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    Abstract     Squamous cell carcinomas of the upper aerodigestive tract exhibit complex 
interactions with the host immune system that may simultaneously explain resis-
tance to various therapeutic modalities and that may also provide opportunities for 
therapeutic intervention. The interplay between developing or established malig-
nancy and the host immune system is best understood through a careful analysis of 
the key components and effector arms of the immune system. These include the 
complex cellular network of immune modulation as well as tumor-derived factors 
such as chemokines and cytokines. While the host response to the developing tumor 
may successfully curtail tumor growth in some cases (immunosurveillance), squa-
mous cell carcinomas of the head and neck are characterized by their ability to cre-
ate an immunosuppressive environment powerful enough to evade the immune 
response. It is increasingly apparent that efforts to stimulate a therapeutically effec-
tive immune response against established tumors must be coupled with strategies to 
abrogate this immune-suppressive environment. Preclinical studies and clinical tri-
als have yielded promising results and provide the foundation for further refi ne-
ments in a broad variety of immunotherapeutic strategies targeting all components 
of the immune system. Combining such approaches with the established treatment 
options of surgical resection, radiotherapy, and chemotherapy may ultimately yield 
substantive improvements in overall survival that to date have been lacking and 
simultaneously reduce disease-related and treatment-related morbidities for this 
debilitating and deadly disease.  
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1         Introduction 

 The vast majority of tumors (95 %) that arise in the head and neck region are 
squamous cell carcinomas arising from the epithelium of the upper aerodigestive tract. 
Head and neck squamous cell carcinomas (HNSCCs) infringe on the highly critical 
functions of speech, swallowing, and respiration. Current therapies, surgery alone, 
radio- or chemo-radiotherapy, or combinations of these modalities, leave many of 
these patients with signifi cant functional defi cits that exact a unique physical and 
social toll. Although signifi cant advances in the areas of reconstructive surgery, 
minimally invasive surgery, precisely targeted radiotherapy, chemotherapy, and 
monoclonal antibody therapy have been achieved in the last three decades, the 
overall survival rates for patients with these cancers have been modestly affected. 
HNSCC accounts for approximately 2.5 % of all newly diagnosed cancer cases in 
the United States, with 40,250 new cases estimated in 2012 [ 1 ]. Globally, HNSCC 
(including the oral cavity, oro/hypo/nasopharynx, and larynx) represents the sixth 
most common malignancy encountered [ 2 ] with a high case fatality (ratio of mortal-
ity to incidence of 0.53) and with more than 644,000 new cases reported in 2002 
worldwide [ 3 ]. Although the cause of HNSCC is multifactorial, its risk has been 
historically associated with tobacco and alcohol use, especially those who use both. 
Processed tobacco, in fact, contains more than 3,000 chemical compounds, includ-
ing at least 30 known carcinogens, while cigarette smoke contains approximately 50 
known carcinogens and pro-carcinogens [ 4 ]. The epidemiology of HNSCC has dra-
matically changed over the past two decades, however, particularly as this relates to 
oropharyngeal SCC. As tobacco use, traditionally the most important risk factor for 
HNSCC, has decreased in the USA, the incidence of tobacco-associated human pap-
illomavirus (HPV)-negative HNSCC has also decreased [ 5 ,  6 ]. Instead, the inci-
dence of HPV-associated oropharyngeal cancers overall is increasing worldwide [ 7 , 
 8 ]. The incidence of tonsillar cancer in the USA, especially among men under age 
60, increased by 2–3 % each year between 1973 and 1995; however this incidence 
has increased more rapidly in the last decade [ 9 ]. Indeed, while only 16 % of the US 
oropharyngeal cases were HPV positive in 1984–1989, 73 % of tumors were posi-
tive for this virus in 2000–2004 [ 10 ]. Interestingly, survival of HPV-positive HNSCC 
patients is notably better than survival of HPV-negative HNSCC patients (3-year 
survival of 84 % vs. 57 %, respectively) [ 11 ]. Recent analysis of oropharyngeal can-
cer patient survival among cases from 1984 to 2004 in SEER suggested that median 
survival was fourfold higher among HPV-positive than HPV-negative oropharyngeal 
cases (131 vs. 20 months) in the USA during the past two decades. In addition, while 
survival increased signifi cantly for HPV-positive oropharyngeal cases between 1984 
and 2004 ( p  = 0.003) survival did not improve for HPV-negative cases ( p  = 0.18) [ 12 ]. 
The effect of tobacco remains powerful, however, as patients with HPV-positive 
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tumors who smoke have a prognosis intermediate between smokers whose tumors 
are HPV negative and nonsmokers with HPV-positive tumors [ 11 ]. 

