNA, mRNA, and protein level for a large group of SCCHNs
that have been clinically annotated to establish the relationship of this information to
disease prognosis. The pipeline of targeted agents is already rich and still expanding,
while at the same time the utilization of cytotoxic agents and irradiation becomes
more efficiently focused. Going forward, the main challenge will be integrating
available and emerging resources to design the most effective clinical trials and to
change the natural history of these difficult cancers.
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Chapter 2
Molecular Features and Treatment Modalities
of “Classic” Versus Human Papilloma
Virus-Associated Head and Neck Cancer

Giannis Mountzios and Amanda Psyrri

Abstract Human papilloma virus (HPV)-associated squamous cell carcinoma of the
head and neck (SCCHN) represents a unique disease entity, with distinct epidemi-
ological and molecular characteristics from those of tobacco- and alcohol-related
SCCHN, resulting in different biological and clinical tumor behavior. The implica-
tion of HPV in the pathogenesis of a subset of SCCHN patients has generated the
hypothesis that vaccine-induced immune response against HPV may provide sub-
stantial clinical benefit; however, the impact of prophylactic HPV vaccines on the
incidence of HPV-associated SCCHN remains to be clarified. Preliminary evidence
also shows that therapeutic HPV vaccines are able to induce potent, HPV-specific,
immune responses that correlate with tumor regression, and therapeutic HPV vac-
cines are currently undergoing intense investigation in early clinical trials, especially
in the subset of patients with oropharyngeal cancer. The question of de-escalation of
treatment in the favorable prognosis subset of patients with HPV-associated disease
is also currently being explored in clinical trials in an effort to minimize unnecessary
toxicity without compromising therapeutic efficacy.

Keywords Squamous cell cancer of the head and neck · Human papilloma virus ·
HPV-related vaccine · Oropharyngeal cancer · Dose de-escalation

2.1 Introduction

Squamous cell carcinoma of the head and neck (SCCHN) represents the sixth
most common malignancy and accounts for 6 % of all cancer cases. Approximately
650,000 new cases and 350,000 SCCHN-related deaths are reported worldwide an-
nually [14]. A number of “traditional” clinicopathological parameters such as tumor
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8 G. Mountzios and A. Psyrri

site and tumor, node, metastases (TNM) stage have been used for many years to iden-
tify distinct prognostic subgroups among SCCHN patients. Recently, advances in
molecular biology together with the development of novel genomic and proteomic
approaches have enabled the classification of patients into distinct subgroups de-
fined by distinct etiological and molecular characteristics. Moreover, the gradual
elucidation of head and neck tumor biology has led to the identification of molec-
ular pathways associated with malignant transformation and progression of tumor
cells and others that may be responsible for resistance to chemotherapy and radio-
therapy [19]. Beside modern surgery, sophisticated irradiation techniques and novel
chemotherapy strategies for SCCHN, molecular targeting approaches are expected
to offer enhanced clinical benefit and diminish normal tissue toxicity in the not very
distant future.

Regarding etiological factors, tobacco and alcohol have historically accounted for
the vast majority of SCCHN cases [14]. More recently, exposure to certain serologi-
cal types of human papilloma virus (HPV) and particularly type 16 HPV (see further
Chap. 3) has been implicated in the pathogenesis of a subset of SCCHN, especially
those arising from the tonsillar oropharynx [2, 7, 25]. In parallel to the mounting
epidemiological evidence, solid experimental data support a causal association be-
tween HPV and a subset of SCCHN in terms of molecular pathology. Rampias et al.
[33] have shown that HPV-associated SCCHN is characterized by constant expres-
sion of the HPV E6 and E7 viral oncogenes, and that repression of viral oncogene
expression hampers the growth or survival of these cancer cells. This finding fueled
the expectation that HPV-targeted therapeutic approaches such as vaccines eliciting
a cytolytic immune response to cells expressing these oncoproteins might provide
clinical benefit, even in the advanced disease setting.

Another critical aspect of HPV-related (HPV+) SCCHN carcinogenesis is the
often more favorable prognosis of this subset of patients, as compared to SCCHN pa-
tients without evidence of HPV infection [23, 47]. These patients are more treatment
responsive. There is also evidence for a slower natural history for HPV-associated
cancers, whether the manifestation of this is a longer time to recurrence following
chemoradiation, or longer survival in the metastatic setting [17, 22]. This observa-
tion raises the question whether these patients can be treated with curative intent by
using less toxic interventions. Consequently, an important aim of novel approaches
for treating HPV-associated cancers will be to obviate the devastating side effects
of intensified treatment developed for poor prognostic subsets, by using less toxic
treatment without compromising therapeutic efficacy. In the same context, ongoing
clinical trials are studying the potential for de-escalation of radiation therapy duration
and/or intensity in HPV+ in the setting of different chemoradiotherapy regimens.
The role of the epidermal growth factor receptor (EGFR)-targeting monoclonal an-
tibody cetuximab, often used in combination with radiotherapy to improve therapy
of SCCHN [4], will also have to be clarified in the subset of patients with HPV-
associated disease in prospective clinical trials. This chapter will briefly contrast the
main events of head and neck carcinogenesis in HPV-associated SCCHN versus in
SCCHN arising from carcinogenic exposures such as tobacco, with an emphasis on
the implications of these carcinogenic mechanisms for the treatment and preven-
tion of SCCHN. The reader is referred to later chapters in this volume for in depth
discussion of specific named signaling pathways.
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2.2 Molecular Progression Model for “Classic” SCCHN

Recent advances in our understanding of the molecular progression of SCCHN have
been provided by two whole-exome sequencing (i.e., sequencing exons of all known
protein-encoding genes) studies conducted on approximately 100 predominantly
HPV-negative SCCHN specimens, independently by two research groups ([1, 38]
and reviewed in Chap. 13). While there was a fivefold difference in the average
number of mutations reported per tumor, several key findings were similar in the
two studies. Each, together with vast previous genomic and functional analyses of
SCCHN, underscores the dominant roles of tumor suppressor pathways including
p53, Rb/INK4/ARF, and Notch in disease pathogenesis, while only a small number
of oncogenes targeted by activating mutations were identified [1, 38]. These cancer
genes play major roles in regulation of cellular proliferation, squamous epithelial
differentiation, cell survival, and invasion/metastasis, pathways that are pivotal to
the pathogenesis of SCCHN and mainly reflect programs involved in normal de-
velopment within the stratified squamous epithelium. Given the relative dearth of
driver oncogenes in SCCHN, targeting these pathways for cancer therapy represents
a major challenge for improving outcomes for this disease.

In tobacco-associated SCCHN, loss of heterozygosity at the 9p21–22 gene loci is
the most frequent genetic alteration and occurs even in the earliest definable lesions,
including dysplasia and carcinoma in situ [19]. Of note, the p16 (CDKN2) gene
is located within this chromosomal region and has been implicated as a candidate
tumor suppressor gene that becomes inactivated during malignant transformation
[46]. Functional inactivation of p16 protein in SCCHN typically occurs as a result
of homozygous deletions or methylation of the 5′ CpG promoter region of p16.
In untransformed cells, the p16 protein prevents phosphorylation and subsequent
activation of the retinoblastoma protein (pRb) and the additional Rb family members
p107 and p130 by the cyclin D1-CDK4/CDK6 complex. Phosphorylated Rb isoforms
negatively regulate the activity of E2F transcription factors by forming complexes
and subsequently repressing transcription of genes involved in cell cycle progression
such as cyclin A; this repression is lost in cells lacking p16 [16]. Tobacco use may
serve as a potential cause for loss of p16 function, because p16 inactivation occurs in
other smoking-related cancers such as lung cancer. Typically, loss of p16 expression
is associated with significantly inferior outcome in SCCHN [16, 46].

Approximately 50 % of SCCHN cases are characterized by TP53 mutations [26].
In the rest of the cases, functional inactivation of TP53 may also occur via other
mechanisms, including overexpression or gene amplification of MDM2, encoding a
protein that mediates proteasomal degradation of TP53, and deletion of CDKN2A,
which eliminates p14/ARF, a negative regulator of MDM2. In preclinical models,
functional inactivation of TP53 protein via mutation is associated with progression
of preinvasive lesions to invasive SCCHN [26]. The finding that TP53 is mutated
in precursor lesions and benign-appearing mucosa provides support to a “patch-
field” progression model of SCCHN carcinogenesis, in which the index squamous
carcinoma (as well as second primary tumors) develops from a genetically altered
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field in the mucosa, arising from a putative stem cell—bearing a mutated TP53
gene—which expands to a clonal patch. Interestingly, in several occasions, the TP53
mutations found in the tumor differ from those in adjacent mucosa, implying that
multiple patches give rise to distinct clones and suggesting that primary and re-
current tumors from the same patient could in fact progress from unique clones
through independent acquisition of additional genetic alterations [26]. In addition to
its tumor-promoting role, TP53 inactivation is also associated with aggressive clinical
behavior of tumors, independent of the impact of the response to genotoxic therapy.
Therefore, truncating and other disruptive mutations of TP53 are significantly asso-
ciated with inferior outcome—after primary surgery with or without postoperative
radiotherapy—compared with either nondisruptive mutations or no mutation at all
([30], and reviewed in Chap. 9).

Cyclin D1 gene amplification is seen in about one-third of tobacco-induced SC-
CHN and is usually associated with invasive disease. Elevated expression of cyclin
D1 may indirectly upregulate cyclin-dependent kinase (CDK) 2 activity by seques-
tering the CDK2 inhibitors p21 and p27, or alternatively, cyclin D1 may function as
a cofactor by binding to DNA repair proteins (i.e., BRCA2) or transcription factors
(PARPγ). Interestingly, although both p16 inactivation and cyclin D1 amplification
promote cell cycle progression via activation of CDK4 and CDK6, they are not mu-
tually exclusive genetic alterations. Cyclin D1 protein overexpression is associated
with significantly worse survival times in SCCHN [5, 12].

Taken together, in tobacco-associated SCCHN, functional inactivation of p16
protein leads to inactivation of the Rb pathway (one of the earliest events in the
carcinogenic progression model). Functional inactivation of p53 tumor suppressor
protein occurs mainly via p53 gene mutation. Heavy smokers and individuals with a
history of heavy alcohol consumption may present with multiple precancerous and
cancerous lesions of the upper aerodigestive tract, due to the phenomenon of field
cancerization. Due to this phenomenon, individuals with tobacco-induced oropha-
ryngeal squamous cell carcinoma (OSCC) are also prone to develop second primary
cancers [2].

Signaling by phosphoinositol-3-kinase (PI3K) is frequently activated in SCCHN
(discussed in detail in Chap. 7). Morris et al. [24] have determined that 74 % of
SCCHN contain activating genetic alterations, mainly copy number alterations, af-
fecting components of the PI3K pathway. Activating mutations in the “hot spot”
codons (9 and 21) of the PIK3CA gene, encoding the catalytic subunit of PI3K,
occur in 6–11 % of SCCHNs [31, 32, 37]. Several inhibitors of components of the
PI3K pathway are currently being investigated in clinical trials [11].

The EGFR tyrosine kinase (RTK) is commonly overexpressed or activated in SC-
CHN and represents the most validated molecular therapeutic target to date [24].
Cetuximab is a chimeric IgG1-human antibody directed against the extracellular do-
main of EGFR, blocking ligand binding to the receptor, and, as reviewed in Chap. 4,
enhances the efficacy of chemotherapy or radiation [4, 6, 44]. Clinical development
of cetuximab has been hampered by the lack of robust biomarkers, able to repro-
ducibly predict response to cetuximab. Recently, a probable mechanism of cetuximab
resistance has been suggested, involving the presence of mutations that result in con-
stitutive activation of EGFR-mediated signaling. Mutation or amplification of the
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mesenchymal-epithelial transition (MET/c-Met) RTK gene or MET protein over-
expression has been reported in SCCHN. Importantly, MET has been implicated in
cetuximab resistance, and is itself being evaluated as a target (see Chap. 5). Moreover,
the small molecule crizotinib, which inhibits both the MET and anaplastic lymphoma
kinases (ALK), has recently gained Food and Drug Administration (FDA) approval
in non-small cell lung cancers harboring ALK translocations.

In humans, three RAS genes encode four highly homologous RAS proteins:
H-RAS, N-RAS, K-RAS4A and K-RAS4B (K-RAS4A and K-RAS4B are splice
variants of the K-RAS gene). Activating point mutations in genes encoding the Ras
subfamily of small guanosine 5′-triphosphate (GTP)-binding proteins contribute to
the formation of a variety of human malignancies. The identification of Ras-related
resistance mechanisms to EGFR inhibitors has been extremely important in several
solid tumors and mainly in colorectal cancer and seems to be relevant in the clini-
cal management of patients with head and neck cancer as well [24]. While K-RAS
mutations are rare (approximately 1 %) in SCCHN, HRAS mutations appear more
common, particularly in tobacco chewers—whereas the reverse is true for several
other malignancies [1, 38].

Finally, the most novel finding of the recent whole-exome sequencing studies of
SCCHN is the identification of mutations within the NOTCH1 gene (12–15 % of
SCCHN), and within other NOTCH family members (3–5 %) ([1, 38]; discussed
at length in Chap. 15). Notch signaling appears to have a tumor suppressor role in
SCCHN since most of the identified mutations were inactivating mutations. Notch
has a pivotal role in promoting terminal differentiation in stratified epithelium, by
activating suprabasal keratins and through indirect effects on the Wnt, Hedgehog,
and interferon response pathways [9], some of which are also emerging as relevant
to SCCHN (see Chaps. 10 and 11).

2.3 Molecular Progression Model of HPV-Associated SCCHN

The molecular pathways of neoplastic transformation in HPV-associated SCCHN are
clearly distinct from those of “classical” tobacco/alcohol-associated disease. HPVs
are small, nonenveloped DNA viruses which give rise to a large spectrum of epithelial
lesions with low malignant potential such as “warts” or “papillomas” in both males
and females. In recent decades, however, a subset of HPVs, namely the “high-risk”
HPVs, have been identified and isolated, which are able to induce the formation of
precancerous lesions [14]. Large epidemiological studies have shown that HPVs are
almost universally present in humans, but only a small fraction of people infected with
high-risk HPVs will eventually develop cancer, and this will happen often decades
after the original infection.

The molecular progression model of HPV-driven malignant conversion was first
elucidated in cervical cancer, the most extensively studied HPV-associated malig-
nancy and the historically first to be etiologically correlated with HPV infection
[3, 15]. Mounting preclinical evidence suggests that the integration of DNA from
high-risk HPVs into the cellular genome of the host mitigates the expression of the
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transcription/replication factor E2F that functions as a transcriptional repressor of the
virally encoded oncogenes, E6 and E7 [40]. E6 binds and degrades p53 through an
ubiquitin-mediated process, and E7 binds and destabilizes pRb and related proteins.
The subsequent functional inactivation of p53 and pRb tumor suppressor pathways
induces genomic instability that triggers neoplastic transformation [33, 42]. In ad-
dition, E6 protein interferes with DNA repair enzymes while the E7 oncoprotein
can induce chromosomal instability by inhibiting centrosome synthesis and causing
alterations in structure and number of chromosomes. It is noteworthy, that despite
the gradual acquisition of cellular mutations during the process of malignant trans-
formation, induction of repression in E6 and E7 expression in cervical carcinoma
cell lines is sufficient and, by any means, is capable to induce cell growth arrest or
apoptosis in any stage of this process [34, 42].

Several lines of epidemiologic and preclinical evidence suggest that high-risk
HPVs, and especially type 16, are also associated with a subset of OSCC [7]. More
specifically, shRNA depletion of E6 and E7 in human the OSCC cell lines 147T and
090 (HPV16 DNA+) and 040T (HPV DNA negative) led to restoration of p53 and
pRb protein expression, increased expression of p53-target genes (i.e., p21 and FAS),
decreased expression of genes whose expression is increased in the absence of func-
tional pRb (i.e., DEK and B-MYB), and induced substantial apoptosis, specifically
in HPV16+ cells [35].

In contrast to the situation in cervical cancer, transcription of HPV16 E6/E7 mes-
senger RNA (mRNA) in tonsillar carcinomas can occur in the absence of HPV DNA
integration, and the virus may exist predominately in an episomal form, underscor-
ing thus the distinct molecular mechanisms of the two malignancies [20]. At present,
it remains unclear how the virus maintains its capacity to propagate in host cancer
tissues in an episomal form with a high copy number. In one interesting study by
Van Tine et al. [42], the authors showed that the HPV E2 oncoprotein may be used
as an “anchor” to bind episomal HPV to cellular mitotic spindles, creating thus the
necessary molecular “bridge” that will enable viral DNA integration and propagation
in the cellular host.

As mentioned above, in tobacco-induced OSCC, abrogation of p53 and retinoblas-
toma pathways occurs mainly via mutation and genetic/epigenetic alterations,
respectively, whereas in HPV-associated disease, functional inactivation of p53 and
pRb pathways by the viral oncoproteins obviates the need for mutational inactiva-
tion of p53 and pRb genes [42]. However, Strati and colleagues used transgenes that
provide direct expression of the HPV16 E6 and E7 proteins to the head and neck
tissues of mice and reported that a conditional deletion of Rb in the same tissues
was not able to reproduce all E7-mediated phenotypes [39]. The authors concluded
that pRb-independent effects of E7 may also play a critical role in head and neck
carcinogenesis, and further research towards this direction is warranted.

Another molecular pathway that has been implicated in E6 and E7-driven onco-
genic activation is the Wnt/β-catenin pathway [9]. Repression of the E6/E7 genes in
HPV16+ oropharyngeal and cervical cell lines (SiHa and HeLa) [34] substantially
reduced nuclear beta-catenin levels. The protein levels of beta-catenin are tightly reg-
ulated by the ubiquitin/proteasome system; the study showed that HPV-dependent
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changes in the activity of the E3 ubiquitin ligase seven in absentia homologue (Siah-
1) is involved in the nuclear accumulation of beta-catenin and activation of Wnt
signaling.

It must be emphasized that HPV DNA detection by itself in a SCCHN sample does
not per se prove causal association between the virus and the disease. Only transcrip-
tionally active HPV DNA is biologically and clinically relevant in the development
of SCCHN. On this basis, the incidence and clinical implications of biologically rel-
evant HPV16 infection was studied in a cohort of 107 OSCCs treated with primary
radiotherapy or surgery followed by postoperative radiotherapy [33]. HPV16 DNA
viral load was determined by quantitative polymerase chain reaction (PCR) and,
additionally, corresponding tissue arrays were constructed in order to study the ex-
pression of p53, pRb, and p16 proteins using a quantitative in situ method of protein
analysis (AQUA). The study disclosed 3 separate tumor classes with distinct molec-
ular and clinical features based on HPV16 DNA presence and p16 expression status:
one class of HPV16-negative/p16 nonexpressing, one class of HPV16-positive/p16
nonexpressing, and one class of HPV16-positive/p16 expressing oropharyngeal tu-
mors [33]. As expected, 5-year overall survival (OS) in class III was significantly
better (79 % compared to 20 and 18 % for classes I and II, respectively, p – 0.0095).
Disease-free survival for the same class was 75 % versus 15 and 13 % for the other
two classes (p – 0.0025). Similarly, the 5-year local recurrence was 14 % in class
III versus 45 and 74 % (p – 0.03). Only patients in class III had significantly lower
p53 and pRb expression (p – 0.017 and 0.001, respectively). Multivariable survival
analysis confirmed the prognostic value of the 3-class model. This pivotal study
demonstrated that only the HPV16-positive/p16 expressing tumors “resemble” the
cervical carcinogenesis model biologically, and confirmed that they are the ones
associated with significantly better prognosis [33].

Downregulation of the Notch signaling pathway may play a procarcinogenic role
in HPV-associated SCCHN. Notch activity has been associated with suppression
of HPV E6 and E7 oncoprotein expression, which may select for loss of Notch
signaling in HPV+ SCCHN [41]. An increased incidence of PIK3CA mutations in
HPV-related as compared to non-HPV-related tumors was noted in exome sequencing
studies [1, 38]. It has been suggested that PIK3CA mutations may synergize with the
HPV E6 and E7 oncoproteins in the development of invasive oropharyngeal cancer,
similar to cervical carcinoma [11]. Finally, HRAS mutations often occur in HPV-
driven tumors, suggesting that HRAS mutations may also synergize with HPV E6
and E7 in tumor promotion.

2.4 HPV-Targeted Therapy

As is extensively reviewed elsewhere in this volume, emerging data on loss of tumor
suppressor function in HPV-negative SCCHN, dissection of treatment resistance
pathways, and synthetic lethality studies guide the selection of novel therapeutic
targets in these cancers. In contrast, HPV-associated cancers are quite sensitive to
existing therapies. However, increasing sophistication in our understanding of viral



14 G. Mountzios and A. Psyrri

oncogenesis also opens up the possibility of therapies specific for virally induced
SCCHN, including therapeutic vaccines.

Prophylactic Vaccines HPV-associated SCCHN can theoretically be prevented by
vaccines designed to induce appropriate HPV-specific immune responses. The con-
ceptual basis for a prophylactic vaccine is to stimulate the immune system to elicit
a neutralizing antibody response prior to or upon exposure to high-risk HPVs so
as to prevent establishment of persistent infection. HPV capsid structural proteins
displayed on the viral surface represent the most common neutralizing epitopes for
antibody production. As inhibition of virus attachment to host cells normally prevents
integration of oncogenic viral DNA to the cellular host DNA, targeting these surface
proteins should abrogate the development of invasive cancers induced by high-risk
HPVs.

In this context, recombinant HPV virus-like particles (VLPs), created by overex-
pression of major capsid HPV protein L1, possess the capacity to mimic authentic
virions but are noninfectious. Consequently, immunization of animals with VLPs
protects from experimental infection with the homologous animal papilloma virus
[41]. Using this application, two HPV prophylactic vaccines have received approval
from the U.S. FDA. The quadrivalent vaccine (Gardasil Merck & Co., Inc.) [28]
protects against HPV types 6, 11, 16, and 18. It was first licensed in 2006 for use in
females aged 9–26 years old for the prevention of HPV-related cervical [45], vaginal,
and vulvar [18] cancers. Additional clinical trial data demonstrated the effectiveness
of the vaccine in preventing genital warts in males, and in 2009, clinical indications
for the vaccine were expanded to include males in the same age range (Centers for
Disease Control and Prevention, CDC). More recent studies have also demonstrated
the effectiveness of the vaccine in prevention of anal cancer [29], and thus licensure
was further expanded to also include anal cancer prevention. Notably, the vaccine
has been particularly efficacious (98 %) for the prevention of anal, cervical, vaginal,
and vulvar cancers in HPV16/18-naı̈ve individuals. As expected, vaccine efficacy
was lower (50–78 %) when analysis was restricted to individuals previously infected
with high-risk HPVs.

The second HPV vaccine, Cervarix® (HPV2), is a bivalent vaccine that protects
against HPV types 16 and 18. This vaccine was approved for use in the USA in 2009
for the prevention of cervical cancers (U.S. FDA, 2009). Since it does not cover
low-risk (6, 11) HPV types, it is not effective for the protection against genital warts.
Similar to the quadrivalent vaccine, the bivalent vaccine is very effective (97 %) in
the prevention of HPV16/18-associated cervical cancers in HPV-naı̈ve individuals,
but a lower efficacy is observed when women already infected with HPV16 or 18 are
included in the analyses. In contrast to the quadrivalent vaccine, the bivalent vaccine
has not been tested in clinical trials for efficacy against other HPV-associated cancers,
such as those of vagina, vulva, or anus. Nevertheless, structural similarities between
the two vaccines indicate that the bivalent one might also be effective in preventing
other cancers of the anogenital region, etiologically linked to HPV16 and18.

The fact that the vast majority of HPV-associated OSCCs are caused by HPV16
suggests that both vaccines might be particularly effective in preventing HPV-
associated OSCC [20]. However, the impact of these vaccines on the incidence of
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persistent oral HPV infection has not been studied in prospective clinical trials. Data
from animal models immunized against HPV16 have demonstrated a reduction in
the development of HPV oral lesions. Nevertheless, it remains to be clarified whether
persistent oral HPV infection can trigger neoplastic transformation and induction of
precancerous lesions in oropharyngeal mucosa, as it does in the case of cervical car-
cinoma [13]. The natural history of oral HPV infection has not been fully elucidated
and routine screening for HPV-associated OSCC is not currently recommended. The
situation is further complicated by the fact that most HPV-directed vaccine clinical
trials use cervical precancerous lesions as the optimal endpoint due to the long inter-
val between HPV infection and development of invasive cervical cancer [36]. The
same endpoint is not easily applicable to OSCC, as the stages of precancerous lesion
development and evolution have not been as clearly defined.

Despite the optimism heralded by these first two vaccines, several issues should
be resolved before wide clinical application of this therapeutic strategy in HPV-
related SCCHN : Firstly, the duration of protection is uncertain. Clinical trials of
the quadrivalent vaccine that have followed women up to 5 years after vaccination
suggest that protection remains high despite the observed decline in neutralizing
antibody titers after an initial plateau. Clinical trials of the bivalent vaccine also
show durable clinical efficacy reaching up to 6.4 years, but even further follow-up
is required. Given the fact that OSCC typically develops during the fifth to sixth
decade of life, the impact of the vaccine on the incidence of OSCC still remains to
be determined. Longitudinal studies comparing the incidence of OSCC before and
after the introduction of the vaccine may answer this question.

Therapeutic HPVVaccines Several lines of evidence suggest that an intact immune
system may be able to entirely eliminate HPV infection from the host. First, most
healthy individuals infected with HPV clear the infection without any associated
clinical manifestation of symptoms. Only a minority of individuals is not capable
of clearing the virus and subsequently develops HPV-associated lesions. Second,
immune cell infiltration is often found in HPV-associated regressing lesions while
these cell types are absent in persistent disease, providing evidence of enhanced im-
mune reaction in cases of HPV eradication. Last, immunocompromised individuals
such as HIV-infected patients have documented higher rates of HPV infection and
associated lesions, suggesting that the weakened immune system is unable to erad-
icate HPV infection from the host [43]. Therapeutic vaccines by definition aim to
eliminate HPV-infected cells by developing robust cellular T-cell immune responses
that are able to recognize and subsequently eliminate HPV-infected cells.

The HPV16 E6 and E7 proteins represent ideal targets for immunotherapy with
curative intent. The fact that they are foreign viral proteins uniquely expressed by
the entire virus-infected cell population renders them more immunogenic and target-
selective than a self-protein overexpressed in cancer cells. A number of therapeutic
modalities have been developed to E6 and E7, including DNA vaccines, viral vector
vaccines, bacterial vector vaccines, peptide vaccines, and cell-based vaccines.

DNA vaccines were among the first to be tested in HPV-associated OSCC [20].
A phase I open-label dose-escalation trial of the DNA vaccine pNGVL4a-CRT E7
aiming to elicit immunologic response against HPV16 E7 has been initiated at John
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Hopkins University in patients with HPV-associated OSCC (NCT01493154). This
promising vaccine uses a targeting strategy that conjugates the nononcogenic deriva-
tive of the E7 antigen of HPV16 to the immunostimulatory molecule calreticulin
(CRT). In this derivative, E7 is expressed with amino acid substitutions at positions
24 (cysteine to glycine, C24G) and 26 (glutamic acid to glycine, E26G), resulting
in omission of the retinoblastoma protein binding site and thus eliminating ability
to induce malignant transformation of transfected cells. Strategies to enhance clini-
cal efficacy of vaccines include the use of alternative administration routes and the
combination of the vaccine with chemotherapy. For example, administering DNA
vaccines via electroporation instead of intramuscular needle injection may increase
virus-specific immune responses, as shown in a recent clinical trial of an HIV DNA
vaccine [43]. The HPV vaccine described above is administered via electroporation,
and low-dose cyclophosphamide is given 1 day before vaccination to reduce overt
and potentially hazardous hyperimmune responses [43].

An intriguing point in patients with HPV-related OSCC is the high frequency of T
regulatory cells that inhibit cellular immune responses, often found in tumor biopsies.
Low-dose administration of the immunomodulator cyclophosphamide may decrease
both the population and the intensity of invasion by inhibitory T regulatory cells. As
a proof of concept, treating tumor-bearing mice with HPV tumor cells with low-dose
cyclophosphamide reduced the frequency of inhibitory T cells, enhancing HPV-
specific immune responses against tumors and, importantly, resulting in better long-
term survival in tumor-bearing animal models [10]. The alkylating agent cisplatin
has also been combined with the HPV DNA vaccine, resulting in smaller tumor
diameter and longer survival in tumor-bearing mice [10].

Vaccination with peptides derived from HPV antigenic proteins requires uptake
of peptide antigen by dendritic cells and the subsequent presentation of the peptide
antigen in association with major histocompatibility complex (MHC) molecules [8].
Most studies on peptide-based vaccines have aimed at enhancing vaccine potency by
using adjuncts such as granulocyte macrophage colony stimulating factor (GM-CSF)
and montanide ISA-51 [10]. In this context, a therapeutic HPV vaccine consisting
of overlapping peptide sequences able to recognize both the E6 and E7 oncoproteins
was tested in a phase I trial in patients with vulval intraepithelial neoplasia (VIN)
grade III [18]. In all cases, satisfactory vaccine-induced immune responses were
elicited and there was a striking 47 % complete response rate 40 weeks after the last
vaccination dose.

As mentioned above, HPV+ OSCC cancer is associated with increased expression
of p16INK4a [35]. A phase I/IIa study of immunization with a p16INK4a peptide
(amino acids: 37–63) combined with the immunoenhancer montanide ISA-51 VG
in patients with advanced p16+ HPV-associated cancers (NCT01462838) is ongo-
ing. The study attempts to answer the question of whether the p16INK4a peptide
can be safely administered and whether it can induce a p16INK4a-specific T-cell
immune response in patients with advanced HPV- and p16INK4a-positive head and
neck cancer.

The strategy of peptide immunization using epitopes derived from the processing
of viral proteins in a specific MHC context is hampered by the fact that only a fraction
of the patient population usually expresses the appropriate MHC allele, inhibiting
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thus the corresponding T cell response. Furthermore, the rapid extracellular prote-
olysis of short peptides limits the clinical efficacy of traditional peptide vaccines. In
an effort to overcome these problems, a new generation of peptide-based vaccines
named “Trojan peptide vaccines” has been developed. Named after the famous Tro-
jan horse, these agents consist of large peptides that contain a sequence derived from
the membrane-penetrating human immunodeficiency virus transactivator of tran-
scription (HIV-TAT) moiety fused to furin-cleavable linkers that join viral peptide
epitopes that engage multiple HLA-I and HLA-II MHC proteins [27]. This specific
Trojan peptide sequence enables the entire peptide to translocate through the cell
membrane to the endoplasmic reticulum and Golgi apparatus where the endopepti-
dase furin resides. Subsequent protein cleavage generates multiple human leukocyte
antigen (HLA)-I- and HLA-II-interacting peptides, originating from the Trojan pep-
tide carrier, which become the active, immunosensitizing molecules. A phase I study
of immunization with a therapeutic peptide vaccine using two novel Trojan peptide
complexes composed of Melanoma antigen E (MAGE-A3) and HPV16 epitopes is
ongoing (NCT00257738). MAGE-A3 is of particular interest because of its estab-
lished overexpression in SCCHN and the availability of well characterized HLA-I
and HLA-II epitopes. In this study, Trojan peptides are resolubilized in Montanide
ISA 51 and GM-CSF before injection, in order to promote dentritic cell migration
and propagation to the site of vaccination.

2.5 De-escalation Strategies: Determining Therapy Based
on HPV Status

In the last decade, it has become evident that patients with HPV-associated OSCC
have better prognosis compared to their age- and stage-matched counterparts [2].
More specifically, it has been calculated that HPV positivity confers a 60–80 % reduc-
tion in risk of death from cancer compared to similarly treated HPV-negative tumors.
The absolute survival difference between HPV-positive and -negative tumors is con-
sistently higher than 30 % across prospective studies. The fact that HPV+ OSCC is
more responsive to chemotherapy and radiation as compared to HPV-negative cases
has raised the possibility that organ preservation strategies may be more successful
in these patients. An important aim of novel approaches for a favorable progno-
sis of HPV-associated cancers will be to obviate the need for intensified treatment
developed for poor prognostic subsets.

Given the fact that irradiation is accompanied by both acute and late, chronic
treatment-related toxicities, several de-escalation protocols have been developed in
an effort to reduce radiotherapy intensity and subsequent toxicity. The Eastern Co-
operative Oncology Group (ECOG) phase II study E1308 evaluated whether very
platinum-responsive HPV-associated oropharynx cancers, as determined by clini-
cal response to induction chemotherapy, can safely be treated with a lower dose
(54 Gy) of intensity-modulated radiation therapy and concurrent cetuximab. Pa-
tients who failed to achieve a complete response received standard dose (69.3 Gy)
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intensity-modulated radiation therapy (IMRT) with concurrent cetuximab [21]. One-
year progression-free survival exceeds 90 % for patients who received reduced-dose
radiation, although in the context of the longer natural history of HPV-associated
oropharynx cancers, more mature data are necessary before drawing conclusions
about the durability of these responses. In the same context, the Radiation Ther-
apy Oncology Group (RTOG) Study 1016 was planned as a noninferiority phase
III study that will evaluate whether cisplatin can be substituted with cetuximab
with concurrent irradiation employing accelerated IMRT (70 Gy/6 weeks) and aims
to determine if the bio-radiation strategy achieves similar survival with less toxic-
ity. Regarding patients with HPV+ OSCC, the recently launched “DE-ESCALaTE
HPV” is a multicenter randomized phase III study that will compare cetuximab
and concurrent radiotherapy (bio-radiotherapy strategy) to standard concurrent cis-
platin chemo-radiotherapy exclusively in patients with HPV-associated OSCC. Of
note, the primary endpoint of the latter study is the incidence of acute and late
toxic events. Finally, two other studies (NCT1088802/J0988 and NCT01221753)
are evaluating additional de-escalation protocols: The former is a phase I/II study of
radiation deintensification with concomitant chemotherapy in the favorable subset of
HPV+ OSCC, while the latter investigates the use of induction docetaxel/cisplatin/5-
fluorouracil (TPF) chemotherapy followed by concomitant chemoradiotherapy with
a modified radiotherapy protocol in HPV-related locally advanced OSCC.

2.6 Conclusions

HPV-associated SCCHN represents a unique disease entity, with distinct epidemi-
ological and molecular characteristics from tobacco- and alcohol-related SCCHN,
resulting in different biological and clinical tumor behavior. The impact of prophy-
lactic HPV vaccines on the incidence of HPV-associated SCCHN is promising but
remains to be clarified. Clinical trials show that therapeutic HPV vaccines are able
to induce potent, HPV-specific, immune responses that correlate with tumor regres-
sion. Therapeutic HPV vaccines are currently undergoing intense investigations in
early clinical trials, especially in the subset of patients with OSCC. The question of
de-escalation of treatment in the favorable prognosis subset of patients with HPV-
associated disease is also currently being explored in clinical trials in an effort to
minimize unnecessary toxicity without compromising therapeutic efficacy.
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Chapter 3
Epidemiology of HPV in Head and Neck Cancer:
Variant Strains, Discrete Protein Function

Camille C. R. Ragin and Jeffrey C. Liu

Abstract Human papillomavirus (HPV) infection has emerged as a major causative
agent for cancers of the head and neck. HPV-positive cancers of the oropharynx are
associated with better survival rates than HPV-negative cancers of the oropharynx,
which appears likely to be associated with differences in the biology of the two dis-
eases. We will discuss the role of HPV-encoded proteins in host infection and carcino-
genesis. HPV infection is increasing worldwide, with recent data showing a dramatic
increase in HPV-associated oropharyngeal head and neck cancer incidence, and con-
trasting infection rates in developed and developing nations. Finally, we will review
the emerging biology of intratypic variants of HPV, with different variants associated
with different potential for malignancy, and suggest potential areas of further study.

Keywords Human papillomavirus · Oropharyngeal cancers · Variants · Incidence ·
Mortality

3.1 Introduction

3.1.1 Human Papillomavirus (HPV)

Human papillomaviruses (HPVs) are a family of 8 kb, circular DNA viruses with
tropism to basal cells of the epithelial mucosa [1]. To date, over 150 discrete geno-
typic variants have been described among the human papillomaviridae. These fall
into broad subcategories that reflect the type of epithelial cells they are able to infect,
e.g., cutaneous versus mucosal cells. HPVs are also classified according to their
ability to transform epithelial cells. High-risk HPV genotypes such as HPV16, 18,
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Fig. 3.1 Sub-sites of the
oropharynx include the base
of tongue (behind the
circumvalate papillae of the
tongue), soft palate, uvula,
tonsil, posterior pharyngeal
wall as well as the vallecula
(not visible) and lateral
pharyngeal wall (not visible)

31, 45, and others are capable of transforming mucosal epithelial cells and inducing
malignant lesions, while low-risk HPV genotypes such as HPV6, 11, and others are
associated with benign lesions such as warts or condylomas. Benign lesions in the
oral cavity are common, and most often involve HPV6 and 11. These HPV genotypes
are also often associated with uncommon benign conditions in the larynx such as
laryngeal papillomatosis and laryngeal polyps. The involvement of HPV in head and
neck carcinogenesis was first proposed in 1983 by Syrjanen et al. [2] based on mor-
phological and immunohistochemical evaluation of oral squamous cell carcinomas,
which showed features typical of HPV lesions and were positive for immunoper-
oxidase staining with anti-HPV serum. This evidence was further corroborated in
an epidemiologic study reported by Gillison et al. [3] where HPV genomes were
detected in tumors from patients diagnosed with new and recurrent head and neck
squamous cell carcinomas. In head and neck cancers of the oral cavity, orophar-
ynx, larynx, and hypopharynx, high-risk HPV infections account for approximately
20–25 % of these lesions. Among these sites, the tumors that arise in the oropharynx
carry the largest burden of HPV infections (estimated at 36 %) [4], and HPV16 is the
most common genotype isolated [3], [5–24]. Oropharyngeal cancer sites include the
tonsil, base of tongue, soft palate, uvula, vallecula as well as the lateral and posterior
walls of the oropharynx (Fig. 3.1).

3.2 HPV Proteins and Functions (E1, E2, E4, E5,
E6, E7, L1, L2)

The HPV genome encodes seven early (E) genes (E1, E2, E4, E5, E6, E7, E8),
and two late (L) genes (L1 and L2). Together with a noncoding upstream regula-
tory region (URR), these play important roles in viral replication and transcription.
Phylogenetic analysis of the open-reading frames of early genes from various HPV
genotypes show that proteins from viruses associated with cancer cluster into a sin-
gle group, suggesting that the genetic basis for oncogenicity is dependent upon the
DNA sequences in the early region of the viral genomes [25]. Among high-risk HPV
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Fig. 3.2a Cartoon of the HPV16 genome (black). The upstream regulatory region (URR) contains
the enhancer elements for cell transcription factors, and E1 and E2 binding sites. The open reading
frames for each early (E) and late (L) gene are depicted as colored lines outside of the circular
genome. The dotted lines depict the splice variants E1∧E4 and E8∧E2 which are derived from fused
transcripts from the E1 and E4 or E8 and E2 open reading frames. The grey lines depict the regions
of the viral genome that are preserved during integration, regions where breakpoints occur during
integration and a region that is lost during integration. b Interaction of high-risk HPV oncogenes
E5, E6 and E7 with multiple host cellular proteins including p53 and pRb. These interactions result
in a series of events leading to the inhibition of apoptosis, altered cell proliferation and ultimately
genomic instability which leads to cancer development

genotypes, only the early genes E5, E6, and E7 play important roles in viral carcino-
genicity (Fig. 3.2a). The differences in oncogenic potential between high-risk and
low-risk HPVs are related to differences in the biochemical activities of the early
viral gene products.

During the HPV life cycle, the virus invades damaged areas of stratified epithe-
lium and targets the basal cells by binding to a cellular receptor. Heparin sulfate
proteoglycan, a linear polysaccharide found in human and animal tissues, has been
suggested to be the primary cellular receptor for initial attachment of the HPV virus,
and facilitates binding to an unidentified secondary receptor prior to entry [26],
[27]. Once internalized, the virus uncoats and the viral DNA is transported to the
nucleus. Infections can be nonproductive (i.e., the HPV genome is maintained in
episomal form within the cell at low copy numbers) or productive (i.e., viral HPV
DNA is replicated and packaged into intact infectious viral particles). Since the HPV
genome does not encode for proteins required for viral DNA replication (such as
DNA polymerase and other enzymes), the virus must rely on the infected cell’s DNA
replication machinery to induce viral replication. During the nonproductive phase of
infection, the HPV genome is established as an extrachromosome (or episome) and
remains tethered to the host chromosome so that it is maintained and segregated into
daughter cells after cell division [28].

The switch between nonproductive and productive infections is dependent upon
the host cell differentiation state. During productive infection, the transcription of
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HPV gene products is tightly regulated by the differentiation-specific gene expression
profile of the infected cell. Upon activation of HPV DNA replication, amplification,
and packaging of intact viral particles [29], infectious virions egress from terminally
differentiated epithelial cells that comprise the cornified (outer surface) epithelium.
HPV-associated carcinogenicity is not a normal event that occurs as part of the pro-
ductive viral life cycle, as this typically involves the extrachromosomal viral genome.
Rather, during carcinogenesis, the circular viral genome linearizes and integrates it-
self into the host chromosome, losing coding sequences for key regulatory genes
during the linearization process. A more detailed description of the roles of specific
HPV-encoded proteins in the HPV life cycle, including chromosomal integration and
viral carcinogenicity, is provided below.

3.2.1 HPV L1 and L2

The L1 and L2 proteins encode the structural components of the virus and are only
transcribed in productively infected cells. These structural proteins assemble to form
the viral capsid, which comprises 72 “capsomeres”. Each capsomere includes a
pentamer of the L1 protein, and an L2 protein monomer, which docks into the
center of each L1 pentamer. The L1 capsid protein is capable of self-assembling
into virus-like particles (VLPs), even in vitro. While essential structural elements
of the sequence of the L1 protein are well conserved, a number of surface loops
are distinct for different HPV genotypes. Exploiting these features, researchers have
used HPV L1 VLPs to generate genotype-specific vaccines including a recombinant
quadrivalent vaccine, targeting genotypes 6, 11, 16, and 18 (Gardasil, Merck &
Co. Inc.), and another recombinant HPV vaccine targeting genotypes 16 and 18
(Cervarix, Glaxo Smith Kline, provided as an adjuvanted, adsorbed form).

As the virion binds to its receptor, a conformational change occurs that exposes
the N-terminus of the L2 protein, allowing it to be cleaved by the protease furin. This
leads to the exposure of additional regions of the L2 protein, which subsequently
binds to an unidentified secondary receptor, followed by internalization of the viral
particle via clathrin or caveolin-mediated endocytosis. For establishment of the in-
fection, binding of the L2 protein to the HPV viral DNA enables its transport into the
nucleus. The expression of the L2 protein later in the course of HPV infection is also
important for the packaging of progeny viral genomes during viral particle assembly.

3.2.2 HPV E1, E2, E4, and E8

The early proteins E1 and E2 are among the first viral proteins expressed in an
infected cell. Both are DNA-binding proteins that regulate viral replication and
gene expression. E1 is a DNA helicase/ATPase that is responsible for bidirectional
unwinding of viral DNA to facilitate viral genome replication. The E2 protein is a
transcriptional regulator that binds at viral transcription factor binding sites within
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the URR to activate or repress transcription of HPV genes, with the viral oncogenes
E6 and E7 particularly dependent on E2 activity. The URR is upstream of the early
promoter, and contains enhancer elements that are responsive to the binding of host
transcription factors such as AP1, Oct-1, SP1, and YY1, and are adjacent to binding
sites for the viral transcription factors E1 and E2. The activation and repression of
the early promoter is tightly regulated by E2 binding. A low level of E2 binding
activates the early promoter, while a high level of E2 blocks the binding of host tran-
scription factors and therefore represses the early promoter. E2 is also responsible
for maintaining the viral genome as an extrachromosomal replicon by recruiting the
E1 protein to the replication origins and tethering HPV genomes to the host chro-
mosome. The HPV E1 protein has been shown to bind to a number of host proteins
such as cyclin-CdK2 [30], Hsp40/Hsp70 [31], SW1/SNF5 [32], histone H1 [33] and
Ubc9 [34], but the significance of these interactions is not fully understood.

Heat shock protein (Hsp40) stimulates viral replication by facilitating the forma-
tion of E1:hsp40 dihexameric complexes which associate with the viral replication
origin and remain associated with the replication elongation complex [31], [35]. The
E2 gene also produces an alternatively spliced transcript that encodes E8 fused to
a partial sequence of E2 (E8∧E2). This splice variant is thought to negatively regu-
late HPV replication [36], [37]. Functional studies show that the E8∧E2 proteins of
high-risk HPV16, 18, and 31 inhibit the promoter that drives the expression of the
HPV E6 and E7 oncoproteins. The E8∧E2 fusion protein also exhibits long-distance
transcriptional-repression activities (i.e., represses viral transcription by binding to
E2-binding sites distal to the early promoter [37]), and has been shown to inhibit
the growth of the cervical cancer cell line HeLa. Consistent with the role of E8∧E2
in repression of the viral oncogenes E6 and E7, the expression of E8∧E2 results in
a rapid increase in the cellular p53 and p21 genes, which negatively regulate cell
growth [38]. Among the other early proteins, E4 (expressed as an E1∧E4 fusion
protein) is known to interact with cytokeratin filaments [39], [40], but its function is
currently unknown.

3.2.3 HPV Oncogenes E5, E6, and E7

Three oncogenes are encoded by the early open reading frames of high-risk HPV
genotypes (E5, E6, and E7) (Fig. 3.2b). In general, HPV oncoproteins E5, E6, and
E7 promote carcinogenicity by interfering with the regulation of cell growth by
host cellular proteins, thus inducing genomic instability. The HPV16 E5 protein is
the most commonly studied genotype of oncogenic E5. This protein is 90 amino
acids in length and has been shown to localize in intracellular membranes such
as the Golgi apparatus, endoplasmic reticulum, and nuclear membrane [41], [42].
While the biochemical mechanisms related to HPV16 E5 carcinogenesis have not
been clearly elucidated, the oncoprotein is thought to promote carcinogenesis during
early stages of the established viral infection, since the gene is often deleted when
the HPV genome becomes integrated in the host chromosome [43], [44]. Among its
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activities, HPV16 E5 appears to amplify signal transduction pathways by cooperating
with HPV16 E7 [45] and activating the epidermal growth factor receptor (EGFR) to
stimulate viral gene expression and cell proliferation. The protein also interferes with
the recycling of major histocompatibility complex (MHC) Class I and II molecules
as well as other receptors to the cell surface, and reduces gap-junction-mediated
intercellular communication via dephosphorylation of connexin 43 [46–48]. The
inhibition of MHC Class I and II expression is a common immune evasion tactic
used by many viruses, while the limitation of gap-junction-mediated intercellular
communication results in a deficiency in tissue homeostatic feedback, promoting
carcinogenesis.

The E6 protein interacts with a number of host proteins responsible for cell pro-
liferation, with the interaction inducing the degradation of cellular partners. The
degradation is induced because E6 also interacts with E6-AP, a ubiquitin ligase,
which targets interactive partners for destruction. Many proteins degraded by E6-AP
contain PDZ domains; a particularly critical target in head and neck cancer is the
tumor suppressor protein p53 [49–51]. In addition, other important interactions of
high-risk HPV E6 proteins involve degradation of NFX1-91, a transcriptional repres-
sor that regulates telomerase expression, contributing to cell immortalization [52],
abrogation of host interferon response by interacting with IFN regulatory factor 3
(IRF3) [53], and interaction with the focal adhesion protein paxillin to disrupt the
actin cytoskeleton (a characteristic of transformed cells) [54]. Consequently, these
interactions lead to inhibition of p53-mediated apoptosis, inefficient G1/S check-
point, deregulation of the cell cycle in cells that contain DNA damage and eventually
chromosomal instability.

The high-risk HPV E7 protein also induces cellular proliferation based on interac-
tions with a large number of host cellular proteins. Most importantly, its interaction
with the tumor suppressor protein pRb results in hyperphosphorylation and ubiquitin-
mediated degradation [55] of pRb. This leads to the release of E2F from pRb/E2F
complexes, thus promoting transactivation of S-phase-related genes. The inactiva-
tion of pRb leads to upregulation of p16/CDKN2A, a noted surrogate marker for HPV
carcinogenesis [56]. E7 cellular targets also include other growth inhibitory pocket
proteins related to pRb (p107 and p130), cyclin E andA, JUN the transcription factor,
cyclin-dependent kinase inhibitors p21 and p27, as well as the TATA box-binding
proteins [57–61]. Cumulatively, these activities, in combination with those of other
HPV oncoproteins, lead to genomic instability including chromosome segregation
defects such as structural and numerical chromosomal abnormalities [43], [44], cell
transformation and carcinogenesis.

3.2.4 HPV Carcinogenesis

The molecular model of HPV carcinogenicity in head and neck cancer has been
developed from earlier cervical cancer studies demonstrating that persistence of
high-risk HPV infection increases the likelihood of viral integration into the host



3 Epidemiology of HPV in Head and Neck Cancer: Variant Strains . . . 29

chromosome [62–64]. While HPV integration is a random event throughout the
human genome, it is thought to occur as a late event with a predilection for DNA
fragile sites (regions of the genome that are late replicating and with loose chromatin
structures) [65], [66]. These regions are hot spots for DNA breaks. Furthermore, the
linearization of the circular HPV genome prior to integration usually occurs with
a disruption in the viral E2 sequence. Therefore, integration is not a normal event
during the viral life cycle. The loss of E2 expression lifts the repression of the E6 and
E7 oncogene promoter. Therefore, in cervical cancer, linearization and integration
of HPV results in overexpression of the viral oncogenes HPV E6 and E7. For head
and neck cancer, the relationship between physical state and integration of HPV
may not be as simple, since variations in HPV integration status have been reported
from different studies. HPV-positive oropharyngeal cancers have been found to carry
HPV genomes primarily in episomal form, yet viral oncogenes are still expressed
[67], while evidence of integrated or episomal forms only or a combination of both
have also been reported in the presence of viral oncogene expression [68–72]. This
is currently an area of active study.

3.3 HPV Infections in Normal Oral Mucosa

HPV infection is not a rare event, with many infections not leading to cancer either
because individuals are infected with nononcogenic strains, or because an effective
immune response prevents establishment of a chronic infection. The 2003–2004 Na-
tional Health and Nutrition Examination Survey (NHANES) evaluated the serum
prevalence of antibodies to HPV6, 11, 16, and 18 among 4,303 persons living in the
USA, aged 14–59 years. The study was conducted prior to the introduction of HPV
vaccination and represents an estimate of natural HPV exposure in the USA. The
overall seroprevalence of any of the four HPV genotypes was 22.4 %, with significant
differences between males (12.2 %) and females (32.5 %) [73]. The seroprevalence
of HPV16 or HPV18 infection among females was also higher than males (fe-
males: HPV16—15.6 %, HPV18—6.5 %; males: HPV16—5.1 %, HPV18—1.5 %)
and much smaller percentages of persons had serum antibodies for HPV6 and 11
(females: 3.3 %; males: 1.0 %) and both HPV16 and 18 (females: 2.4 %; males:
0.3 %) [73].

A separate NHANES study conducted from 2009 to 2010 reported a higher preva-
lence of oral HPV infections among men compared to women, examining virus in oral
rinse samples collected from 5,501 individuals aged 14–59 years. The overall oral
HPV infection rate for any HPV was 6.9 % and the prevalence of any high-risk infec-
tions was 3.7 % which was similar to the prevalence of any low-risk infections (3.1 %).
The most prevalent HPV type detected was HPV16 (1.0 %). The prevalence of over-
all oral HPV infection was higher among males (10.1 %) compared to 3.6 % among
females; similarly, males also had higher prevalence of oral HPV16 infection (1.6 %)
compared to females (0.3 %) [74]. In this study, the potential risk factors for oral
HPV infection were sexual behavior (i.e., higher number of lifetime sexual partners)
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and current smoking. Oral HPV infection was also more commonly detected among
persons who were sexually experienced but did not report practicing oral sex, sug-
gesting that transmission was likely to be related to sexual contact other than oral sex
[74]. Overall, both NHANES studies show that there is a contrasting difference in
seroprevalence and oral HPV infection between males and females. Females tended
to have higher seroprevalence rates from HPV infection and had lower prevalence
of oral HPV infection, with the opposite pattern observed in males. It has been
postulated that the higher HPV seroprevalence in females might be related to expo-
sures to genital HPV infections [73] which might result in a greater protection from
subsequent oral HPV infections [75].

With respect to racial differences, the previously mentioned NHANES study con-
ducted in 2003–2004 revealed that US non-Hispanic blacks appear to have higher
overall HPV seroprevalence rates compared to non-Hispanic whites and Hispanics
(46.8, 31.9, and 22.6 %, respectively) [73]. However, among males HPV16 sero-
prevalence appears to be similar between non-Hispanic blacks and non-Hispanic
whites (7.0 vs. 5.6 %) while lower rates were reported among Hispanics (1.5 %)
[73]. The prevalence of oral HPV infection according to race is currently unknown.
Together, these racial and gender disparities may underlie the differing frequencies in
HPV-positive versus HPV-negative head and neck cancers in different populations.

3.4 Global Trends in Head and Neck Cancer Incidence
and Mortality

Globally, the incidence of head and neck cancer varies by geography and gender. At
least part of this variance is likely attributed to differences in the prevalence of tobacco
and alcohol use in different populations. Overall, the age-adjusted incidence of head
and neck cancer worldwide is 8.1 per 100,000. By geographic region, the highest rate
is observed in Europe (ASW Incidence: 10.8 per 100,000) while Middle Africa has
the lowest (ASW Incidence: 3.4 per 100,000) [76]. Oceania, the Caribbean Islands,
North and South America, as well as Australia and New Zealand have reported
estimates that are higher than the worldwide rates, while the rates throughout Africa
andAsia are lower than the world wide estimates (Fig. 3.3). Diagnoses world wide are
approximately threefold higher in males (12.7 per 100,000) compared to females (3.9
per 100,000) and similar trends are reported for the USA and other countries around
the world (Fig. 3.3) [76], [77]. While males continue to bear the burden of disease,
for both males and females, the predicted number of new head and neck cancer
cases is higher in less developed countries compared to more developed countries
irrespective of age at diagnosis (Fig. 3.4). For younger persons (< 65 years), it is
predicted that through 2030, the number of new head and neck cancer diagnoses will
increase approximately 2-fold for males and 2-fold for females in the developing
world yet remain constant for males and females in developed countries. In contrast,
for older persons (≥ 65 years), similar increasing trends of new cancer diagnoses
are predicted for males and females in developing countries and only for males in
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Fig. 3.3 Incidence of head and neck cancer varies by geographic regions and gender, with the
highest overall incidence observed in Europe and lowest incidence observed in Middle Africa.
Incidence rates in Males (Blue) ranges between two to five-fold higher than the incidence rates in
Females (Red). Graph reflects Age Standardized Rates (World) per 100,000 (Globocan, 2008)

developed countries. These trends may be explained by a number of factors including
increasing tobacco use and/or poor oral health in developing countries compared to
developed countries [78].

The mortality rate from head and neck cancer worldwide is 4.4 per 100,000.
Notably, it is almost fourfold lower for females compared to males (2.0 per 100,000
vs. 7.1 per 100,000) [76] and the reason for this disparity is still unclear. A recent
matched analysis reported that 286 female and 286 male head and neck cancer
patients with similar clinical and demographic characteristics, diagnosed and treated
from a single institution, exhibited no survival disparity [79]. While this study should
not be generalized to the general population, it has been speculated that the gender
differences in head and neck cancer mortality might be associated with differences
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Fig. 3.4 Predicted number of head and neck cancer cases diagnosed and predicted number of
deaths: 2010–2030 Globocan (IARC) 2008 are presented as stratified graphs according to age at
diagnosis < 65 years and ≥ 65 years. Frequencies for less developed countries (solid line) and
for more developed countries (dotted line) are also presented separately for Males (diamond) and
Females (square)

in incidence based on higher tobacco and alcohol exposure in males compared to
females. This still needs further investigation. Overall death rates are highest in the
Caribbean Islands. Asia, Europe and Southern Africa also have rates that are higher
than the worldwide rate (Fig. 3.5). In contrast, North, South and Central America,
Oceania, Australia, New Zealand, and other regions of Africa have death rates lower
than worldwide rates. Mortality from head and neck cancer appears to be declining
in Europe as well as the US [77], [80] and may be attributed to improvements in
treatment and management of head and neck cancer as well as the rising incidence of
HPV-related cancers that are more responsive to therapy [81]. Males in developing
countries are predicted to carry increasingly the highest burden of deaths from head
and neck cancer compared to persons in developed nations, while a slight increase
in deaths from this disease is also projected for females in developing countries
(Fig. 3.4).
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Fig. 3.5 Mortality rates of head and neck cancer according to geographic regions: Age Standardized
Rates (World) per 100,000. Mortality rates for Males and Females combined (green) are highest in
the Caribbean and lowest in Middle Africa. Mortality rates for Males (blue) are two to eight times
greater than the mortality rates for Females (red)

3.5 HPV-positive Head and Neck Cancers

HPV-positive head and neck cancers arise primarily in oropharyngeal sites. The bio-
logic plausibility of HPV carcinogenicity in epithelial cells is well established. There
is strength and consistency of association of HPV DNA present in oropharyngeal
cancers [82] as well as evidence that the HPV infection is specific to the oropha-
ryngeal cancer cells [3]. This strong epidemiological evidence supports the causal
association of HPV with cancers in the oropharynx, and also supports the idea that
patients with HPV-positive oropharyngeal cancers have a survival advantage. While
there is also evidence of association with viral infection in nonoropharyngeal subsites
such as the oral cavity and larynx, there is insufficient evidence to suggest a causal
relationship and there does not appear to be a survival advantage for these patients.
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3.5.1 HPV-positive Oropharyngeal Cancer

While the majority of head and neck cancers are caused by tobacco and alcohol use,
more recently, over the past 10 years, HPV has been demonstrated to be the primary
cause of the majority of oropharyngeal cancers while the remaining proportion of
oropharyngeal tumors are still attributed to habitual tobacco and/or alcohol use [83].
The virus appears to have an affinity to the epithelial cells of the Waldeyer’s tonsillar
ring, and therefore is more commonly detected in tumors that arise in the tonsils and
other oropharyngeal subsites (Fig. 3.1). It is unclear whether persistent infection is
more common in these tissues. Only a portion of HPV DNA-positive oropharyngeal
cancers have been shown to be transcriptionally active. Since HPV carcinogenicity
relies on the overexpression of HPV oncogenes E6 and E7, it is likely that these tu-
mors might not be attributed to HPV [84], [85]. In developed countries, an increasing
trend of oropharyngeal cancers has been observed for several decades, particularly
in younger patients [86–89]. It has been suggested that HPV is the driver of this in-
creased incidence since the virus, primarily HPV16, has consistently been detected in
these tumors. In Europe, the prevalence of HPV in base of tongue cancers increased
from 58 % during 1998–2001 to 81 % during 2004–2007 [90] and similar increases
in HPV-positive tonsillar cancers have also been reported (from 23 %, 1970–1979
to 93 %, 2006–2007) [81]. In the USA, for over three decades the prevalence of
HPV-positive oropharyngeal cancers has also reportedly increased from 33 % in the
1980s to 63–92 % in the 2000s [91–95].

A meta-analysis published in 2012 confirms this increasing trend of HPV-positive
oropharyngeal cancers in all regions of the world, except for Asia, Africa, the
Caribbean and South America, where no recent data are available [96]. Various
HPV detection methods have been used among these studies, from low-sensitivity
assays such as Southern blotting or immunohistochemistry for HPV antigens, to
more sensitive methods such as in situ hybridization (ISH) or polymerase chain
reaction (PCR). After adjusting for the time period during which the studies were
conducted, the increasing trend did not appear to be attributed to improved sensitivity
or performance of the HPV detection methods. In addition, the systematic review
of published articles shows that prior to 2000, North American studies reported the
highest prevalence of HPV-positive oropharyngeal cancers (North America: 50.5 %,
Europe: 35.3 %, other countries: 32.2 %). Despite the increasing trend for all geo-
graphic regions, after 2005, the pooled prevalence of HPV-positive oropharyngeal
cancers was comparable in North American studies (69.7 %) compared to European
studies (73.1 %) [96]. This suggests that the prevalence of HPV-positive oropharyn-
geal cancers diagnosed in Europe appears to be increasing at a faster rate compared
to the USA [96]. It is unclear whether this may be due to competing trends such as
a greater change in tobacco-related oropharyngeal cancers in the USA vs. Europe.
The increase in incidence of HPV-positive oropharyngeal cancers has been observed
primarily among white males, in contrast to white women and other race groups
where rates have remained unchanged or are decreasing [97–99]. The reason for
the greater predilection for HPV-related oropharyngeal cancer in white males is still
unclear.
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While numerous studies have been conducted on the prevalence of oral HPV
infection in cancer-free individuals, it is important to note that the association of
oral HPV infection with disease is different from that of HPV in the oropharynx;
therefore, one should be careful about correlating the prevalence of HPV infection
in the oral cavity mucosa with prevalence of HPV infection in the oropharyngeal
mucosa. The presence of HPV in normal oropharyngeal tissue has been reported in
a few studies and reports have been variable. In normal and benign oropharyngeal
tissues the prevalence of HPV ranges from 0–14 % [15], [100–113]. One study
conducted in Belgium evaluated 80 tumor-free tonsils from cancer-free adults and
children who underwent tonsillectomy due to sleep apnea or recurrent tonsillitis.
The study reported that 12.5 % were positive for high-risk HPV genotypes [111].
Similarly, another study reported that 14 % of 50 cancer-free women from Brazil
were positive for high-risk HPV in normal oropharyngeal tissues [112]. A study
conducted in the USA evaluated 226 archived palatine tonsils with benign histologic
findings that were surgically removed between 1975 and 2001 from adults (> 21
years). This study failed to detect HPV infections in these tissues [113]. In patients
with oropharyngeal dysplasia, the prevalence of HPV was reported in one study at
9.4 % [114].

Currently there is insufficient information on the prevalence of HPV in precan-
cerous tissues in the oropharynx and virtually no information on the prevalence
rates by gender or race. Some insight has been provided by a few studies that have
compared genital HPV infection with HPV status in the oropharynx and suggested
the association with sexual behavior. The link between female genital HPV infec-
tion and HPV-positive oropharyngeal cancer has been demonstrated, and both male
and female cancer patients appear to have increased susceptibility [115–117]. A
study of 100 women with abnormal cervical cytology reported high prevalence of
high-risk HPV in the oropharynx [118]. This is not surprising since analysis of the Na-
tional Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) data
(1973–2002) shows that women with cervical cancer diagnoses have an increased
risk of developing second primary tumors in the tonsil (Standardized Incidence Ratio
(SIR): 3.1) and this risk was in excess compared to women diagnosed with cancers
other than cervical cancer [117].

A similar study of SEER data from 1973 to 1994 involving males and females
diagnosed with a HPV-associated anogenital cancer (i.e., cervical, vulvar, and anal
cancers), also reported an increased risk of second primary cancers in the tonsils for
female cervical cancer patients (Relative Risk (RR): 65.2, 95 % confidence interval
(CI) = 2.4–10.0) as well as male anal cancer patients (RR: 6.1, 95 % CI = 1.2–17.9)
[116]. Furthermore, husbands of invasive or in situ cervical cancer patients also have
an excess risk of developing tonsillar cancers (SIR: 2.4 if wife had in situ cervical
cancer; SIR: 2.7 if wife had invasive cervical cancer) [119]. A bidirectional associa-
tion between oropharyngeal cancer and anogenital cancer has also been reported and
supports the association of sexual behavior with the development of HPV-associated
cancers [115]. The study shows that the risk of developing tonsillar cancer subse-
quent to anogenital cancer among men who were never married (SIR: 13.0) was
much higher compared to men who were married (SIR: 3.8). The acquisition of
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genital HPV infection is associated with behaviors such as early age of sexual in-
tercourse and multiple sexual partners; and epidemiological studies have suggested
that these behaviors are associated with the transmission of HPV to the oral mucosa
[120–122], as well. In addition, the association of these behaviors with the devel-
opment of HPV-positive oropharyngeal cancers has also been demonstrated [123],
[124]. Taking these findings altogether, it is likely that the incidence of HPV-positive
oropharyngeal cancer might be related to increased intra- and/or interindividual ex-
posures to genital high-risk HPV infections (sexual and nonsexual); nevertheless,
the rising incidence of HPV-positive oropharyngeal cancer among white men still
remains to be explained epidemiologically.

Patients with HPV-positive oropharyngeal cancers have improved overall and
disease-free survival compared to patients diagnosed with HPV-negative oropha-
ryngeal cancers as well as cancers in nonoropharyngeal sites [94], [125–132].
HPV-positive oropharyngeal cancers have a distinct genetic profile compared to
tobacco-related head and neck cancers. The tumors are less likely to carry muta-
tions in TP53 [84], [85], [133], have differing combinations of allelic losses and
gains/amplification [133], [134] as well as a unique host cell transcription pro-
file which involves downregulated expression of interferon-induced proteins such
as IFIT1, IFITM1-3, IFI6-16, IFI44 L, and OAS2 and upregulated expression of
transcription factors such as RPA2, TAF7 L, RFC4, and TFDP2 as well as cell divi-
sion/cycle regulators such as p18, CDC7, and p16 [135], [136]. The distinct genetic
features of HPV-related and tobacco/alcohol-related cancers are likely associated
with the observed difference in patient response to therapy. It is possible that the
genetic alterations associated with tobacco-associated carcinogens weigh in more
heavily and negatively on the patient’s response to therapy. The Radiation Therapy
Oncology Group (RTOG) clinical trial 0129 reported that for 266 patients diagnosed
with advanced stage oropharyngeal cancer, treated with radiotherapy combined with
platinum therapy, the risk of death (categorized into high, intermediate, and low)
was dependent primarily upon the HPV status of the tumor followed by the number
of pack-years of tobacco smoking, then tumor stage, and nodal stage [137]. The
study used an exploratory method, recursive partitioning analysis, which enabled
the identification of influential factors related to overall survival. HPV status was the
primary determinant for survival in these patients. Patients who were nonsmokers,
with HPV-positive tumors and with low nodal stage (N0-N2a) were considered low-
risk, while high-risk patients were smokers diagnosed with HPV-negative tumors at
tumor stage T4. The intermediate-risk patients were either HPV-positive smokers
with high nodal stage (N2b-N3) or HPV-negative nonsmokers with low tumor stage
(T2-T3). The 3-year overall survival for low-risk patients was 93 %, for intermediate-
risk patients 70.8 %, and for high-risk patients 46.2 % [137]. A recent clinical trial
conducted in an independent cohort reported similar results for patients treated with
induction chemotherapy followed by chemoradiation or radiation only. In this study,
the 3-year overall survival for low-risk patients was 100 %, for intermediate-risk
patients 79.6 %, and for high-risk patients 70 % [138]. These findings suggest that
this type of risk stratification may help to define clinical decision for appropriate
treatment.
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A racial disparity in survival has also been noted in head and neck cancer, and
particularly among patients diagnosed with oropharyngeal cancer. Black patients
have significantly worse survival rates compared to whites. Despite the numerous
studies of the impact of HPV on oropharyngeal cancer survival, investigations ac-
cording to race have been limited. Nevertheless, from the few studies that have been
conducted, findings suggest that blacks appear to have a lower prevalence of HPV-
positive oropharyngeal cancers. In a multi-center phase III clinical trial of induction
chemotherapy followed by concurrent chemoradiation, the overall and disease-free
survival of patients diagnosed with stage III/IV head and neck cancer was improved
as expected for patients diagnosed with HPV-positive tumors. The subset analysis of
124 oropharyngeal cancer patients (54 black, 70 white) also documented poor median
overall survival for blacks compared to whites (25.2 vs. 69.4 months, p = 0.0006).
There were no noted differences in outcome between blacks and whites diagnosed
with nonoropharyngeal cancers. Further analysis of 224 head and neck tumors from
196 white and 28 black patients revealed a significant difference in the prevalence of
HPV according to race. Black patients had a significantly lower prevalence of HPV-
positive cancers compared to whites (4 vs. 34 %). This study suggests that the racial
disparity in oropharyngeal cancer may be attributed to differences in the prevalence
of HPV-positive oropharyngeal tumors according to race [139].

The findings from this study have since been complemented by two additional
studies. Chernock et al. reported that the poorer disease-free survival among African
Americans may be attributed to lower HPV prevalence, the types of treatment and
higher tumor stage at diagnoses [140]. Another report by Worsham et al. [141],
[142] compared the survival of 118 patients diagnosed with oropharyngeal cancer
and found that 51/118 43.2 % were HPV-positive and 67/118 56.8 % were HPV-
negative. A lower prevalence of HPV was observed for African Americans compared
to white Americans (29 vs. 71 %, p = 0.024). The HPV-negative African American
patients had poorer survival compared to the HPV-positiveAfricanAmerican patients
(p = 0.0012) as well as the HPV-positive white Americans (p = 0.0496). In addition,
the HPV-negative African Americans also had poorer survival than the HPV-negative
white Americans (p = 0.0496) in that study and there was no survival difference be-
tween HPV-positive African Americans and HPV-positive white Americans. These
findings not only support the important role that HPV plays in oropharyngeal can-
cer outcome but also suggest that additional factors might be contributing to the
poor survival of blacks; therefore, further epidemiological studies addressing racial
disparities in oropharyngeal cancer are still needed.

3.5.2 HPV-Positive Nonoropharyngeal Cancer

The role of HPV has also been extensively investigated in studies of head and
neck cancers in nonoropharyngeal subsites. The pooled prevalence of HPV-positive
nonoropharyngeal cancers for all regions of the world is reported to be approxi-
mately 21.8 %, and is higher in Europe (23.7 %) than in North America (12.8 %)
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[96]. In contrast to the increasing prevalence of HPV-positive oropharyngeal can-
cers, HPV-positive nonoropharyngeal cancers do not appear to be increasing, but
rather decreasing over time. For studies published prior to 2000, the prevalence of
HPV-positive nonoropharyngeal cancers was 22.2 % and decreased to 17.2 % (2000–
2004), and 6.2 % (after 2004) [96]. The sensitivity of the detection methods used as
well as the type of tissue evaluated did not appear to affect the decreasing trend in
HPV prevalence. The reason for this declining prevalence is still unclear.

Nevertheless, studies involving nonoropharyngeal subsites in the oral cavity do
suggest a potential association with HPV. In oral cavity dysplasia, 12 studies con-
ducted between 1985 and 2010 show that HPV16 and/or 18 was detected in 25.3 %
of dysplastic tissues, with very wide variability between studies indicating preva-
lence rates 0–100 % [143]. The oral cavity dysplasia sites included in these studies
were from the tongue, floor of the mouth/ventral tongue, buccal gingiva/vestibule,
hard palate, oral commissure/lip, and other unspecified sites in the oral cavity. While
DNA presence alone quantifies prevalence, it does not necessarily correlate with
viral transformation. However, in 2011, Syrjanen et al. performed a systematic re-
view of case-control studies published from 1966 to 2010 that have investigated the
association of HPV with potentially malignant disorders such as oral lichen planus,
leukoplakia, erythroplakia, and oral proliferative verrucous leukoplakia (956 cases
and 675 controls) [144]. Similarly, during this timeframe case-control studies inves-
tigating HPV’s association with oral squamous cell carcinoma (involving the oral
cavity only) were also reviewed and summarized (1,885 cases and 2,248 controls).
Based on this report, HPV16 appears to be associated with the development of dys-
plastic oral lesions (oral lichen planus: odds ratio = 5.61; 95 % CI: 2.42–5.99, and
leukoplakia: odds ratio = 4.47; 95 % CI: 2.22–8.98) as well as oral cavity cancers
(odds ratio = 3.86; 95 % CI: 2.16–6.86) [144]. A similar yet weaker association
was also reported in an earlier study conducted in 2006 (odds ratio = 2.1; 95 % CI:
1.2–3.4) [145]. Overall, this suggests that HPV may be associated with at least a sub-
set of oral cavity tumors, but unlike HPV-positive oropharyngeal cancers, a causal
association between HPV and survival advantage for patients with HPV-positive oral
cavity cancers has not been clearly delineated.

A steady decline in the incidence of nonoropharyngeal cancers overall has been re-
ported in the USA and worldwide for all racial/ethnic groups and genders and may be
reflective of the declining prevalence of tobacco and alcohol consumption [146–150].
In contrast, however, more careful analyses have reported an increase in the incidence
of oral tongue cancers in younger adults despite the overall decline in tobacco use
[151–153]. In the USA, examination of data from the Surveillance, Epidemiology,
and End Results Program of the US National Cancer Institute revealed that the inci-
dence of oral tongue cancer was not significantly different between 1973 and 2006
among white males, but has significantly, although modestly increased among white
females and declined among African American males and females [154]. Possible
suggestions for the increasing incidence of oral tongue cancer among white females
might be related to the recent trend of increased smoking prevalence among women,
or other unknown environmental factors. A similar trend of increasing incidence
between oral tongue and oropharyngeal cancers might suggest similar etiology, such
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as HPV. Whether or not oral tongue cancers are attributable to HPV is yet to be
confirmed. One argument suggesting this is unlikely is that there does not appear
to be a survival advantage among oral tongue cancer patients compared to those
diagnosed with cancer in other nonoropharyngeal subsites [155]; and that there is no
significant association between TP53 expression (measured by immunohistochem-
istry) and HPV infection in oral tongue cancers [156]. Some evidence supports HPV
involvement in at least a subset of oral tongue cancers, since immunostaining assays
revealed a correlation between HPV16 E6 expression and p53 loss as well as HPV16
E7 expression and pRb loss [157]; therefore, further investigations are needed.

A substantial number of studies have also investigated the carcinogenic role of
HPV in laryngeal cancer and recent evidence suggests that HPV16 might be asso-
ciated with approximately 20 % of these tumors. Among twelve studies conducted
through 2012, an association of HPV16 rather than HPV18 was observed (HPV16
pooled odds ratio: 6.07, 95 % CI: 3.44–10.70 vs. HPV18 pooled odds ratio: 4.16,
95 % CI: 0.87–20.04). In summary, while both cutaneous and mucosal HPVs have
been detected in the oral cavity and the larynx, the presence of mucosal HPVs,
and particularly HPV16 DNA correlated with the presence of viral transcripts and
enhanced CDKN2A (P16) detected in some studies, seems to suggest a possible etio-
logic role in a small subset of oral cavity and laryngeal tumors [158–160]. However,
unlike HPV-positive oropharyngeal cancers, there has been no documented positive
impact on treatment outcomes [160–164].

3.6 HPV Variants: Functional Differences and Implications
for Risk and Treatment

3.6.1 HPV Intratypic Variants

Within the differing genotypes of HPV, intratypic variants have been reported that
may affect the ability of the virus to induce cancer. The nomenclature for HPV has
been established by the International Committee onTaxonomy of Viruses (ICTV) and
is based on recommendations from the Study Group of Papillomavirus [165–167].
While definitions for genera and species have been defined, there are no set standards
defined below the species level. Currently, a distinct HPV genotype is defined as
having > 10 % nucleotide sequence variation within the L1 gene; in contrast, the
nucleotide sequences of intratypic variants typically differ between 2–5 %. Since
there are no defined standards, phylogenetic investigations of HPV16 and HPV18
variants have been limited initially to partial URR and E6 sequences, with this more
recently augmented with studies of complete HPV genomes. This variability in the
classification of HPV variants has resulted in limitations in the ability to compare
results from independent studies, since different regions of the viral genomes have
been evaluated. Nevertheless, extensive studies have been conducted on HPV16 and
to a lesser extent on HPVs 18 and 45 [168–173] which have provided some insight
on HPV variant lineages and sublineages.
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Fig. 3.6 Distinct
phylogenetic branches of
HPV16 and HP18 variants.
The five HPV16 variants
include the European (E)
prototype, East Asian (As),
Asian American (AA) and
African (Af1 and Af2)
variants. The three HPV 18
variants include the European
(E) prototype, Asian
American (AA) and African
variants (Af)

For any given HPV genotype, related variants tend to cluster geographically as
well as within ethnic groups. There are five distinct phylogenetic branches of HPV16
variants (AA, Af1, Af2, As, and E), and three branches of HPV18 variants (A, AA,
and E) [169–171] (Fig. 3.6). All HPV16 variants are detected in different populations
worldwide but at different frequencies depending on geography and ethnicity. The
prototype HPV16 virus was first isolated and sequenced from a German cervical
cancer patient [174] and belongs to the European (E) variant lineage. HPV16 E
variants are predominantly detected in European populations. There are two African
variants (Af1 and Af2) detected primarily in African populations, while the Asian
American (AA) variants are primarily detected in Asian and indigenous populations
in America. In contrast the East Asian (As) variants are predominant in Chinese and
Japanese populations [169], [170]. Similarly for HPV18, the frequencies of these
variants also occur according to geography and ethnicity [171], [173]. The prototype
HPV18 virus belongs to the Asian American (AA) phylogenetic branch and although
identified and sequenced in Germany was isolated from a cervical cancer patient from
Northeast Brazil [175]. Unlike HPV16, HPV18 AA variants are found primarily in
East Asians and American Indians. African populations tend to carry the A variants
and Europeans the E variants.

A mixture of HPV16 and HPV18 variants is often observed in North, Central
and South American populations, and is reflective of both the multiethnic groups
arising from immigration, and the predilection to maintain distinct ethnic groups well
after immigration [169], [171]. Longitudinal studies of cervical HPV infection have
shown that women of European descent are more likely to be persistently infected
with E variants while African American women are more likely to be persistently
infected withAf variants [176]. Pathogenic differences have also been noted between
variants. Studies conducted in various geographic regions show that non-European
variants are more frequently persistent compared to European variants, and the risk
of cancer progression in the cervix and anal mucosa is higher compared to European
variants [177–183]. Furthermore, differing risks of high-grade cervical intraepithelial
neoplasia (CIN) have been demonstrated by different HPV variants [182], [184]. The
risk of developing high-grade CIN was threefold greater for women infected with
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non-European HPV16 variants compared to European HPV16 variants (Af2: RR =
2.7, 95 % CI: 1.0–7.0 and AA: RR = 3.1, 95 % CI: 1.6–6.0) and similar observations
have been shown for anal carcinoma in situ [181] in HIV-positive men (HPV16
non-European HPV variants: RR = 3.2, 95 % CI: 1.0–10.3).

3.6.2 Functional and Medical Implications of HPV
Variants in Cancer

The genomic diversity within the viral coding sequences and regulatory regions of
HPV16 and HPV18 variants may result in (1) functional differences in the viral
proteins and (2) differences in the level of viral replication and transcription. Current
studies have evaluated genetic variations in the HPV16, HPV18 E6, and E7 genes
with primary focus on the effects on gene expression and the ability to interact with
host proteins.

Variant genomes of HPV16 have been shown to have different activities in de-
grading p53 protein [185]. For example, the Af2 variant (z84) shows lower activity
for p53 degradation compared to the AA variant (512). It has been suggested that
an R10I substitution might contribute to the lower activity observed for Af2 z84 and
the Q14H and/or S138C substitution(s) might contribute to the higher activity of
AA 512. However, since multiple amino acid changes characterize each intratypic
variant, it is not sufficient to assume that functional differences between variants
might be attributed to a single amino acid change but rather specific combinations of
amino acid changes. Variant E6 genomes of HPV18 have also been shown to affect
the degradation of p53 protein due to differences in differential splicing in the E6
gene [186]. In this study, nucleotide changes promote alternative splicing in the Af
E6 variant resulting in a reduction of functional E6 protein expression. In contrast,
the European variant was reported to have higher functional E6 protein expression
and thus less alternative splicing in the E6 gene [186]. Other genetic variations in
HPV E6 and E7 have been shown to have differential effects on cell protein in-
teractions involving mitogen-activated protein kinase (MAPK) signaling [187] and
protein kinase B/phosphatidylinositol 3-kinase (AKT/PI3K) signaling [188] which
are involved in cell survival and proliferation. Genetic variations in the E2 gene as
well as the URR have also been shown to affect E6 expression [189–193], and thus
viral oncogenicity. In addition, sequence variations in the URR which affect the
binding sites for the transcription factors AP-1, NFI, Oct-1, TEF-1, and YY1, have
been documented and shown to result in differences in HPV replication rates [194]
as well as transcriptional activation of the E6/E7 promoter [190–193].