 The better survival and lower rate of recurrence observed in HPV-positive 
HNSCC highlight the importance that the immune system plays in this malignancy. 
Indeed, despite the best efforts of the virus to evade host defenses, most HPV infections 
resolve with time as a result of a successful cell-mediated immune response [ 13 ] 
directed against the early HPV proteins (i.e., E2 and E6) [ 14 ,  15 ]. Furthermore, even 
in the absence of viral induced cytolysis and cell death, the HPV-infected cells can 
activate the production of type 1 interferons and evoke a powerful, generic, antiviral, 
and innate immune system response. The type 1 interferons (IFN-α and IFN-β) have 
antiviral, antiproliferative, anti-angiogenic, and immunostimulatory properties that 
act as a bridge between innate and adaptive immunity, activating immature dendritic 
cells and thus facilitating antigen processing and generation of antiviral immunity [ 16 ]. 
The possible role of the immune system is further suggested in an HPV-positive and 
HPV-negative preclinical model of tonsil squamous cell carcinoma [ 17 ]. While in 
immune-defi cient mice no differences in tumor growth were observed between 
HPV +  and HPV −  tumors, in immune-competent mice a signifi cant delay in tumor 
progression was observed in the group bearing the HPV +  carcinoma with 20–30 % 
of animals able to completely clear the tumor [ 17 ]. Tumor rejection was dependent 
on both CD4 +  and CD8 +  T cells that are spontaneously primed and expanded in the 
mice bearing the HPV +  tumor [ 17 ]. However, it is important to remember that sig-
nifi cant differences exist between the murine transplantable model and spontane-
ously arising tumors. While transplantable tumors derived from immortalized cell 
lines grew and developed rapidly when injected in the mice, spontaneous tumors 
developed slowly through a long interaction with the host. Indeed, while strong 
evidence exists that specifi c immune surveillance operates at early stages of tumori-
genesis, causing infl ammation and neoplastic stabilization, established tumors 
appear to be able to induce immune tolerance [ 18 ] and T cell anergy that allow 
tumor growth. In the presence of this tumor-driven tolerogenic environment, 
immune surveillance is restrained and immune interventions, such as vaccination or 
adoptive cell transfer, are likely to be much less effective. The presence of these 
suppressive mechanisms generated by growing tumor can explain the low clinical 
success rates obtained by immunotherapy in the last decades [ 19 ].  

2     Interaction Between HNSCC and the Immune System 

 As in many other cancers, the interaction between the immune system and the 
transformed epithelial cells plays a critical role in the genesis and in the progres-
sion of HNSCC. In this malignancy the concept of immune surveillance [ 20 ] and 
tumor–host immune system interaction is sustained by both clinical and experi-
mental observations. For example, one clear indication of the contribution of the 
immune system in controlling HNSCC is the relative increase in its incidence in 
the context of pharmaceutical immunosuppression or acquired immunodefi ciency. 
Premalignant leukoplakia is identifi ed in 13 % of renal transplant patients as 
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compared to 0.6 % of control age- and sex-matched individuals [ 21 ,  22 ]. In the 
majority of these patients leukoplakia evolves into dysplasia, and 10 % develop 
frank SCC [ 21 ,  22 ]. Similar results are observed in patients who have undergone 
bone marrow transplantation [ 23 – 25 ] and/or are receiving chronic treatment for 
GVHD [ 26 ]. In these latter cases, the major risk factors for the development of 
SCC were long duration of chronic GVHD therapy and the use of azathioprine, 
particularly when combined with cyclosporine and steroids [ 26 ]. Although HNSCC 
is not an AIDS-defi ning illness, the appearance of this malignancy is seen in excess 
among HIV-infected individuals [ 27 ]. HNSCC patients infected with HIV are sig-
nifi cantly younger than non-infected patients, and while there are no differences in 
tumor location, HIV- infected patients generally present with larger and more 
advanced tumors and signifi cantly poorer prognosis [ 28 ]. Interestingly, despite the 
fact that HPV is a causative agent of HNSCC and opportunistic infection in HIV 
patients, a large study in AIDS patients with laryngeal squamous cell carcinoma 
proved the lack of association with HPV infection. However, it is important to 
remember that this subsite is not typically associated with HPV-associated malig-
nancy in immunocompetent individuals, suggesting that the increased tumor fre-
quency in this cohort of patients could be primarily due to a defective immune 
surveillance even in the absence of tumor-promoting HPV infection [ 29 ]. 