To date, there is little that is known about the clinical impact and carcinogenic rel-
evance of HPV variants in oropharyngeal cancer. A recent study compared European
HPV16 variants between 108 tonsillar squamous cell carcinoma and 52 cervical can-
cer samples collected from patients diagnosed between 2000 and 2008 [195]. One
European HPV16 variant has an R10G change in the E6 gene, and a higher frequency
of this variant was reported in tonsillar cancers compared to cervical cancer samples
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(19 vs. 4 %) [195]. Another study of squamous cell carcinomas arising in the upper
aerodigestive tract shows the predominance of the HPV16 L83V variant (i.e., 5/8,
63 % HPV-positive cases) but the prognostic significance is yet to be determined
[196]. While the relevance of this difference is not currently apparent, future studies
of HPV intratypic variants and their functional significance as well as their impact
on the natural history and treatment for oropharyngeal cancers are warranted.

In summary, HPV-positive oropharyngeal tumors represent a distinct clinico-
pathological profile, but there are still many unanswered questions. The mechanisms
surrounding the survival advantage for patients with these tumors need further study.
In addition, the significance of and mechanism related to high-risk HPV variants
and disease development as well as prognosis are currently poorly understood. Fur-
ther studies should address the biology of intratypic HPV variants in oropharyngeal
cancers, and identify additional useful clinical markers to enable appropriate risk
stratification, with the goal of optimizing patient treatment.
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Abstract Squamous cell carcinoma of the head and neck (SCCHN) is one of the
more challenging cancers to treat. Although great progress has been made over the
years, available treatment options are still far from ideal, as epitomized by a 5-
year survival rate of only 30–40 %. A unique feature of SCCHN is that elevated
expression of the epidermal growth factor receptor (EGFR), a member of the ErbB
receptor tyrosine kinase (RTK) family and highly relevant to oncogenic proliferation,
occurs in a significant number of cases, which has prompted great interest in utilizing
EGFR-targeted therapies to treat this devastating disease. Significant advances in the
treatment of SCCHN have been made using EGFR-targeting monoclonal antibodies.
Another class of EGFR-targeting inhibitors, tyrosine kinase inhibitors (TKIs), has
also shown promise as a potential treatment option. In order to appreciate how these
therapeutic agents work and why they fail when they do, it is crucial to explore the
biology of the ErbB family members, the signaling pathways that are associated
with them, and how they interact with each specific therapeutic agent. This chapter
discusses the biology of EGFR and other ErbB family members in SCCHN, and
summarizes the current status of the application of EGFR and ErbB inhibitors.
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4.1 Introduction

Approximately 40,000 new cases of squamous cell carcinoma of the head and neck
(SCCHN) are diagnosed each year in the USA [1], [2] and over 500,000 cases
are diagnosed worldwide, making this the sixth most common cancer in the world
[3]. While decades of intensive clinical investigation have yielded some significant
treatment advances, the outcome for patients with stage III–IV SCCHN remains
dismal, with 5-year survival rates of 30–40 % [4], [5].Achieving further improvement
in the management of locally advanced and regionally metastatic SCCHN represents
a significant challenge given the need to preserve complicated tissue structure and
function. This review focuses on one important group of tumor-specific therapies,
which use targeted inhibition of the epidermal growth factor receptor (EGFR), also
known as avian erythroblastic leukemia viral (v-erb-b) oncogene homolog 1 (ErbB1)
or human epidermal receptor (HER1), and its family members ErbB2/HER2, ErbB3,
and ErbB4, in the management of SCCHN.

Activation of the ErbB family of transmembrane receptor tyrosine kinases (RTKs)
is typically associated with growth and development. Four structurally related
members compose the ErbB family: ErbB1/EGFR, ErbB2 (HER2-neu), ErbB3
(HER3), and ErbB4. ErbB family members share a common general structure:
each of them contains a large extracellular N-terminal region, a single hydrophobic
transmembrane-spanning domain, an intracellular juxtamembrane region, a tyrosine
kinase domain, and C-terminal region [6]–[9] (Fig. 4.1). ErbB3 differs from the other
family members in having a kinase domain that was long thought to be a pseudo-
kinase, although, it has now been shown to have weak autophosphorylation capacity
[10]. A second variation of the described general structure is observed with ErbB2.
ErbB2 does not bind to any known ligands and is principally involved in heterodimer-
ization with other ErbB receptors, to function as a signal transducer [11]–[12]. ErbB
proteins were first identified as cancer-relevant in the 1980s when an aberrant form of
the human epidermal growth factor (EGF) receptor was found to be encoded by the
avian erythroblastosis tumor virus [13]. In human head and neck cancer, EGFR and
its family members are oncogenically altered in several ways (Sect. 4.3), present-
ing both treatment challenges and potentially promising opportunities for successful
application of targeted therapies.

Elevated expression of EGFR is found in a significant number of cases of SC-
CHN [14], [15] and has prognostic value: overexpression of EGFR correlates with
resistance to therapy and reduction of overall survival [16]–[18]. As discussed in
detail below, EGFR overexpression activates multiple important cancer survival and
proliferation signaling effector pathways. Further, EGFR supports the activity of
the DNA repair machinery induced by DNA-damaging therapies commonly used in
treatment of SCCHN, such as cisplatin or radiation, positioning inhibition of EGFR
to enhance the efficacy of these cytotoxic therapies [17]. Although EGFR is by far the
most commonly and most richly overexpressed ErbB family member in SCCHN, all
other members have also been reported to be overexpressed to some extent (ErbB2,
3–29 %; ErbB3, 21 %; and ErbB4, 26 %; [19]).

Insight into the role of EGFR in SCCHN can be gained from the observation
that increased EGFR expression is not only appreciable in SCCHN tumor samples,
it has also been observed in “healthy” mucosa samples of patients with SCCHN



4 EGFR Inhibitors as Therapeutic Agents in Head and Neck Cancer 57

Domain I

Domain II

Domain III

Domain IV

ECD

TMD

TKD

EGF

Domain II

Domain I

Domain III

Domain IV Domain IV

Domain III

EGF

Domain I

a b

Fig. 4.1 Illustration of ligand-induced dimerization of epidermal growth factor receptor (EGFR).
Several PDB files 1nql [8], 1ivo [249], 1m17 [250], 2gs6 [251], and 2jwa [252] were used to
propose a complete EGFR crystal structure. a Unliganded state (inactive); EGFR exists as a tethered
monomer. Domain II interacts with domain IV and domains I and III are far apart. ECD extracellular
domain, TMD transmembrane domain, TKD tyrosine kinase domain. b Ligand-induced (active),
dimeric state of 2:2 EGF-EGFR complex. Domains I and III are closer together and interact with
the ligand (EGF in this case) [35]. EGF epidermal growth factor

[20]. The work by Grandis et al. provides evidence that tissue adjacent to SCCHN
undergoes molecular changes that precede histological changes [14], [15]. The fact
that EGFR tends to be overexpressed in noncancerous tissue adjacent to sites of
tumor growth makes EGFR a potential biomarker for early stages of malignant
transformation in addition to being a therapeutic target [21]. EGFR overexpression
even in noncancerous cells may explain why EGFR expression did not correlate with
disease stage at presentation, or other known clinical prognostic variables, in stage
II–IV carcinomas of the oral cavity, oropharynx and supraglottic larynx, tongue
base and hypopharynx in a cohort of 155 patients evaluated by Ang et al. [18].
Human papillomavirus association, a favorable prognostic variable [22], was also
not accounted for in this study, which may be an alternative explanation for the lack
of observed correlation. However, since the Ang study, it has been suggested that
expression of truncated and activated EGFR is associated with advanced tumor and
nodal stage [23].

Importantly, Ang et al. did show in the aforementioned 155-patient cohort study
that EGFR expression was a strong independent prognostic indicator of 5-year
overall survival (40 % for EGFR negative and 20 % for EGFR positive; p = 0.0006)
as well as disease-free survival (25 % for EGFR negative and 10 % for EGFR
positive; p = 0.0016). These findings agreed with an earlier study, based on 140
primary laryngeal squamous cell carcinomas, where the 5-year survival rate was
81 % for patients with EGFR negative tumors, compared to only 25 % for patients
with EGFR positive tumors. The 5-year relapse-free survival was 77 % for patients
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Gefitinib
Erlotinib

�EGF  �TGF-α
�AR    �EPN
�BTC  �EPR
�HBEGF 
�NRG2β 

�NRG1α
�NRG1β  �NRG2α
�NRG2β 

�NRG3   �NRG4 
�NRG5   �BTC
�EPR �NRG1β
�NRG2β 
�HBEGF

EGFR/ErbB1/HER1 ErbB2/HER2 ErbB4/HER4

Trastuzumab

ErbB3/HER3

Afatinib
Dacomitinib

Cetuximab
Panitumumab
Zalutumumab
Nimotuzumab
Matuzumab

Lapatinib
CUDC-101*

�NRG6 �

Fig. 4.2 ErbB receptors, ligands, phosphorylation sites, and inhibitors. Ligands are contained
within light blue boxes and EGFR-inhibitors are contained within light orange boxes. Monoclonal
antibodies target the extracellular portion of the appropriate receptor and TKIs target the cytoplasmic
kinase domain(s) [29], [253]. *CUDC-101 also inhibits histone deacetylase (HDAC) [195]

with EGFR negative tumors compared to 24 % for patients with EGFR positive
tumors [24]. Chang et al. have shown that high EGFR expression also correlates with
standard treatment (radiotherapy alone) failure in early glottic cancer. In the same
study, EGFR expression was also higher in the recurrent group than in the control
group [25]. Considering the available evidence, EGFR-targeting therapeutics appear
particularly appropriate for the treatment of SCCHN.

Two complementary therapeutic strategies have been developed to target EGFR.
The first strategy involves targeting the extracellular domain of the receptor (Fig. 4.2)
with monoclonal antibodies, such as cetuximab, panitumumab, and zalutumumab
[26], [27] (Sect. 4.4.1; Fig. 4.2; Table 4.1). The second strategy targets the intracel-
lular domain of the receptor with low-molecular-weight tyrosine kinase inhibitors
(TKIs, e.g., gefitinib and erlotinib; see Sect. 4.4.2, Fig. 4.2, and Table 4.1) [28]. The
nature of EGFR/ErbB signaling as well as therapeutic strategies to manage tumors
with EGFR/ErbB involvement are addressed in detail in the remainder of this chapter.

4.2 Regulation of the Activity of EGFR and the ErbB Family
In Normal Cells

4.2.1 Ligand Binding and Dimerization: Activation of ErbB
Proteins in Normal Cells

The extracellular regions of ErbB family members contain two homologous ligand-
binding domains (domain I and III) and two cysteine-rich domains (domains II and
IV; Fig. 4.1). The ligands required for dimerization and activation of EGFR, ErbB3,
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and ErbB4 can be separated into five groups: (1) EGFR-specific ligands such as EGF,
amphiregulin (AR), epigen (EPN), and transforming growth factor alpha (TGFα); (2)
the ErbB3-specific ligands neuregulin1α (NRG1α), NRG2α, and NRG6; (3) NRG3,
NRG4, and NRG5 specifically bind ErbB4; (4) the bispecific ligands betacellulin
(BTC), epiregulin (EPR), and heparin binding EGF-like growth factor (HBEGF),
which bind EGFR and ErbB4, and NRG1β which binds ErbB3 and ErbB4; and (5)
NRG2β, which is a pan-ErbB ligand and binds to EGFR, ErbB3, and ErbB4 [29]
(Fig. 4.2). ErbB2 does not depend on ligands for dimerization or activation. Instead,
domains I and III interact directly in a configuration that renders the ligand-binding
site inaccessible [30]. To date, no high-affinity soluble ligand has been identified for
ErbB2 [30], [31].

ErbB proteins can homodimerize or heterodimerize [32]. EGFR-EGFR and
ErbB4-ErbB4 homodimers and EGFR-ErbB2, EGFR-ErbB3, ErbB2-ErbB3, and
ErbB2-ErbB4 heterodimers are abundant in SCCHN tumors and cell lines [19], [33].
The configuration changes associated with dimerization lead to a transient kinase ac-
tivation in normal cells that becomes constitutive in cancers. The actual activation
process involves an asymmetric interaction between intracellular kinase domains
that results in auto- or transphosphorylation of ErbB family members [34]–[36]. As
ErbB2 is not ligand-responsive, phosphorylation of this kinase can only be activated
through heterodimerization, frequently with ErbB3 [12], [36].

4.2.2 ErbB Trafficking and other Mechanisms to Influence EGFR
Function in Normal Cells

As with most RTKs, duration of ErbB activation is limited by countervailing regu-
latory processes. Once ligand bound, internalization removes EGFR from the cell
surface. More than one pathway for internalization has been described. In the most
studied pathway, binding of the E3 ubiquitin ligase Cbl to phosphorylated Y-1045 of
activated EGFR at the plasma membrane triggers clathrin-mediated endocytosis [37].
Multiple additional activation-associated phosphorylations conferred by calmodulin
kinase II and p38 enhance the interaction of Cbl with activated EGFR [38], [39].
Subsequently, EGFR is either recycled to the plasma membrane, or alternatively
processed through the late endosome and multivesicular body for degradation in the
lysosome. An alternative non-clathrin-based endocytosis process has also been de-
scribed: in this case, the majority of EGFR is targeted for lysosomal destruction [40],
[41]. Additional interactions involving the molecular motor dynamin 2 (DYN2) and
a scaffolding protein, CIN85, support targeting of EGFR to the lysosome rather than
for recycling [42]. As discussed below, reduced phosphorylation of EGFR that limits
interaction with Cbl and other internalization proteins often accompanies therapeutic
resistance to EGFR inhibitors (EGFRIs).

As Brand et al. have reviewed in detail [43], epithelial cancers such as SCCHN are
characterized by a high frequency of nuclear EGFR.At present, it is not clear whether
this localization is unique to cancer cells or instead represents an extreme case of
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a signaling process that also exists in normal cells. Mechanistically, to enter the
nucleus, EGFR is passaged from clathrin-coated pits to the Golgi and subsequently
via retrograde transport in COPI vesicles to the endoplasmic reticulum (ER) [44],
after which the Sec61 translocon moves EGFR from the inner nuclear membrane to
the nucleus [45], [46]. Nuclear EGFR acts as a transcription coactivator for many
genes associated with cell proliferation, including BCRP, Aurora-A, cyclin D, Myc,
c-Myb, Cox-2, and iNOS, and also binds and supports activity of PCNA and DNA-
PK to enhance DNA synthesis and repair [47]. Plausibly, limited exercise of these
activities contributes to the pro-proliferative function of EGFR in normal cells.

4.3 Causes and Consequences of Altered EGFR/ErbB Function
in SCCHN

4.3.1 Overexpression of EGFR and its Ligands

All members of the ErbB receptor family have been detected in SCCHN at increased
expression levels, generally with multiple ErbB receptor family members overex-
pressed at the same time [48], [49], although conflicting reports regarding ErbB3 and
ErbB4 expression levels have been published [48], [50], [51]. EGFR overexpression
in SCCHN is often caused by an increase in the number of gene copies [52] and
its overexpression correlates with metastasis and poor outcome [16], [18], increased
kinase dimerization and activation, and elevated activity of the downstream effec-
tor pathways (discussed below). Overexpression of ligands such as TGFα has been
linked to a poor prognosis [53], [54] and has been associated with malignant tumor
development at a number of different tissue sites in transgenic mice [55]–[57]. Ad-
ditionally, expression of TGFα [19], AR [58], [59], and HB-EGF [60] (other ligands
are likely to also be of importance [61]) has been shown to enhance oncogene-
induced carcinogenesis and affect the response of tumor cells to EGFR-inhibition
[62]–[65]. Lastly, increased expression of nuclear EGFR has been associated with a
higher incidence of local recurrence and inferior disease-free survival in oropharyn-
geal squamous cell carcinoma [66], [67]. Nuclear EGFR expression levels retained
their prognostic significance in multivariate analysis adjusting for well-characterized
prognostic variables [66].

4.3.2 Alternative Forms of EGFR Affecting its Activity in SCCHN

Although there are many altered forms of EGFR [68]–[70], Hama et al. only found
five different EGFR mutations in 6 out of 82 patients [68]. Another study identi-
fied EGFR mutations in only 3 of 127 patients (2.4 %) [69]. A third study found
in-frame deletion mutation in exon 19 of EGFR (E746_A750del) in only 3 of 41
larynx, tongue, and tonsil tumor samples [69]. Stransky et al. performed whole-
exome sequencing on tumor samples from 92 patients with SCCHN and validated
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known relevant mutations in TP53, CDKN2A, PTEN, PIK3CA, and HRAS [71].
Agrawal et al. used the same methods to study 32 primary tumors and six of the
genes that were mutated in multiple tumors were reassessed in up to 88 additional
SCCHN samples. This study identified mutations in FBXW7 and NOTCH1 in ad-
dition to previously identified genes and found that NOTCH1 functioned as a tumor
suppressor in head and neck cancer [72]. ErbB family members were not identified
as commonly mutated in either study [71], [72]. The one EGFR mutation of note in
SCCHN is EGFR variant III (EGFRvIII), which results in a truncation of the ligand-
binding domain that results in ligand-independent, constitutive-signaling, greatly
potentiating tumorigenicity. EGFRvIII is the most common form of mutant EGFR
and has been described in several types of cancer [73]–[78], including SCCHN [68],
[79], [80]. However, the reported frequency of EGFRvIII in head and neck cancer
is highly inconsistent. The presence of EGFRvIII in SCCHN ranged from none [68]
to 15 % [81] to 42 % [80] and may vary by specific SCCHN subsite [82]. Sok et al.
reported that EGFRvIII-transfected SCCHN cells showed increased proliferation in
vitro and increased tumor volumes in vivo compared with vector-transfected cells.
Furthermore, EGFRvIII-transfected SCCHN cells showed decreased apoptosis in
response to cisplatin and decreased growth inhibition following treatment with ce-
tuximab compared with vector-transfected control cells. It was not established if the
transfected cells expressed EGFRvIII at levels similar to those observed in actual
patient samples [80].

4.3.3 Consequences of EGF/ErbB Activation

Dimerization of the ErbB RTKs can result in the constitutive activation of five
different major intracellular signaling pathways, each of which contributes to
the oncogenic activity of this kinase family in SCCHN. These pathways are
the Ras/Raf/MEK/ERK kinase pathway [83], the phosphatidylinositol 3-kinase
(PI3K)/Akt pathway [84], the signal transducer and activator of transcription (STAT)
pathway [85], the phospholipase C (PLC) and protein kinase C (PKC) [86], [87]
pathway, and the Src kinase pathway [88] (Fig. 4.3).

4.3.3.1 Ras/Raf/MAPK

Increased activity of the Ras/Raf/MAPK pathway initiated by EGFR signaling is
strongly linked to tumorigenesis in SCCHN [83]. Following EGFR autophospho-
rylation, mainly on residue Y1068 and Y1086, the growth factor receptor-bound
protein 2 (GRB2) adaptor protein is either directly recruited through binding of its
Src Homology 2 (SH2) domain to the phosphotyrosine residues of the activated
receptor, or, alternatively, GRB2 is indirectly recruited to active EGFR by inter-
action with the Src homolog and collagen homolog (SHC) adaptor protein, which
directly binds tyrosine-phosphorylated sites on EGFR, itself is tyrosine phospho-
rylated, and then binds GRB2 [89]. EGFR-bound GRB2 subsequently recruits and
activates guanine nucleotide exchange factor Son of Sevenless (SOS).Activated SOS
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Fig. 4.3 Major downstream pathways of EGFR and proposed mechanisms of resistance to EGFR-
targeted therapy. a Six major signaling pathways downstream of EGFR have been linked to
tumorigenesis of SCCHN and/or resistance to EGFR-inhibitors. The first pathway involves PLC
and PKC, where phosphorylated EGFR recruits PLC and subsequently activates PKC to affect cell
cycle regulation, cellular survival, malignant transformation, and apoptosis [98], [99]. The second
pathway involves Src kinases, which play a fundamental role in many cellular events, including the
regulation of cell proliferation, migration, adhesion, and tumor angiogenesis [103]–[105]. The third
pathway involves JAK/STAT and is implicated in the activation of genes associated with tumori-
genesis and cell survival [93]. The fourth pathway involves NF-κB and has been directly linked to
tumorigenesis, metastasis, and chemoresistance in SCCHN [110]–[114]. The fifth pathway involves
PI3K/Akt/mTOR, which play a cardinal role in cancer cell metabolism, cell growth, proliferation,
angiogenesis, metabolism, differentiation, motility, and survival [92]. The sixth pathway involves
Ras/Raf/MAPK; phosphorylated EGFR activates Ras and subsequently stimulates Raf and the
MAPK pathway to affect muscle contraction, cell motility, cell division and cytokinesis, vesicle
and organelle movement, cell signaling, cell proliferation, tumor invasion, and metastasis [83].
Proposed mechanisms of EGFR-targeted therapy resistance: 1 the microenvironment, includ-
ing cancer associated fibroblasts (CAFs), plays a role in the resistance to EGFR-targeted therapy;
2 ErbB2 amplification has been demonstrated to be involved in de novo and acquired resistance to
EGFR targeted therapy; 3 VEGF expression has been shown to be a prognostic marker in SCCHN;
4 STAT3 expression has been implicated in the resistance to EGFRIs in head and neck tumors; 5
KRAS mutations have been detected in SCCHN patients; 6 emerging evidence has shown connec-
tions between epigenetic changes and development of resistance to multiple cancer therapeutics. b
Ubiquitination and trafficking of EGFR has been implicated in resistance to EGFR-inhibitors: 1
ubiquitination, 2 early endosome, 3 late endosome, 4 lysosome, 5 recycling endosome

increases the pool of active, GTP-bound Ras, inducing a kinase cascade involving
c-Raf, MEK1/2, and ERK1/2. Phosphorylated ERK1/2 translocates into the nucleus
and activates transcription factors that induce transcription of many genes promot-
ing cell growth and survival; a residual pool of active cytoplasmic ERK1/2 also
phosphorylates cytoskeletal proteins such as actin, which promotes cell motility,
and regulators of cell division and cytokinesis, vesicle and organelle movement, and
mitochondrial targets such as Bcl2 that render cells resistant to apoptosis (Fig. 4.3)
[89], [90].
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4.3.3.2 PI3K/Akt/mTOR

Dimerization of EGFR or ErbB2 with ErbB3 is strongly associated with PI3K activa-
tion, because of the high prevalence of PI3K-activating docking sites on ErbB3 [91].
PI3Ks are composed of a catalytic p110 and a regulatory p85 subunit. The p110 sub-
units catalyze the phosphorylation of phosphatidylinositol 4,5-diphosphate (PIP2) to
the second-messenger phosphatidylinositol 3,4,5-triphosphate (PIP3), which in turn
phosphorylates and activates the protein serine/threonine kinase Akt (also known as
protein kinase B), inducing protein synthesis and cell growth through activation of
the mTOR effector pathway, and limiting the apoptotic machinery (Fig. 4.3) [92].
Detailed discussion of the PI3K/Akt/mTOR pathway in SCCHN can be found in
Chap. 6 of this book.

4.3.3.3 STAT

The signal transducers and activators of transcription (STAT) proteins were originally
identified as downstream effectors of non-tyrosine kinase cytokine receptors, such
as IL-6, IL-22, IFN-α/β, and IFN-λ. However, STATs can also be directly activated
by EGFR, or by EGFR effectors such as c-Src [85], and constitutive activation of
STATs has been reported in SCCHN [93]. Activated STATs migrate from cytoplasm
to nucleus and upregulate the expression of many proteins associated with tumorige-
nesis, including the prosurvival factor NF-κB [94]. Detailed characterization of the
JAK/STAT pathway is found in Chap. 7 of this book.

4.3.3.4 PLC/PKC

PLC is recruited by phosphorylated EGFR and subsequently activated. Once acti-
vated, PLC hydrolyzes PIP2 to diacylglycerol (DAG) and inositol 1,4,5-triphosphate
(IP3). DAG in turn activates members of the PKC family (which is composed of 12
different isoforms in mammals; Fig. 4.3) [95]. It has been shown that primary tumors
express elevated levels of total and phosphorylated PLCγ (one of six isotypes: β, γ,
δ, ε, ζ, and η; [96]) and that EGFR-stimulated activation of PLCγ promotes invasion
of SCCHN [97]. PLCγ inhibition decreases the invasive potential of prostate, breast,
and head and neck carcinoma cells [98], [99]. Protein kinase Cε [100] is a promising
prognostic factor for relapse and overall survival of SCCHN [101]. PKCζ is highly
expressed in SCCHN tumors and mediates EGF–induced growth of SCCHN tumor
cells by regulating MAPK [87].

4.3.3.5 Src

Activation of members of the Src kinase family (Blk, Fgr, Fyn, Hck, Lck, Lyn,
Src, Yes, and Yrk; [102]) by EGFR and ErbB2 also positively regulates cell pro-
liferation, migration, adhesion, and tumor angiogenesis, with activation seen in
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many cancer types, including SCCHN [103]–[105]. In SCCHN, Src contributions to
EGFR-dependent activation of STAT3 and STAT5 are important for tumor growth
[106]. Reciprocally, Src helps to activate EGFR by participating in G protein-coupled
receptor-initiated TGFα release [107]. Changes in the interaction between Src and
EGFR have been suggested to be involved in resistance to cetuximab by increas-
ing translocation of EGFR to the nucleus (Sect. 4.2.2; Fig. 4.3) [105], [108]. Src
additionally interacts with other RTKs that are upregulated during acquisition of
resistance to EGFRIs, such as IGF-1R (insulin-like growth factor-1 receptor) and
others [109].

4.3.3.6 Nuclear Factor-κB (NF-κB)

High expression and constitutive activation of the transcription factor nuclear
factor-κB (NF-κB) has been directly linked to tumorigenesis, metastasis, and
chemoresistance in many cancers including SCCHN [110]–[114], with particularly
high levels of NF-κB in highly metastatic cells [110], [115]. NF-κB induction of
matrix metalloproteinase-1, -2, -9, and -14 fibronectin and ß1 integrin, and vascu-
lar endothelial growth factor C, is strongly associated with tumor progression and
metastasis [115]. In SCCHN, NF-κB activation has been described as both inde-
pendent of and dependent on EGFR signaling [116]–[118]. In the EGFR-dependent
activation of NF-κB, phosphorylated EGFR activates PI3K, ERK1/2, and STAT3,
all of which are associated with increased NF-κB activity (Fig. 4.3) [116]. RNAi
knockdown of components of the NF-κB pathway and pharmacologic inhibition of
NF-κB enhanced cell death induced by erlotinib in EGFR-mutant lung cancer cells
[119] support relevance of this signaling axis.

4.4 EGFR and Targeted Inhibitors

Organ-preservation strategies in the treatment of SCCHN generally entail DNA-
damaging radiation and chemotherapies. For patients with locally advanced disease,
randomized control trials have shown that the addition of chemotherapy to radio-
therapy improves both locoregional control (62 % for chemoradiotherapy compared
to 42 % for radiation alone; [120]) and overall survival (23 % for radiation alone and
37 % for chemoradiotherapy; [121]) compared with radiation therapy alone [120],
[121]. Although chemoradiation has resulted in an improvement in local control
and survival, managing the significant associated toxicity is a formidable challenge
[122].

Targeting EGFR has emerged as an avenue to further improve treatment of SC-
CHN. EGFR inhibition seems to prevent activation of DNA repair mechanisms that
enable cancer cells to survive radiation- or chemotherapy-induced DNA damage
[123], [124]. However, it is important to note that a 10 % cetuximab monotherapy
overall response rate in patients with platinum-refractory SCCHN has been reported
[125], which suggests a secondary therapeutically relevant mechanism independent
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of sensitization to DNA damaging agents. It is unknown if this observation is due to
cell-mediated immunity or if it is a reflection of the proportion of cancers that are truly
EGFR dependent. Numerous data suggest that EGFR may accelerate repopulation, a
condition of enhanced cellular proliferation after exposure to ionizing radiation, con-
tributing to the radioresistance associated with head and neck cancers [126], [127].
Despite potential secondary mechanisms, preclinical and clinical data support the
premise that the inhibition of EGFR activity increases radio- and chemosensitivity
of SSCHN tumors [126]–[128]. These findings provide support that EGFRIs act
as radiation- and chemotherapy-“sensitizers,” making them ideal adjuncts to current
treatment paradigms for SCCHN. However, conflicting data regarding the sensitizing
potential of EGFRIs do exist: early data from the RTOG 0522 phase III trial suggest
that the addition of the EGFRI cetuximab (Sect. 4.4.1.1) does not improve response
rates to chemoradiation in patients with stage III and IV SCCHN. It was proposed
that exposure to cetuximab was suboptimal in the study and that patient selection
may have impacted the results, considering that the study reported among the highest
2-year survival rates for both the control and the experimental group [129].

Several agents that target EGFR are now established or under active investigation
and have shown great promise (Table 4.1). Also noteworthy is that the side effect
profiles of EGFRIs have been generally favorable compared to standard chemother-
apeutics [130]–[133]. Monoclonal antibodies and small molecule TKIs are the two
major classes of anti-EGFR agents.

4.4.1 Monoclonal Antibodies

Monoclonal antibodies targeting ErbB receptors play a significant role in the treat-
ment of SCCHN. Cetuximab, the pioneer for antibody-based anti-ErbB therapy in
SCCHN, was approved for treatment of locally or regionally advanced SCCHN in
2006 [128] and for metastatic SCCHN in 2011 [134]. While cetuximab represents
the EGFR inhibitor with the most clinical data and the most significant results in the
treatment of SCCHN, multiple additional antibodies targeting ErbB receptors are
currently being investigated in clinical trials (Table 4.1). The successes of cetuximab
and other receptor-targeting antibodies were not achieved overnight. Promising re-
sults of EGFR-targeting antibodies used in mice were first published in 1984 [135],
over two decades before cetuximab was approved for clinical use. This section in-
troduces several relevant antibodies and covers their current status as it pertains to
SCCHN.

4.4.1.1 Cetuximab

Cetuximab is a chimeric monoclonal antibody that inhibits EGFR by binding to its
extracellular domain (Fig. 4.2). Cetuximab binds to EGFR with a higher affinity
than its natural ligands EGF and TGFα [136]–[138]. Once bound to EGFR domain
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III, cetuximab occludes the ligand-binding site, thus inhibiting ligand-dependent
EGFR signaling [139]. Depletion of the targeted receptors from the cell surface via
downregulation is a second mechanism of effective EGFR inhibition [140]. Addi-
tionally, binding of cetuximab to EGFR enhances antibody-dependent, cell-mediated
cytotoxicity via natural killer cells and macrophages [141], [142].

Cetuximab has been approved for the treatment of three subpopulations of patients
with SCCHN. These subpopulations include: patients with locally or regionally ad-
vanced SCCHN (cetuximab in combination with radiation therapy; [128]); patients
with recurrent or metastatic platinum-refractory SCCHN (cetuximab monother-
apy; [143]); and patients with recurrent locoregional and/or metastatic SCCHN not
refractory to platinum-based therapies (cetuximab in combination with platinum
chemotherapy and 5-fluorouracil as first-line therapy; [128]).

Phase I studies of cetuximab defined the dose and schedule required to maintain
biologically active and tolerable levels [144], [145]. Whether used in combination
with chemotherapy or radiotherapy, or as monotherapy, cetuximab was found to have
nonlinear saturation kinetics. Median serum cetuximab terminal half-life ranged from
14 to 97 h with doses from 5 to 300 mg/m2. Skin reactions increased significantly at
doses of 500 mg/m2 or higher. Given the results of these phase I trials, the recom-
mended cetuximab regimen was established as an initial loading dose of 400 mg/m2

followed by weekly doses of 250 mg/m2 [144], [145].
The landmark cetuximab phase III study published by Bonner and colleagues in-

volved 424 patients and led to the approval of cetuximab for the treatment of patients
with locally or regionally advanced SCCHN (cetuximab in combination with radia-
tion therapy) [128]. This study compared cetuximab and high-dose radiotherapy with
high-dose radiotherapy alone. The findings showed that cetuximab and radiotherapy
significantly improved median overall survival and median progression-free survival
when compared to radiation alone [128]. The 5-year follow-up of the Bonner study
showed an absolute survival increase of 9 % in the treatment group receiving cetux-
imab in combination with radiation therapy (45.6 % cetuximab/radiation vs. 36.4 %
radiation alone) [146].

In the case of patients with platinum-refractory recurrent or metastatic SCCHN,
Trigo et al. observed an overall response rate to cetuximab monotherapy of 16.5 %
and a median survival of 175 days in a single-arm study of 103 patients [143]. The ob-
served response and survival rate were similar to rates expected with platinum therapy
alone in chemotherapy naı̈ve patients, prompting interest in exploring combination
therapy of cetuximab and chemotherapeutics [147].

In a phase III randomized trial, Burtness et al. compared the impact of cisplatin
plus a placebo with the impact of cisplatin plus cetuximab in a population of patients
with recurrent and metastatic SCCHN. Burtness et al. demonstrated that the addition
of cetuximab resulted in a significant increase in the objective response rate (26 %
response rate for cisplatin/cetuximab and 10 % response rate for cisplatin/placebo;
p = 0.03). Progression free survival (PFS) was not significantly improved, presum-
ably because the control group had better PFS than expected and the sample size was
not adequate to observe a significant increase in PFS. Unexpectedly, Burtness et al.
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also observed that the activity of cetuximab was not clearest in patients with the high-
est EGFR staining density and intensity. It was hypothesized that several factors may
have contributed to this observation: the small sample size (n = 123); suboptimal ce-
tuximab dosing for cases of high density EGFR occurrence; stoichastic interactions
at high EGFR density; or constitutive downstream signaling not accounted for in the
study [148].

Vermorken et al. conducted a phase III clinical trial (EXTREME trial), similar
to the Burtness study, to investigate the efficacy and safety of platinum, fluorouracil
(5-FU), and cetuximab as first-line treatment of recurrent and metastatic SCCHN in
442 patients. The EXTREME phase III trial randomly assigned patients to receive
cisplatin or carboplatin plus 5-FU and cetuximab or platinum plus 5-FU alone. Six
cycles of chemotherapy were the limit for both arms of the study. The addition of
cetuximab to chemotherapy significantly increased median overall survival (10.1
months in the cetuximab group and 7.4 months in the chemotherapy-alone group;
p = 0.04) and progression-free survival (5.6 months in the cetuximab group to 3.3
months in the chemotherapy-alone group; p < 0.001) when compared to standard
chemotherapy alone [128]. Importantly, additional analysis of the EXTREME data
provided further evidence that, in the case of SCCHN, the EGFR expression level is
not a clinically useful predictive biomarker [149].

4.4.1.2 Additional EGFR-Targeting Antibodies

Panitumumab is a fully humanized immunoglobulin IgG2 monoclonal antibody
that, like cetuximab, binds to EGFR domain III and, in the process, inhibits EGF
and TGFα binding [139]. In contrast to cetuximab, panitumumab does not mediate
antibody-dependent cellular cytotoxicity and has been shown to have a very low
rate of infusion-related hypersensitivity reaction [150]. A phase I study of pani-
tumumab, carboplatin, paclitaxel, and radiation for locally advanced disease has
indicated that this combination is feasible with tolerable toxicity. In the phase I
study, Wirth et al. showed 69 % of patients had a complete response and 34 % had
a partial response [151]. A second trial, SPECTRUM (phase III; NCT00460265),
compared cisplatin/5-FU plus panitumumab to cisplatin/5-FU alone in patients with
metastatic/recurrent SCCHN. The addition of panitumumab to chemotherapy did
not significantly improve median overall survival versus chemotherapy alone but did
improve median PFS (5.8 vs. 4.6 months) [138].

Zalutumumab is a human IgG1 high affinity antibody also targeting EGFR domain
III and, just like panitumumab and cetuximab, is thought to block ligand binding,
but with exceptional tumor specificity at lower doses [139]. In 286 patients with
metastatic/recurrent SCCHN after failure of platinum-based therapy, zalutumumab
plus best supportive care was compared with best supportive care plus methotrexate
at the investigator’s discretion [152]. Zalutumumab did not increase overall sur-
vival, although progression-free survival was extended [138]. A phase III trial is
currently underway (DAHANCA 19; NCT00496652) to determine if the addition of
zalutumumab to radiotherapy improves locoregional control.
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Nimotuzumab has been approved for SCCHN in several countries, not including
the USA. Nimotuzumab is a humanized murine IgG1 monoclonal antibody that also
blocks interaction between ligand and receptor by binding to EGFR domain III, but
with lesser affinity than some of the other antibodies [153]. The therapeutic impli-
cations of this reduced affinity are unclear, but nimotuzumab has been shown to
have mild to absent skin toxicity, eliminating a significant toxic effect commonly
associated with cetuximab [154]. An early pharmacodynamic study showed nimo-
tuzumab plus radiotherapy was tolerated with no evidence of skin rash in patients
with unresectable SCCHN [155]. In a double-blind trial, patients with unresectable
locoregional SCCHN were assigned randomly to receive first-line therapy with ni-
motuzumab plus radiotherapy versus placebo plus radiotherapy [156]. Complete
response rates were significantly better in the nimotuzumab group with 59.5 % for
patients receiving nimotuzumab and radiotherapy versus 34.2 % of patients receiving
radiotherapy alone. Hence, nimotuzumab may offer an EGFR-targeted therapy with
a more favorable side effect profile. Further studies are ongoing.

Matuzumab, another humanized mouse monoclonal antibody, also binds to EGFR
domain III, but at a completely different epitope than the previously mentioned anti-
bodies. This was confirmed by experiments in which cetuximab and matuzumab were
observed to simultaneously bind to EGFR [157]. When bound to EGFR, matuzumab
was determined to predominantly prevent domain II from assuming the configu-
ration, in relation to domain III, necessary for high-affinity ligand binding [139],
interrupting EGFR signaling. Matuzumab has been evaluated in a phase I dose es-
calation study focused on patients with advanced EGFR-positive oesophagogastric
cancer. At 800 mg/week, matuzumab in combination with epirubicin, cisplatin, and
capecitabine (ECX) was well tolerated. Furthermore, in skin biopsies, decreased
phosphorylation of EGFR and MAPK was detected [158]. Surprisingly, the phase II
study of matuzumab in combination with ECX did not increase response or survival
in patients with metastatic oesophagogastric cancer [159]. Matuzumab has not been
tested in SCCHN.

4.4.1.3 Monoclonal Antibodies Targeting Other ErbB Proteins

Given the heterodimerization of EGFR with other ErbB family proteins, and the
fact that overexpression of some of these proteins can compensate for EGFR inhibi-
tion during development of therapeutic resistance, exploring inhibition of additional
ErbB family members in SCCHN was a natural development [160], [161]. The
ErbB2/HER2-targeting antibody trastuzumab is an invaluable drug for breast cancer
and other epithelial tumors [162]–[165]. In vitro studies have shown that trastuzumab
enhances the efficacy of gefitinib [166] and cetuximab [167] in SCCHN cells. Sur-
prisingly, analysis of the mRNA expression of EGFR and ErbB2 indicated lack of
correlation with efficacy of the combination therapy [167]. Moreover, an independent
study found that a subset of non-ErbB2-amplified SCCHN cells was nevertheless ex-
tremely responsive to the small molecule multi-ErbB inhibitor lapatinib, based on
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activation of a neuregulin-ErbB3 loop [168]. Efforts are underway, although not yet
in SCCHN, to develop and evaluate ErbB3- and ErbB4-targeting antibodies. Per-
tuzumab [169], which binds the ErbB2 dimerization domain, blocks its interaction
with all four ErbB family members. MM-121, targeting ErbB3, has been shown to
be active in cancers characterized by ligand-induced ErbB3 signaling [170], [171].
Several groups have developed bispecific single-chain antibodies that simultaneously
target ErbB2 and ErbB3 (see e.g., [172], [173]). Monoclonal antibodies targeting
ErbB4 are also in development [174], [175]. All of these are likely to be promising
for development as therapies for SCCHN.

4.4.2 Tyrosine Kinase Inhibitors (TKIs) Targeting EGFR

TKIs block EGFR activation by inhibiting the cytoplasmic tyrosine kinase domain
and have proven valuable agents in a number of cancer types, such as non-small
cell lung cancer (NSCLC). First-generation TKIs, including gefitinib and erlotinib,
reversibly bind the ATP-binding pocket of the kinase domain and are EGFR specific.
Second-generation TKIs relevant to SCCHN, including lapatinib, afatinib, and da-
comitinib, target multiple ErbB members and in the case of afatinib and dacomitinib
irreversibly so (Table 4.1; Fig. 4.2) [136], [176].

Gefitinib, an orally administered, small-molecule, reversible EGFR TKI, was the
first TKI to reach phase III trials; however, overall results have dampened expec-
tations. Early studies suggested a clinical benefit of gefitinib similar to cetuximab
[177], [178]; unfortunately, more recent results do not indicate significant improve-
ments through the addition of gefitinib to standard therapies [176], [179], [180].
In treatment-refractory SCCHN, gefitinib when compared to methotrexate did not
improve overall survival [181]. These findings were consistent when gefitinib was
administered orally at 250 or 500 mg daily, despite the fact that earlier studies had in-
dicated favorable response rates and survival with treatment regimens of 500 mg/day
[177], [181]. It was originally established that gefitinib produces adverse events that
are still manageable and reversible up to 600 mg/day, with dose-limiting toxicity
observed at 1,000 mg/day [182]. In a phase II study of 44 patients with SCCHN,
Perez et al. investigated if doses higher than 500 mg/day would produce increased
skin toxicity (Sect. 4.4.3), which is thought to be associated with improved response
to EGFRIs. Patients treated with 750 mg/day did indeed have increased incidence of
skin toxicity compared with patients receiving 500 mg/day (58 and 9 % grade 2 skin
toxicity for 750 and 500 mg/day, respectively); however, the higher dose of gefitinib
failed to significantly improve outcome [183]. Gefitinib (250 mg/day) in combination
with docetaxel (docetaxel/gefitinib vs. docetaxel alone) was recently evaluated in a
phase III trial of patients with metastatic or locally recurrent SCCHN. In this study,
Argiris et al. were unable to demonstrate a statistically significant survival benefit for
patients receiving the docetaxel/gefitinib combination. However, subgroup analysis
revealed that for patients younger than 65 years of age, the addition of gefitinib to
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docetaxel did increase survival significantly (median survival of 7.6 vs. 5.2 months;
p = 0.04) [184].

Erlotinib, the second first-generation TKI, remains under clinical development and
has yielded some encouraging results. Like gefitinib, erlotinib is an orally admin-
istered, small molecule, reversible TKI. In 115 patients with refractory SCCHN,
erlotinib was superior when compared to palliative chemotherapy [185]. Disease
stabilization was maintained in 38.3 % of patients for a median duration of 16.1
weeks. The median progression-free survival was 9.6 weeks and the median overall
survival was 6.0 months. Further favorable results were seen in metastatic or recur-
rent SCCHN patients. In these phase I/II trials, the addition of erlotinib to cisplatin
found an overall response rate of 21 %, progression-free survival of 3.3 months, and
overall survival 7.9 months [186]. Erlotinib is currently being evaluated in multiple
phase II and phase III studies including studies focused on erlotinib combined with
cetuximab, carboplatin, and paclitaxel (NCT01316757), docetaxel and radiation
therapy (NCT00720304), docetaxel and cisplatin or carboplatin (NCT01064479),
and cisplatin (NCT00410826 [176]).

Lapatinib has dual specificity, targeting EGFR and ErbB2 [187]. Surprisingly, in
a phase II study focused on recurrent/metastatic SCCHN, lapatinib, as monother-
apy, failed to induce any objective responses. And although ErbB2 levels were
significantly decreased, EGFR-phosphorylation levels remained unaffected [188].
Lapatinib may still prove to work well in other settings. Ongoing clinical trials
are exploring this dual-action small molecule drug as an adjuvant to postoperative
chemoradiation in SCCHN patients (NCT00424255) as well as in combination with
capecitabine in patients with metastatic SCCHN (NCT00424255).

Afatinib, a second multi-specific TKI, irreversibly targets three of the four ErbB
family members: EGFR, ErbB2, and ErbB4 [189]. In a comparison to cetuximab,
afatinib showed similar antitumor activity in patients with recurrent or metastatic
SCCHN after failing platinum therapy. Median progression-free survival was 15.9
weeks with afatinib and 15.1 weeks with cetuximab. Afatinib is currently being fur-
ther evaluated in several clinical studies [190]. Patients treated for SCCHN, who are
without evidence of disease after post-operative radiochemotherapy, are random-
ized to afatinib or placebo for 18 months in a phase III trial designed to detect an
improvement in disease-free survival (NCT01427478).

Dacomitinib, like afatinib, is an irreversible inhibitor of EGFR, ErB2, and ErbB4
[191]. Dacomitinib is a potent inhibitor of wild-type EGFR as well as EGFR with ac-
tivating mutations. Furthermore, dacomitinib appears to be active against the T790M
secondary EGFR mutation, which generally renders cancer cells resistant to erlotinib
and gefitinib, in NSCLC [192]. Razak et al. reported that in a phase II study of pa-
tients with recurrent/metastatic SCCHN, dacomitinib had objective response rates
(13 %) similar to cetuximab, without infusion-related side effects. Compared to
phase II studies involving gefitinib or erlotinib, dacomitinib produces favorable out-
comes in terms of disease control and survival [193]. Further phase I clinical trials
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investigating the efficacy of dacomitinib in treating SCCHN are under investigation
(NCT01737008) [190].

CUDC-101, the small molecule inhibitor 7-(4-(3-Ethynylphenylamino)-7-
methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide, is a novel, multitargeted hy-
brid anticancer drug candidate. CUDC101 effectively inhibits EGFR, HER2, and
histone deacetylase (HDAC) and has shown impressive activity in in vitro and in vivo
cancer models [194], [195]. This hybrid inhibitor is currently being investigated in
combination with cisplatin and radiation therapy in patients with locally advanced
head and neck cancer as part of a phase I drug escalation trial (NCT01384799).

4.4.3 Toxicity and Tolerance

The reported toxicity profiles of chemotherapeutic regimens including EGFRIs are
somewhat inconsistent, with some reports suggesting minimal additional toxicity or
impact on quality of life [128], [196], whereas others have reported that the addition
of EGFRIs resulted in higher rates of toxicity leading to lower treatment compliance
[197], [198]. Therefore, despite the fact that the Bonner study did not find signif-
icant differences in the rate, intensity, or duration of mucositis, xerostomia, pain,
or dysphagia in patients receiving radiation and cetuximab compared with patients
receiving radiation alone [128], considering the disputing evidence, it is advisable to
use EGFRIs with caution, to be prepared for common adverse events, and to treat the
adverse events as recommended [198]. Allergic and anaphylactoid reactions can be
observed in patients treated with cetuximab and, less often, with panitumumab ad-
ministration; however, both of these monoclonal antibodies have fewer nonspecific
and hematopoetic side effects compared to other chemotherapeutics [199], [200].
Electrolyte abnormities, specifically hypomagnesemia, are also commonly observed
and should be monitored during treatment with EGFRIs [148].

Given that EGFR is expressed at the basal layer of the epidermis, it is not surprising
that skin toxicity defines the side-effect profile for EGFRIs (monoclonal antibodies
as well as TKIs) [201], [202]. Acneiform eruptions, usually a sterile folliculitis, are
the earliest and most characteristic side effect of EGFR inhibition. The rash seems
to be dose dependent and is seen in over 50 % of treated patients [201]. The eruption
is most often confined to the face, neck, retroauricular area, shoulders, and the upper
trunk. Data support the idea that skin toxicity can be a predictive marker of response
in colorectal cancers [203]. In a phase II clinical trial the greatest benefit in survival
of cetuximab-treated patients was seen in those with a grade 3 rash [204]. Further
investigations are necessary to explore the exact mechanism of anti-EGFR-therapy-
triggered incidence of rash, how this relates to treatment outcome, and how to best
manage this side effect to maximize the quality of life of the patients [198], [200].
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4.5 Mechanisms of Resistance to anti-EGFR Therapies

Patients initially responsive to anti-EGFR therapy often develop resistance during
the course of treatment [95]. A number of specific factors associated with resistance
have been identified. These include altered ubiquitination and trafficking (Sect. 4.5.1)
[205]–[207]; overexpression and amplification of ErbB2 (Sect. 4.5.2) [208]; altered
expression levels of VEGF (Sect. 4.5.3) [209]; altered expression levels of STAT3
(Sect. 4.5.4) [210]; KRAS mutations (Sect. 4.5.5) [211], [212]; changes in the tumor
microenvironment (Sect. 4.5.6) [213]; epigenetic compensation (Sect. 4.5.7) [214];
and several other factors (Sect. 4.5.8 and Fig. 4.3).

4.5.1 Altered Ubiquitination and Trafficking of EGFR

Altered EGFR ubiquitination represents a mechanism of acquired resistance to ce-
tuximab [205]–[207]. In vitro resistance to cetuximab was established by exposing
cells to subeffective doses of cetuximab [207] or by prolonged exposure to escalating
doses [206]. Lu et al. found that the cetuximab-resistant colorectal cancer cell line
DiFi5 (rendered resistance through prolonged exposure to cetuximab) had markedly
lower levels of EGFR. However, DiFi5 cells had enhanced associations between
EGFR and the E3 ubiquitin ligase Cbl, as well as increased levels of ubiquitinated
EGFR. DiFi5 also had significantly higher levels of active, Y16-phosphorylated Src,
both at baseline and post-EGF stimulation, with inhibition of Src with the nonse-
lective kinase inhibitor PP2 reversing cetuximab resistance. In addition, DiFi5 cells
responded to EGF stimulation with more robust phosphorylation of EGFR at Y845
and strong phosphorylation of Akt and other extracellular EGFR signal–regulated ki-
nases. These observations suggest that colorectal cancer cells may develop resistance
to cetuximab by reducing EGFR levels via increased ubiquitination and degradation
and via increased Src kinase-mediated cell signaling to bypass dependency on EGFR
for cell growth and survival [207].

On the other hand, Wheeler et al. reported increased EGFR expression levels
associated with deregulation of EGFR internalization and degradation in several
resistant clones of NSCLC cell lines [205]. Loss of c-Cbl association with EGFR
was reported to significantly lessen EGFR ubiquitination after EGF stimulation in
the cetuximab-resistant cells compared to the nonresistant parent cells. These find-
ings suggest that acquired resistance to cetuximab is accompanied by deregulation
of EGFR internalization/degradation and subsequent EGFR-dependent activation of
ErbB3 [205]. Further supporting the role of decreased EGFR ubiquitination in treat-
ment resistance, Ahsan et al. found that cisplatin-resistant head and neck cancer
cell lines undergo minimal EGFR phosphorylation at the Y1045 site and minimal
ubiquitination [215].
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4.5.2 ErbB2 Amplification

Ritter et al. demonstrated elevated levels of phosphorylated EGFR, EGFR/ErbB2 het-
erodimers, TGFα, hairpin-binding EGF, and heregulin RNA in trastuzumab-resistant
human breast cancer cells. These findings suggest that enhanced EGFR-mediated ac-
tivation of ErbB2 may be a potential mechanism of acquired resistance to trastuzumab
[216]. Another recent study by Yonesaka et al., identified a new mechanism of
de novo and acquired resistance to cetuximab via increased signaling through
ErbB2. Yonesaka et al. have shown that amplification of ErbB2 or upregulation of
heregulin (ErbB3/ErbB4 ligand) is present in cetuximab-resistant colorectal cancer
patients. This study suggests that ErbB2 inhibitors, in combination with cetuximab,
represent a rational therapeutic strategy that should be assessed in patients with
cetuximab-resistant SCCHN [161].

Erjala et al. observed that increased expression levels of phosphorylated ErbB2
and total ErbB3 were associated with SCCHN cell line resistance to gefitinib [208].
Confirming the importance of ErbB2 in resistance: when gefitinib was combined
with pertuzumab, an antibody targeting ErbB heterodimerization, significant growth
inhibition of relatively gefitinib-resistant SCCHN cell lines was observed. Phospho-
rylated ErbB2 and total ErbB3 were not predictive of resistance to cetuximab [208].

4.5.3 VEGF Expression

Enhanced angiogenesis is a fundamental step in the transition of tumors from a dor-
mant state to a malignant one and correlates with tumor progression and metastasis
[217]. Angiogenesis is elevated in various human tumors, including SCCHN, and
VEGF has been demonstrated to be a major angiogenic factor [218]. Preclinical
and early clinical data imply a central role of angiogenesis in SCCHN: up to 90 %
of SCCHNs express vascular endothelial growth factor (VEGF) and the respective
receptors (VEGFRs) [219]. Multiple studies support the prognostic implications of
angiogenic markers in SCCHN [220]. It has been shown that EGFR activation and the
overexpression of three major ErbB-associated ligands trigger upregulation of mul-
tiple VEGF members and may induce resistance to anti-EGFR agents in vitro [209].

Riedel et al. showed that an EGFR antisense oligonucleotide treatment resulted
in a significant reduction of VEGF protein expression, and addition of conditioned
medium from EGFR antisense-treated tumor cells resulted in decreased endothelial
cell migration [221]. The combination of bevacizumab (a humanized monoclonal
IgG1 antibody targeting VEGF) with erlotinib was well tolerated and had a response
rate of 15 % [222], which, in a cross trial comparison, was higher than the response
rate for erlotinib alone (5 %) [185] or the VEGFR inhibitors SU5416 alone (5 %)
[223] or sorafenib (an inhibitor of VEGFR, PDGFR, Raf kinase, and others) alone
(3–4 %) [224]. Argiris et al. demonstrated that the combination of bevacizumab and
cetuximab enhanced growth inhibition both in vivo and in vitro in preclinical models
and resulted in a SCCHN disease control rate of 46 % [225]. Chemotherapy with



76 H. Liu et al.

or without bevacizumab is being investigated in a phase III trial with patients with
recurrent or metastatic head and neck cancer (NCT00588770).

A novel fully humanized dual-targeting IgG (DT-IgG) antibody that simultane-
ously targets VEGF and EGFR has been designed to optimize tumor targeting and
maximize potential clinical benefits [226]. Hurwitz et al. tested DT-IgG on SC-
CHN, lung adenocarcinoma, and colon cancer xenograft models and discovered that
DT-IgG had a lower in vivo IC50 than bevacizumab (VEGF targeting antibody) and
cetuximab; however, a higher dose of DT-IgG was needed to produce efficacy similar
to that observed with combined bevacizumab and cetuximab treatment [226]. Zang
et al. showed in SCCHN in vitro studies that DT-IgG neutralizes VEGF as effectively
as bevacizumab and inhibits EGFR activation and cell proliferation as effectively as
cetuximab [227]. One obvious benefit of DT-IgG therapy would be avoidance of
dosing complications associated with drug combinations [226], [227].

4.5.4 STAT3 Expression

Sen et al. found that increased STAT3 may contribute to cetuximab resistance in SC-
CHN [210]. STAT3 inhibition in cetuximab-resistant SCCHN cells using a STAT3
decoy oligonucleotide to inhibit STAT3-mediated transcription reduced cellular vi-
ability and the expression of STAT3 target genes. STAT3 decoy treatment also
successfully decreased tumor growth in vivo [210].

4.5.5 KRAS Mutation

KRAS mutations are fairly rare in SCCHN compared to other types of cancer [228].
Mutational activation of KRAS only occurred in 2.6 % of 115 clinical specimens of
SCCHN, although copy number amplification of KRAS was found in 10 samples
(8.7 %) in the same study [229]. In another study, KRAS mutations were found in 4
out of 29 patients with SCCHN and the presence of the G12V KRAS mutation was
associated with an absence of response to cetuximab and radiotherapy [230].

4.5.6 Microenvironment

A growing body of evidence suggests that components of the tumor microenviron-
ment may also contribute to tumorigenesis in cancers of epithelial origin and may
modulate the treatment sensitivity of tumor cells [231]. Johansson et al. reported
that cancer-associated fibroblasts (CAFs) offered protection from cetuximab treat-
ment and negate cetuximab-induced growth inhibition [213]. They further described
that SCCHN cell lines cocultured with CAFs from patients with SCCHN resulted in
elevated expression of matrix metalloproteinase-1 (MMP-1) in both the tumor cells
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and the CAFs. MMP inhibitors can partly abolish the CAF-induced resistance; how-
ever, siRNA knockdown of MMP-1 in CAFs did not abolish resistance, suggesting
that other MMP family members may be involved [213]. The mechanism of MMP
associated cetuximab resistance is not clear and further investigation is warranted.

4.5.7 Epigenetic Changes

Emerging evidence has indicated connections between epigenetic changes, such
as DNA methylation at CpG islands, and development of resistance to multiple
cancer therapeutics [232]–[235]. Ogawa et al. tested a panel of 56 genes (including
death-associated protein kinase (DAPK), MGMT, and SRBC), commonly known to
be regulated through promoter methylation, using array-based methylation analysis
of two parental NSCLC and SCCHN cell lines and subclones from those cell lines
rendered resistant to either erlotinib or cetuximab. The study found that DAPK
was hypermethylated in NSCLC and SCCHN drug-resistant cells. Subsequent
demethylation of DAPK in the resistant NSCLC cells restored sensitivity to
both erlotinib and cetuximab. siRNA-mediated knockdown of DAPK validated
the array-based findings by inducing erlotinib and cetuximab resistance in cells
normally sensitive to either agent [214].

4.5.8 Other Factors

Transforming growth factor beta (TGFβ) has recently been shown to be a key molecu-
lar determinant of de novo and acquired resistance of cancers to EGFR-targeted mAbs
[236]. Bedi et al. found that treatment of mice bearing xenografts of human SCCHN
cells with cetuximab resulted in emergence of resistant tumor cells that expressed
relatively higher levels of TGFβ compared to the control group. Also, treatment with
cetuximab alone induced an apparent natural selection of TGFβ-overexpressing tu-
mor cells in nonregressing tumors. Combinatorial treatment with cetuximab and
a TGFβ-blocking antibody prevented the emergence of resistant tumor cells and
induced complete tumor regression [236].

Hoellein et al. showed in a sample of 180 patients that coexpression of elevated
levels of Aurora-A and EGFR was an adverse prognostic factor with poor disease-free
and overall survival [237]. Hoellein et al. further showed significant overexpression
of Aurora-A and EGFR in SCCHN tumors compared to normal adjacent mucosa. In
vitro studies showed that simultaneous targeting of Aurora kinase and EGFR using
cetuximab and a pan-Aurora kinase inhibitor (R763) was more effective than mono-
EGFR or mono-Aurora kinase inhibition. Interestingly, growth inhibitory effects
were noticeable with the addition of R763 to cell lines with no or very moderate
response to mono-EGFR-targeted treatment and/or with very low EGFR expression
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[237]. Independent studies have shown efficacy of combination of a specific Aurora-
A inhibitor with erlotinib or cetuximab in an EGFR-dependent cancer cell line [238].
These findings suggest that Aurora kinase inhibitors may help overcome cetuximab
resistance in the treatment of SCCHN; however, more work is needed.

4.6 Conclusions and New Frontiers in Drug Discovery

Even though many ErbB-associated individual pathways have been identified as
crucial in the development and progression of many cancers as well as in the
resistance to EGFRIs, there remain many cases in which the exact mechanism of
resistance is unclear. Systems biology can help guide the integration of information
and data to gain insights into the interconnectedness of ErbB-associated pathways
in the context of tumorigenesis and metastatic disease [239]. Systems biology
approaches together with high-throughput screening presents a great opportunity to
better understand buildup of resistance and to rationally investigate potentially new
therapeutic combinations [240].

Astsaturov et al. recently used synthetic-lethal screening to probe an EGFR-
centered network using erlotinib and nonspecific cytotoxic agents. In this study,
Astsaturov et al. successfully identified a cluster of resistance-determining proteins,
shedding light on, until then, underappreciated or completely novel interactions. It
was also shown that pharmaceuticals targeting certain proteins (e.g., Aurora A, PKC,
STAT3) in the network synergized with EGFRIs to markedly reduce cell proliferation
and tumor size [238]. Synthetic lethal screening approaches clearly are a valuable
tool available to coherently improve targeted therapies focused on EGFR inhibition.

Another valuable addition to the field of systems biology was recently made by
Fertig et al. [241]. Fertig et al. developed a new method that provides gene expression
patterns and biological process activity from transcriptomics data accessible through
an add-on for the popular free statistical computing software R [242]. In their most
recent paper, Fertig et al. further demonstrated that gene expression signatures can be
successfully generated using their algorithm and that these output data are pertinent
to downstream effects of EGFR in SCCHN and useful for modeling contributing
elements to cetuximab resistance [243].

SCCHN and its treatment illustrate the basic paradigm that is likely to shape
personalized medicine: identification and assessment of relevant genes (e.g., high
EGFR expression); development of target-specific therapeutics (e.g., cetuximab);
exploration of relevant signaling pathways (e.g., Ras/Raf/MEK); elucidation of
mechanisms of resistance (e.g., VEGF expression); and redesign of therapies (e.g.,
dual inhibitors like lapatinib and antibodies targeting VEGF and EGFR simultane-
ously). It can be expected that within the next decade the scientific and medical
community will be able to accurately analyze disease using a patient’s complete
genetic profile and tailor treatment approaches appropriately [244]. The Encyclope-
dia of DNA Elements (ENCODE) project has greatly enriched our understanding of
the functional elements of the human genome, a fundamental stepping-stone for the
advancement of personalized medicine in oncology [245], particularly considering
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expanding complementary information on somatic mutations in cancer (COSMIC;
[246]) and data sets of multidimensional cancer genomics (cBio Cancer Genomics
Portal; [247]). A multitude of databases on protein–protein interactions and disease-
associated signaling patterns already exist and can be used to build comprehensive
signaling networks that highlight potential oncogenic hubs and allow rational hy-
pothesis formulation and testing [248]. As the collective knowledge of genetics and
proteomics increases and even more data become available, systems biology will
continue to play an ever-increasing role in genetic interaction mapping, identifica-
tion of pathway activation biomarkers, and elucidation of cancer-associated genes
[239], possibly soon on an individual level.
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Chapter 5
The Role of HGF/c-MET in Head and Neck
Squamous Cell Carcinoma

Tanguy Y. Seiwert, Tim N. Beck and Ravi Salgia

Abstract Head and Neck Squamous Cell Carcinoma (HNSCC) remains a
formidable challenge to physicians, scientists, and patients. New targets that can be
exploited to improve the outcome of patients afflicted with this dreadful disease are
desperately needed: one such potential target is c-MET. The c-MET receptor tyrosine
kinase, also known as hepatocyte growth factor receptor (HGFR), is robustly over-
expressed and sometimes mutated or amplified in head and neck cancer cells, while
overexpression of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), often
occurs in tumor-adjacent mesenchymal cells, providing paracrine signals that support
tumor growth. Activation of c-MET stimulates numerous downstream signaling path-
ways that contribute to tumor growth, including GRB2/RAS, PI3K, STAT3, SRC,
β-catenin, and Notch. Overexpression or anomalous activation of c-MET is often
associated with resistance to targeted therapies inhibiting receptor tyrosine kinases
(RTKs), such as the epidermal growth factor receptor (EGFR), that communicate to
similar growth factor cascades. In this review, we emphasize the role of c-MET/HGF
in HNSCC as well as the potential for therapeutic targeting of this receptor.

Keywords c-MET · HGFR · HGF · EGFR · HER · Head and neck cancer · Squamous
cell cancer · Receptor tyrosine kinases · Targeted therapy

T. Y. Seiwert (�)
Department of Medicine, Section of Hematology/Oncology,
The University of Chicago, 5841 South Maryland Avenue, Chicago IL 60637, USA
e-mail: tseiwert@medicine.bsd.uchicago.edu

T. N. Beck (�)
Developmental Therapeutics Program, Fox Chase Cancer Center,
333 Cottman Avenue, Philadelphia, PA 19111, USA

Program in Molecular and Cell Biology and Genetics,
Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA

T. Y. Seiwert · R. Salgia
The University of Chicago Comprehensive Cancer Center,
5841 South Maryland Avenue, Chicago IL 60637, USA

B. Burtness, E. A. Golemis (eds.), Molecular Determinants of Head and Neck Cancer, 91
Current Cancer Research, DOI 10.1007/978-1-4614-8815-6_5,
© Springer Science+Business Media New York 2014



92 T. Y. Seiwert et al.

5.1 Introduction

The biological behavior of head and neck squamous cell carcinomas (HNSCC) is
similar to that of other squamous cell carcinomas (SCC), and is characterized by
an aggressive growth pattern, tumor heterogeneity, early metastatic spread to lymph
nodes, initial radiosensitivity and chemosensitivity as well as universally poor out-
come once the disease spreads beyond the locoregional lymph node stations [1]–[3].
The underlying factors mediating the biological behavior of malignant pathologies
frequently relate to the mechanisms transmitting extracellular signals to intracellular
compartments. Such signaling pathways are critical for cell survival, growth, and
metastasis. Better understanding of the molecular signaling pathways in HNSCC has
provided a substantial opportunity for novel and individualized treatment in patients
with these cancers [1].

While for many years the study of epidermal growth factor receptor (EGFR)
signaling and development of EGFR targeting strategies predominated in HNSCC
(discussed in Chap. 3), more recently the hepatocyte growth factor receptor c-MET
and its ligand hepatocyte growth factor (HGF) have been found to play an important
role in the pathogenesis of this disease [4], [5]. c-MET mediates multiple cellular
processes, including survival, proliferation, and motility [6]–[9], and elevated ex-
pression of this protein in HNSCC has been associated with worse prognosis [5],
[10], [11]. Elevated c-MET signaling also amplifies cross-talk with additional molec-
ular pathways activated in HNSCC and other solid cancers, contributing to enhanced
angiogenesis, tumor metabolism, survival, migration, and invasion [2], [12], [13].

In vitro studies performed with head and neck cancer (HNC) cell lines, and in vivo
studies focused on other cancer types, have shown that c-MET inhibition can enhance
the impact of established therapies, including combination therapies involving EGFR
inhibitors or chemotherapeutics [14]. Although the clinical data for targeting c-MET
are less mature for HNSCC than they are for other cancers (e.g., non-small cell lung
cancer (NSCLC)), limited study results [15] and several highly relevant preclinical
studies [11], [14], [16], [17] strongly suggest that disruption of c-MET signaling
may be a promising approach for treating HNSCC, especially in combination with
other therapeutics. This chapter summarizes what is known regarding normal and
aberrant signaling of c-MET in HNSCC, and assesses the promise of HGF/c-MET
targeting as a novel treatment strategy.

5.2 c-MET (Hepatocyte Growth Factor Receptor) Structure
and Function

The c-MET tyrosine kinase receptor was initially discovered as the product of the
oncogene translocated promoter region (TPR)-MET in a human osteogenic sarcoma
cell line treated with the carcinogen N-Methyl-N’-nitro-N-nitrosoguanidine [18],
[19]. The translocation involves a chromosomal rearrangement fusing TPR (encoding
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a dimerization leucine zipper motif) from chromosome 1q25 and c-MET from chro-
mosome 7q31 [20]. The normal c-MET gene encodes a single precursor amino acid
chain; two transcript variants have been identified, one coding for 1,408 amino acids
(isoform a) and the other coding for 1,390 amino acids (isoform b) [21]–[23]. Both
isoforms have the same N- and C-termini. The c-MET signaling axis is functional in
normal cells as well as in cancer (Fig. 5.1) [6], [7], [24].

5.2.1 c-MET General Structure

While c-MET is synthesized as a single chain of amino acids, it is posttranslationally
cleaved by the endoprotease furin into α- and β-subunits as it passes through the
endoplasmic reticulum [25–29]. The two subunits form an α-β heterodimer with a
molecular weight of 190 kDa: a 50 kDa α-chain that is entirely extracellular, linked
via a disulfide bond with the extracellular part of a 145 kDa β-chain [30], [31].
The β-chain entails a single pass transmembrane region and three major cytoplas-
mic domains (Fig. 5.1). Binding of the specific c-MET ligand hepatocyte growth
factor/scatter factor (HGF/SF) occurs at the SEMA domain, which corresponds to
part of the extracellular component of the β-chain aligned with and bound to the
α-subunit. The SEMA domain has significant homology with other members of
the semaphorin superfamily, which comprises c-MET, semaphorins, plexins, and
Recepteur d’origine nantai (RON) [32].

The extracellular domain of the c-MET β-chain also includes immunoglobulin-
like regions in plexins and transcription factor (IPT) domains. In vitro studies have
suggested that the IPT domains, particularly IPT 3 and IPT 4 (Fig. 5.1), are neces-
sary for high affinity binding of the α-chain of HGF, and that HGF binding to IPT
domains can initiate signaling even in the absence of the SEMA domain; however,
specific sensitivity to the activated form of HGF is lost in the absence of SEMA [33].
Within the cell, the β-chain encompasses a transmembrane domain, a juxtamembrane
(JM) domain and a functional tyrosine kinase domain. Binding to HGF induces ho-
modimerization of c-MET, and activates the intracellular kinase domain to induce
trans-autophosphorylation of the cytoplasmic tail on Y1234 and Y1235, initiating
downstream signaling events via the recruitment of effector proteins (Fig. 5.1) [34].

c-MET also heterodimerizes with the semaphorin superfamily member RON [35].
Macrophage-stimulating protein (MSP, also known as HGF-like protein) is the spe-
cific ligand for RON, and is secreted as pro-MSP prior to proteolytic activation by
hepsin, membrane type serine protease 1 (MT-SP1 or matriptase) or HGF activator
(HGFA) [36]. Whereas HGF is expressed in various tissue types, MSP is predom-
inantly produced by liver cells [37]; however, MSP has been observed to play a
relevant role in nonhepatic cancers, though no such observation has yet been made
in HNCs [38]. RON itself on the other hand, like c-MET, has been implicated in HN-
SCC [39], as well as several other cancers, and presents another potential therapeutic
target [40].
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Fig. 5.1 HGF/c-MET structure, signaling and cross-talk hepatocyte growth factor/scatter factor
(HGF or HGF/SF), a member of the plasminogen-related growth factor family, is secreted as a
precursor (pro-HGF) by stromal cells (it can also be secreted in an autocrine fashion [137]) and is
cleaved extracellularly by proteases. Once cleaved, HGF is converted to an active α- and β-chain
heterodimer containing six domains: hairpin loop (HL; amino-terminal); kringle domains 1–4
(K1–K4), which are distinguishable by three conserved disulfide bonds; and the single β-chain do-
main, a serine protease homology (SPH) domain, which does not have proteolytic activity. c-MET
is shown in its homodimeric form, consisting of a pair of α- and β-chains linked via a disulphide
bond. The β-chain is a single pass transmembrane chain, with nine distinct domains: docking site
(DS); catalytic region (CR); juxtamembrane sequence (JM); immunoglobulin-like fold shared by
plexins and transcriptional factors (IPT1–4); plexins, semaphorins and integrins (PSI; domain
is present in all three classes); and semaphoring (SEMA) domain. The SEMA domain consists
of the entire α-chain and the extracellular N-terminus of the β-chain. The HGF β-chain binds to
the SEMA domain, as shown; there is also evidence from in vitro studies that the HGF α-chain
binds to IPT3 and IPT4 [138], [139]. The three c-MET intracellular regions, JM, CR and DS, all play
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5.2.2 c-MET Trafficking

Endosomal compartmentalization and receptor trafficking have emerged as vital
components of c-MET/HGF signaling [41]. Two c-MET-associated signaling
effector proteins are significantly impacted by c-MET trafficking: signal transducer
and activator of transcription 3 (STAT3) [41] and ERK1/2 [42]. c-MET endocytosis
is controlled by clathrin-dependent and by clathrin-independent pathways [43]. Even
though not all aspects of c-MET trafficking have been elucidated thus far, it has been
shown that c-MET internalization can be mediated by PKC [42], Cbl [44], clathrin
[45], dynamin 2 [46], sorting nexin 2 (SNX2) [47] and the Rho, Rac, and Rab
GTPases [48], as well as presumably other mechanisms [43]. Endosomal compart-
mentalization provides spatiotemporal control over c-MET dependent signaling,
allowing response specificity and fine-tuning of molecular events [49]. Altered
profiles of c-MET endocytosis have been implicated in tumorigenesis of several
cancers [43], [49], [50]; however, in the case of HNSCC, this aspect has not been
adequately studied.

5.2.3 c-MET Ligands: HGF/SF

Although initial studies proposed the existence of two independent c-MET ligands,
subsequent studies revealed that HGF and SF represent a single protein [25]. Similar
to c-MET, HGF/SF is synthesized in an inactive single-chain propeptide form that
requires proteolytic cleavage at residues Arg494-Val495 [33]. In the case of HGF/SF,
the proteases of relevance are matriptase (ST14), hepsin, and HGFA, which are re-
quired for HGF/SF to realize its biologically active heterodimeric form. Two known
biological inhibitors of HGF/SF activation are HGF activator inhibitor 1 (HAI1)
and HAI2 [25]. Structurally, the active form of HGF/SF is composed of a 68 kDa
α-chain and a 34 kDa β-chain [28], [29], [51]. HGF/SF has a domain structure re-
lated to plasminogen—highlighting the link of HGF/SF to the coagulation cascade
[52], which is of relevance in regenerative processes—and other serine proteinases;
however, HGF/SF is enzymatically inactive [7], [25]. The α-chain contains an
N-terminal finger domain (N) as well as four Kringle domains (K1–K4), and the
β-chain contains a serine proteinase homology (SPH) domain [53]–[55]. HGF/SF
binds to the SEMA domain of c-MET, initiating receptor dimerization, which triggers

critical functional roles: phosphorylation of JM at Ser-975 downregulates kinase activity of c-MET;
transphosphorylation of Tyr1234 and Tyr1235 of the CR domain enhances kinase activity; and
the DS domain is a multifunctional docking site (Tyr 1349 and Tyr1356) for adaptor proteins.
From a mechanistic as well as therapeutic standpoint, it is also important to fully appreciate the
cross-talk between c-MET and other receptors (RON, ERBB2, Integrins, CD44, FGFR, VEGFR
EGFR, and ERBB3 [13]). In HNSCC and other cancers, cross-talk between c-MET and EGFR,
particularly via RAS and SRC, and between c-MET and ERBB3-EGFR (or ERBB3-ERBB2, not
shown [138], [140]), are of particular relevance. Both c-MET and EGFR can activate ERBB3,
initiating PI3K/AKT signaling [100], [140], [141].
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phosphorylation of receptor Tyr1230, Tyr1243, and Tyr1235, leading to autophos-
phorylation of Tyr1349 and Tyr1356, allowing the signaling cascades described in
Sect. 5.2.3 to commence (Fig. 5.1) [6], [34], [56]. As previously mentioned, in vitro
studies have suggested that HGF/SF can also bind to c-MET IPT domains to initi-
ate signaling [33]. In general, pro-HGF/SF is secreted by mesenchymal cells, and
cleaved for activation, to subsequently bind to and activate c-MET on epithelial cells
[57].

5.2.4 c-MET Associated Signaling

The HGF/c-MET pathway is instrumental to cellular motility, migration, and inva-
sion, as well as to cell survival and proliferation, in both normal and cancerous cells
[6], [18], [49], [58]–[63]. Once HGF/SF is bound to c-MET, tyrosine-phosphorylated
c-MET then interacts directly, with phosphorylated tyrosines 1349 and 1356 acting
as binding sites, with the effectors growth factor receptor-bound protein 2 (GRB2),
SHC, SRC, SHP2, SHIP1, and phosphatidylinositol 3-kinase (PI3K), as well as
an adapter protein, Grb2-associated binder 1 (GAB1) (Fig. 5.1) [56], [64]. GAB1
binding promotes recruitment and activation of STAT3, GRB2/SOS, PI3K, SRC,
and PLCγ, and is essential for the sustained nature of c-MET initiated signaling.
Downstream effectors of GRB2/SOS include the RAS/RAF/MEK/ERK mitogenic
cascade and the RAC/PAK effectors that increase cell motility; PI3K activates AKT
and mTOR, influencing cell survival [7], [25], [27], [65]. Cross-talk and activation
of a number of additional pathways by c-MET have also been reported (Fig. 5.1;
discussed in Sect. 5.4).

Downstream of the receptor, one group of cell motility/migration effectors of
c-Met localize to focal adhesions, and involve proteins also responsive to inte-
grin signaling. For example, focal adhesion kinase (p125FAK) and paxillin are
downstream substrates of HGF-bound or mutationally activated c-MET [13]; c-
MET activation causes reorganization of focal adhesion structure and increased cell
motility/migration [66].

Another aspect of c-MET activation is initiation of the release of the cytokine in-
terleukin 8 (IL-8, [67]). IL-8 is a proinflammatory chemokine that has been linked to
angiogenic, proliferative, and survival processes in cancer. In some cases of HNSCC,
IL-8 has been found to be coexpressed with HGF at high levels and this coexpression
has been linked to more aggressive disease progression [16], [67], [68].

During embryogenesis, c-MET plays a crucial role by initiating the epithelial to
mesenchymal transition (EMT) of myogenic progenitor cells: this process is essential
for proper development of the embryo [25], [58]. Furthermore, c-MET signaling is
essential for regeneration of liver and skin as well as wound healing [59], [60], [62].
Considering the normal functional roles of c-MET, the potential for aberrant, c-MET-
associated proliferation, survival, and EMT-related migration leading to metastatic
disease, becomes strikingly evident.
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5.3 Dysregulation of HGF/c-MET in HNSCC

In many tumors, dysregulation of c-MET occurs, initiating or supporting malignant
cell growth [7], [9], [10], [27], [30], [69]; furthermore, considering that c-MET is
involved in EMT during embryonal development, it should not come as a surprise that
c-MET has been linked to EMT in many cancers, including HNSCC. Various factors
can cause dysregulation of c-MET/HGF in HNSCC, the three dominant factors being:
(1) c-MET overexpression and amplification (5.3.1), (2) c-MET mutation (5.3.2), and
(3) microenvironment/ligand-associated triggers (5.3.3).

5.3.1 c-MET Overexpression and Amplification

For the c-MET pathway, amplification and overexpression have been observed in
multiple cancer types [6], [57], [63], [70]–[72]. Regarding HNSCC specifically,
others and we have found an increase in copy number of c-MET and robust over-
expression of c-MET and HGF in 60–80 % of tumors [10], [11], [16], [73]. Of
particular note, c-MET expression appears to progressively increase from normal
tissue, to dysplasia, to squamous cell carcinomas [11], [14], [16]. c-MET is also
amplified in a subset of HNSCC tumors [11], [74], [75]. In our initial study, we
observed that several cell lines had low-level c-MET copy number increases (by
FISH and qPCR) and several patient-derived tumor tissues had high-level copy num-
ber increases [11]. These data have been confirmed in a recent large-scale genomic
analysis, albeit c-MET amplification is only present in a small fraction of HNSCC
cases (4 out of 295 tumor samples; http://www.cbioportal.org; see [76] for cBioPort
information).