 Although acquired or iatrogenic immune suppression increases the risk of 
HNSCC and seems to worsen the prognosis, this malignancy most commonly 
arises in individuals with a normal and healthy immune system. Indeed, immune 
surveillance is suggested to clear most preclinical lesions, while immunoediting 
[ 30 ] is the process that characterizes all clinically relevant lesions. This process is 
thought to play a key role during malignant progression, promoting a selective 
pressure in the tumor microenvironment that leads to the growth of extremely 
aggressive neoplastic clones capable of escaping tumor immunity. Indeed, it has 
long been thought that the immune system functions during tumor formation to 
select for tumor variants that are better suited to survive in an immunologically 
intact environment, very much like it does with viruses, bacteria, and parasites [ 30 ]. 
Many studies demonstrate that the repassage of transplantable tumors through 
immunocompetent hosts generates tumor variants with reduced immunogenicity. 
Cancer immunoediting is composed of three processes: elimination, equilibrium, 
and escape. Immunosurveillance occurs during the elimination process, whereas 
the Darwinian selection of tumor variants occurs during the equilibrium process. 
This, in turn, can ultimately lead to escape and the appearance of clinically appar-
ent tumors [ 30 ]. Indeed, these three processes are not necessarily temporally sepa-
rated but rather they can coexist. 

 Although initially immune editing was thought to allow the growth of only 
those neoplastic clones able to escape immune recognition by losing particular 
immune- dominant epitopes, by down-regulating the major histocompatibility com-
plex (MHC), or by affecting the antigen processing machinery, it is now clear that 
the selection of malignant cells with intrinsic immunosuppressive activity is par-
ticularly common. Indeed, like many other solid malignancies, almost all HNSCC 
tumors express or secrete factors that are able to prevent immunological 
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recognition or that can promote apoptosis of tumor-specifi c T cells. These factors 
can be expressed on the membrane of neoplastic cells such as in the case of B7-H1 
(PDL-1) that is found in the tonsillar crypts, the site of initial HPV infection. In 
HPV +  HNSCCs, PD-L1 expression on both tumor cells and CD68 +  tumor-associ-
ated macrophages (TAMs) is geographically localized to sites of lymphocyte fronts 
[ 31 ]. Despite the strong immunogenicity driven by HPV protein, the majority of 
CD8 +  tumor-infi ltrating lymphocytes (TILs) express high levels of PD-1 that upon 
binding to PDL-1 promote T cell anergy, exhaustion, or apoptosis [ 32 ]. These fi nd-
ings support a role for the PD-1:PD-L1 interaction in creating an “immune-privi-
leged” site for initial viral infection and subsequent adaptive immune resistance once 
tumors are established. In addition to PDL-1, HNSCC tumors can also express other 
molecules that promote tumoricidal T cell apoptosis. For example, these tumors can 
express FAS-L [ 33 ,  34 ] or TRAIL [ 35 ] that, upon engagement with the cognate 
receptors on T cells, induces the apoptosis of tumor-specifi c lymphocytes [ 35 ]. 