In addition, it has been suggested that c-MET mRNA overexpression may be
important for cisplatin resistance in HNSCC [77]. Akervall et al. used cDNA microar-
ray to evaluate the expression level of c-MET, results being subsequently verified
using RT-PCR, in five chemosensitive and five chemoresistant HNSCC cell lines.
Low MET expression levels were observed in the chemosensitive cell lines, com-
pared to significantly higher expression levels in the chemoresistant cells. Similar
observations were made analyzing 29 patient-derived tumor samples by immunohis-
tochemistry (IHC). The patients had been treated with cisplatin and 5-fluorouracil
and treatment responses were known: 5 of 9 (56 %) patients with tumors expressing
low c-MET responded to induction chemotherapy and only 4 of 20 (20 %) patients
with tumors expressing high c-MET responded. The cell line-based expression study
also revealed that 30–40 other genes had expression patterns paralleling those ob-
served for c-MET: these genes have not yet been evaluated in patient samples [10].
Further work is needed to fully elucidate the role of c-MET overexpression and
amplification in this tumor type, particularly in regard to cisplatin resistance. Of
note, according to the Genomics of Drug Sensitivity in Cancer Project, based on
cell line sensitivity data (not HNSCC specific), c-MET amplification significantly
increased sensitivity to lapatinib (p = 0.0026), erlotinib (p = 0.035), and SL0101-1
(p = 0.0085; http://www.cancerrxgene.org/translation/Gene/1225).
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5.3.2 c-MET Mutation

A large number of genetic and protein abnormalities have been reported to be asso-
ciated with the activation of c-MET in a variety of tumors [6], [7]. Furthermore, we
have identified accumulation of c-MET mutations and occurrence of several single
nucleotide polymorphisms (SNPs) in HNSCC [11]. Mutations in c-MET have been
found to affect each of the protein’s functional domains: the tyrosine kinase do-
main, the JM domain, the IPT domain, and the SEMA domain [11], [57], [78]–[80].
The earliest reports of germline and somatic mutations of c-MET were made for
papillary renal carcinoma [81]. Thereafter, a number of gain-of-function mutations
in the tyrosine kinase domain were defined in glioblastomas and in HNSCC [82].
Dulak et al. recently performed exome sequencing for 149 esophageal adeno-
carcinoma tumor-normal tissue pairs (whole-genome sequencing was additionally
performed for 15 of these samples) and c-MET was identified to have mutations in
2 % and gain-of-function events in 6 % of tested samples: c-MET was thus considered
a putative therapeutic target warranting further investigation [83]. In a phase III trial
of 270 patients, Argiris et al. confirmed the previous observation that c-MET muta-
tions are possible prognostic markers for survival and disease progression, but not
for response to EGFR inhibitors [84]. The relationship between EGFR and c-MET
is discussed at length in Sect. 5.4.1.

Even the most robust mutations do not abrogate the responsiveness of the
c-MET receptor to HGF. We identified gain-of-function mutations or cancer-
associated SNPs affecting the SEMA (HGF ligand binding) domain and the JM
domain. These alterations occur in 12 % (8 of 66 analyzed tumors) of HNSCC [11],
[74] and lead to hyperresponsiveness to HGF, as well as important increases in soft-
agar colony formation assays for HNSCC [11]. Another interesting phenomenon we
have noted is exon skipping (demonstrated in lung cancer, but not yet in HNSCC)
leading to the elimination of the 47-amino acid exon encoding the JM domain, which
may also alter c-MET activation [85], [86]. Cell lines, xenograft models, and tumors
with mutated or elevated c-MET are particularly susceptible to c-MET inhibitors,
including the small molecule c-MET inhibitor crizotinib [11], which will be further
discussed in Sect. 5.5.1.2.

Finally, in GAB1, which is recruited to c-MET via direct binding (Fig. 5.1), gain-
of-function mutations have been identified in some cancer settings. For example,
the GAB1-T387N mutation is located in close proximity to the GRB2 binding site
and appears to hamper the negative feedback potential of nonmutated T387-GAB1
[87]. Whether or not GAB1 mutations are involved in c-MET-associated resistance
in HNSCC remains to be determined.

5.3.3 Microenvironment and HGF/SF

Under normal conditions, c-MET activation is regulated via tight control of HGF
ligand interaction with the receptor. HGF induces upregulation of hundreds of genes,
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including c-MET and the proteases needed for HGF and c-MET activation [7], [10].
The major sources of HGF are generally cells of mesenchymal origin [88]. Although
the topic has been less extensively investigated than c-MET expression, it seems
likely that elevated expression of HGF contributes significantly to c-MET-associated
pathogenesis in HNSCC. HGF expression has been shown to be an important mecha-
nism of c-MET activation and c-MET-associated treatment resistance in tumor types
other than HNSCC, with EGFR tyrosine kinase inhibitor-resistant lung cancer being
one example [89]. HGF stromal production can also induce resistance to targeted
therapies (e.g., BRAF inhibition in BRAF mutant melanoma [90]); furthermore, in
NSCLC, it has been observed that increased HGF accelerates the amplification of
c-MET. Turke et al. speculate that increased HGF, in the presence of EGFR inhibi-
tion, creates a proliferative advantage for subclones with c-MET amplification [91].
HNSCC tumor-derived fibroblasts produce more HGF that non-tumor associated fi-
broblasts, and this may be one of the dominant mechanisms of c-MET activation in
HNSCC [16]. HGF is also altered in 5.6 % of HNSCC cases (8 out of 302 tumor
samples mutated and 9 out of 302 amplified; http://www.cbioportal.org); however,
based on the preponderance of data, increased HGF protein expression levels seem to
be of much greater relevance to functional effect than the mutational or amplification
status of the gene.

5.4 c-MET Cross-Talk

5.4.1 c-MET and Epidermal Growth Factor (EGF)
Family of Receptors

The most relevant cross-talk involving c-MET signaling is with EGFR
(Her1/ERBB1), due to strong evidence suggesting c-MET as a vital part of the
mechanisms enabling cancer cells to acquire resistance to EGFR-targeted drugs
(discussed in detail in Sect. 5.5) [13], [14], [17], [47], [91]–[93]. A number of
the c-MET effectors noted above converge with those activated by EGFR and its
related effectors (Figs. 5.1) [73], [94]; it also appears, at least in NSCLC, that c-SRC
is essential for EGFR to c-MET cross-talk [95]. It is the convergence of effector
proteins that allows RTK cross-talk and contributes to EGFR-targeted therapy resis-
tance in some cases [94], [96]. HGF also plays a role in regard to EGFR cross-talk,
by promoting transactivation of EGFR; whereas, inhibition of EGFR has been ob-
served to abrogate HGF-dependent phenotypes [97]. Co-immunoprecipitation of
a heterodimeric MET-EGFR complex has been detected, which suggests the pos-
sibility of direct interactions; however, direct physical interaction has not been
unambiguously demonstrated [13]. Garofalo et al. further connected EGFR and
c-MET, when they showed that EGFR and c-MET downregulated the same miRNAs
(miR-30b, miR-30c, miR221, and miR222), which, in lung cancer cells, diminished
gefitinib-induced apoptosis [92].
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c-MET also appears to participate in signaling cross-talk with the EGFR-related
proteins HER2 (ERBB2) and HER3 (ERBB3). HER2 and HGF/c-MET signaling
synergy has been demonstrated in HER2 positive breast cancer, in which HGF in-
duced break down of cell–cell junctions, to enhance a malignant phenotype [98]. In
HER2 amplified gastric cancer, activation of MET mediated active resistance to the
small molecule inhibitor lapatinib [99]; these results further support the notion of
c-MET/HER2 interplay.

Amplification of MET has also been reported to cause gefitinib resistance in
lung cancer, by driving ERBB3 activation of PI3K. ERBB3 phosphorylation was
only decreased in the simultaneous presence of a c-MET and an ERBB3 inhibitor
[100]. It is also interesting to note that c-MET cannot only homodimerize to activate
downstream cascades, but it can heterodimerize with ERBB3 [100], providing an
additional input into cascades that report EGFR and c-MET activity. In this context,
c-MET overexpression provides a source of resistance to EGFR-targeting therapies
in EGFR-dependent cancers [14], [92], [96], [100]. Targeting of ERBB3/HER3 has
recently become possible using inhibitors such as MM-121 [101], AV-203 [102] and
ro5479599 [NCT01482377], and may be of particular interest for cases of HNSCC,
as it is the primary driver of PI3K activation, one of the main pathways activated in
HNSCC [94], [100] (see discussion in Chap. 6).

The definitive impact c-MET has on a variety of ERBB-expressing cancers
strongly suggests similar involvement in the case of HNSCC, which frequently ex-
presses ERBB family members [73]. Considering the meaningful, yet frequently
disappointing results observed with ERBB-targeted therapeutics (response rates of
4–13 % for single agents [103], [104]), further investigation of dual- or triple-agent
therapies targeting ERBB family members and HGF/c-MET simultaneously is highly
desirable, as this approach effectively targets converging signaling pathways. In or-
der to successfully develop c-MET/ERBB focused targeted therapy regiments, it will
likely be important to employ genome-based medicine as described by Vogelstein
et al. [105] in combination with techniques to evaluate cancer proteomics [106], to
ensure identification of the patients most likely to respond to treatment, which may
be a particularly successful strategy for HNSCC, in which c-MET and ERBB are
both frequently expressed. Work by Xu et al. and some of our own preclinical work
supports this notion and strongly suggest that targeting c-MET may enhance the
efficacy of ERBB-targeted therapy in HNSCC [11], [14].

5.4.2 c-MET and SRC

Interactions between SRC and c-MET have been implicated in drug resistance and
tumorigenesis in HNCs. Increased SRC kinase activity has been reported in numerous
cancers, including HNSCC, and due to the known interaction of SRC, EGFR and
MET (Fig. 5.1), the findings by Stabile et al. that c-SRC activation mediates resistance
to erlotinib by stimulating c-MET does not come as a surprise [93]. Furthermore,
c-Met activation has been demonstrated to mediate HNSCC cell survival following



5 The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma 101

SRC inhibition [107]. SRC has also been implicated with increased EMT and more
aggressive tumors, a feature particularly relevant to HNSCC, a disease in which local
invasion plays a dominant role and is associated with less successful locoregional
control and worse outcome [3], [108]. These findings suggest that combining a SRC
inhibitor, such as dasatinib, with ERBB-targeted therapy or c-MET-targeted therapy
(or both) may improve the outcome for patients with erlotinib resistant HNSCC.

5.4.3 Additional Interactions

c-MET is also engaged in cross-talk with other transmembrane receptors, such as
integrins, plexin B1, G-protein receptors, CD44, fibroblast growth factor recep-
tor (FGFR), and vascular endothelial growth factor receptor (VEGFR) [13], [109].
For example, integrins play a major role in cell adherence to matrix, and multiple
studies have suggested that cellular adherence is strongly associated with c-MET
activity [110], [111], and may even initiate ligand-independent activation of the re-
ceptor [112]. The interaction between CD44 and c-MET is particularly curious, as
CD44 can act as a co-receptor for c-MET, possibly leading to amplified HGF-MET
interactions; CD44 may also be required for c-MET signaling in some instances
[113]–[115]. Simultaneous inhibition of c-MET and FGFR has been observed to be
superior to individual inhibition of either of the two receptors [109]. Cross-talk be-
tween VEGFR and c-MET has also been observed, suggesting an additional avenue
for combination therapy [116]–[119]. All of the mentioned interactions are highly
relevant and further investigations are likely to elucidate novel treatment approaches
and greater understanding of the underlying biology.

5.5 HGF/c-MET-Targeted Therapy

Using siRNA, others and we have established the c-MET dependency of HNSCC
tumor-derived cell lines [11], [93]. There are a large number of therapeutic strategies
being utilized against HGF/c-MET (recently summarized by Sadiq et al. [9]), and
a large number of inhibitors have been developed: these include multiple small
molecule inhibitors (tivantinib, crizotinib; Sects. 5.5.1, 5.5.2, and 5.5.3) as well
as antibodies against the receptor (MetMAb [onartuzumab], ABT700; Sect. 5.5.4)
and against the ligand (ficlatuzumab, rilotumumab; Sect. 5.5.5) [9], [35]. There are
currently a multitude of clinical trials evaluating c-MET or HGF targeting for several
different cancers (www.clinicaltrials.gov).

The most pertinent example of potential treatment advances involving c-MET-
targeted therapy is centered on reports that c-MET can be amplified specifically in
the context of EGFR resistance [71]. Engleman et al. reported detection of MET
amplification in 4 of 18 lung cancer specimens that had developed resistance to
either gefitinib or erlotinib [100]. Turke et al. in elegant fashion showed that in
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NSCLC, resistance to EGFR kinase inhibitors can be established through c-MET
amplification or autocrine HGF production; furthermore, Turke et al. demonstrated
that combined EGFR and c-MET inhibition was curative in vivo. Analysis of clinical
data showed c-MET amplification in 4 of 27 samples from EGFR inhibitor-resistant
tumor specimens [91]. Lastly, Bean et al. reported that 9 of 43 patients with acquired
resistance to erlotinib or gefitinib presented with c-MET amplification; whereas
among 62 untreated patients, only two presented with amplified c-MET. Interestingly,
Bean et al. found no correlation between c-MET amplification and EGFR mutation
status [120]. These reports strongly support the rationale of MET inhibition in specific
cases; one of the obvious challenges will be to efficiently and effectively identify the
proper treatment regimen for a given patient population.

Most investigations regarding c-MET and EGFR have thus far been conducted
in cases of lung cancer; nevertheless, we and others have observed marked synergy
of combining c-MET and EGFR inhibition in the majority of HNSCC examined
[11], [14], [15]. For HNSCC, a comprehensive randomized phase II trial is ongo-
ing [NCT016955] to evaluate the response of patients with recurrent, metastatic
or inoperable HNSCC to cetuximab (Chap. 3, Fig. 3.2) with or without tivantinib
(Sect. 5.5.2). One of the primary efforts, as alluded to in Sect. 5.4, is to investigate
the feasibility of inhibiting c-MET as a means of overcoming resistance to other
inhibitors in use for HNSCC.

5.5.1 Foretinib

Foretinib is an orally available inhibitor of MET, RON, AXL, Tie-1, KIT, PDGFR,
and VEGFR. Importantly, foretinib inhibits HGF-induced MET phosphorylation
and extracellular VEGF-induced kinase phosphorylation events (Fig. 5.2) [121]. In
HNSCC, we have studied foretinib in a phase II single-agent clinical trial [15].
Foretinib was administered orally at 240 mg for five consecutive days of a 14-day
cycle (a maximum of 30 cycles was administered). While only 14 patients were
treated and no objective responses were observed, 43 % (6 of 14) of patients had
tumor shrinkage of 5–21 % and the treatment was generally well tolerated [15]. The
fact that foretinib was tolerable and tumor shrinkage was observed in some patients
suggests initiation of larger trials, ideally combining MET and EGFR inhibitors, may
be advantageous.

5.5.2 Tivantinib

More potent c-MET inhibitors than foretinib are currently being explored, namely in
a randomized study of tivantinib versus tivantinib plus cetuximab [NCT01696955].
This study builds on the observed synergy of c-MET and EGFR inhibition [11],
[122]. Tivantinib, a staurosporine derivative that targets dephosphorylated c-MET,
has shown promising activity in several phase I and phase II trials, and is currently
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Fig. 5.2 HGF/c-MET-targeted inhibitors. Three different categories of HGF/c-MET-targeted
inhibitors are currently available: HGF-targeting antibodies (turquoise box); c-MET-targeting anti-
bodies (top orange box); and small molecules that target the intracellular domain of c-MET (bottom
orange box). One EGFR-targeting antibody (top yellow box) and two small-molecule EGFR in-
hibitors (bottom yellow box; erlotinib and gefitinib) and one small-molecule EGFR/ERBB2/ERBB3
inhibitor (bottom yellow box; afatinib), are of particular interest for combination therapies with
HGF/c-MET inhibitors (see Chap. 3 for more information on ERBB family member inhibitors).

being evaluated in a phase III trial [NCT01244191] in combination with erlotinib
for the treatment of NSCLC [123], [124]. However, evidence has emerged sug-
gesting that tivantinib has cytotoxic activity independent of interaction with c-MET,
necessitating further careful evaluation of this compound [123], [125].

5.5.3 Additional Small Molecule Inhibitors

Cabozantinib is a promising multitargeted tyrosine kinase inhibitor (TKI) with activ-
ity against c-MET, VEGFR2, and RET that is currently being studied in a phase III
clinical trial of advanced medullary thyroid cancer [NCT00704730]. Additionally,
cabozantinib was assessed in combination with erlotinib in a phase Ib/II study in
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patients with NSCLC: 17 % of patients achieved 30 % or greater reduction in tumor
burden [126]. Crizotinib, another small molecule inhibitor, has recently emerged
as a promising treatment option for anaplastic lymphoma kinase (ALK)-positive
NSCLC; in addition to targeting ALK, crizotinib also inhibits c-MET [7]. Ou et al.
have reported the observation that an NSCLC patient with de novo c-MET ampli-
fication but no ALK fusion protein had a sustainable response to crizotinib [127].
There are several additional small molecule c-MET inhibitors that may be worth
consideration for the treatment of HNSSC [7], [126].

5.5.4 Antibodies Targeting c-MET

Onartuzumab (MetMAb) is a recombinant monoclonal antibody that binds the SEMA
domain of c-MET (Fig. 5.2). By binding to c-MET, onartuzumab blocks HGF
from binding and activating c-MET signaling. There is also evidence that HGF
may serve as a reliable biomarker for onartuzumab target engagement [128]. Onar-
tuzumab is currently being evaluated in phase II and phase III clinical trials: The
phase III study treats patients with MET diagnostic-positive NSCLC with onar-
tuzumab/erlotinib [NCT01456325]. Another c-MET targeting antibody currently in
clinical trials [NCT01287546; NCT01602289] is LY-2875358, a humanized IgG4
monoclonal antibody. LY-2875358 binds to c-MET and thus inhibits binding of
HGF, additionally, the antibody induces c-MET internalization and degradation;
therefore, LY-2875358 can disrupt ligand-dependent and independent activation of
c-MET [129].

5.5.5 Antibodies Targeting HGF/SF

Another therapeutic approach to inhibit HGF/c-MET signaling is by targeting HGF
with antibodies (Fig. 5.2). Ficlatuzumab (AV-299) is a humanized IgG1 antibody
that specifically binds HGF. In a phase II study designed to compare gefitinib as
a single agent versus gefitinib and ficlatuzumab in patients with adenocarcinoma
of the lung, the drug combination did not significantly improve response rate or
progression-free survival [130]; however, a phase I trial with ficlatuzumab in combi-
nation with cisplatin and radiation in HNSCC is under development and may yield
more encouraging results.

Rilotumumab is a fully human monoclonal antibody that also targets HGF, leading
to reduced HGF/MET signaling. In a phase II study, the efficacy of rilotumumab
plus mitroxantrone and prednisone was tested in castration-resistant prostate cancer.
Unfortunately, the addition of rilotumumab did not have any beneficial effect [131].
On a more encouraging note, Tak-701, another humanized monoclonal antibody that
targets HGF, successfully restored sensitivity to gefitinib in resistant human lung
cancer cells [132]. The results with HGF-targeting antibodies strongly emphasize
the necessity to carefully identify the proper patient population, i.e., the patient
population that will be most responsive to treatment.
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5.6 Conclusions and Future Directions

Cancer genomics have provided us with sufficient data to realize that “driver”
genes can be assigned to at least 12 signaling pathways [105]. There is currently
a major impetus to perform genomic evaluation of individual patients (precision
medicine/oncology; [133], [134]), and to try to target multiple pathways rather than
single proteins. Exploring the potential of c-MET-targeted therapy, particularly in
combination with other inhibitors targeting interlinked pathways (e.g., cetuximab,
erlotinib), in HNSCC may help with the transition to exclusive practice of precision
medicine in oncology.

Precision medicine requires discovery and exploitation of good biomarkers. An
encouraging example of biomarker based precision medicine is the use of the anti-
c-MET antibody onartuzumab/MetMAb (Sect. 5.5.4) for specific cases of NSCLC:
simple measurement of c-MET expression using IHC appeared to have identified a
population of patients that benefited from treatment more so than patients presenting
with low c-MET expressing disease [135], [136]. Spigel et al. found that patients
with c-MET IHC + tumors significantly benefited, statistically and clinically, from
MetMAb plus erlotinib (ME) treatment compared to placebo plus erlotinib (PE) (c-
MET IHC +: overall survival of 4.6 months (PE) and 12.6 months (ME), p = 0.002;
c-MET IHC-: overall survival 9.2 months (PE) and 5.5 months (ME), p = 0.021;
[136]). Clearly, the ability to detect biomarkers, predict efficacy of available treatment
options and customize treatment regimens for each individual patient is starting to
emerge as a reality.

Environmental factors, though in some cases tremendously complicated to inte-
grate into existing disease models and profiles, will also have to be better understood
in order to fully implement precision medicine. For example, it currently remains
unknown whether human papillomavirus virus (HPV) status impacts efficacy of
HGF/c-MET-targeted agents. Preliminary evidence suggests that HGF/c-MET mu-
tational or amplifying events are less common in HPV(+) tumors, based on early
reports of the Cancer Genome Atlas Project (TCGA) [74]. Still, validation will be
important, including evaluation of tumor stroma from HPV(+) HNSCC tumors.

The HGF/c-MET axis has been studied for a considerable period of time and is
altered and biologically important in multiple cancer types, including in HNSCC.
Early clinical data indicate that HGF/c-MET inhibition is feasible and may be ben-
eficial in at least a subset of HNSCC patients, albeit larger clinical studies are still
ongoing. However, to optimize therapeutic approaches, patient selection and iden-
tification of predictive biomarkers as well as the optimal combination with other
agents will be essential. We expect, based on knowledge from other tumor types,
that the most activity will occur in a subset of patients that have activated c-MET.
In order to identify specific markers, tissues from patients should be obtained from
ongoing c-MET HNSCC studies and analyzed for HGF/c-MET expression, muta-
tions/SNPs, amplification and relationships with actionable downstream targets and
other signaling pathways. Combinational strategies with EGFR inhibition and po-
tentially other treatment modalities should be explored in rationally selected patient
populations, in an effort to help current patients and as part of the greater effort to
lay the groundwork for future treatment approaches.



106 T. Y. Seiwert et al.

References

1. Haddad RI, Shin DM. Recent advances in head and neck cancer. N Engl J Med.
2008;359(11):1143–54.

2. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer.
Nat Rev Cancer. 2011;11(1):9–22.

3. Pfister DG, et al. Head and neck cancers. J Natl Compr Cancer Netw. 2011;9(6):596–649.
4. De Herdt MJ, de Jong RJB. HGF and c-MET as potential orchestrators of invasive growth in

head and neck squamous cell carcinoma. Front Bioscie-Landmark. 2008;13:2516–26.
5. Lo Muzio L, et al. Effect of c-Met expression on survival in head and neck squamous cell

carcinoma. Tumor Biol. 2006;27(3):115–21.
6. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol.

2003;4(12):915–25.
7. Blumenschein GR Jr, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth

factor-cMET axis in cancer therapy. J Clin Oncol. 2012;30(26):3287–96.
8. Boccaccio C, Comoglio PM. Invasive growth: a MET-driven genetic programme for cancer

and stem cells. Nat Rev Cancer. 2006;6(8):637–45.
9. Sadiq AA, Salgia R. Inhibition of MET receptor tyrosine kinase and its ligand hepatocyte

growth factor. J Thorac Oncol. 2012;7(16 Suppl 5):S372–4.
10. Akervall J, et al. Genetic and expression profiles of squamous cell carcinoma of the head and

neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer
Res. 2004;10(24):8204–13.

11. Seiwert TY, et al. The MET Receptor Tyrosine Kinase Is a Potential Novel Therapeutic Target
for Head and Neck Squamous Cell Carcinoma. Cancer Res. 2009;69(7):3021–31.

12. Molinolo AA, et al. Dysregulated molecular networks in head and neck carcinogenesis. Oral
Oncol. 2009;45(4–5):324–34.

13. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol.
2009;19(10):542–51.

14. Xu H, et al. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation
in head and neck carcinoma cells. Clin Cancer Res. 2011;17(13):4425–38.

15. Seiwert T, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with re-
current or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs.
2013;31(2):417–24.

16. Knowles LM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head
and neck squamous cell cancer. Clin Cancer Res. 2009;15(11):3740–50.

17. Singleton KR, et al. A receptor tyrosine kinase network composed of fibroblast growth factor
receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene
homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and
neck squamous carcinoma cell lines. Mol Pharmacol. 2013;83(4):882–93.

18. Park M, et al. Mechanism of met oncogene activation. Cell. 1986;45(6):895–904.
19. Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed

human cell line. Nature. 1984;311(5981):29–33.
20. Peschard P, Park M. From Tpr-Met to Met, tumorigenesis and tubes. Oncogene.

2007;26(9):1276–85.
21. Park M, et al. Sequence of met protooncogene Cdna has features characteristic of the tyrosine

kinase family of growth-factor receptors. Proc Natl Acad Sci U S A. 1987;84(18):6379–83.
22. Bottaro DP, et al. Identification of the Hepatocyte Growth-Factor Receptor as the C-Met

Protooncogene Product. Science. 1991;251(4995):802–4.
23. Rodrigues GA, Naujokas MA, Park M. Alternative splicing generates isoforms of the

met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol.
1991;11(6):2962–70.

24. Kim ES, Salgia R. MET pathway as a therapeutic target. J Thorac Oncol. 2009;4(4):444–7.
25. Gherardi E, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer.

2012;12(2):89–103.



5 The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma 107

26. Giordano S, et al. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature.
1989;339(6220):155–6.

27. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in
development, organ regeneration and cancer. Nat Rev Mol Cell Biol. 2010;11(12):834–48.

28. Gherardi E, et al. Structural basis of hepatocyte growth factor/scatter factor and MET
signalling. Proc Natl Acad Sci U S A. 2006;103(11):4046–51.

29. Komada M, et al. Proteolytic processing of the hepatocyte growth factor/scatter factor receptor
by furin. FEBS Lett. 1993;328(1–2):25–9.

30. Chen Z. Aberrant Activation of HGF/c-MET Signaling and targeted therapy in squamous
cancer, in signaling pathways in squamous cancer. In: Glick AB, Van Waes C, Editors. New
York: Springer; 2011. p. 462.

31. Prat M, et al. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol
Cell Biol. 1991;11(12):5954–62.

32. Gherardi E, et al. The sema domain. Curr Opin Struct Biol. 2004;14(6):669–78.
33. Basilico C, et al. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-

like region of Met. J Biol Chem. 2008;283(30):21267–77.
34. Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by

the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.
35. SadiqAA, Salgia R. METAs a Possible Target for Non-Small-Cell Lung Cancer. J Clin Oncol.

2013;31(8):1089–96.
36. Ganesan R, et al. Proteolytic activation of pro-macrophage-stimulating protein by hepsin.

Mol Cancer Res. 2011;9(9):1175–86.
37. Wang MH, et al. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for

molecular targeting in cancer therapy. Acta Pharmacol Sin. 2010;31(9):1181–8.
38. WelmAL, et al. The macrophage-stimulating protein pathway promotes metastasis in a mouse

model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci U S A.
2007;104(18):7570–5.

39. Yoon TM, et al. Expression of the receptor tyrosine kinase recepteur d’origine nantais and its
association with tumor progression in hypopharyngeal cancer. Head Neck. 2012.

40. Yao HP, et al. The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as
potential therapeutics against tumor growth-mediated by colon cancer cells. Mol Cancer.
2011;10.

41. Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a strategy used
by c-Met for STAT3 nuclear accumulation. J Cell Biol. 2008;182(5):855–63.

42. Kermorgant S, Zicha D, Parker PJ. PKC controls HGF-dependent c-Met traffic, signalling
and cell migration. EMBO J. 2004;23(19):3721–34.

43. Cho KW, et al. Identification of a pivotal endocytosis motif in c-Met and selective modulation
of HGF-dependent aggressiveness of cancer using the 16-mer endocytic peptide. Oncogene.
2013;32(8):1018–29.

44. Petrelli A, et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregu-
lation of c-Met. Nature. 2002;416(6877):187–90.

45. Li N, et al. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of
the cMet-tyrosine kinase. J Biol Chem. 2007;282(23):16764–75.

46. Singleton PA, et al. CD44 regulates hepatocyte growth factor-mediated vascular integrity—
role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem. 2007;282(42):30643–57.

47. Ogi S, et al. Sorting nexin 2-mediated membrane trafficking of c-Met contributes to sensitivity
of molecular-targeted drugs. Cancer Sci. 2013;104(5):573–83.

48. Kamei T, et al. Coendocytosis of cadherin and c-Met coupled to disruption of cell-cell
adhesion in MDCK cells—regulation by Rho, Rac and Rab small G proteins. Oncogene.
1999;18(48):6776–84.

49. Joffre C, et al. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol.
2011;13(7):827–U227.

50. Kermorgant S, Parker PJ. c-met signalling—spatio-temporal decisions. Cell Cycle. 2005;
4(3):352–5.



108 T. Y. Seiwert et al.

51. Ultsch M, et al. Crystal structure of the NK1 fragment of human hepatocyte growth factor at
2.0 A resolution. Structure. 1998;6(11):1383–93.

52. Donate LE, et al. Molecular Evolution and Domain-Structure of Plasminogen-Related
Growth-Factors (Hgf/Sf and Hgf1/Msp). Protein Sci. 1994;3(12):2378–94.

53. Kirchhofer D, et al. Structural and functional basis of the serine protease-like hepatocyte
growth factor beta-chain in Met binding and signaling. J Biol Chem. 2004;279(38):39915–24.

54. Stamos J, et al. Crystal structure of the HGF beta-chain in complex with the Sema domain of
the Met receptor. EMBO J. 2004;23(12):2325–35.

55. Chirgadze DY, et al. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode
for growth factor dimerization and receptor binding. Nat Struct Biol. 1999;6(1):72–9.

56. XuY, et al. Receptor-type protein tyrosine phosphatase beta (RPTP-beta) directly dephospho-
rylates and regulates hepatocyte growth factor receptor (HGFR/Met) function. J Biol Chem.
2011;286(18):15980–8.

57. Sattler M, et al. The role of the c-Met pathway in lung cancer and the potential for targeted
therapy. Ther Adv Med Oncol. 2011;3(4):171–84.

58. Bladt F, et al. Essential role for the C-Met receptor in the migration of myogenic precursor
cells into the limb bud. Nature. 1995;376(6543):768–71.

59. Borowiak M, et al. Met provides essential signals for liver regeneration. Proc Natl Acad Sci
U S A. 2004;101(29):10608–13.

60. Chmielowiec J, et al. c-Met is essential for wound healing in the skin. J Cell Biol.
2007;177(1):151–62.

61. Huang FI, et al. Hepatocyte growth factor activates Wnt pathway by transcriptional activation
of LEF1 to facilitate tumor invasion. Carcinogenesis. 2012;33(6):1142–8.

62. Huh CG, et al. Hepatocyte growth factor/c-met signaling pathway is required for efficient
liver regeneration and repair. Proc Natl Acad Sci U S A. 2004;101(13):4477–82.

63. Kim CH, et al. c-MET expression as an indicator of survival outcome in patients with oral
tongue carcinoma. Head neck-J Sci Spec. 2010;32(12):1655–64.

64. Weidner KM, et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is
responsible for epithelial morphogenesis. Nature. 1996;384(6605):173–6.

65. Comoglio PM, Giordano S, Trusolino L. Drug development of MET inhibitors: targeting
oncogene addiction and expedience. Nat Rev Drug Discov. 2008;7(6):504–16.

66. Grotegut S, et al. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-
mediated upregulation of Snail. EMBO J. 2006;25(15):3534–45.

67. Dong G, et al. Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K
signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vas-
cular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res.
2001;61(15):5911–8.

68. Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res.
2008;14(21):6735–41.

69. Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J
Cancer. 2010;46(7):1260–70.

70. Miyamoto M, et al. Prognostic significance of overexpression of c-Met oncoprotein in
cholangiocarcinoma. Br J Cancer. 2011;105(1):131–8.

71. Sierra J. c-MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med
Oncol. 2011;3(S1):S21–35.

72. Ma PC, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer
Metastasis Rev. 2003;22(4):309–25.

73. Mehra R, et al. Protein-intrinsic and signaling network-based sources of resistance to
EGFR- and ERBB family-targeted therapies in head and neck cancer. Drug Resist Updat.
2011;14(6):260–79.

74. Hayes DN, Grandis J, El-Naggar AK. Comprehensive genomic characterization of squamous
cell carcinoma of the head and neck in the Cancer Genome Atlas in AACR Annual Meeting
2013, AACR: Washington, DC.



5 The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma 109

75. Bandla S, et al. Comparative genomics of esophageal adenocarcinoma and squamous cell
carcinoma. Ann Thorac Surg. 2012;93(4):1101–6.

76. Gao JJ, et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using
the cBioPortal. Sci Signal. 2013;6(269).

77. Akervall J, et al. Genetic and expression profiles of squamous cell carcinoma of the head and
neck correlate with cisplatin sensitivity and resistance in cell lines and patients. Clin Cancer
Res. 2004;10(24):8204–13.

78. Tyner JW, et al. MET receptor sequence variants R970C and T992I lack transforming capacity.
Cancer Res. 2010;70(15):6233–7.

79. Tengs T, et al. A transforming MET mutation discovered in non-small cell lung cancer using
microarray-based resequencing. Cancer Lett. 2006;239(2):227–33.

80. Lengyel E, Sawada K, Salgia R. Tyrosine kinase mutations in human cancer. Curr Mol Med.
2007;7(1):77–84.

81. Schmidt L, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET
proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

82. Di Renzo MF, et al. Somatic mutations of the MET oncogene are selected during metastatic
spread of human HNSC carcinomas. Oncogene. 2000;19(12):1547–55.

83. Dulak AM, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma
identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45(5):478–U37.

84. Argiris A, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without
gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology
group trial. J Clin Oncol. 2013;31(11):1405–14.

85. Ma PC, et al. c-MET mutational analysis in small cell lung cancer: Novel juxtamembrane
domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.

86. Ma PC, et al. Functional expression and mutations of c-met and its therapeutic inhibi-
tion with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res.
2005;65(4):1479–88.

87. Ortiz-Padilla C, et al. Functional characterization of cancer-associated Gab1 mutations.
Oncogene. 2013;32(21):2696–702.

88. Sonnenberg E, et al. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine
kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse
development. J Cell Biol. 1993;123(1):223–35.

89. Takeuchi S, et al. Dual inhibition of met kinase and angiogenesis to overcome HGF-induced
EGFR-TKI resistance in EGFR mutant lung cancer. Am J Pathol. 2012;181(3):1034–43.

90. Straussman R, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors
through HGF secretion. Nature. 2012;487(7408):500–U118.

91. Turke AB, et al. Preexistence and clonal selection of MET amplification in EGFR mutant
NSCLC. Cancer Cell. 2010;17(1):77–88.

92. Garofalo M, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression
induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18(1):74–82.

93. Stabile LP, et al. c-Src activation mediates erlotinib resistance in head and neck cancer by
stimulating c-Met. Clin Cancer Res. 2013;19(2):380–92.

94. Guo A, et al. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad
Sci U S A. 2008;105(2):692–7.

95. Dulak AM, et al. HGF-independent potentiation of EGFR action by c-Met. Oncogene.
2011;30(33):3625–35.

96. Tang Z, et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated
erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22.

97. Bonine-Summers AR, et al. Epidermal growth factor receptor plays a significant role in
hepatocyte growth factor mediated biological responses in mammary epithelial cells. Cancer
Biol Ther. 2007;6(4):561–70.

98. Khoury H, et al. HGF converts ERBB2/Neu epithelial morphogenesis to cell invasion. Mol
Biol Cell. 2005;16(2):550–61.



110 T. Y. Seiwert et al.

99. Chen CT, et al. MET activation mediates resistance to lapatinib inhibition of HER2-amplified
gastric cancer cells. Mol Cancer Ther. 2012;11(3):660–9.

100. Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating
ERBB3 signaling. Science. 2007;316(5827):1039–43.

101. Schoeberl B, et al. An ERBB3 antibody, MM-121, is active in cancers with ligand-dependent
activation. Cancer Res. 2010;70(6):2485–94.

102. Meetze K, et al. The anti-tumor activity of the ERBB3 inhibitory antibody AV-203 in patient
derived tumor explant models. Eur J Cancer. 2012;48:126.

103. Vermorken JB, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the
efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic
squamous cell carcinoma of the head and neck who failed to respond to platinum-based
therapy. J Clin Oncol. 2007;25(16):2171–7.

104. Soulieres D, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor
receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer
of the head and neck. J Clin Oncol. 2004;22(1):77–85.

105. Vogelstein B, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–58.
106. Brennan DJ, et al. Antibody-based proteomics: fast-tracking molecular diagnostics in

oncology. Nat Rev Cancer. 2010;10(9):605–17.
107. Sen B, et al. Distinct interactions between c-Src and c-Met in mediating resistance to c-Src

inhibition in head and neck cancer. Clin Cancer Res. 2011;17(3):514–24.
108. Mandal M, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma:

association of Src activation with E-cadherin down-regulation, vimentin expression, and
aggressive tumor features. Cancer. 2008;112(9):2088–100.

109. Singleton KR, et al. A receptor tyrosine kinase network composed of fibroblast growth factor
receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene
homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and
neck squamous carcinoma cell lines. Mol Pharmacol. 2013;83(4):882–93.

110. Nakamura Y, et al. Constitutive activation of c-Met is correlated with c-Met overexpres-
sion and dependent on cell-matrix adhesion in lung adenocarcinoma cell lines. Cancer Sci.
2008;99(1):14–22.

111. Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is re-
quired for FAK to promote hepatocyte growth factor-induced cell invasion. Mol Cell Biol.
2006;26(13):5155–67.

112. Wang R, Kobayashi R, Bishop JM. Cellular adherence elicits ligand-independent activation
of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996;93(16):8425–30.

113. Orian-Rousseau W, et al. Hepatocyte growth factor-induced Ras activation requires ERM
proteins linked to both CD44v6 and F-Actin. Mol Biol Cell. 2007;18(1):76–83.

114. Matzke A, et al. Haploinsufficiency of c-met in cd44(-/-) mice identifies a collaboration of
CD44 and c-met in vivo. Mol Cell Biol. 2007;27(24):8797–806.

115. Orian-Rousseau V, et al. CD44 is required for two consecutive steps in HGF/c-Met signaling.
Genes Dev. 2002;16(23):3074–86.

116. Lin YM, et al. Hepatocyte growth factor increases vascular endothelial growth factor-
A production in human synovial fibroblasts through c-Met receptor pathway. PLoS One.
2012;7(11):e50924.

117. Eder JP, et al. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin
Cancer Res. 2009;15(7):2207–14.

118. Sulpice E, et al. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial
cells. Biol Cell. 2009;101(9):525–39.

119. Xin XH, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced
angiogenesis in vitro and in vivo. Am J Pathol. 2001;158(3):1111–20.

120. Bean J, et al. MET amplification occurs with or without T790M mutations in EGFR mutant
lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A.
2007;104(52):20932–7.



5 The Role of HGF/c-MET in Head and Neck Squamous Cell Carcinoma 111

121. Dufies M, et al. Mechanism of action of the multikinase inhibitor Foretinib. Cell Cycle.
2011;10(23):4138–48.

122. Xu L, et al. Combined EGFR/MET or EGFR/HSP90 Inhibition Is Effective in the Treatment
of Lung Cancers Codriven by Mutant EGFR Containing T790M and MET. Cancer Res.
2012;72(13):3302–11.

123. Michieli P, Di Nicolantonio F. Targeted therapies: tivantinib-a cytotoxic drug in MET
inhibitor’s clothes? Nat Rev Clin Oncol. 2013.

124. Scagliotti GV, et al. Rationale and design of MARQUEE: a phase III, randomized, double-
blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated
patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin
Lung Cancer. 2012;13(5):391–5.

125. Basilico C, et al. Tivantinib (ARQ197) Displays Cytotoxic Activity That Is Independent of
Its Ability to Bind MET. Clin Cancer Res. 2013;19(9):2381–92.

126. Scagliotti GV, Novello S, von Pawel J. The emerging role of MET/HGF inhibitors in oncology.
Cancer Treat Rev. 2013.

127. Ou SH, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition
(MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer
patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6.

128. Penuel J, Smith JC, Shen SQ. Integer programming models and algorithms for the graph
decontamination problem with mobile agents. Networks. 2013;61(1):1–19.

129. Zeng W, et al. Abstract 2734: c-Met antibody LY2875358 (LA480) shows differential
antitumor effects in non-small cell lung cancer. Cancer Res. 2012;72(8).

130. D’Arcangelo M, Cappuzzo F. Focus on the potential role of ficlatuzumab in the treatment of
non-small cell lung cancer. Biologics. 2013;7:61–8.

131. Ryan CJ, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized
phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone.
Clin Cancer Res. 2013;19(1):215–24.

132. Okamoto W, et al. TAK-701, a humanized monoclonal antibody to hepatocyte growth factor,
reverses gefitinib resistance induced by tumor-derived HGF in non-small cell lung cancer
with an EGFR mutation. Mol Cancer Ther. 2010;9(10):2785–92.

133. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med.
2012;366(6):489–91.

134. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol.
2013;31(15):1803–5.

135. Spigel DR, et al. Treatment rationale study design for the MetLung trial: a randomized, double-
blind phase III study of Onartuzumab (MetMAb) in combination with erlotinib versus erlotinib
alone in patients who have received standard chemotherapy for stage IIIB or IV met-positive
non-small-Cell Lung Cancer. Clin Lung Cancer. 2012;13(6):500–4.

136. Spigel D, et al. Final efficacy results from OAM4558 g, a randomized phase II study evalu-
ating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol.
2011;29(15 (Supplemental; abstr 7505)).

137. Xie Q, et al. Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET
inhibition in glioblastoma. Proc Natl Acad Sci U S A. 2012;109(2):570–5.

138. Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. Targeting MET as a strategy
to overcome crosstalk-related resistance to EGFR inhibitors. Lancet Oncology. 2009;10(7):
709–17.

139. Stamos J, et al. Crystal structure of the HGF beta-chain in complex with the Sema domain of
the met receptor. EMBO J. 2004;23(12):2325–35.

140. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3.
Nat Rev Cancer. 2009;9(7):463–75.

141. Yamamoto H, Toyooka S, Mitsudomi T. Impact of EGFR mutation analysis in non-small cell
lung cancer. Lung Cancer. 2009;63(3):315–21.



Chapter 6
Insulin-like Growth Factor-1 Receptors in Head
and Neck Cancer

Steven A. Rosenzweig and Casey O. Holmes

Abstract The insulin-like growth factor 1 receptor (IGF-1R) has emerged as a sig-
nificant contributor to the progression and metastatic spread of a number of cancers,
including head and neck cancer (HNC). The receptor is most frequently overex-
pressed in cancer cells, with no evidence of activating mutations to date. Because
this receptor exhibits robust activation of PI3K/Akt leading to mTOR activation and
anti-apoptotic signaling, it has the capability of enhancing the tumorigenic signaling
of other growth factors and cytokines. It is this property of the IGF-1R that has led
to its becoming a viable target for cancer therapeutic strategies. In HNC, the IGF-1R
has been shown to be involved in the activation of multiple signaling pathways and to
be responsible, in part, for some cases of acquired resistance to chemotherapeutics.
In this chapter, the role of the IGF-1R and the components of this system will be
discussed and their roles in HNC will be evaluated.

Keywords Insulin-like growth factor 1 receptor · Insulin Receptor Substrate 1 and 2 ·
Invadopodia · Biomarker · Metastasis
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Erk Extracellular signal-regulated kinase
FFPE Formalin-fixed, paraffin-embedded
GEF Guanine nucleotide exchange factor
GPCR G-protein coupled receptor
HB-EGF Heparin-binding-epidermal growth factor
HIF Hypoxia-inducible factor
HNC Head and neck cancer
HNSCC Head and neck squamous cell carcinoma
HuR Human antigen R
IGF-1 Insulin-like growth factor-1
IGF-1R Insulin-like growth factor-1 receptor
IGFBP Insulin-like growth factor binding protein
IRS Insulin receptor substrate
IR Insulin receptor
kDa kilodaltons
M6P Mannose-6-phosphate
MAPK Mitogen-activated protein kinase
miR microRNA
MMP Matrix metalloproteinase
mTORC1 mammalian target of rapamycin complex 1
NEDD9 Neural precursor cell expressed, developmentally

down-regulated 9
PAK1 p21 activated kinase 1
PI 3K PhosphatidylinositoI 3-kinase
Ptdins-4,5 P2 PhosphatidylinositoI-4,5 bisphosphate
Ptdins-3,4,5 P3 PhosphatidylinositoI-3,4,5 trisphosphate
PDK-1 Phosphoinositide-dependent kinase-1
PH Pleckstrin homology
PTB Phosphotyrosine binding
Rac1 Ras-related C3 botulinum toxin substrate 1
RhoA Ras homolog gene family, member A
ROCK Rho-associated, coiled-coil containing protein kinase
RPE Retinal pigment epithelium
RTK Receptor tyrosine kinase
RTKI Receptor tyrosine kinase inhibitor
SH2 Src homology 2
Shc Src homology and collagen containing
S1PR Sphingosine-1-phosphate receptor
TGF-β Transforming growth factor-β
TKI Tyrosine kinase inhibitor
VEGF Vascular endothelial growth factor

Head and neck squamous cell carcinoma (HNSCC) accounts for more than 90 % of
all pharyngeal and oral cavity tumors. With nearly 8,000 deaths a year nationally,
it constitutes approximately 4 % of all cancers in the USA and is one of the six
most frequent cancers worldwide. Tobacco and alcohol use are the primary risk
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factors in this disease, however, additional factors contribute to this cancer [13].
Consequently, novel molecular markers for HNSCC are being sought as potential
new therapeutic targets. In that context, overexpression of some highly validated
proteins, such as epidermal growth factor receptor (EGFR), have been reported in
a variety of human cancers, including breast, lung, colon, prostate, esophageal,
brain, ovary, and head and neck cancer (HNC, [19], [33], [79]), and therapeutics
targeting the EGFR have proved valuable in the clinic [29], [102], as discussed in
Chap. 4. Similarly, dysregulation of several components of the insulin-like growth
factor (IGF) pathway have been observed in a variety of cancers including HNC
[95]. Overexpression of the insulin-like growth factor 1 receptor (IGF-1R) as well
as other components of the IGF pathway have been identified both in human tissue
samples and cell lines by our lab and others [4], [28], [89]. Additionally, preclinical
as well as clinical studies have shown that IGF-1R synergizes with EGFR to produce
a malignant phenotype [80], [85]. These findings support a role for targeting both
the IGF-1R and EGFR for optimal cancer treatment.

The role of IGF-1R as a cancer promoter hinges on its ability to signal through both
the ERK/MAPK pathway and the AKT pathway leading to cell cycle progression,
growth, survival, and differentiation [95]. Several novel inhibitory molecules have
been developed to target the IGF pathway including IGF-1R monoclonal antibodies
such as figitumumab and cixutumumab, small molecule tyrosine kinase inhibitors
such as BMS-754807 and OSI-906, neutralizing antibodies to IGFs such as MEDI-
573 and BI-836845, and recombinant IGF binding proteins [95], [106]. The role
of IGF-1R in HNC progression, its cross talk with other pathways, and therapeutic
targeting of this pathway will be discussed herein.

6.1 IGF-1R in Normal Cellular Function

The IGF system (Fig. 6.1) consists of three receptors: IGF-1R, IGF-2R, and the
insulin receptor (IR) and three ligands: IGF-1, IGF-2, and insulin. In addition six IGF-
binding proteins (IGFBP-1-6) are secreted by many cell types and serve to attenuate
the actions of IGF ligands. Among these, the IGF-1R and IR are most relevant
to the enhancement of HNC. These type 1 receptor tyrosine kinases (RTKs) are
initially synthesized as single-chain precursors that are disulfide bonded and cleaved
within the endoplasmic reticulum and Golgi complex to first yield a heterodimer
and finally a heterotetramer. Once the receptor has reached the cell surface, IGF-1,
IGF-2 or insulin binding to IGF-1R induces a conformational change resulting in
receptor transphosphorylation [20], [101]. This results in the immediate recruitment
of, docking to, and tyrosine phosphorylation of insulin receptor substrate (IRS)-1
(or IRS-2) [8]. The IRS proteins are the immediate downstream effectors of the
IGF-1R, serving as scaffold proteins responsible for docking effector proteins. The
IR signaling pathway, like the IGF-1R pathway, signals through IRS proteins. The
differences in the roles of IR and IGF-1R are primarily based on tissues in which each
receptor type is expressed [68]. The growth-promoting effects of IGF-1, IGF-2 and
insulin are believed to be regulated by IGF-1R signaling, while the IR is responsible
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Fig. 6.1 IGF-1 receptor signaling and regulation. IGF-1Rs action is negatively regulated by IGF-
BPs, which are, in turn, susceptible to protease action. In addition, IGF-1R expression is influenced
by miR-7, while IRS-1, IRS-2, and additional signaling effectors are regulated by miR-145

for the metabolic actions of insulin. Consistent with this, IGF-2 and IR-A (see below)
are predominantly expressed in fetal tissues to aid growth-promoting actions. This is
also true for cancer tissues, where the existence of hybrid heteroteramers may also
affect signaling.

It has been postulated that IRS-1 signals to components of growth promoting and
anti-apoptotic pathways and its expression is particularly important for cell trans-
formation [8]. IRS-1 contains 18 potential sites of tyrosine phosphorylation that
may serve as Src homology-2 (SH2) domain or phosphotyrosine-binding (PTB)
domain-binding sites for docking downstream effectors. The best documented IGF-
1R/IRS-1 effector pathway involves activation of Akt, which leads to stimulation of
mTORC1 and proliferative, prosurvival anti-apoptotic signaling that contributes to
the tumorigenic process. This pathway is initiated following the binding of phos-
phorylated IRS-1 to an SH2 domain of the p85 regulatory subunit of PI-3 Kinase
(PI-3K) [52]. The catalytic p110 subunit then moves to the membrane to phospho-
rylate phosphatidylinositol-4,5 bisphosphate (Ptdins-4,5 P2) in the three position to
form Ptdins-3,4,5 P3. Ptdins-3,4,5 P3 serves as a binding site for proteins contain-
ing pleckstrin homology (PH) domains, such as Akt, many of which are targets of
phosphoinositide-dependent kinases 1 and 2 (PDK 1 and 2 [83]). This differs from
other RTKs, which, following transphosphorylation, directly bind to and activate
immediate downstream effectors such as PI-3K. IGF-1R can also use this direct sig-
naling mechanism via the extracellular signal regulated kinases (ERKs 1/2) where the
signaling protein Src homologous and collagen containing (Shc)-66 binds directly
to the phosphorylated IGF-1R after IGF-1 stimulation [91] or via direct linkage to
PDK1 which has recently been shown to provide procancer signaling critical for
IGF-1-mediated survival [2].
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The six soluble IGFBPs primarily act as IGF-1/2 “antagonists” that bind their
ligands with high affinity and block their access to the IGF-1R [77]. In certain cases
however, preincubation of cells with IGFBP-3 before IGF-1 treatment leads to the
accumulation of cell-bound forms of IGFBP-3 with lowered affinity for IGF, which
may instead, enhance the IGF-1/IGF-1R interaction. However, this mechanism has
never been proven explicitly [26].

Beyond the IGF-1R, the IR also impacts cell growth signaling in normal cells
and in cancer. Two isoforms of the human IR exist, IR-A and IR-B, resulting from
alternative splicing of the 22 exon IR gene [9]. IR-A is truncated by 12 amino
acids relative to IR-B, due to skipping of exon 11, which encodes residues 717–
728 at the C-terminal end of the α-subunit. IR-A is widely distributed across most
tissues, whereas IR-B is present in liver, muscle, adipose, and kidney and regulates
metabolism and glucose uptake [9]. Of note, IR-A is expressed in fetal tissues and
in cancer cells; it preferentially binds IGF-2 and regulates growth-promoting actions
[27], [81]. Hybrid receptors consisting of IGF-1R:IR-A or IGF-1R:IR-B hybrid
heterotetramers bind to IGF-2 or insulin and IGF-1, respectively, and participate in
cancer cell signaling [66] (Fig. 5.1).

6.2 The IGF-1R and Cancer

Baserga and coworkers first showed that IGF-I signaling was an absolute requirement
for viral transformation of cells by transfecting mouse embryonic fibroblasts that
were either IGF1-R null or wild type with a Simian virus 40 (SV40) plasmid and
assaying for cell growth. IGF-1R null cells were resistant to transformation, but could
be prompted to transform if they were first transfected with an IGF-1R plasmid [82]. It
was subsequently shown that many oncogenes, including v-Src and the heterotrimeric
G protein Galpha13, require the IGF-1R signaling pathway, but not necessarily the
receptor itself, to exhibit transforming activity [7], [8], [69] This requirement is
consistent with the prosurvival signaling properties of IGF-1R mediated by Akt [94].
More recently, a complex between the IGF-1R (or IR) with polyoma virus middle
T (PyVmT) antigen was reported [65]. Of note, ligand binding to receptor increases
the formation of these complexes, their tyrosine phosphorylation, and recruitment
of c-Src and phospholipase-Cγ1, leading to PyVmT activation and tumor initiation
[65].

Beyond this, growth-promoting effects of the IGF-1R include its role in influ-
encing the microenvironment to enhance tumorigenesis. For example, the IGF-1R
has been associated with creating a permissive environment for liver metastasis by
increasing autocrine IL-6 signaling and decreasing apoptosis in a STAT-dependent
manner [53]. This creation of a permissive function supports activity of other
oncogenic drivers mutated in cancers with IGF-1R involvement.

The requirement for functional IGF-1R expression in supporting cell transforma-
tion underscores the importance of autocrine and paracrine IGF-2 and IGF-1 action
in tumors and the tumor microenvironment, respectively, in supporting tumorigenic
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progression. The autocrine and paracrine functions of the two principal ligands for
IGF-1R, IGF-1, and IGF-2, have been reported to be dysregulated in many cancers.
Recent work to determine how the IGF pathway may play a role in cross talk between
tumor and stroma in HNC has shown that coculture stimulation of keratinocytes with
squamous cell carcinoma fibroblasts causes changes in fibroblast expression of ker-
atin 19 and vimentin that are due, in part, to actions by IGF-2 [93]. This indicates
that the IGF pathway acts not only through enhanced proliferation of cells, but also
by promoting epithelial to mesenchymal transition (EMT) via epithelial and stromal
cell cross talk using IGF-2. In normal cells, IGF-2 is imprinted and only expressed
from the paternal allele, limiting its expression; loss of imprinting results in IGF-2
overexpression [21]. The IGF-2 gene is the most overexpressed gene in colorectal
cancer [108], consistent with signaling by this ligand enhancing tumorigenesis [16],
[69], [82]. IGF-1 upregulation has also been reported in a variety of cancers, including
HNC [89], [105].

Epidemiologic studies have shown that high circulating levels of IGF-1 are as-
sociated with increased risk of second primary tumors (SPTs) of the head and neck
[104] as well as breast [34], prostate [14], lung [107], and colon [60]. Autocrine
and paracrine IGF signaling is also regulated by the IGFBPs in colonic myofibrob-
lasts. In normal tissues, IGFBPs bind and sequester IGFs, limiting their biological
accessibility. In cancer, upregulated matrix metalloproteinase-7 (MMP7)-mediated
cleavage of IGFBP-5 releases bound IGF-2 which can then act as a myofibroblast
mitogen [37]. Related to this, methylation of the IGFBP-3 promoter, resulting in
decreased local IGFBP-3 expression and hence more bioavailable IGF, has been as-
sociated with poor prognosis in non-small cell lung cancer (NSCLC) [15]. IGF-1R
signaling leads to cell transformation [5], [6], enhanced tumorigenesis, and a switch
from antiapoptotic to invasive/metastatic signaling in cancer [56].

In cancer, the IGF-1R pathway engages in cross talk with other critical oncogenic
signaling proteins. For example, elevated expression of IGF-1 activates EGFR by
stimulating a cell surface matrix metalloproteinase (MMP), which in turn cleaves the
membrane-tethered ligand heparin-binding EGF (HB-EGF), enabling it to bind to
and activate the EGFR [77]. Recent studies on IGF-1R and EGFR signal cross talk
revealed that PDK1 is tyrosine phosphorylated by and binds directly to the IGF-1R,
providing an alternative mode of receptor cross talk. In addition to IGF-1R crosstalk
to the EGFR, EGFR activation can also enhance IGF-1R signaling by mediators of
IGF-1R action, such as IRS-1 [11]. Cross talk between IGF-1 and vascular endothelial
growth factor (VEGF) signaling has also been described. IGF-1 treatment of retinal
pigment epithelium (RPE) increases VEGF expression independent of hypoxia [72],
with IGF-1R positively regulating ERK1/2 production [90]. Other work supporting
interaction of these pathways indicates that IGF-1 collaborates withVEGF to support
vascularization of the retina in infant development [36]. We have investigated the
role of IGF-1/VEGF cross talk in malignancy. We found that IGF1 enhances VEGF
expression both by increasing expression of hypoxia inducible factor-1 α (HIF-1α),
and through a HIF-1α independent role [87]. Both the ERK1/2 and PI3K/Akt path-
ways were shown to be central to IGF regulation of VEGF production; PI3K/Akt
through promoter activation and secretion of VEGF, and ERK1/2 by promoting
S phase entry, a critical step in cell cycle progression [88].
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IGF-1R also is engaged in cross signaling with the estrogen and progesterone
receptors [92], [97]. Breast cancer cell resistance to estrogen deprivation leads to
alternative signaling pathways and the association of estrogen receptor-α with Shc,
Src, EGFR, and the IGF-1R [91]. IGF-1R/EGFR cross talk has been described
in normal human mammary epithelial cells [1], and in tamoxifen-resistant MCF-7
cells where increased sensitivity to the proliferative effects of IGF-1/2 following
estradiol or tamoxifen treatment was blocked by treatment with the c-Src inhibitor
SU6656 or the anti-IGF-1R monoclonal antibody AG1024 [49]. IGF-1R signaling
was also shown to activate the sphingosine-1-phosphate receptor (S1PR), a GPCR
that regulates cell proliferation and migration [24]. Another GPCR activated by
the IGF-1R is the (C-C motif) receptor 5 (CCR5), by inducing expression of the
CCR5 ligand, chemokine (C-C motif) ligand 5 (CCL5, also referred to as RANTES)
[63]. COX2 activation then increases prostaglandin E2 (PGE2) production from
arachidonic acid. This allows PGE2 to act on EP2 and EP4 receptors to elevate
cAMP levels, in turn resulting in the expression of amphiregulin, an EGFR ligand.
These events further demonstrate the concept that IGF-1R signaling synergizes with
other RTKs and GPCRs to modulate cell proliferation, tumorigenesis, and metastasis.

6.3 Role of the IGF-1R in HNC

While less studied as a therapeutic target in HNC compared to the EGFR, compelling
evidence exists for a role of the IGF/IGF-IR system in human neoplasia, which has
led to inhibition of IGF-1R-signaling as an attractive strategy for treating cancers
such as HNC [76]. IGF1-Rs are overexpressed in the majority of HNC cell lines tested
[89]. Primary human tumor specimens overexpress IGF-1Rs, IGF-1, and IGF-2; they
also show reduced levels of IGFBP-2, increasing IGF-1/2 access to the IGF-1R [89].
Similarly, low IGFBP-3 concentrations are associated with increased risk for tongue
cancer and that IGFBP-3 levels may serve as a prognostic marker for aggressive
HNC [67].

The mechanism of oncogenic promotion by the IGF system hinges on its abil-
ity to stimulate proliferation and migration, and on its critical role in oncogene
transformation [70] as well as in its ability to cross talk with other receptors and
stimulate angiogenesis. One role of IGF-1R activation is to induce EGFR transacti-
vation, or EGFR kinase activity, for ERK activation [50]. This is mediated indirectly
via receptor-activated shedding of EGFR ligands including HB-EGF [53] and am-
phiregulin [109] (see above) or directly through IGF-1R/EGFR complex formation
[50]. In HNC cell lines, resistance to the EGFR tyrosine kinase inhibitors (TKIs)
gefitinib and erlotinib was shown to be the result of increased IGF-1R activity, sug-
gesting that coinhibition of both the EGF and IGF-1 receptors may provide a more
effective targeting in this cancer [42].

Another role of IGF-1R signaling in HNC is to increase VEGF-A expression and
the autocrine/paracrine activation of VEGFR2 [39], [88]. Recent work has suggested
a novel role for IGF-1R regulation of VEGF, distinct from its role in mediating an-
giogenesis, in which VEGF enhances signaling pathways promoting the invasive



120 S. A. Rosenzweig and C. O. Holmes

behavior of HNSCC cells [3]. VEGF165, an isoform of VEGF-A, is the principal
isoform detected and the one most commonly overexpressed in solid tumors. Using
a phosphotyrosine proteomics analysis on the HNC SCC-9 cell line, we identified a
cluster of proteins involved in focal adhesions, cell motility and invasion including
focal adhesion kinase (FAK), paxillin, cortactin and neural precursor cell expressed
developmentally downregulated 9 (NEDD9/HEF1 [96]) as induced by VEGF [58].
NEDD9 expression was required for VEGF-induced cell migration and invasion
and the formation of invadopodia; organelles responsible for cancer-cell invasion.
Significantly, NEDD9 expression has been linked to the metastatic signatures of
glioblastoma [64] and melanoma [48]. Immunohistochemical and deep sequencing
analysis of human HNC specimens revealed that NEDD9 expression was highest in
the most advanced tumors and those tumors expressing high NEDD9 levels had the
greatest chance for metastasis [57]. The specific signaling pathway(s) coordinated
by NEDD9 remains a fertile area of research. VEGF and other growth factors em-
anating from tumor cells and surrounding stroma may also influence this signaling
paradigm. This pathway was identified in multiple HNC cell lines, indicating that
VEGF regulates HNC cell migration, invasion, MMP expression, and invadopodia
formation in an IGF-1R/NEDD9-dependent manner [31], [58].

6.4 IGF and IGFBP Proteins as Prognostic Biomarkers in HNC

Although the mechanism of cancer promotion via the IGF-1R remains incompletely
delineated, over the years several studies have shown that dysregulation of the IGF
pathway consistently occurs in HNC [28], [41], [98]. A considerable amount of effort
has gone into determining whether serum levels of IGF system components, notably
IGF-1 and IGFBP-3, might serve as prognostic biomarkers in breast, prostate, colon,
and other cancers, with mixed results [71]. The outcomes of these studies have under-
gone significant reevaluation and meta-analyses with the results being inconclusive.
Nonetheless, each cancer requires thorough evaluation, as in the case of breast can-
cer where circulating IGF-1 was positively associated with breast-cancer risk for
estrogen-receptor-positive tumors [25]. A recent prospective analysis of IGF-1, IGF-
2, IGFBP-3, and IGFBP-2 serum levels at the start and end of radiotherapy evaluated
17 patients with HNC out of a total of 163 patients with a variety of cancers (over four
different cancers were analyzed) compared to 13 healthy controls [62]. The results of
this study indicated the difference between serum IGF-1/2 and IGFBP-2/3 levels in
HNC patients before and after radiation therapy were insignificant, suggesting that
they are ineffective prognostic markers for the efficacy of radiotherapy.

As discussed above, serum levels of the IGFs and IGFBPs are not a simple reflec-
tion of changes in secretion at the tumor level. IGFBP-3 is synthesized and secreted
by many tissues and tumor types, as are IGF-1, IGF-2, and IGFBP-2. However,
IGF-1 and IGFBP-2 are synthesized and secreted in large quantities by the liver, and
this can mask the production by other sites. In a separate study, salivary levels of
IGF-1, MMP-2 and MMP-9 were found to be higher in patients with oral cancer
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compared to healthy age- and gender-matched controls [86]. While it is unclear what
these elevated levels may be the result of pathologically, they suggest that one or
more of these proteins may serve as an oral cancer biomarker. We have found that
IGFBP-2 levels were reduced in human HNC tumor specimens compared to adjacent
normal tissue [89]. This is similar to what was reported for IGFBP-5 in colonic my-
ofibroblasts [38]. In the latter case, reduced IGFBP-5 levels resulted from enhanced
MMP-mediated degradation. In our studies we have not validated whether reduced
IGFBP-2 levels result from reduced expression or increased degradation.

6.5 IGF-1R Regulation by miR

There has been a significant upsurge in the study of microRNAs (miRs) and their
roles in cellular dysregulation in cancer. miRs are 18–24 base pair RNAs that are
not translated. Gene regulation via miRs is primarily through posttranscriptional
binding to an mRNA target and prevention of translation. It has been suggested that
as many as 800–1,000 miRs may exist [10], making this a fertile area for discovery
in health and disease. miRs are key regulators of most cellular processes, ranging
from cell motility, invasion, proliferation, differentiation, survival, and apoptosis.
Of significance, miRs have been implicated as proto-oncogenes (oncomiRs) or as
tumor suppressors (antagomiRs) and exhibit altered expression in different cancers,
including HNC [54]. Making the landscape of oncogenesis even more complex, a
single miR may bind to several targets both within a single pathway and across
signaling events. Understanding which miRs can interact with the IGF pathway is
paramount in understanding IGF dysregulation in cancer. Several miRs, including
miR-7, miR-139, miR-145, and miR-675, have been identified as having a binding
site in the IGF-1R 3’UTR and have subsequently been shown to affect IGF-1R levels
within human tumor specimens, in vivo mouse models, and tumor cell lines (Fig. 6.1).

Jiang and coworkers recently analyzed miR-7 demonstrating its role in regulating
IGF-1Rs in oral cancer cell lines [43]. Of note, a bioinformatics profiling of miR-7
targets revealed that in addition to the IGF-1R, additional signaling proteins targeted
include IRS-1/2, the catalytic subunit of PI 3K, EGFR, raf-1, and PAK1 (p21 activated
kinase 1). miR-7 was shown to suppress IGF-1R expression with a resultant decrease
in proliferation and increase in apoptosis, suggesting a future role for miR-7 in HNC
therapeutics. It will be important to establish miR-7 downregulation in HNC as
reported in glioblastoma [45]. miR-7 is regulated via human antigen R (HuR), an
RNA binding protein (RBP). This RBP also represses expression of miR-675, a miR
associated with decreased cell proliferation during normal development. Keniry and
colleagues recently showed that a decrease in miR-675 expression subsequently
increases IGF-1R expression [46].

miR-145 also contributes to IGF-1R regulation in some cancers. A decrease in
miR-145 expression has been observed in a variety of epithelial malignancies, and
in hepatocellular carcinoma (HCC) in particular, it has been related to more aggres-
sive cancer phenotypes and decreased life expectancy versus HCC patients without
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miR-145 dysregulation [51]. Further, miR-145 binding regions in the 3’UTR of IRS-
1 and -2 have been identified and verified using luciferase reporter assays. Inhibition
of IGF-1R leading to MMP-2 downregulation via miR-139 upregulation has been
studied. miR-139 downregulation leads to more invasive colorectal cancer pheno-
types, although it does not seem to affect tumor proliferation [84]. Other miRs have
been identified in HNC [103]. For example, miR-138 [44] reduces RhoC and ROCK
levels, and miR-184 acts as an oncomiR. Therefore, it will be important to exam-
ine miRs that specifically target IGF-1 system components in HNC as well miRs
that target effectors of IGF-1 and other growth factor signaling cascades. As one
example, miR-222, which targets MMP-1 and manganese superoxide dismutase-2
to block cell invasion and metastasis, is lost in HNC [55]. In some malignancies,
such as chronic lymphocytic leukemia, miR profiles have been established, leading
to opportunities for targeted therapy [59]. Further understanding of miR circuitry
and dysregulation in HNC is required in order to pursue a complete understanding
of the malignant process and to identify potential therapeutic targets.

6.6 Therapeutic Targeting of IGF in Cancer

Given that reduced IGF-1R signaling has the potential of lowering cancer incidence in
a variety of cancers, targeting this pathway may lead to decreased tumor growth and
metastasis [40]. To this end, a number of molecular approaches have been developed
for the targeting of the IGF system [76] (Table 6.1). Accordingly, the IGFBPs or
IGFBP-mimetics may serve as therapeutics or lead compounds for developing small
molecule IGF antagonists [75], [76]. Similarly, several experimental approaches for
inhibiting primary tumor growth, including IGF-1R blocking antibodies, dominant
negative mutants, antisense cDNA, and siRNA to downregulate IGF-1R expression
have demonstrated the therapeutic potential of interfering with IGF-1R-mediated
signaling in vivo, resulting in the introduction of NVP-AEW541 as the first small
molecule IGF-1R TKI as a potential cancer therapeutic [30]. Of these potential
therapies, antibodies to the IGF-1R, TKIs, and IGFBP-mimetics have been most
intensely investigated.

The use of IGF-1R antibodies to specifically block the IGF-1R with minimal
effect on the IR showed promise in early preclinical studies. Both cell culture and
xenograft investigations illustrated a decrease in tumor growth [17], [40]. Recently,
enthusiasm for these inhibitors has waned, or has been redirected, as clinical trials
consistently showed very little to no response to single-drug treatment [23], [99].
The lack of efficacy is thought to be due to compensatory EGFR upregulation upon
IGF-1R blockade [85]. New strategies aimed at blocking both IGF-1R and EGFR are
underway [18] with coinhibition paired with radiation showing early promise [61].

Another class of therapeutics aimed at blocking IGF pathway signaling is the re-
ceptor tyrosine kinase inhibitors (RTKIs). Initial excitement over these compounds
was reserved due to identical ATP binding sequences being present in the IGF-1R
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Table 6.1 Drugs targeting the IGF system

(A) Anti-IGF-1R mAbs

Inhibitor Isotype Company Stage

IMC-A12 fully human IgG1
(cixutumumab)

Imclone, Inc., NY, NY Phase III Phase 1/II
plus doxorubicin

AMG-479 fully human IgG1
(ganitumumab)

Amgen, Thousand Oaks, CA Discontinued

AVE1642 humanized IgG1 Sanofi-Aventis, Paris, France Discontinued
BIIB022 human non-glycosylated

IgG4
Biogen Idec, Cambridge,

MA
Phase I Phase I with

sorafenib in HCC
CP-751,1871 fully human IgG2

(figitumumab)
Pfizer, NY, NY Discontinued

MK-0646 humanized IgG1
(dalotuzumab)

Merck, Whitehouse Station,
NJ

Phase III

R-1507 fully human IgG1
(robatumumab)

Roche, Basel, Switzerland Discontinued

Sch717454 fully human IgG1,
(19D12)

Schering-Plough,
Kenilworth, NJ

Discontinued

h10H5 Mouse anti-human Genentech, South San
Francisco, CA

Preclinical

MM-141 Bispecific tetravalent
antibody to IGF-1R &
ErbB3

Merrimack Pharmaceuticals,
Cambridge, MA

Phase I

(B) IGF-1R TKIs

Inhibitor Company Stage

AXL1717 Axelar, Stockholm, Sweden (picropodophyllin) Phase I
BMS-754807 Bristol-Myers Squibb, Princeton, NJ Phase I/II
INSM-18 Insmed, Richmond, VA; IGF-1R and

HER2/Neu inhibitor) NDGA
Phase I/II

OSI-906 OSI Pharmaceuticals, Melville, NY, linsitnib Phase I/II
NVP-AEW541 Novartis, Basel, Switzerland Discontinued
XL-228 Exelixis, South San Francisco, CA, (IGF-1R,

Src, FGFR, Bcr-Abl)
Preclinical

KW-2450 Kyowa Kirin Phase I/II
ABDP AstraZeneca Preclinical
A-928605 Abbott Preclinical
PL225B Piramal Enterprises Limited Phase I

(C) IGF-1R Anti-Sense Oligos

Inhibitor Company Stage

ATL1101 Antisense Therapeutics, LTD Afandin Pty, Ltd. Preclinical

(D) IGF-1 and IGF-2 Ligand Sequestration Strategy

Inhibitor Company Stage

rhIGFBP3
(mecasermin
rinfabate)

Insmed, Inc., Richmond, VA (formerly Celtrix)
Iplex

Preclinical

MSDI-573 Medimmune Phase II
BI836845 Boehringer Ingelheim Phase I
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and IR resulting in cotargeting of both receptors [40]. However, RTKIs were effi-
cacious preclinically and cotargeting both the IGF1-R and IR may be advantageous
in cancer, with the caveat that this inhibition must be tumor-cell specific [78]. Cur-
rently, at least two Phase II trials combining linsitinib with topotecan in patients with
NSCLC are underway (NCT01533181 and NCT01387386).

The use of IGF-1/2 sequestering agents is another option for downregulation of
IGF-1R signaling in cancer. IGFBPs are naturally occurring molecules that serve this
function. Interestingly, the binding domain on different IGFBPs is highly variable,
making drug design difficult [75]. Dysregulation of IGFBPs 2, 3, and 5 has been
associated with cancer indicating that either introducing recombinant IGFBPs or ra-
tional drug design should focus on these species [76]. Our lab has explored IGFBP-2
as a lead molecule in inhibitory therapeutics [47], [73], [74]. Moreover, the appli-
cation of IGFBP-2 as a cancer therapeutic is further strengthened by its impact on
metabolic regulation [100]. The levels of IGFBP-2 and IGFBP-1 decrease in type
2 diabetes, as a result of hyperinsulinemia [12]. Compared to wild-type animals,
IGFBP-2 transgenic mice exhibit a lean phenotype, are protected against developing
age-related glucose intolerance, insulin resistance, and high blood pressure, and are
resistant to developing obesity and insulin resistance when fed high-energy or high-
fat diets [100]. In addition to their obesity resistance, these animals have reduced
leptin levels, all of which suggest that IGFBP-2 may be a factor in obesity prevention
[100]. A microarray analysis of leptin action revealed upregulation of IGFBP-2 in
the livers of leptin versus vehicle-treated ob/ob mice [35]. This finding was further
corroborated by acute IGFBP-2 overexpression in ob/ob, type 1 and type 2 diabetic
mice, using adenoviral infection; in all cases plasma glucose and insulin levels were
reduced. This improved glycemic control, which was independent of weight loss and
food intake, was also observed in leptin-resistant animals, indicating that IGFBP-2
acts downstream of leptin action [35]. These findings provide further rationale for
considering IGFBP-2 as a cancer therapeutic based on the reduced diabetic symptoms
that IGFBP-2 therapy would likely provide. There is a growing literature showing
that type 2 diabetes and cancer share many risk factors [32] and that drugs used to
treat diabetes may reduce (e.g., metformin) or increase (e.g., glargine insulin) cancer
risk. In addition to the increased risk posed by elevated IGFs, insulin, IGF-1R, and
reduced IGF-2R levels in contributing to cancer incidence, reduced IGFBP-2 levels
should also be considered [22]. While optimal therapeutic IGF targeting has not yet
been attained, promising data is accumulating that with appropriate combination
therapy and tumor biomarker targeting, IGF pathway disruption may be developed
into a novel cancer therapeutic.

6.7 Summary and Perspective

With the introduction of molecularly targeted approaches to a variety of cancers
including HNC, it is now possible to personally tailor each patient’s therapy. The
IGF-1R and its interactions with other growth factor systems lead to activation of
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a multitude of downstream effectors, each serving as a potential target for HNC
therapeutics. Optimal targeting of each activated system must be achieved in order
to avoid tumor evasion of therapy. Much work remains to determine which therapies
to use, and when, for the best patient outcomes. As basic scientists continue to map
out the complex interactions of the tumor with its host, better therapeutic options
will follow. With the identification of new regulators, such as miRs and access
to next-generation sequencing platforms, it is likely that alternative approaches to
personalized medicine will be designed. Targeting of the IGF system in HNC may
prove to be an important benefactor of this approach.
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Chapter 7
The PI3K Signaling Pathway in Head and Neck
Squamous Cell Carcinoma

Jason D. Howard and Christine H. Chung

Abstract The PI3K/PTEN/AKT/mTOR signaling axis has been intensively studied
in many cancer systems. Current evidence suggests deregulation of this pathway
plays a unique role in the initiation, development, and recurrence of head and
neck squamous cell carcinoma (HNSCC). A heterogeneous disease by nature, HN-
SCC encompasses a disparate collection of anatomical sites with complex tumor
biology. Yet, PI3K/PTEN/AKT/mTOR signaling has an intimate role in nearly ev-
ery facet of this disease. In this chapter, we will provide a brief introduction to
the mechanisms involved in PI3K/PTEN/AKT/mTOR signaling and how specific
alterations in these signaling nodes enable HNSCC development. We will also
discuss differences in PI3K/PTEN/AKT/mTOR signaling with respect to HPV sta-
tus. A number of inhibitors targeting multiple nodes in this pathway have been
developed as agents have broad application across many cancer types. We will
briefly review how these therapeutic agents are being evaluated and what pre-
dictive biomarkers have been established in HNSCC for these drugs. Finally,
PI3K/PTEN/AKT/mTOR signaling represents an important source of resistance to
radiation, chemotherapy, and other targeted agents. We will also speculate on how
PI3K/PTEN/AKT/mTOR inhibitors may increase the efficacy of these established
therapies. Although PI3K/PTEN/AKT/mTOR investigations are relatively new to
HNSCC research, early evidence suggests further evaluation of this essential signal
transduction pathway is warranted.

Keywords PI3K · PTEN · AKT · mTOR · HPV · HNSCC · Biomarkers

C. H. Chung (�)
Department of Oncology, Sidney Kimmel
Cancer Center, Johns Hopkins Medical Institute, 1650 Orleans Street,
CRB-1 rm. 344, Baltimore, MD 21231, USA
e-mail: cchung11@jhmi.edu

J. D. Howard
Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins
Medical Institute, Baltimore, MD 21231, USA

B. Burtness, E. A. Golemis (eds.), Molecular Determinants of Head and Neck Cancer, 131
Current Cancer Research, DOI 10.1007/978-1-4614-8815-6_7,
© Springer Science+Business Media New York 2014



132 J. D. Howard and C. H. Chung

7.1 Introduction

The PI3K/PTEN/AKT/mTOR pathway is a critical signaling axis which consolidates
and regulates the myriad extracellular signals required for complex, multicellu-
lar organisms. The end result of appropriate PI3K/PTEN/AKT/mTOR signaling
is homeostasis: the careful balance of proliferation, metabolism, autophagy, cap-
dependent translation, migration, apoptosis, and many other cellular requirements.
Given the magnitude of functionalities associated with this pathway, deregulation
at any of its signaling nodes can have dire biological consequences. Thus, many
of the proteins in this pathway have been established as bona fide oncogenes or
tumor suppressors. Recent evidence suggests that at least 47 % of head and neck
squamous cell carcinomas (HNSCCs) have at least one molecular alteration in this
pathway [1]. In this chapter, we will summarize key features of this pathway, and
how these molecular alterations are associated with HNSCC development and pro-
gression. In addition, we will provide some perspective regarding the translational
potential of known therapeutic targets involved in this signaling network and devel-
opment of biomarkers for assessing clinical outcomes. Ideally, these targeted agents
would ultimately exploit an oncogenic dependence unique to HNSCC, or subvert ac-
quired resistance mechanisms mediated by PI3K/AKT/mTOR signaling to enhance
the efficacy of previously established therapies.

7.2 PI3K/PTEN/AKT/mTOR Signal Transduction

7.2.1 Phosphoinositide 3-kinase (PI3K)

The intracellular transduction of extracellular stimuli often requires receptor-
mediated signaling. Thus, membrane-bound receptors translate extracellular ligand
binding into intracellular signaling cascades to various downstream cellular com-
partments (Fig. 7.1). Adaptor proteins and second messengers play an important role
in correctly mediating and regulating these signals. One group of second messen-
gers is the class I phosphoinositide 3-kinase (PI3K) family (p110α, p110β, p110γ,
and p110δ), a common signaling mechanism utilized by a wide array of receptor
tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs). A functional
PI3K-signaling unit contains one regulatory (typically p85) and one catalytic (p110)
protein, creating a heterodimeric kinase with enzymatic activity for lipid and protein
substrates [2], [3]. However, only the lipid kinase activity is required for oncogenic
signaling [4]. When a receptor is activated, PI3K translocates to the cell mem-
brane where it associates with the receptor through p85 and various adaptor proteins
(i.e., IRS1) [5], [6]. This binding relinquishes p85-negative regulation of p110, initi-
ating catalytic activity. PI3K can also be positively affected by Ras, a critical GTPase
which may facilitate PI3K membrane localization [7]–[9].
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Fig. 7.1 Schematic diagram of the PI3K/PTEN/AKT/mTOR pathway. (Reprinted with permission,
©2012 American Society of Clinical Oncology. All rights reserved [181])

Once active, PI3K catalyzes the phosphorylation of phosphatidylinositol 4,5-
bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 then
serves to localize AKT and its activating kinase, 3-phosphoinositide-dependent ki-
nase 1 (PDK1), to the cell membrane (Fig. 7.1). Following PDK1-mediated AKT
activation at threonine 308 (T308) [10], AKT exerts considerable downstream ef-
fects on transcription, protein synthesis, metabolism, proliferation, and apoptosis.
Aside from the protein phosphatases which carefully balance the activity of these ki-
nases, the pathway is also negatively regulated by phosphatase and tensin homologue
(PTEN), which catalyzes the dephosphorylation of PIP3 to PIP2 [11], [12].

Investigations of oncogenic PI3K have been focused largely on p110α (PIK3CA).
Exome sequencing projects have determined this isoform represents the vast majority
of cancer-related PI3K mutations [13]. It is currently estimated that p110α is mu-
tated in 6–20 % of HNSCCs [14]–[17]. Unlike tumor suppressors, these mutations
are not spread throughout the gene. Accordingly, 80 % of these cancer-associated
modifications occur within three “hot spot” locations: E542, E545, and H1047.
The first two mutations decouple p110 from p85, releasing the inhibitory effect
of the regulatory subunit [18], [19]. The third mutation introduces a conformational
change in the activation loop [18], possibly mimicking Ras-mediated activation [20].
Other cancer-specific mutations do exist within the gene; however, they have lower
oncogenic activity and provide less of a selective advantage for tumorigenesis [21],
[22].
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7.2.2 PTEN

PTEN is a critical tumor suppressor, originally discovered because complete or par-
tial deletion of chromosome 10 is a common event in a number of cancers, including
brain, bladder, and prostate [23]. At least 80 % of Cowden’s disease patients harbor
heritable, germline mutations in PTEN which confer a rare familial cancer syndrome
[24]–[26]. Although mostly known for catalyzing the reaction of PIP3 back to PIP2,
this gene encodes a protein which possesses both peptide and phospholipid phos-
phatase activity (Fig. 7.1; [11], [12]). Loss of PTEN function causes an accumulation
of PIP3 at the cell membrane. This enriched pool of PIP3 recruits AKT/mTOR path-
way members (AKT isoforms, PDK1, etc.) to the cell membrane and inappropriately
initiates the activation of this central signaling axis.

Knockout experiments have determined that PTEN, while essential for viable
development, also has tumor suppressive functions in endometrial, liver, prostate,
gastrointestinal, thyroid, and thymus tissues [27]. Haploinsufficiency is often suffi-
cient to mediate a loss of PTEN function [28], [29]. Due to its singular importance,
PTEN function is regulated, and consequently deregulated, by a myriad of mecha-
nisms: mutation, deletion, epigenetic silencing, transcriptional, post-transcriptional,
and microRNA (miRNA) regulation, post-translational modification, and various
protein–protein interactions. The effect of PTEN on PI3K/AKT/mTOR pathway
activity is well established; however, multiple tumor suppressors exist within this
pathway. As PTEN is the most frequently deregulated tumor suppressor associated
with this pathway, additional functions independent of PI3K/AKT/mTOR likely im-
bue PTEN with added functional importance. For example, a loss of PTEN causes
PIP2 depletion, an important membrane-associated regulator of cell polarity. This
morphological modulation initiates a loss of epithelial characteristics, similar to
epithelial-to-mesenchymal transition (EMT) [30], a hallmark of particularly aggres-
sive cancers. Following EMT, neoplastic cells have increased cell motility and are
often more resistant to standard therapy (reviewed in [31]). PTEN also localizes to
the nucleus and is involved in maintaining chromosomal stability. Consequently, a
loss of nuclear PTEN enhances chromosomal instability and leads to spontaneous
DNA double-strand breaks [32]. Furthermore, PTEN only exhibits PIP3 phosphatase
activity in the cytoplasm, thus PTEN may affect genomic stability and cell cycle pro-
gression in the nucleus by lipid phosphatase-independent mechanisms [33]. Due to its
numerous PI3K-dependent and -independent functions, PTEN is widely considered
a critical tumor suppressor with loss of function often resulting in cancer.

7.2.3 AKT

AKT, also known as protein kinase B (PKB), is a critical node for mammalian signal
transduction and the major effector of PI3K signaling. This vital serine/threonine
protein kinase was originally discovered as the human homolog of v-akt, an oncogene
transduced by the murine retrovirus AKT8 [34]–[37]. The AKT family is represented
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by three isoforms: AKT1, AKT2, and AKT3. AKT1 is ubiquitously expressed at
high levels [36]–[38], while the remaining isoforms are expressed in a more tissue-
specific manner. Insulin-sensitive cells, such as liver, skeletal muscle, and adipose
tissue demonstrate high levels of AKT2 expression [39], [40]. Meanwhile, AKT3 is
highly expressed in the brain and testes, with lower levels of expression observed
in muscle and intestinal organs [41]. While cancer-related AKT research largely
focuses on AKT1, large-scale cancer sequencing projects have uncovered single
nucleotide polymorphisms (SNPs) and somatic mutations associated with AKT2 and
AKT3 [42], [43]. Mouse knockout models of the various AKT isoforms demonstrate
specific mutant phenotypes, but are all viable [44]–[48]. Thus, the lack of embryonic
lethality suggests that while eachAKT isoform has characteristic signaling functions,
they share a degree of functional compensation.

AKT kinases are comprised of an N-terminal pleckstrin homology (PH) domain,
a flexible linker, and a C-terminal catalytic domain. While PIP3 interacts with AKT
via the PH domain [49], AKT is phosphorylated by PDK1 on the C-terminal activa-
tion loop (T308) and at serine 473 (S473) by mTORC2 (Fig. 7.1; [50]) to achieve
full kinase activity [51]. While these mechanisms represent canonical AKT ac-
tivation, a number of PIP3-independent mechanisms also initiate AKT signaling.
Activated CDC42 kinase 1 (Ack1 or TNK2) [52], [53], Src [54], protein-tyrosine
kinase 6 (PTK6) [55], and serine/threonine-protein kinase 1 (TBK1) [56]–[58] all
possess the ability to modulateAKT activity by noncanonical means. Once activated,
AKT phosphorylates downstream targets altering cell survival, growth, proliferation,
metabolism, and crosstalk with other signaling pathways. The most important down-
stream target of AKT is mammalian target of rapamycin (mTOR), a master regulator
of cell growth, metabolism, translation initiation, and ribosome biogenesis. AKT also
affects cell survival by negatively regulating proapoptotic proteins such as FOXO
and MDM2, a negative regulator of p53 [59], [60]. AKT can also enhance cell-cycle
turnover by phosphorylating glycogen synthase kinase 3 (GSK-3), which stabilizes
cyclin D/E, c-jun, and c-myc proteins [61]–[64].

Recent evidence suggests that subcellular localization is an important determinant
of AKT activity and downstream signaling. In fact, two important AKT substrates
(FOXO proteins and p300) are sequestered solely in the nucleus [65], [66]. De-
spite lacking a nuclear localization signal, AKT likely translocates to the nucleus
by interacting with members of the T-cell leukemia-1 (TCL1) family of oncopro-
teins. These proteins are capable of complexing with AKT to serve as coactivators,
shuttling AKT to the nucleus [67], [68]. Increased nuclear phospho-AKT has been
observed in acute myeloid leukemia [69], [70], lung [71], breast [72], thyroid [73],
and prostate cancers [74]. Nuclear phospho-AKT detection has also been positively
correlated with prostate cancer progression [74] and Gleason score [75]. Nuclear
AKT activity may have specific oncogenic effects as promyelocytic leukemia pro-
tein (PML), which functions to dephosphorylate AKT within the nucleus and is a
known tumor suppressor [76].

Due to the staggering number of pathways dependent on AKT signaling, deregu-
lation of this enzyme by alterations in associative proteins or changes in subcellular
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localization can have disastrous biological consequences. For example, mosaic ex-
pression of an AKT point mutant (AKT E17K) is responsible for almost 90 % of
Proteus syndrome cases, the debilitating growth disorder suffered by Joseph Merrick,
popularly known as “The Elephant Man” [77]. Proteus syndrome is characterized
by segmental overgrowth and hyperplasia of a variety of tissues and organs, which
also includes an increased risk of tumorigenesis [78], [79]. The rare nature of this
crippling disease (< 1 case/1 million) lies in its dependence on mosaic expression,
as constitutive somatic or germline expression of this mutant is lethal. Not surpris-
ingly, this mutation has been detected in a variety of cancers including breast [80],
urinary tract [81], and endometrial cancers [82]. Although the incidence of AKT
E17K in patient tumor samples is low (1–4 %), it nonetheless represents an impor-
tant component of the total PI3K/PTEN/AKT/mTOR deregulation that occurs during
tumorigenesis.

7.2.4 mTOR

As mentioned above, mTOR is the single most important effector of AKT signal-
ing. Serving as the catalytic subunit of two macromolecular complexes (mTORC1
and mTORC2), mTOR is a master regulator of cell growth. Although mTOR is
shared between these two complexes, the associative proteins unique to each tune
the activity of this enzyme for distinct substrates and sources of regulation [83]–[89].
mTORC1 consists of mTOR, Deptor, Raptor, mLST8, and PRAS40 [90], [91]. This
complex is rapamycin sensitive [92]–[94], and S6K1 and 4E-BP1 are its most impor-
tant downstream targets (Fig. 7.1; [95]–[97]). Phosphorylation of S6K1 promotes
mRNA translation by facilitating initiation and elongation complex formation at the
mRNA transcript. Activation of 4E-BP1 allows eIF4E to recruit eIF4G and initiate 5′
mRNA translation. Aside from protein synthesis, mTORC1 also regulates ribosome
biogenesis and autophagy [98]–[100]. Recent studies have shown that mTORC1 ac-
tivation is sufficient to inhibit autophagy, which is reversible following mTORC1
inhibition [101].

mTORC2 also contains Deptor and mLST8; however, additional associative
proteins include Rictor, mSIN1, and Protor [89], [102], [103]. Differential phospho-
rylation of AKT (T308 vs. S473) had long been understood, with PDK1 mediating
T308 activation. However, it was recently discovered that mTORC2 is the complex
responsible for “PDK2” activity, phosphorylating AKT at S473 [50]. Consequently,
this functionality places mTORC2 in a positive feedback loop within the pathway,
allowing AKT to achieve full activation. This function was initially difficult to eluci-
date as mTORC2 is rapamycin insensitive during acute treatment [92]–[94]. Along
with AKT, mTORC2 can also activate serum- and glucocorticoid-regulated kinase
(SGK) and protein kinase C (PKC) [50], [104]–[106].

Because mTOR has a central role in controlling cell growth, appropriate regulation
of mTOR itself is paramount to maintaining homeostasis. Thus, it is not surprising



7 The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma 137

that a number of familial cancer syndromes involve germline mutations of mTOR-
negative regulators (Cowden disease, tuberous sclerosis) [26], [107]. Transgenic
mice have also provided experimental evidence for the importance of appropriate
mTOR regulation. Mice heterozygous for beclin or autophagy-related 4C (ATG4C),
both critical regulators of autophagy, are prone to tumor formation due to defects
in autophagosome formation [108]–[110]. As a negative regulator of autophagy,
sustained mTORC1 activation has the ability to mimic these genetic modifications
and enhance tumor development. Sustained mTORC2 activity is also capable of
driving tumorigenesis through constitutive activation of AKT and SGK. Further-
more, expression of Rictor is required for tumor cell line and prostate tumor growth
in PTEN-deficient mice [111], [112]. Consequently, tumor-associated defects in
PI3K, PTEN, or AKT all have the potential to initiate pathological mTOR signaling.
However, multiple routes of deregulation may provide important biomarkers and po-
tential targets of therapeutic intervention to alleviate the oncogenic effects of mTOR
signaling in HNSCC.

7.3 PI3K/PTEN/AKT/mTOR Deregulation in HNSCC

7.3.1 Genetic Alterations of PIK3CA in HNSCC

PI3K functions with critical importance to potentiate and regulate receptor-mediated
extracellular stimuli. This vital second messenger has been intensively studied in
cancer progression, including in HNSCC. PI3K, and more specifically PIK3CA, is
a bona fide oncogene in HNSCC. As mentioned above, PIK3CA contains activating
point mutations (commonly E542, E545, or H1047) in 6–20 % of HNSCC tumor
samples (Table 7.1; [14], [15]). In fact, two sequencing projects independently iden-
tified PIK3CA as a significantly mutated oncogene in HNSCC tumor samples [16],
[17]. Stransky et al. determined 8 % (6/74) of their tumor samples had PIK3CA-
activating mutations: 1-R115 L (rare), 3-E542–545, 2-H1047 [16]. Agrawal et al.
reported 6 % of their tumors harbored PIK3CA mutations: all three H1047 mutants
[17]. In addition to these activating point mutations, copy number gains within the
PIK3CA locus (3q26) are extremely common [113].

Current evidence suggests PIK3CA copy number gain is an early event in HN-
SCC development. Oral premalignant lesions commonly demonstrate an increase in
PIK3CA copy number (39 %) [1]. An equivalent incidence of PIK3CA copy number
gain is also noted in HNSCC tumors (32–37 %) [1], [114]. Along with alterations
in ERK/MAPK, fibroblast growth factor (FGF), and p53, deregulated PTEN and
PI3K/AKT pathway members delineate high-grade premalignant lesions from low-
grade dysplasias [115]. Increased PIK3CA copy number is also associated with early
HNSCC recurrence, but this difference is only statistically significant in patients
without lymph node metastases (p = 0.026) [114].



138 J. D. Howard and C. H. Chung

Ta
bl

e
7.

1
In

ve
st

ig
at

io
ns

of
PI

3K
/P

T
E

N
/A

K
T

/m
T

O
R

ge
ne

tic
al

te
ra

tio
ns

in
pr

em
al

ig
na

nt
le

si
on

s
an

d
sq

ua
m

ou
s

ce
ll

ca
rc

in
om

a
of

he
ad

an
d

ne
ck

Pa
th

w
ay

m
em

be
r

In
ve

st
ig

at
or

Sa
m

pl
es

M
et

ho
ds

R
es

ul
t

R
ef

er
en

ce

PI
K

3C
A

R
ed

on
et

al
.

45
H

N
SC

C
tu

m
or

s
C

G
H

,F
IS

H
60

%
3q

26
ga

in
(P

IK
3C

A
lo

cu
s)

18
2

(n
o

no
da

li
nv

ol
ve

m
en

t)
W

oe
nc

kh
au

s
et

al
.

15
PM

L
s

FI
SH

3q
26

C
N

ga
in

lo
w

to
m

od
.P

M
L

:1
/6

11
3

15
H

N
SC

C
tu

m
or

s
hi

gh
-g

ra
de

PM
L

:7
/9

H
N

SC
C

:1
1/

11
3q

26
am

p
lo

w
to

m
od

.P
M

L
:0

/6
H

ig
h-

gr
ad

e
PM

L
:1

/7
H

N
SC

C
:6

/1
1

Pe
dr

er
o

et
al

.
38

PM
L

s
qR

T-
PC

R
A

m
pl

ifi
ed

39
%

PM
L

s
1

11
7

H
N

SC
C

tu
m

or
s

A
m

pl
ifi

ed
37

%
H

N
SC

C
tu

m
or

s
St

ic
ht

et
al

.
28

0
H

N
SC

C
T

M
A

FI
SH

39
%

C
N

ga
in

18
3

Q
iu

et
al

.
30

H
N

SC
C

tu
m

or
s

gP
C

R
/s

eq
ue

nc
in

g
To

ta
lm

ut
at

ed
sa

m
pl

es
:1

1
%

14
8

H
N

SC
C

ce
ll

lin
es

Fe
ni

c
et

al
.

33
H

N
SC

C
tu

m
or

s
qR

T-
PC

R
36

.4
%

C
N

ga
in

18
4

gP
C

R
/s

eq
ue

nc
in

g
9

%
am

pl
ifi

ed
48

.5
%

m
R

N
A

ov
er

ex
pr

es
si

on
N

o
m

ut
at

io
ns

de
te

ct
ed

M
ur

ug
an

et
al

.
37

H
N

SC
C

tu
m

or
s

gP
C

R
/s

eq
ue

nc
in

g
M

ut
an

tc
el

ll
in

es
:2

9.
4

%
15

17
H

N
SC

C
ce

ll
lin

es
M

ut
an

tt
um

or
s:

10
.5

%
Pa

ttj
e

et
al

.
14

0
H

N
SC

C
tu

m
or

s
IH

C
H

ig
h

p1
10

α
:4

1
%

16
3

St
ra

ns
ky

et
al

.
74

H
N

SC
C

tu
m

or
s

W
E

S
M

ut
an

tt
um

or
s:

8
%

16
A

gr
aw

al
et

al
.

12
0

H
N

SC
C

tu
m

or
s

W
E

S,
gP

C
R

/s
eq

ue
nc

in
g

M
ut

an
tt

um
or

s:
6

%
17

K
on

do
et

al
.

16
H

N
SC

C
ce

ll
lin

es
gP

C
R

/s
eq

ue
nc

in
g

M
ut

an
tc

el
ll

in
es

:1
2.

5
%

18
5

M
or

ri
s

et
al

.
31

H
N

SC
C

tu
m

or
s

C
G

H
45

.2
%

C
N

ga
in

18
6

gP
C

R
/s

eq
ue

nc
in

g
M

ut
an

tt
um

or
s:

6
%

Su
da

et
al

.
11

5
H

N
SC

C
tu

m
or

s
qR

T-
PC

R
,C

G
H

32
.2

%
C

N
ga

in
11

4
gP

C
R

/s
eq

ue
nc

in
g

M
ut

an
tt

um
or

s:
2.

6
%

PT
E

N
Sh

ao
et

al
.

19
H

N
SC

C
tu

m
or

s
PC

R
,g

PC
R

/s
eq

ue
nc

in
g

L
O

H
:4

0
%

,m
ut

an
tt

um
or

s
16

%
11

6
L

ee
et

al
.

41
H

N
SC

C
tu

m
or

s
IH

C
PT

E
N

ne
ga

tiv
e:

29
%

11
7

Pe
dr

er
o

et
al

.
11

7
H

N
SC

C
tu

m
or

s
M

PA
,P

C
R

L
O

H
:1

4
%

,n
o

de
te

ct
ab

le
ho

m
oz

yg
ou

s
de

le
tio

ns
1



7 The PI3K Signaling Pathway in Head and Neck Squamous Cell Carcinoma 139

Ta
bl

e
7.

1
(c

on
tin

ue
d)

Pa
th

w
ay

m
em

be
r

In
ve

st
ig

at
or

Sa
m

pl
es

M
et

ho
ds

R
es

ul
t

R
ef

er
en

ce

N
at

ha
n

et
al

.
22

H
N

SC
C

tu
m

or
s

FI
SH

T
um

or
PT

E
N

ab
no

rm
al

iti
es

:6
8

%
18

7
23

tu
m

or
-f

re
e

m
ar

gi
ns

M
ar

gi
n

PT
E

N
ab

no
rm

al
iti

es
:3

5
%

M
ur

ug
an

et
al

.
37

H
N

SC
C

tu
m

or
s

gP
C

R
/s

eq
ue

nc
in

g
N

o
m

ut
at

io
ns

de
te

ct
ed

15
17

H
N

SC
C

ce
ll

lin
es

Pa
ttj

e
et

al
.

14
0

H
N

SC
C

tu
m

or
s

IH
C

PT
E

N
lo

w
ex

pr
es

si
on

:6
9

%
16

3
St

ra
ns

ky
et

al
.

74
H

N
SC

C
tu

m
or

s
W

E
S

M
ut

an
tt

um
or

s:
7

%
16

K
on

do
et

al
.

16
H

N
SC

C
ce

ll
lin

es
gP

C
R

/s
eq

ue
nc

in
g

M
ut

an
tc

el
ll

in
es

:1
2.

5
%

18
5

Sn
ie

tu
ra

et
al

.
14

7
H

N
SC

C
tu

m
or

s
IH

C
PT

E
N

lo
w

ex
pr

es
si

on
:5

9.
9

%
16

4
A

K
T

G
up

ta
et

al
.

38
H

N
SC

C
tu

m
or

s
IH

C
2–

3+
pA

K
T

st
ai

ni
ng

:6
5.

8
%

16
0

Pe
dr

er
o

et
al

.
11

7
H

N
SC

C
tu

m
or

s
qR

T-
PC

R
,W

B
pA

K
T

de
te

ct
ed

:1
7

%
1

A
K

T
2

am
pl

ifi
ca

tio
n:

30
%

M
ol

in
ol

o
et

al
.

30
5

H
N

SC
C

T
M

A
IH

C
pA

K
T

47
3

0:
1

%
,1

–2
:3

1
%

,3
–4

:6
6

%
18

8
pA

K
T

30
8

0:
4

%
,1

–2
:5

7
%

,3
–4

:4
2

%
m

T
O

R
C

la
rk

et
al

.
72

H
N

SC
C

tu
m

or
s

IH
C

p-
m

T
O

R
de

te
ct

ed
:5

9
%

18
9

M
or

ri
s

et
al

.
31

H
N

SC
C

tu
m

or
s

C
G

H
R

ic
to

r
C

N
ga

in
:3

8.
7

%
18

6
D

ow
ns

tr
ea

m
N

at
ha

n
et

al
.

27
T

um
or

-f
re

e
m

ar
gi

ns
IH

C
eI

F4
E

ov
er

ex
pr

es
se

d:
70

%
16

2
Ta

rg
et

s
A

ll
eI

F4
E

ov
er

ex
pr

es
si

ng
tu

m
or

s
E

xh
ib

ite
d

hi
gh

p-
p7

0S
6K

M
ol

in
ol

o
et

al
.

30
5

H
N

SC
C

T
M

A
IH

C
pS

6
0:

2
%

,1
–2

:1
3

%
,3

–4
:7

9
%

18
8

C
la

rk
et

al
.

72
H

N
SC

C
tu

m
or

s
IH

C
p-

4E
B

P1
:3

6
%

18
9

C
G

H
co

m
pa

ri
tiv

e
ge

no
m

ic
hy

br
id

iz
at

io
n,

F
IS

H
flu

or
es

ce
nt

in
si

tu
hy

br
id

iz
at

io
n,

P
M

L
pr

em
al

ig
na

nt
le

si
on

,
C

N
co

py
nu

m
be

r,
qR

T-
P

C
R

qu
an

tit
at

iv
e

re
al

-
tim

e
po

ly
m

er
as

e
ch

ai
n

re
ac

tio
n,

T
M

A
tis

su
e

m
ic

ro
ar

ra
y,

gP
C

R
ge

no
m

ic
PC

R
,

IH
C

im
m

un
oh

is
to

ch
em

is
tr

y,
W

E
S

w
ho

le
-e

xo
m

e
se

qu
en

ci
ng

,
L

O
H

lo
ss

of
he

te
ro

zy
go

si
ty

,
M

PA
m

ic
ro

sa
te

lli
te

pa
tte

rn
an

al
ys

is
,

pA
K

T
ph

os
ph

o-
A

K
T,

W
B

W
es

te
rn

bl
ot

,
p-

m
TO

R
ph

os
ph

o-
m

T
O

R
,

p-
p7

0S
6K

ph
os

ph
o-

p7
0S

6K
,

p-
S6

ph
os

ph
o-

S6
,p

-4
E

B
P

1
ph

os
ph

o-
4E

B
P1



140 J. D. Howard and C. H. Chung

7.3.2 PTEN Loss

A loss of PI3K-negative regulation has been observed in a number of independent
HNSCC studies, as alterations in PTEN status are common (Table 7.1). Early ef-
forts to catalog PTEN deregulation in HNSCC began with a screen of 19 tumors,
which determined PTEN was mutated in three samples [116]. A loss of heterozy-
gosity (LOH) also occurred within the PTEN locus (10q23) in 6 of the 15 evaluable
samples. Within the mutant PTEN patients, two had stage IV disease while the third
had recurrent, metastatic and stage III disease. In a larger study, targeted analysis
of PI3K/AKT/mTOR HNSCC genetic alterations detected PTEN LOH in 14 % of
the samples [1]. Three of the eight patients with PTEN LOH also demonstrated ab-
normal PTEN levels in the adjacent mucosa, suggesting both PIK3CA and PTEN
deregulation are early events in HNSCC development. An additional investigation in
squamous cell carcinoma of the tongue determined PTEN loss was evident in 29 %
of the tumor samples [117]. Deregulated PTEN also correlated with decreased over-
all survival ( p = 0.03) and event-free survival ( p = 0.01). While these studies were
targeted in nature, PTEN loss was also evident in one of the two HNSCC genome
sequencing projects referenced above. Stransky et al. detected PTEN mutations in
7 % of their tumor samples [16], while PTEN abnormalities were not detected by
Agrawal et al. [17].

Although LOH and PTEN mutation have been described in many cancer sys-
tems, protein loss by miRNA deregulation is a relatively new field of study. These
short, noncoding RNAs are capable of regulating a wide variety of proteins, and
thus represent oncogenes and tumor suppressors in their own right. A recent study of
HNSCC tumor samples and cell lines determined miR-21 is overexpressed with re-
spect to normal tissue [118]. miR-21 overexpression downregulated HNSCC PTEN
protein levels in vitro, activated phospho-AKT, and increased the proliferation of im-
mortalized keratinocytes (HaCaT) [118]. Consequently, miR-21 has been described
as a proto-oncogene in HNSCC. However, miR-21 is not the only miRNA capa-
ble of targeting PTEN protein expression. miR-9 is a frequently methylated gene
in HNSCC tumor samples, with miR-9 expression levels closely correlating with
methylation status [119]. When miR-9 is reexpressed with the use of a demethylat-
ing agent, a significant increase in PTEN and a concomitant decrease in cell growth
is observed [119]. While the connection between miR-9 and PTEN is indirect, this
study does provide additional evidence for miRNA-mediated PTEN modulation in
HNSCC cells.

Recent evidence also suggests a powerful association between transforming
growth factor-β (TGF-β) signaling and PTEN loss occurs in HNSCC development.
The TGF-β superfamily of ligands and receptors represent a signaling pathway uni-
fied by a shared group of second messengers: SMADs. While SMAD4 knockdown
is sufficient to develop HNSCC in mouse models [120], conditional knockdown
of TGF-β receptor 1 (TGF-βRI) in the oral cavity of mice will only lead to early
HNSCC development when combined with a topical carcinogen (DMBA) [121].
Consequently, this suggests that progressive disease requires an additional genetic
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aberration provided by chemical treatment. Sixteen weeks after DMBA treatment,
45 % of the TGF-βRI conditional knockdown mice develop HNSCC. After 1 year,
only 10 % of these mice develop HNSCC without DMBA treatment [122]. TGF-βRI
knockdown tumors are characterized by an increase in AKT activity with a paradox-
ical upregulation of PTEN. However, when PTEN is conditionally knocked-down in
combination with TGF-βRI loss, the mice develop benign papillomas within 4 weeks.
After 10 weeks, 100 % of the mice develop HNSCC [122]. These tumors demonstrate
an overexpression of EGFR and an activation of AKT, NF-κB, and STAT3 signal-
ing, characteristic hallmarks of the human disease. Treatment of these animals with
rapamycin effectively prevents tumorigenesis, thus carcinogenesis in this model is
an mTOR-dependent event [123]. An overexpression of chemokines and recruitment
of tumor-promoting myeloid-derived suppressor cells (CD11b +) is also observed
in these carcinomas. Consequently, multiple routes of PI3K/PTEN/AKT/mTOR
deregulation contribute to HNSCC initiation, development, and progression.

7.4 Differences in PI3K-Dependent Signaling Based
on HPV Status

7.4.1 PI3K Signaling in HPV-negative HNSCC

The most common genetic abnormality associated with human papillomavirus
(HPV)-negative HNSCC is a functional loss of p53 [16], [17], yet somatic abla-
tion of this tumor suppressor in transgenic mice favors spontaneous tumor formation
in the skin, rather than tumorigenesis in the oral mucosa [124]. However, when p53
loss is combined with constitutively active AKT (myrAKT), tumor formation within
the oral cavity, palate, ventral side of the tongue, and lips is markedly increased
[125]. These tumors also exhibit increased EGFR expression and potently activated
NF-κB and STAT3 pathways, recapitulating the hallmarks of HPV-negative HNSCC.
As the PI3K/PTEN/AKT/mTOR pathway can be activated through a multitude of
mechanisms, these data suggest that any manner of AKT activation, when combined
with p53 loss, may synergize to initiate HNSCC development and progression. This
is consistent with the observation that both PIK3CA and PTEN deregulation are early
events in HNSCC and targeting this pathway may have a role in chemoprevention
for smokers.

The majority of patients with HPV-negative tumors have an extensive history of
cigarette smoking, and these tumors are associated with an increased number of
mutations compared to their HPV-positive cohorts [16], [17]. Tobacco use is a well-
defined causal link for the development of HNSCC [126], and cigarette pack-years is a
predictive variable for survival even among HPV-positive patients [127]. Studies have
shown that nicotine and an additional tobacco carcinogen [4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone, NNK] are both capable of activating AKT by receptor-
mediated signaling in normal human airway epithelial cells [128]. This mechanism
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has since been observed in human head and neck epithelium as well, where activated
AKT is four-times more likely in HNSCC-adjacent mucosa from smokers compared
to nonsmokers [129]. Experiments with HNSCC cell lines have also determined
NNK activation of AKT is PI3K dependent [129]. Furthermore, cigarette smoke
condensate (CSC) also upregulates the multidrug-transporter ABCG2 in lung cancer
and HNSCC-cell lines [130]. After CSC treatment, these cells are more resistant to
doxorubicin and have upregulated drug efflux mechanisms; the latter effect can be
abrogated by PI3K or nicotinic acetylcholine receptor inhibition [130]. As tobacco
use is a strong predictor of HNSCC recurrence, and HNSCC patients have a 10 –14 %
risk of developing a second malignancy within 5 years of primary surgical treatment
[127], [131], further studies of premalignant PI3K/AKT/mTOR activation may yield
novel chemopreventive options to mitigate this public health challenge.

Initial studies in recurrence prevention have focused on the therapeutic value of
13-cis-retinoic acid (13-cRA). Early data suggested that second primary tumor (SPT)
development or HNSCC recurrence may be prevented by 13-cRA treatment [132],
[133]. However, in a follow-up phase III clinical trial, no significant difference in
SPT or recurrence could be observed between placebo and low-dose 13-cRA in early-
stage HNSCC patients [134]. A recent retrospective study characterized 137 SNPs
as predictive biomarkers for recurrence in the aforementioned placebo cohort. While
22 SNPs were significantly associated with recurrence, 15 SNPs were detected in
the majority of patients who recurred [135]. Ten of these fifteen SNPs were located
in TSC1, a negative regulator of mTOR. When these SNPs were assayed in the 13-
cRA treatment group, two of the TSC-1-associated SNPs yielded a 43 % decrease in
SPT/recurrence with treatment. Variants of PIK3CD and PTEN were also associated
with a decrease in SPT/recurrence risk with 13-cRA treatment [135]. Consequently,
prospective analysis of early stage HNSCC for PI3K/PTEN/AKT/mTOR pathway
genetic variants could increase the efficacy of 13-cRA chemoprevention.

7.4.2 PI3K Signaling in HPV-positive HNSCC

The incidence of HPV-negative HNSCC is decreasing worldwide following success-
ful tobacco cessation campaigns; however, the overall incidence of HNSCC remains
constant due to an increase in HPV-positive HNSCC [136], [137]. From 1988 to
2004, the incidence of HPV-positive HNSCC increased by 225 % in the USA, while
the incidence of HPV-negative disease decreased by 50 % over the same time period
[137]. HPV-positive HNSCC is primarily associated with tumors of the oropharynx,
as HPV infection most commonly occurs in the palatine and lingual tonsils (re-
viewed in [138]). Mounting evidence suggests PI3K/PTEN/AKT/mTOR signaling
has an important role in HPV infection and HPV-induced carcinogenesis.

Recent studies have demonstrated that EGFR and PI3K signaling are required for
viral entry into the cell. Pretreatment of HaCaT or cervical cancer cells (HeLa) in
vitro with an EGFR inhibitor (gefitinib) is sufficient to inhibit HPV-16 endocytosis
[139]. Additionally, two different PI3K inhibitors (PI-103, wortmannin) are also
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capable of preventing viral entry [139]. As the same mechanism was observed in
cells from different anatomical sites, these data suggest EGFR and PI3K activity
share a common regulatory requirement for high-risk HPV infection.

However, following viral transformation, the PI3K pathway continues to play
an important role in HPV-related tumorigenesis. Gene expression profile analysis
of HNSCC patient samples has determined that HPV-positive tumors experience
an upregulation in genes associated with the 3q26–29 chromosomal region [140].
This locus contains PIK3CA, and confirmatory analysis with RT-PCR confirmed that
PIK3CA is upregulated in HPV-positive tumors compared to HPV-negative samples
[141]. Immunohistochemical (IHC) analysis of HNSCC tissue samples has also
demonstrated a strong correlation between p16 upregulation (surrogate marker for
HPV-infection) and activated eIF4E ( p = 0.03) [142]. Although an association be-
tween phospho-AKT and p16 expression trended towards significance ( p = 0.06),
its lack of concordance could be caused by additional signaling factors that regulate
AKT activity compared to eIF4E function. Consequently, HPV infection is associated
with mTOR-dependent activation of mRNA translation, including the upregulation
of transformation-related and prosurvival pathway members [143], [144].

In a larger follow-up study, neither phospho-AKT (pAKT S473) nor phospho-
S6 (mTOR target) was associated with HPV-positive HNSCCs [145]. In addition,
the HPV-positive tumors were not associated with an activation of EGFR, as ob-
served in the HPV-negative samples. Thus, the hyperactivation of selective mTOR
targets noted in the prior study may be due to a different mechanism. However,
detection of phosphorylated proteins such as AKT and S6 in clinical specimens
is challenging due to rapid dephosphorylation and technical variations between
studies [146]. To determine if this pathway represents a viable clinical target, HPV-
positive HNSCC and cervical cancer xenografts were treated with rapamycin and
RAD001 (everolimus). Both xenograft models demonstrated a durable, cytostatic
response following mTOR inhibition [145]. Consequently, mTOR inhibition may
represent an important therapeutic option in HNSCC patients, particularly those
with HPV-positive disease.

7.5 PI3K/AKT/mTOR Inhibition as a Novel Therapeutic
Option in HNSCC

Due to the overwhelming preclinical evidence that PI3K/AKT/mTOR signaling rep-
resents an integral component of HNSCC signal transduction, a number of clinical
trials are currently underway to evaluate the efficacy of small molecules which
inhibit key nodes of this pathway (Table 7.2). Currently, rapamycin and its as-
sociated analogs (rapalogs) are the most investigated PI3K/AKT/mTOR-targeted
agents in HNSCC clinical trials. Rapamycin is a secondary metabolite produced
by Streptomyces hygroscopicus, isolated from a soil sample collected on Easter
Island (Rapa Nui) [147]. Owing to the evolutionarily conserved nature of mTOR,
rapamycin exhibits a broad range of antiproliferative activity, and this compound was
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invaluable in elucidating the mechanisms of PI3K/AKT/mTOR signaling. This
molecule is an allosteric inhibitor of mTOR, creating a complex with FKBP12 which
binds and prevents mTOR activation via the FKBP12-rapamycin-binding (FRB) do-
main. As this functional domain is unique to mTOR, rapamycin-induced inhibition
of mTORC1 is highly selective; however, as reviewed above, mTORC2 is largely
uninhibited by this compound in the acute setting [148].

A panel of rapamycin analogs have been synthesized, however intellectual
property concerns were not the driving factors in rapalog development. The
current array of rapalogs were designed to improve the pharmacokinetics of
the parent compound. Temsirolimus (Torisel; Wyeth) is a water-soluble es-
ter of rapamycin (sirolimus) for oral or IV administration (reviewed in [149]).
Everolimus (Afinitor; Novartis) is a hydroxyethyl ether derivative, also demon-
strating increased solubility relative to the parent compound (reviewed in [150]).
Current HNSCC clinical trials are investigating these compounds as single agents or
in combination with previously established radiation and chemotherapy regimens.
Metformin, while not a direct inhibitor of mTOR, is also being investigated as a
chemotherapeutic in this patient setting. Metformin is currently used to control type
II diabetes as this compound indirectly inhibits mTORC1 by increasing intracel-
lular AMP levels. Current evidence suggests metformin-induced mTOR inhibition
can be mediated by AMPK-dependent and -independent mechanisms [151]–[153].
Additionally, this drug has demonstrated chemopreventive activity for a number of
different cancers in diabetic patients (reviewed in [154]). Thus, additional studies are
warranted to determine whether this well-characterized compound will have similar
chemopreventive or chemotherapeutic effects in non-diabetic patients.

Additional compounds acting upstream of mTOR are also being evaluated in
HNSCC. MK-2206 is an allosteric AKT inhibitor developed by Merck. Synergis-
tic anticancer properties have been observed in vitro when this compound is used
in combination with erlotinib [non-small cell lung cancer, (NSCLC)] or lapatinib
(breast cancer) [155]. PX-866 is a synthetic derivative of wortmannin with antineo-
plastic activity and reduced liver toxicity with respect to the parent compound [156].
Aside from increased safety, PX-866 also demonstrates superior water solubility,
bioavailability, and AKT inhibition. However, due to the positive feedback and com-
pensation that can occur via mTORC2, single target inhibition has demonstrated
acquired resistance in preclinical and clinical trial investigations. Consequently, ad-
ditional studies are investigating dual-target inhibitors. NVP-BEZ235 is an orally
available, dual PI3K/mTOR inhibitor which reversibly inhibits class I PI3K through
ATP competition. This compound is unique because it simultaneously inhibits mTOR
catalytic activity while preserving off-target protein kinase function [157], although
initial studies suggest the potency of NVP-BEZ235 is not equivalent for each tar-
get. In breast cancer cells, NVP-BEZ235 exerts anti-mTOR activity at lower doses
(< 100 nM) while dual PI3K/mTOR blockade occurs at higher concentrations
(> 500 nM) [158].
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7.6 PI3K Pathway Biomarkers

7.6.1 Activation of PI3K Pathway Prognostic Biomarkers

Studies evaluating deregulated PI3K/AKT/mTOR pathway members as prognostic
biomarkers in HNSCC are currently ongoing. However, validated data are sparse due
to small sample sizes, technical limitations, and the intrinsic biological heterogeneity
of HNSCC. To date, the most established prognostic biomarkers for HNSCC out-
come are EGFR overexpression and HPV status [127], [159], and the contribution of
PI3K/PTEN/AKT/mTOR signaling needs to be evaluated in the context of these well-
characterized biomarkers for clinical translation. Initially, investigators have looked
at hyperphosphorylation of PI3K/AKT/mTOR pathway members to establish path-
way activation. One potential prognostic biomarker is phospho-AKT.ActivatedAKT
is associated with poor local control in HNSCC tumor samples [160]. eIF4E, a down-
stream target of mTOR, is also upregulated in many HNSCC tumor samples [161].
This protein is also associated with disease recurrence when upregulated eIF4E is
detected in tumor-free margins [162].

However, phospho-protein detection in clinical samples can present a challenge
as outcomes can differ depending on the fixation protocol and handling time ex vivo.
Thus, biomarkers utilizing total protein fractions may be preferable from a technical
standpoint. One controversy in the literature involves the prognostic value of PTEN
in predicting outcome following HNSCC surgery and radiotherapy. In a recent IHC
analysis of 140 HNSCC tissue microarray samples, PTEN-positive tumors were
associated with worse locoregional control (LRC) than PTEN-negative tumors fol-
lowing surgery and radiation therapy (HR: 2.4) [163]. Additionally, phospho-AKT
was also associated with poor LRC (HR: 2.2) and the authors suggest PTEN-positive
tumors exhibit increased EGFR activity and subsequent PI3K/AKT/mTOR activa-
tion provides a protective effect from ionizing radiation. However, a similar study
of 147 HNSCC patients also treated with surgery and radiotherapy observed the op-
posite association between PTEN and LRC. In this study, the 5-year LRC-free rate
for PTEN-low tumors was 52.3 %, while 80.9 % of PTEN-high patients were recur-
rence free over the same time period ( p = 0.0007) [164]. Furthermore, PTEN-status
did not correlate with 5-year risk of metastasis in this study ( p = 0.49) [164]. The
observed discrepancy between these two studies highlights the difficulty in utilizing
a tumor suppressor as a predictive biomarker. In the first study, the authors utilized a
7.5 % tumor cell cutoff to characterize a tumor as PTEN positive or negative by IHC
[163]. In the latter study, the intensity of staining was scored by a pathologist, and
tumors were described as PTEN high or PTEN low. As PTEN haploinsufficiency can
be tumorigenic [28], [29], and techniques for accurate, quantitative assessment of
this target from clinical samples are lacking, further studies are required to establish
this protein as a bona fide prognostic marker in HNSCC.

On the other hand, detection of PIK3CA mutations is more straightforward with
current technology. As reviewed above, mutations in exon 9 and 20 are the predom-
inant PIK3CA lesions associated with most cancers, and current evidence suggests
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these species may contribute differently to clinical outcome. Although important,
the lower incidence of these mutations in HNSCC will require large sample sizes to
achieve the statistical power needed to delineate any prognostic significance between
PIK3CA alterations. For example, studies in breast cancer have shown that PIK3CA
exon 9 mutations (E542/E545) are independently associated with shorter disease-
free survival ( p = 0.0003) and overall survival ( p = 0.001) [165]. Conversely, exon
20 mutations (H1047) are associated with better overall survival. In this case, the
relevance of these biomarkers is intrinsically linked with breast cancer-specific
treatments; however, early evidence suggests these mutations need to be evaluated
independently rather than in the context of a simplified binomial analysis.

7.6.2 PI3K Pathway Members as Predictive Biomarkers for
Radiation Therapy and PI3K/mTOR Inhibitor Response

The association of increased phospho-AKT and poor LRC suggests that AKT acti-
vation may be a predictive marker of radiation resistance in HNSCC. While in vitro
studies have indicated PI3K inhibition increases the radiosensitivity of HNSCC cell
lines [160], a recent case report may provide preliminary clinical evidence for an
expansion of PI3K/AKT/mTOR combination therapies in HNSCC patients. In this
report, the authors describe a patient treated with radiotherapy for squamous cell
carcinoma of the larynx (T2N0M0). This patient had also received a liver transplant
and was being treated with sirolimus to prevent transplant rejection. After seven frac-
tions of radiation, the patient experienced a complete response, an early response
time compared to historical norms. However, treatment-associated toxicities required
cessation of radiotherapy [166]. Future investigations of mTOR inhibition as a ra-
diosensitizer in HNSCC treatment may establish an optimal treatment regimen and
determine the maximum tolerated dose for this disease.

Aside from radiotherapy, PI3K pathway deregulation may also serve as a
biomarker for response to PI3K/AKT/mTOR-targeted agents. A recent retrospective
analysis determined the PI3K mutational status of various solid tumors from clinical
trials investigating PI3K/AKT/mTOR inhibitors [167]. Of the 1,012 patients in this
study, 105 were prospectively selected and 66 of these patients harbored PIK3CA
mutations. Although these patients had tumors of varying anatomical location, those
possessing an exon 20 mutation responded better to PI3K/AKT/mTOR therapies
than other PI3K mutants (PR rate: 38 vs. 10 %, p = 0.018). Unfortunately, an in-
crease in progression-free survival only trended towards statistical significance (5.7
vs. 2 months, p = 0.06). While this study was hampered by a heterogeneous tumor
population and multiple treatment regimens, PI3K/AKT/mTOR-treatment efficacy in
patients with exon 20 mutations is an intriguing finding that requires further study. Of
the 66 prospectively selected patients from this study, four individuals had HNSCC
and the best responder possessed an H1047R mutation. Although these data indi-
cate PI3K mutations may sensitize HNSCC tumors to PI3K/AKT/mTOR inhibitor
treatment, wild-type PI3K status may not preclude the use of these drugs in this
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patient population. While HNSCC cell lines have demonstrated in vitro sensitivity
to PI3K inhibition, the efficacy of this treatment option is enhanced when combined
with vorinostat, a histone deacetylase (HDAC) inhibitor [168]. This combination
treatment is capable of increasing reactive oxygen species (ROS) production in a man-
ner previously observed with other efficacious cytotoxic chemotherapeutics [169],
and is only toxic to HNSCC cell lines, not keratinocytes [168].

7.6.3 Predictive Biomarkers for Receptor Tyrosine Kinase (RTK)
Inhibitor Resistance

While the identification of predictive biomarkers for RTK inhibitor response is of
paramount concern, equally important is the investigation of biomarkers for resis-
tance. For example, additional HER receptors, aside from EGFR, signal through
PI3K in HNSCC. A positive feedback loop has been reported between HER2 and
ADAM12 in HNSCC cell lines. ADAM12 is a multifunctional protein with an
intracellular domain capable of second messenger signaling and an extracellular
domain capable of cleaving extracellular matrix substrates and activating EGFR lig-
ands [170]–[172]. HER2 and ADAM12 have the ability to upregulate each other in
HNSCC cell lines, and this positive feedback loop is dependent on PI3K and JNK
signaling [173]. Additionally, ADAM12 upregulation confers increased migratory
and invasive phenotypes to these cells. This signaling mechanism may have clini-
cal significance as HER2 activation and total HER3 expression are predictive of de
novo resistance to gefitinib (EGFR-targeted TKI) [174]. While upregulated ligand
converting enzymes can potentially serve as biomarkers of therapy resistance, their
cleavage products can also subvert targeted therapeutic response. For example, an
upregulation of heparin-binding EGF (HB-EGF) has been observed in HNSCC cell
lines with acquired resistance to cetuximab [175]. Increased serum HB-EGF plasma
levels are also detected in patients with recurrent disease compared to those who are
newly diagnosed.

A strong relationship also exists between Met and PI3K signaling in HNSCC.
Consequently, Met activation represents another potential source of PI3K-mediated
RTK inhibitor resistance. To address this concern, potent Met inhibitors (SU11274
and PF-2341066) have been developed and pretreatment of HNSCC cell lines with
these compounds in vitro does prevent ligand-induced AKT activation [176], [177].
However, the degree of concordance between AKT inhibition and pharmacologic
Met inhibition depends on which AKT phosphorylation site is studied. One inves-
tigation demonstrated consistent AKT inhibition with Met inhibitors when utilizing
the mTORC2 phosphorylation site (S473) as a readout of AKT activity [176].
Meanwhile a similar investigation observed modest AKT inhibition across a panel
of HNSCC cell lines while employing the PDK-1 phosphorylation site (T308) as a
marker [177]. Due to the differential regulation of these sites, it is quite possible
both observations are valid and these parallel studies provide further insight into the
PI3K/PTEN/AKT/mTOR signaling occurring downstream of Met. From a clinical
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perspective, the dual regulation of AKT may explain why combined treatments of
EGFR and Met TKIs have potent, additive effects on HNSCC growth inhibition
[177], [178]. Met activation following the addition of EGFR ligands has also been
observed, suggesting crosstalk between these two receptors may have an important
functional role [178]. As discussed above, while multiple pathways interact with
Met, current evidence suggests PI3K/AKT/mTOR signaling is specifically capable
of mediating pathologic signal transduction downstream of this receptor.

An additional pathway providing inhibitor resistance during HNSCC treatment
is the TGF-β pathway. Aside from ligand-mediated signaling, noncanonical TGF-β
activation can occur through the downstream pathways shared with EGFR and Met
(MAPK, PI3K/AKT, and Rho GTPase) [179]. However, recent evidence suggests
that TGF-β-induced changes in the tumor microenvironment can inhibitADCC while
simultaneously activating tumor-associated AKT signaling [180]. In this paradigm,
TGF-β1 reduces the efficacy of immune-associated responses to cetuximab treat-
ment while concurrently providing a proliferative signal to the tumor. In support of
this hypothesis, HNSCC xenografts selected in vivo for cetuximab-resistance dis-
play increased TGF-β expression and TGF-β-dependent AKT activation [180]. This
resistance is reversible with a TGF-β inhibitor, providing strong preclinical evidence
for this therapeutic option in cetuximab-refractory HNSCCs.

7.7 Conclusion

Overwhelming evidence suggests the PI3K/PTEN/AKT/mTOR pathway is com-
monly deregulated in HNSCC. Although excellent preclinical and clinical studies
have begun evaluating the therapeutic potential of this pathway in HNSCC, addi-
tional work is required to verify nodes of oncogenic dependency and addiction in
this signaling network. Once these targets are fully validated in the laboratory, we
can translate these findings to the clinic and identify the appropriate population of
need. While single agent therapies targeting this pathway may represent future clin-
ical endeavors, these compounds may also serve to enhance the efficacy of standard
therapy options in use today. Whether these targeted agents will prove efficacious
in HNSCC treatment is not clear, but the role of PI3K/PTEN/AKT/mTOR pathway
deregulation in HNSCC certainly warrants further investigation.
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Chapter 8
Jak/STAT Signaling in HNC

Bhavana S. Vangara and Jennifer R. Grandis

Abstract The Janus kinase/signal transducer and activator of transcription
(Jak/STAT) pathway relays signals from cytokine receptors and receptor tyrosine ki-
nases to the nucleus, thereby altering the expression of genes regulating normal cell
functions, including growth, differentiation, and apoptosis. Constitutive Jak/STAT
activation has been detected in most epithelial malignancies including head and neck
cancer (HNC). STAT3 activation in HNC alters cell cycle progression, inhibits apop-
tosis, and facilitates proliferation and survival of cancer cells. Inhibition of aberrant
STAT3 by a variety of strategies has been shown to abrogate HNC growth in vitro
and in vivo suggesting that clinical approaches to block STAT3 activation may be
beneficial in this cancer. Understanding the consequences of Jak/STAT pathway mu-
tation is integral to developing and improving targeted therapies for HNC. In this
chapter, we will review Jak and STAT inhibitors presently under development in
preclinical models as well as treatments further along the pipeline that have entered
clinical investigation.

Keywords Head and neck cancer · Squamous cell carcinoma · Jak · STAT · Targeted
therapies

8.1 Overview of Jak/STAT

The Janus kinase/signal transducer and activator of transcription (Jak/STAT) path-
way was first described in studies of interferon signaling where information from
extracellular polypeptides, primarily growth factors, and cytokines, was relayed to
cytoplasmic transcription factors that altered nuclear gene expression [12], [18], [35].
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Fig. 8.1 Topology of the six major STAT functional domains. STAT functional domains are
outlined including: SH2 Src homology 2, NH2 amino terminus, COOH carboxy terminus, pY
phosphorylation site regulating DNA binding, and pS phosphorylation site, absent in STAT2 and
STAT4

Jak/STAT signaling regulates several key physiological responses including cellular
proliferation, development, differentiation, apoptosis, and inflammation [36], [46].
To date, four distinct mammalian Jak molecules (Jak1, Jak2, Jak3, Tyk2) and seven
different STATs (STAT1–4, STAT5a, STAT5b, STAT6) have been identified.

8.2 Mechanism of Jak/STAT Pathway Activation

Jak proteins are 110–140 kDa nonreceptor tyrosine kinases constitutively bound
to the intracellular domains of cytokine receptors. Jaks were named after Janus,
a two-faced Roman god, because they possess two tyrosine kinase domains, one
kinase (JH1) active at the C-terminus and another catalytically inactive pseudokinase
domain (JH2) [11]. Five other Jak-homologous (JH) domains have been identified
in members of the Jak family: JH3–JH5 (Src homology-2 (SH2)-line domain) and
JH6–JH7 (FERM domain required for Jak-receptor interaction) [11].

X-ray crystallography supports shared domain homology among various STAT
proteins. STATs are composed of an N-terminal domain responsible for STAT dimer
interactions, a coiled-coil domain, a DNA-binding domain that forms transcriptional
complexes, a linker domain, an SH2 domain where two activated STAT monomers
dimerize at reciprocal phosphotyrosine residues, and a C-terminal transactivation
domain [43] (Fig. 8.1).

Canonical Jak/STAT pathway signaling is initiated upon ligand binding to ex-
tracellular receptor domains, triggering receptor dimerization/oligomerization or
rearrangement of preformed dimers [11] (Fig. 8.2). The conformational changes
in the receptors bring the C-terminal JH1 kinase domains in close proximity and
allow for rapid transphosphorylation of Jaks. Activated Jak proteins then phospho-
rylate tyrosine residues on receptor tyrosine tails. The phosphorylated tyrosines
on Jaks and cytokine receptors recruit STAT proteins that bind the receptor and
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Fig. 8.2 Jak/STAT signaling and molecular inhibitors of STATs. Cytokine receptors with consti-
tutively associated Jaks dimerize following ligand binding and subsequently transphosphorylate
Jaks. STAT proteins are recruited to the phosphotyrosine residues of the receptor and bind via the
SH2 domain. Activated STATs form homo- or heterodimers at their SH2 domains and translocate
to the nucleus. The STAT dimers bind regulatory elements, including SIE/GAS, which leads to the
transcription of STAT target genes. Binding of ligands to RTKs, such as EGFR, and NRTKs, such
as Src and Abl, also activates STATs and initiates a downstream cascade. Jak Janus kinase, STAT
signal transducer and activator of transcription, SH2 Src homology 2, SIE serum-inducible ele-
ment, GAS Gamma-interferon activating sequence, (N)RTK (non)receptor tyrosine kinase, EGFR
epidermal growth factor receptor, TGF-α transforming growth factor-alpha, Src v-Src avian sar-
coma (Schmidt-Ruppin A-2) viral oncogene homolog, Abl V-Abl Abelson murine leukemia viral
oncogene homolog

subsequently undergo phosphorylation at single tyrosine residues within the SH2
domain. Phosphorylated STATs dimerize and translocate to the nucleus to regulate
expression of downstream target genes [12]. Noncanonical mechanisms involv-
ing unphosphorylated STAT1 and STAT3 signaling have been reported as well as
STAT3-mediated NF-κB activation [68], [69].

Regulation of STAT proteins is a balance between positive and negative regulators
of magnitude and duration of signaling. Activated STATs upregulate their expression
in a positive-feedback mechanism following activation-induced STAT degradation
[41]. Negative Jak/STAT pathway regulators include the SH2-containing phosphatase
(SHP) which inactivates Jak, the protein inhibitor of activated STAT (PIAS), the
suppressor of cytokine signaling (SOSC), and the protein tyrosine phosphatase (PTP)
[35], [41].
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8.3 Jak/STAT in Oncogenesis

Drosophila melanogaster models of gain-of-function Jak/STAT signaling first re-
vealed the pathway’s role in malignant neoplasia [20]. In 2005, a single point
mutation in Jak2 JH2 pseudokinase domain (Val617Phe) was implicated in > 80 % of
a polycythemia vera patient cohort and was subsequently identified in other myelo-
proliferative disorders including essential thrombocythemia and myeloid metaplasia
with myelofibrosis [26], [33], [40]. Although members of the Jak family have been
associated with a number of cancers, direct evidence linking Jak mutations to HNC
has not been reported.

Mutated and constitutively active forms of all seven STATs have been implicated
in an array of human cancer cell lines and primary tumors, including hematological
and solid malignancies such as HNC, non-small cell lung cancer (NSCLC), small
cell lung cancer (SCLC), pancreatic, colorectal, breast cancer, and cervical cancer
([9], [42]). Specifically, STATs 1, 3, 5a, and 5b have been indicated in head and neck
tumorigenesis.

8.3.1 STATs in HNC

STAT1 is regarded as a tumor suppressor protein as it is involved in growth arrest and
apoptosis whereas STAT3, STAT5a, and STAT5b are considered potential oncogenes
due to their regulation of cyclin D1, cyclin D2, c-myc, Bcl-XL, and survivin, genes
encoding cell proliferation and survival [70]. STAT3 also modulates the expression
of proteins responsible for angiogenesis, such as vascular endothelial growth factor
(VEGF) and hypoxia-inducible factor-1 (HIF-1), negatively regulates the expres-
sion of p53, and inhibits proinflammatory chemokines and cytokines responsible for
antitumor responses [70].

8.3.2 STAT1 in HNC

IFN-γ-mediated STAT1 activation leads to apoptosis through Fas signaling and
p21/WAF1-mediated cell cycle arrest [10]. STAT1’s tumor suppressive function is
best described in the context of human breast cancers where elevated phosphotyro-
sine STAT1 expression is associated with increased survival [64]. Conversely, STAT1
inhibition enhances HNC cell growth, and the loss of STAT1 heterozygosity may be
predictive of HNC recurrence and death ([25], [67]).
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8.3.3 STAT3 in HNC

8.3.3.1 In Vitro Preclinical Evidence of STAT3 in HNC

Constitutive activation of STAT3 homodimers (SIF-A) and STAT1/STAT3 het-
erodimers (SIF-B) has been identified in HNC cell lines and tumors. Elevated
expression and phosphorylation levels of STAT3, but not STAT1, were detected
in HNC cells compared to normal epithelial cells [18]. Dominant-negative mutant
STAT3 constructs arrest growth, trigger apoptosis, and decrease downstream effects
of STAT activation in HNC cell lines [18], [19], [29].

Several signal transduction pathways are involved in STAT3-mediated HNC. Ac-
tivation of the α7 nicotinic receptor in oral keratinocytes initiates the Jak2/STAT3
pathway and the Ras/RAF1/MEK1/ERK cascade in tobacco-mediated HNC [4]. The
epidermal growth factor receptor (EGFR) is a type I receptor tyrosine kinase known
to recruit and activate SIF-A and SIF-B to induce Jak/STAT signaling following
interaction with its ligand, TGF-α. Treatment of HNC cells with TGF-α leads to
increased STAT3 phosphorylation and expression [18]. Studies in HNC cell lines
demonstrate STAT3 levels correlate with EGFR mRNA and proteins levels, but not
TGF-α mRNA levels, indicating that STAT3 activation is largely limited by EGFR
expression [29].

8.3.3.2 In Vivo Preclinical Evidence of STAT3 in HNC

Increased STAT3 expression in primary HNC tumors and histologically normal mu-
cosa from HNC patients suggests that STAT3 activation may serve as an early event in
carcinogenesis [19]. Furthermore, a study concerning smokeless tobacco-mediated
HNC demonstrated that 82 % of tumor samples from 90 patients reflected increased
STAT3 expression with no detectable STAT3 in normal tissues [48]. STAT3 levels
were highest in poorly differentiated HNC tumor samples, whereas STAT1 lev-
els were highest in well-differentiated tumors. Thus, STAT1:STAT3 expression has
been suggested as a prognostic indicator of HNC [3]. Immunohistochemistry stain-
ing for phosphorylated STAT3 in human squamous cell cancer of the tongue indicate
that elevated expression of activated STAT3 correlate with nodal metastases, later
clinical staging, and overall poor patient prognosis [45]. Additionally, decreased Bcl-
XL expression was observed in HNC xenograft models following STAT3 antisense
treatment [19].

Elevated mRNA and protein expression levels of EGFR have been noted in > 90 %
of HNC tumors [17]. EGFR gene amplification has been reported in up to 30 % of
HNC tumors and serves as an early biomarker for carcinogenesis. Increased EGFR
expression has been correlated to decreased drug and radiotherapy response in HNC
[14]. Additionally, c-Met and its ligand, the hepatocyte growth factors (HGF), are
both overexpressed in HNC and initiate a similar pathway as EGFR causing enhanced
motility, invasion, and angiogenesis [30]. In this manner, targeting c-Met in addition
to EGFR may prevent acquired anti-EGFR resistance and enhance overall tumoricidal
effects.
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Notably, IL-6/gp130 interaction may activate STAT3. IL-6 serum levels were
significantly elevated in patients with primary HNC compared to healthy controls and
correlated with tumor staging [51]. STAT3 phosphorylation was abrogated following
IL-6 immunodepletion in HNC cell lines [56]. Thus, IL-6 autocrine or paracrine
activation of Jak1 and Jak2 leading to STAT3 phosphorylation may contribute to
HNC tumorigenesis.

8.3.4 STAT5 in HNSCC

In addition to STAT3, STAT5 activation contributes to head and neck squamous
cell carcinoma (HNSCC) oncogenesis by enhancing tumor growth, invasion, and
epithelium-to-mesenchymal transition [32]. This study also demonstrated that STAT5
activation resulted in resistance to cisplatin and erlotinib therapy. Jak/STAT activation
through the erythropoietin/Jak2/STAT5a cascade is also implicated in HNC invasion
in vitro. Clinically, patients with solid tumors treated with erythropoietin-stimulating
agents report decreased survival rates and increased recurrence rates [22], [35]. HNC
xenograft models of enhanced STAT5b activation exhibit increased tumor growth
[65].

8.4 Therapies Targeting STAT

STAT3 involvement in the progression of HNC, NSCLC, and other solid tumors have
made targeting STAT3 a more prominent focus than STAT1 and STAT5. Four main
strategies to inhibit STAT3 signaling are currently under development in several
cancers including HNC: SH2, DNA binding, and N-terminal domain targets, and
oligonucleotide-based approaches. Indirect STAT inhibition results from treatments
in current clinical use, such as EGFR-directed monoclonal antibodies (mAb).

8.4.1 Preclinical Studies: Targeting the SH2 Domain

STAT dimerization and receptor interaction via phosphotyrosine motifs may be inhib-
ited through SH2 domain blockade. Phosphotyrosyl peptidomimetics derived from
a STAT3 SH2 domain sequence have been shown to disrupt SIF-A dimer forma-
tion, induce apoptosis, and inhibit cell growth in Src-transformed fibroblasts with
persistent STAT3 activation ([58], [59]).

A curcumin analogue, FLLL32, functions by targeting the SH2 domain of STAT3
to limit phosphorylation and subsequent STAT3 nuclear activity. FLLL32 treatment
enhances apoptosis in cisplatin-sensitive HNC cells and similar apoptotic rates were
observed in FLLL32-sensitized cisplatin-resistant HNC cells treated with fourfold
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less cisplatin compared to cisplatin monotherapy [1]. However, phase I studies
revealed limited bioavailability of curcumin in human subjects [55].

A modified yeast two-hybrid screen was employed to identify short peptides
(aptamers) that bind to the SH2 domain, the SH2-surrounding dimerization domain,
or the DNA-binding domain of STAT3 [8], [47]. Peptide aptamers targeting STAT3
abrogated Bcl-XL transcription and caused caspase-dependent apoptosis in murine
melanoma and human myeloma cells [47].

Nonpeptide, small molecule SH2 inhibitors may represent a more practical
approach to inhibiting STAT3 dimerization and a means to overcome shortcomings
in cell permeability, in vivo stability, and potential immunogenicity. Several
nonpeptide SH2 inhibitors designed using structure-based computational modeling
are being evaluated. Recently, oral administration of one molecule, Stattic (STAT3
Inhibitory Compound), was shown to decrease HNC tumor growth and increase
radiosensitivity by diminishing STAT3-mediated HIF-1α expression in a murine
orthotopic model [2].

8.4.2 Preclinical Studies: Targeting the DNA-Binding
and N-terminal Domains

CPA-27, a platinum (IV) compound, was found to inhibit STAT3–DNA binding
at low micromolar concentrations in vitro; the significance of this interaction was
corroborated in vivo when CPA-27 caused tumor regression in a CT26 colon cancer
model [60]. Another compound, IS3 295, decreased the expression of cyclin D1 and
Bcl-XL, two known STAT3-regulated genes, and induced G0/G1 cell growth arrest
and apoptosis in fibroblasts [61].

The N-domain present in all seven STATs is a 130-amino acid region comprising
eight helices that mediates DNA and transcriptional machinery binding [6]. Synthetic
cell-permeable derivatives of STAT3 N-domain helix 2 fused to protein transduction
motifs selectively bind and inhibit the STAT3 N-domain as detected by FRET analysis
[57]. While in vitro results appear promising, the inhibitors’ method of action has
yet to be elucidated.

8.4.3 Preclinical Studies: Oligonucleotide-Based Approaches
Inhibiting STAT3 and STAT5

Recent advancements in nucleic acid-based strategies to target STAT proteins re-
veal promising preliminary results and render this method a plausible approach to
block STAT activation. Antisense oligonucleotides, small interfering RNA (siRNA),
dominant-negative constructs, and decoy oligonucleotide comprise current nucleic
acid-based STAT inhibition techniques.
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8.4.3.1 Antisense Approaches

Antisense RNA and siRNA effectively block aberrant STAT expression in preclinical
cancer models [15], [23], [31], [50]. In the antisense RNA method, ∼ 18–21-
nucleotide-long RNA sequences are introduced into cells and bind complementary
mRNA sequences in the cytoplasm or nucleus. Steric inhibition of ribosomal entry
or cleavage of the oligonucleotide-mRNA complex by endogenous RNase H enzyme
results in decreased gene expression [13]. Unfortunately, elevated liver enzymes and
liver failure manifesting from toxicity to treatment are major setbacks to the clinical
implementation of present antisense therapies.

siRNA knockdown is a formidable method of decreasing STAT3 expression in
preclinical murine models of laryngeal, breast, pancreatic, and colorectal cancer
[16], [23], [34], [50]. Additionally, STAT5 siRNA treatment in a hepatocellular
carcinoma xenograft model resulted in increased growth inhibition and apoptosis
[71]. However, the clinical application of the siRNA approach of STAT expression
is limited to date due to barriers in drug delivery.

8.4.3.2 Dominant-Negative Approaches

STAT proteins are present as several isoforms. The α isoform represents the
full-length protein. The β isoform, a truncated protein lacking the C-terminal transac-
tivation domain of STAT3 and STAT5, has been experimentally manipulated to limit
STAT activity through a dominant-negative approach [24], [43]. STAT3D, another
dominant-negative form of STAT3, possesses E434A and E435A mutations, render-
ing it unable to bind DNA and its stable expression in HNC cell lines resulting in
decreased growth rates [45], [49]. HNC cells transfected with a dominant-negative
carboxy-truncated STAT5b (STAT5bΔ754) decreased cellular proliferation while
Stat5aΔ750 failed to significantly alter HNC growth [37].

8.4.3.3 G-quartets Inhibit STAT3 Dimerization Through SH2 Domain

STAT3-specific guanine-rich deoxynucleotide sequences create G-quartet structures
by forming two hydrogen bonds to the SH2 domain to destabilize and inhibit STAT3.
A G-quartet oligonucleotide, T40214, impedes the growth of HNC tumor xenografts
in mice over a 21-day period relative to placebo-treated mice [27], [28]. Furthermore,
T40214 + paclitaxel-treated mice displayed a 35 % decrease in overall tumor size. In
vitro analysis in three HNC cell lines: TU167, B4B8, and MDA1986 demonstrated
that T40214 preferentially inhibits STAT3 DNA-binding activity over STAT1 activ-
ity. G-quartet oligonucleotides have demonstrated effectiveness in slowing tumor
proliferation in animal models of NSCLC and prostate cancer [62], [63]. Current
research in G-quartet oligonucleotides focuses on optimizing target selectivity and
bioavailability in order to propel these forward as viable clinical treatments.
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8.4.4 Clinical Studies

8.4.4.1 Indirect STAT Inhibition

In 2006, cetuximab, a chimeric immunoglobulin G1 (IgG1) EGFR mAb, became
the first Food and Drug Administration (FDA) – approved molecular therapy to
treat locoregional HNC in combination with radiotherapy and as a monotherapy
for recurrent or metastatic HNC unresponsive to platinum-based chemotherapy
[5]. Cetuximab binds at the endogenous ligand-binding site with high affinity to
abrogate EGFR dimerization and autophosphorylation, preventing Jak/STAT path-
way activation. Further, cetuximab is speculated to recruit natural killer cells and
macrophages through antibody-dependent cell-mediated toxicity. Five-year survival
in cetuximab/radiotherapy group was 45.6 % versus 36.4 % in the radiotherapy alone
group [7]. Recently, constitutive activation of pSTAT3 has been shown to contribute
to cetuximab resistance, and targeting STAT3 has been demonstrated as a viable
method to abrogate EGFR resistance and augment cetuximab responses in HNC
[53]. Additional EGFR inhibitors under investigation for HNC treatment include
panitumumab, gefitinib, and erlotinib, as reviewed in detail in Chapter 4.

8.4.4.2 Direct STAT Inhibition

A transcription factor decoy approach was most recently employed to directly tar-
get STAT3 activity using a synthetic 15-mer double-stranded oligonucleotide that
competitively binds cis elements within target genes to inhibit their expression [54].
The STAT3 decoy showed preferential STAT3 binding and arrested the prolifera-
tion of HNC cells in vitro [38]. Tumor growth inhibition and regression was seen
in HNC xenograft models in mice following STAT3 intratumoral treatment [66].
The antiproliferative action of the STAT3 decoy has been demonstrated in other pre-
clinical cancer models, including lung, breast, skin, and brain [53]. Furthermore,
primates administered STAT3 decoy intramuscularly did not exhibit toxicity [52].
Although the STAT3 simultaneously abrogates STAT1 signaling, the STAT3 decoy
independently inhibits HNC growth regardless of STAT1 levels or activation status
[44].

The pharmacodynamic properties of the STAT3 decoy were tested in a phase 0
clinical trial in HNC patients. Patients received either a single intratumoral injection
of 250, 500, or 1000 μg STAT3 decoy or saline control vehicle prior to tumor
resection. Expression of STAT3 target genes cyclin D1 and Bcl-XL significantly
decreased when compared to pretreatment levels and to tumors receiving saline
control. Additionally, no toxicities were noted and the maximum tolerated dose was
not reached [54].

Systemic administration of the STAT3 decoy, however, failed to abrogate HNC
xenograft tumor growth and did not decrease STAT3 target gene expression, demon-
strating the requirement of local delivery of the decoy for antitumor effects.
Degradation and thermal instability in vivo were suggested to explain the lack of
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Fig. 8.3 STAT3 circular decoy oligonucleotide. The STAT3 decoy was modeled after the conserved
hSIE genomic regulatory element present in the c-fos promoter. Eliminating free ends through
circularization increased thermal stability of the STAT3 decoy and protected against degradation
by nucleases. Systemic delivery of the optimized decoy oligonucleotide inhibited xenograft tumor
growth and downstream STAT target gene expression

action of the STAT3 decoy when delivered intravenously. Thus, the parental STAT3
decoy was modified to adopt a cyclic structure, eliminating free ends susceptible
to nucleases (Fig. 8.3). Systemic delivery of the newly formulated STAT3 decoy
inhibited HNC xenograft tumor growth and STAT3 target gene expression [54].
The promising results from systemic administration of the cyclized STAT3 decoy
underscore its potential as a therapeutic agent for STAT3-mediated HNC.

8.5 Therapies Targeting Jak

Although aberrant Jak activity is not a prominent method of oncogenesis in HNC,
reports of frequent Jak mutations in other cancers have made Jak inhibition an active
field of research. The identification of an acquired Jak2 mutation in hematological
and myeloproliferative neoplasms has led to the rapid development of Jak2 inhibitors
for use in preclinical and clinical studies [39]. Most Jak inhibitors in development
are small-molecule, orally available kinase inhibitors categorized into class I (Jak2-
specific) or class II (nonspecific) compounds [35].

Ruxolitinib (Jakafi�), an inhibitor of Jak1 and Jak2, was FDA approved in 2011
for the treatment of intermediate and high-risk myelofibrosis. Recently, the promis-
ing results of Jak2 inhibition in myeloproliferative disorders have made Jak inhibition
an area of active investigation. A Jak2 inhibitor, AZD1480, was found to abrogate
growth in human solid tumor cell lines and renal cell carcinoma xenografts with
constitutive STAT3 activity [21]. A phase II trial investigating ruxolitinib in conjunc-
tion with capecitabine in the treatment of refractory metastatic pancreatic cancer is
presently underway (ClinicalTrials.Gov.: NCT01423604).

8.6 Conclusions

Studies in HNC cell lines and human tumors identify the Jak/STAT pathway, specif-
ically, STAT3 as a potential therapeutic target. While several Jak inhibitors (with
secondary STAT3 inhibitory effects) are under clinical trial evaluation, few have been
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examined in the context of HNC. Furthermore, apart from the STAT3 oligonucleotide
decoy, STAT-targeted therapies have not advanced to clinical testing primarily due to
lack of target selectivity and efficacy. Tumor heterogeneity is common in HNC and
presents a substantial roadblock for the implementation of personalized therapy as
multiple oncogenic pathways may be implicated in each cancer. Elucidating the role
of the Jak/STAT pathway in HNC tumorigenesis will contribute to the development
of more effective targeted approaches to treat HNC patients.
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Chapter 9
TGFβ Regulates EMT in Head and Neck Cancer

Jill M. Neiman and Xiao-Jing Wang

Abstract The epithelial-mesenchymal transition (EMT) has been a major focus of
cancer research for many years, in part because of the association it has with metas-
tasis and disease progression. In recent years, EMT has also been linked to increased
cancer stem cell populations. The transforming growth factor-beta (TGFβ) pathway
induces EMT in many cancer types, including head and neck cancer. There are sev-
eral important transcription factors essential to TGFβ-induced EMT, including Snail
and Twist. Additionally, several deregulated microRNAs contribute to the oncogenic
process by influencing translation of these transcription factors. In this chapter, we
will discuss the contribution of the TGFβ pathway, the transcription factors Snail
and Twist, and the microRNAs involved in regulating EMT and cancer stem cell
populations in head and neck cancer.

Keywords TGFβ · Snail ·Twist · EMT · CSC · HNC · MicroRNA · Smad · Metastasis

9.1 Introduction

Epithelial-mesenchymal transition (EMT) is a complex process that is involved in
metastasis and reoccurrence of many cancers, including head and neck cancer (HNC).
Recent data have shown that EMT and increased cancer stem cell (CSC) populations
are associated, and may help explain some of the characteristics of these particular
tumor cells. Although EMT and CSCs have complex regulatory mechanisms, it has
been shown that these processes in most cancers are mediated, in part, by the trans-
forming growth factor-beta (TGFβ) signaling pathway. EMT induction by TGFβ is
mediated through numerous factors, including Snail, Twist, and microRNAs (miRs).
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Additionally, many of these factors, as well as other key regulators, are involved in
the EMT-associated link to increased CSC populations.

9.2 TGFβ Signaling Pathway

In many cancers, including HNC, the TGFβ pathway has been shown to contribute to
tumorigenesis by causing increased EMT, angiogenesis, metastasis, and CSC pop-
ulations. During carcinogenesis, TGFβ signaling has a dual role; in normal tissues
and early tumorigenesis, TGFβ acts as a tumor suppressor that produces growth in-
hibition and promotes apoptosis [50]. However, as tumors become more advanced,
mutations in the TGFβ pathway often lead to overexpression of the TGFβ ligand in
addition to decreased tumor cell response to the ligand’s suppressive effects. Over-
expression of TGFβ also induces EMT in tumor cells, resulting in increased invasion
and metastasis [102]. Furthermore, excessive TGFβ ligand in the tumor microen-
vironment causes other tumor promoting changes, including suppressed immune
surveillance and increased angiogenesis.

TGFβ was first described in 1982 as an important mediator of the neoplastic
transformation process, acting synergistically with TGFα or epithelial growth factor
(EGF) to promote colony formation of normal rat kidney (NRK) cells in soft agar
colony growth assays [5]. It was later shown that TGFβ pretreatment of mammary
adenocarcinoma cells caused increased lung metastasis in a tail-vein injection rat
model, likely through increasing the breakdown of the extracellular matrix (ECM)
[111]. A few years later, TGFβ was found to induce EMT in normal and transformed
mammary cells through a process requiring TGFβ receptor I kinase activity [65].
These studies highlight the importance of understanding the complex role of TGFβ

signaling in tumor progression and metastasis.
In the canonical signaling pathway, TGFβ ligand binds to a heterotetrameric

receptor complex, consisting of serine/threonine kinases, TGFβ receptors I and II
(TGFβRI and TGFβRII, respectively). Ligand binding causes a conformational shift
allowing the constitutively active TGFβRII to phosphorylate and activate TGFβRI
[62], [66]. Activated TGFβRI phosphorylates the primary downstream signaling
molecules in the TGFβ pathway, Smad2 and Smad3. Once phosphorylated, Smad2
and Smad3 can bind the common pathway mediator, Smad4, and translocate into the
nucleus where they interact with other coactivators and corepressors to regulate gene
transcription of growth inhibitors, apoptotic regulators, cellular adhesion molecules,
and many other factors. One of the genes induced by TGFβ-ligand binding is the
inhibitory Smad7, which creates a negative feedback loop on the TGFβ pathway
(Fig. 9.1).

The Smad pathway is the predominant mechanism through which TGFβ acts to
modify gene transcription; however, there are other noncanonical signaling path-
ways activated by TGFβ, including MAP kinase, Rho-GTPase, and PI3 kinase/AKT
signaling pathways. Activation of these pathways can contribute to EMT and stem
cell characteristics.
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Fig. 9.1 The TGFβ pathway. Binding of TGFβ ligand to the TGFβRI and TGFβRII causes a
conformational shift, allowing TGFβRII to phosphorylate TGFβRI. This receptor complex activates
Smad2/3 by phosphorylation, which is inhibited by Smad7. Once activated, Smad2/3 binds with
the common Smad4 and translocates into the nucleus. The Smad complex binds to promoters to
regulate gene expression, including genes involved in EMT as well as the inhibitory Smad7

In HNC, alterations in TGFβ pathway regulation can occur through numerous
mechanisms. Downregulation of TGFβRI and TGFβRII (53.8 and 28.8 %, respec-
tively) is seen in head and neck squamous cell carcinoma (HNSCC) patient samples
and correlates with increased invasion depth and lymph node metastasis [27], [110].

In addition to downregulation of the receptors, it is also common for tumors to
have altered Smad signaling. Smad4 is frequently downregulated (86 %) as indi-
cated by qRT-PCR of HNSCC patient samples [10]. Smad4 loss was found to be
a tumor initiating and promoting event leading to genomic instability and inflam-
mation. Additionally, Smad4 loss correlated with increased invasion, lymph node
metastasis, and a worse clinical prognosis postoperatively and in TGFβ1-negative
tumors (p = 0.01 and p = 0.02), although based on multivariate analysis, Smad4 ex-
pression alone cannot be used as an independent prognostic marker [28], [68]. Loss
of Smad2 is seen in approximately 15–40 % of HNSCCs, and is correlated with in-
creased local and distant metastasis, as well as disease reoccurrence [67], [114]. It
was found that pSmad2/3 loss, seen in 8.5 % of patient samples, correlated with bet-
ter outcomes than patients with active pSmad2/3 [113]. Unlike Smad2 and Smad4,
Smad3 is typically preserved in HNSCC, and based on skin carcinogenesis studies in
Smad3 germline knockout mice, may have a tumor promoting role related to altered
TGFβ signaling in immune cells [51], [101].
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Part of the mechanism involved in deregulation of the TGFβ pathway and loss of
growth inhibition is overexpression of the TGFβ1 ligand, which is seen in 36–43 %
of HNC patient samples [27], [68]. TGFβ1 ligand overexpression can feedback in
an autocrine fashion to induce EMT in tumor cells, while also acting as a paracrine
factor to activate fibroblasts in the surrounding stroma, contribute to angiogenesis,
and cause inflammation [53], [98].

9.3 EMT in HNC

EMT is a normal physiological process critical for proper embryogenesis and de-
velopment, as well as adult wound healing [11], [102]. It allows cells to alter their
morphology and polarity, break down cellular adhesion complexes, and digest extra-
cellular matrix, ultimately resulting in cell migration to other locations in the body
where they participate in reconstruction and repair [84]. EMT has naturally been
one of the major focuses of cancer research in the past 20 years, in part because
of the clear association it has with disease progression and metastasis. One of the
key identifying markers of EMT is decreased epithelial cadherin (E-cadherin) ex-
pression, which results in breakdown of adherens junctions, modification of Rho
GTPase function, and release of β-catenin from the adherens junction complex. In
addition to decreased E-cadherin expression, increased vimentin expression, loss of
polarity complexes including Crumbs protein homolog-3 (CRB3) and Lethal giant
larvae-2 (LGL2), changes in cytoskeletal elements, and the ability to produce matrix
metalloproteases (MMPs) are associated with EMT. Moreover, EMT in cancer is in-
fluenced by many contributing cytokines, transcription factors, and cellular adhesion
proteins.