 Membrane expression of molecules able to promote T cell apoptosis is not the 
only immunosuppressive mechanism that is exploited by HNSCC as a result of the 
immunoediting pressure. Indeed, it is now evident that tumors can secrete different 
factors able to alter normal hematopoiesis and to induce the appearance and the 
recruitment of cells from the innate and adaptive immune system with an intrinsic 
immunosuppressive and pro-tumoral phenotype (Fig.  1 ). For example, the vast 
majority of HNSCC tumors secrete interleukin (IL)-4, IL-6, IL-8, IL-10, granulo-
cytes macrophage-colony stimulating factor (GM-CSF), granulocytes-colony stimu-
lating factor (G-CSF), vascular endothelial growth factor (VEGF), prostaglandin E2 
(PGE2), basic fi broblast growth factor (bFGF), and chemokines that are able to shape 
not only the tumor microenvironment but also distal sites creating de facto a tumor 
macro-environment that predisposes the host to the neoplastic growth and to meta-
static dissemination of tumor cells.

3        Tumor-Derived Factors in HNSCC 

 Numerous fi ndings indicate that tumor-derived factors (TDFs) greatly infl uence the 
interaction between tumor and the host and can orchestrate important changes in the 
hematopoietic differentiation generating a tumor macro-environment that facilitates 
the malignant progression and metastasis (Fig.  1 ). For example, conditioned media 
from tumor cell lines can inhibit the in vitro differentiation of dendritic cells from their 
precursors [ 36 ]. Normal bone marrow cells could give rise to immunosuppressive ele-
ments simply by culturing them for a few days with supernatants from a highly meta-
static Lewis lung carcinoma variant [ 37 ]. For more than 25 years efforts have been 
made to identify and understand the role of these TDFs in tumor progression [ 38 – 44 ]. 
Tumors secrete a large panel of cytokines, chemokines, or other diffusible molecules 
that, alone or in combination, can induce myeloid derived suppressor cells (MDSC) 
recruitment and increase their maturation into fully suppressive cells. To date, a num-
ber of candidate proteins (discussed below) have been identifi ed in HNSCC. 
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  Fig. 1    HNSSC–immune system interactions and current immune therapeutic interventions. 
( A ) Tumor antigens released by apoptotic cells are uptaken by immature DC that, after migration 
to the lymph nodes, ( B ) mature and cross-present the antigens and expand the tumor-specifi c effector 
T cells. Driven by the release of infl ammatory molecules (i.e., CCL2), effector T cells migrate to 
the tumor site where they exert their tumoricidal action. ( C ) Immunoediting promotes the selection 
of neoplastic clones able to secrete ( D ) tumor-derived factors (TDF, i.e., GM-CSF, VEGF) that 
alter normal myelopoiesis ( E ) arresting DC differentiation while promoting MDSC and tolero-
genic DC accumulation. ( F ) MDSCs and tolerogenic DCs can inhibit effector T cells directly or 
indirectly. The direct mechanisms of immunosuppression include the secretion of ROS, nitric 
oxide, and TGF-β; the depletion of semi-essential amino acids (i.e.,  l -Arg, Trp); or the inhibition 
of T cell traffi cking by, for example, chemokine nitration. The indirect mechanisms of immuno-
suppression mediate the expansion of Tregs that further block effector cell function and DC matura-
tion ( G ) by the secretion of TGF-β and/or IL-10. Additionally, MDSCs promote tumor progression 
by immune-independent mechanisms such as the promotion of tumor angiogenesis and metastasis 
by the secretion of metalloproteinases that regulate VEGF bioavailability and tissue modifi cations. 
Different therapeutic strategies (in  blue ) have been developed and are currently being tested in 
ongoing clinical trials to either restrain tumor immunosuppression or promote tumor immunity       
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3.1     Granulocyte Macrophage-Colony Stimulating Factor 