In HNC, numerous key components of EMT have been identified (Fig. 9.2).
Nijkamp et al. showed low expression of the epithelial adhesion molecule E-cadherin
and high expression of the mesenchymal intermediate filament vimentin were sig-
nificantly associated with increased distant metastatic potential in HNSCC patients
as compared to the remaining patients in the study (100 vs. 44 %, respectively) [72].
Furthermore, Snail family member zinc-finger transcription factor, Slug (Snail2),
has been shown to cause upregulation of N-cadherin, a neuronal adhesion molecule
normally not expressed in epithelial cells, and decreased expression of desmoso-
mal proteins, including desmoplakin, in HNC [44]. In addition to Slug, another
E-cadherin transcriptional repression factor, zinc-finger E-box-binding homeobox 1
(ZEB1), is associated with decreased E-cadherin and EMT in HNC [35].

Growth factors and growth factor receptors play a critical role in EMT induction.
Studies have found 80–90 % of HNSCCs had overexpression of epidermal growth
factor receptor (EGFR), which induced EMT, increased MMP-9 production, and
decreased E-cadherin expression [86]. These changes were associated with increased
cell motility, invasion, and a poor prognosis as indicated by decreased disease-
free survival and local-regional relapse, and EFGR expression was shown to be an
independent prognostic marker for these diagnostic indicators [2], [126].
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Fig. 9.2 Characteristics of EMT. Normal epithelial cells express epithelial markers and have
numerous cell–cell connections including tight junctions, adherens junctions, and desmosomes.
Additionally, these cells have cobblestone morphology and defined polarity. Overexpression of nu-
merous growth and transcription factors contributes to EMT. After undergoing EMT, cells no longer
express many of the epithelial factors, and instead express numerous mesenchymal markers. These
cells also express proteases that breakdown the basement membrane, allowing them to invade. After
EMT, cells have a spindle-like morphology and are more motile

Bone morphogenetic proteins (BMPs) have been associated with EMT and metas-
tasis in HNSCC [32]. Immunohistochemistry (IHC) showed increased BMP-4 and
p-Smad1, a downstream transcription factor in the BMP pathway, in samples from
HNSCC patients with lymph node metastasis as compared to samples from patients
without lymph node metastasis [83], [115]. In vitro studies show knockdown of
Smad1 suppressed EMT induction by BMP4 and caused decreased invasion and
migration. In addition to the above described pathways, both the canonical and non-
canonical TGFβ signaling pathways are involved in EMT induction in HNC (see
Sects. 9.4 and 9.5).

9.4 Regulation of EMT by TGFβ Signaling in HNC

Activation of the TGFβ pathway in HNC causes tumor cells to adopt a mesenchymal
phenotype, which is represented by loss of E-cadherin, upregulation of mesenchymal
markers, a spindle-like morphology, and increased motility. Activation of multiple
cellular pathways is involved in this process.
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TGFβ1 was initially shown to induce EMT in normal and transformed mammary
epithelial cells, specifically through a TGFβRI-mediated mechanism [65]. It was
soon found that TGFβ1 can induce EMT in virtually all epithelial cell types. More
recently, Han et al. found that deletion of TGFβRII decreased TGFβ1 induced EMT
[37], suggesting TGFβ1 induction of EMT through a receptor-dependent mechanism.
In HNSCC, TGFβ1 overexpression has been shown to contribute to increased MMP-
9 and breakdown of the extracellular matrix through regulation of myosin-light chain
kinase, leading to increased ECM breakdown and invasion [56], [91].

Many TGFβ1-ligand-induced genes are regulated through the Smad pathway,
which is a key component of TGFβ-mediated EMT. Petersen et al. showed knock-
down of Smad3 caused increased latency and delayed bone metastasis in a breast
cancer model. However, in this same model, Smad2 knockdown caused more ag-
gressive metastasis than seen in the control, suggesting that Smad2 and Smad3 have
divergent roles [80]. Additionally, Hoot et al. found that Smad2 ablation in mouse
keratinocytes increased EMT and caused more poorly differentiated histology in
skin SCC [39]. In contrast, the spontaneous HNSCC tumors that arise from knock-
out of the common Smad4 resulted in tumors with increased genomic instability
and inflammation; however, the tumors were well differentiated and did not show
evidence of EMT as seen in Smad2 knockout tumors [10]. Further analyses revealed
that Smad2 loss-associated EMT required increased Snail expression mediated by
Smad3 and Smad4 [39]. These data suggest that Smads have distinct roles in EMT
and tumor progression.

Smads can interact with other transcription factors to regulate gene expression
and EMT. One important example of this is Smad interaction with ZEB proteins,
including ZEB1 and ZEB2/SIP1. The ZEB transcription factors have a Smad-binding
domain that can directly interact with Smads [20], [108]. However, Shirakihara
et al. showed that E-cadherin repression by ZEB2 is independent of Smad binding.
Furthermore, they showed that ZEB1 and ZEB2 were necessary for TGFβ-mediated
EMT, and that induction of these factors was likely regulated through transcriptional
activation by Smads [90].

Janda et al. showed the TGFβ- and Ras-signaling pathways work synergistically
to induce EMT. They used Ras-transformed or nontransformed mammary epithelial
cells in combination with Ras-pathway inhibitors to show that the Raf/MAPK activa-
tion was required for sustained TGFβ1-mediated EMT, tumorigenesis, and metastasis
[42]. This pathway is important in HNCs as well. H-ras mutation occurs in 4–5 % of
human HNCs [1], [97]. Further, Lu et al. found that 63 % of HNSCC patient samples
had Ras overexpression with concurrent TGFβRII expression loss [57].

9.5 Noncanonical TGFβ Signaling in EMT

While the Smad pathway influences TGFβ-induced EMT, there are several other
important mechanisms driving this tumor-promoting change independent of Smad
activation. TGFβRII can phosphorylate the polarity protein PAR6, which causes
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local degradation of the RhoA small GTPase and disassembly of intercellular tight
junctions in mammalian cells [40], [76]. Additionally, TGFβRI binds to the ubiquitin
ligase TRAF6, which mediates activation of several MAP kinases including TAK1,
MAPKK3/6, and the Jun/p38 pathway [94], [116], [123]. However, Yu et al. showed
that mammary tumor cells need active Smad signaling in addition to p38 pathway
activation to achieve complete EMT [123]. In fact, elevated p38 levels have been seen
in patient HNSCC samples [31]. This suggests that while noncanonical mechanisms
of the TGFβ pathway contribute to EMT, Smad signaling likely works synergistically
with these additional pathways to maintain a complete EMT phenotype.

9.6 Snail-mediated EMT in HNC

Snail is a master regulator of EMT, and is a transcriptional repressor of E-cadherin.
Snail (Snail1) belongs to a family of transcription factors that have four to six zinc-
finger domains that bind to E-box (5′-CACCTG-3′) regions located in the promoter
region of target genes [71]. There are two other proteins in this family, Slug (Snail2)
and Smuc (Snail3); however, Snail has the highest affinity for binding to E-box DNA
domains and is a more potent inhibitor of E-cadherin gene transcription [9]. Snail
represses the transcription of other epithelial genes including PTEN, Muc1, and the
tight junction integral proteins claudin and occludin [41], [74], [79]. Additionally,
Snail induction results in upregulation of mesenchymal markers, such as vimentin,
through release of transcriptional factors that are retained by E-cadherin as well as
interacting with β-catenin to promote transcriptional activation of Wnt target genes
[92], [96].

Snail induction can occur through numerous mechanisms, one of which is ac-
tivation of the TGFβ pathway. Activation of Snail by the TGFβ pathway requires
Smad interaction with high mobility group A2 (HMGA2) protein, which is thought
to enhance Smad binding to the Snail promoter [103]. Once induced, Snail, Smad3,
and Smad4 can work cooperatively to form a transcriptional repressor complex that
mediates EMT [109] (Fig. 9.3).

Mendelsohn et al. found that over 52 % of HNSCC patients’ IHC samples stained
positively for Snail, and this staining was inversely proportional to E-cadherin ex-
pression [64]. Additionally, it was found that positive Snail staining was associated
with poor differentiation, a basaloid classification, lymphovascular invasion, and
lymph node metastasis [64]. In vitro studies found increased Snail expression in
oral SCC tumor lines, which was associated with decreased E-cadherin, and a more
aggressive, metastatic phenotype [122]. Similarly, Usami et al. found esophageal
SCC cell lines that overexpressed Snail also expressed the mesenchymal marker
vimentin, but not E-cadherin or claudins. Furthermore, IHC of patient esophageal
SCC samples showed that increased Snail staining at the invasive front corresponded
with lymphatic and venous vessel invasion, lymph node metastasis, and advanced
tumor stage [106]. Based on these studies, snail expression in HNC correlates with
an EMT phenotype, increased metastasis, and may be a good prognostic marker for
staging.
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Fig. 9.3 The Snail pathway in TGFβ-mediated EMT. Binding of TGFβ ligand to the TGFβRI and
TGFβRII causes activation and nuclear translocation of Smads. HMGA2 forms a complex with
Smads on the promoter of Snail, resulting in induction of Snail. Snail can form a repressor complex
with Smad3/4 that can downregulate numerous genes, including those involved in maintaining an
epithelial phenotype. This contributes to TGFβ-induced EMT

In addition to modulating the EMT phenotype, Snail can alter the apoptotic re-
sponse, possibly through downregulation of PTEN, p53, or BID [25], [43], [107].
Cell lines overexpressing snail showed decreased apoptosis in response to radiation
and genotoxic drugs [25], [43]. Similarly, Dennis et al. found that induction of Snail
was sufficient to cause a mesenchymal phenotype in HNSCC cell lines, and Snail
overexpression conferred resistance to erlotinib, an EGFR tyrosine kinase inhibitor
[24].

9.7 Twist Pathways in EMT of HNC

Twist proteins are part of a large family of basic helix-loop-helix transcription factors
that were originally identified for binding to E-box responsive elements to regulate
gene transcription [48], [121]. There are two Twist genes in vertebrates, Twist1 and
Twist2, both of which are able to form homo- and heterodimers that bind the E-box
regulatory domain [14]. Once bound, Twist proteins can act as transcriptional
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Fig. 9.4 Twist in TGFβ-mediated EMT. TGFβ receptor activation results in nuclear translocation
of activated Smads where they induce HMGA2 transcription. HMGA2 binds to the promoter region
of Twist, resulting in upregulation. Twist can act as a repressor of epithelial markers and an inducer
of mesenchymal markers

activators, but more commonly act as transcriptional repressors by either recruiting
histone deacetylases, or inhibiting acetyl-transferases [36], [77]. Furthermore, Twist
proteins can modify gene transcription by inhibiting the function of other transcrip-
tion factors including NF-κB, p53, MyoD, and myocyte enhancer factor-2 (MEF2)
[7], [88], [89], [95]. Having the ability to interact with other pathways and induce
longer-acting transcriptional changes gives Twist proteins a diverse and multifaceted
response to a given stimuli.

TGFβ signaling and Snail contribute to Twist regulation. Twist is a target of
Snail repression, causing a transient decrease in Twist levels after initial TGFβ

treatment [105]. However, as Snail levels normalize, Twist is induced, in part,
through TGFβ induction of HMGA2 [104]. Twist1 is necessary for maintenance
of TGFβ-induced EMT. Induction of Twist proteins contributes to EMT through two
possible mechanisms. Twist proteins can form heterodimers that bind to the E-box
domain in the promoter of E-cadherin, resulting in downregulation of E-cadherin
[26]. Alternatively, Twist proteins may be more involved with upregulation of mes-
enchymal proteins, including vimentin and N-cadherin [55] (Fig. 9.4). In addition
to their role in EMT regulation, Twist proteins can influence tumor initiation and
progression through numerous other mechanisms. Some of these include overriding
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oncogene-induced apoptosis or senescence, increasing chemotherapeutic resistance,
and facilitating cancer cell invasion and metastasis [3], [15], [16], [52], [59], [117].

Overexpression of Twist proteins is commonly seen in cancers. In HNC, overex-
pression of Twist correlated with a high pathological grade, lymph node metastasis,
disease progression, and a poor prognosis (p < 0.001) [30], [75], [119]. Additionally,
Twist expression correlated with disease reoccurrence in oral SCC [112]. Based on
these studies, Twist expression should be investigated for future use as a prognostic
marker in HNC.

9.8 Regulation of CSCs Through EMT in HNC

In more recent years, researchers have discovered that tumors consist of a very
heterogeneous cell population; a small subpopulation of these cells, termed CSCs
or tumor-initiating cells, have two key properties—the ability to self-renew, and the
ability to regenerate the heterogeneity of the parental tumor [19]. CSCs have been
implicated in tumor progression, metastasis, drug resistance, and reoccurrence.

There are two predominant hypotheses on the origin of CSCs. CSCs can arise from
the transformation of normal adult tissue stem cells that have accumulated numerous
mutations, or they can develop from progenitor cells that have acquired mutations
endowing the tumor cell with self-renewing capabilities [63]. Recently, Mani et al.
identified EMT as another key regulator of CSC populations [60]. They found that
induction of EMT by TGFβ treatment in mammary epithelial cells increased ex-
pression of CSC markers, and that transformed mammary epithelial cells that had
undergone EMT were more able to form colonies in soft agar and tumors in mice
as compared to transformed cells that did not undergo EMT induction. Additionally,
they saw that CSCs isolated from mammary carcinomas expressed EMT markers,
and EMT transcription factors including Snail and Twist were upregulated [60]. In
SCC, Biddle et al. showed there are two distinct populations of CSC, one that is
migratory with an EMT phenotype, and one that is proliferative with an epithelial
phenotype [8].

Prince et al. were the first to show a CSC population in HNC-CD44 + cells.
However, large numbers of these cells were necessary to initiate a tumor (> 5,000
cells) [82]. Another study showed that CD44- cells in HNC also had CSC properties,
implying there may be numerous CSC populations within a given tumor [58], [73].
Research in recent years has focused on markers to identify these populations. Several
other putative HNC stem cell markers identified include aldehyde dehydrogenase 1
(ALDH1), CD34, CD117, CD133, and Hoechst side population (SP) [45], [58], [81],
[93], [124].

Yang et al. showed that in HNC, Twist1 overexpression resulted in upregulation
of Bmi1, which caused induction of EMT, increased tumor-initiating capabilities,
and increased expression of CSC markers. Furthermore, high levels of both Twist1
and Bmi1 were associated with decreased survival in HNC patients [118]. Another
study found that increased ZEB1/2 coexpression was associated with poor survival
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rates and an increase in the CD133 + CSC population [18]. These studies suggest
that not only are EMT and CSC properties associated with each other, but they also
can be used as prognostic indicators in HNC.

9.9 MicroRNA Contributions to EMT and CSCs in HNC

The role of miRs in cancer has received considerable attention in recent years. MiRs
are small (18–24 nucleotide), noncoding RNAs that regulate posttranscriptional gene
expression. They are transcribed as precursors that need to be processed by the
DROSHA complex and exported to the cytoplasm by Exportin5 before they can
interact with target mRNAs [6], [38]. MiRs regulate gene expression by binding to
the 3′ UTRs of target mRNAs, causing either degradation of the mRNA by the RISC
if it is an exact match, or translational repression in the case of an imperfect match
[47]. In the past several years, researchers have begun to uncover the diverse role
that miRs play in almost every biological process, including cancer, where they can
have either oncogenic or tumor suppressive properties [29], [69].

Some miRs have been implicated in EMT (Fig. 9.5). Park et al. found that in ovar-
ian cancer, the miR-200 family targets ZEB1 and ZEB2; hence, decreased expression
of miR-200 resulted in ZEB-mediated E-cadherin repression, vimentin upregulation,
and EMT induction [78]. In HNSCC, Lo et al. found decreased expression of miR-
200c in regional lymph node metastasis, as well as increased Bmi1 expression. They
showed Bmi1 was a target of miR-200c, and that overexpression of miR-200c or
knockdown of Bmi1 inhibited CSC properties and caused decreased lung metas-
tasis. Furthermore, they showed that overexpression of miR-200c decreased Snail,
ZEB1, and N-cadherin expression [54]. Interestingly, it has been shown that in lung
cancer, expression of the miR-200 family can be repressed by ZEB1 and ZEB2,
suggesting a complex negative feedback loop [12]. TGFβ treatment induced EMT
that was accompanied by decrease in the miR-200 family, elevated ZEB1/2 mRNA,
and decreased E-cadherin. In fact, Gregory et al. found prolonged treatment with
TGFβ caused DNA methylation of the miR-200 loci that correlated with decreased
miR-200 levels [33], [34]. TGFβ regulation of both ZEB1 and altered miR processing
plays a role in this double-feedback loop [22].

Reduced expression of miR Let-7 in combination with miR-205 has been as-
sociated with a poor prognosis in HNSCC (p = 0.01) [17]. Let-7 targets HMGA2,
which is involved in regulating TGFβ induced Twist and Snail expression [49], [104].
Therefore, decreased Let-7 would alleviate inhibition on these two major regulators
of EMT. Additionally, in pancreatic cancer, TGFβ1 treatment can repress mature
Let-7 but not the precursor of Let-7 through MMP-14 [21], implying that the TGFβ

pathway can impact miR expression at multiple levels.
Several studies have shown that miR-155 is increased in HNC. One possible mech-

anism of how this overexpression contributes to oncogenesis is through targeting the
tumor suppressor and epithelial marker APC [85]. In breast cancer, miR-155 was
shown to contribute to TGFβ-mediated EMT through targeting RhoA [46]. Further
investigation of miRs and their contributions to EMT in HNC is warranted.
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Fig. 9.5 TGFβ regulation of miRs involved in EMT. TGFβ causes methylation and inhibition of
the miR-200 family. The miR-200 family targets several transcription factors that are involved in
regulation of EMT and CSCs. TGFβ also decreases mature Let-7. Let-7 targets transcription factors
involved in EMT. MiR-155 is upregulated with TGFβ activation, although the mechanism is not
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9.10 Link Between EMT, CSCs, and Metastasis

EMT is often discussed as being linked to metastasis. In fact, there are numerous
studies in HNC supporting this conclusion [70], [72], [87], [120], [126]. However,
some recent data suggest that EMT and metastasis are not always associated. Han
et al. found tumors containing deleted TGFβRII and TGFβ1 overexpression were
still able to metastasize, despite maintaining E-cadherin expression, suggesting that
alternative noncanonical pathways, such as the RhoA/Rac and MAPK, may play
important roles [37]. Likewise, Lu et al. found that mouse models with K-ras activa-
tion and decreased TGFβRII expression developed HNSCC with 100 % penetrance,
35 % of which had lymph node metastasis, yet these tumors had not gone through
EMT [57]. Similarly, Smad2 deficient tumors had increased EMT with decreased
metastasis compared to Smad4 deficient tumors that had lung metastasis despite rel-
atively decreased EMT [4], [39]. This suggests it is possible EMT and metastasis are
not directly linked, and that the TGFβ pathway may be a key regulator of both these
processes.
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CSCs may be a better indicator of metastatic potential, although, as described
previously, there is a clear link between CSCs and EMT. In HNC, CSCs isolated
as CD44 + , ALDH1 + , and SP + all were shown to have increased metastasis as
compared to non-CSC enriched tumor grafts [15], [23], [93], [99], [124]. Similarly,
Biddle et al. showed that between two distinct CSC populations having either ep-
ithelial or mesenchymal phenotypes, only ALDH1 + cells were able to transit from
a mesenchymal to epithelial morphology, implying that only ALDH + cells are able
to seed a metastatic site [8]. While there appears to be an association between CSCs
and metastasis, evidence for a clear mechanism linking these two remains elusive.
Additional studies clarifying the contributions of EMT and CSCs to metastasis and
tumor progression in HNC are necessary to provide additional insight into novel
treatment approaches.

9.11 Implications for Therapy

Several of the molecules discussed in this chapter show promise as targets for treating
HNSCC. Inhibiting the TGFβ pathway has recently become an exciting and promis-
ing therapeutic target in HNSCC. There are numerous inhibitors currently under
investigation as anticancer therapeutics that are in discovery through Phase III trials.
These drugs have one of four general approaches to impeding the TGFβ pathway
including inhibition of TGFβ1 ligand synthesis, disruption of ligand-receptor inter-
action, inhibition of receptor activation, and inhibition of SMAD phosphorylation
[13]. Of these therapies, some of the most advanced studies are in monoclonal an-
tibodies, antisense oligonucleotides, and small ligand inhibitors, and to date, have
shown few side effects with promising growth inhibition and decrease in metastasis.

While there are not many studies in HNSCC, one recent study showed that treat-
ment with one of these inhibitors, GC-1008, caused decreased motility and invasion
mediated by integrin downregulation in HNSCC cell lines [100]. This study suggests
that TGFβ pathway inhibition may be a good molecular target in HNSCC as well as
other cancers. There is some evidence that combination therapy of TGFβ inhibition
with other pathway inhibitors, such as of the EGF pathway, may provide enhanced
benefit [125].

Snail inhibition shows some promise as a molecular target as well, especially
in combination treatment. Recent work has shown that HNSCC resistance to the
commonly used EFGR inhibitor, gefitinib, shows acquisition of an EMT phenotype
that is partially regulated by a compensatory increase in the AKT/GSK-3β/Snail
pathway [61]. While there are not any Snail inhibitors currently in clinical trials, this
study indicates that combination treatment of a Snail inhibitor with EGFR treatment
may be an effective therapy against HNSCC and warrants further investigation.

To date, there are little data on anticancer therapies against Twist, ZEB, or the miRs
discussed in this chapter; however, as these are key regulators of EMT, they show
promise as potential targets and need additional studies to clarify if inhibiting these
pathways may have therapeutic benefit.As EMT has also been shown to correlate with
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CSC properties, it is important for future studies to examine the impact that inhibitors
which have been designed to decrease EMT may have on regulating CSCs. These
drugs may confer a particular benefit when used in combination with other therapies
by decreasing the intrinsically resistant CSC population in addition to inhibiting
EMT. As the field moves forward, modulation of EMT and CSC pathways through
inhibiting TGFβ, Snail, Twist, or EMT-mediating miRs are promising candidates for
successful combination treatment of HNSCC.
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Chapter 10
The Wnt/β-catenin Signaling Circuitry in Head
and Neck Cancer

Rogerio M. Castilho and J. Silvio Gutkind

Abstract We have recently gained an unprecedented knowledge of the most fre-
quent genetic alterations in head and neck squamous cell carcinoma (HNSCC).
We have also learned that the aberrant function of multiple signaling networks
contributes to HNSCC initiation and progression, including the persistent activa-
tion of the PI3K/Akt/mTOR, NFκB, and STAT3 signaling pathways and decreased
antiproliferative responses to Notch and TGF-β. Emerging evidence suggests that
many regulatory components of the Wnt signaling pathway are also dysfunctional
in HNSCC, leading to increased nuclear β-catenin levels. This includes increased
expression of Wnt family members and their coreceptor, Frizzled, loss of het-
erozygosity of the adenomatosis polyposis coli (APC) tumor suppressor gene, and
epigenetic events leading to decreased expression of APC and the Wnt antagonists
the secreted Frizzled-related proteins (SFRPs), Wnt inhibitory factors (WIFs) and
Dickkopf family members (DKKs), primarily by promoter hypermethylation. Wnt/β-
catenin controls cell fate decisions in normal epithelial stem cells, but persistent
β-catenin signaling contributes to increased growth, metastatic potential and resis-
tance to chemotherapy in HNSCC and their tumor-initiating cells. While the role of
Wnt/β-catenin in HNSCC is not as well defined as in other cancers, the development
of small molecule inhibitors of the Wnt/β-catenin pathway for other cancer types may
soon afford novel targeted options for the treatment of HNSCC lesions displaying
aberrant Wnt signaling.
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10.1 Introduction

With more than 500,000 new cases annually, head and neck squamous cell car-
cinoma (HNSCC) represents the sixth most common cancers globally [1], which
results in more than 11,000 deaths each year in the USA alone [1]. The 5-year sur-
vival of newly diagnosed HNSCC patients is approximately 50 % and has improved
only marginally over the past three decades [2]. This may reflect the fact that most
HNSCC cases are still diagnosed at advanced stages, when they fail to respond to
the currently available therapeutic options. While the most common risk factors
involved in HNSCC pathogenesis, including alcohol and tobacco usage, human pa-
pillomavirus (HPV) infection, and areca nut chewing are well recognized [3]–[5],
we still have an incomplete understanding of the molecular mechanisms underlying
this disease, thus preventing the development of new molecular-targeted treatment
options and chemopreventive strategies.

Recent deep sequencing efforts have provided an unprecedented knowledge of
the most frequent somatic genetic alterations in HNSCC [6], [7]. They include in-
activating mutations in Notch, p53, and p16ink4a tumor suppressor genes, in addition
to non-overlapping activating mutations of the PIK3CA and RAS oncogenes and in-
activation of the tumor suppressor gene PTEN. Parallel efforts have revealed that
the aberrant function of multiple signaling networks contribute to HNSCC initiation
and progression [8]. In this regard, our laboratory has focused on the study of the
PI3K/Akt/mTOR signaling pathway, which is activated in the vast majority of the
HNSCC cases [9], [10], and which functionally interacts with the Wnt/β-catenin
pathway to regulate its activity. In this book chapter, we will focus on the contribu-
tion of the Wnt/β-catenin pathway to HNSCC, given its central role in the control of
epithelial stem cell fate decisions, and the emerging evidence for the dysregulated
expression and function of components of the Wnt/β-catenin signaling system in
HNSCC initiation and progression.

10.2 The Wnt Signaling System

Wnt signaling (Fig. 10.1) is essential for embryogenesis and is required for the
maintenance of multiple stem cell compartments in adults, and hence for tissue
homeostasis and regeneration upon injury [11], [12]. During development, Wnt sig-
naling is responsible for axial patterning, and regulates cell proliferation, migration,
adhesion, and stem cell fate decisions in multiple tissues, including self-renewal and
commitment to differentiation, as part of a signaling mechanism conserved from
flies to humans [13]–[17]. This remarkable biological role in organismal develop-
ment and adult tissue maintenance is possible due to the large variety of signaling
outcomes resulting from the tissue-specific and temporally controlled expression of
over 19 secreted Wnt cysteine-rich glycoproteins, which interact with multiple seven-
span transmembrane receptors of the Frizzled family, and with two members of the
low-density-lipoprotein receptor-related protein family, LRP5 or LRP6 [13], [16].
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Fig. 10.1 Representation of known alterations in components of the Wnt/β-catenin signaling path-
way in HNSCC. Molecules associated with β-catenin signaling are often highly expressed (Black),
while those known to exert an inhibitory role are often underexpressed (Gray), due to genetic and
epigenetic alterations. Infection of HPV-16 oncovirus results in activation of the Wnt/β-catenin
pathway upon association of HPV E6 with Dvl-2 and by inhibiting the E3 ubiquitin-ligase pro-
tein Siah associated with the degradation of β-catenin. Aberrant changes in HNSCC and infection
by HPV leads to the accumulation of free β-catenin that translocate to the nucleus activating the
expression of Wnt/β-catenin target genes (see text for details)

Specific Wnt proteins can initiate the activation of several major signaling pathways:
the “canonical” Wnt/β-catenin pathway, discussed at length in this chapter, and the
“non-canonical” Wnt pathways, which include the planar cell polarity (PCP), c-Jun
amino-terminal kinase (JNK), Rho, and calcium signaling pathways (reviewed in [16]
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and [17], and not discussed further in this chapter). Among them, the best understood
is canonical β-catenin-mediated Wnt signaling, altered function of which is associ-
ated with several biological processes, including development and cancer progres-
sion. Indeed, activation of the Wnt/β-catenin pathway is a frequent event in colon,
kidney, prostate, and thyroid cancer and melanoma, among others [18], including
tumors arising from the mammary gland and HNSCC (reviewed in [19], [20], [21]).

In the absence of Wnt stimulation, β-catenin binds a destruction complex that
is composed of Axin, a scaffold protein that forms a large molecular complex with
the tumor suppressor protein adenomatosis polyposis coli (APC), casein kinase Iα
(CKIα), and the kinase GSK-3β. GSK-3β is responsible for the phosphorylation
of β-catenin, thereby marking it for its subsequent ubiquitin-dependent degradation
in the proteosome [16], [22]. Binding of Wnt to Frizzled and LRP5/6 results in
the rapid phosphorylation of LRP5/6, which limits the function of the destruction
complex. This leads to the accumulation of newly synthesized unphosphorylated
β-catenin, which subsequently translocates to the nucleus where it complexes with T
cell factor (TCF) and lymphoid enhancer-binding factor (LEF) transcription factors,
thereby regulating gene expression [23]. In addition to Frizzled and LRP5/6, Wnt can
bind to and initiate signaling from multiple other cell surface molecules, including
receptor tyrosine kinase-like orphan receptor (ROR), protein tyrosine (Y ) kinase 7
(PTK7), receptor tyrosine (Y ) kinase (RYK) family proteins, muscle skeletal receptor
tyrosine kinase (MUSK), and even some proteoglycan families, whose roles during
development and cancer progression are just beginning to be appreciated [24]. For
the purpose of this chapter, we will focus primarily in the canonical Wnt/β-catenin
pathway given its best-characterized role in epithelial stem cell biology and HNSCC
disease progression.

10.3 Wnt Signaling at the Cell Membrane

Most of the current work on Wnt signaling addresses the intracellular signaling path-
way associated with the dynamics of β-catenin expression and localization, and its
structural roles and downstream transcriptional targets. However, Wnt and its mul-
tiple regulatory proteins and receptors are capable of contributing to a multitude
of tissue-specific biological functions and signaling mechanisms. For the purpose
of describing Wnt function in more detail, we will focus on the activation of Wnt
signaling in the epidermis. Wnt expression in the skin is initially observed in the
dermis adjacent to the epidermis, where it plays a fundamental role in the forma-
tion of placodes, that are formed by the accumulation of Wnt-responsive epithelial
cells [25] (reviewed in [26]–[28]). A multistep molecular cross-talk is then initiated
between the dermal and epidermal compartment, involving developmental and mor-
phogenic gene-expression programs, that ultimately result in the formation of the
hair follicles [24]. Once fully developed, the hair follicles retain detectable nuclear
levels of β-catenin in their epidermal (precortex and matrix cells) and dermal (dermal
papilla) components, which are essential for the long-term maintenance of the hair
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follicle structures [24], [29]. Of interest, Wnt and β-catenin functions are not always
equivalent in this differentiation pathway. Genetic mutations of β-catenin resulting
in its stabilization and hence, persistent signaling in gene transcription can result in
a completely different phenotype than the constitutive activation of Wnt signaling
at the cell membrane level. While uncontrolled accumulation of the active form of
β-catenin in the hair follicles and skin results in tumor development [30] and pre-
sumably the expansion of the epithelial stem cell compartment, as observed in other
systems [31], Wnt overexpression triggers epidermal and stem cell differentiation
and senescence, with progression to complete depletion of hair follicle structures
[32]. Such discrepancy is likely associated with the emerging complexity of the
Wnt-induced pathways [33], [34], suggesting fundamental differences in the patho-
biology of tumor formation mediated by components of the Wnt pathway localized at
the membrane and cytosol, versus the sole accumulation of β-catenin in the nucleus.

For example, Frizzled-1, a Wnt coreceptor located at the plasma membrane
(Fig. 10.1), and potentially a G-protein-linked receptor candidate, can induce the
differentiation of mouse teratocarcinoma cells resulting in the formation of primitive
endoderm upon expression of Wnt-8 [35] (reviewed in [36]). Wnt signaling at the
plasma membrane has been also shown to play a fundamental role in the protection
of cardiac stem cells from apoptosis induced by H2O2 [37], while loss of function of
Wnt-1 is associated with the autosomal-recessive osteogenesis imperfecta [38] that
is characterized by impaired osteoblast differentiation. Similarly, homozygous mu-
tation of LRP5 and consequence disruption of the canonical Wnt signaling results
in recessive osteoporosis-pseudoglioma syndrome, whereas Wnt gain-of-function
enhances osteoblast differentiation and consequently augments bone density [39].
Similar findings were observed regarding the induction of differentiation of mes-
enchymal stem cells into retinal neuron-like cells displaying retinal neuron-like
markers [40] and in Wnt-1-induced differentiation during midbrain development
[41]. Overall, the molecular signaling events resulting from Wnt pathway activation
at the cell membrane level is often associated with tissue maintenance by the activa-
tion of gene expression signatures in stem cells and their differentiated progeny, and
their deficiency is associated with neurodegenerative diseases (reviewed in [42]), car-
diovascular diseases [43]–[45], and bone homeostasis defects [38], [46]. However,
cancer-associated mutations in the Wnt signaling system rarely involve Wnt and its
receptors and coreceptors at the plasma membrane, suggesting a more relevant role
for the nuclear functions of Wnt, primarily mediated through β-catenin, in tumor
progression.

10.4 Wnt Signaling at the Transcriptional Level

Many proliferative lesions are associated with the aberrant function of intracellular
Wnt signaling components, which ultimately results in the cytoplasmic accumulation
of β-catenin and its translocation to the nucleus. Most of them involve loss-of-
function mutations in components of the destruction complex or nonoverlapping
gain-of-function mutations in β-catenin. A well-defined example of such mutations
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include those associated with familial adenomatous polyposis (FAP), a relatively
rare inherited disorder characterized by the development of multiple benign polyps
in the colon in early adulthood, which can evolve into colon carcinomas [47], [48].
This disease results from the loss-of-function mutations and gene deletion of the
APC gene, a central member of the destruction complex [49]. APC acts as a tumor
suppressor protein responsible for the destabilization of free β-catenin (also known
as CTNNB1). While APC can also perform additional biological roles, the direct
association between Wnt signaling and colon cancer is further strengthened by the
fact that nonoverlapping mutations in both APC and CTNNB1 are frequently found
in nonfamilial adenomatous polyposis tumors [50]–[52].

Structural alterations in other components of the β-catenin destruction machinery
are also associated with tumor development and progression. Axin, for example,
destabilizes β-catenin upon binding APC through its RGS domain [53]. Mutations
in the Axin 1- and 2-encoding genes are frequent events in human hepatocellular
carcinomas (HCCs), which also present mutations in β-catenin and Tcf1 genes [54].
The emerging concept that AXIN1 is a tumor suppressor gene is based on loss of
heterozygosity (LOH) found in poorly differentiated HCCs presenting unstable chro-
matin [55]. Finally, APC and Axin form the destruction complex by interacting with
and modulating the serine/threonine kinase GSK3-β, which is ultimately respon-
sible for β-catenin phosphorylation. The efficiency of GSK3-β in phosphorylating
β-catenin is exponentially enhanced in the presence of Axin [22] and mutations in the
Axin/GSK3-β binding interface are often observed in colon, lung, ovary, pancreas,
rectum, breast, and hepatocellular carcinomas [56]–[58].

Two other components of the destruction complex are the proteins Disheveled
(Dvl) and PP2A. Both proteins are essential for the proper functioning of the β-
catenin regulatory complex, with Wnt signaling promoting the phosphorylation of
Dvl, resulting in the inhibition of GSK3-β, accumulation of β-catenin, and the tran-
scription of its target genes [18], [59]. At the protein level, Dvl proteins are highly
expressed in non-small cell lung cancer (NSCLC), with the expression of Dvl-1 and
Dvl-2 associated with advanced stages while Dvl-1 and Dvl-3 expression levels cor-
relating with local lymph node metastasis [60]. The recent observation that histone
deacetylases (HDACs) associate with and modulate Dvl proteins provided a novel
mechanism by which cytosolic HDACs can control Wnt signaling. Specifically, the
HDAC SIRT1 is capable of promoting constitutive Wnt signaling by forming a com-
plex with Dvl proteins resulting in the regulation of β-catenin [61]. The emerging
evidence that HDACs control Wnt signaling suggests that this signaling pathway
can be regulated by molecules often involved in epigenetic regulation, which plays
a fundamental role during embryogenesis, cancer promotion, and in the aggressive
behavior of HNSCCs [62].

10.5 Wnt and Epigenetics

Understanding the mechanisms of epigenetic regulation of gene expression rep-
resents a unique opportunity to elucidate how cells can change the repertoire of
molecules expressed, and hence their phenotype during embryogenesis and tumor
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progression, independently from alterations in the DNA sequences [63], [64]. Epige-
netic mechanisms contribute to the control of normal tissue homeostasis through the
establishment and maintenance of tissue-specific gene expression signatures [63].
However, deregulated environmental cues can induce cellular transformation by al-
tering local signaling circuitry, resulting in a dysfunctional epigenetic equilibrium.
Under the influence of the microenvironment in which the tumors reside, cancer cells
undergo progressive changes in gene expression programs resulting in distinct cellu-
lar behaviors and phenotypes, including increased tumor aggressiveness or induction
of tumor quiescence.

The broad role of the Wnt signaling network during embryogenesis and
tumor progression makes this pathway suitable for constant epigenetic modulation
throughout the life span of an organism. This influence of epigenetics on components
of the Wnt pathway may explain the relative low frequency of Wnt-associated
mutations found in HNSCC (see below). Indeed, next generation sequencing of
HNSCCs has only identified a modest number of mutations in the Wnt signaling
pathway [6], [7] probably due the fact that many genes, especially tumor suppressor
genes, are often found silenced in HNSCC. Similarly, constitutive activation of Wnt
signaling in breast cancer is often associated with the silencing of the DACT1 gene
(dapper, antagonist of beta-catenin, homolog 1), an antagonist of the Wnt/β-catenin
responsible for reducing β-catenin activity [65]. DACT1 downregulation in breast
cancer has been associated with its promoter methylation [65]. Similarly, promoter
methylation of DACT2 results in loss or reduced antitumoral function and is found in
more than half of the cases of hepatocellular carcinomas [66]. Epigenetic modulation
of the Wnt signaling pathway has also been observed in esophageal squamous cell
carcinoma. Deactivation of the secreted Frizzled-related protein 1 (SFRP1) gene, a
Wnt inhibitor, is found in 95 % of the esophageal squamous cell carcinoma, where
the SFRP1 promoter is methylated. Downregulation of SFRP1 results in its reduced
inhibitory activity over the Wnt signaling pathway by allowing secreted Wnt to
interact with the Frizzled receptor and consequently initiate signal transduction [67].

Interestingly, esophageal squamous cell carcinomas seem to have a particular
predilection for loss of function of tumor suppressor genes that ultimately affect
the Wnt/β-catenin signaling. Along with loss of SFRP1 function, Wnt-5A, which
can activate noncanonical Wnt signaling, is also found frequently silenced through
promoter CpG methylation, resulting in the activation of the canonical Wnt signaling
pathway and increased levels of nuclear β-catenin [68]. Although the impact of
epigenetic modifications has gained substantial attention in recent years, there
are only a limited number of studies in the upper gastrointestinal tract and even
fewer focused on HNSCC despite the growing evidence supporting the aberrant
activation of the Wnt signaling pathway mediated by epigenetic alterations. One
of the few examples is the identification of gene silencing induced by promoter
methylation of the Wnt inhibitory factor-1 (WIF1), as shown in a large collection
of primary tumors of nasopharyngeal squamous cell carcinomas and esophageal
squamous cell carcinomas [69]. Interestingly, WIF1 promoter methylation is by
far more prevalent in nasopharyngeal squamous cell carcinomas with 85 % of the
cases presenting promoter methylation compared to only 27 % of the samples in
esophageal squamous cell carcinoma cohorts [69].
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10.6 Wnt and the Human Papillomavirus (HPV)

The epidemiology of HPV is associated with the transformation and progression of
many human tumors including cervical cancer and HNSCC [10], [70], [71], [72].
HPV infection is the main cause of cervical cancers and later was established as
responsible for a subpopulation of oral cancers, specifically associated with the
oropharyngeal anatomical area, for reasons not well understood. Although the clin-
ical progression of HPV-associated cervical cancer and HNSCC are quite distinct,
both tumors share a similar degree of genetic and epigenetic alterations, suggesting
a related transformation signature [9], [10], [73]. Indeed, both tumors present simi-
larities such as the higher prevalence of HPV type 16 infections. Patients presenting
HNSCC positive for HPV are of particular interest due to its unique clinical and
tumor behavior characteristics compared to the known carcinogenesis progression
associated with smoking and alcohol consumption.

Although the molecular mechanisms involved in tumor initiation and progression
of HNSCCs associated with HPV infection are still not fully defined, there is a grow-
ing list of signaling pathways found to interact with the HPV carcinogenesis process.
Among them, the Wnt/β-catenin signaling pathway has been shown to respond to
the viral oncoproteins E6/E7 expression during normal infection and malignant con-
version [74], [75]. Such mechanism involves the translocation of nuclear β-catenin
induced by E6/E7 responsible for downregulating the E3 ubiquitin-ligase protein
Siah, which is associated with the degradation of β-catenin independent of GSK3-β
[75]. The molecular correlation between Wnt/β-catenin and HPV16 oncoproteins
was further explored in a genetically defined animal model expressing full-length
E6 oncoprotein targeted to the epidermis. Expression of E6 oncoprotein is sufficient
to stimulate the Wnt signaling pathway in vivo, as judged by the nuclear accumula-
tion of β-catenin [74]. The oncovirus HPV16 was also found associated with Dvl-2,
known to play a role in the canonical and noncanonical Wnt signaling. Overall, it has
been postulated that overexpression of the Wnt/β-catenin signaling pathway medi-
ated by the HPV oncoproteins confers a “second hit” in the multistep carcinogenesis
process, supporting a synergistic role of Wnt signaling in tumors associated with
viral infection [76].

10.7 Wnt and Non-HPV-Associated Head and Neck Cancer

Whereas the involvement of the Wnt/β-catenin pathway is frequently observed at dis-
tinct stages of tumor initiation, progression, and metastasis, and it is often associated
with the maintenance of cancer stem cells in several tumor types, including colorectal
cancer [77], [78], NSCLC [79], and cancers arising in the breast [80] (reviewed in
[81]), and prostate [82], among others; the precise role of Wnt signaling in the biol-
ogy of HNSCC is still poorly defined. However, our mechanistic understanding of the
contribution of Wnt signaling during the development of HNSCC is advancing. We
now know that the regulatory components of Wnt signaling are often dysfunctional
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in HNSCC, leading to increased pathway activity and overall increased accumulation
of nuclear β-catenin [20], [21]. The APC tumor suppressor gene is often compro-
mised in HNSCC, which is mainly driven by either LOH resulting in reduced gene
activity [83] or by epigenetic events leading toAPC promoter hypermethylation [84].
In both cases, β-catenin becomes stable and free to activate Wnt target genes upon
nuclear translocation. Indeed, increased evidence suggests that altered expression
of β-catenin found in HNSCC [85], [86] is not mutation driven [87] but rather a
consequence of the deregulated function of members of the destruction complex.
Similar findings are also observed within the rare subpopulation of HNSCC tumor-
initiating cells, also called cancer stem cells [88], which present abnormal activity
of β-catenin [89]. The involvement of tumor-initiating cells presenting constitutive
expression of Wnt/β-catenin signaling is further associated with increased metastatic
potential, invasive behavior, and resistance to chemotherapy in HNSCC [89], similar
to that observed in other tumors such as colon cancer [77], [90].

Altered levels of expressions of Wnt, its cell membrane receptors, and their as-
sociated intracellular proteins have been also implicated in the biology of HNSCC.
For example, the mRNAs for the Frizzled receptor and Dvl were found to be highly
expressed in gene array studies of HNSCC [20]. Secreted Wnt proteins such as
Wnt-14 were also found present at high levels when HNSCC tissues were microdis-
sected and analyzed by liquid chromatography–tandem mass spectrometry (MS/MS)
[21]. Sensitivity is considered the main barrier in the detection of proteins expressed
at low levels, especially those localized in the interstitial tissues upon secretion.
The combination of microdissected tumor tissues with use of the MS/MS approach
provides much more sensitive strategy capable of identifying secreted proteins that
may be responsible for cell signaling through membrane receptors. The importance
of increasing sensitivity to detect Wnt family members in HNSCC may have fu-
ture implications for the understanding of tumor transformation, progression, and
phenotypic changes including epithelial–mesenchymal transition [91] during local
invasion.

An alternative to an increase in activation-associated proteins is the loss of in-
activating mechanisms. The molecular events originating from the interaction of
secreted Wnt proteins with their cellular receptors are tightly regulated by Wnt an-
tagonists, which are composed mainly of SFRPs, WIFs, and DKK family members,
which bind and inhibit Wnt and the Wnt LRP5/6 coreceptors (Fig. 10.1). Of interest,
many of these endogenous Wnt antagonists are targeted for deactivation in HNSCC
due to epigenetic changes, as silencing of these genes can lead to constitutive Wnt
signaling in HNSCC. In fact, the promoters of SFRP1, SFRP2, SFRP4 and SFRP5,
WIF-1, and DKK-3 are found hypermethylated in HNSCC, with a particularly high
incidence of promoter methylation in SFRP family members that is observed in 30–
40 % of the analyzed cases, some of which were associated with alcohol and tobacco
consumption, while others were found associated with HPV infection [92], [93].

The importance of active Wnt signaling during HNSCC progression is under-
scored by the in vitro positive results observed during direct therapeutic targeting of
the pathway. The use of antibodies against Wnt-1 or Wnt-10b resulted in the inhibi-
tion of the proliferative capacity of HNSCC cancer cells in vitro followed by reduced
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activity of the transcription factor LEF/TCF, reduced cyclin D1 protein expression,
and induction of apoptosis [94]. Similarly, treatment of HNSCC with the Wnt antag-
onist SFRP1 resulted in tumor growth inhibition. Yet, not all analyzed tumor cells
respond favorably to Wnt-1 and SFRP1-targeted therapies, which suggests that at
least a subpopulation of HNSCC may not require Wnt signaling to sustain growth. Al-
ternative strategic approaches aiming at inhibiting Wnt signaling have been explored
in the context of other tumors, which can now be applied to HNSCC. This is the case
with FAP patients, where COX2 inhibitor and non-steroidal anti-inflammatory drugs
(NSAIDs) were sufficient to reduce the rate of formation of polyps [95], [96]. Other
pharmacological strategies include the inhibition of Wnt ligands, enhancing Axin
stability mediated by novel small molecules, inhibition of β-catenin transcriptional
activity through disruption of its interaction with LEF/TCF, development of Dvl in-
hibitors, blocking antibodies, among many other possible experimental strategies
(reviewed in [97]).

Overall, the role of the Wnt signaling in HNSCC warrants further investigation.
It is clear that the role of Wnt in HNSCC is not as well defined as in other cancer
types, such as colorectal tumors. However, the development of HNSCC is associated
with the activation of multiple signaling circuitries, with a particular high frequency
of overexpression of epidermal growth factor receptor (EGFR), along with aberrant
Notch, NFκB, STAT, TGFβ, and PI3K/mTOR signaling, and the silencing of tumor
suppressor gene including P53, PTEN, p16ink4A and p14ARF, as discussed in other
chapters in this book. The blueprint of the HNSCC oncogenome is therefore far more
intricate than expected, as we have recently learned from next generation sequencing
of a large collection of HNSCC specimens [7], [6] citation was added by the editor.
Given the remarkable emerging molecular and cellular heterogeneity often observed
in HNSCC, the application of multimodal therapeutic strategies are more likely to
succeed upon the analysis of the genetic background of each HNSCC lesion. Indeed,
the understanding of the molecular signaling networks governing tumor progression
and metastatic spread in each individual HNSCC patient may reveal poorly explored
actionable therapeutic mechanisms. We can expect that the current emphasis, on
the development of small molecule inhibitors for the Wnt/β-catenin pathway for
other cancer types, may soon afford novel pharmacological targeted options for the
treatment of HNSCC lesions displaying aberrant Wnt signaling.
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Chapter 11
Human Papillomavirus (HPV)-Positive Head
and Neck Cancer and the Wnt Signaling
Pathway

Theodoros Rampias and Amanda Psyrri

Abstract All known human papillomaviruses (HPVs) are exclusively epithe-
liotropic. Upon entry into populations of stratified epithelial cells, the E6 and E7
oncoproteins encoded by high-risk HPV variants establish a productive infection
by manipulating signaling processes in the host environment, leading ultimately to
production of infectious particles in the upper epithelial layers. The mechanisms by
which E6 and E7 promote cell-cycle progression and viral DNA replication are well
established, and involve E6-dependent ubiquitination and degradation of the p53 tu-
mor suppressor, and E7- and cullin 2-dependent ubiquitination and degradation of the
retinoblastoma (Rb) tumor suppressor protein. Recent experimental work provides
evidence that high-risk HPVs also manipulate the underlying differentiation status
of cells by targeting the Wnt pathway to ensure progression of the viral replication
cycle. This chapter summarizes the possible cell pathways involved in the activation
of Wnt signaling in HPV-positive head and neck cancer.

Keywords HPV · Head and neck cancer · Wnt · β-Catenin

11.1 The HPV life cycle, epithelial differentiation,
and the Wnt signaling pathway

As discussed in depth by Ragin (Chap. 3), a subset of squamous cell carcinomas of
the head and neck (SCCHNs) has been found to arise as a consequence of infection
with human papillomaviruses (HPVs). HPVs infect stratified populations of epithe-
lial cells in the oropharynx and depend on epithelial differentiation for completion
of their life cycle. Typically, oropharyngeal keratinocytes undergo a differentiation
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Fig. 11.1 HPV infection in head and neck epithelia. Active infection drives infected cells in the
basal layer into proliferation, allowing viral genome amplification. Migration of cells into the upper
layers is associated with activation of the Wnt signaling pathway, cell differentiation, and new virion
production

process linked to cell migration from a basal layer through a suprabasal compart-
ment until they form squamous, differentiated cells exposed to the environment. The
expression of HPV-encoded genes is tightly regulated as the infected basal cell mi-
grates towards the epithelial surface, and reciprocally influences cellular biology so
as to enhance viral reproduction [1]–[4] (Fig. 11.1). Expression of E6 and E7 in the
lower epithelial layers promotes the entry of keratinocytes into the S-phase, which
creates an environment that favors viral genome replication and cell proliferation.
Viral genome amplification, necessary for the production of infectious virions, is
prevented until the levels of viral replication proteins rise, and depends on the co-
expression of several viral proteins in the suprabasal layers. Virus capsid proteins
are only expressed in infected cells that have migrated to the upper epithelial layers.
The fact that HPV gene expression, replication, and persistence in the host are inti-
mately linked to the differentiation state of the infected keratinocytes emphasizes the
importance of the recent recognition that HPV can influence the status of signaling
pathways that regulate cell fate commitment and differentiation.

Based on a model for HPV-induced carcinogenesis proposed by Gravitt [5], HPV
infects basal epithelial cells at the sites of microtrauma. As many infected basal
cells are induced to differentiate to fill the wound, these cells will produce an ac-
tive papillomavirus infection. However, a few infected basal stem cells will remain
undifferentiated, retain HPV in an episomal form, and slowly self-renew over long
periods of time until triggered to differentiate by a new stimulus such as wound
repair [5]. Recently, Tang and colleagues characterized an HPV-16,+ cancer stem
cell-containing SCCHN cell line (UM-SCC-104) from a recurrent oral cavity tumor,
providing further evidence for the existence of a subgroup of HPV-positive head
and neck tumors that arise from HPV-infected stem cells [6]. This differentiation of
latently infected stem cells, which is important to reactivate HPV-dependent gene
transcription, requires the Wnt signaling pathway, and is thought to be crucial for
the progression of HPV-induced carcinogenesis.
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Fig. 11.2 a Altered regulation of Wnt signaling induced by HPV16 E6 mediated degradation of
p53 in SCCHN. b Altered regulation of Wnt signaling induced by HPV16 E7 inactivation of pRb
in SCCHN KK

The canonical Wnt signaling pathway (Fig. 11.2) is of central importance in
regulating epithelium differentiation. Members of a family of extracellular Wnt pro-
teins serve as ligands for cellular receptors including Frizzled and a co-receptor
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such as low-density lipoprotein receptor-related protein (LRP). In the absence of
Wnt ligands, free cytoplasmatic β-catenin is normally short-lived. It is recognized
by a phosphorylation–destruction complex which consists of kinases and scaffold
proteins, including glycogen synthase kinase-3β (GSK3β), casein kinases 1 and 2
(CK1 and CK2), Disheveled (DSH), adenomatous polyposis coli (APC), the F-box-
containing ubiquitin ligase βTrCP, and Axin2. Following phosphorylation at serine
and threonine residues, phosphorylated β-catenin is subsequently ubiquitinated and
degraded [7].

Activation of Wnt signaling leads to the disassembly of the β-catenin degradation
complex and inhibition of GSK3 activity. This process leads to the accumulation and
nuclear translocation of β-catenin. Once it is translocated into the nucleus, β-catenin
binds members of the T-cell factor/lymphoid enhancer factor (TCF/LEF) family
of transcription factors, of which TCF4 is the best characterized. β-Catenin/TCF4
complexes control the expression of several target genes that regulate cell polarity,
proliferation, and differentiation including c-jun (JUN), c-myc (MYC), and cyclin
D1 (CCND1) [8]–[12].

During embryonic development, Wnt-regulated β-catenin contributes to the estab-
lishment of the body axis and the orchestration of tissue and organ development [13].
Apart from its role in development, canonical Wnt signaling is involved in regulating
cell proliferation, motility, survival, and stem cell maintenance in adult tissues. In
the adult skin epithelium, stem cells have a higher pool of β-catenin available for
Wnt signaling than their more differentiated progeny, and β-catenin activation can
expand the stem cell pool [14]. This finding has subsequently been confirmed in
experimental work on hematopoietic stem cells [15] and other tissues. In a study by
Silva-Vargas and colleagues, a K14ΔNβ-cateninER transgenic mouse (overexpress-
ing a stabilized amino-terminally truncated β-catenin fused at the carboxyl terminus
to the ligand-binding domain of a mutant estrogen receptor, under the control of K14
promoter) was used to study the activation of β-catenin signaling in adult mouse
epidermis. In this model, conditional induction of β-catenin signaling activation in
the basal layer of the epidermis by treatment with 4-hydroxy-tamoxifen (4OHT) pro-
moted the expansion of the stem cell compartment of the hair follicles [16]. Other
studies using different experimental strategies confirmed that β-catenin activation
expands the stem cell compartment [17]–[20]. Affymetrix microarray analysis us-
ing RNA from the total skin of K14ΔNβ-cateninER transgenic mouse treated for 7
days with 4OHT revealed that β-catenin activation upregulated the Sonic hedgehog
(SHH) and Notch pathways, suggesting a mechanism for its activity in regulating
differentiation. In this context, the mechanism by which HPV can manipulate WNT
and potentially SHH and NOTCH have become topics of considerable interest.

11.2 Many viruses manipulate the Wnt signaling pathway

The manipulation of Wnt and Notch signaling pathways is a commonly employed
strategy of viruses for achieving a cellular environment favorable for their repli-
cation. Strategies used by other classes of viruses to regulate Wnt signaling may
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be informative to consider when analyzing the mechanisms employed by HPVs.
As examples, tumorigenic gamma herpesviruses such as Kaposi’s sarcoma asso-
ciated herpesvirus (KSHV) and Epstein–Barr virus (EBV) activate the canonical
Wnt/β–catenin pathway to induce cell proliferation. In case of KSHV, the expression
of viral protein LANA (latency-associated nuclear protein) inhibits the β-catenin
degradation machinery by binding to the GSK3β component of β-catenin destruc-
tion complex, sequestering GSK3β in the nucleus, thereby protecting β-catenin from
ubiquitination [21]. EBV also induces β-catenin stabilization in infected B cells. In
this case, the EBV oncoprotein LMP1 represses the expression of the human ho-
molog of Drosophila seven in absentia (Siah-1), an E3 ubiquitin ligase that binds
to antigen presenting cells (APC) and promotes the degradation of β-catenin in a
GSK3β phosphorylation-independent manner [22].

Not all oncogenic viruses activateWnt signaling. For example, other herpesviruses
such as the human cytomegalovirus (HCMV) have been reported to inhibit the canon-
ical Wnt signaling pathway, reducing the Wnt/β-catenin transcriptional activity in
human dermal fibroblasts [23]. In HCMV-infected placenta cells, β-catenin is pre-
vented from translocating in the nucleus, instead forming aggresomes in a discrete
juxtanuclear location that are subsequently degraded [23]. The degree to which HPV
induction of Wnt signaling is required for pathogenesis requires further testing.

11.3 HPV and stabilization of β-catenin in cervical and head
and neck cancer

The association between oncogenic (high-risk) strains of HPV and cervical cancer
is well established [24], and reflected by the high incidence of abnormally elevated
nuclear accumulation of β-catenin in cervical cancer specimens [25]–[29]. High β-
catenin levels are associated with advanced pathologic stages of adenocarcinoma
[30]. Microarray expression studies conducted on cervical cancer tissues identified
elevated expression of WNT GSK3β, and β-catenin [31], [32]. Van der Meide and
colleagues determined that the promoters of nine negative regulators of the Wnt
pathway (APC, AXIN2, DKK3, SFRP2, SFRP4, SFRP5, WIF1, and WNT5A) were
hypermethylated in HPV-positive cervical cancer versus normal cervical tissue speci-
mens, consistent with downregulated transcription, with the promoters of DKK3 and
SFRP2 most specifically associated with the development of HPV-positive cervical
adenocarcinoma [33].

HPV infection is also specifically associated with the activation of the Wnt path-
way and elevation of β-catenin protein levels in SCCHN. High expression of the p16
protein is a reasonable surrogate marker for a clinically meaningful HPV infection in
oropharyngeal squamous cell carcinoma (OSCC) [34], [35]. As pRb normally func-
tions as a negative regulator of p16 expression, the functional inactivation of pRb by
the HPV E7 protein results in a reciprocal overexpression of p16 protein in HPV-
positive HNSCC. Loss of p16 expression by deletion, mutation, or hypermethylation
is one of the most frequent genetic alterations in HPV16-negative HNSCC [36] and
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therefore HPV-associated squamous cell carcinoma shows nuclear and cytoplasmic
p16-overexpression, which is predominantly absent in HPV-negative squamous cell
carcinoma. Weinberger and colleagues identified three tumor classes with distinct
molecular and clinical features based on the detection of HPV16 DNA and/or p16 pro-
tein: (1) HPV type 16 negative tumors that lacked p16 expression (HPV16−/p16−);
(2) HPV type 16 positive tumors that lacked p16 expression (HPV16+ /p16−) and
(3) HPV type 16 positive tumors that are characterized by high expression of p16
protein levels (HPV16+ /p16+ oropharyngeal tumors) [37].

Despite the fact that p16 immunohistochemical expression appears to be a reliable
marker for HPV infection, recent biomarker studies have shown that a small subset
of HPV-negative tumors is characterized by a high p16 expression (HPV16−/P16+ )
[38]–[40]. The HPV16−/P16+ subgroup may represent a group of tumors with pRb
loss without HPV infection, a false negativity of current HPV DNA detection meth-
ods, or a group of tumors with yet unknown molecular abnormalities in pRb/p16 cell
cycle regulation.

To include this subgroup in the molecular classification of head and neck cancer,
a recent comparative quantitative analysis of protein expression for 13 differ-
ent biomarkers (EGFR, E-cadherin, β-catenin, MET, ERK1/2, Bcl-2, PI3Kp110,
PI3Kp85, PTEN, NFκB, pAKT, STAT3, p53) was performed in p16−/HPV+ ,
p16+/HPV+, p16+/HPV−, p16−/HPV− subgroups of SCCHN using quanti-
tative fluorescent immunohistochemistry and automated image acquisition and
analysis (AQUA). β-Catenin was again found to be significantly upregulated in
p16+/HPV+ SCCHN tumors, suggesting that activation of the Wnt pathway by
E6/E7 oncoproteins contributes to HPV-induced malignant transformation in host
cells [41].

11.4 E6, Siah-1, and altered proteosomal degradation
of β-catenin in SCCHN

In a recent study of SCCHN cell lines, transcriptionally active, nuclear β-catenin
was found significantly elevated in HPV16+ versus HPV− oropharyngeal cancer
cell lines, and was associated with continuous E6 and E7 oncoprotein expression,
and reduced expression of Siah-1, a mediator of GSK3β-independent ubiquitination
and degradation of β-catenin [42] (Fig. 11.2). Repression of HPV E6 and E7 expres-
sion by shRNA mediated silencing substantially reduced nuclear β-catenin levels.
Moreover, luciferase reporter assays showed that transcriptional activation of the
Tcf promoter by β-catenin was lower after the silencing of E6/E7 [42]. Indepen-
dent clinicopathological studies have found that Siah-1 mRNA is decreased in tumor
samples compared with normal issues [43], [44]. This work indicates that high-risk
HPV E6/E7 expression markedly reduces Siah-1 protein levels in pharyngeal cells,
with this reduction reversed by shRNA depletion of viral E6/E7. Notably, E6/E7
silencing in shRNA-treated cells also slightly induces steady state Siah-1 mRNA
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levels (by 1.3-fold), although it is not clear whether changes involve transcriptional
or posttranscriptional regulation.

P53 binds the Siah-1 promoter, inducing transcription of the gene. The Siah-
1 protein forms a complex with Skp1, Eb1, Siah-interacting protein (SIP), and
the APC to facilitate the degradation of β-catenin in a p53-dependent manner
[45]–[47]. Under conditions of genotoxic stress, activation of p53 occurs and ele-
vated p53 levels directly induce the expression of Siah-1 and in turn, the formation of
β-catenin degradation complex [48], [49]. The expression of E6 in HPV+ oropharyn-
geal cancer results in the degradation of p53, limiting Siah-1 transcription, whereas
shRNA depletion of E6 causes a rapid restoration of p53 protein levels [50], support-
ing transcriptional activation of Siah-1 gene. Smeets and colleagues [51] showed that
immortalization of normal oral keratinocytes (OKCs) by HPV E6 activated the WNT
pathway, with this activation associated with p53 degradation; further, a dominant
negative mutant, p53(R175H), similarly activated the WNT signaling pathway.

There are numerous other examples of opposing actions of Wnt and p53 in cancer
formation. For example, Wnt1 overexpressing mice bred into a p53-deficient back-
ground develop mammary adenocarcinomas at an earlier age compared to Wnt1
transgenic mice with wild type (wt) p53 function, suggesting that p53 acts upstream
of Wnt to suppress its oncogenic activity [52]–[54]. Interestingly, Kim and col-
leagues have recently demonstrated that p53 transactivates miRNA-34 which binds
the untranslated regions of Wnt effector genes, opposing the transcriptional activity
of β-catenin. Therefore, loss of p53 function also increases canonical Wnt signaling
by downregulating miR-34 expression [55], [56].

11.5 Degradation of pRb activates the Wnt pathway:
A role for E7?

Disruption of the pRb pathway is a hallmark of many sporadic human cancers [57].
The tumor suppressor function of pRb depends on its ability to bind and repress the
E2F1 transcription factor. Although the oncogenic roles of the pRb/E2F1 and Wnt/β-
catenin pathways have been well studied independently, the functional interaction
between the two pathways has only recently been characterized. Recent work from
Costa and colleagues using a transgenic mouse specifically deficient in Rb/E2F1
in the skin (RbF/F; K14creERTM; E2F−/−) provides evidence that disruption of the
pRb/E2F1 pathway induces activation of Wnt/β-catenin signaling. In these mice,
the gene expression profile of the epidermis indicated an elevated expression of
Wnt-responsive genes, accompanied by aberrantly elevated nuclear localization of
β-catenin in spontaneous tumors arising in the skin after acute loss of pRb and
E2F1 [58]. These data clearly suggest that E7-driven degradation of pRb in HPV+
SCCHN may also increase β-catenin signaling, although the pathway as yet remains
unknown.
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11.6 In vivo models of HPV-induced stabilization of β-catenin

The crucial role of viral E6 expression in activation of the WNT signaling pathway in
HPV type 16 positive epithelia has also been confirmed in a transgenic mouse model
that expresses the E6 oncoprotein in the basal layer of stratified epithelia under the
control of human keratin 14 promoter (K14E6 mice) [59]. Mice from a transgenic
E6 strain were shown to display skin hyperplasia and skin cancer at advanced ages,
associated with nuclear accumulation of β-catenin and the transcriptional activa-
tion of β-catenin-responsive genes in skin epidermis [59]. In contrast, mice from a
transgenic strain expressing a truncated E6 oncoprotein that lacks the PDZ binding
domain (K14E6ΔPDZ mice) induces neither nuclear β-catenin nor the transcription
of β-catenin-responsive genes. The C-terminal PDZ domain of E6 found in all high-
risk HPV variants confers interaction with a large number of PDZ-containing cellular
proteins, including cell polarity and cell survival regulators such as NHERF1, DLG1,
Scribble, TIP-2, and others [60]. How these interactions contribute to viral control
of WNT signaling is currently not clear.

The synergy between the WNT signaling pathway and HPV was also shown in
an additional in vivo study using mice that use the Keratin 14 (K14) promoter to
express either the HPV16 E7 oncoprotein (K14E7), a constitutively active amino-
terminal truncated β-catenin molecule that lacks the four phosphorylation sites
required for its degradation (K14-ΔN87βcat), or both (K14-E7ΔN87βcat) [61]. In
this study, the K14-ΔN87βcat transgenic strain developed benign skin tumors but
did not exhibit histopathologic characteristics of cervical cancer while the K14-E7
strain displayed cervical pathologies after 6 months of estrogen treatment. The au-
thors analyzed the incidence of invasive cervical cancer in K14-ΔN87βcat, K14-E7,
and K14-E7ΔN87βcat mice at 7 months of age, finding invasive cervical cancer
developed in 11, 50, and 94 % of the transgenics, respectively. These data sug-
gest that the activation of WNT pathway accelerates HPV16-E7-mediated cervical
carcinogenesis.

11.7 Conclusions

HPV-associated SCCHN represents a distinct entity from tobacco- and alcohol-
related SCCHN, with a very different molecular profile. HPV has evolved to coexist
within epithelial cells and its life cycle is tightly linked to proliferation and differen-
tiation of the basal epithelial cells. E6 and E7 viral oncoproteins modulate cellular
signaling pathways that regulate the proliferation capacity and the differentiation
state of keratinocytes. The Wnt signaling pathway is of central importance in regu-
lating epithelium differentiation, and HPV uses components of this pathway to alter
cell gene expression by manipulation of downstream pathway responses. Recent ex-
perimental studies on HPV-associated SCCHN provide evidence that HPV-expressed
viral proteins promotes β-catenin stabilization, inhibiting its proteosomal degrada-
tion. These activities require the virally encoded E6/E7 proteins, which induce the
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degradation of p53 and pRb, negative regulators of Wnt pathway. Further investi-
gation of the interconnection between the Wnt pathway and E6/E7 is needed. The
understanding of viral manipulation of the Wnt pathway in HPV infected head and
neck cells may provide opportunities to create new molecular markers for HPV
diagnostics and new therapeutic approaches.
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Chapter 12
p53 in Head and Neck Cancer

Jong-Lyel Roh and Wayne M. Koch

Abstract Alteration of the TP53 tumor suppressor gene is a central event in the
development of human malignancy. The majority of squamous cell carcinomas of
the head and neck (HNC) have undergone this molecular disruption either by point
mutation of TP53 or through disruption of p53 protein function as a consequence
of oncogenic human papillomavirus (HPV) infection. p53 interactions with partner
proteins control key cellular pathways that affect apoptosis, the cell cycle, and pro-
liferation, particularly in response to stress. Early research demonstrated mutation
in the coding region of TP53 in more than half of all HNC tumors. However, the
anticipated value of TP53 alteration for clinical management of HNC has not ma-
terialized. This is due, in part, to the complexity of TP53 alterations, which occur
at numerous loci within the gene and produce highly variable results with regard to
protein function, as well as to the highly integrated position of p53 within densely
connected cellular pathways that induce pleiotropic effects. Furthermore, as a tu-
mor suppressor, p53 is not immediately accessible as a therapeutic target, since the
restoration of protein activity is more difficult to achieve than the blockage of activity
of a gain-of-function event. However, interest in TP53 alteration in HNC has under-
gone a minor renaissance with the observation that some mutations which disrupt the
DNA-binding function of p53 are associated with more aggressive cancer phenotype
than are mutations that are nondisruptive. Identification and targeting of this class of
TP53 mutation may, hence, have clinical importance in the disease management of
HNC. We summarize current relevant issues in TP53 biology.
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12.1 Introduction

The p53 protein, encoded by the TP53 gene, has a pivotal role in tumor suppression
and is a mainstay of intrinsic anticancer defense systems. Its importance is reflected
in the popular name “guardian of the genome” [1]. This 53 kDa protein was first
identified through studies of Simian virus 40 large T antigen in 1979 that identified
its induction [2]–[6], then later recognized as a cellular oncoprotein. p53 was initially
thought to be a positive effector of malignant transformation, as many tumors and
transformed cell lines produce high levels of p53 relative to normal tissues [7], [8].
The misclassification of p53 as an oncogene was uncovered by the subsequent obser-
vation that the loss of this gene promotes cancer [9]. The extensive analysis of DNA
from human cancers, coupled with in vitro functional assays, demonstrated that the
wild-type TP53 alleles were frequently mutated in different cancer types [10], [11].
Further, investigation of Trp53 knockout mice [12]–[14] and humans afflicted with
Li–Fraumeni syndrome [15], which is linked to TP53 germline mutations [16]–[18],
subsequently established p53 as a bona fide tumor suppressor.

Besides direct mutation of the TP53 gene, p53 levels can be grossly reduced based
on posttranslational regulation arising from altered expression of p53-binding part-
ners. Cellular p53 levels are controlled by the ubiquitin-proteasome pathway, which
in the mouse are regulated through the binding of the murine double minute 2 pro-
tein (MDM2; the human protein is called HDM2). MDM2 forms a negative-feedback
loop as a direct transcriptional target of p53, thereby promoting the degradation of
p53 and suppressing its cellular activity [19]–[22] (Fig. 12.1). In contrast, p53 is
rapidly activated in cells exposed to various stress conditions through the abroga-
tion of the inhibitory effects of MDM2 binding and via the activation of alternative
reading frame (ARF), a tumor suppressor protein that also binds to MDM2 and
thereby augments the cellular levels and function of p53 [23]. MDMX (also known
as MDM4), which is related to MDM2, binds to the amino-terminal region of p53
and inhibits its activity by augmenting the E3 ligase activity of MDM2 [24]–[25].
The excessive expression of MDM2 or MDM4 thus contributes to human cancer by
disrupting the intricate interplay of MDM2 and p53 [26].

Head and neck cancer (HNC) is the eighth most common cancer worldwide, with
more than half a million new cases diagnosed each year [27]. The overall incidence
of HNC in the USA is declining despite a rising incidence of oropharyngeal cancer
associated with oncogenic human papillomavirus (HPV) [28], [29]. Tobacco and
alcohol consumption increase the risk of developing traditional HNC, which is largely
attributable to the genotoxic effects of the carcinogens in these substances [30]. Over
50 % of HNCs demonstrate chromosomal loss at 17p, the site of the TP53 gene, and
harbor inactivating TP53 gene mutations [31], [32]. Conversely, the posttranslational
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Fig. 12.1 The p53-MDM2 negative-feedback loop is at the center of the p53 pathway. In non-
stressed conditions, the p53 levels and activities remain low through its ubiquitination (Ub) by
MDM2 and MDM4, both of which bind p53. Under stressed conditions, upstream signaling to p53
increases its levels and activities and the function of the MDM2-MDM4 complex is blocked. p53
activation is closely related to various stress signals including DNA damage, oxidative damage,
oncogene activation, hypoxia, nitric oxide, ribonucleotide depletion, telomere erosion, etc. p53
then transactivates and represses a number of target genes and protein–protein interactions, such as
those involved in apoptosis and that induce various phenotypic changes

inactivation of wild-type p53 is induced in tumors infected with oncogenic strains
of HPV (including HPV16 and HPV18), with the HPV- encoded protein, E6, acting
analogously to MDM2 , as a ubiquitin ligase to promote p53 degradation[33]. TP53
mutations are observed mainly in HPV-16-negative HNCs that are generally less
responsive to chemoradiation and show poor survival when compared with HPV-16-
positive head and neck squamous cell carcinoma (HNSCCs). The contribution of p53
status to the improved prognosis of HPV-related HNC may be explained in several
ways. Inactivation of p53 by E6 HPV protein may be partial, allowing for the retention
of some normal function. Furthermore, cells in which p53 is inactivated by HPV will
not experience any gain of function of p53 that may occur with certain mutations. In
normal cells, the p53 tumor suppressive function is activated by a variety of cellular
damage triggers, and exerted via the induction of cell-cycle arrest, senescence, and
apoptosis in response to oncogene activation, DNA damage, and other stress signals.
Hundreds of genes transactivated by p53 are intimately involved in apoptosis or cell-
cycle control, including the proapoptotic protein Bcl2-associated X protein (BAX)
and cyclin-dependent kinase inhibitor p21 [34], [35]. Activated p53 also interacts
in the cytoplasm with the Bcl2 family members, directly contributing to cellular
apoptosis by increasing mitochondrial membrane permeabilization and cytochrome
c release [36]. Hence, tumor cells lacking functional p53 are resistant to apoptosis.
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Accordingly, the TP53 mutation status in some tumors has been demonstrated to be
a reliable predictor of the chemotherapy response and patient prognosis [32], [37]–
[39]. DNA-damaging agents routinely used for cancer therapy engage the pivotal role
of p53 in their mode of action to kill the cancer cell. A recent study indicates that
head and neck tumor cell lines with TP53 mutations that disrupt DNA binding are
significantly more radioresistant than cell lines with wild-type TP53 [40]. However,
the p53 pathway is often affected in tumors without direct TP53 mutations, clouding
the assessment of its contribution to clinical tumor behavior.

Over the last few decades, p53 has been a valuable target for human cancer therapy
development. TP53 gene transfer with an adenovirus vector was approved in 2004
for the treatment of HNC in China [41], and the outcomes of clinical trials with
Advexin or ONYX-015 are eagerly awaited [42], [43]. Restoring p53 activity has
also been attempted by the development of low-molecular-mass compounds that
interact with mutant p53 or the p53-MDM2 pathway. Clinical trials of the efficacy
of such compounds are underway, including PRIMA-1, which interacts with and
stabilizes p53 mutants, and nutlins, which interact with the p53 binding pockets of
the MDM2 molecule and dislodge p53 from MDM2 [44], [45]. Other compounds
leading to the restoration of p53 function in cancer cells are in development.

In this review, we describe the functional elements of p53 structure and then
address the pattern of mutations affecting p53 structure and activity. We then discuss
the p53 family members, p63, p73, and p53 isoforms, and growing evidence for
their important roles in cancer. We outline important p53 protein interactions that
are essential for its tumor suppressive activity. In the context of these data, we then
discuss issues relevant to the use of p53 as a biomarker for cancer prognosis and
treatment response, and development of p53 as a therapeutic target. In each case,
we emphasize the importance of findings in the context of HPV-negative versus
HPV-positive HNC.

12.2 p53 Structure

Within normal human cells, the p53 protein exists as a tetramer of four identical
chains of 393 residues consisting of three main functional domains: an amino (N)-
terminal region harboring the transactivation domain (TAD) and a proline-rich region
(residues 1–61 and 64–92, respectively); a sequence-specific DNA-binding domain
(DBD) (residues 110–286); and a carboxyl (C)-terminal region including a nuclear
localization signal and an oligomerization domain (residues 326–355 and 363–393,
respectively) [46] (Fig. 12.2).

The acidic TAD binds various transcription factors, the transcriptional coac-
tivators p300 and CRP, and the negative regulators MDM2 and MDM4. The
MDM2-binding region of the TAD overlaps with the binding site for the transcrip-
tional coactivator p300. Hence, p300 and MDM2 compete for the same binding site,
and p300 thus protects p53 from MDM2-mediated degradation. Conversely, MDM2
prevents p300 or other transcriptional machinery from binding. The transactivating
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Fig. 12.2 Schematic diagram of full-length p53 consisting of an N-terminal transactivation domain
(TAD), a proline-rich region (PRR), the central DNA-binding domain, the tetramerization domain
(TET ), and the extreme C-terminus (CT ). The codon distribution of single base substitutions in
human cancer (n = 22,356) were derived from the IARC p53 mutation database. (www.iarc.fr/p53,
the latest version, R15, was released in 2010)

signal produced by p53 depends on the concentrations of proteins competing for its
N-terminus. TAD mutations weaken the binding of p53 to p300 domains and impair
protein–protein interactions [47]. The proline-rich region contains five PXXP motifs
that mediate numerous protein–protein interactions with Src homology 2 domains,
and are responsible for p53 interactions with stabilizing proteins. The function of this
region is poorly understood, but it is known to be indispensable for tumor suppression
[48].

The central core DNA-binding domain of p53 consists of an immunoglobulin-
like β-sandwich including a surface with two structural motifs with minor and major
grooves for binding target DNA. The DNA major groove docks with the loop-sheet-
helix motif including loop L1, β-strands, and the C-terminal helix. The other half
of the DNA-binding groove is formed by two large loops, L2 and L3, which are
stabilized by a zinc ion with coordination by His-179, Cys-176, Cys-238, and Cys-
242. The loss of zinc results in a significant decrease in thermodynamic stability
causing a loss of DNA-binding specificity [49]. p53 regulation of gene transcription
can be either positive or negative, depending on the nature and context of the binding
element present. Two core domains bind to symmetrical half-site dimers in DNA-
response elements with different space lengths between two half sites [50]. The key
residues in the DNA-binding domain that make direct contact with a DNA half-
site are Lys-120, Ser-241, Arg-248, Arg-273, Ala-276, Cys-277, and Arg-280. The
acetylation of Lys-120, located on loop L1, plays a role in the induction of apoptosis
[51]. p53-regulated gene expression is further modulated by interaction with the
ASPP family which regulates the apoptotic response and chromatin state [52].

The tetramerization domain in the C-terminal region of p53 consists of a short
β-strand and an α-helix linked by a sharp turn (Gly-334). A primary dimer, formed
by two monomers, is stabilized via an antiparallel β-sheet and helix packing with
three residues (Leu-330, Ile-332, Phe-341). Two dimers form a tetramer stabilized
by hydrophobic interactions and the truncation of two key residues (Leu-344 and
Leu-348) to shift the oligomerization to form stable dimers [53]. A dimeric mutation
in p53 may form a different tetramer to alter the orientation of the β-strand and the
α-helix, thus preventing co-oligomerization with wild-type proteins [54].
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The extreme C-terminal end of p53 binds to other proteins or nonspecifically to
DNA. The p53 residues 367–388 form a complex with the S100B protein and the
bromodomain of CBP, while residues 376–386 bind to phospho-CDK1/cyclin A
[55]. The PGGS motif, residues 359–362, binds to HAUSP/USP7, which is recog-
nized by MDM2-derived peptides [56]. The C-terminal region of p53 is subject to
extensive posttranslational modifications to regulate its function and cellular protein
levels. Acetylation of this region enhances DNA-binding activity and recruits coac-
tivators/histone acetyltransferases for the transcriptional activation of target genes
[57]. Truncation of the C-terminal region reduces DNA binding and lowers the trans-
activation of p53 target genes [58]. Modifications of the p53 C-terminal region may
contribute to the fine-tuning of the p53 stress response and reflect the complexity of
the p53 pathway, including the regulation of nuclear p53 levels, changes in DNA
binding, and coactivator recruitment.

12.3 Spectrum of Mutations in HNC

The TP53 database of the International Agency for Research on Cancer (IARC),
version R11, reports more than 17,000 cases of p53 missense mutations, mostly
clustered in the DNA-binding domain [59]. The phenotypes associated with com-
mon p53 cancer mutations are diverse, ranging from complete loss of its function
to promoter-dependent activity at subphysiological temperature [60]. Moreover,
there is increasing evidence that particular types of p53 mutations correlate with
the therapeutic response and cancer prognosis [32], [37], [40].

Hotspot p53 mutations found in tumors are classified as either contact or struc-
tural mutations. Contact mutations involve the alteration of DNA-contact residues
(R248Q, R248W, R273H, and R273C), whereas, structural mutations affect residues
required for the overall architecture of the DNA-binding surface of p53 (R175H,
G245S, R249S, and R282W) [61]. Many oncogenic mutations in the β-sandwich
region (V143A, V157F, Y220C, F270C, etc.) reduce the thermodynamic stability
of p53 and its binding to DNA response elements. Mutations affecting zinc ligands
(C242S) or the zinc-binding site (R175H) abrogate DNA binding by p53 in its folded
state. The removal of Arg-273, an essential DNA-contact residue in p53, does not
perturb the overall architecture of the DNA-binding surface but reduces the binding
specificity to gadd45 DNA by about 1,000-fold in vitro [62].