 Even though GM-CSF has long been considered an immune adjuvant, different 
evidence has uncovered its dual role in stimulating as well as suppressing the 
immune system: First, almost 31 % of tested human tumor cell lines (including 
HNSCC [ 45 ]) secreted this cytokine [ 46 ]. GM-CSF is also secreted by many mouse 
cell lines such as squamous cell carcinoma [ 47 ], colon and mammary adenocarci-
noma [ 46 ], and plasmacytoma [ 48 ]. Second, its secretion by HNSCC is associated 
with a negative prognosis [ 45 ]. Third, tumor-transduced GM-CSF, administration of 
recombinant GM-CSF protein, or use of high doses of GM-CSF vaccines are suffi -
cient to recruit MDSCs into the secondary lymphoid organs to suppress antigen-
specifi c CD8 +  T cells and promote tolerance [ 46 ,  49 ,  50 ]. Fourth, the ability of 
different tumor-conditioned media to promote MDSC differentiation is inhibited by 
the use of a GM-CSF-neutralizing antibody, and, conversely, MDSCs can be gener-
ated in vitro from BM precursors by the use of either GM-CSF and G-CSF or 
GM-CSF and IL-6 [ 51 ,  52 ]. Fifth, GM-CSF promotes HNSCC cell invasiveness and 
malignant phenotype in nude mice [ 53 ]. 

 GM-CSF has also been shown to elicit powerful immune responses when com-
bined with γ-irradiated tumor cell vaccines, in various mouse models and in the 
clinical setting [ 54 ,  55 ], which has led to its widespread use as an immune adjuvant 
to augment antitumor immunity. In the therapy of HNSCC, oropharyngeal mucosi-
tis is a painful, often dose-limiting side effect of radiotherapy and chemotherapy 
[ 56 ,  57 ]. G-CSF and GM-CSF decrease the incidence of mucositis, and GM-CSF 
directly promotes wound healing of the mucosa [ 58 ]. In addition, G-CSF and 
GM-CSF are used to prevent potentially life-threatening febrile neutropenia. 
Nevertheless, the survival benefi t for patients under adjuvant therapy with G-CSF 
and GM-CSF is a matter of controversial discussion. While the benefi cial effect on 
neutropenia and mucositis is shown in several clinical trials [ 59 ], a large randomized 
clinical trial in advanced HNSCC even identifi ed adjuvant G-CSF treatment as a 
poor prognostic factor with reduced locoregional control [ 60 ], others have not 
shown any signifi cant effect of G-CSF and GM-CSF on overall survival or disease- 
free survival [ 61 ] or a benefi cial action when GM-CSF was used in conjunction with 
radiotherapy and an oncolytic virus [ 62 ]. 

 To better understand this dual role of GM-CSF, we used a bystander vaccine 
strategy in which the antigen dose and steric hindrance could be maintained constant 
while altering the GM-CSF dose to assess the impact of high vs. low concentrations 
of GM-CSF. While we confi rmed the effi cacy of low doses of GM-CSF-secreting 
vaccine, we also defi ned a threshold above which the vaccine not only lost its effi -
cacy but also resulted in signifi cant in vivo immunosuppression mediated by 
MDSC recruitment [ 50 ]. A systematic analysis of different clinical trials performed 
with this cytokine suggests that the same phenomenon can take place in humans. 
Although in some of these studies GM-CSF appeared to help the generation of an 
immune response, in others no effect or even a suppressive effect was reported. 
GM-CSF may increase the vaccine-induced immune response when administered 
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repeatedly at relatively low doses (range 40–80 μg for 1–5 days), whereas an opposite 
effect was often reported at dosages between 100 and 500 μg [ 63 ]. These fi ndings 
support the dual role of GM-CSF on the immune response and highlight several 
critical parameters such as dose, systemic concentration, and duration of exposure 
as key factors for GM-CSF effect on the immune system, all of which need to be 
considered when utilizing GM-CSF as a vaccine adjuvant.  