The L3 loop of p53, which is the DNA minor-groove-binding region, is the site of
structural hotspot mutations (G245S and R249S). Mutational changes at G245 affect
residues at the dimerization interface in the p53-DNA complex and weaken DNA
binding by reducing binding cooperativity [63]. R249 plays a crucial role in stabiliz-
ing L3 loop conformation, and its mutation leads to highly flexible and substantial
conformational changes in the L3 loop, which result in substantial impairment of
DNA binding by p53 and stability loss [64]. Mutational changes in R282 perturb the
stability of the loop-sheet-helix motif to the β-strand S2 and loop L1 without changes
in the overall architecture of the remaining DNA-binding region of p53 [63].
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Mutations in the β-sandwich region of p53 (V143A and F270L) are relatively
uncommon but create internal cavities in the hydrophobic core of this region with-
out collapse of the surrounding structure, which results in the loss of hydrophobic
interactions [63]. Y220C is the most frequent cancer mutation in p53 outside the
DNA-binding surface and has a similar destabilizing effect. Both the V143A and
Y220C substitutions elicit temperature-sensitive phenotypes that are inactive at body
temperature but initiate promoter-dependent transactivation activity at subphysio-
logical temperatures [65]. Hence, many mutations in the β-sandwich region of p53
primarily result in a lower intrinsic stability and thermodynamic stability of p53 that
cause more benign phenotypes [63].

The prevalence of p53 mutations in HNSCC varies from 30–70 % according to
different levels of exposure to risk factors in study populations [32], [66]–[71]. The
frequency of p53 mutations is the greatest among patients who smoke and drink alco-
hol [66]. In contrast, TP53 mutations have been found to be inversely associated with
the HPV status of tumors [72], [73]. HPV-positive tumors may also contain TP53
mutation in a minority of cases (25 %), but these mutations tend to be “nondisrup-
tive,” not altering the predicted DNA-binding capability of the resultant p53 protein
[73]. Numerous tobacco carcinogens and environmental chemicals increase the inci-
dence of somatic mutations in the p53 gene, particularly in smokers with CYP1B1,
GSTP1, or XRCC1 genotypes [60], [70], [74]. The pattern and codon distribution of
p53 mutations encountered in HNSCC is shown in Fig. 12.3. The most prevalent point
mutations are G:C >A:T transitions and G:C > T:A transversions. Frameshift muta-
tions (deletions and insertions) occur in approximately 16 % of HNSCCs, compared
with 9 % in most other cancers [59] but equivalent to the prevalence in esophageal
squamous cell carcinoma. These types of mutations are also more frequently seen in
subgroups of patients who consume alcohol and tobacco [75]. In an analysis of 1,576
single base substitutions from the IARC p53 mutation database, the most frequent
TP53 mutations in HNSCCs share six hot spot p53 residues (175, 245, 248, 249, 273,
and 282) found in other cancers [76] and additional mutations are found at residues
179 and 220 [59].

12.4 Loss and Gain of Function p53 Mutants

The majority of TP53 cancer mutations abrogate the DNA-binding activity of wild-
type p53 response elements as a loss-of-function (LOF) effect [60]. These mutant
p53 proteins acquire a dominant-negative (DN) activity over the remaining wild-
type species and also gain new oncogenic properties (“gain of function,” GOF) that
are independent of wild-type p53. Hence, these p53 mutations not only result in
the abrogation of wild-type p53 function, but the mutant p53 proteins also gain
oncogenic functions [9], [77]–[79](Fig. 12.4). There is growing evidence that GOF
TP53 mutations in human cancer are associated with drug resistance and poor clinical
outcomes [32], [37]–[38], [80].
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Fig. 12.3 The pattern (a) and codon distribution (b) of p53 mutations encountered in HNSCC. Data
were derived from the IARC p53 mutation database. (www.iarc.fr/p53, the latest version, R15, was
released in 2010)

The high proportion of missense mutations at TP53 hotspot residues favors the
gain-of-function hypothesis and the inactivation of DNA-binding capability is more
likely to result from missense mutations than truncating mutations. The mutagenic
effects of smoking (benzo-[a]-pyrene) or aflatoxin B1 food contamination may affect
point mutations at different regions of the TP53 locus: V157F and R158L substitu-
tions are frequent in lung cancer while the R249S substitution is extremely common
in liver cancer [78]. In HNC, the rate of TP53 mutation among cancers of smoking
and drinking patients is significantly greater than among abstainers (58 vs. 17 %), and
the pattern of mutation among nonsmokers suggests an endogenous mutation mecha-
nism, appearing largely at CpG islands [66]. The unique pattern and mode of function
of TP53 mutations is shaped by intrinsic factors and environmental carcinogens, as
well as by a complexity that is yet to be fully understood in tumors.
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Fig. 12.4 The phenotypic effects of TP53 mutations observed in human tumors. First, most
p53 mutations abrogate the capacity of p53 to bind its consensus DNA sequence and thus im-
pede its transcriptional activity (loss of function, LOF). Second, p53 point mutations produce a
dominant-negative (DN) effect over the remaining wild-type allele through the oligomerization of
the mutant and wild-type proteins. Finally, p53 mutants gain new functions (gain of function, GOF)
independently of wild-type p53 that promote tumor growth, metastasis, drug-resistance, and survival

Wild-type p53 is commonly maintained at low levels in unstressed normal tissues
with a short half-life of 9 min [81], which results from ubiquitin-mediated degra-
dation of p53 via the E3 ubiquitin ligase and the wild-type p53 target gene MDM2
[21], [82]. In contrast, mutant p53 proteins show an extremely prolonged half-life
and often accumulate at extremely high levels in tumors due to the disruption of
normal negative feedback mechanisms by mutations that abrogate the ability of p53
to transactivate MDM2 [83]–[86]. The stabilization of mutant p53 proteins is deter-
mined by a chaperone, such as HSP70 and HSP90, that interacts with mutant p53 to
accumulate p53 and inhibit MDM2.

Hetero-oligomerization with mutant p53R172H inhibits the ability of two p53-
related proteins, p63 and p73 (discussed below), to induce cell-cycle arrest and
suppress focus formation. p53 mutants that retain the ability to bind p73 protect can-
cer cells from chemotherapeutic agents and thus produce a less favorable response
to chemoradiotherapy in HNC patients [87]. The binding capacity of different p53
mutants for p73 is influenced by the site of the mutation and single nucleotide poly-
morphisms at codon 72 [88]. For example, the p53V143A and p53R175H mutants with
a 72R polymorphism bind to p73 more efficiently than those carrying 72P [88].
Squamous cell carcinomas bearing p53/72R mutants show a poorer prognosis than
those harboring 72P. Interference with such mutant p53–p73 interactions restores
the activity of p73 resensitizing cancer cells to chemotherapy and thereby hindering
cancer cell growth [89], [90].

Although hotspot mutations in the DNA-binding domain of p53 abrogate its acti-
vation of target genes, they can also modulate gene transcription and interfere with
pivotal signaling pathways by which p53 mutants exert their oncogenic functions
[78], [91]. A functional transcription-activation domain of p53 is required for the
activation of MDR1 by mutant p53 to protect cancer cells from apoptosis induced by
chemotherapeutic agents [92]. Transcription factor NF-Y interacts with the p53R175H
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and p53R273H mutants as well as wild-type p53, which explains the growth-promoting
properties and insensitivity of p53 mutants to DNA damage [37], [80]. In addition,
mutant p53 inhibits the ability of wild-type p53 to repress factors involved in in-
flammation, such as cytokines, chemokines, and extracellular matrix modulators.
Furthermore, it induces the transcription of inflammatory genes through the activa-
tion of the nuclear factor (NF)-κB pathway, enhancing the NF-κB response to tumor
necrosis factor α (TNFα) and activating NEKB2 [93]. The p53R248W and p53R273H

hotspot mutants bind MRE11, in the ataxia telangiectasia mutated (ATM)-dependent
DNA-damage response pathway, and consequently inhibit the cellular response to
DNA double-stranded breaks. This phenomenon is not observed in Trp53-null mice
[94]. These interactions of mutant p53 with transcriptional genes, binding proteins,
and the DNA-damage response network may account for the emerging molecular
signatures providing mechanisms underlying the gains of function associated with
TP53 mutations in human malignancies.

12.5 p53 Family Proteins p63 and p73, and Isoforms of p53

The p53 family members p63 and p73 have DNA-binding domains that are closely
related to p53, bind to similar DNA sequences, and can induce the transcription of
different genes [95], [96]. These p53 family members have tissue-specific essential
roles in the normal development of the nervous system, in the skin and female
reproductive organs, and as tumor suppressors under some circumstances [95]. p63
or p73-null mice die within a few months of birth, whereas, p53-null mice undergo
largely normal embryonic development but die of cancer at a young age. Loss of
the p63 gene affects the pool of proliferating stem cells during the development
of epithelium, with a subsequent lack of limbs and disruptions to a wide range of
epithelial structures of the skin, breast, urothelium, etc. [97]. The deletion of Trp73
in mice also results in nervous system abnormalities, reproductive and behavioral
defects, and immunological defects associated with chronic inflammation [98].

The architecture of p63 and p73 is similar to that of p53 [95]. However, the
oligomerization domain of p53 has sequence-nonspecific binding ability while both
p63 and p73 possess a sterile alpha motif (SAM) domain with protein–protein inter-
action properties. p63 and p73 share a high degree of sequence identity with each
other, and within the DBD, a 65 % amino-acid identity with p53. The role of p63
and p73 in tumor suppression is less obvious than that of p53, and mutations of
p63 and p73 have not been associated with higher tumor incidence [99]. However,
there is growing evidence that these p53-related proteins influence tumor suppres-
sion. Full length, transactivating-competent isoforms of p63 and p73, termed TAp63
and Tap73, are thought to contribute to cell-cycle arrest, senescence, apoptosis, and
DNA repair in response to DNA damage stimuli, independent of p53 [100], [101].
The p73-E2F1 pathway is involved in chemotherapy-induced apoptosis and tumor
chemosensitivity. Aging p63+/− or p73+/− heterozygote mice spontaneously suc-
cumb to spontaneously forming tumors, with a median survival time a few months
longer than that of p53+/− mice [99].
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All three of the p53 family proteins exist in many differently spliced isoforms.
p53 itself does not exist as a single protein but produces nine different isoforms
containing combinations of N-terminal and C-terminal truncated species through
alternative splicing and transcriptional initiation [102]. For each protein, an isotype
with a truncated N-terminus, the ΔN protein (Δ133p53, ΔNp63, and ΔNp73) and
further ΔN isoforms (Δ40p53, Δex2p73, Δex2/3p73, and ΔN′p73) is generated by
alternative splicing and initiation of translation. The transactivation-compromised
ΔN isoforms are functionally distinguishable from the full-length isoforms (FLp53,
Tap63, and Tap73) by the loss of antiapoptotic and dominant-negative properties.
Different isoforms (α, β, γ, δ, ε, ζ, and η) caused by the alternative splicing of
C-terminal exons are also known, but their biological functions and transcriptional
activities are still incompletely understood. Truncated N-terminal p53 variants act
as dominant-negative repressors of p53-regulated genes [103].

TAp63 has been identified as a potent transforming growth factor (TGFβ)-
dependent suppressor of invasiveness and metastasis of epithelial tumors, controlling
the expression of a crucial set of metastasis-inhibitor genes [104]. Opposing this ac-
tivity, the ΔN isoforms of p53 family proteins are overexpressed in some tumors,
which suggests a common mechanism for inactivation of the TA isoforms might
substitute for mutational inactivation [105]. For instance, the ΔNp63 isotype is re-
sponsible for the maintenance of the proliferative potential of basal keratinocytes, and
its expression is lost as keratinocytes differentiate by arresting the cell cycle [106].
Altered expression of TAp63 or its ΔN isoform is found in squamous cell carcinoma
of the head and neck, esophagus, and lung. p63 is overexpressed in 80 –100 % of
HNSCC in the nonkeratinizing area of the tumors [107], [108]. The overexpression
of ΔNp63 in precancerous lesions, such as leukoplakia, lichen planus, actinic cheili-
tis, or erythroplakia, is correlated with an increased risk of developing oral cancer,
and oral cancers that develop from ΔNp63-negative precancerous lesions showed
more favorable outcomes than ΔNp63-positive oral cancer [109]. Further, onco-
genic mutant p53 can also interfere with the functions of p63 and p73, subsequently
promoting transformation, metastasis, and chemoresistance. Recently, ΔNp63α, a
dominant inhibitory isoform of p63, is regulated by IKKβ, thereby rendering HNC
cells susceptible to cell death in response to cellular stress or DNA damage.

12.6 Factors Associated with the p53 Protein Family

p53 expression is controlled at several levels including transcription, posttranscrip-
tional modification, interactions with other proteins, and intracellular localization.
The core control of p53-regulated degradation is ubiquitination by a number of ubiq-
uitin ligases that target all three p53 family members. The ring domain E3 ubiquitin
ligase, MDM2, is the critical negative regulator of p53 and is inhibited by p53 as its
transcriptional target in a negative feedback loop [110]. MDM2 recognizes a short re-
gion of the p53 TAD and thereby interferes with p53 transcriptional activity, and inter-
acts with the DBD region to promote p53 proteasomal degradation via ubiquitination.
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MDMX (also known as MDM4) antagonizes p53 transcription without direct pro-
tein degradation, or heterodimerizes with MDM2 to augment p53 degradation via
MDM2/MDM4 interaction with the C-terminal ring domains [111]. MDM2 does
not promote p73 ubiquitination but induces its relocalization to subnuclear speck-
les, subsequently repressing p73 transcriptional activity [112]. The p53-MDM2
core circuit responds to multiple signaling pathways and can be regulated by var-
ious physiological clues, such as the Notch signaling pathway that binds to both
MDM2 and p53 counteracting MDM2-dependent p53 ubiquitination and promoting
p53 activity [113]. The activation of the Hedgehog pathway downregulates p53 by
promoting MDM2 phosphorylation [114]. A recent report has suggested that the
self-ubiquitination and ubiquitin ligase activity of MDM2 are inhibited by another
interacting protein Enigma (a LIM domain protein), which subsequently promotes
tumor-cell survival and chemoresistance by suppressing p53-mediated apoptosis
[115].

In addition to MDM2, two other ubiquitin ligases, PIRH2 and COP1, are direct
transcriptional targets of p53. Together with MDM2, these proteins are involved
in a negative feedback loop to restore normal p53 levels through stimulus signals.
TRIM24 (a ring-domain ubiquitin ligase) degrades p53 and FBXO45 (an F-box pro-
tein) promotes p73 degradation [96]. The crucial regulator of MDM2 is a tumor
suppressor nucleolar protein, ARF, that interferes with the MDM2-p53 interaction
to stabilize and activate p53 [116]. ARF binds and sequesters MDM2 in the nucleo-
lus, then stabilizes nucleoplasmic p53. HAUSP induces DAXX-dependent MDM2
deubiquitination. The MDM2-DAXX-HAUSP complex is disrupted by RASSF1A
protein, subsequently resulting in p53 stabilization [117]. p53 stabilization is also
achieved by N-terminal phosphorylation at Ser-15 and Ser-20 which inhibits the
interaction between p53 and MDM2 [118].

The p53 family proteins are also regulated by another ubiquitin ligase, WWP1,
that induces ubiquitin-dependent proteasomal degradation and inhibits their tran-
scriptional activity [119]. The NEDDS4-like ubiquitin ligase, ITCH, binds p63 and
p73 and promotes their proteasomal degradation through its interaction with the
C-terminal PY motif, which may be prevented by adaptor protein Yes-associated
protein 1 (YAP-1) [120].

The transcriptional functions of the p53 family are coordinated through the tran-
scriptional regulation of a wide array of cellular genes. The promoter selection
of different sets of genes plays an integral part in determining the response to
the p53 family members. The open status of chromatin induced by the induction
of histone acetylation contributes to p53-dependent transactivation. The acetylase
p300 / CREB-binding protein (CBP) and the pCAF acetyltransferases promote
p53 transcriptional activity by catalyzing the acetylation of lysines within the p53
C-terminal region [118]. The modification of p53 by the JMY-STRA-PRMT5-
p300/CBP complex activates p21Waf1 to shift the p53 response toward cell-cycle
arrest. Promyelocytic leukemia protein (PML) recruits p32-family proteins to sub-
nuclear structures called PML nuclear bodies in which a number of common p53
interactors are found, including the acetylase p300, the protein kinase Hipk2, and the
transcriptional repressor Daxx [96]. PML promotes the modification, stabilization,
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and activation of the p53 family proteins. Axin, a component of the canonical WNT
pathway, is another scaffolding protein involved in p53 regulation and with its in-
teractors, Daxx and Hipk2. Axin contributes to cell fate determination in response
to DNA damage by p53 phosphorylation at Ser-46 [121]. p63 and p73 also interact
with the axin protein and control p53 modification by Hipk2 and Daxx.

The binding of specific interactors with the p53 family influences their target
gene selection, resulting in the induction of cell-cycle arrest or apoptosis. The ASPP
family proteins are involved with the proapoptotic regulation (BAX and PIG3) rather
than the cell-cycle functions (p21WAF1 or MDM2) of the p53 family proteins [52]. In
contrast, the inhibitory protein iASPP inhibits proapoptotic gene activation but does
not affect cell-cycle arrest after binding with p53. The iASPP protein also inhibits
p73 and the dissociation of p73 from iASPP promotes p73-dependent apoptosis in
p53-deficient cells [122]. As the cellular levels of ASPP are a crucial determinant of
the apoptotic activation of the p53 pathway, the altered expression of ASPP or iASPP
genes is frequently found in tumors [123]. Cabin1 also modulates p53 transcriptional
activity on selected target gene promoters, such as Gadd45, p21Waf1, Puma, Noxa,
and MDM2 under normal conditions and binds to the p53 core DBD region to induce
a transcriptional response after DNA damage [124]. Smad2 and Smad3, intracellular
transducers of TGF-β signaling, interact with p53 family proteins to jointly control
target gene activation by TGF-β and the p53 proteins [125].

The p53 family members are localized in the cytoplasm and p53 subcellular
localization is regulated by several mechanisms, particularly ubiquitination. MDM2-
mediated monoubiquitination induces nuclear export rather than p53 proteasomal
degradation [126]. The E3 ligases WWP1 and MSL2 also induce p53 nuclear export,
but the zinc-finger protein E4F1 does not induce p53 nuclear transport but stimu-
lates its recruitment to chromatin and the activated expression of target genes [118].
Poly-ADP-ribose polymerase 1 (PARP-1) blocks p53 nuclear export and increases
its transcriptional activities after DNA damage [127].

The most well-characterized nontranscriptional function of p53 is the induction
of apoptosis through the mitochondrial pathway after DNA damage or oncogene
activation. Monoubiquitinated p53 localizes to the mitochondria and interacts with
the deubiquitinase HAUSP to form complexes with BCL2, BCL-xL, BAX, and
BAK, thus promoting apoptosis [128]. MDMX can localize to the mitochondria and
regulate p53 phosphorylation on Ser-46 to trigger the intrinsic apoptotic pathway via
p53-BCL2 interactions [129]. Hipk2 also acts as one of the kinases responsible for
p53 phosphorylation on Ser-46 and functions with MDMX as an interacting factor
for p53 family members. BCL-2, BAX, BAK, and BCL-xL bind the DNA-binding
domain of p53. p73 is cleaved by the caspase-3 and caspase-8 enzymes localized at the
mitochondria that mediate TNF-related apoptosis-inducing ligand (TRAIL)-induced
apoptosis, thereby inducing mitochondrial outer membrane permeabilization and
apoptosis [130].

The regulation of autophagy is an emerging nonnuclear function of p53 involv-
ing the removal of damaged cytoplasmic organelles and the adaptation of cells to
metabolic stress [131]. p53 transactivates genes that induce autophagy under stress
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conditions, such as sestrin 1 and 2, TSC2, IGFBP3, PTEN, and DRAM. The degra-
dation of cytoplasmic p53 by MDM2 and additional ubiquitin ligases (p300/CBP)
also promotes autophagy after nutrient depletion or treatment with rapamycin [132].

A conserved microRNA (miRNA) family, miR-34, has been implicated in the p53
network as a direct transcriptional target of p53 [133]. DNA damage and oncogenic
stress induce the expression of miR-34a, miR-34b, and miR-34c, thereby leading to
apoptosis or cellular senescence. The miR-34a gene, residing at 1p36, is often lost
in human tumors and 1p36 deletions involve a considerable number of genes [134].
The upregulation of miR-34a inhibits proliferation and activates a cell death pathway.
The mir-34 loci are directly regulated by p53 interaction and the artificial delivery
of miR-34 mimetics induces cell-cycle arrest (activation of the cdk inhibitor p21)
or senescence, whereas the reduction of miR-34 function attenuates p53-mediated
apoptosis. These different outcomes depend on the spectrum of miR-34 regulatory
targets expressed in different cell types. Therefore, miR-34s participate in tumor
suppression as a part of the p53 network. Reduced miR-34a expression is found in
both neuroblastomas and pancreatic tumors [134], [135], and a reduced expression
of miR-34b/34c is observed in non-small cell lung cancers (Bommer et al. 2007).
Downregulation of miR-34a also promotes growth and tumor angiogenesis of HN-
SCCs and is associated with a poor prognosis in cisplatin-treated sinonasal squamous
cell carcinoma (SCC) patients [136], [137].

The cellular loss of p53 abrogates a number of crucial regulatory networks that
contribute to cancer. p53 mutants bind p63 and p73 and inhibit their functions and
those of other common interacting proteins, associated with the cancer phenotype
[138]. The functional loss and deregulated expression of some p53 is frequently
seen in different cancers and transformed cells bearing wild-type p53 but showing
increased activity of p53 interactors such as MDM2, p14ARF, iASPP, and ChK2,
etc. These alterations have a significant impact on cancer prognosis and therapeutic
response. The recovery of p53 and its interactor functions is a potentially promising
strategy to overcome cancer therapeutic resistance.

12.7 Assessing p53 Status and TP53 Abnormalities as Cancer
Biomarkers

The accumulation of p53 protein in HNC and tumors has been commonly used as a
surrogate biomarker for TP53 mutations. As discussed above, many mutations sta-
bilize the protein and slow degradation. As p53 is not a stable protein in nontumor
tissues of patients or mice with germline TP53 mutations, its overexpression is typ-
ically associated with tumor development. Immunohistochemical (IHC) analysis of
p53 has been explored to assist with the clinical diagnosis, prognosis, and treatment
of cancer. However, using expression of p53 to assess gene status may mask nonsense
mutations, insertions, deletions, or splicing junction mutations that account for up
to 30 % of somatic TP53 mutations [139]. Although, tumors with p53 null mutations
have negative IHC results, these can be more aligned with clinical outcomes than
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a positive IHC result [140]. Moreover, wild-type p53 protein can be accumulated
in response to an inflammatory microenvironment or even as a result of senescence
[141], [142]. Nonetheless, availability of routine histopathologic assessment and
scoring in a pathologic laboratory is the obvious advantage of p53 immunostain-
ing. Evaluation of MDM2 and p21waf1 combined with p53 staining in tumors may
provide an approach to detect functional inactivation and transcriptional activity by
discriminating functional and nonfunctional p53 in the absence of a TP53 mutation
[143]. p53 and MDM2 staining also provides information on the p53 phenotype
and is complementary to TP53 genotyping data. When used as one of a panel of
biomarkers, p53 staining may provide important clinical information. For example,
p53, EGFR, HPV tilter, and Bcl-xL, and smoking have been explored as combined
biomarkers of a patient’s response to therapy and survival in oropharyngeal cancer.
Low p53 expression combined with high Bcl-xL and EGFR expression is associated
with poor outcomes after organ-sparing therapy [136]. However, there has been much
evidence that protein expression analysis alone cannot achieve an accurate picture
of the p53 status.

The gold standard method for TP53 mutation analysis of tumors is DNA sequenc-
ing. Initial mutational screening may be achieved by gel-based mutation assays, such
as SSCP or PCR-RFLP. These techniques include the processes of TP53 amplification
and enzymatic restriction of exon-specific PCR fragments that act as an indicator for
the presence of mutations. Direct sequencing methods for altered areas then generate
information on the TP53 status. Many mutation analyses for TP53 have been limited
to exons 5–8 in which most p53 mutations are found, and thus fail to detect muta-
tions outside this portion of the gene. This issue may be solved with more targeted
high-throughput DNA sequencing methods to gather nucleotide-level information
about TP53 and other tumor suppressor genes in cancer samples [144].

New technologies using spotted oligonucleotide arrays have increased the sen-
sitivity and specificity of mutation detection. The p53 GeneChip assay is a rapid
and accurate approach to detecting single base-pair substitutions and deletions
in the TP53 coding sequence [145], [146]. The GeneChip assay is designed for
high-throughput detection of mutations in TP53 exons 2–11. After one-round of
amplification of TP53 exons and fragmentation, DNA amplicons are hybridized
to oligonucleotide probes to detect base-pair mutations and deletions for each nu-
cleotide within the full TP53-coding sequence. The reported specificity of both the
p53 GeneChip assay and direct sequencing for detecting p53 mutations are compa-
rable (98 –100 %) (145). The GeneChip technique as a high-throughput sequencing
method for TP53 may provide valuable new data for cancer mutational spectra in
population-based studies [147].

Abnormal p53 expression and TP53 mutations have been associated with poor
survival outcomes or poor responses to therapy. TP53 mutations are also associated
with an increased risk of locoregional failure in HNSCC patients after radiotherapy
[148]. Nonetheless, a lack of prospective studies, the heterogeneity in different tumor
types, variation in experimental design, and the inherent complexity of the p53
pathway have lessened the clinical reliability of p53 status for prediction of cancer
patient outcomes. Data on mutations and prognoses extracted from the IARC TP53
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database reveal an association between p53 mutations and poor survival outcomes
for cancers of the head and neck, breast, liver, hematopoietic and lymphoid systems
but not for cancers of the pancreas, prostate gland, rectum, and stomach (http://www-
p53.iarc.fr).

Recent meta-analysis has systematically reviewed p53 as a prognostic biomarker
of overall survival (OS) and disease-free survival (DFS) in patients with SCC of the
oral cavity, oropharynx, larynx, and hypopharynx [149]. A statistically significant
hazard ratio (HR) for OS was found only in the oral cavity (pooled HR = 1.48)
and for DFS in the oral cavity (pooled HR = 1.47) and the oropharynx (pooled
HR = 0.45). Because large heterogeneity exists across studies of p53 and cancer
survival, there is inconclusive evidence on the prognostic value of p53 in SCC patients
in the four main anatomical subsites of the head and neck. A prospective, multicenter
study, however, has shown a significant association between TP53 mutation status
and survival for SCC of the head and neck in 420 patients treated surgically [32].
Mutations of TP53 exons 2–11 in tumor tissue detected through the GeneChip assay
and Surveyor denaturing high-performance liquid chromatography (DHPLC) were
examined for the presence of disruptive or nondisruptive mutations. Nonconservative
mutations located in the core DNA-binding domain (L2–L3 region), or stop codons
in any region were defined as disruptive, and others as nondisruptive mutations.
p53 mutations showed a significant association with a shorter OS compared with
wild-type p53 tumors, and disruptive mutations in p53 had a stronger association
with poor survival than nondisruptive mutations (Fig. 12.5). These results were also
supported by an orthotopic murine model of oral tongue cancer examining disruptive
TP53 mutations and aggressive tumor characteristics [150]. One mechanism for
the prognostic impact of disruptive p53 mutation may be inhibition of radiation-
induced cellular senescence, as SCC cell lines with disruptive p53 mutation have
been found to be significantly more radiation resistant, and this effect was potentiated
by the mitochondrial agent, metformin [40]. Another recent study has shown that a
truncating TP53 mutation, that is nondisruptive mutation, is associated with a poor
prognosis [151]. Additional studies are required to firmly establish the prognostic
importance of p53 status for HNC survival using prospective patient data.

The data obtained from studies examining the role of TP53 mutation as a predictor
of therapeutic response are complex. In an NCI60 human tumor cell line anticancer
drug screen, p53 mutants were found to be associated with an average 2.6-fold lower
sensitivity to 66 of 132 chemotherapeutic agents including alkylating agents, topoi-
somerase I and II inhibitors, and RNA/DNA antimetabolites [152]. TP53 mutations
were also shown to be a biomarker of the responsiveness to carboplatin or gemc-
itabine treatment in NSCLC [153] and to cisplatin in HNSCC [154]. Mutation of p53
within its C-terminal region may cause a loss of nuclear p53 signal that correlates
with cisplatin resistance in HNSCC cell lines. These results could help to identify
nonresponders to specific agents before initiating chemotherapy. In contrast, it has
been also reported that tumors with p53 overexpression are more responsive to cis-
platin than p53-null lesions [155]. This variation in chemosensitivity may result from
a common sequence polymorphism of TP53 encoding either arginine or proline at
amino acid position 72. The Pro72 variant induces apoptosis significantly better than

http://www-p53.iarc.fr
http://www-p53.iarc.fr
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Fig. 12.5 Overall survival outcomes for HNSCC patients according to their p53 mutational status
and category. a A prospective multicenter study showed that 196 patients with wild-type TP53 had a
longer median survival than 224 patients harboring mutant TP53 (5.4 years vs. 3.2 years). b Overall
survival of 85 patients with disruptive TP53 mutations was poorer than that of 139 patients with
nondisruptive TP53 mutations. Disruptive mutations were defined as nonconservative mutations
located in the core DNA-binding domain (L2–L3 regions) of p53, or stop codons in any region.
Nondisruptive mutations were defined as conservative or nonconservative mutations outside of the
L2–L3 region. (Reproduced with permission from New England Journal of Medicine [32])

the Arg72 variant by stimulating a higher release of cytochrome c after localization
to the mitochondria [156]. A clinical trial has also shown that the Arg72 polymor-
phism is associated with a poor response to cisplatin-based chemoradiotherapy for
advanced HNC [87]. The effect of p53 polymorphisms on the individual responsive-
ness to cancer therapy may be explained by the fact that Arg72 mutants efficiently
inhibit p73 and act as dominant-negative inhibitors of both p53 and p73. The p53
mutants V143A and R175H block the response of many tumors with an Arg72 poly-
morphism to many anticancer agents by inhibiting p73 more efficiently than the
Pro72 forms. Other genetic events may also affect functional p53 pathways, thereby
suppressing apoptotic mechanisms and promoting continued tumor growth. Loss of
the Bcl2 family, caspase-encoding genes and sensitivity to extrinsic apoptotic stimuli
may engender resistance to the host immune response and apoptosis [157]. Tumors
harboring different defects in these pathways typically show resistance to chemother-
apy or radiotherapy. However, there is still a lack of conclusive evidence for a role
of TP53 mutations in the response to first-line chemotherapy or radiotherapy. This
will need to be elucidated in a prospective large cohort of HNC patients.

Surgery remains the principal treatment modality for many cancer patients.
Routine clinical evaluation and microscopic examination has been utilized for the
identification of residual tumors at the surgical margins following tumor resection.
Even after excising a tumor with a generous margin of normal tissue, tumors can recur
despite microscopically free margins, and second tumors can develop at other sites in
patients effectively treated for an index tumor. Locoregional recurrence remains the
most common cause of surgical treatment failures for patients with HNSCC. New
diagnostic approaches are required to provide better mapping of this elusive cancer
spread and permit accurate assessment of surgical margins by providing molecular
evidence of residual tumors. Histologically normal mucosal margins may contain
genetically altered cells including TP53 mutations, promoter hypermethylation and
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proto-oncogene overexpression, etc. Because the TP53 sequence is frequently mu-
tated in HNCs, its mutations can be used as a target for tumor cell detection in
surrounding normal tissues or surgical margins without the need to microscopically
detect residual tumors on pathologic examination. This approach is based on finding
the same signature TP53 mutation in a tumor and in histologically negative surgical
margins that can cause tumor recurrence even after successful radical resection.

Initial molecular analyses of HNSCC surgical margins showed very promising
results. In a landmark study, margins harboring mutations of the p53 gene were
positive in 13 of 25 HNSCC patients, of whom five had tumor local recurrence,
as compared with 12 patients with a negative margin who showed no recurrence
[30]. This early molecular study employed a phage plaque assay containing p53
gene fragments encompassing exons 5–9 that were isolated from tumors to probe
DNA from surgical margins. Margin DNA was amplified in phage, plated on a
bacterial lawn, transferred to filters, and probed with radiolabeled oligonucleotides.
The residual tumor cells harboring a p53 mutation were estimated for mucosal and
deep surgical margins by comparison with a primary tumor positive control. These
results have been further supported by a prospective study using the same phage
plaque assay technique [158]. This test could aid clinicians in the delineation of a
tumor resection area and help with the planning of postoperative adjuvant therapy.
However, it is technically cumbersome and expensive to perform. A first generation
test that requires 4–6 weeks to generate results is now commercially available to
clinicians but more rapid approaches are needed for proper intraoperative decision
making. The time and technical limitations of this assay have been improved by a
real-time semiquantitative gap ligase chain reaction for the detection of TP53 point
mutations, with sensitivity comparable to that found for the phage plague assay for
tumor cell detection [159]. This method used two sets of primers spanning TP53
mutant sequences and a complimentary primer bound to the mutated sequence and
fluorescent labeled probe to allow for quantitative real-time analysis. It can detect
small numbers of tumor cells in a background with a large excess of wild-type DNA.
Positive margins included tissue samples with a tumor/margin DNA ratio of as low
as 1:1,000. Further advances have been made possible by the Ligamp TP53 assay
which provides sensitive and quantifiable detection of mutant TP53 in histologically
normal margins [160]. This approach can assess single nucleotide genetic alterations
with a sensitivity of one mutant species among 10,000 wild-type molecules. The
study of Poeta and coworkers showed that the sensitivity and specificity for the
prediction of tumor recurrence in 95 patients with common TP53 mutations were
60 and 68 %, respectively. However, no statistical significance of positive margin
predictive of cancer specific or OS was observed in this cohort. Clinical trials using
these molecular diagnostics are currently ongoing to determine whether molecular
detection of residual tumors can identify subgroups at high risk of locoregional
recurrence.

Precancerous fields in the upper aerodigestive tract are known to be at risk of
developing a second tumor [161]. It is also well known that some areas of leuko-
plakia or erythroplakia progress to invasive HNC. Many of these premalignant lesions
harbor the genetic aberrations associated with tumor progression [162]. Molecular
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diagnostic approaches to identify the presence of cells harboring TP53 mutations
in tumor-remote mucosa may help identify patients at risk for second cancers. The
presence of a TP53 mutation in histologically normal mucosa or precursor lesions
may provide information on the risk of progression to cancer [163]. In addition,
multiple molecular markers including TP53 mutations may be useful in determining
the clonal origin of multiple tumors or tumor spread in synchronous cancers [164].
This molecular approach helps identify whether a second tumor is a recurrence of
a primary index tumor or a new primary lesion. Concordant aberrations of paired
tumors (microsatellite allele, TP53 mutation, and female X chromosomal analyses)
suggest recurrence of an index tumor [165]. This highlights the need to treat precursor
lesions in the affected field as well as addressing visible tumors.

12.8 Restoration of p53 Function: Therapeutic
Exploitation of p53

Increasing numbers of specific gene mutations in human cancers have become
evident, and the subsequent development of agents targeting these molecular ab-
normalities holds promise for valuable advances in cancer therapy. Cancer therapies
that target specific mutant genes are proving to be highly effective and selectively
toxic to some tumor types. Currently, around 22 million people are living with a diag-
nosis of cancer worldwide, of whom more than 50 % have mutations of p53 gene and
the other 50 % have no TP53 mutation but inactivation of the p53 pathway. Insights
into p53 biology have generated mouse models that support the potential value of
activating p53 as an anticancer therapy. Mice carrying an extra copy of Trp53 have
enhanced p53 activation upon stress and demonstrate both protection from cancer
and delayed aging under normal p53 regulation [166]. In addition, when p53 in the
mouse was genetically engineered to “switch off” to allow tumor formation and then
“switch on” to test this impact on established tumors, substantial tumor regression via
the reinstatement of p53 expression was observed [167]–[169]. Therefore, the activa-
tion of p53 is a prime potential target for anticancer drug development. Current trials
targeting p53 function include TP53-gene therapies, p53-based vaccines, and small
molecules that activate p53-dependent transcription and modulate p53 function.

Viral vector-mediated TP53 gene transfer has been used to treat advanced and
recurrent HNSCC. Oncolytic virus locally injected into tumors infects and spreads
a functional copy of TP53 among the tumor cells. Because adenoviruses infect and
transduce both dividing and nondividing cells with high gene transfer efficiencies,
these have been used to enhance replication capacity in tumor cells with p53 dys-
function. ONYX-015 is an adenovirus lacking the E1B 55-kDa gene, the product
of which binds and inactivates p53, and is engineered to selectively replicate within
and lyse TP53-mutant tumor cells but not normal cells [170]. Intratumoral admin-
istration of ONYX-015 has been extensively tested in clinical trials for systemic
safety and therapeutic efficacy when used to combat HNC in a combination with or
without standard chemotherapeutic agents [171], [172]. However, therapeutic effects
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following injection have been limited to partial regression in a few cases and subse-
quent development of ONYX-015 was discontinued. Genedicine (Shenzhen SiBiono
GeneTech, Shenzhen, China), an adenovirus engineered to express wild-type p53,
was approved by the Chinese FDA to treat HNSCC and various forms of cancer.
Advexin®, a TP53-producing adenovirus equivalent to Genedicine, has not been
approved in the USA or Europe. Extensive clinical trials of these materials showed
clear responses in some patients but a general failure to achieve adequate therapeutic
efficacy in human cancers [173]. The potential applications of these agents might
involve patients who have unresectable or recurrent HNSCC and require palliative
management. The interest in p53-based tumor vaccination will be revived if improved
vectors are developed [174].

An advanced understanding of regulatory T cells and the signaling pathways re-
lated to the immune response has led to the recent development of cancer vaccines.
An antibody against CTL4 neutralizes its suppression of the immune response; clin-
ical trials of ipilimumab for the treatment of melanoma have shown remarkable
long-term cures in 35 % of patients [175]. High tumor-specific expression levels of
TP53 and its frequent mutation in human cancers suggests that p53 may be perceived
by the host immune system as a target antigen. Immunization with large peptides
derived from p53 has been attempted for some time in cancer patients who make
antibodies to p53, but the adequacy of response is still debated. A number of clin-
ical trials using synthetic peptide mixtures derived from p53 revealed insufficient
potency to result in a clinical benefit due to the failure of T-helper cells to produce
key cytokines and a p53-specific T-helper response. Both DNA-based and dendritic
cell-delivered p53 vaccines promote a more correctly polarized and stronger T-cell
response. INGN-225 (Introgen), a dendritic cell vaccine with p53-modified adenovi-
ral transduction, induces a significant host immune response that sensitizes tumors
to subsequent chemotherapy [176]. p53-based immunotherapy awaits validation of
safety and efficacy in the treatment of HNC.

In the field of chemical biology, an entirely different set of strategies have centered
on the development of nongenotoxic low-molecular-mass compounds that activate
p53 tumor suppressive function in human cancers. Reverse or forward chemical ge-
netic approaches have led to the identification of numerous small molecules that
selectively kill tumor cells by activating wild-type or mutant p53. This biochemical
screening has made progress along several distinct lines. With a thorough understand-
ing of the p53-MDM2 interaction, inhibitors of this major negative regulator of p53
have been developed that show restoration of p53 transcriptional function and clear
antitumor activity with no detectable genotoxicity [45]. In approaches that target
mutant p53, small molecules bind to either full-length p53 or the core DNA-binding
domain of mutant p53, therefore restoring its activity and inhibiting tumor growth
[177], [178]. Trials testing the efficacy of such compounds are actively ongoing at a
preclinical and clinical stage.

Disruption of the p53-MDM2 interaction restores p53 function and sensitizes
tumors to radiotherapy or chemotherapy. Selective inhibitors of MDM2 currently
being investigated include JNJ-26854165 (Johnson & Johnson, New Brunswick,
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NJ), RG7112 (F. Hoffmann-La Roche, Basel, Switzerland), MI-219 (Asenta Thera-
peutics, Malvern, PA), PXN727 and PXN822 (Priaxon, Munich, Germany), nutlin
(Roche), and RITA (reactivation of p53 and induction of tumor cell apoptosis,
Aprea, Solna, Sweden) [179]. These small molecules compete with MDM2 for its
p53-binding pocket.

Nutlins are the first reported small-molecule MDM2 antagonists identified from
a class of cis-imidazoline compounds by Vassilev and colleagues [45], [180]. The
nutlins bind to the p53 pocket of MDM2 and mimic the molecular interactions
between MDM2 and the three residues of the helical region of the p53 TAD (Phe19,
Trp23, and Leu26) critical for its binding to p53. This small molecule selectively
induces a growth-inhibiting state called senescence via the arrest of the G1 and G2
phases of the cell cycle or apoptosis at micromolar concentrations in cancer cells that
contain normal or wild-type p53. Nutlin-3 is the compound most commonly used in
anticancer studies and stabilizes p53 by inhibiting its interaction with MDM2. Nutlin-
3 potently induces apoptosis in hematologic cancer cells including AML, ALL, B-
cell CLL, and myeloma and causes tumor shrinkage with few toxic side-effects
[181]. Nutlin-3 has also been shown to operate synergistically with a wide variety
of cytotoxic agents and radiation treatments in preclinical studies [182, 183]. The
clinical Phase I trial for nutlin is currently progressing in patients with hematologic
neoplasms [179]. A small molecule RITA has also been identified in a phenotypic
screen for molecules that suppress cancer cells containing wild-type p53 [184]. RITA
fills the MDM2 binding pocket of p53, i.e., residues 1–63 of the TAD, and induces a
conformational change that reduces the interaction between p53 and MDM2. RITA
also inhibits the binding of two other p53 inhibitors, iASPP and Parc. RITA induces
p53-dependent apoptosis in different types of cancer cells by significantly affecting
genes involved in apoptotic pathway, whereas nultin-3 induces mainly cell-cycle
arrest genes [185]. RITA was also recently shown to induce apoptosis of HNC cells
and enhance the cytotoxicity of cisplatin both in vitro and in vivo [186].

The core DNA-binding domain of p53 is rather unstable, leading to partial un-
folding at a melting temperature of 44◦C, and mutations in this region thermally
destabilize the p53 protein and abrogate its DNA-binding activity [187]. The inher-
ent instability of the p53 DNA-binding domain has led to the new pharmacologic
approaches that seek to stabilize the binding activity and restore the function of dif-
ferent mutant p53 proteins by shifting the defect toward an active, properly folded
form. Peptide 46, a short synthetic peptide derived from the p53 C-terminus, has
provided proof of principle for mutant p53 rescue and the subsequent induction of
p53-dependent apoptosis in tumors with mutant TP53 [177]. Further efforts have
been made to identify low-molecular-weight compounds for reactivation of mutant
p53 by using either biochemical or phenotypic screens of chemical libraries. Repre-
sentative small molecules that restore p53 function in mutant TP53-carrrying tumor
cells include CP-31398 (Pfizer, New York, NY), PRIMA-1 (Aprea, Solna, Sweden),
MIRA-1 (Aprea), STIMA-1 (Aprea), and RETRA.

CP-31398 stabilizes the active conformation of p53 and promotes its functional
activity in cancer cells with either mutant or wild-type p53 by preventing its ubiqui-
tination without blocking the p53-MDM2 interaction [188]. The exact mechanism
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of activity of this small molecule is unknown. However, CP-31398 activates a small
set of known p53 target genes in mutant p53-carrying cancer cells and suppresses
spontaneous tumors in immunocompetent mouse models or inhibits the growth of
xenograft tumors in immunodeficient mice [178], [189], [190]. CP-31398 induces
the classic proapoptotic p53 target genes PUMA and BAX, the mitochondrial translo-
cation of p53, and the downregulation of cyclins A, B1, D1, and E, indicating a
restoration of the transcriptional activity of p53 [189]. A cell-based screen from a
library of diverse compounds has uncovered a compound known as PRIMA-1 that di-
rectly interacts with mutant p53 [44]. PRIMA-1 restores the sequence-specific DNA
binding and transactivation activity of mutant p53 proteins in vitro and in living cells.
In vivo studies have further revealed antitumor effects of this molecule in human tu-
mor xenograft models of different types with no apparent toxicity in normal tissues
[44]. PRIMA-1 induces caspase-dependent apoptosis in a transcription-independent
manner via its interaction with Bcl-2 family proteins in the cytoplasm [191]. This
small molecule is now in clinical Phase I/II trials (Aprea, Solna, Sweden) [179]. An-
other small molecule, RETRA, that was recently discovered in a cell-based screen,
reactivates p53 function specifically in mutant p53-bearing cancer cells [89]. The
tumor suppressive mechanisms of RETRA also include the release of p73 from the
inhibitory complex with mutant p53 and subsequent induction of p73 transcriptional
target genes. PRIMA-1 can also release active p73. Another small molecule, p53R3,
was identified by a biochemical screening of a chemical library [192] and restores
the in vitro and in vivo DNA-binding activity of p53 with mutations at residues 175,
273, and, to some extent, 248 and 237, resulting in the p53-dependent induction of
target genes involved in growth arrest (p21 ad GADD45) and of proapoptotic targets
(PUMA, DR5 and CD95 L). In addition, a recent study showed that a small molecule
targeting the CH1 domain of p300, CH1iB, reactivates p53 and potentiates the an-
ticancer activity of cis-platinum in HPV16-positive HNSCC cells by blocking the
association between HPV E6 and p300 [180]. However, small molecules targeting
mutant p53 proteins have been rarely examined in the context of HNC [193]. This
needs to be examined in future studies.
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Chapter 13
DNA Damage Proteins and Response to Therapy
in Head and Neck Cancer

Ranee Mehra and Ilya G. Serebriiskii

Abstract DNA-damaging agents such as cisplatin and radiotherapy have provided
a cornerstone of treatment for squamous cell cancers of the head and neck (SC-
CHN). Cells possess multiple mechanisms for repairing different classes of DNA
damage, including base excision repair (BER), nucleotide excision repair (NER),
mismatch repair (MMR), resolution of intrastrand cross-linking by the Fanconi
anemia (FA) proteins, nonhomologous end joining (NHEJ), and homologous re-
combination (HR). Preclinical and a limited degree of clinical research has focused
on evaluating whether changes in expression, mutation, or polymorphic variants in
the many enzymes involved in these DNA repair pathways are involved in treatment
resistance in SCCHN. This chapter will first summarize the proteins functioning
in the complementary DNA-damage response pathways, then focus on the current
data regarding their prognostic value in the clinic, noting the limitations of current
retrospective evaluations, and discussing implications for future research.

Keywords DNA repair · Cisplatin adducts · Radiation

13.1 Introduction

Squamous cell carcinomas of the head and neck (SCCHN) have a multitude of so-
matic genetic alterations, many of which impact the ability of the cells to repair
damaged DNA. This has prompted investigators to study polymorphisms in DNA-
repair genes in order to determine if there is any increase in the susceptibility of an
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individual to develop SCCHN [1–5]. From a therapeutic perspective, there has also
been interest in pathways related to treatment efficacy. The cornerstone of nonsur-
gical treatment for locally advanced SCCHN has been a combination of cytotoxic
chemotherapy, biological targeted agents, and radiation to work in concert to dam-
age cellular DNA, thus initiating a cascade of events that result in apoptosis [6–9].
While there are many factors associated with drug sensitivity, molecular aberrations
in DNA repair may, in part, make tumor cells more sensitive to DNA-damaging
agents [10]. Reciprocally, resistance to therapy likely stems in many cases from the
enhanced abilities of tumor cells to repair DNA damage. A greater understanding of
how the DNA repair machinery regulates treatment efficacy and resistance in primary
SCCHN is gradually emerging, although progress has been hampered by the com-
plexity of DNA repair systems and the lack of reliable clinical assays for biomarkers
of DNA damage repair.

Cisplatin, an integral component of SCCHN treatment both in the curative and
palliative settings, exerts its cytotoxic effects via the formation of platinum-DNA
adducts [11–15]. The presence of adducts triggers cell-cycle arrest and DNA repair
mechanisms: If repair is unsuccessful, cells progress to aberrant mitosis and even-
tual apoptosis [16]. Similarly, ionizing radiation often induces its cytotoxic effects
by inducing double-strand breaks (DSBs). While the combination of cisplatin and
radiation can cure a high percentage of locally advanced SCCHN, there is still a sig-
nificant proportion of patients, especially among those with human papillomavirus
(HPV)-negative SCCHN, with tumors that are intrinsically resistant to treatment,
who develop recurrent disease [17], [18]. Thus, understanding the role of DNA re-
pair in treatment resistance, in particular among the poor prognosis HPV-negative
patients, is essential to the development of better therapies. This chapter will focus
on a review of relevant DNA-repair pathways in the treatment of SCCHN, current
data regarding DNA repair proteins and outcomes in SCCHN, and future directions
for the clinical development of treatments based on observed protein expression and
function of a group of DNA repair proteins.

13.2 DNA Repair Overview

DNA repair pathways are complex and involve numerous enzymes working in tandem
to recognize, remove, repair, and resynthesize damaged DNA. Common pathways
and their functions, listed in Table 13.1, include base excision repair (BER), nu-
cleotide excision repair (NER), and mismatch repair (MMR); and in the case of
DSBs, nonhomologous end joining (NHEJ) and homologous recombination (HR),
and the repair of DNA cross-linking mediated by the Fanconi anemia (FA) system.
Cisplatin and radiation, the most common interventions in the treatment of SCCHN,
typically are repaired through action of the NER and DSB machinery [7]. Recent
thorough mechanistic reviews of the DNA repair machinery for each pathway are
cited in the text below for reference: Our focus here is on introducing those under
investigation in SCCHN.
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Table 13.1 Key enzymatic pathways in DNA repair

Pathway Function Repair of specified
lesion

Key enzymes involved

Excision Repair
Base excision repair

(BER)
Removal of damaged

base followed by
synthesis and
ligation

Single-strand breaks XRCC1
PARP
DNA glycosylase
APEX1
POLβ

PNKP
DNA ligase

Nucleotide excision
repair (NER)

Removal of damaged
region (multiple
nucleotides)
followed by repair

DNA adduct removal ERCC1
XPF (ERCC4)
XPC-RAD23B
CSA (ERCC8)
CSB (ERCC6)
XPD (ERCC2)
XPB (ERCC3)
XPA
XPG (ERCC5)

Mismatch repair
(MMR)

Repair of incorrect
base pairing

MSH2
MLH1
DNA polymerase
MSH6
PMS2

Repair of strand breaks
Nonhomologous end

joining (NHEJ)
Bind exposed ends of a

DNA break, even
without
complementary
nucleotides

Double-strand breaks Ku70
Ku80
DNA-PK
PNKP
XLF
XRCC4/LIG4

Homologous
recombination (HR)

Repair of broken DNA
ends

Double-strand breaks BRCA1
BRCA2
RAD50
RAD51
RAD52
ATM
MRE11
ATR

Fanconi anemia
pathway

DNA interstrand
cross-links

FANCA, B, C, E, F,
G, I, L, M

FANCD2
FANCD1(BRCA2)
FANCJ(PALB2)
FANCO(RAD51)

Because of the fundamental role of many of these enzymes in protecting cells
from UV damage and other forms of damage, mutations in NER and HR genes have
been classically associated with genetic syndromes, resulting in potential confusion
in nomenclature. Hence, while the formal nomenclature for genes discussed below
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include designations as part of the X-ray repair cross-complementation (XRCC) and
excision-repair cross-complementation (ERCC) groups, these genes are also named
based on their involvement in Cockayne’s syndrome (CS) or xeroderma pigmentosum
(XP). All of the proteins noted below are potential targets of biomarker studies. The
short summary below illustrates the complexity of the interactions and redundancy
among the various DNA repair pathways.

Base Excision Repair (BER) BER (Fig. 13.1) replaces nucleotides that have been
damaged by alkylating agents, radiation, oxidation, or deamination, with the first
two defects particularly linked to SCCHN therapies. Kim and Wilson have written
an excellent recent review of this mechanism [19]. BER focuses on the removal of
nonbulky adducts; bulky adducts are instead processed through the NER process
described below. In BER, damaged bases are first recognized by a DNA glycosylase,
which recognizes and removes an incorrect base, creating an abasic site. Second,
the abasic site is recognized by an apurinic/apyrimidinic (AP) endonuclease, of
which APEX1 is the most commonly active in humans. Third, a group of proteins
including APEX1 but also DNA polymerase β (POLβ) and polynucleotide kinase
3′-phosphatase (PNKP) “clean” the termini of the excised residue, rendering the site
suitable for final repair by elimination of inappropriate chemical groups. Fourth,
a DNA polymerase complex including POLβ fills the remaining gap in the DNA
with the appropriate base; depending on the length of the lesion, either long patch
(LP) or short patch (SP)-BER occurs, with involvement of slightly different protein
complexes. Fifth, the nick is sealed by DNA ligase III (LIG3) in a complex with
X-ray repair cross-complementing group 1 (XRCC1), a nonenzymatic scaffolding
protein that supports its activity [20].

In single-strand break (SSB) repair, the nick-sensing activity of poly(ADP-ribose)
polymerase (PARP) enzymes is also important. In the PARP family of enzymes, the
most common subtype is PARP1 [21], [22], which consists of an NH2-terminal
DNA-damage recognition domain, a modification domain, and a catalytic domain.
PARP1 has been a central target of anticancer therapies, in part due to its function
in the detection of SSB [23]. There is considerable interest in synergy between
PARP inhibition and the HR pathway (discussed below), especially in tumors that
are deficient in key enzymes in HR, including BRCA1 and BRCA2 [24], [25]. This
synergy stems from the inability of HR-deficient cells to repair replication-associated
DSBs that result from persistent SSB’s [26].

Nucleotide Excision Repair (NER) Given the widespread use of cisplatin in the
treatment of SCCHN, it is not surprising that mechanisms to repair platinum-induced
DNA damage have been a topic of much study. Cisplatin exerts its cytotoxic effects
via the formation of platinum-DNA adducts. NER (Fig. 13.2), which typically repairs
ultraviolet (UV)-induced DNA adduct formation, is also a key process in the repair
of cisplatin induced damage [27–29]. There are two main subtypes of NER, the
global genomic NER (GG-NER) pathway, and the transcription-coupled NER (TC-
NER) pathway. While the GG-NER pathway uses specific recognition proteins that
scan the genome to identify any sites of DNA damage, the TC-NER uses a different
recognition mechanism for those regions of the genome that are transcriptionally
active. Both converge on downstream factors that mediate DNA repair: Overall, the
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Fig. 13.1 Representation of
the base excision repair
(BER) pathway. In some
cases where genes have an
official gene symbol and a
common name, the official
symbol is used, i.e.,
APEX1/APE1 (see text for
details)
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Fig. 13.2 Representation of the nucleotide excision repair (NER) pathway. In some cases where
genes have an official gene symbol and a common name, the official symbol is used: ERCC2/XPD,
ERCC3/XPB, ERCC4/XPF, ERCC5/XPG, RFC1/RFC

NER pathway comprises at least 23 enzymes, including the ERCC1-XPF(ERCC4)
complex. Detailed mechanistic reviews of GG-NER and TC-NER have recently
appeared in a review by Iyama et al., while http://repairtoire.genesilico.pl/ provides
a useful searchable database [30].
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In GG-NER, the XPC-RAD23B complex recognizes DNA breaks. These proteins
bind DNA on the opposite strand from the abnormal adduct. In TC-NER, in areas
of active transcription, RNA polymerase encounters a defective base, stalls, and
recruits two additional proteins, CSA(ERCC8) and CSB(ERCC6). For each form
of NER, these recognition complexes then recruit a multiprotein repair assembly
including the TFIIH transcription-associated complex, which contains the helicases
XPD(ERCC2) and XPB(ERCC3), which unwind the DNA in the region of DNA
damage. Additional proteins XPA and replication protein A (RPA) are recruited to
this unwound region, and form a local preincision complex in which XPA binds and
recruits the ERCC1-XPF(ERCC4) heterodimer and XPG(ERCC5). The ERCC1-
XPF(ERCC4) dimer recognizes the damaged DNA and cuts 5′ to the lesion; this
is often a critical rate-limiting step in the repair process. The catalytic domain of
the nuclease is located on XPF, and ERCC1 is responsible for DNA binding and
stabilization [31–33]. In parallel, XPG cleaves 3′ to the lesion. Subsequently, the
defective base is removed, and binding of proliferating cell nuclear antigen (PCNA)
and replication factor C (RFC) allow DNA polymerases to load to the site, and
subsequently fill in the gap. Final closure of the lesion is mediated by XRCC1-LIG3,
as in BER, or an alternative ligation complex involving FEN1-LIG1.

ERCC1 and XPF(ERCC4) have attracted considerable study in SCCHN, partic-
ularly as potential biomarkers of effective NER activity relevant to DNA-damaging
therapies. ERCC1 knockout mice are often not viable and die from liver failure, and
in humans ERCC1 gene mutations result in severe deformities with cerebrooculo-
facioskeletal syndrome, implying critical function [34]. Preclinical studies in lung
cancer and Chinese hamster ovary (CHO) cell lines have shown that ERCC1(-) lines
which lack the capacity for UV damage repair were more sensitive to the cytotoxic
effects of cisplatin than those transfected with the human ERCC1 gene [28]. In ad-
dition, ERCC1(-) cells did not repair any DNA adduct lesions in a 24-h period, in
contrast to 48 % repair in ERCC1 (+) cells. When the same experiments were con-
ducted in XPB(ERCC3)-positive or -negative cells, there was no variance in platinum
sensitivity or DNA repair, indicating that ERCC3 is likely not as critical for platinum
sensitivity.

The ERCC1-XPF(ERCC4) complex also has a role in the repair of DSBs, often
resulting from ionizing radiation [35]. Although DSBs typically are repaired by either
HR or nonhomologous end joining (NHEJ), it has been shown that murine and human
cells deficient in ERCC1-XPF are sensitive to irradiation with a resulting increase
in γH2AX foci, a marker of DSB injury. The role of ERCC1/XPF(ERCC4) in DSB
differs from HR and NHEJ, and requires further study [35].

Mismatch Repair (MMR) MMR is an editing process for newly synthesized DNA,
highly conserved throughout evolution [36]. Dominant negative mutations in human
genes involved in MMR, including MLH1, MSH2, MSH6, and PMS2, result in
microsatellite instability and are associated with hereditary cancers such as Lynch
syndrome (hereditary nonpolyposis colorectal cancer). Mutations in these genes have
also been implicated in other sporadic cancers. To date, relatively little is known about
the relevance of MMR in SCCHN.
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Repair of Double-Strand Breaks (DSBs): Homologous Recombination (HR)
and Nonhomologous End Joining (NHEJ) Both the HR (Fig. 13.3) and NHEJ
(Fig. 13.4) pathways are important for the repair of DSBs [16], [30], [37]. With HR,
an intact DNA strand is usually present, repair is often error free, and typically occurs
in the S and G2 phases in the cell cycle. In contrast, NHEJ can happen at any point
in the cell cycle, but can result in further DNA damage, including the initiation of
translocation events [38].

In HR, initial sensing of the break is mediated by three proteins (MRE11, RAD50,
and Nijmegen breakage syndrome 1 (NBS1)) known collectively as the MRN com-
plex. The MRN complex recruits and activates the ataxia telangiectasia mutated
(ATM) kinase, triggering a cell cycle checkpoint. Further, ATM-dependent phospho-
rylation of histone 2A H2AX, family member X, results in the formation of the γ-
H2AX complex, which in turn leads to recruitment of other repair enzymes, including
BRCA1 [39–41]. MRN also recruits C-terminal binding protein-interacting protein
(CtIP), which (along with other exonucleases, e.g., EXO1) trims the ends of the break
to generate single strand overhangs. Single-stranded regions are protected and stabi-
lized by being coated with RPA, which also recruits BRCA2, RAD51, and RAD52,
resulting in formation of Rad51-single strand DNA (ssDNA) nucleoprotein fila-
ments. RPA also assists in recruiting and activating a second checkpoint kinase, ATR,
strengthening cell-cycle arrest. Single-stranded DNA bound by RAD51 is capable of
invading a homologous template, and initiating Holliday junction-mediated repair.

In the NHEJ repair system, initial recognition of the break is made by the
Ku78/Ku80 heterodimer, which binds to the DNA ends directly. These proteins
then recruit the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and
together this trimeric complex aligns the two broken ends [42], [43]. End process-
ing enzymes (e.g., Artemis) then generate terminal overhangs suitable for ligation,
followed by PNKP to ensure the proper phosphorylation. Finally, XLF and the
XRCC4/LIG4 complex together close the gap.

The Fanconi Anemia (FA) pathway in Head and Neck Cancer FA, an autosomal
recessive disorder, is a genetically heterogeneous disease that is associated with an
array of phenotypes including bone marrow failure, birth defects, and hypersensi-
tivity to DNA interstrand cross-link (ICL) damage [44], [45]. Interestingly, patients
with FA are at greater risk of developing head and neck cancer [46], [47]. An in-
tact FA pathway likely suppresses HPV infection, consistent with emerging data
that FA syndrome patients also have an increased risk of susceptibility to HPV in-
duced oncogenesis [48–50]. Mutations in approximately 15 genes have been linked
to FA, including FANCA, B, C, D2, E, F G, I, L, and M; in addition, mutations in
BRCA2(FANCD1), BRIP1(FANCJ), and PALB2(FANCJ), RAD51C(FANCO), and
SLX4(FANCP) can result in FA phenotypes [44], [45]. Many of these FANC pro-
teins act as a complex triggering “unhooking” of intrastrand cross-links introduced
by platinum-based chemotherapies or radiation, with the cleavage activity catalyzed
by ERCC1-XPF(ERCC4) [51], [52], and also MUS81–EME1, SLX1 and FAN1 [53],
[54]. Fanconi gene mutations have been associated with reduced platinum resistance,
with mutations of FANCC and FANCD2 genes in SCCHN cell lines inducing more
sensitivity to cisplatin [55].
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Fig. 13.3 Representation of the homologous recombination (HR) pathway. In some cases where
genes have an official gene symbol and a common name, the official symbol is used: NBN/NBS1,
H2AFX/H2AX, RBBP8/CTIP (see text for details)
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Fig. 13.4 Representation of the nonhomologous end joining (NHEJ) pathway. In some cases where
genes have an official gene symbol and a common name, the official symbol is used: XRCC5/Ku80,
XRCC6/Ku70, NHEJ1/XLF, PRKDC/DNA-PKcs, DCLRE1C/ARTEMIS (see text for details)

13.3 Use of DNA Repair Proteins as Biomarkers
of Therapeutic Response

A major focus in SCCHN and in other cancers has been to exploit DNA repair proteins
as biomarkers for likelihood of response to DNA damaging therapies. Challenges
to the routine use of DNA repair biomarkers have been hampered by the effective
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development of reliable, validated assays. One example, involving antibodies to
visualize ERCC1 using an immunohistochemistry (IHC) approach, is discussed in
some detail below to emphasize the difficulty with this approach. Other approaches
for measurement of critical enzymes in each of these pathways have included RT-
PCR-based assays and an analysis of polymorphisms. Given the concerns regarding
biomarker validation, most of the biomarkers of DNA repair described in this chapter
are being studied in the research realm, but are not yet used in routine clinical practice.
Many proteins shown to function in DNA repair have not yet been analyzed at all as
biomarkers for response in SCCHN.

13.3.1 Nucleotide Excision Repair Biomarkers: ERCC1
and XPF(ERCC4)

ERCC1 Biomarkers in the NER pathway have been a subject of extensive study in
SCCHN, in part due to the widespread use of cisplatin and radiation therapy. Interest
in ERCC1 as a biomarker began in non-small cell lung cancer, where small retrospec-
tive studies showed a longer survival among patients who received platinum-based
chemotherapy and had low ERCC1 tumor levels, as measured by RT-PCR, [56].
This finding was reinforced by a larger effort to study ERCC1 expression in tumor
samples from the International Adjuvant Lung Trial, which indicated that patients
with ERCC1-negative tumors had a greater overall survival with the addition of
adjuvant chemotherapy [57]. A pathologist-generated H-score, which factors the
percentage and intensity of positive cells, was determined for 761 tumors and corre-
lated with survival. The results indicated that patients with ERCC1-negative tumors
had a greater survival benefit with the addition of adjuvant chemotherapy. Reaction
to these results was guarded, however, since there were substantial concerns regard-
ing the specificity of the antibody which was used, 8F1 (Lab Vision) [58]. Years
after the original publication, the authors of the IALT-Bio study published a report
questioning the operating characteristics of later lots of 8F1, given their inability to
reproduce their original results [59]. Their report also called into question the im-
portance of ERCC1 isoforms; of four characterized isoforms, only ERCC1-202 has
been shown to be functionally active, as this was the only isoform able to reinstate
platinum resistance in ERCC-deficient cell lines. Currently, all known ERCC1 anti-
bodies detect several isoforms and thus it is not possible to only detect ERCC1-202
with immunohistochemistry.

In the study of SCCHN, many small retrospective analyses also utilized the
ERCC1 antibody 8F1 [60–64]. These have shown mixed results with regards to
the association of ERCC1 expression and survival, possibly due to the variability of
this antibody, and the mixed population of HPV (+) and (−) disease. One retrospec-
tive series, published by Handra-Luca et al., analyzed 96 SCCHN tumor specimens
for ERCC1 IHC with 8F1, quantifying staining with an H-score, which factors the
percentage and intensity of positive cells [63]. All patients in this analysis underwent
primary treatment with induction cisplatin and 5-fluorouracil followed by radiation
therapy and 71 % of tumors had high expression levels. The results were intriguing,
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with an odds ratio of response of 4.3 in the ERCC1 low group with the multivariate
analysis, and a corresponding greater survival in this group (40.5 months) compared
to the ERCC1 high group (27.7 months). ERCC1 low expression was associated with
a reduced risk of cancer-related death (HR 0.42).

Given the need for more reliable antibodies to assay for ERCC1, recent publica-
tions have focused on additional reagents. One highly specific anti-ERCC1 antibody,
FL-297 (Santa Cruz), [65] is hampered by variable nonspecific cytoplasmic stain-
ing in formalin fixed paraffin-embedded tissue, dampening enthusiasm for its use as
an IHC reagent. FL-297 has been used to study clinical specimens for ERCC1 ex-
pression, also with mixed results [66]. Additional reagents under study include 4F9
(Origene) and HPA029773 (Sigma), both of which have been shown to be specific
for ERCC1 [66–68].

Bauman and colleagues presented their analysis of tissue from a randomized
phase II study of cisplatin and radiation therapy with or without erlotinib for patients
with locally advanced SCCHN [67], [68]. Tumors were quantified for ERCC1 H-
score using recent batches of 8F1, FL297, and 4F9. 8F1 revealed no association
between ERCC1 expression and response rate (RR), progression-free survival (PFS),
or overall survival (OS). In contrast, higher expression with either FL297 or 4F9 was
associated with a shorter PFS (HR 3.55 and 3.54, respectively).

Hao et al. reviewed ERCC1 expression in a cohort of 55 tumor samples from
patients with locally advanced SCCHN treated with weekly cisplatin with radia-
tion [69]. 8F1 and FL-297 were used and ERCC1 was measured with a quantitative
fluorescent immunohistochemistry platform (AQUA, HistoRx) [70], [71]. This tech-
nology differs from traditional IHC methodology in that data appear as a continuous
output of AQUA scores, precise quantification of fluorescent signaling allows for
reproducible and quantitative results, and permits subcellular localization of the
antigen signal of interest, which is especially important for a target such as ERCC1,
which should have mainly nuclear activity. For both antibodies, AQUA scores were
dichotomized into high and low expressing groups, with only 22 % agreement be-
tween the two reagents. Their results showed no correlation between response and
ERCC1 expression with either antibody. ERCC1 expression measured by FL297,
but not 8F1, was associated with a 4.4-fold increase (p = .004) in overall survival
when adjusted for age, primary site, smoking history, T/N stage and HPV status.

At Fox Chase Cancer Center, a retrospective analysis was also conducted on tissue
from resected SCCHN [66]. Treatment in this series was mainly primary surgery,
with high-risk patients receiving adjuvant treatment with radiation or platinum and
radiation. Three antibodies were used, including 8F1 and FL297, discussed above,
and HPA029773 (Sigma). Using a 2009 lot of 8F1 (Lab Vision), and FL297, a tissue
microarray from 105 HPV-negative patients was stained and analyzed with AQUA.
Cut points to determine ERCC1 expression level (high vs. low) were determined
with the Classification and Regression Tree (CART) methodology. Using the “old”
8F1, there was a statistically significant improvement in median survival among
patients who received surgery plus adjuvant radiation and had low ERCC1 expressing
tumors as compared to ERCC1 high; p = 0.036, HR 2.35. However, while there was
a trend towards a greater survival in the same group of patients when tumor ERCC1
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levels were assayed with FL297, this was not statistically significant (p = 0.19), and
considerable cytoplasmic staining with FL297 was noted. For the analysis involving
HPA029773, data from additional tumors were added to the previous set, with similar
patient and treatment characteristics to increase the number of patients who received
surgery plus adjuvant radiation/chemoradiation (n = 80). Again, after adjusting for
patient age, gender, and tumor/nodal stage, an overall median survival of 64 months
in the low ERCC1 group and 29 months in the high ERCC1 group was observed
among patients who were treated with adjuvant therapy (p = 0.02, HR 2.72).

The majority of analyses of ERCC1 in SCCHN have focused on IHC-based assays,
rather than measuring mRNA levels with quantitative RT-PCR (reverse transcriptase
polymerase chain reaction). The latter has been utilized in the study of non-small cell
lung, esophageal, and ovarian cancers, although with variable results [56], [72–76].
It is important to note that RT-PCR-based assays have not been validated in prospec-
tive randomized trials, and it is not known if this approach is optimal for assaying
DNA repair functional capacity [77]. For instance, a measure of message levels,
rather than protein expression does not account for differing rates of genes transcrip-
tion, posttranslational modification, and protein stability. In addition, accurate and
reproducible results are greatly dependent on the quality of the extracted mRNA,
which may be more variable in archival specimens [78]. The limited data on ERCC1
mRNA expression in SCCHN do not support an association between mRNA levels
and survival or response rate to platinum chemotherapy [69].

XPF(ERCC4) This catalytic component of the ERCC1-XPF complex has been
studied less frequently as a potential biomarker of DNA repair in SCCHN. Vaezi
et al. evaluated the feasibility of XPF immunodetection using a specific and well-
characterized antibody (SPM228, Abcam) [79]. XPF expression was variable in
tissue from a heterogeneous group of 80 patients, but overall there was a higher ex-
pression in tumor as compared to paired normal tissue. Among the patients assessed,
most had locally advanced disease, with either the oropharynx or oral cavity as pri-
mary sites. These patients had received a variety of treatment approaches, including
definitive chemoradiation or surgery followed by adjuvant therapy. In aggregate, all
patients received radiation therapy and 88 % received platinum-based therapy. Both
H-score and a quantitative readout of XPF expression were employed with good
agreement (Spearman rank correlation = 0.78, p < 0.001). Oral cavity primary sites,
which would not be expected to be associated with HPV, had high expression lev-
els of XPF. With regard to clinical outcome, in multivariate analysis, there was a
statistically significant association between high XPF expression and early recur-
rence (p = 0.01). XPF protein expression has also been quantified in a cohort of 13
SCCHN cell lines derived from a variety of primary sites, and correlated with cis-
platin sensitivity [80]. Compared to testis cell lines, SCCHN cells had higher levels
of XPF expression, which was associated with increased cisplatin resistance in those
in vitro models.
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13.3.2 Base Excision Repair Biomarker: XRCC1

Ang and colleagues analyzed tissue by IHC from 138 SCCHN patients who were
treated with a variety of modalities including surgery, surgery followed by adju-
vant treatment, and definitive chemoradiation [81]. Among the patients treated with
chemoradiation, high expression of XRCC1 was associated with poorer progression-
free and overall survival, with this effect primarily observed in patients who had
received chemoradiation: no correlation of XRCC1 and survival was seen in patients
who had received surgery. This survival effect was independent of the survival effect
associated with p16 expression status.

13.3.3 Double-Strand Repair Biomarkers: RAD51, Ku70, Ku80

Radiation damage is opposed by repair of DSBs, with increased repair capacity asso-
ciated with radiation failure [82]. RAD51, a key component of the HR pathway, was
evaluated in a small retrospective series of 12 patients who were treated with induc-
tion chemotherapy followed by chemoradiation [83]. Even with this limited sample
size, there was a significant difference in cancer-specific survival based on RAD51
expression, with high expression levels being associated with worse outcomes (33 %
vs. 89 % at 2 years, p = 0.025). In a study of the rate of error-prone NHEJ repair,
SCCHN cells had less error-free repair compared to normal human oral keratinocytes
[84]. In a retrospective analysis of 75 SCCHN tumors from patients treated with a
combination of chemotherapy and radiation, higher Ku70 mRNA levels were asso-
ciated with a greater response to treatment and longer recurrence free survival [85].
This result was somewhat unexpected, and in contrast, in a study of Ku80 expres-
sion, high Ku80 protein levels were associated with increased risk of local failure
and mortality (p = 0.01). This association was strongest among the HPV-negative
subgroup [86].

13.4 Single Nucleotide Polymorphisms (SNPs) as Predictors
of Treatment Resistance

Single nucleotide polymorphisms involving ERCC1 and XPF have been studied as
potential biomarkers of cisplatin resistance. Thirteen single nucleotide allelic vari-
ants were studied in association with PFS in a cohort of patients with head and neck
cancer [79]. Four SNPs (rs3136155(CT/TT; HR = 2.0, raw p = 0.053), rs1799799
(TC/CC; HR = 1.94, raw p = 0.065), rs3136202 (GA/AA; HR = 1.94, raw p =
0.065), and rs31336166 (TG/GG; HR = 1.94, raw p = 0.065)) were marginally
associated with PFS. However, these SNPs were located in introns and were
not shown to impact XPF expression levels. Thus, it is unclear how relevant
the presence of these SNPs may be with respect to XPF function and treatment



13 DNA Damage Proteins and Response to Therapy in Head and Neck Cancer 273

resistance. Hao et al., in the same group of 55 tumors analyzed by IHC to assess
ERCC1 expression, looked at ERCC1 genotypes in 41 patients (C/C, C/T, and T/T
genotype frequencies were 17.1 %, 43.9 %, and 39.0 %) and found no difference in re-
sponse rate between C/C, C/T, and T/T genotypes [69]. In contrast, other investigators
looked at tumors from 103 patients and used polymerase chain reaction-restriction
fragment length polymorphism (RFLP) to look for SNPs in XPD-Asp312Asn, XPD-
Lys751Gln, ERCC1-Cys809Ala, and XRCC1-Arg399Gln [87]. The median overall
survival was not reached for patients who had at least one polymorphic variant
(p < .001). Increasing numbers of variants resulted in increasing protection from
death and increased chances of a complete response (p = 0.041).

Additional polymorphisms which have been shown to be associated with improved
outcomes in SCCHN patients treated with chemoradiation include ERCC2A35931C,
but these results are preliminary and based on one retrospective series [88]. Another
focus of research has included the association of DNA repair polymorphisms, such
as XRCC1 c.1196A > G and RAD51 c.-3429 G > C, and an increased risk of acute
toxicities related to chemoradiation [89]. Given the morbidity of chemoradiation,
the ability to predict which patients may be at increased risk could eventually have
potential clinical applications.

13.5 The Cancer Genome Atlas (TCGA): Profiles of DDR
Proteins in SCCHN

As of late 2013, information on 295 SCCHN tumors was made publicly available
based on work of the TCGA Consortium. Figure 13.5 represents data on mRNA
expression, copy number, and mutation for genes functioning in the NER, BER,
HR, and NHEJ pathways. Elevated expression or an increased copy number is the
most common change for the majority of these genes, most consistently reported for
genes associated with BER. Typically, these changes are observed in no more than
15–20 % of tumors for any given gene. An interesting and plausible possibility is
that for genes operating in a common pathway, changes in function in any one of
a group of functionally interacting group of proteins will increase pathway activity.
In this case, a predictor of resistance to radiation or cisplatin might be a distributed
diagnostic signature, e.g., hypothetically, elevation of any one of the genes in the
group ERCC1-ERCC5 would produce some resistance, particularly if coupled with
elevation in expression of PCNA or RAD23B.

Deletions among this group of genes appear to be rare, with the highest frequency
observed for ATM at 2 %. However, a subset of genes is mutated in 2–6 % of SC-
CHN tumors, including ATM, ATRX, BRCA1, BRCA2, and PRKDC. Mutations
in some of these genes have been associated with pathogenesis of other types of
cancer [90–92]. The consequences of these mutations have not been extensively
investigated in SCCHN, but may well predict specific prognosis or therapeutic re-
sponse. The potential to exploit these genomic resources in trials of strategies to
better stratify patients to receive high versus low doses of DNA-damaging therapies is
apparent.
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Fig. 13.5 TCGA analysis of the a NER, b BER, c HR, and d NHEJ pathways. For each of the genes
belonging to the DNA repair pathways depicted in Figs. 13.1–13.4, information on expression levels,
copy number variations and mutations was extracted from the provisional TCGA data set for head
and neck squamous cell carcinoma (295 completely analyzed and annotated tumors). (Data were
extracted from the http://www.cbioportal.org/. The cutoff for expression was set as z-score = + /−2.
Note: Some of the proteins indicated function in more than one pathway; see text for details)
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13.6 DNA Repair and HPV in SCCHN

In all of these reports regarding the impact of ERCC1 expression on survival among
patients who are treated with either radiation or chemotherapy, there appears to be a
signal that this is especially of interest in the HPV-negative population. For instance,
the Fox Chase analysis, which showed an association between ERCC1 and survival,
was conducted exclusively in an HPV-negative population. In addition, the work
published by Hao and colleagues indicates that patients who were HPV-negative
with high ERCC1 tumor levels had a worse prognosis than HPV-positive patients.
Martins et al. showed that p16-negative tumors were more likely to have normal to
high ERCC1 levels. Similarly, Vaezi et al. also noted increased XPF levels in oral
cavity tumors, which are usually not HPV related. Finally, in the series reported on by
Moeller and colleagues, the association between Ku80 expression and survival was
strongest in the HPV-negative population [86]. Thus, these retrospective reports illus-
trate the importance of integrating HPV status into analysis of DNA damage-related
biomarkers; hopefully future prospective studies will study the potential relationship
with HPV and DNA repair biomarkers further.

13.7 Cancer Signaling, DNA Repair, and Therapeutic Targets

The epidermal growth factor receptor (EGFR) is expressed in a majority of SCCHN
and is an established therapeutic target [11], [12], [93–95]. Preclinical studies have
indicated that its activity in part may be related to modulation of DNA repair. In par-
ticular, the EGFR inhibitor cetuximab is a standard radiation sensitizer for locally
advanced, potentially curable SCCHN. In vitro data from SCCHN cells lines indicate
that cetuximab strongly inhibits postradiation DNA damage repair and results in re-
distribution of DNA-PK out of the nucleus [17]. Similarly, the small molecule EGFR
inhibitor gefitinib reduces DNA-PK levels in SCCHN cell lines [96]. In addition, in
a different model of prostate cancer cell lines, the combination of EGF ligand and
radiation resulted in upregulation of XRCC1 and ERCC1, presumably resulting in
increased DNA repair capacity. This modulation of XRCC1 and ERCC1 seemed to
occur via MAPK signaling and was attenuated by MEK inhibition [97].

One recent study has identified another potentially important mechanism for reg-
ulation of ERCC1 expression. Epithelial-mesenchymal transition (EMT) plays a
significant role in cancer metastasis, and there is increasing evidence that resistance
to therapy also is associated with EMT [98–100]. Snail1, a transcription factor, is re-
lated to EMT and metastasis in SCCHN [101]. Hsu et al. have extensively evaluated
the relationship between Snail1 and ERCC1 in SCCHN cell lines and tissues, and
how this relates to cisplatin resistance [102]. In cell lines, increased levels of Snail
expression were associated with high ERCC1 expression as measured by the poly-
clonal antibody FL297, which recognizes ERCC1. Similarly, suppression of Snail
expression resulted in low levels of ERCC1 and diminished resistance to cisplatin. In
72 SCCHN tumors, co-overexpression of Snail and ERCC1 was noted (p = 0.002)
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and associated with an inferior survival among patients who were treated with cis-
platin. The authors showed that Snail directly regulates ERCC1 transcription, and
that platinum resistance is dependent on the presence of ERCC1, results suggesting
a multitude of avenues for further study.

As a greater understanding of DNA repair pathways and the impact of treat-
ment develops, efficacy can be optimized with newer biologically targeting agents.
For instance, the Hsp90 inhibitor NVP-AUY922 may impair RAD51 mediated
double DSB repair, thus allowing for further radiosensitization [103]. Similarly,
the VEGFR/PDGFR/RAF inhibitor sorafenib has been shown to downregulate
ERCC1 and XRCC1 levels in a dose-dependent fashion among in vitro studies with
chemoradiation combinations [104]. While the PARP inhibitor ABT-888 has been
of considerable interest in BRCA-mutated breast cancers, preclinical studies have
suggested potential synergy between this agent and radiation in head and neck cancer
cell lines, likely due to attenuation of NHEJ repair and decreased DNA repair [105].
Thus, there is considerable potential for incorporation of DNA repair modulating
agents in future clinical studies.

13.8 Future Considerations and Conclusions

Incorporation of components of DNA repair pathways as integral biomarkers in
therapeutic clinical trials for SCCHN is currently limited. This is in part due to
the lack of available clinically validated assays. It remains to be seen whether either
evaluation of protein expression or of message levels would be the optimal predictive
marker for sensitivity of chemotherapy of radiation. As future studies interrogate
these markers further, it will be important that assays are reliable, reproducible, and
validated appropriately before they are incorporated into clinical development.

As illustrated by this chapter, due to the complexities of DNA repair pathways,
investigation in this area is fraught with controversies and questions. Trends from
retrospective analyses of human cancer tissue seem to indicate that higher expression
and thus potential activity of DNA repair enzymes may be associated with an inferior
response to treatment and survival. Questions that arise include the impact of HPV-
induced pathogenesis on the activity of DNA repair pathways. Future research will
need to focus on optimization of biomarker assays that can be used to reliably study
patient samples. Eventually, prospective clinical trials will be essential in order to
validate biomarker studies and therapeutic interventions.
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Chapter 14
Hypoxia and Radioresistance in Head and Neck
Cancer

Peiwen Kuo and Quynh-Thu Le

Abstract Despite advances in radiotherapy, disease control in locally advanced
(LA) head and neck squamous cell carcinoma (HNSCC) has seen marginal improve-
ment. Hypoxia, a common occurrence in HNSCC, is associated with poor prognosis
through protection of cells from radiation-induced DNA damage and alteration of tu-
mor biology to promote a malignant progression. Significant effort has been devoted
to targeting hypoxia in radiotherapy, including modification of tumor oxygenation,
modification of the tumor vasculature, manipulation of tumor oxygen consumption
and developing agents to either sensitize hypoxic cancer cells to radiation or to de-
stroy them altogether. However, these approaches have had limited success in the
clinic. Subsequent analyses of these studies revealed the importance of appropriate
patient selection for hypoxia-targeted therapies. For example, it is now known that
patients with human papilloma virus (HPV)-associated oropharyngeal carcinoma
(OPC) do not benefit from hypoxia-targeted therapy. The future of hypoxia-targeted
treatment in HNSCC radiotherapy lies in establishing a reliable and reproducible
biomarker(s) or an imaging approach that can reflect tumor oxygenation and serve
to select patients with aggressive tumors for therapy intensification.

Keywords Head and neck · Squamous cell carcinoma · Hypoxia · Radiation · Ra-
dioresistance · Oxygen enhancement ratio · Nitroimidazole · Tirapazamine · HPV ·
Pimonidazole · Fluoromisonidazole · Fluorodeoxyglucose · Fluoroazomycinarabi-
nofuranoside · EF5 · HIF-1α

14.1 Introduction

Head and neck squamous cell carcinoma (HNSCC), including squamous cell car-
cinoma (SCC) of the oral cavity, oropharynx, hypopharynx and larynx, is one of
the most lethal cancers worldwide. As the sixth most common cancer, with approx-
imately 500,000 new cases each year, about 40 % of patients present with locally
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advanced disease (stages III and IV) [1]. For patients with advanced disese, median
survival is around 10 months and 5-year survival does not exceed 40 % [2]. Among
patients with distant metastases, the overall survival rate at 5 years is as low as 6.5 %
[3]. Ultimately, many of these patients succumb to their disease because of inability
to achieve locoregional control with standard therapy. Interestingly, in recent decades
there has been a rapid rise in human papillomavirus (HPV)-related HNSCC, most
commonly associated with HPV-16 in the oropharynx (OP). Considered clinically
distinct from HPV-negative HNSCC, patients with HPV-positive OP tumors typically
respond better to radiotherapy and chemotherapy, with an excellent overall survival
exceeding 80 % [4].

Over the years, new radiation delivery techniques including intensity-modulated
radiotherapy (IMRT) and image-guided radiotherapy (IGRT) have been used to de-
liver higher doses to targeted tumor volumes while sparing surrounding normal tissue,
especially the parotid glands. Manipulation of radiation dose and schedule to reduce
the overall time of the radiation course (accelerated fractionation) or to increase the
total dose (hyperfractionation) have also been applied to address treatment failure
from rapid tumor repopulation [5]. Despite improvement in tumor staging with mod-
ern imaging, advances in radiotherapy delivery, improved surgical techniques and
introduction of novel targeted therapy, the cure rate for most HPV-negative HNSCC
remains low with high treatment morbidity.

Hypoxia, the condition of low oxygen level, occurs frequently in HNSCC. It is
a result of the imbalance between oxygen delivery and oxygen consumption within
the tumor. There is abundant evidence that hypoxia induces resistance to radiation,
which is a well-accepted treatment modality in HNSCC [6], [7]. Hypoxia has also
been implicated in increased resistance to systemic therapy and enhanced nodal
and distant tumor spread [8], [9]. Therefore, significant effort has been devoted
to targeting hypoxia in combination with radiotherapy to overcome these adverse
effects of low tumor oxygenation. Clinical trials have evaluated oxygen modifiers,
including hyperbaric oxygen breathing, carbogen and nicotinamide, and hypoxic cell
radiosensitizers, such as the nitroimidazole derivatives and hypoxic cell cytotoxins
[7]. Unfortunately, many randomized trials have shown limited improvement on
disease control and patient survival.

Interestingly, further analysis of these trials suggested that some tumors are in
fact vulnerable to hypoxia modification and these hypoxia-targeting agents can be
exploited to enhance radiation-induced cell killing. The future of hypoxia-targeted
therapy in HNSCC lies in determining who would benefit most from such treatment
and to identify more active novel agents with less toxicity. More specific hypoxia-
related biomarkers in serum and tumor tissue and better hypoxia-imaging modalities
are necessary to further stratify HPV-negative HNSCC based on tumor oxygenation
for individualized care.

14.2 Hypoxia in Solid Tumors

Hypoxia in solid neoplasms is defined as tissue oxygen tension below normoxic
levels of 40–60 mm Hg [10]. Covering a wide and dynamic range, tumor oxygen
partial pressure (pO2) as low as 2.5 mm Hg has been frequently reported. This state
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Fig. 14.1 Limitations in oxygen diffusion create regions of tumor hypoxia. The rapid metabolism
rate of tumor cells impedes the distance at which oxygen can travel through the tissue. Regions
within 70 μm of a capillary are well oxygenated (pink), whereas varying degrees of hypoxia exist
beyond this distance [12], [13]. When oxygen is depleted (anoxic) tumors become necrotic (brown).
Hypoxic cells fall between the two extremes in tumor oxygenation (yellow)

of reduced tumor oxygenation is a common occurrence in most solid tumors due
to rapid cancer-cell proliferation with increased oxygen demand that cannot be
met by the surrounding leaky vasculature. As a result, perfusion pressure, erratic
blood flow, interstitial fluid leakage, and mechanical pressure from within the tumor
and surrounding tissues, all serve as factors that interfere with tissue oxygenation.
HNSCC arises from nonvascularized epithelium, which is relatively hypoxic under
normal conditions. HNSCC may therefore possess enhanced survival potential under
prolonged hypoxia in the tumor microenvironment.

Hypoxia does not typically occur in a homogeneous fashion, rather the level of
oxygenation within a tumor is spatially and temporally heterogeneous. This phe-
nomenon occurs, in part, due to changes in cellular oxygen consumption as the
tumor expands along with the complex supporting vasculature. Temporal hetero-
geneity arises in instances of transient changes in cellular oxygen consumption,
which can also be described as acute or perfusion-limited hypoxia. Under this
circumstance, aberrant vasculature can cause fluctuations in blood flow including
temporary shut off or even backflow from nonfunctional shunts. This phenomenon
was first demonstrated using sequential injection of different fluorescent dyes 20 min-
utes apart into subcutaneous and intramuscular-implanted mouse tumors, revealing
regions of unmatched staining, suggesting intermittent blood flow [11]. On the other
hand, spatially heterogeneous, or chronic hypoxia, occurs due to limitations in oxy-
gen diffusion from and paucity of blood vessels (Fig. 16.1) [12]. This was evident
in histological samples, which showed that tumor necrosis (hypothesized to be a
consequence of chronic hypoxia) consistently occurred around 100–150 μm from
blood vessels [13].
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Fig. 14.2 Ionizing radiation
causes direct and indirect
DNA damage. The former
arises from direct ionization
of and electron transfer to the
DNA. The latter occurs from
ionization of water
(radiolysis) to produce the
hydroxyl radical, which can
interact with the
2′-deoxyribose or
nucleobases [14]
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14.3 Hypoxia-induced Radiation Resistance

The necessity of oxygen for radiation cytotoxicity is the ultimate cause of hypoxia-
induced radiation resistance. This relationship between oxygen and radiation
sensitivity is among the most extensively studied effects in radiobiology. Cell kill
by ionizing radiation occurs through direct and indirect DNA damage. For instance,
DNA can be ionized by direct photo interaction. Alternatively, indirect DNA damage
can be caused by secondary radicals. Ionizing radiation-induced water lysis leads to
the production of H2O2 and hydroxyl radicals, which cause double stranded, single
stranded, and base breaks, as well as DNA-protein cross-linking. In addition, sugar-
radical production and chemical modification of purine and pyrimidine bases can
also occur. Oxygen serves to stabilize these radiation-induced free radical species;
therefore, DNA in close proximity to these free radicals undergoes increased damage
events (Fig. 14.2) [14].

Over 50 years ago, Gray observed that a radiation dose of approximately three
times greater was required to kill hypoxic cells compared to their well-oxygenated
counterpart. This phenomenon is quantified as an oxygen enhancement ratio (OER)
and reflects the effect of oxygen on cell survival after exposure to radiation. The OER
is a ratio of the doses given under hypoxic and normoxic conditions that would yield
the same biological effect; it typically falls between 2.7 and 3.0 and can transition
from 1 to 3 when tumor oxygen tension is below 5 mm Hg. OER also depends on
various factors such as the pO2 of the hypoxic and normoxic conditions, cell/tissue
type, radiation dose, and linear energy transfer (LET) of the radiation applied [15].

14.4 Tumor Hypoxia and Poor Prognosis in HNSCC

Most patients with locally advanced HNSCC require radiation therapy with or with-
out chemotherapy as part of their treatment regimen either definitively or after
surgery. Studies that related treatment outcomes to direct tumor pO2 measurements
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by needle electrodes have shown that tumor hypoxia is a major contributor to poor
prognosis after radiotherapy [16]–[18]. Nordsmark and colleagues reported that tu-
mor pO2 below 2.5 mm Hg was an independent predictor for radiation response and
locoregional tumor control in a large cohort of HNSCC on multivariate analysis [19].
Brizel and colleagues reported a significantly lower 12-month disease-free survival
in patients with median tumor pO2 below 10 mm Hg versus those with higher tu-
mor pO2. The relationship between tumor oxygenation and prognosis has also been
demonstrated with endogenous hypoxia markers, such as hypoxia-inducible fac-
tors (HIFs) and carbonic anhydrase-IX (CAIX), and positron emission tomography
(PET)-based hypoxia tracers [20]–[23].

In addition to modifying radiation response, hypoxia also encourages a more
malignant phenotype by creating selective pressure biased for cells that can sur-
vive and proliferate in otherwise unviable conditions, low in oxygen and nutrients
[24]. Under this environment, changes in gene expression occur, including upreg-
ulation of genes that control angiogenesis, cell proliferation, survival, apoptosis,
glucose metabolism, invasion and metastasis [25]. One of the most extensively stud-
ied regulators of oxygen-responsive pathways is HIF-1, a transcription factor that
binds hypoxia response elements (HREs) on at least 200 target genes [26]–[28].
The hypoxic environment also promotes genomic instability, facilitating oncogenic
potential [29]. Furthermore, tumor cells that are inherently more radioresistant and
cancer stem cells that possess greater clonogenic potential can drive repopulation
and relapse after therapy (Fig. 14.3) [30].

14.5 Tumor Hypoxia Detection

The ability to detect and measure hypoxia is critical in improving HNSCC radiother-
apy. The well-established and extensively studied relationship between low tumor
oxygenation and radioresistance relied on tumor hypoxia detection with more in-
vasive approaches, including pimonidazole staining of biopsied samples and direct
measurement with oxygen sensing electrodes, in addition to noninvasive methods
based on PET imaging of radiolabeled hypoxia tracers. Tumor hypoxia detection
is also critical in clinical decision making. The merging of PET hypoxia marker
imaging with CT anatomical information provides greater tumor volume resolution,
which is essential for staging, radiotherapy planning, and evaluation of tumor re-
sponse to treatment. Noninvasive hypoxia tracer imaging and standardized hypoxia
biomarkers, circulating in the blood and/or expressed in the tumor, will be critical
for patient selection.

14.5.1 Direct Measurement of Tumor Hypoxia

Previously considered the “gold standard” of tumor hypoxia measurement, direct
measurement of tissue oxygenation was first conducted using polarographic needle
electrodes (pO2 histograph, Eppendorf, Hamburg, Germany) in cancers of the head
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Fig. 14.3 Hypoxia-induced HIF-1 signaling pathways. The HIF-1 transcription factor acts as a
global regulator of hypoxia-responsive gene expression. Tumor hypoxia activates HIF-1 through
mTOR signaling and inhibition of 4-prolyl hydoxylases (PHDs)-mediated degradiation. Once sta-
bilized, HIF-1, a heterodimer consisting of alpha and beta subunits, and the p300 transcriptional
coactivator bind to and induce the expression of genes harboring a hypoxia response element
(HRE) [26]–[28]. HIF-1 activation enables tumor cells to adapt and survive in otherwise growth-
limiting environments through the modulation of a multitude of cellular processes including glucose
metabolism, angiogenesis, growth, survival, and metastasis [25]

and neck, cervix, and breast. Several independent investigators subsequently showed
that tumor oxygenation, measured by these probes, was associated with treatment
outcome in HNSCC [17], [31]. This method involves an oxygen sensor placed at the
tip of a needle that is positioned and inserted by ultrasound or computed tomography
(CT) guidance and advanced through the tissue by a step motor. Rapid measurements
can be made every 1.4 s to collect 50–80 measurements along 5–6 tracks to generate
a histogram of pO2 in tumor or tissue of interest. Notably, this approach has been val-
idated by comparison of electrode measurements against exogenous and endogenous
hypoxia marker staining of corresponding histological samples [32], [33].

Unfortunately, electrode techniques are not without limitations. Invasive by na-
ture, probe insertion and travel may cause tissue damage. Measurements can only
be made in superficial regions, rendering many deeply seated tumors such as those
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in the brain, lung, and gastrointestinal (GI) tract inaccessible for direct evaluation.
Variation in readings collected by different observers (interobserver variability) is
unfortunately common and can affect final results. Finally, dynamic changes in oxy-
gen tension throughout the tumor cannot be adequately resolved due to the inability
to acquire spatially comprehensive readings over time. A variety of indirect methods
for imaging exogenous and endogenous hypoxia markers have since been developed
to address the limitations of probe measurement.

14.5.2 Indirect Measurement of Tumor Hypoxia

Numerous injectable metabolic and bioreductive-based hypoxia markers have been
created to measure tumor hypoxia in a noninvasive manner. When radiolabeled with
PET-compatible isotopes, these markers provide a means to image tumors in situ
while capturing the temporal and spatial heterogeneity of hypoxia that direct probe
measurement cannot perform. The merging of PET hypoxia marker imaging with
CT anatomical information provides greater tumor volume resolution.

14.5.2.1 Bioreductive Probes

Hypoxia imaging with bioreductive 2-nitroimidazoles was initially proposed three
decades ago and was developed as a more efficient compound with increased electron
affinity [34]. Nitroimidazoles, which were originally created using tritiated misonida-
zole, undergo an enzymatic reduction to a radical anion that is back-oxidized to its
starting compound in well-oxygenated conditions. However, in a hypoxic environ-
ment, the radical anion is further reduced and remains bound to macromolecules
where it is irreversibly retained in hypoxic cells. Trapped nitroimidazole compounds
are detected by specific antibodies for immunohistological analysis of biopsied tumor
samples or radiolabeled for PET imaging in vivo.

Pimonidazole ([1-(alpha-methoxymethylethanol)-2-nitroimidazole]), which is
frequently used in small animal tumor models, is administered at a nontherapeutic
dose followed by specific antibody detection of pimonidazole adducts in hypoxic cells
within frozen and fixed tumor samples [35], [36]. Kaanders and colleagues demon-
strated that in patients receiving pimonidazole injection prior to HNSCC biopsy,
the degree of exogenous hypoxia marker binding was significantly associated with
locoregional control and disease-free survival after radiation treatment [29].

Fluorine 18-fluoromisonidazole (FMISO, [1-(2-nitroimidazolyl)-2-hydroxy-3-
fluoropropane]) is one of the most widely used PET imaging tracer in head and
neck cancer. Regions identified as hypoxic by FMISO are clinically significant,
correlating with staining for CAIX and pimonidazole hypoxia markers [37]–[39].
Notably, FMISO accumulation corresponded with poor response to radiotherapy
[23], [40]–[42]. Strong FMISO uptake has also been shown to predict worse
outcome in HNSCC treated with tirapazimine (TPZ), a hypoxic cell cytotoxin,
and chemoradiotherapy [43]. Due to slow specific accumulation in target tumor
tissues and clearance kinetics from normoxic tissues, clinical application of FMISO
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is limited and agents with higher signal to noise ratio are still in demand [44].
Exhibiting faster diffusion through cell membranes, accumulation in target hypoxic
tumor cells and clearance from normoxic tissues, Fluoroazomycinarabinofuranoside
(FAZA) is another nitroimidazole with sugar addition that generates better signal to
noise ratio than FMISO [45], [46]. Furthermore, FAZA uptake also correlated with
benefit from TPZ treatment [47]. EF5 ([2-(2-nitro-1H-imidazol-yl)-N-(2,2,3,3,3-
pentaflouropropyl) acetamine]), a fluorinated derivative of the 2-nitroimidazole,
Etanidazole, can be 18-F labeled for PET imaging and has been shown to predict
radioresistance in individual tumors in murine and rat models [48]. Recently,
Chitneni and colleagues described a novel simplified method of EF5 synthesis that
meets the standards of purity and activity for clinical use, but is also amenable to
automated synthesis, giving [(18)F] EF5 PET promise for clinic use [49].

Although a variety of bioreductive complexes are available to image tumor hy-
poxia, a requirement for novel hypoxia imaging agents exists in order to address
the limitations of current bioreductive tracers. There is a great need for tracers that
exhibit faster and more specific localization as well as rapid clearance from well-
oxygenated tissues, boosting signal to noise ratio. Efforts towards improving hypoxia
tracers has yielded compounds varying in their lipophilicities and biodistributions,
several of which are in various stages of animal and clinical testing, including62Cu-
diacetyl-bis(N4-methylthiosemicarbazone (62CU-ATSM) and 3-[F]fluoro-2-(4-((2-
nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol (F-HX4) [50],
[44], [51].

14.5.2.2 Endogenous Hypoxia Markers

Endogenous hypoxia-related markers are defined as proteins whose level is increased
by either upregulation or less degradation in the presence of hypoxia. Examination
of hypoxia-responsive molecular markers is an alternative and cost-efficient method
for assessing tumor oxygenation. Virtually all archived tumor samples are amenable
to endogenous marker analysis, unlike exogenous markers that must be injected prior
to biopsy. Notably, rapid comparison of hypoxia-related markers to treatment out-
come can facilitate identification of markers with prognostic and/or predictive value.
Since the HIF (HIF-1 and HIF-2) pathways for oxygen response are of the most ex-
tensively studied, downstream targets including CAIX, vascular endothelial growth
factor (VEGF), and glucose transporter-1 (Glut1) have been examined for their prog-
nostic capabilities in HNSCC, but with mixed results [52]–[54]. Gene expression
and proteomic analysis are well-accepted approaches to identify additional endoge-
nous hypoxia-responsive gene signatures, markers, and hypoxia metagenes. Through
these approaches, HIF-regulated and non-HIF-regulated proteins such as connec-
tive tissue growth factor (CTGF), osteopontin (OPN), ephrin A1, hypoxia-inducible
gene-2 (HIG2), dihydrofolate reductase (DHFR), galectin-1, IkappaB kinase beta
(IKK-b), and lysyl oxidase (LOX), have been examined histologically in HNSCC to
find markers that can predict cancer-specific survival, overall survival, and identify
HNSCC patients best suited for hypoxia-targeted therapies [55]. However, the clini-
cal relevance of these markers and others require further investigation and validation.
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Several limitations exist for this method of tumor hypoxia assessment. For instance,
several of these hypoxia-responsive genes may not be hypoxia specific as they can
be induced or modulated by hypoxia-independent processes such as stimulation by
nitric oxide, cytokines, and oncogenes [56], [57]. Staining and measurement of any
endogenous proteins are assay and antibody dependent, and technical variability
from different studies needs to be reconciled. Furthermore, staining patterns of cer-
tain endogenous markers can differ significantly from exogenous tracers, making it
hard to determine the significance of either marker type. One thing for certain is that
it is unlikely that a single endogenous biomarker can be used to reflect the temporal
and spatial complexity of hypoxia and that a panel of hypoxia-responsive markers
will be necessary to address the aforementioned limitations by increasing specificity.

14.6 Targeting Hypoxia to Improve Radiation Response

Great effort has been devoted to targeting hypoxia clinically in order to improve
radiation response in solid tumors. Means to modify tumor oxygenation such as hy-
perbaric oxygen breathing (HBO) and the combination of carbogen and nicotinamide
(ARCON) have been tried to increase oxygen delivery to tumors, thereby rendering
them more radiosensitive. The use of hypoxic cell radiosensitizers (to sensitize hy-
poxic cell to radiation) and hypoxic cell cytotoxins (to directly kill hypoxic tumor
cells) have similarly been tested in combination with either radiation or chemora-
diation in multiple clinical trials in HNSCC with little success. Current efforts are
devoted to identifying and targeting hypoxia-driven genes or pathways, specifically
to impair the HIF pathway and tumor metabolism.

14.6.1 Tumor Oxygen Modifiers

The purpose of HBO is to boost oxygen delivery to tumors, thereby increasing
their sensitivity to radiation. Patients breath 100 % oxygen under increased atmo-
spheric pressure in order to facilitate oxygen diffusion into the tumor and circumvent
diffusion-limited hypoxia. Several clinical trials were conducted to test the benefit
of combined HBO and radiotherapy (RT) in HNSCC. A comparison of two separate
studies with the same fractionation schedule and endpoints showed an improvement
in the local control rates: 43 % for HBO/RT versus 16 % for RT in one study and
53 % for HBO/RT versus 30 % for RT in the other [58], [59]. The improvement in
local control was primarily noted for smaller tumors but not for larger ones [58],
[60]. Several groups also noted a significant increase in survival at 1 year in HNSCC
patients receiving combined HBO and radiation, but not at 2 years [59], [61], [62].
Comparisons in benefit of HBO and RT were difficult to make since the various
studies lacked consistency in hyperbaric pressure, radiation fractionation, and total
dose given. A meta-analysis of combined HBO and RT revealed that significant re-
ductions in deaths at 5 years were primarily found in patients who received 12 or
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fewer fractions with HBO, making benefit from hypofractionation and HBO difficult
to distinguish [63]. Furthermore, the use of HBO was associated with a higher rate
of bone, soft tissue, and cartilage necrosis, especially when it is delivered with larger
radiation fraction size [7]. Additional limitations for HBO include the patient’s poor
ability to tolerate a pressurized environment due to claustrophobia and occasional
seizure, and the cumbersome process of HBO and RT set up [58], [64]. Because of
these issues, combined HBO and RT has not been adopted in the clinic [65]. Ulti-
mately, HBO studies have contributed more towards highlighting the significance of
tumor hypoxia in radioresistance than improving tumor response to radiation.

Clinical trials for accelerated radiotherapy with carbogen and nicotinamide
(ARCON) sought out to target tumor hypoxia by addressing both diffusion-limited
hypoxia through carbogen hyperoxic gas breathing (inhalation of 98 % oxygen and
2 % carbon dioxide) and perfusion-limited hypoxia with a vasoactive agent, nicoti-
namide. A Phase III randomized trial was launched to determine improvement of
tumor control with ARCON (64 Gy within 36–38 days with carbogen breathing 4
min before and during daily radiations and oral nicotinamide) compared to radiation
alone (68 Gy within 36–38 days). Disappointingly, no significant difference was re-
ported between the two treatment groups for the primary endpoint, which was local
control (AR 80 % versus ARCON 83 % at 2 years, and AR 78 % versus ARCON
79 % at five years). Disease-free survival and overall survival also did not improve
with ARCON treatment. Interestingly, a significant improvement was observed for
regional control rate (AR 88 % versus ARCON 95 % at 2 years and AR 86 % versus
ARCON 93 % at 5 years) [66]. It is unclear why ARCON treatment should improve
nodal control. However, since nodal control was not the primary endpoint of the
study, the patients were not stratified by nodal status and a multivariate analysis
was not performed, this observation should be considered hypothesis generating and
needs to be confirmed in another randomized trial.

14.6.2 Hypoxic Cell Radiosensitizers and Cytotoxins

Since the mid-1970s, approaches to circumvent hypoxia-induced treatment re-
sistance in HNSCC have focused on utilizing hypoxic cell radiosensitizers in
combination with radiation. These sensitizers were developed as electron-affinic
compounds that selectively increase radiation-induced cell kill of hypoxic cells by
mimicking the effect of oxygen. Research conducted with these hypoxia-specific
radiosensitizers soon lead to the development of hypoxic cell cytoxins, which
rather than sensitize, kill tumor cells with low oxygen tension. In particular, the
2-nitroimidazoles, including misonidazole, ethanidazole, and nimorazole, garnered
great attention as dual-functionality hypoxic cell radiosensitizers and cytotoxins
[67].Under hypoxia, these bioreductive agents are metabolized by intracellular re-
ductases to form cytotoxic reactive radical species that induce cell death by single
and double-stranded DNA breaks and chromosomal aberrations [68].
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14.6.2.1 Nitroimidazole Studies

Since the mid-1970s, nitroimidazoles were the main agent used in the clinic to target
tumor hypoxia. Multiple clinical trials conducted by the Radiation Therapy Oncol-
ogy Group (RTOG), the European Organization for Research and Teaching of Cancer
(EORTC) and the Danish Head and Neck Cancer Group (DAHANCA), investigated
the benefit of combining a variety of 2-nitroimidazole derivatives with radiation,
only to report disappointing findings. Between 1979 and 1985, the EORTC investi-
gated a split-course accelerated fractionation regimen with or without misonidazole
compared to standard fractionation in patients with locally advanced HNSCC. Un-
fortunately, shortening the radiation course with an interruption mid course and
misonidazole did not improve locoregional control or survival after 5 years [69].
RTOG conducted a randomized Phase III trial to compare the combination of etanida-
zole (2.0 g/m2 three times a week for 17 weeks) and conventional RT (range: 66 Gy
in 33 fractions to 74 Gy in 37 fractions) to RT alone. The addition of etanida-
zole to radiation therapy failed to provide benefit [70]. Similarly negative results
were reported by a European Etanidazole trial [71]. Finally, although less potent
in inducing radiosensitization than etanidazole, a less toxic compound, Nimorazole
(1-(N-B-theylmorpholine)-5-nitro-imidazole), was tested in a randomized double-
blind Phase III study by the DAHANCA group. Patients received conventional RT
to a total dose of 62–68 Gy (2 Gy/fraction, five fractions per week) with or without
nimorazole. Although the addition of nimorazole did not significantly affect overall
survival, improvements were observed for both 5-year loco-regional control (49 %
nimorazole versus 33 % placebo) and cancer related deaths (52 % nimorazole ver-
sus 41 % placebo) [72]. To date, nimorazole is the only nitroimidazole hypoxic cell
radiosensitizer that is being used in the clinic.

14.6.2.2 Tirapazamine Studies

Tirapazamine (TPZ), is an aromatic heterocycle di-N-oxide (3-amino-1,2,4-
benzotriazine-1,4 dioxide) that was developed as a hypoxic cell cytotoxin. It has also
been evaluated in clinical trials in combination with chemotherapy and radiation in
HNSCC. The preclinical observation that TPZ was highly active in mammalian cells
in vitro when combined with fractionated radiation at doses comparable to those
used in the clinic sparked interest in investigating its therapeutic potential in various
cancers including HNSCC [73]. Ample preclinical evidence supported TPZ antitu-
mor activity. Dorie and Brown reported that the combination of TPZ and various
chemotherapy agents had an additive antitumor effect in an implanted fibrosarcoma
mouse model [74]. Interestingly, mounting evidence suggested that the additive effect
of TPZ and platinum-based chemotherapy is hypoxia-dependent [75]. Furthermore,
in an uncontrolled Phase II trial, TPZ combined with radiation resulted in a promising
local control rate at 2 years when compared to historical results [76]. In a randomized
Phase II trial (TROG 98.02), the addition of TPZ improved the 3-year failure-free
survival and locoregional failure-free rates (55 and 84 %) compared to radiation and
chemotherapy only (44 and 66 %) [77].
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Based on the promising Phase II trial results, TROG 02.02 (headSTART) ran-
domized Phase III clinical trial was launched to investigate the benefit of adding
TPZ to a concurrent radiation and cisplatin regimen in locally advanced HNSCC.
This study involved 88 centers from 13 countries and 861 patients with stage III and
IV tumors, affecting the oral cavity, oropharynx, hypopharynx, and larynx. Patients
received radiation (70 Gy over 7 weeks) and either Cisplatin (100 mg/m2/d on day
1 of weeks 1, 4, and 7) or Cisplatin (75 mg/m2/d on day 1 of weeks 1, 4, and 7),
and TPZ (290 mg/m2/d on day 1 of weeks 1, 4, and 7, and 160 mg/m2 on day 1,
3, and 5 of weeks 2 and 3). Disappointingly, TPZ addition did not improve 2-year
overall survival [78]. The failure to show benefit of TPZ in this trial may be due
to the significant number (25 %) of patients deviating from the prescribed radiation
treatment. When these patients were excluded from analysis, TPZ treatment was
associated with higher locoregional control. Notably, analysis of tumor hypoxia in
parallel to outcome suggested the importance of patient pretherapeutic evaluation,
discussed below.

14.6.3 HIF-targeted Therapies

HIF-1 is a key transcriptional regulator of hypoxia-responsive genes and targeting
HIF-1 has become a compelling method for circumventing hypoxia-mediated tumor
aggressiveness and radioresistance. Although targeting HIF-1 directly is challeng-
ing, inhibition of upstream and downstream pathways are attractive approaches.
Numerous methods have been developed to inhibit HIF-1 protein accumulation (at
the transcriptional, translational, and degradation levels) and transcriptional activity
(by blocking its ability to bind DNA). For example, HIF-1 translation can be in-
hibited by targeting the PI3K/AKT/mTOR pathway through mTOR (temsirolimus,
rapamycin and rapamycin analogs (Rad001 and CCI-799)) and PI3K inhibition
(LY294002). HIF-1 induction can also be attenuated through the perturbation of
epidermal growth factor receptor (EGFR) signaling pathways with small molecule
inhibitors (gefitnib, erlotinib) and blocking antibodies (cetuximab, panitumumab)
[79], [80]. Furthermore, Adachi and colleagues demonstrated that inhibition of
STAT3-mediated HIF-1 translation attenuated murine orthotopic HNSCC growth
[81]. Chemical inhibitors have also been developed to block HIF-1a protein ac-
cumulation, including 2-methoxyestradiol (2ME2) and 2-phenethyl isothiocynate
(PEITC), which block HIF-1a translation and nuclear translocation. HIF-1a protein
degradation can be induced through inhibition of Hsp90, a stabilizing chaper-
one, with inhibitors including, 17-N-Allylamino-17-demethoxy geldanamycin (17-
AAG) and 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG),
and geldanamycin [79], [82]. HIF-1 degradation can also be induced by his-
tone deacetylase (HDAC) inhibitors, Trichostatin A (TSA) and hydroxamic agent,
LAQ824, through acetylation and polyubiquitination. S-2-amino-3-[40-N, N,-bis(2-
chloroethyl)amino] (PX-478), derived from mephalan, inhibits HIF-1α on multiple
fronts, blocking its transcription, translation and promotes its degradation [83]. A
multitude of agents also block HIF-1 function by preventing its DNA binding and
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Fig. 14.4 Inhibitors of HIF-1. As a mediator of tumor aggressiveness and radiation resistance, the
inhibition of HIF-1 has become a desirable strategy to target hypoxic tumors. Numerous inhibitors
have been developed to block HIF-1, including the attenuation of protein stability and accumu-
lation (17-AAG, 17-DMAG, Trichostatin, LAQ824, RAD001, CCI-799, rapalogs, LY294002,
2ME2, PEITC) as well as HRE binding and transcriptional activity (Echinomycin, Polyamide,
Flavorpiridol, Chetomin) [79], [80], [82], [83]

transcriptional activation of target genes. These compounds include echinomycin,
polyamides and flavopiridol, which prevent HIF-1α interaction with hypoxia re-
sponse elements (HREs). HIF-1α transcriptional activation can be abrogated by
targeting its coactivator p300 directly with chetomin or disrupting their interaction
with the proteasome inhibitor, bortezomib (Fig. 14.4) [80].

Inhibition of HIF-1 activity downstream by targeting genes that regulate glycol-
ysis may significantly attenuate tumor aggressiveness since this unique metabolic
profile promotes radioresistance, tumor-cell migration, angiogenesis, and evasion
from immune surveillance [84], [85]. Cairns and colleagues have shown that inhibi-
tion of pyruvate dehydrogenase kinase 1 (PDK1), which limits pyruvate entry into
the citric acid cycle and reduces mitochondrial oxygen consumption, causes a tran-
sient increase in tumor hypoxia. The temporary reduction in tumor oxygenation can
be exploited with hypoxic cell cytotoxins including TPZ, which are more effective
under this condition [86].
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14.7 The Future of Hypoxia Targeting in HNSCC:
The Importance of Patient Selection

14.7.1 Tumor Hypoxia Pre-evaluation

Clinical trials that evaluated hypoxic cell cytotoxins or radiosensitizers in HNSCC
have indicated that some tumors have modifiable hypoxia while others do not. There-
fore, the future of hypoxia targeting in HNSCC will need to incorporate pretreatment
evaluation of tumor oxygenation. The ideal approaches for patient selection would be
noninvasive, reproducible at different institutions and validated prospectively. Some
of these approaches may include hypoxia imaging or detection of hypoxia-related
markers or both.

Rischin and colleagues conducted a substudy within the previously mentioned
TROG Phase II study (TROG 98.02), in which a subset of patients received FMISO
hypoxia imaging before and at mid-treatment. Patients with high FMISO uptake
within the primary tumor (hypoxic tumors) had a greater locoregional failure rate
when treated with chemoradiation alone compared to those treated with chemoradi-
ation and TPZ [43]. These results suggested a role for FMISO imaging in identifying
patients who would benefit from TPZ. However, the number of patients involved
in this substudy was quite small (45 patients in total) and these findings need to be
validated in a larger independent trial.

Another translational side study used pimonidazole staining from tumor biop-
sies to assess tumor hypoxia in larynx cancers and correlated tumor response to
ARCON treatment based on this marker staining [66]. They found that hypoxic
tumors by pimoninidazole staining (> 2.6 % positive staining in the tumor) re-
sponded significantly better to ARCON compared to accelerated radiotherapy (AR)
alone. In addition, significant improvement in regional control was achieved with
ARCON in these patients (AR 55 % versus ARCON 100 %, p = 0.01) whereas pa-
tients with less hypoxic tumors did not experience any improvement (AR 96 % versus
ARCON 92 %). Similarly, there was a trend for improvement in 5-year disease-free
survival with ARCON therapy in patients with hypoxic tumors (AR 40 % versus AR-
CON 86 %, p = 0.08), a benefit that was not seen in patients with better oxygenated
tumors [22], [66]. Although these data are intriguing, the number of patients with
pimonidazole assessment was small (79 patients in total, 26 with hypoxic tumor)
and will need validation from a larger independent study. Nevertheless, the results
of these two cited studies suggested that noninvasive tumor hypoxia assessment
with 2-nitroimidazole tracers may assist in selecting patients who will respond to
hypoxia-modifying therapies.

Zips and colleagues conducted a FMISO imaging study that highlighted the sig-
nificance of tumor oxygenation dynamics during RT when defining a time point for
hypoxia imaging with greatest predictive value. Imaging with FMISO-PET/CT at
earlier time points during radiation (weeks 1 and 2 or 10 to 20 Gy) served as stronger
indicators of local progression-free survival. In an exploratory cohort of patients, tu-
mors with greater tracer uptake that did not resolve to or below baseline values by the
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20 Gy time point were at a greater risk of local recurrence, albeit with small patient
numbers and limited statistical power [22].These findings also support the value
of noninvasive tumor hypoxia in patient selection for more aggressive treatments
involving dose intensification or hypoxia-modifying therapies.

14.7.2 Tumor HPV Status in Patient Selection

A subset of HNSCCs, specifically oropharyngeal carcinoma (OPC), are associated
with high-risk human papilloma virus-16 and 18 (HPV-16 and 18) infection and
are more responsive to radiation and chemotherapy. Patients with HPV(+) OPC are
known to have superior prognosis than those with HPV(-) OPC as demonstrated in
both retrospective and prospective studies [87]–[95], [4]. The incidence of HPV(+)
OPC has been increasing rapidly in the western hemisphere in the last 30 years.
Epidemiologically, these patients are typically younger, have minimal cigarette or
alcohol consumption, and higher performance status when compared to HPV(−)
tumors. The mechanism by which HPV(+) tumors are more responsive to radiation
is not well understood but has been hypothesized to be related to better immune
surveillance to viral-specific antigens, intact p53 function, and less overall genomic
stability compared to HPV(−) tumors [96], [97].

An important question that needs to be addressed is whether HPV(+) and (−) OPC
harbor the same level of hypoxia and whether hypoxia modification has a similar
impact for both tumor types. The first question is being addressed through hypoxia
imaging in a clinical study at Memorial Sloan–Kettering Cancer Center (personal
communication, Nancy Lee, MD). The second question was addressed by reanalyses
of prior hypoxia-targeted clinical trials. Rischin and colleagues showed a trend for
improved locoregional control in HPV(−) OPC, but not in the HPV( + ) group in
the above mentioned TROG 02.02 Tirapazamine study [95]. Similarly, a secondary
analysis of the DAHANCA nimorazole Phase III trial revealed that the addition of
nimorazole only benefited patients with HPV(−) tumors but not those with HPV(+)
tumors [88]. These data suggested that hypoxia modification is unlikely to benefit
HPV(+) patients, who enjoy extremely good prognosis with conventional therapy.
Therefore, future trials will be taking tumor HPV status into account and hypoxia
targeting should primarily focus in patients with HPV(−) tumors where hypoxia
modification may matter.

14.8 Conclusions

Acute and chronic hypoxia occur frequently in solid neoplasms of the head and
neck and are major contributors to RT failure and poor prognosis in HNSCC.
Hypoxia-induced radiation resistance is a well-established radiobiological phe-
nomenon, which occurs as a result of fewer radiation-induced double-stranded DNA
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breaks in a low oxygen environment. In turn, targeting hypoxia has been a com-
pelling approach to circumventing radioresistance in head and neck tumors. Despite
promising preclinical data, evidence of clinical benefit from hypoxia targeting in pa-
tients was often obscured in the absence of appropriate patient selection. Secondary
studies revealed that some tumors were in fact amenable to hypoxia modification
therapies; however, there is no present uniformed agreement regarding the best ap-
proach to identify these tumors. In order for hypoxia targeting to be successful in
the clinics, we will need to develop a reliable sensitive and noninvasive method to
assess tumor hypoxia in situ in human tumor for patient selection into clinical trials.
Future trials will also need to take into account important established prognostic
factors such as tumor HPV status to avoid inclusion of patients who do not benefit
from hypoxia-targeted therapy.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin.
2005;55:74–108.

2. Brizel DM. Targeting the future in head and neck cancer. Lancet Oncol. 2009;10:204–5.
3. Li XM, Di B, Shang YD, Zhou YQ, Ma HM, et al. [Analysis of risk factors in the prediction

of distant metastases of head and neck squamous cell carcinomas]. Zhonghua Er Bi Yan Hou
Ke Za Zhi. 2004;39:171–5.

4. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, et al. Human papillomavirus and survival
of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

5. Bourhis J, Overgaard J, Audry H, Ang KK, Saunders M, et al. Hyperfractionated or accelerated
radiotherapy in head and neck cancer: a meta-analysis. Lancet. 2006;368:843–54.

6. Gray LH, Conger AD, Ebert M, Hornsey S, Scott OC. Concentration of oxygen dissolved in
tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol. 1953;26:638–48.

7. Overgaard J. Hypoxic modification of radiotherapy in squamous cell carcinoma of the head
and neck-a systematic review and meta-analysis. Radiother Oncol. 2011;100:22–32.

8. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D. Tumour hypoxia, chemothera-
peutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29:297–307.

9. Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, et al. Oxygenation of
squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node
metastases, and normal tissue. Int J Radiat Oncol Biol Phys. 1998;42:35–41.

10. Brown JM. Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther.
2002;1:453–8.

11. Trotter MJ, Chaplin DJ, Durand RE, Olive PL. The use of fluorescent probes to identify regions
of transient perfusion in murine tumors. Int J Radiat Oncol Biol Phys. 1989;16:931–4.

12. Brown JM. Tumor hypoxia, drug resistance, and metastases. J Natl Cancer Inst. 1990;82:338–9.
13. Thomlinson RH, Gray LH. The histological structure of some human lung cancers and the

possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.
14. Karam PA, Leslie SA,AnbarA. The effects of changing atmospheric oxygen concentrations and

background radiation levels on radiogenic DNA damage rates. Health Phys. 2001;81:545–53.
15. Wenzl T,Wilkens JJ. Modelling of the oxygen enhancement ratio for ion beam radiation therapy.

Phys Med Biol. 2011;56:3251–68.
16. Nordsmark M, Overgaard M, Overgaard J. Pretreatment of oxygenation predicts radiation

response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol.
1996;41:31–40.

17. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects
the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38:285–
189.



14 Hypoxia and Radioresistance in Head and Neck Cancer 299

18. Rudat V, Stadler P, BeckerA, Vanselow B, DietzA, et al. Predictive value of the tumor oxygena-
tion by means of pO2 histography in patients with advanced head and neck cancer. Strahlenther
Onkol. 2001;177:462–8.

19. Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation re-
sponse in advanced squamous cell carcinoma of the head and neck. Radiother Oncol.
1996;41:31–9.

20. Koukourakis MI, Bentzen SM, Giatromanolaki A, Wilson GD, Daley FM, et al. Endogenous
markers of two separate hypoxia response pathways (hypoxia inducible factor 2 alpha and
carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients
recruited in the CHART randomized trial. J Clin Oncol. 2006;24:727–35.

21. Ferreira MB, De Souza JA, Cohen EE. Role of molecular markers in the management of head
and neck cancers. Curr Opin Oncol. 2011;23:259–64.

22. Zips D, Zophel K, Abolmaali N, Perrin R, Abramyuk A, et al. Exploratory prospective trial
of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced
head-and-neck cancer. Radiother Oncol. 2012.

23. Kikuchi M, Yamane T, Shinohara S, Fujiwara K, Hori SY, et al. 18F-fluoromisonidazole
positron emission tomography before treatment is a predictor of radiotherapy outcome and
survival prognosis in patients with head and neck squamous cell carcinoma. Ann Nucl Med.
2011;25:625–33.

24. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, et al. Hypoxia-mediated selection
of cells with diminished apoptotic potential in solid tumours. Nature. 1996;379:88–91.

25. Le QT, Denko NC, Giaccia AJ. Hypoxic gene expression and metastasis. Cancer Metastasis
Rev. 2004;23:293–310.

26. Semenza GL. (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007:cm8.
27. Takenaga K. Angiogenic signaling aberrantly induced by tumor hypoxia. Front Biosci.

2011;16:31–48.
28. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.
29. Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology.

Semin Radiat Oncol. 2004;14:198–206.
30. Moncharmont C, Levy A, Gilormini M, Bertrand G, Chargari C, et al. Targeting a cornerstone

of radiation resistance: cancer stem cell. Cancer Lett. 2012;322:139–47.
31. Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-

regional control in advanced head and neck squamous cell carcinoma treated by radiation
therapy. Radiother Oncol. 2000;57:39–43.

32. Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, et al. Differential risk assess-
ments from five hypoxia specific assays: The basis for biologically adapted individualized
radiotherapy in advanced head and neck cancer patients. Radiother Oncol. 2007.

33. Le QT, Sutphin PD, Raychaudhuri S, Yu SC, Terris DJ, et al. Identification of osteopontin as
a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res.
2003;9:59–67.

34. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, et al. Characterization of radiolabeled
fluoromisonidazole as a probe for hypoxic cells. Radiat Res. 1987;111:292–304.

35. Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, et al. Hypoxia in models of lung cancer:
implications for targeted therapeutics. Clin Cancer Res. 2010;16:4843–52.

36. Young RJ, Moller A. Immunohistochemical detection of tumour hypoxia. Methods Mol Biol.
2010;611:151–9.

37. Troost EG, Laverman P, Philippens ME, Lok J, van der Kogel AJ, et al. Correlation of
[18F]FMISO autoradiography and pimonidazole [corrected] immunohistochemistry in human
head and neck carcinoma xenografts. Eur J Nucl Med Mol Imaging. 2008;35:1803–11.

38. Troost EG, Laverman P, Kaanders JH, Philippens M, Lok J, et al. Imaging hypoxia af-
ter oxygenation-modification: comparing [18F]FMISO autoradiography with pimonidazole
immunohistochemistry in human xenograft tumors. Radiother Oncol. 2006;80:157–64.

39. Dubois L, Landuyt W, Haustermans K, Dupont P, Bormans G, et al. Evaluation of hypoxia in an
experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry.
Br J Cancer. 2004;91:1947–54.



300 P. Kuo and Q.-T. Le

40. Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, et al. Tumor hypoxia imaging
with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin
Cancer Res. 2006;12:5435–41.

41. Eschmann SM, Paulsen F, Reimold M, Dittmann H, Welz S, et al. Prognostic impact of hypoxia
imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer
before radiotherapy. J Nucl Med. 2005;46:253–60.

42. Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, et al. Dose painting in ra-
diotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging
with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic
contrast-enhanced MRI. J Nucl Med. 2009;50:1020–7.

43. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, et al. Prognostic significance of [18F]-
misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced
head and neck cancer randomly assigned to chemoradiation with or without tirapaza-
mine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol.
2006;24:2098–104.

44. Chen L, Zhang Z, Kolb HC, Walsh JC, Zhang J, et al. (1)(8)F-HX4 hypoxia imaging with
PET/CT in head and neck cancer: a comparison with (1)(8)F-FMISO. Nucl Med Commun.
2012;33:1096–102.

45. Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, et al. Hypoxia-Specific Tumor Imaging
with 18F-Fluoroazomycin Arabinoside. J Nucl Med. 2005;46:106–13.

46. Postema EJ, McEwan AJ, Riauka TA, Kumar P, Richmond DA, et al. Initial results of hypoxia
imaging using 1-alpha-D:-(5-deoxy-5-[18F]-fluoroarabinofuranosyl)-2-nitroimidazole (18F-
FAZA). Eur J Nucl Med Mol Imaging. 2009;36:1565–73.

47. Rischin D, Fisher R, Peters L, Corry J, Hicks R. Hypoxia in head and neck cancer: studies with
hypoxic positron emission tomography imaging and hypoxic cytotoxins. Int J Radiat Oncol
Biol Phys. 2007;69:S61–S3.

48. Evans SM, Joiner B, JenkinsWT, Laughlin KM, Lord EM, et al. Identification of hypoxia in cells
and tissues of epigastric 9 L rat glioma using EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-
pentafluoropropyl) acetamide]. Br J Cancer. 1995;72:875–82.

49. Chitneni SK, Bida GT, Dewhirst MW, Zalutsky MR. A simplified synthesis of the hy-
poxia imaging agent 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-[(18)F]pentafluoropropyl)-
acetamide ([(18)F]EF5). Nucl Med Biol. 2012;39:1012–8.

50. Bourgeois M, Rajerison H, Guerard F, Mougin-Degraef M, Barbet J, et al. Contribution of
[64Cu]-ATSM PET in molecular imaging of tumour hypoxia compared to classical [18F]-
MISO-a selected review. Nucl Med Rev Cent East Eur. 2011;14:90–5.

51. Dubois LJ, Lieuwes NG, Janssen MH, Peeters WJ, Windhorst AD, et al. Preclinical evaluation
and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad
Sci U S A. 2011;108:14620–5.

52. Vordermark D, Brown JM. Endogenous markers of tumor hypoxia predictors of clinical
radiation resistance? Strahlenther Onkol. 2003;179:801–11.

53. Brockton N, Dort J, Lau H, Hao D, Brar S, et al. High stromal carbonic anhydrase IX expression
is associated with decreased survival in P16-negative head-and-neck tumors. Int J Radiat Oncol
Biol Phys. 2011;80:249–57.

54. Hong DY, Lee BJ, Lee JC, Choi JS, Wang SG, et al. Expression of VEGF, HGF, IL-6, IL-
8, MMP-9, Telomerase in Peripheral Blood of Patients with Head and Neck Squamous Cell
Carcinoma. Clin Exp Otorhinolaryngol. 2009;2:186–92.

55. Le QT, Kong C, Lavori PW, O’Byrne K, Erler JT, et al. Expression and Prognostic Significance
of a Panel of Tissue Hypoxia Markers in Head-and-Neck Squamous Cell Carcinomas. Int J
Radiat Oncol Biol Phys. 2007;69:167–75.

56. Brix B, Mesters JR, Pellerin L, Johren O. Endothelial cell-derived nitric oxide enhances
aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation. J Neurosci.
2012;32:9727–35.

57. Qian D, Lin HY, Wang HM, Zhang X, Liu DL, et al. Involvement of ERK1/2 pathway in
TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Mol Reprod Dev.
2004;68:198–204.



14 Hypoxia and Radioresistance in Head and Neck Cancer 301

58. Henk JM, Kunkler PB, Smith CW. Radiotherapy and hyperbaric oxygen in head and neck
cancer. Final report of first controlled clinical trial. Lancet. 1977;2:101–3.

59. Haffty BG, Hurley R, Peters LJ. Radiation therapy with hyperbaric oxygen at 4 atmospheres
pressure in the management of squamous cell carcinoma of the head and neck: results of a
randomized clinical trial. Cancer J Sci Am. 1999;5:341–7.

60. Henk JM. Late results of a trial of hyperbaric oxygen and radiotherapy in head and neck cancer:
a rationale for hypoxic cell sensitizers? Int J Radiat Oncol Biol Phys. 1986;12:1339–41.

61. Sealy R, Cridland S, Barry L, Norris R. Irradiation with misonidazole and hyperbaric oxygen:
final report on a randomized trial in advanced head and neck cancer. Int J Radiat Oncol Biol
Phys. 1986;12:1343–6.

62. Tobin DA, Vermund H. A randomized study of hyperbaric oxygen as an adjunct to regularly
fractionated radiation therapy for clinical treatment of advanced neoplastic disease. Am J
Roentgenol Radium Ther Nucl Med. 1971;111:613–21.

63. Bennett M, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisa-
tion to radiotherapy: a systematic review of randomised controlled trials. Cancer Treat Rev.
2008;34:577–91.

64. Giebfried JW, Lawson W, Biller HF. Complications of hyperbaric oxygen in the treatment of
head and neck disease. Otolaryngol Head Neck Surg. 1986;94:508–12.

65. Bennett MH, Feldmeier J, Smee R, Milross C. Hyperbaric oxygenation for tumour sensitisation
to radiotherapy. Cochrane Database Syst Rev. 2012;4:CD005007.

66. Janssens GO, Rademakers SE, Terhaard CH, Doornaert PA, Bijl HP, et al. Accelerated radio-
therapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized
trial. J Clin Oncol. 2012;30:1777–83.

67. Cole S, Stratford IJ, Adams GE, Fielden EM, Jenkins TC. Dual-function 2-nitroimidazoles as
hypoxic cell radiosensitizers and bioreductive cytotoxins: in vivo evaluation in KHT murine
sarcomas. Radiat Res. 1990;124:S38–43.

68. Walton MI, Wolf CR, Workman P. Molecular enzymology of the reductive bioactivation of
hypoxic cell cytotoxins. Int J Radiat Oncol Biol Phys. 1989;16:983–6.

69. Van den Bogaert WS, Schraub S, et al. The EORTC randomized trial on three fractions per day
and misonidazole (trial no. 22811) in advanced head and neck cancer: long-term results and
side effects. Radiother Oncol. 1995;35:91–9.

70. Lee DJ, Cosmatos D, Marcial VA, Fu KK, Rotman M, et al. Results of an RTOG phase III trial
(RTOG 85-27) comparing radiotherapy plus etanidazole with radiotherapy alone for locally
advanced head and neck carcinomas. Int J Radiat Oncol Biol Phys. 1995;32:567–76.

71. Eschwege F, Sancho-Garnier H, Chassagne D, Brisgand D, Guerra M, et al. Results of a Euro-
pean randomized trial of Etanidazole combined with radiotherapy in head and neck carcinomas
[see comments]. Int J Radiat Oncol Biol Phys. 1997;39:275–81.

72. Overgaard J, Hansen HS, Overgaard M, Bastholt L, Berthelsen A, et al. A randomized double-
blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in
supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer
Study (DAHANCA) Protocol 5-85. Radiother Oncol. 1998;46:135–46.

73. Zeman EM, Brown JM, Lemmon MJ, Hirst VK, Lee WW. SR 4233: a new bioreductive
agent with high selective toxicity for hypoxic mammalian cells. Int J Radiat Oncol Biol Phys.
1986;12:1239–42.

74. Dorie MJ, Brown JM. Modification of the antitumor activity of chemotherapeutic drugs by the
hypoxic cytotoxic agent tirapazamine. Cancer Chemother Pharmacol. 1997;39:361–6.

75. Beck R, Roper B, Carlsen JM, Huisman MC, Lebschi JA, et al. Pretreatment 18F-FAZA
PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J Nucl Med.
2007;48:973–80.

76. Lee D, TrottiA, Spencer S, Rostock R, Fisher C, et al. Concurrent tirapazamine and radiotherapy
for advanced head and neck carcinomas: a phase II study. Int J Radiat Oncol Biol Phys. 1998;
42:811–15.

77. Rischin D, Peters L, Fisher R, Macann A, Denham J, et al. Tirapazamine, Cisplatin, and
Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head
and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group
(TROG 98.02). J Clin Oncol. 2005;23:79–87.



302 P. Kuo and Q.-T. Le

78. Rischin D, Peters L, O’Sullivan B, Giralt J, Yuen K, et al. Phase III study of tirapazamine,
cisplatin and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of
the head and neck. J Clin Oncol. 2008;26:abstr LBA6008.

79. Lee NY, Le QT. New developments in radiation therapy for head and neck cancer: intensity-
modulated radiation therapy and hypoxia targeting. Semin Oncol. 2008;35:236–50.

80. Hu Y, Liu J, Huang H. Recent agents targeting HIF-1alpha for cancer therapy. J Cell Biochem.
2012.

81. Adachi M, Cui C, Dodge CT, Bhayani MK, Lai SY. Targeting STAT3 inhibits growth and
enhances radiosensitivity in head and neck squamous cell carcinoma. Oral Oncol. 2012.

82. Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug
Discov. 2003;2:803–11.

83. Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G. Antitumor activity and phar-
macodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol
Cancer Ther. 2004;3:233–44.

84. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate
dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell
Metab. 2006;3:177–85.

85. Meijer TW, Kaanders JH, Span PN, Bussink J. Targeting Hypoxia, HIF-1, and Tumor Glucose
Metabolism to Improve Radiotherapy Efficacy. Clin Cancer Res. 2012;18:5585–94.

86. Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of hypoxia and HIF1
in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci U S A. 2007;104:
9445–50.

87. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, et al. Effect of HPV-associated
p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma
of the head and neck. J Clin Oncol. 2009;27:1992–8.

88. Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, et al. HPV-associated p16-
expression and response to hypoxic modification of radiotherapy in head and neck cancer.
Radiother Oncol. 2010;94:30–5.

89. Lassen P, Eriksen JG, Krogdahl A, Therkildsen MH, Ulhoi BP, et al. The influence of HPV-
associated p16-expression on accelerated fractionated radiotherapy in head and neck cancer:
evaluation of the randomised DAHANCA 6 & 7 trial. Radiother Oncol. 2011;100:49–55.

90. Kong CS, Narasimhan B, Cao H, Kwok S, Erickson JP, et al. The relationship between human
papillomavirus status and other molecular prognostic markers in head and neck squamous cell
carcinomas. Int J Radiat Oncol Biol Phys. 2009;74:553–61.

91. Fakhry C, Westra WH, Li S, Cmelak A, Ridge JA, et al. Improved survival of patients with
human papillomavirus-positive head and neck squamous cell carcinoma in a prospective
clinical trial. J Natl Cancer Inst. 2008;100:261–9.

92. Weinberger PM, Yu Z, Haffty BG, Kowalski D, Harigopal M, et al. Molecular classification
identifies a subset of human papillomavirus-associated oropharyngeal cancers with favorable
prognosis. J Clin Oncol. 2006;24:736–47.

93. Gillison ML, D’Souza G, Westra W, Sugar E, Xiao W, et al. Distinct risk factor profiles for
human papillomavirus type 16-positive and human papillomavirus type 16-negative head and
neck cancers. J Natl Cancer Inst. 2008;100:407–20.

94. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, et al. Evidence for a causal
association between human papillomavirus and a subset of head and neck cancers. J Natl
Cancer Inst. 2000;92:709–20.

95. Rischin D, Young RJ, Fisher R, Fox SB, Le QT, et al. Prognostic significance of p16INK4A
and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02
phase III trial. J Clin Oncol. 2010;28:4142–8.

96. Snow AN, Laudadio J. Human papillomavirus detection in head and neck squamous cell
carcinomas. Adv Anat Pathol. 2010;17:394–403.

97. Fakhry C, Gillison ML. Clinical implications of human papillomavirus in head and neck
cancers. J Clin Oncol. 2006;24:2606–11.



Chapter 15
Sequencing HNC: Emergence of Notch Signaling

Curtis R. Pickering, Thomas J. Ow and Jeffrey N. Myers

Abstract Head and neck cancer is driven by the accumulation of genomic abnor-
malities. Classically these were characterized by chromosomal alterations and TP53
mutations, but recent sequencing studies have improved our understanding of the
full spectrum of mutations in this disease. While a few oncogenes are found to be
altered (PIK3CA, HRAS, CCND1), the most frequent events inactivate tumor sup-
pressor genes (TP53, CDKN2A). A surprising new finding was the identification of
mutations in the gene NOTCH1. These mutations demonstrate that NOTCH1 is an
important tumor suppressor gene in head and neck and other squamous tumors. This
has shed new light on the Notch pathway in head and neck cancer progression, and
clarified our need to learn more about this pathway in the progression and biology
of head and neck cancer.

Keywords Sequencing · Genomics · Notch · Head and neck cancer · Squamous

15.1 Early Findings in the Genomic Profiling of HNSCC

Initial studies examining the genomic alterations of head and neck squamous cell
carcinoma (HNSCC) focused primarily on cytogenetic abnormalities and TP53 mu-
tations [8]–[11], [22], [81]. Examination of large and medium-scale chromosomal
alterations was experimentally feasible, while the technology at the time limited the
ability to identify specific gene mutations in sporadic tumors. These early cytogenetic
techniques included G-banding, fluorescence in situ hybridization (FISH), spectral

J. N. Myers (�) · C. R. Pickering
Department of Head and Neck Surgery, The University of Texas MD Anderson
Cancer Center, Houston, TX, USA
e-mail: jmyers@mdanderson.org

T. J. Ow
Department of Otorhinolaryngology-Head and Neck Surgery
and Department of Pathology, Montefiore Medical Center and Albert Einstein
College of Medicine, Bronx, NY, USA

B. Burtness, E. A. Golemis (eds.), Molecular Determinants of Head and Neck Cancer, 303
Current Cancer Research, DOI 10.1007/978-1-4614-8815-6_15,
© Springer Science+Business Media New York 2014



304 C. R. Pickering et al.

karyotyping (SKY), comparative genomic hybridization (CGH), PCR-based allelo-
typing, and digital karyotyping. More recently, single nucleotide polymorphism
(SNP) and molecular inversion probe (MIP) arrays have been utilized for cytogenetic
analysis. These methods identify chromosomal regions with gains or losses relative
to the normal copy number. It was clear from early studies that many chromosomal
abnormalities were present in HNSCC [8], [22], [81], [38].

Initial chromosomal studies soon demonstrated that allelic loss on the short arm of
chromosome 9 was a frequent event, as well as alterations on chromosomes 3, 8, 11,
and 17 [14], [16], [50]. Deeper explorations of these highly altered regions led to
gene-specific discoveries in HNSCC. The frequent deletions at chromosome locus
9p21 encompass the CDKN2A gene, which encodes the p16INK4A/p14ARF tumor
suppressors [41], [62], [84], [90]. The frequent allelic loss on 17p was associated
with TP53 mutation, as was found in other tumor types [1], [3], [9], [10], [11], [12],
[13], [66]. TP53 mutations are extensively reviewed Chapter 12 (Roh and Koch).
CDKN2A and TP53 are two of the most frequently altered genes in HNSCC, and
are two of the most important tumor suppressor genes as well. Exploration of 11q, a
frequently amplified region, identified CCND1, encoding cyclin D, as an important
player in HNSCC [21], [26], [42], [44]. CCND1 amplification should promote prolif-
eration, and antisense inhibition of cyclin D was shown to inhibit growth of HNSCC
cell lines in vitro and in vivo [48], [74]. This region on 11q contains additional genes
that may also be relevant to HNSCC progression including Fas-associated protein
with death domain (FADD), an antiapoptotic gene, and ORAOV1 (overexpressed in
oral cancer 1), so named based on its high expression in HNSCC. ORAOV1 has been
shown to be necessary for HNSCC cell line growth [27]. Although ORAOV1 lacks
known structural motifs the yeast homolog was recently found to regulate ribosome
function and biogenesis in the presence of reactive oxygen species [88]. The copy
number gains on chromosome 8 are usually linked to the well-described oncogene
MYC [38].

Subsequent work examining a spectrum of oral lesions, ranging from dysplasia,
to carcinoma in situ, to invasive carcinoma, demonstrated that these genetic aberra-
tions appeared to occur in a progressive, albeit not a universally consistent, manner
(Fig. 15.1) [14], [16], [40]. With this information, it was suggested that tumor de-
velopment in HNSCC follows a stepwise model where a series of genetic events
(perhaps 10 or more) occur before malignant transformation is complete, in a fash-
ion similar to those models that were previously described for colorectal [73] and
lung cancers [36].

15.1.1 “Next-gen” Sequencing

Recently, large-scale genome sequencing projects such as the Human Genome
Project and The Cancer Genome Atlas (TCGA) have transformed our understand-
ing of the human and cancer genome [37], [72]. They also launched a revolution in
genome sequencing technology. A key consequence of these efforts was the develop-
ment of “next-gen” sequencing methods [19], [43]. They are referred to as next-gen
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Fig. 15.1 Molecular (genetic and epigenetic) progression model of multistep oral carcinogenesis.
The white central steps of the figure represent the progression of oral intraepithelial neoplasia from
mild dysplasia through moderate and severe dysplasia or carcinoma in situ, which can precede can-
cer. This process involves activation of the epidermal growth factor receptor (EGFR) and related
downstream events (e.g., involving cyclooxygenase-2 (COX-2) and cyclin D1) leading to dysregu-
lated proliferation, increasing frequency of mutations causing genomic instability (and vice versa),
and invasion. LOH loss of heterozygosity, RAR-β retinoic acid receptor-beta. (From [40], used with
permission)

because the chemistry is different from the original Sanger sequencing methods.
These refined sequencing techniques are orders of magnitude faster and more cost-
effective than previous technology. These advances, paralleled by improvements in
data storage and processing, have allowed for whole-genome and whole-exome se-
quencing projects. Specific details of next-gen technology and its many applications
are beyond the scope of this chapter and have been reviewed elsewhere [19], [43].
Whole genome and exome sequencing are providing the most comprehensive picture
to date of the alterations that occur during carcinogenesis. These exciting data demon-
strate that the previously identified cytogenetic abnormalities and TP53 mutations
only represent one piece of the genomic puzzle that is HNSCC.

Next-gen sequencing is already improving our understanding of HNSCC [2], [69].
The insight gained from the first two whole exome studies confirmed much of the
existing knowledge about genetic events in HNSCC [2], [38], [69], but also provided
new discoveries that have added to our understanding of these cancers. The remainder
of this chapter discusses the results of next-generation sequencing in HNSCC with an
expanded discussion of NOTCH mutations and the role of this pathway in HNSCC
carcinogenesis.



306 C. R. Pickering et al.

15.2 Next-Generation Sequencing of HNSCC

In August 2011, the first whole-exome sequencing results in HNSCC were published
by two groups [2], [69]. Stransky et al. [69] reported exome sequencing results on 74
patient samples with whole genome sequences for two patients, andAgrawal et al. [2]
reported exome sequencing results from 32 patient samples and targeted sequenc-
ing of 8 genes in an additional 88 patients. Both groups also reported copy number
analysis from SNP arrays. The differing methodological approaches in these studies
(capture and sequencing platforms, mutation calling algorithms, validation proto-
cols, etc.) prevent a direct comparison of many of the results. For example, Stransky
et al. sequenced to 150-fold mean coverage while Agrawal et al. sequenced to 60-
fold average coverage. Additionally, every mutation reported by Agrawal et al. was
validated by a different sequencing chemistry (stringent threshold that will remove
many events) while Stransky attempted to validate only 321 mutations and reported
a validation rate of 89.7 % for those events (less stringent threshold that will remove
fewer events). Because of these methodological differences, the average number
of mutations per tumor is dramatically different between the studies (130 muta-
tions/tumor in Stransky et al. vs. 19 mutations/tumor in Agrawal et al.). However,
despite these differences, the most important findings about significant targets of
mutation were corroborated by both groups, and some generalizations can be made
across the studies.

Not surprisingly, more mutations were found in the tumors from patients with a
history of tobacco use. This is consistent with the known function of tobacco smoke
as a DNA-damaging agent and carcinogen. While neither study focused on the role
of human papillomavirus (HPV) in HNSCC, both studies included a small number of
patients identified as HPV positive (11 in Stransky et al. and 4 in Agrawal et al.) and
both reported fewer mutations in those tumors. Since HPV-encoded proteins cause
several carcinogenic disruptions in these tumors (e.g., E6 inhibits p53, E7 inhibits
Rb), thus reducing the need for random mutagenesis to inactivate these genes, it is not
surprising that HPV-positive tumors contained fewer total mutations. No mutations
were observed in TP53 or CDKN2A in HPV-positive patients, indicating a lack of
selective pressure for mutations in those pathways.

In general, the mutation spectrum of HNSCC shows a high level of diversity. TP53
was the only gene mutated in the majority of patients. All other altered genes were
mutated in fewer than 15 % of patients, with most mutated in fewer than 10 %. The
most commonly mutated genes identified in both studies included: TP53, NOTCH1,
CDKN2A, PIK3CA, HRAS, CASP8, and TP63 (Fig. 15.2). Other genes found to be
mutated in only one of the studies include: FAT1, PTEN, and FBXW7 (Fig. 15.2).
Overall, the mutation spectrum was dominated by tumor suppressor genes. It was
hoped that a frequently mutated oncogene could be identified and subsequently tar-
geted for treatment. While this type of discovery occurred in GIST with c-KIT muta-
tions and in melanoma with BRAF mutations, it is becoming clearer that these events
are the exception rather than the rule. Most tumors have not been found to contain an
easily identifiable oncogenic mutation, and this appears to be the case for HNSCC.
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Fig. 15.2 Frequent mutations
in HNSCC. (Mutation
frequencies are taken from
[2], [69])
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15.2.1 TP53 (17p13.1)

TP53 is arguably the most frequently altered gene in human cancer, and it is well
known that TP53 mutation is commonly identified in HNSCC, with rates ranging
from 40–60 % in most studies [3], [9], [10], [11], [56], [57]. TP53 mutation and
subclasses of mutations have been shown to have prognostic significance, as well
[55], [57]. TP53 mutations were identified in 47 % of tumors overall, representing
78 % of HPV-negative tumors and no HPV-positive tumors, in the report by Agrawal
et al. [2]. TP53 was altered in 62 % of tumors sequenced in the report by Stransky
et al. [69]. Thus, whole-exome sequencing in HNSCC confirms the dominant role
TP53 mutation plays in this disease, and the inverse relationship with HPV-related
disease. Chapter 12 (Roh and Koch) discusses the biology of TP53 in HNSCC in
great detail.

15.2.2 CDKN2A (9p21)

The CDKN2A genomic locus encodes two distinct tumor suppressor proteins,
p16INK4A and p14ARF [64]. These two genes have distinct promoters and
first exons, but share their second and third exons. The shared exons do not
result in homologous proteins because they are translated in alternate reading
frames. P16INK4A is a cyclin-dependent kinase inhibitor that blocks prolifera-
tion through the retinoblastoma (Rb) pathway by inhibiting CDK4/6. P14ARF
functions in the p53 pathway by inhibiting the p53 ubiquitin ligase MDM2
and thus loss of P14ARF increases p53 levels. This locus is frequently inac-
tivated during the carcinogenesis of many tumor types and can occur through
deletion, DNA methylation, mutation or a combination of those events [64].
In humans, p16INK4A is generally thought to be the dominant target for these ge-
nomic events [64]. In HNSCC, p16INK4A is a very frequent target for inactivation
[58], [62]. Methylation and deletion of p16INK4A in HNSCC have been reported
by many groups [38], [62], while mutation had been reported less frequently [58].
Stransky et al. andAgrawal et al. found mutation of CDKN2A in 12 and 9 % of cases,
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respectively. Many of these events were nonsense mutations, splice site mutations, or
insertions or deletions resulting in a translational frameshift (frameshift indels) that
are likely to inactivate or completely eliminate the protein. These events were gener-
ally more detrimental to p16INK4A than p14ARF, as had been seen previously [58],
and support the role of p16INK4A as a dominant tumor suppressor gene in this tumor
type. Both groups also identified copy number loss at this locus. With the emergence
of more sensitive detection techniques, like next-gen sequencing, and multiplatform
studies that examine all mechanisms of inactivation, like The Cancer Genome Atlas
(TCGA) project, the estimation of the frequency of p16INK4A inactivation in HPV-
negative HNSCC continues to rise and is likely to exceed 80 % in HPV-negative
tumors. Conversely, HPV inactivates the Rb protein and removes the selective pres-
sure for p16INK4A inactivation in HPV-positive HNSCC. Alterations at CDKN2A
are generally not observed in HPV-positive tumors.

15.2.3 PIK3CA (3q26.3)/PTEN (10q23.3)

PIK3CA encodes the p110α catalytic subunit of the phosphatidylinositol 3-kinase
(PI3K) enzyme [91]. PI3K is usually activated by growth factor signaling to generate
phospholipid second messengers that regulate diverse cellular processes including:
cellular growth, proliferation, survival, motility, and metabolism [91]. PIK3CA is
a known oncogene that is mutated in many tumor types [91]. PIK3CA mutations
were observed at approximately 7 % in the two recent studies in head and neck
cancer, which is in accordance with the frequencies observed in previous reports
[35], [59]. The most common mutations in PIK3CA, found in many tumor types,
occur in the helical and kinase domains at amino acids E542, E545, and H1047
[5], [91] and result in increased lipid kinase activity and activation of downstream
signaling pathways [25], [91]. These hotspot mutations were found in HNSCC.
Noncanonical mutations are also found in HNSCC (K111, R115, Y343, T1052), but
the functional impact of these mutations is unknown. PIK3CA copy number gains
are also frequently observed in HNSCC [38]. It is unknown if copy number gains
are biologically equivalent to activating mutations during the carcinogenic process.

Another class of genomic alteration found in this pathway is inactivating muta-
tion of PTEN. PTEN is the phosphatase that removes the phosphorylation added by
PI3K [91]. PTEN was mutated in 7 % of patients in Stransky et al., and these muta-
tions included one splice site and one nonsense mutation. Mutations and deletions
in PTEN in HNSCC have also been reported by others at frequencies approaching
10 % [53]. Activation of PI3K/PTEN signaling is one of the most obvious and fre-
quent oncogenic events in this tumor type. Many therapeutics that target this pathway
are currently in various stages of development [24], [83]. It is hoped that these drugs
will prove beneficial in at least a subset of HNSCC patients, although it may be
necessary to selectively treat patients with genomic alterations to this pathway. Ad-
ditionally, it may be necessary to combine PI3K/PTEN pathway inhibitors with
additional drugs that target compensatory pathways [86].
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15.2.4 HRAS (11p15.5)

The RAS genes are members of a family of GTPases involved in growth factor
signaling. These genes can be potent oncogenes that activate both PI3K/PTEN sig-
naling and MAPK pathway signaling [85]. The three primary RAS family members
in humans are HRAS, KRAS, and NRAS. Each of these genes has been found to be
mutated in cancer [5], [85]. HRAS is the only RAS family member frequently mu-
tated in HNSCC (approximately 5 %) [2], [69]. These mutations occur in the known
hotspot regions (G12, G13, Q61) [5] and have been shown to activate HRAS signal-
ing. RAS activation has proven extremely difficult to selectively target with small
molecule therapeutics [85], and RAS status is primarily used to identify resistance
to therapeutics in other tumor types. KRAS mutations predict resistance to epider-
mal growth factor receptor (EGFR) targeted therapeutics in lung [15] and colorectal
cancer [7], and it is likely that HRAS mutations will have a similar role in HNSCC.
While HRAS mutations may not be directly targetable it still hoped that they will be-
come clinically useful in HNSCC in terms of predicting outcome, guiding treatment
selection, or insensitivity to drugs targeting downstream effectors. It is interesting
that the spectrum of RAS family member mutations is different across tumor types.
For example, KRAS is the primary target for RAS mutations in lung and colorectal
cancer, but HRAS is the primary target in HNSCC [2], [69]. The biological reason
for this difference is unknown.

15.2.5 EGFR (7p12)

The EGFR is the target for oncogenic activation in many tumor types through either
copy number amplifications or mutation [7], [15]. These events promote tumor cell
proliferation. In HNSCC, EGFR is a frequent target for gene amplification [38]. The
EGFRvIII mutation is an in-frame deletion of exons 2–7 that is associated with poor
prognosis and lack of response to EGFR inhibitory antibodies in gliomas. While
EGFRvIII mutations have been reported in HNSCC at very high frequencies [65],
neither of the recent studies identified any canonical EGFR mutations, including
EGFRvIII. Hence, although EGFR is an important growth factor in HNSCC, it does
not appear to be a frequent target for mutation.

15.2.6 CASP8 (2q23-q34)

Caspase-8 (CASP8) is a key intermediate in the extrinsic apoptotic signaling path-
way [71], [76]. Although caspases are integral to apoptotic signaling and tumors
often disrupt apoptotic signaling pathways, caspases are not frequently mutated in
tumors [5], [30], [68]. Both of the recent papers identified CASP8 mutations at a low
frequency (8 and 3 %). Most of these mutations are nonsense and thus predicted to



310 C. R. Pickering et al.

disrupt function of the protein. So far, colorectal adenocarcinoma is the only other
tumor type with frequent CASP8 mutations [30], [51]. The most significant insight
into the role of CASP8 mutations in HNSCC comes from a mouse model in which
CASP8 is knocked out in the skin [34]. These mice develop a hyperproliferative and
inflammatory phenotype in the skin. This suggests that CASP8 loss may not be suffi-
cient for tumor formation, but its loss may contribute to carcinogenesis. Additionally,
many HNSCC are highly infiltrated by immune cells; it is possible that disruption of
CASP8 plays a role in this phenotype in some tumors.

15.2.7 FAT1 (4q35)

FAT1 is a large transmembrane protein that is a member of the cadherin family [67],
[70]. FAT1 was mutated in 12 % of patients in the Stransky et al. paper. The majority
of these mutations were nonsense. Additionally, FAT1 deletions have been found in
HNSCC [49]. These data along with very limited in vitro studies suggest that FAT1
may be a tumor suppressor in HNSCC. Based on homology with the Drosophila
FAT genes, FAT1 may regulate E-cadherin or the Hippo pathway [67], [70]. A recent
study also demonstrated that FAT1 can regulate β-catenin and wnt signaling [47].
FAT1 is one of the most exciting new candidate tumor suppressor genes identified
by next-gen sequencing.

15.2.8 FBXW7 (4q31.3)

FBXW7 is an F-box protein and part of the SCF (SKP1, CUL1, F-box) ubiquitin
ligase complex [77], and controls the cell cycle regulated degradation of many pro-
teins. FBXW7 has three hotspot sites for mutation (R465, R479, R505) [4], [5].
These residues are necessary for substrate binding, which is abrogated by mutations
at these sites, thus inactivating FBXW7 function [77]. FBXW7 was mutated in 5 %
of patients in both recent papers, and some of these mutations occurred in the known
hotspots. Targets of FBXW7 include known oncogenes such as; MYC, Cyclin E,
Jun, and Notch [77], but the targets for FBXW7 in HNSCC are still unknown. The
possible role of FBXW7 mutations in regulating Notch signaling in HNSCC will be
discussed further below.

15.2.9 TP63 (3q28)

TP63 is a p53 family member. TP63 is homologous to TP53 but it also has many
unique functions [78], the most important of which is its role in epithelial squa-
mous differentiation [33]. This unique role is dramatically demonstrated by the TP63
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Fig. 15.3 TP63 mutations and splice isoforms. The exon structure for the TP63 N-terminal
isoforms is shown. TA-p63 utilizes three unique N-terminal exons while DN-p63 utilizes an
additional unique exon. Three of the observed TP63 mutations occurred in exons unique to the
TA-p63 isoform. While there are also three C-terminal isoforms, this diagram represents only the
alpha C-terminal isoform. * indicates a nonsense mutation. (Mutations are taken from [2], [69]
and Pickering et al. unpublished data)

knockout mouse model, as neonatal mice die of dehydration shortly after birth due to
a lack of skin [45], [82]. P63 maintains epithelial stem cells and the levels of p63 drop
during epithelial squamous differentiation [33]. In this way, it is easy to understand
how p63 can function as an oncogene during HNSCC. In support of this, TP63 has
copy number gains in approximately 50 % of HNSCC [38]. While this appears very
simple, the biology of TP63 in HNSCC has an additional layer of complexity caused
by multiple splice variants. There are two major splice forms of p63 referred to as
TA-p63 and ΔN-p63. The TA-p63 contains the N-terminal transactivation domain
(TA) while the ΔN-p63 utilizes an alternate first exon and lacks the N-terminal TA
domain. There are also C-terminal splice variants, and a full discussion of those
forms can be found elsewhere [78]. It has been shown that ΔN-p63 is the predom-
inant isoform in HNSCC and this form acts as an oncogene, while TA-p63 acts as
a tumor suppressor and can inhibit HNSCC cell line proliferation, migration, inva-
sion, and survival [46], [63]. TP63 mutations were found in about 5 % of patients in
both recent sequencing studies. Many of these mutations occur in exons exclusive
to the TA-p63 isoform (Fig. 15.3). Based on the biology of p63 it is likely that these
mutations function to inhibit the tumor suppressive functions of the TA-p63 isoform.