3.2     Prostaglandins (PGEs) 

 The overexpression of cyclooxygenase (COX)-2 is a frequent event in squamous 
cell carcinomas of the head and neck [ 64 ,  65 ], and nonsteroidal anti-infl ammatory 
drugs, which are potent inhibitors of COX-1 and COX-2, exert chemopreventive 
effects on HNSCC cancer development [ 66 ]. COX-2 promotes the release of the 
pro-infl ammatory mediator prostaglandin E2 (PGE2), which acts on its cell surface 
G protein-coupled receptors EP1, EP2, EP3, and EP4. The products of COX2 
enzyme activity, prostaglandins and mainly PGE2, have been implicated in tumor- 
associated subversion of immune functions, since inhibitors of prostaglandin syn-
thesis typically enhanced antitumor immunity. PGE2 is one of the best-characterized 
and -studied isoform of eicosanoids that possesses both pro-infl ammatory and 
immunosuppressive properties and that is produced during the course of infl amma-
tion following cellular stresses, and in response to growth factors, hormones, endo-
toxin, and infl ammatory cytokines, or by growing tumors. Freshly excised solid 
human tumor cells produce substantially more PGE than established tumor cell 
lines [ 67 ]: interestingly, while primary tumor cell-conditioned media profoundly 
hampered the in vitro DC differentiation from CD14 +  monocytes or CD34 +  myeloid 
precursors, the effects of supernatants derived from established tumor cell lines 
were minor [ 67 ]. Both tumors and MDSCs can actively produce and secrete PGE2. 
This production and secretion correlate with arginase overexpression, STAT3 and 
STAT1 phosphorylation, and IL-10 and MIP-2 production, a phenotype typically 
associated with MDSC suppressive activity [ 68 ].  

3.3     Interleukin-4 and -13 

 IL-13 and IL-4 are central T helper 2 (Th2) anti-infl ammatory and immunomodu-
latory cytokines with close structural and biological homology. Both are produced 
mainly by T and B cells, mast cells, and basophils. In HNSCC these cytokines are 
produced in the tumor microenvironment by the infi ltrating leukocytes [ 69 ] and by 
the tumor itself [ 70 ,  71 ]. The promiscuous receptor for IL-4 and IL-13 (alias IL4R 
type II) is composed of the IL4Rα chain and IL13Rα1 chain [ 72 ], while IL4Rα 

P. Serafi ni and D.T. Weed



283

and the gamma chain (γc), common to the receptors for different members of the 
cytokine family comprising IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, associate to 
compose the IL-4 receptor (alias IL4R type I). Since the IL4Rα chain is the only 
component that possesses kinase-sensitive tyrosine residues in the cytoplasmic 
domain, signals from both type I and type II IL4R are transduced by the IL4Rα 
chain [ 73 ]. IL4Rα phosphorylation, upon engagement and dimerization, recruits 
and phosphorylates STAT6 that dimerizes and migrates to the nucleus to activate the 
transcription of several proteins including arginase 1 [ 74 ]. Interestingly, IL4Rα and 
IL13Rα are constitutively over-expressed in several HNSCC cell lines and, upon 
engagement with their cognate ligand, were shown to promote neoplastic cell pro-
liferation [ 75 ] suggesting a pleiotropic function of these cytokines in this disease. 

 IL4Rα expression on MDSCs and monocytes is required for their suppressive 
phenotype [ 76 ] and survival [ 77 ], and genetic ablation of this receptor on mono-
cytes and granulocytes is suffi cient to revert MDSC-mediated immune suppression 
in vivo whereas its aptamer-mediated blockade is suffi cient to promote MDSCs and 
TAM apoptosis [ 77 ]. MDSC and TAM produce IL-13 and IFN-γ and integrate the 
downstream signals of these cytokines to trigger the molecular pathways suppress-
ing antigen-activated CD8 +  T lymphocytes [ 76 ].  

3.4     Interleukin-6 

 High levels of IL-6 have been detected in leukemia, lymphoma, multiple myeloma, 
melanoma, as well as breast, lung, ovarian, renal cell, and pancreatic cancers [ 78 ] 
and are associated with a poor prognosis. Elevated IL-6 serum levels are found in 
the majority of HNSCC cancer patients, and its concentration correlates with tumor 
stage and lymph node status [ 79 ]. Because of the role of IL-6 in the acute-phase 
response in the liver and in the regulation of the systemic immune response, it is 
believed that high serum levels of the cytokine contribute to weight loss, night 
sweats, fever, and other systemic symptoms [ 80 ]. 