15.3 The Emergence of NOTCH Signaling

One of the most exciting discoveries from next-gen sequencing of HNSCC was
the identification of inactivating mutations in NOTCH1 (9q34.3) that indicated it
was a tumor suppressor gene. Notch was originally discovered through analysis of
a strain of Drosophila with notched wings [29], [79]. The mutated gene causing
this phenotype was found to regulate patterning and morphogenesis in flies, signal-
ing through the Enhancer of split complex, and in coordination with Delta, Numb,
wingless, Inscuteable, and Prospero. Notch is also an important gene in mammals
with a role in cell–cell signaling and differentiation, particularly epithelial squamous
differentiation [20], [32], [60].
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15.3.1 Notch in Skin Differentiation and Carcinogenesis

The major function of Notch in HNSCC is likely to be related to its role in normal
squamous epithelium. Notch is an important transcription factor for epithelial squa-
mous differentiation. During normal squamous differentiation the levels of NOTCH1
are low in the basal layer and progressively increase across the differentiating ep-
ithelium [20], [60], while p63 shows the opposite pattern. Notch1 and p63 have an
antagonistic signaling relationship [20] that regulates many genes involved in squa-
mous differentiation including: p21, involucrin, keratin 1 and keratin 10 [20], [60].
Since both Notch1 and p63 are frequent targets for genomic alteration in HNSCC it
is likely that this common pathway is important for tumorigenesis. The observed ge-
nomic alterations generally activate p63 and inhibit Notch1. It is likely that alterations
in p63 and Notch1 will be mutually exclusive in HNSCC, but so far no dataset has
been able to test this hypothesis. Based on information from the skin model systems,
these events should promote a less differentiated state in tumor cells. Interestingly,
most HNSCC specimens exhibit some level of squamous differentiation, often in-
cluding round bundles of keratin (keratin pearls). This is even commonly observed in
tumors graded as poorly differentiated, and it suggests that alteration of differentia-
tion pathways may not result in a complete block to terminal differentiation; instead
it may promote a less differentiated state that is beneficial to the tumor. Reactivation
of terminal differentiation pathways could be a viable therapeutic strategy, if the
appropriate target(s) could be identified.

The NOTCH1 knockout mouse is embryonic lethal. However, a skin-specific
(keratin 5-proter driven) Notch knockout is viable and develops a dermal hyperplasia
[19], [52], [61]. This hyperplasia includes increased proliferation, expansion of the
basal layer, and altered expression of differentiation markers, consistent with the role
of Notch1 in differentiation. These mice also develop spontaneous skin tumors and
are at increased susceptibility for formation of chemically induced tumors (DMBA-
TPA protocol) [52]. This demonstrated that Notch1 is a tumor suppressor gene in
mouse skin, and the human mutation data confirm that this model is likely to be
consistent in human SCC tumors. The Notch pathway in skin carcinogenesis is
likely to interact with many other pathways. Activated v-Ha-ras selectively promoted
tumorigenesis in Notch1 knockout keratinocytes [52], and signaling interactions with
EGFR, p53, and NFκB have been shown [20].

15.3.2 Notch as a Tumor Suppressor or Oncogene

Notch signaling is disrupted in many tumor types, and these disruptions can either
activate or inhibit Notch signaling. Notch can function as either an oncogene or a
tumor suppressor gene, depending on the tumor type that is studied [60]. Pediatric
acute lymphoblastic leukemia (ALL) exemplifies this dual role for Notch signaling.
During lymphocyte differentiation a precursor cell can differentiate to assume either
a T-cell or a B-cell lineage. Notch controls this lineage specification [92]. Activation
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of Notch signaling promotes the T-cell lineage, while inhibition of Notch signaling
promotes the B-cell lineage. ALL with a T-cell differentiation (T-ALL) very fre-
quently contains genomic alterations that activate Notch signaling. These tumors
can have activating mutations in Notch1, or a translocation, t(7; 9) (q34; q34.3), that
leads to overexpression of a Notch1 protein that resembles NICD [92]. Activation of
Notch is a nearly universal event in T-ALL. In contrast, in ALL a B-cell differentia-
tion (B-ALL) Notch signaling is detrimental to the cells [93]. In vitro activation of
Notch signaling results in growth arrest and apoptosis of B-ALL cells [92]. Frequent
genomic alterations that block Notch signaling in B-ALL have not yet been identi-
fied. Altered Notch signaling has now been identified in multiple hematopoietic and
solid tumor types (5). Next-gen sequencing has facilitated the discovery of genomic
alterations in Notch or its regulators in many of these tumors.

15.3.3 Notch Signaling

There are four Notch genes in humans (NOTCH1–4). Each of these genes encodes a
large transmembrane receptor controlled by multiple levels of regulation. Some of the
key domains in Notch are: multiple N-terminal extracellular EGF-like domains where
ligand binding occurs, an extracellular heterodimerization domain, a transmembrane
domain, and a C-terminal PEST (P-proline, E-glutamic acid, S-serine, T-threonine
rich) domain that is a signal for degradation [32]. The first level of regulation occurs
during processing in the Golgi apparatus where O-glycosylation is added to the
EGF domains [32]. These modifications can influence ligand binding. The next level
of regulation is by furin convertase which cleaves the Notch protein between the
extracellular and transmembrane domains [32]. This cleavage converts the single
Notch protein into a noncovalently bound heterodimer that is anchored in the cell
membrane. This processed form of Notch is then regulated by ligand binding.

The ligands for Notch are members of the Delta (DLL1, DLL3, DLL4) and Jagged
(JAG1, JAG2) families [32]. These proteins are usually found in the membrane of an
adjacent cell and interact with the EGF repeats in the Notch extracellular domain. Ad-
ditional specificity is gained by having multiple Notch proteins and multiple ligands.
While the various combinations of receptor and ligand have different levels of signal-
ing activity in various model systems [87], the physiological result of this complexity
is not well understood. Ligand binding leads to additional Notch cleavage events.
The first cleavage is by ADAM (a disintegrin and metalloprotease) proteases on the
N-terminal region of the transmembrane subunit of Notch. ADAM cleavage primes
Notch for final cleavage by γ-secretase within the transmembrane domain. This
cleavage releases the active, functional form of Notch into the cytoplasm: this active
form is usually referred to as the Notch intracellular domain (NICD) [32]. The NICD
translocates to the nucleus and, along with coactivators (RBPjk and MAML1–3) acti-
vates transcription of the HES and HEY genes [32]. Finally, at the end of activation,
NICD is phosphorylated by CDK8 in its C-terminal PEST domain. This signals
NICD for degradation by the E3 ubiquitin ligase FBXW7 [77]. As Notch is usually
a short-lived protein, this allows for very controlled regulation of Notch signaling.
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Fig. 15.4 NOTCH1 mutations observed in HNSCC. A cluster of mutations are observed in the
EGF domains, indicating a tumor suppressor function. M missense mutation, D in-frame deletion, X
nonsense mutation, S splice site mutation, fs frame shift insertion or deletion, HD heterodimerization
domain, TM transmembrane domain, ANK ankyrin domains, TAD transcriptional activation domain.
(Mutations are taken from [2], [69], and Pickering et al. unpublished data)

15.3.4 Genomic Alterations in Notch Signaling

NOTCH1 is the most frequent target in the Notch pathway for genomic alterations,
with mutations the most frequent alteration observed. Over 1,000 unique samples
with NOTCH1 mutations are noted in the COSMIC mutation database [5]. These
mutations are clustered in two regions of the protein: the extracellular heterodimer-
ization domain and the C-terminal PEST domain (Fig. 15.4). Missense mutations
and insertions and deletions (indels) are observed in both major regions. Many of
the indels are predicted to result in a translational frameshift. Mutations in the het-
erodimerization domain promote cleavage and activation of Notch1 without the need
for ligand binding. Mutations near the PEST domain also promote Notch signaling
by increasing the stability of the NICD fragment. Many of the mutations in this region
prematurely truncate the protein (either through a nonsense or frameshift mutation)
and thus eliminate the PEST domain. These most common mutations are generally
found in T-cell leukemias and are considered oncogenic [60].

While mutation of NOTCH1 can eliminate FBXW7 binding, mutation of FBXW7
can also block Notch1 binding. As noted above, there are three mutation hotspots
within FBXW7 that all lead to a reduced ability to bind substrates. These mutations
are frequently observed in T-ALL (30 %) and less frequently in many other tumor
types (6 %) [77]. This is another mechanism to stabilize the Notch1 protein. FBXW7
has other targets aside from Notch1, including MYC and γ-secretase, which are
in the Notch pathway. It is possible that FBXW7 activates the Notch pathway at
multiple levels by stabilizingγ-secretase (an activator of Notch1) and MYC (a Notch1
target gene). Clearly, FBXW7 mutation has oncogenic consequences beyond Notch
signaling.

Other mutations in the Notch pathway have been identified by next-gen sequencing
in chronic myelomonocytic leukemia (CMML) [31]. Mutations were reported in
Nicastrin, APH1A, MAML1, and NOTCH2. These genes encode proteins situated
at various stages of the Notch signaling pathway, with Nicastrin and APH1A part of
the γ-secretase complex and MAML1 part of the NICD transcription complex. These
mutations are believed to inhibit Notch signaling and suggest a tumor suppressive role
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for Notch in this disease [31]. It is possible that other members of the Notch pathway
are also mutated in HNSCC and contribute to pathway dysfunction. However, the
frequency of these events is likely to be low.

For reasons of simplicity, we have not so far discussed the role of other members
of the Notch family. Overall, Notch1 is the primary target for mutations in can-
cer, and most of our understanding of the pathway is based on work with Notch1.
However, some studies have evaluated the role of other Notch family members, and
generally the ligand specificity and activation of downstream targets can vary some-
what from that of Notch1 [87]. In serous ovarian cancer NOTCH3 is amplified and
overexpressed [54]. This is an oncogenic event and the consequences are expected
to be similar to those that occur with Notch1 activation.

15.3.5 Notch Mutations in HNSCC and Other Squamous Tumors

NOTCH1 mutations were found in 14 and 15 % of cases in Stransky et al. and
Agrawal et al., respectively (Fig. 15.4). This finding was made even more exciting
because the spectrum of mutations was dramatically different from that of T-ALL.
Many of the mutations were nonsense or frameshift and predicted to inactivate the
protein. Additionally, the mutations were not clustered in the heterodimerization
domain or near the PEST domain. Instead, they were spread across the protein with
some clustering in the EGF repeats near the ligand-binding region. This spectrum
of mutations provided very strong evidence that NOTCH1 was acting as a tumor
suppressor in HNSCC, making this the first demonstrations of tumor suppressive
Notch mutations in a solid tumor. Similar NOTCH1 mutations were later reported
in cutaneous and lung squamous cell carcinoma (SCC) [75]. Two of the mutations
from cutaneous SCC that occurred in the ligand-binding region were found to prevent
activation of Notch signaling by the ligand in an in vitro assay [75]. This confirmed
the predicted inhibitory nature of the NOTCH1 mutations.

Mutations were also identified in the Notch family members, NOTCH2, 3, and
4 at lower frequencies in head and neck cancer [2], [69], [75]. The impact of these
mutations is still unknown. Since the frequency of mutation is lower in these genes,
there have been relatively few mutations observed. Therefore, it is difficult to discern
a pattern among these events, and it is still unclear if the spectrum of mutations is
similar to those observed in NOTCH1.

Mutations observed in cancer can be thought of as driver or passenger mutations.
Driver mutations are beneficial to the tumor cells and are selected during the evo-
lution of the tumor. A high frequency of mutation within a population of patients
is a good indicator that a gene might be a driver. The other possibility is that the
mutation occurred randomly but was an evolutionary passenger with other benefi-
cial mutations. For example, random gene X might be mutated in the same cells
that acquired a TP53 mutation. Selection for the TP53 mutation would also result
in selection for the mutation in random gene X. The probability of finding a mu-
tation in random gene X is related to the background mutation rate in that gene.
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Tumors with high background mutation rate, often caused by carcinogen exposure
or dysfunction in DNA repair genes, will have lots of passenger mutations but not
necessarily more driver mutations. Statistical models have been developed to help
discern driver mutations from passengers [6]. Mutations in NOTCH2, 3, and 4 have
not yet reached statistical significance as driver genes in HNSCC using these models.
This does not, however, mean that they are not relevant to the biology of HNSCC.
Rare events can still be biologically important even if they do not occur at a high
frequency. In the case of a known oncogene and a known hotspot mutation, it is easy
to make a biological argument for the relevance of that mutation to the tumor. In light
of these concepts, it is at present challenging to make a strong biological argument
for the importance of NOTCH2, 3, and 4 mutations. This model would require that
all Notch family members be necessary for signaling through the pathway, so that
loss of any individual member blocks the pathway. Similarly, it requires that Notch
family members do not compensate for each other. Another biological argument is
that different subtypes of HNSCC each require a different Notch family member for
signaling. This model predicts that NOTCH1 mutant tumors would be different in
some way from NOTCH2 mutant tumors. This has not yet been observed and will
require a large sample set, such as the upcoming TCGA project, for validation. It
will be important to further characterize the mutations in Notch family members for
their impact on HNSCC.

15.3.6 The Future of Notch in HNSCC

The identification of frequent genomic alterations in NOTCH1 in HNSCC demon-
strated that this gene is likely to be important for HNSCC carcinogenesis. In vitro
and in vivo data have confirmed that NOTCH1 is a significant tumor suppressor
in HNSCC and other squamous tumors [60]. However, there are still many critical
unknowns in our understanding of Notch in HNSCC. For example, the clinical im-
pact of NOTCH1 mutations has not yet been described. It is possible that NOTCH1
mutations will be associated with poorly differentiated tumors and worse outcome,
based on our understanding of Notch biology. Large, well-annotated clinical cohorts
must be collected and analyzed for NOTCH1 mutations, differentiation state, and
outcome. NOTCH1 may also have predictive significance for cisplatin or radiation
treatment. It will be necessary to identify cohorts to address these questions as well.

Our understanding of Notch signaling must also be improved. Currently there
is not an effective biomarker for the presence of a functional Notch pathway. It
is likely that NOTCH1 mutations are not the only genomic alteration that disrupts
this pathway. Copy number loss of other key members of the pathway may also
prevent activation. MAML1 is part of the Notch transcriptional complex and this
gene is located in chromosome 5q35, which is frequently lost in HNSCC [38].
It is possible that loss of 5q reduces Notch signaling, but this must be examined
experimentally. Similarly, it is unknown if mutation or amplification of TP63 has
the same functional impact on Notch signaling as NOTCH1 mutation. It will be
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important to develop markers for activation and inhibition of the Notch pathway that
can be utilized in vitro and in vivo. A good biomarker for the pathway will aid in
the identification of additional genomic alterations that contribute to Notch pathway
dysfunction. This will facilitate a determination of the frequency of Notch pathway
inactivation. NOTCH1 mutations occur in 15 % of tumors and TP63 is mutated in
6 % and amplified in as many as 50 % of tumors. It is possible that Notch pathway
inactivation occurs in more than 50 % of HNSCC.

Usually, Notch requires ligand binding for activation. The source of Notch ligand
in HNSCC is not known. The likely possibilities for providing ligand include other
tumor cells, stromal cells or immune cells. The source of the ligand has important
implications for Notch biology and targetability in HNSCC, and it could indicate why
only a subset of tumors mutates NOTCH1. For example, if the ligand were expressed
on immune cells then only tumors with immune infiltration would be expected to
mutate NOTCH1. In this case, it might be possible to use an artificial ligand/agonist
of Notch as a treatment in tumors without immune infiltration. It is also possible
that the tumor cells are the source of ligand and the cells express both the ligand
and receptor. This scenario also has a treatment implication. High expression of the
ligand on the same cell as the receptor can block signaling through a process called
cis-inhibition [17]. It is possible that modest levels of ligand activate Notch, while
high levels of ligand become a resistance mechanism and block the pathway. In this
case, it may be possible to disrupt the cis-inhibition and lead to activation of the
pathway. Many details of Notch signaling in HNSCC must be further characterized
both in vitro and in vivo.

HPV influences the biology and genomics of a subset of HNSCC. While there is
currently limited genomic data on HPV-positive tumors, it appears that the mutational
profile is different. Interestingly, NOTCH1 mutations were still observed in HPV-
positive tumors. This is especially surprising since the HPV E6 protein has been
shown to bind MAML1 and possibly alter its function [80]. It will be important to
investigate the role of Notch signaling in HPV-positive disease and determine if the
biology of Notch is altered by the presence of HPV.

Notch clearly has a dual role in human cancer. It is an oncogene in some tumor
types and a tumor suppressor in others. In HNSCC Notch appears to be a tumor
suppressor. However, it is possible that in a subset of HNSCC Notch is acting as
an oncogene. Early reports of immunohistochemical staining in HNSCC (with an-
tibodies of questionable specificity) concluded that many cases had high levels of
activated Notch [39], [28], [23], [90]. There is also one report where overexpression
of NICD in a HNSCC cell line promoted proliferation [39]. The genomic data do
not yet rule out this possibility, since the functional consequences of most NOTCH1
mutations have not yet been examined in vitro. It is possible that a subset of the
mutations activate Notch signaling. If Notch is oncogenic in a subset of HNSCC
then it will be necessary to understand the biological and clinical implications of
that finding. It will be important to eliminate the possibility of oncogenic Notch, if
treatment is eventually tailored to the Notch status of the tumor.
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15.4 Conclusions

Next-gen sequencing is a powerful research tool that is dramatically improving our
understanding of the biology of HNSCC. It has validated many of the known genomic
alterations while identifying a few novel events, particularly the discovery of frequent
inactivating mutations in NOTCH1. These events solidify NOTCH1 as an important
tumor suppressor pathway in HNSCC and make it imperative that more is learned
about the details of Notch signaling in this disease. There are still many questions
regarding the biology and clinical consequences of Notch pathway disruption that
will require follow-up studies, both in vitro and in vivo. It will also be important
to understand the role of Notch signaling in the context of other genes known to be
important in HNSCC.

Finally, our increased understanding of HNSCC has not yet led to new effective
therapies. While genomics has improved our understanding of this disease it has
not identified biomarkers that dictate treatment strategies, or oncogenes amenable to
targeted therapy. HNSCC is dominated by the loss of several tumor suppressor genes,
and much more work must be done to develop strategies to use genomic information
to battle this disease.
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Chapter 16
Gene Expression in HNC

Michael F. Ochs and Joseph A. Califano

Abstract Head and Neck Cancer (HNC), which is most commonly Head and Neck
Squamous Cell Carcinoma (HNSCC), shows substantial changes in gene transcrip-
tion, as typical for other cancers. In contrast to many cancers, methylation, especially
global hypomethylation and variable promoter methylation, plays a major role in con-
trol of expression in HNC. This methylation drives not only changes in expression
levels but also changes in splicing. Here we discuss the present state of research
in gene expression signatures, epigenetic regulation, microRNA expression, and
alternative splicing in HNC.

Keywords Head and neck cancer · Human papilomavirus · Gene expression ·
MicroRNAs · Epigenetics · DNA methylation · Biomarkers

16.1 The Complexity of Gene Expression

Gene expression in mammalian organisms comprises the transcription of DNA into
pre-mRNA, splicing and transport of pre-mRNA in the nucleus into mature mRNA in
the cytoplasm and endoplasmic reticulum, and translation of the mRNA into protein
by ribosomes. This process is further modified by the interaction of mRNA with
microRNA (miR), processed by the DICER complex, which leads to destruction of
mRNA in mammals and subsequent loss of protein production. The transcription of
DNA is heavily modified by epigenetic changes, especially promoter methylation,
which is critically important to the etiology of head and neck cancers (HNC).
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Fig. 16.1 A highly simplified
view of important signaling
pathways in HNC,
highlighting the fact that
expression, governed by
transcription factors shown as
circles, is best viewed as a
downstream effect of receptor
activation and signaling
activity

This review will focus on several aspects of gene expression in HNC. First, we
will review the transcriptomic signatures, especially those related to biological pro-
cesses and prognosis, that have been reported. Second, we will review the growing
understanding of the role of epigenetics in activation of oncogenes and silencing of
tumor suppressors. Third, we will discuss the inference on transcriptional regulators
and the association of these regulators with human papillomavirus (HPV) status and
with signaling processes. Fourth, we will discuss two emerging areas—the roles of
miRs and of alternative splice variants.

16.2 Expression Profiling

It is useful to begin with a brief consideration of the biology of gene regulation in can-
cer to focus the discussion on key points where we can leverage transcriptomic data
to gain insight. Gene expression is often the downstream consequence of changes
in cellular states and signaling pathway activities. As such, it can provide a point
of data unification for a cancer cell, since aberrations in many different signaling
proteins can lead to activation of the same transcriptional response (see Fig. 16.1,
and Chapters 6–8). As it is clear from studies in a number of cancers that pathways
tend to be disrupted universally, but mutations in different proteins drive the disrup-
tion in different individuals [1], [2], transcriptomics cannot generally identify the
driver mutation of this activity. While there are exceptions to this general case, es-
pecially for receptor tyrosine kinases (RTKs, see Chapters 3–5), we will focus here
on transcriptional signatures that relate to prognosis and which may be considered
as integrating many potential upstream changes across individual patients.

The emergence of microarray technology in the 1990s [3], [4] coupled to the
development of robust statistical methods for normalization [5] and classification [6]
has led to improved insight into changes in gene expression in HNC. Efforts have
focused on both identification of prognostic signatures, similar to the Oncotype DX
and MammaPrint efforts in breast cancer [7], and elucidation of biological processes.
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In one of the seminal studies of gene expression signatures in HNC, Chung et al.
applied hierarchical clustering to a set of 60 tumor samples measured using Agilent
cDNA arrays and identified four subtypes [8]. One group was associated with high
transforming growth factor alpha (TGFα) expression and showed significantly poorer
survival. As with other early studies using hierarchical clustering, a direct transition
to a biomarker would not have been easy; however, this study did establish that
molecular subtypes of HNC exist and reflect outcomes.

With the increasing incidence of HPV+ HNC, there is a need to elucidate the
molecular similarities and differences of HPV+ and HPV− tumors. Schlecht et al.
identified 123 genes whose expression was significantly different between HPV+
and HPV− tumors, including upregulation of genes associated with cervical cancer in
HPV+ cases: cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4; CDKN2C),
replication factor C (activator 1) 4, 37 kDa (RFC4), and transcription factor DP2 (E2F
dimerization partner; TFDP2) [9].

The importance of stage in outcome for HNC led to significant effort to identify a
diagnostic expression signature of nodal metastasis. Roepman et al. used an 82 tumor
set to isolate a 102 gene signature, which correctly determined node involvement
with an accuracy of 74 % [10]. Using the same data, Hensen et al. identified 26
genes significantly differentially expressed between HNC with and without nodal
metastases. They validated these genes in a 22 tumor set using a different microarray
platform; however, only seven of the 21 genes available on the second platform
validated, and none survived multiple testing corrections [11]. The lack of validation
may reflect the small number of tumors, or tumor or hypoxic state, since the seven
genes include metalloproteases, and some had functions linked to hypoxia, and
angiogenesis (see Chapter 14, Kuo and Le).

Roepman et al. followed their initial study with a study of 19 tumor and lymph node
metastasis pairs targeted at identifying genes with changed expression [12]. Applying
statistical analysis of microarrays (SAM) [13] identified only a single gene at a false
discovery rate (FDR) of 5 %, metastasis-associated gene 1 (MTA1). In a study of
40 paired primary HNC tumors and cervical metastases, Liu et al. identified 301
differentially expressed genes and validated by immunohistochemistry upregulation
of selectin L (SELL) and downregulation of insulin-like growth factor binding protein
6 (IGFBP6) in metastases [14]. The differences in the number of genes identified
in these similar studies may be due to the weaker statistical test applied by Liu
et al. and the smaller number of samples in Roepman et al., which also showed low
tumor cellularity in most cases. The impact of different statistical analysis methods
is highlighted in work by Braackhuis et al., where they demonstrated that 150 genes
identified in a t-test were not identified by SAM when searching for metastases [15].

Another area of great interest for biomarkers is determination of initial treatment
response and prediction of survival, and several studies looked at recurrence as an
endpoint. Chung et al. generated a signature using formalin-fixed paraffin-embedded
(FFPE) and frozen tumor pairs and validated it on previously published frozen tissue
data [16]. They identified a 75 gene signature associated with recurrence which was
enriched for genes involved in epithelial-mesenchymal transformation (EMT) and
in nuclear factor kappa B (NFκB) signaling. Previously, Ginos et al. had shown that
there were differences between recurrent tumors and primary tumors, specifically in
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the expression of genes associated with invasion [17], which is qualitatively similar
to EMT. Thurlow et al. used spectral clustering to look at sets defined by gene
ontology [18] and demonstrated that the functional assignment of focal adhesion-
related provided a gene set prognostic of poor outcome [19]. Pavón et al. applied
clustering to a set of 63 pretreatment biopsies and identified a cluster associated with
poorer local recurrence-free survival, progression-free survival, and overall survival
[20]. This cluster was also associated with cell adhesion and NFκB and integrin
signaling, in accord with the other studies.

Pramana et al. analyzed 92 pretreatment biopsies for genes predictive of response
to chemoradiation using samples split into training and test sets [21]. While no genes
validated in terms of response across the two sets, they did validate the signature from
Chung et al. noted above [16]. Dumur et al. analyzed a set of microarrays generated
from pretreatment biopsies of eight complete responders and six nonresponders to
radiation therapy, identifying a set of 167 probe sets that were significantly different
between the two sets [22].

Although there has been considerable effort expended on identifying expression
biomarkers for prognosis and treatment response, the identification of a clinically
useful marker has not yet occurred. This parallels the experience in other cancers,
where the cost and difficulty of the use of expression-based markers has hindered
development of an appropriate test [23]–[25]. A detailed recent review of molecular
approaches in HNC provides additional detail [26], including the use of proteomics
in biomarker development [27], [28].

As noted in Fig. 16.1, one important issue that has not been addressed in most
analyses is that expression is generally a downstream indicator of signaling activity,
which drives processes (e.g., NFκB and integrin signaling, EMT) that have been
identified as important in HNC. The endpoints of signaling pathways are typically
transcription factors (TFs), suggesting that use of knowledge of TF targets may aid
analysis of signaling activity by treating changes in levels of TF targets as a surrogate
for TF activity [29]. Recent work by Fertig et al. in cell line studies suggests that this
may be a useful approach for HNC [30].

16.3 Epigenetic Regulation of Oncogenes and Tumor
Suppressors

Perhaps the greatest indicator that epigenetic alteration is a significant factor in
expression alterations paradoxically comes from genetic studies. The results of whole
genome and exome sequencing in head and neck squamous cell carcinoma (HNSCC)
have been recently reported, and surprisingly, a large proportion of mutation targets
found had already been previously described (TP53, CDKN2A, PIK3CA, PTEN, and
HRAS) and only 30 % of tumors contained a mutation in a novel target gene [31], [32].
Additional discovery of genetic alterations, including mutation in noncoding regions
as well as chromosomal loss and gain, may yield additional gene targets involved in
carcinogenesis; however, sequencing data do not account for the extensive nature of
gene expression alterations in HNSCC. Increasingly, epigenetic alteration is found
to affect gene expression for multiple tumor suppressor gene and oncogene targets.
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The dominant paradigm of abnormal epigenetic regulation in cancers includes
CpG island promoter hypermethylation that results in tumor suppressor gene tran-
scriptional repression and has been described for an extensive number of gene targets
[33]. In addition, investigators have defined hypomethylated proto-oncogenes in
HNSCC. These strategies have defined gene specific targets for opportunities for
therapeutic intervention, as well as useful biomarkers for detection and prognosis
[34]–[36]. With the advent of a variety of high-throughput discovery techniques,
there has been an explosion in the identification of gene promoters demonstrat-
ing differential hypermethylation in HNSCC, involving essentially all the important
regulatory pathways noted to be altered in HNSCC, which have been discussed
in detail recently [37], [38]. While fruitful, these approaches fail to account for
most expression alterations and have essentially ignored the larger proportion of
cancer-associated methylation alterations in HNSCC outside of promoter regions. In
addition, global genomic hypomethylation has been almost universally noted in solid
tumors, including oral squamous cell carcinoma (OSCC) [39]. For the past decade,
the dominant paradigm for study of epigenetic alteration in human malignancy has
focused on repression of tumor suppressor genes by epigenetic changes including
promoter methylation and histone acetylation [40].

These data suggest that promoter-based epigenetic and DNA methylation al-
terations in most cancers, including HNSCC, may be only a part of the genomic
landscape of methylation alterations. Implicit in these data are indications that ge-
nomic methylation alterations outside of promoter region CpG islands likely play a
significant role in carcinogenesis, and may include gene-specific effects as well as
genome-wide effects.

Recently, approaches have been reported in other solid tumor systems that allow
whole-genome methylation analysis that includes intragenic and intergenic regions
outside of promoter regions. These studies provide novel insights into epigenetic
regulation of gene expression due to the comprehensive nature of the genomic anal-
ysis of DNA methylation. In addition, these approaches challenge the dominant
paradigm that CpG island promoter methylation is the sole determinant of aber-
rant, locus-specific gene expression. Furthermore, the landscape of cancer-specific
methylation alterations has expanded in scope, such that additional areas beyond
CpG promoter islands, including demethylated blocks, CpG shores, intragenic re-
gions, intergenic regions, and repetitive elements, are described as demonstrating
differentially methylated regions (DMRs) in human cancers and contributing to
transcriptional deregulation.

The approaches that resulted in selective emphasis of promoter hypermethylation
abnormalities have often relied on techniques that provide limited approximations of
methylation status, either by relying on interrogation of a simplified representation of
the methylation status that includes a small fraction of CpGs in the genome, reliance
on indirect measurement of expression after pharmacologic demethylation in model
systems, or by exclusive examination of promoter regions.

Paradoxically, global genomic hypomethylation has been reported in almost all
solid tumors, and this phenomenon occurs in HNSCC [41]–[43]. In solid human
tumors, meta-analysis of DNA global hypomethylation primary tumor data shows
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an overall correlation between global hypomethylation and advanced tumor stage,
and we have confirmed this observation in HNSCC [39]. A variety of hypotheses
have been developed regarding the functional effects of genomic hypomethylation,
including induction of aneuploidy due to demethylation of centromeric regions, epi-
genetic activation of proto-oncogenes, and disruption of DNA structure resulting
in chromosomal instability via reactivation of transposable elements. Using phar-
macologically demethylated cell lines combined with cancer outlier profile analysis
(COPA) in primary tissues, sets of candidate proto-oncogenes that undergo aberrant
demethylation and increased expression in primary human tumors were identified in
HNSCC and non-small cell lung carcinoma (NSCLC) [44], [45]. These data indicated
that aberrant demethylation of multiple, physiologically repressed proto-oncogenes
and cancer testis antigens occurs in human cancers in a coordinated fashion in in-
dividual tumors and implicates the specific transcription factors, BORIS and CTCF,
in this regulation. This strategy is limited by cell line artifacts, as well as use of an
indirect methodology to survey methylated promoters using pharmacologic unmask-
ing. In addition, a large amount of DNA outside of gene-specific promoter regions
is likely also affected by derangements in methylation status. These regions may
include CpG island shores, intragenic, and 3′ regions associated with specific genes,
as well as large intergenic regions and repetitive elements.

Recent data using whole genome bisulfite sequencing in primary colon cancers
have also shown that large genomic stretches of relative hypomethylation are as-
sociated with variable increased gene expression for large sets of adjacent genes,
indicating a potential alternative method of gene deregulation that may be far more
common than CpG promoter island hypermethylation [46]. Together these studies
demonstrate that perhaps even the majority of CpG methylation-related expression
alterations in solid cancers may be unrelated to CpG promoter hypermethylation.

Whole Genome Methylation Analysis in Other Solid Tumors Original reports
on the use of methylated DNA immunoprecipitation (MeDIP) employed analysis
of tumor-derived cell lines and were primarily focused on discovery of aber-
rant promoter methylation patterns with or without validation in primary tumors
[47]–[50]. Subsequent reports and technical advances, including higher density
arrays and genome-wide amplification, facilitated more complete genomic array
analyses in normal tissues [51] and primary lung cancers [52]. These two cited
studies employed MIRA, which includes selective enrichment using methylated
DNA-binding proteins and genome amplification followed by array hybridization.
These studies demonstrated several interesting findings, including a significant level
of subtelomeric hypomethylation and short interspersed elements (SINE) and long in-
terspersed elements (LINE) promoter hypomethylation associated with lung cancers,
and demonstrated a broad and accurate ability to define multiple lung cancer-specific
hypermethylated gene promoter regions. This group also examined methylation in
normal human B cells using a high density array, and noted that methylation of
promoters was associated with low-gene expression, but exceptions to this finding
were due to transcription from cryptic start sites and expression was related to al-
ternate splice variant expression from these start sites. In addition, methylation of
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intragenic sequences was correlated with increased gene expression, and frequent
methylation of 3′ end of genes was noted. These data suggest broader physiologic or
pathologic roles for CpG methylation marks, including induction of alternate splice
variants due to cryptic start sites located within intragenic regions (see Sect. 16.5, on
alternative splicing), inhibition of intragenic transcriptional activity, and induction
of genetic instability through inappropriate methylation marks in telomere regions,
transposable elements, or at regions predisposed to genomic amplification.

A study examining primary colon cancers using comprehensive high-throughput
arrays for relative methylation (CHARM) to examine genomic DNA methylation
demonstrated that the methylation status of low-density CpG areas located within 2
kb of promoter-associated CpG islands, termed CpG shores, had a higher correla-
tion with gene expression than the CpG islands themselves [53]. A follow-up study
employing whole genome bisulfite sequencing in primary colon cancers showed up
to 25 % hypomethylation of discrete 5–10 kb blocks encompassing half the genome,
with extreme gene expression variability for the genes contained within these blocks
[46]. Ironically, only a small fraction of differential methylation was related to areas
of hypermethylation, which has been the dominant focus of epigenetic investigation
in solid tumors. Other smaller DMRs showed a loss of sharply delimited methy-
lation boundaries at CpG islands. This study did not directly measure expression
differences within tumors that underwent whole genome bisulfite sequencing, but
used published array-based expression data to show that areas encompassed by hy-
pomethylated blocks undergo highly variable increased expression, in general, in
colon cancers.

These data also raise the issue as to what level of partial methylation alteration
is associated with transcriptional deregulation. For example, large hypomethylated
blocks have variable increased expression and only undergo partial demethylation
[46], but direct simultaneous measurement of expression in these regions in primary
tumors has not been reported. Performance of these studies would be expected to
provide more precise definition of the transcriptional effects associated with variable
levels of differential methylation and the effect of a loss of methylation boundaries
on genes at the interface of these boundaries.

Available Techniques and Platforms for Genome-Wide Analyses of DNA
Methylation Shotgun whole genome sequencing of bisulfite-treated DNA has been
performed in a mammalian genome and represents a gold standard for determination
of methylation status at a single nucleotide level [54]. With constrained resources,
most investigators employ enrichment or modification of methylated DNA, followed
by high-throughput array hybridization or high-throughput genomic sequencing.
Commercial applications often cover a small fraction of methylated bases using array
hybridization techniques, so investigators have developed alternative applications.
One report has attempted to directly compare methods, and found “bias toward CpG
islands in MeDIP, relatively incomplete coverage in HELP (HpaII tiny fragment en-
richment by ligation-mediated PCR), and location imprecision in McrBC analysis”
[55]. Recent sequencing strategies, including reduced representation bisulfite se-
quencing (RRBS), facilitate coverage of a large portion of CpG sites but have a likely
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bias toward improved coverage of CpG dense sites [56]. Of note, characterization
of the largest cancer-associated contribution toward genomic hypomethylation in
colon cancer, variably hypomethylated blocks up to 10 kb in size, was not discov-
ered until whole genome bisulfite sequencing was employed [46]. However, there
are novel techniques that are reported regularly, and it is expected that as coverage
and fidelity increases, costs will continue to decrease.

HPV-Positive HNC and Methylation Early epigenetic investigation of RASSF1A
promoter methylation indicated a significant inverse correlation between RASSF1A
promoter methylation and HPV infection [57]. It is widely observed that whole
genome hypomethylation is a general characteristic of solid tumors and is ac-
companied by gene specific promoter region hypermethylation. The observation
that epigenetic alteration is decreased in HPV-positive HNSCC was confirmed by
other investigators who found that LINE hypomethylation was more pronounced in
HPV-negative than in HPV-positive tumors. Genomic instability, as measured by
genome-wide loss-of-heterozygosity single nucleotide polymorphism (SNP) analy-
sis, was greater in HNSCC samples with more pronounced LINE hypomethylation
[58]. As a whole, these data indicate that HPV-positive HNSCC has fewer mutational,
genetic, and chromosomal alterations, and a different composition of epigenetic alter-
ations compared with non-HPV-related HNSCC. The Cancer GenomeAtlas (TCGA)
has been conducting high-throughput analyses of HNSCC. Drs. Liudmila Danilova
and Leslie Cope (personal communication) have analyzed preliminary data on 292
tumors using the Infinium Human Methylation 450K platform and indicate that anal-
ysis of 30 HPV-positive HNSCC and 207 HPV-negative HNSCC show significant
epigenetic differences, and that HPV-positive HNSCC has higher average methy-
lation levels over frequently methylated loci compared to HPV-negative HNSCC
[59].

In summary, the understanding of the nature of epigenetic alteration in HNSCC
is at an early stage. Advances in sequencing are expected to increase the number of
genes identified as targeted by methylation alterations, but also to extend our un-
derstanding of the epigenetic contribution from genomic areas outside of promoter
regions to HNSCC development. Further areas that are relatively unexplored in-
clude the contribution of other epigenetic changes, including histone alterations and
alterations in epigenetic regulatory components to HNSCC development.

16.4 MicroRNA Expression

Since the identification of small noncoding RNAs that disrupted gene expression in
Caenorhabditis elegans development [60], the study of miRs has led to identification
of numerous roles in development and disease [61]–[63]. In cancer, miRs appear to
play important roles as both oncogenes and tumor suppressors, and notably miRs
playing both roles have been identified in HNCs [64]. The transformative properties
of miRs, both in promotion of initial tumor formation and in EMT, suggest that
identification of deregulated miRs and their targets will help elucidate properties
essential to tumor growth and aid in identification of targets for treatment.
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Table 16.1 MicroRNAs that were detected as differentially expressed in at least three of eight
genome-wide studies of head and neck cancer

Regulation Concordant miRs (minimum of 3 of 8 studies)

Upregulated in HNC miR-21, miR-155, miR-31, miR-223
Downregulated in HNC miR-375, miR-1, miR-133a, miR-99a, miR-125b, miR-100, miR-143,

miR-204

In HNCs, the role of miRs has been studied extensively over the last decade. A
number of miRs functioning as tumor suppressors and oncogenes have been iden-
tified; however, agreement between studies is weak. In a recent review of the field
[65], concordance was defined as only three of eight genome-wide screening studies
reporting a miR as deregulated; however, only 12 miRs were then considered dereg-
ulated (see Table 16.1). The inconsistent results are likely the result of application
of different technologies and small sample sizes. A similar lack of concordance was
seen in the early days of expression microarrays, before proper normalization and
artifact detection methodologies were developed.

The studies of miRs in HNC have included both cell line studies that have looked
at potential functional analyses and tissue studies that have aimed primarily at
biomarker discovery. Here we will focus on the tissue studies.

In a small study, Chang et al. used 4 HNC and 4 uvulopalatopharyngoplasty
(UPPP) samples to identify candidate deregulated miRs using SAM [66]. Candidate
miRs were then validated in 27 HNC and 8 UPPP by RT-PCR and confirmed to be
functional in cell line studies, yielding miR-21 and miR-494 as candidates.

Childs et al. aimed to develop a miR-based prognostic marker of survival in a
study comprising 104 patients [67]. They identified low expression of let-7d and
miR-205 as prognostic markers with a hazard ratio of 4.6 independent of clinical
covariates. However, these markers were not validated. In addition, it is not clear
whether there is a clinical benefit to such a marker, since the functional consequence
of loss of expression is not known and therefore there is no clear clinical intervention.

In a similar study, Avissar et al. used array profiling to measure expression of
662 miRs in 16 HNC and 5 head and neck epithelial controls [68]. SAM analysis
identified 12 human miRs with significantly altered expression at an FDR of 0.0001.
Four miRs were validated by RT-PCR at p < 0.01, including miR-21, miR-18a, and
miR-221 as upregulated in HNC and miR-375 as downregulated. Forming ratios and
adding 83 HNC and 9 normal additional samples yielded miR-221/miR-375 as a
biomarker with sensitivity of 0.92 and specificity of 0.93 for identification of HNC.
Unfortunately, the experimental design mixed the discovery and confirmation sets,
so the final measurements cannot be considered to provide independent confirmation.
In addition, the measurements were done on tumor samples, and a biomarker would
only be useful if it identified cancer prior to discovery by other means (e.g., from
oral brush samples or in serum).

Hui et al. performed a similar genome-wide screen of miRs [69]. Interestingly,
they validated functional effects of miR-375 loss and the miR-106b-25 cluster gain
by overexpressing miR-375 and knocking down the cluster, which led to loss of
proliferation in cell lines. With follow-up data on relapse, they also identified miR-
451 as a potential biomarker of relapse.
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Gee et al. looked into the use of miRs as biomarkers of hypoxia, given the pre-
dicted regulation of miR-210, miR-21, and miR-10b in hypoxic conditions [70]. In
HNSCC cell lines grown under hypoxic conditions, only miR-210 showed significant
induction. Analysis was then performed on 46 HNC samples and ten normal adja-
cent tissue samples. Expression of miR-21 and miR-10b was significantly different
between tumor and normal tissue, while miR-210 showed no significant difference.
However, miR-210 alone showed correlation with the hypoxic metagene previously
defined [71]. Given the stability of miRs, they propose that miR-210 may therefore
be a more convenient biomarker of hypoxia.

An additional potential link to hypoxia was proposed by Liu et al. for miR-31
[72]. Using ten HNSCC with matched normal tissues, they identified miR-31 as
the strongest deregulated miR out of 154 measured by qRT-PCR and demonstrated
that blocking its expression in HNSCC cell lines reduced migration. They identified
factor inhibiting HIF-1α (FIH) as a target of miR-31 and showed its loss of expression
in tumors.

More recently, the investigations have shifted to functional and validation studies
of miRs identified in early genome-wide screens. Lo et al. focused on aldehyde
dehydrogenase 1 (ALDH1) + /CD44 + cells isolated from HNC tumors [73]. They
found that miR-200c was downregulated and that site-directed mutagenesis showed
direct interaction of miR-200c with BMI1 polycomb ring finger oncogene, which
was upregulated in the ALDH1 + /CD44 + cells.

Nohata et al. followed up the discovery of the strong downregulation of miR-375 in
HNC with functional studies showing that restoration of miR-375 expression induced
apoptosis in HNC cell lines [74]. Combining expression microarray measurements
in SAS and FaDu cell lines with TargetScan 3′ UTR prediction identified 16 potential
miR-375 targets. Limiting further study to genes more strongly affected than a known
target, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,
zeta polypeptide (YWHAZ), they identified metadherin (MTDH) as a target and
demonstrated that silencing of this gene reduced growth of SAS and FaDu cells.

Meta-analyses of previous studies confirm changes in the miR-99 family [75] and
differential miR changes in HPV-positive and HPV-negative HNSCC [76].

Overall miR measurements show great promise as potential biomarkers in HNC,
including as predictors of the probability of recurrence, and for determination of
hypoxia and early detection. One major advantage to miR biomarkers over expression
biomarkers is the stability of miRs, which make them available for measurement
in bodily fluids, including saliva and serum. For instance, potential serum miR
biomarkers have been identified in lung cancer [77].

As with gene expression, it is expected that miR expression will be partially
regulated by methylation changes. Early evidence for this in HNC has been presented
for miR-9 [78], and the differential expression seen in other miRs is likely to include
methylation drivers given the widespread methylation changes seen in HNC.
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16.5 Alternative Splice Variants

Alternative splicing plays an important role in gene expression, permitting multi-
ple protein isoforms to be encoded within a single DNA gene. Splice variants have
been identified that play a causative role in cancer [79]. As methylation of the in-
tragenic and promoter areas has been known to drive alternative splicing [80], there
is reason to believe that the potential impact of splice variants in HNC may be high
given the significant methylation changes associated with smoking (see Sect. 16.3
on epigenetic regulation).

Among the earliest splicing isoforms linked to cancer were variants of the CD44
gene, which is a surface glycoprotein associated with cell adhesion. CD44 variants
were identified in HNC in the early 1990s [81]; however, subsequent studies showed
that many isoforms exist in different normal head and neck tissues with a diverse
distribution [82], suggesting that changes associated with carcinomas may arise from
overall expression changes rather than alternative splicing.

A common splice variant of cyclin D1 (CCND1), G870A, has been associated
with higher risk of developing HNC. In a study of 698 HNC cases and 777 controls,
G870A germline homozygotes had higher risk of HNC (odds ratio 1.5) but better
overall survival [83]. The effect is believed due to the greater stability of protein lead-
ing to increased G1-S transition rates. Interestingly, the G870A splice variant has
also been shown to have a synergistic effect with splice variants of the TFIIH complex
member excision repair cross-complementing rodent repair deficiency, complemen-
tation group 2 (XPD/ERCC2) in a case-control study of 273 cases and 269 controls
(odds ratio of 7.09) [84].

Moller-Levet et al. identified a splice variant of laminin α 3 (LAMA3) as as-
sociated with HNC [85]. The variant, LAMA3-A, appeared to be associated with
hypoxia, while the full-length isoform, LAMA3-B, was not. In a novel cohort, high
expression of LAMA3-A was associated with poorer survival following surgery with
standard adjuvant treatment.

Additional alternative splicing events have been identified in cell lines studies,
though they have yet to be confirmed in tumors. Cai et al. identified three separate
vascular endothelial growth factor A (VEGF) variants, although HNC seemed asso-
ciated with overexpression instead of specific isoforms [86]. Mao et al. reported on
exon deletions in fragile histidine triad (FHIT), a tumor suppressor gene, in cell lines
[87]. As FHIT lies in cytoband 3p14, which often shows loss of heterozygosity, it is
possible that these deletions represent a second hit on FHIT.
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Chapter 17
Projections: Novel Therapies for HPV-Negative
Cancers of the Head and Neck

Barbara Burtness

Abstract Outcomes for patients with locally advanced head and neck cancer that is
not associated with human papillomavirus (HPV) have not improved substantially
despite intensification of therapy and advances in surgical and radiation technique.
Differences in biomolecular profile between HPV-associated and non-associated can-
cers provide a potential set of molecular targets for novel therapies in HPV-negative
head and neck cancer. These include ERBB/HER family members, the tyrosine ki-
nase growth factor receptor c-Met, and signaling intermediaries such as Aurora A
kinase, Hedgehog, phosphoinositide 3-kinase (PI3K), and mTOR. Immune suppres-
sion has been identified in HPV-negative larynx cancers, opening up the promise of
CTLA-4 and PD-1 inhibitors for head and neck cancer. Current trials are reviewed.

Keywords Head and neck cancer · Hypoxia · EGFR · Aurora kinase · c-Met ·
Hedgehog

17.1 Introduction

The recognition that head and neck mucosal cancers arise as two diseases, one result-
ing from habitual exposures such as tobacco and the other from transforming human
papillomavirus infection, with distinct molecular profiles and different treatment re-
sponsiveness, has led to a reassessment of progress in the treatment of these diseases.
Non-smokers with small, regionally advanced human papillomavirus (HPV)-related
oropharynx cancers can expect high cure rates with standard therapy, and the most
important question for these patients may be whether treatment deintensification or
appropriately selected novel therapies could preserve high cure rates while minimiz-
ing toxicity and late effects of treatment. On the other hand, it has become clear that
locally advanced non-HPV-related head and neck cancer (HNC) continues to carry
quite a poor prognosis. A better understanding of the biology of these cancers is
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urgently needed to direct our research towards novel targets for HPV-negative HNC.
This chapter reviews current trials of novel agents which may improve treatment
results in this difficult disease (Table 17.1).

17.2 Treatment Outcomes for HPV-Negative Head
and Neck Cancer

Complete resection is associated with high cure rates for early stage squamous cell
carcinomas of the head and neck (SCCHNs), with second primary cancers including
non-small cell lung cancers (NSCLCs) constituting a significant source of mortal-
ity in these patients, and high-risk p53 genetic polymorphisms conferring a hazard
ratio (HR) of 3 for second malignancy [1]. For locally advanced HNCs, resection
has been supplanted by chemoradiation as an organ-sparing approach in certain
anatomic subsites, such as the oropharynx and larynx. As will be described below,
the emergence of natural orifice surgical techniques may lead to an increased role
for surgery in the management of some oropharynx cancers. HNC has historically
been tightly associated with habitual exposures, such as to tobacco, areca nut, al-
cohol, and mate [2], [3], but in recent decades a sharp and continuing increase has
been noted in oropharynx cancers related instead to transforming HPV infection,
reviewed in Chapters 2 and 3 [4]. Substantial evidence exists that HPV-associated
cancers have a more favorable prognosis than HNCs arising from tobacco or other
carcinogenic exposures. Improvements in outcome which have previously been at-
tributed to treatment intensification may actually have their origin in the changing
prevalence of this treatment-responsive type of HNC. A corollary of this finding is
that outcomes may not have improved substantially for HPV-negative cancers, and
indeed 3-year survival for HPV-negative oropharynx cancer in a recent cooperative
group study was 57.1 % [5]. Thus, ongoing efforts are needed to explicate the biology
of HPV-negative HNC and to identify novel therapeutic strategies, whether through
intensification and combination of existing therapies, or uncovering novel targets.

An inverse relationship has been described between HPV-association and muta-
tional burden, including mutation of p53 [6], [7]. Recent whole exome sequencing
of HNCs reported by two independent groups, and conducted on predominantly
HPV-negative HNCs, confirmed p53 mutation as one of the most common genomic
abnormalities in HNCs (cf. Chapter 15) [7], [8]. p53 mutation predicts inferior
prognosis and treatment response with conventional therapies, and this effect is the
strongest for p53 mutations which are truncating or which disrupt the DNA-binding
domain (cf. Chapter 12 [9], [10]. Recent data imply that p53 mutation may also
negatively impact response to PI3K/mTOR inhibition [11].

Many years of research in the treatment of locally advanced HNC have inves-
tigated strategies to intensify therapy. These have included increased duration of
therapy via multidrug induction chemotherapy, addition of biologic agents during
chemoradiation, intensity modulated and altered fractionation in the delivery of ex-
ternal beam radiation, or the use of maintenance therapy following completion of
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Table 17.1 Current trials with novel targets in HPV-negative, poor prognosis, or unselected head
and neck cancer patients

Target Drug Phase of study Identifier

Receptor tyrosine kinases
EGFR Radiation with or

without cetuximab
Postoperative Phase

III
R0920,

NCT01311063
Cisplatin and

radiation with or
without
nimotuzumab

Postoperative Phase
III

NCT00957086

Cetuximab and
erlotinib with
chemotherapy

Recurrent/metastatic,
Phase II

NCT01316757

Dual or
pan-HER

Cisplatin and
radiation with or
without lapatinib

Definitive
chemoradiation,
randomized
Phase II

NCT00490061

Afatinib vs.
methotrexate

Recurrent/metastatic
disease, Phase III

NCT01345669

Afatinib vs. placebo Minimal residual
disease Phase III

NCT01345682

c-MET LY2801653 Phase I NCT01285037
Cetuximab with or

without tivantinib
Recurrent/metastatic,

randomized
Phase II

NCT01696955

Mitotic regulator
Aurora A

kinase
Alisertib with

cetuximab and
radiation

Locally advanced
Phase I

NCT01540682

JAK/STAT pathway
STAT3 STAT3 decoy Phase 0 NCT00696176

PI3K pathway
mTOR Everolimus vs.

placebo
Minimal residual

disease Phase III
NCT01111058

PI3K α BYL719 and
cetuximab

Recurrent/metastatic,
Phase Ib/II

NCT01602315

Class I PI3K BKM120 Metastatic, Phase II NCT01737450

Hedgehog pathway
SMO Saridegib (IPI-926) Metastatic, Phase I NCT01255800

Immune checkpoints
CTLA-4 Ipilimumab with

cetuximab and
radiation

Locally advanced,
Phase I

NCT01860430

PD-L1 MK3475 Recurrent/metastatic
Phase Ib

NCT01848834

Regulatory T
cells

Metronomic low dose
cyclophosphamide

Advanced disease,
Phase II

NCT01581970
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chemoradiation. Although early trials of induction chemotherapy were inconclusive,
meta-analysis has suggested that cisplatin-based induction chemotherapy might be
associated with a 2 % improvement in overall survival [12]. Two Phase III trials
of cisplatin-fluorouracil vs. docetaxel-cisplatin-fluorouracil induction chemother-
apy demonstrated that docetaxel-containing induction chemotherapy is superior to
cisplatin-fluorouracil doublet induction therapy [13], [14]. In one European trial,
the doses of chemotherapy were cisplatin 75 mg/m2, docetaxel 75 mg/m2, and 5-
fluorouracil 750 mg/m2 of body surface area per day for 5 days, and radiation was
given as either conventional or altered fractionation without concurrent chemother-
apy. Time to treatment failure and overall survival were significantly improved
[13].

A parallel study utilized a more intensive induction regimen followed by con-
current chemoradiation. Given the potential for nephrotoxicity at higher cumulative
cisplatin doses, the radiation sensitizer used in this trial was carboplatin rather than
cisplatin. This trial also reported significant improvement in progression-free survival
and overall survival for patients treated with induction chemotherapy [14]. Subse-
quent analysis of the oropharynx cancer cases in the latter study was undertaken to
determine whether the benefit of induction differed by HPV status [15]. HPV associ-
ation was determined by polymerase chain reaction (PCR) for DNA for HPV 16 and
18 viral oncoproteins E6 and E7. Material from 111 of the 264 oropharynx cancer
cases in the trial was assayed for HPV association. The median overall survival for
patients with non-HPV-associated oropharynx cancer was 21 months (95 % CI 13–49
months), while—with 7 years of follow up—median survival had not been reached
in the HPV-associated oropharynx cancers group, for an 80 % reduction in mortality
(HR = 0.2, 95 % CI 0.10–0.38; P < 0.0001). Subsets were small, and no significant
differences emerged between the treatment arms based on HPV association.

Neither of these studies definitively established that induction therapy followed
by radiation or by carboplatin concurrent with radiation was superior to the standard
therapy of conventionally fractionated radiation and concurrent high dose cisplatin,
as induction chemotherapy was employed in both the experimental and the control
arm of each study. Accordingly, two randomized trials were initiated to compare
sequential therapy of docetaxel-cisplatin-fluorouracil induction therapy followed by
chemoradiation, with chemoradiation in the absence of an induction regimen. The
PARADIGM trial utilized a standard approach of 70 Gy conventionally fractionated
radiation with concurrent cisplatin 100 mg/m2 of body surface area on days 1, 22,
and 43 for the control arm [16]. In the experimental arm, all patients were to re-
ceive three cycles of docetaxel-cisplatin-fluorouracil induction. Those patients who
responded were to receive 70 Gy of conventionally fractionated radiation concur-
rent with weekly carboplatin. Those patients who did not attain at least a partial
response, had > 2 cm of residual neck adenopathy, or who did not complete 3 cycles
of induction therapy received an alternate chemoradiation regimen with docetaxel.

The PARADIGM trial was designed before the prevalence of HPV-associated
oropharynx cancer was appreciated, and before it was well understood that HPV-
associated cancers display significantly better treatment response than non-HPV-
associated cancers. Thus, the statistical assumptions were based on the expectation
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of 55 % 3-year progression-free survival in the control arm, while the control arm 3-
year progression-free survival ultimately observed was 67 %. Additionally, the trial
was closed prematurely because of low accrual, after 145 of the initially proposed
330 patients were enrolled. This trial showed no improvement in progression-free
or overall survival, giving no support to the hypothesis that induction chemotherapy
improves progression-free or overall survival in unselected patients with locally
advanced SCCHN.

The DeCIDE trial utilized a non-cisplatin-containing chemoradiation schema pre-
viously tested by investigators at the University of Chicago [17]. Patients received
radiation 1.5 Gy twice daily 1 week on and 1 week off with concurrent docetaxel,
hydroxyurea, and fluorouracil, for 7 weeks of therapy. Those patients randomized to
the experimental arm received two cycles of docetaxel, cisplatin, and fluorouracil.
This trial utilized similar statistical assumptions to those of the PARADIGM trial,
and similarly closed prematurely because of low accrual. It also failed to demonstrate
an improvement in progression-free or overall survival, although a subset analysis
in patients with N2c or N3 disease suggested a non-significant benefit. Thus, in-
tensification of definitive chemoradiation with the use of induction chemotherapy
containing cisplatin and docetaxel has not been shown to improve survival in unse-
lected patients, and alternate strategies for intensification of therapy for advanced
HPV-negative cancers are now under investigation.

Novel approaches to treatment intensification can be envisioned which would
build on our ability to profile tumor biology with the use of validated biomarkers.
As discussed above and in Chapter 12, the presence of disruptive p53 mutations is
associated with higher rates of recurrence for completely resected HNCs. A strategy
is currently in development to intensify postoperative therapy for these patients,
even when the conventional clinical risk factors of positive margin or lymph node
metastasis with extracapsular extension are not present; this is currently being tested
with cetuximab (R0920, NCT01311063) and a study comparing radiation to cisplatin
plus radiation in the population with disruptive p53 mutation has been proposed.

Given the evidence that non-HPV-associated cancers display greater treatment
resistance to both radiation and chemotherapy, one novel approach to treatment in-
tensification is the addition of surgical resection in settings previously managed with
organ-preserving chemoradiation regimens. In the oropharynx, chemoradiation has
been the standard approach for locally advanced tumors since the Eastern Cooper-
ative Oncology Group (ECOG) trial for unresectable disease permitted inclusion of
patients with base of tongue cancer which met the following criteria: “base of tongue:
the tumor must extend into the root of tongue, or the patient must refuse a recom-
mended total glossectomy [18].” That trial demonstrated a survival advantage for the
addition of high-dose cisplatin to radiation, when compared to radiation alone. At
the time the ECOG study was conducted, surgical approaches to oropharynx cancer
commonly split the mandible or involved a total glossectomy, and entailed consider-
able morbidity. The recent emergence of natural orifice surgical techniques utilizing
either robotics or laser has led to a reexamination of primary surgery for patients
with oropharynx cancer. Single institution series demonstrate the feasibility of this
approach, as well as low locoregional recurrence rates in HPV-negative as well as
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HPV-associated cancers [19], [20]. These findings have raised the possibility that the
inclusion of transoral resection in a multimodality treatment program could improve
cure rates for locally advanced HPV-negative oropharyngeal cancer. The Radiation
Therapy Oncology Group has developed a randomized Phase II trial which compares
standard therapy with transoral resection followed by chemoradiation for oropharynx
cancers which do not stain for p16.

17.3 Hypoxia and HPV-Negative Head and Neck Cancer

As reviewed in greater depth in Chapter 14, low tissue oxygenation is present in
some HNCs, and predicts for resistance to radiation or chemoradiation. Hypoxia-
inducible factors (HIFs) interact with hypoxia response elements on a large number of
target genes [21], [22]. Hypoxia may also be associated with a more aggressive can-
cer phenotype [23]. Hypoxia-inducible factor 2 (HIF2) activates epidermal growth
factor receptor (EGFR)-dependent signaling via Akt and phospholipase C gamma,
potentiating head and neck carcinoma cell migration and survival [24]. Among many
approaches tested clinically in the attempt to improve tumor oxygenation have been
the hypoxic radiosensitizer nimorazole and analogues, erythropoiesis-stimulating
agents, and hypoxia-specific cytotoxic agents such as tirapazamine [25]. A meta-
analysis of 37 trials of very diverse hypoxia-targeting therapies described a promising
hazard for locoregional recurrence of 0.71 (p < 0.001) [25].

The Tasman Radiation Oncology Group (TROG) 02.02 study was a Phase III
trial of concurrent chemoradiation using a standard cisplatin and radiation schedule,
randomizing patients to addition of the hypoxic cytotoxin tirapazamine or no addition
of tirapazamine, with a primary endpoint of overall survival [26]. The trial failed to
demonstrate an overall survival benefit from the addition of tirapazamine for the total
study population; however, among a subset of oropharynx cancers analyzed for p16
expression, tirapazamine was associated with an improvement in local control among
p16-negative cases only (HR 0.33, p = .13 in this underpowered subset analysis)
[27]. Further evidence for an association between hypoxia and HPV-negative head
and cancer is found in an analysis of 106 oropharynx tumors by p16 and—as an
indirect marker of hypoxia—HIF1α expression [28]. HIF1α expression indicative
of hypoxia was present in only 35 % of p16-expressing compared with 65 % of
p16-non-expressing cases. It would appear that future study of hypoxia targeting
in HPV-negative patients is warranted. Novel analogues of tirapazamine display
superior tissue penetration, are more selective for hypoxic cells, and exhibit greater
potency [29]; these merit clinical evaluation in trials of patients selected for hypoxic
tumors and unfavorable risk.
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17.4 EGFR/nuclear EGFR in HPV-Negative Head
and Neck Cancer

17.4.1 Biomarkers for Patient Selection for EGFR Inhibition
in Head and Neck Cancer

Cetuximab, a chimeric monoclonal antibody which targets the extracellular domain
of the EGFR, is the only targeted therapy with a proven impact on survival in squa-
mous cell cancer of the head and neck. As reviewed in Chapter 4, cetuximab has
monotherapy activity in previously treated metastatic/recurrent disease, and when
added to chemotherapy or radiation therapy, significantly improves survival [30],
[31]. The impact is modest, with response rates of 10–12 % and a median survival
for patients with metastatic/recurrent disease treated with chemotherapy and cetux-
imab of 10.1 months [32], [33]. These results imply that the benefit of cetuximab
is confined to a subpopulation of SCCHNs, but biomarkers to predict cetuximab
sensitivity have been elusive.

The initial expectation was that higher expression of EGFR would identify the can-
cers most dependent on EGFR signaling, and that these would be the most sensitive,
just as HER2-amplified breast cancer was most sensitive to trastuzumab. However,
in E5397, the first randomized trial of cisplatin with cetuximab or with placebo con-
ducted in the first-line therapy of metastatic/recurrent HNC, this hypothesis was not
confirmed; on the contrary, EGFR expression at the highest intensity and density ap-
peared to predict for relative lack of response benefit from the addition of cetuximab
to chemotherapy [34]. In contrast, immunohistochemical scoring of patients enrolled
in a trial of cetuximab in NSCLC appeared to indicate greater cetuximab sensitivity
at higher levels of EGFR protein expression [35]. However, when a larger set of
samples was examined in a pooled analysis of Phase III data from head and neck and
colorectal cancer, no association between high EGFR immunohistochemical score
and outcome could be confirmed [36].

Subsequent putative biomarkers of sensitivity have been EGFR gene amplification
or polysomy, the presence of the truncation variant EGFRvIII, and HPV association.
EGFR content in SCCHN is extremely high relative to other tumor types, and this
correlates with EGFR gene amplification as assessed by fluorescence in situ hy-
bridization (FISH). EGFR polysomy is reported in 8–53 % of HNCs and appears
the lowest in early stage oral cancers [37]–[39]. Polysomy for EGFR predicts worse
outcome, yet quantitative immunohistochemistry is more predictive of outcome than
FISH [39]. Licitra et al. tested tumors from patients enrolled in the Vermorken trial
of platin-doublet chemotherapy with or without cetuximab; 71 % were evaluable
by FISH [40]. Increased EGFR copy number was common, but high-level EGFR
gene amplification occurred in only 11 % of patients. No association of EGFR copy
number with outcome was identified in this trial, although a number of definitions
of gene amplification were tested.

The positive benefit of inhibiting EGFR can be counteracted if downstream
EGFR effectors are constitutively activated. Activation of Ras, or inactivation of
phosphatase and tensin homolog (PTEN), an inhibitor of phosphoinositide 3-kinase
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(PI3K), can reduce responsiveness to EGFR-targeting agents in some cancers [41].
Analysis of 67 samples from E5397 compared tumors with wild-type H-Ras plus
normal expression of PTEN with cancers that were PTEN null or H-Ras mutated.
Although this analysis was underpowered, a strong tendency for cetuximab benefit
was seen in the PTEN-expressing/non-H-Ras mutated patients, with an HR for pro-
gression in cetuximab-treated patients of 0.56 (p = 0.07), whereas no such tendency
was observed in the PTEN null/H-Ras mutated cancers [42].

Psyrri et al., using the widely accepted cut point of 70 % of cells expressing
p16 as a surrogate for HPV association, assessed the impact of p16 expression on
cetuximab responsiveness among patients enrolled in the EXTREME trial [43]. They
found 41 p16-expressing and 340 p16-negative cases, as would be expected for a trial
in metastatic disease, given the high cure rate for p16-positive disease. Cetuximab
treatment effect was similar in p16-expressing and p16-negative cases.

Panitumumab is a second monoclonal antibody targeting the extracellular domain
of EGFR [44]. Panitumumab has been incorporated with chemotherapy and radia-
tion in a Phase I trial in SCCHN, and in this setting a clinical complete response
rate of 95 % was noted [45]. The monotherapy response rate for this agent in HNC
has not been defined. A randomized Phase III trial comparing doublet platin-based
chemotherapy with the same doublet plus panitumumab failed to meet its overall
survival endpoint of a 35 % benefit [46]. An analysis of outcome by p16 status was
undertaken for 443 (67 % of the total cohort) patients. This analysis was not con-
fined to oropharynx cancers, despite the lack of evidence that p16 expression outside
the oropharynx correlates with HPV association or a difference in treatment respon-
siveness. The proportion of cancers p16 positive was high for a metastatic disease
population at 22 %, and significant numbers of p16-positive cases were noted in
atypical locations such as oral cavity and larynx; both findings may be explained by
the choice of a cut point of 10 % of cells p16 positive, rather than the more conven-
tional 70 % of cells. This analysis appeared to show that the benefit of panitumumab
was confined to p16-negative patients, in contrast to the findings for cetuximab re-
viewed above [43]. It is not possible to determine whether the discrepant findings
between these two studies are driven predominantly by the difference in methodology
for determining p16 positivity, or whether there may also be significant differences
between the agents with respect to the p16.

17.4.2 Novel EGFR-Directed Antibodies in Head and Neck
Cancer

Panitumumab has proven activity in colorectal cancer [47], but failed to improve
survival in HNC, as described. Other EGFR-directed antibodies have also been stud-
ied. Nimotuzumab is a monoclonal antibody with lower binding affinity for EGFR
than cetuximab or panitumumab, thus displaying lesser skin toxicity and potentially
greater tumor penetration, although no advantage in activity has been noted [48]. A
randomized Phase III trial at the National Cancer Center Singapore compares stan-
dard cisplatin and postoperative radiation with postoperative nimotuzumab-cisplatin
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radiation, with a primary endpoint of disease-free survival (NCT00957086). Zalu-
tumumab is a high affinity, IgG1 monoclonal antibody to EGFR. This agent was
not superior to best supportive care or methotrexate in a Phase III trial in previ-
ously treated metastatic/recurrent HNC, and is no longer in development [49]. Thus,
extensive experience with altered binding affinity, whether higher or lower than
cetuximab’s, altered immunoglobulin backbone, and humanized antibodies have
failed to demonstrate an advantage over cetuximab. A current generation of trials
now attempts to overcome cetuximab resistance via inhibition of additional targets.

17.4.3 Tyrosine Kinase Inhibitors

Beyond the use of antibodies targeting the extracellular domain, EGFR may be
blocked via the use of tyrosine kinase inhibitors to inhibit its intracellular au-
tophosphorylation. Gefitinib, erlotinib, and the pan-HER inhibitor afatinib have
demonstrated clinical activity in HNC, independent of the presence of activating mu-
tations in the EGFR kinase domain [50]. Nonetheless, randomized trials have failed to
confirm a benefit for gefitinib vs. chemotherapy, or for the addition of gefitinib to do-
cetaxel chemotherapy [51], [52]. Neither gefitinib nor erlotinib improves outcomes
when added to chemoradiation, although biomarker analysis suggests that in the
subset of patients overexpressing IGF1R, gefitinib may be beneficial [53]–[55]. Re-
sistance to gefitinib, erlotinib, and afatinib in preclinical models is associated with a
proteomic signature reflecting activation of angiogenesis and invasion pathways [55].

Lapatinib is a dual EGFR and HER2 tyrosine kinase inhibitor, which has shown
a monotherapy response rate of 17 % in previously untreated patients, and of 0 % in
those with recurrent/metastatic disease, whether or not the patients were previously
exposed to an EGFR inhibitor [56]–[58]. Lapatinib with and following concurrent
cisplatin and radiation has been compared with cisplatin and radiation in a random-
ized Phase II trial, demonstrating a near doubling of progression-free survival in
previously untreated patients with p16-negative disease [58]. These promising find-
ings are being pursued with a randomized Phase II trial of chemoradiation with or
without lapatinib in p16-negative locally advanced HNC, conducted by the Radiation
Therapy Oncology Group Foundation (NCT00490061).

As noted above, another agent that targets multiple HER family members, in this
case by binding covalently and irreversibly to the kinase domains, is afatanib. Afatinib
has preclinical activity in cetuximab-resistant bladder carcinoma and clinical activity
in EGFR-mutated NSCLC, HER2-expressing breast cancer, and metastatic/recurrent
HNC [59]–[62]. It has been compared with cetuximab monotherapy in previously
treated metastatic/recurrent HNC, demonstrating comparable activity [62]. This drug
is now under study in metastatic/recurrent HNC in a Phase III trial comparing afatinib
with methotrexate in previously treated patients, and as an 18-month adjuvant therapy
in clinical poor risk patients (non-oropharyngeal cancers likely to be HPV negative,
and SCCHNs diagnosed in smokers) who are without evidence of disease following
chemoradiation (NCT01345669; NCT01345682).
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17.4.4 Nuclear EGFR

The role of EGFR as a tyrosine kinase growth factor receptor, with wide-ranging
effects on signaling, cell survival, migration, and angiogenesis are well described,
but non-canonical functions of EGFR are also of importance in cancer progression
and treatment resistance [63], [64]. Localization of EGFR to the nucleus occurs in
HNC, and higher EGFR content in the nucleus portends worse outcome [65], [66].
EGFR is in the phosphorylated state when translocated to the nucleus, and amino-
quinazoline inhibitors of the EGFR kinase domain, including gefitinib, lapatinib,
and dasatinib, block translocation of EGFR to the nucleus, whereas cellular injury
from radiation increases nuclear translocation [67]–[69]. Radiation-induced nuclear
translocation of EGFR is reduced by exposure to cetuximab in HNC cell lines [70],
yet increased nuclear EGFR content is also a feature of cetuximab resistance in con-
ditioned cell lines [71]. Preclinical data demonstrate additive activity of combination
receptor-directed antibody with a tyrosine kinase inhibitor in head and neck squa-
mous cell lines [72]. A Phase II trial which is currently accruing tests the use of
cetuximab plus erlotinib to achieve blockade of EGFR both as a receptor and as a
nuclear tyrosine kinase, on a backbone of doublet chemotherapy (NCT01316757).
Further experimental strategies include the development of an EGFR-targeted anti-
body linked with peptides bearing nuclear localization sequences, with preclinical
evidence for nuclear localization and DNA damage in EGFR-rich breast carcinoma
cell lines [73].

17.5 Resistance in the Signaling Stream

The layered signaling network which transduces EGFR activation into its cellular
effects is another potential source of resistance to EGFR inhibition. Resistance to
EGFR inhibition results from activating mutations within the signaling stream, most
notably demonstrated in colon cancer patients with K-Ras mutations, who do not
benefit from EGFR inhibition [47]; however, as discussed above, such mutations
are rare in HNC, and other mechanisms of activation of signaling pathways may
have greater significance [74]. High throughput screening for genes which confer
synthetic lethality in the setting of EGFR inhibition has been exploited to identify
potential novel targets in HNC.Astsaturov et al. conducted high throughput screening
of more than 600 EGFR- interacting genes to detect synthetic lethality, on the basis
of cell viability, when EGFR was inhibited with erlotinib [75]. The HPV-negative,
p53-mutated cell line SCC61 and others demonstrated synthetic lethality of EGFR
inhibition with BCAR1, BCAR3, and NEDD9, proteins that promote metastasis
and invasive behavior in HNC and other cancers [76], [77]. Although not readily
druggable, NEDD9 interacts with Aurora A kinase, and exposure to the Aurora A
kinase inhibitor PHA-680632 was synergistic with erlotinib. These findings raised the
possibility of dual EGFR and Aurora A kinase inhibition, although the role of Aurora
A kinase in HNC was not well elucidated. Tissues from 180 resected squamous
cancers of the head and neck were assayed for EGFR and Aurora A expression [78].
Elevated EGFR and Aurora A protein expression both correlated with significantly
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shorter disease-free and overall survival. These data supported the development of a
Phase I trial, currently recruiting, which incorporates the Aurora A kinase inhibitor
alisertib with cetuximab and radiation for locally advanced HNC (NCT01540682).

The signal transducer and activator of transcription (STAT) proteins, important
mediators of EGFR signaling, may also have a role in HNC therapy. STAT3 is overex-
pressed in HNC, and STAT3 knockdown restores cetuximab sensitivity and radiation
sensitivity [79]–[80]. A Phase 0 preoperative study with a STAT3 decoy has been
completed in SCCHN patients and data are anticipated (NCT00696176). Pharmaco-
logic JAK/STAT inhibitors also have promise for treatment of HPV-negative HNC
with preclinical studies with JAK/STAT inhibitorAG490 inhibiting cell proliferation,
inducing G1 arrest and apoptosis, and downregulating expression of STAT3, phos-
phorylated STAT3, and survivin in larynx carcinoma cells [81]. Preclinical studies
demonstrate that the heat shock protein (HSP) 90 inhibitor SNX5422/2112 can down
regulate multiple key signaling molecules in HNC, inclusive of STAT3, based on the
important role of HSP90 of stabilizing these proteins in tumor cells [82].

Mutations occur within the PI3K pathway (reviewed in Chapter 7) in 30.5 % of
HNCs [83], a much higher rate than for the RAF/MEK/ERK kinase or JAK/STAT
pathways. Additional epigenetic mechanisms, copy number gain, and signal trans-
duction from overexpressed tyrosine kinase receptors may result in activation of
this pathway in over 80 % of HPV-negative or HPV-positive HNCs [84]. Mam-
malian target of rapamycin (mTOR) inhibitors and PI3K inhibitors are active in
HNC both preclinically and clinically. Ongoing trials assess the mTOR inhibitor
everolimus as maintenance therapy following definitive therapy, the PI3K-α-specific
inhibitor BYL719 in combination with cetuximab for recurrent or metastatic dis-
ease, and the pan-class I PI3K inhibitor BKM120 in metastatic recurrent disease
(NCT01111058; NCT01602315; NCT01737450). Several prior attempts at com-
bined EGFR and mTOR inhibition in head and neck and lung cancer have faltered
due to unexpectedly high rates of fulminant infection, suggesting additive effects
on innate immunity between these classes [85]. In vitro studies imply that activity
of the PI3K/mTOR inhibitor PF-04691502 is greatest with intact p53 function, and
p53 mutation and expression may be useful biomarkers in studies of PI3K inhibition
[86].

Sonic hedgehog (Shh), Patched (Ptch), and Gli-1 are components of the Hedgehog
signaling pathway which are overexpressed in oral squamous cell carcinoma, with
overexpression correlated to more advanced stage and higher recurrence rate [87].
Laboratory evidence links Hedgehog signaling to resistance to EGFR inhibition, and
a pilot study of cetuximab and the Hedgehog pathway inhibitor saridegib (IPI-926)
is ongoing in recurrent HNC (NCT01255800) [88].

17.6 c-Met

Receptor tyrosine kinases beyond the HER family are also possible therapeutic tar-
gets in SCCHN. c-Met activates pleotropic signaling pathways including PI3K/Akt,
Ras/MEK/ERK, and focal adhesion kinase (FAK) [89], and appears to play a critical
role in HPV-negative SCCHN. Hepatocyte growth factor (HGF or scatter factor), the
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ligand of c-Met, and c-Met are present in oral cancers, and their elevated expression
is correlated with higher tumor and nodal stage [90]. c-Met overexpression in 80 %
of head and neck squamous cancers, MET gene amplification in 13 % of tumors, as
well as lower frequency of mutation in the ligand-binding, juxtamembrane, and ki-
nase domains are described in head and neck tumor samples and cell lines [91]. Both
single agent therapy with a multikinase inhibitor with activity against c-MET, and—
given the association of MET expression with cetuximab resistance, and convergent
MET and EGFR signaling via the PI3K pathway—the combination of a putative
c-MET inhibitor with cetuximab are currently in trial in patients with recurrent or
metastatic HNC (NCT01285037; NCT01696955).

17.7 Immune Checkpoint Inhibitors

An important new direction in anticancer therapy is the targeting of immune check-
points mediated by cytotoxic T lymphocyte-associated antigen 4 (CTLA-4; CD152),
a negative regulator of T-lymphocyte activation, and by the programmed death-1 (PD-
1) receptor and its ligand (PD-L1). The CTLA-4 inhibitor ipilimumab and the PD-1
inhibitors nivolumab and MK3475 and their combinations have shown impressive
activity in melanoma and NSCLC [92], [93]. CTLA-4 has a central role in immune
tolerance and anergy, and across geographic regions, CTLA-4 gene polymorphisms
influence risk for oral squamous carcinoma [94]–[96].

Although significant interest has been directed to the role of immune resistance
in the development of HPV-associated HNC [97], evidence has now emerged for
immune resistance in HPV-negative HNCs as well. CTLA-4 expressing regulatory T
cells are increased in larynx cancer [98]. An increased frequency of CD8 + PD1 + is
observed in the peripheral blood mononuclear cells of oral squamous cell cancer
patients when compared with controls; additionally, increases in both CD4 + and
CD8 + cells expressing PD-1( + ) were found to accumulate in oral squamous
cancers, with intense expression of PD-L1 [99]. Expression of PDL-1 has been
demonstrated in a series of 238 cases of larynx cancer with high PD-L1 expression
associated with favorable overall survival (P = 0.029) [100]. Trials are currently on-
going which assess the safety and efficacy of immune checkpoint inhibitors in HNCs.
A Phase Ib trial of concurrent cetuximab and radiotherapy with the CTLA4 antagonist
ipilimumab in locally advanced disease is actively recruiting (NCT01860430). A cur-
rent multidisease Phase Ib study of the novel anti-PDL-1 antibody MK3475 includes
squamous cell cancers of the head and neck, aiming to enroll both HPV-negative
and -positive cases (NCT01848834). An alternate strategy is the use of metronomic
(frequent but low dose) cyclophosphamide to deplete regulatory T cells, currently
being tested in combination with cetuximab in advanced HNC (NCT01581970).

17.8 Concluding Statement

Locally advanced SCCHN remains difficult to treat, with high recurrence rates de-
spite attempts at treatment intensification. Complete genome sequencing of HNCs
and multiple platform characterization of HNC confirm the centrality of the PI3K
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pathway and the receptor tyrosine kinases which activate it, in the pathogenesis of
this disease. Numerous novel agents that target redundant receptor tyrosine kinases,
the PI3K/mTOR pathway, and Aurora kinases are underway. In addition, the recog-
nition of the role of immune checkpoints in some HNCs has opened the possibility
of immune checkpoint inhibition in the future.
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