 The physiological activity of IL-6 is complex, producing both pro-infl ammatory 
and anti-infl ammatory effects. In addition, IL-6 affects the differentiation of myeloid 
lineages, including macrophages and DCs, both in vitro and in vivo [ 81 ] through the 
activation of the transcription factor STAT3, which exerts a negative regulatory 
function on the adaptive and innate immune system during tumor development. 
Indeed, treatment in vitro with combinations of GM-CSF, G-CSF, IL-6, and IL-13 
induces the rapid differentiation of human and mouse bone marrow precursor cells 
into cells that resemble suppressive MDSC [ 82 ,  83 ]. 

 Beside its role on MDSC differentiation, IL-6 has an important function on den-
dritic cell differentiation. Indeed, tumor-derived factors can inhibit the generation of 
DC [ 84 ]. Dendritic cell differentiation can be restored by the use of VEGF- and/or 
IL-6-specifi c antibodies that neutralize this inhibitory effect [ 85 ].  
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3.5     Vascular Endothelial Growth Factor 

 Increased expression of VEGF and its receptors in HNSCCs underscores the importance 
of the VEGF pathway in angiogenesis and survival of tumor cells under hypoxic 
conditions [ 86 ]. VEGF expression is regulated by hypoxia-inducible factor-1α 
(HIF-1α)-dependent and -independent processes, both of which involve PI3-K and 
AKT [ 87 ]. VEGF plays an important role in the formation of blood vessels during 
embryogenesis, hematopoiesis, and tumor neovascularization [ 88 ]. It is secreted by 
most tumors, and high levels correlate with a poor prognosis [ 89 ]. Neutralizing 
antibodies against VEGF restored DC differentiation from hematopoietic precur-
sors blocked by tumor-conditioned media [ 90 ]. VEGF has been directly linked with 
the systemic MDSC expansion. The administration of recombinant VEGF to tumor-
free mice, in fact, resulted in inhibition of DC development and was associated with 
an increase in the number of MDSCs in the spleen [ 90 ]. Besides playing a direct 
role in tumor angiogenesis, this factor promotes cross talk between tumor and 
tumor-associated MDSCs [ 91 ]. By expressing high levels of matrix metalloprotein-
ase 9, tumor-associated MDSCs regulate the bioavailability of VEGF by releasing 
it from the extracellular matrix [ 92 ], suggesting the presence of a positive feedback 
loop by which MDSCs increase VEGF release that in turn promotes MDSC differ-
entiation and expansion. MMP9 inhibition by amino-biphosphonates signifi cantly 
decreased MMP-9 expression and the number of macrophages in tumor stroma and 
reduced MDSC expansion both in bone marrow and peripheral blood [ 93 ]. In 
HNSCC, VEGF-A expression correlated with microvessel density, disease progres-
sion, a reduced number of mature DCs, and an increased number of immature DCs 
and MDSC, confi rming the importance of this factor in the progression of this 
malignancy [ 94 ]. These fi ndings underlie the importance of the VEGF–MDSC con-
nection in HNSCC and suggest that treatments aimed to block MDSC or VEGF 
should have an effect on both tumor immunosuppression and angiogenesis.  

3.6     Chemokines 

 Chemokines are leukocyte chemoattractants that are usually classifi ed into two 
main subgroups: the infl ammatory and the homeostatic. While the fi rst group pro-
motes leukocyte infi ltration at the infl ammation site and is inducible by proinfl am-
matory cytokines, the homeostatic chemokines are constitutively expressed and 
regulate hematopoiesis and lymphoid organ development [ 95 ]. Both classes of che-
mokines can play a role in various aspects of malignancies. Because of the impor-
tance of leukocytes in HNSCC outcome, it is not surprising that CCL-3, CCL-4, and 
CCL-5 [ 96 ] are expressed by HNSCC tumors and that CCL-2 [ 97 ] and its receptor 
have been proposed as genetic markers for oral squamous cell carcinoma [ 98 ]. 
Similarly, the expression of CXC chemokine receptor 2 (CXCR2) is increased in the 
laryngeal squamous cell carcinoma, and its expression correlates with the lymph node 

P. Serafi ni and D.T. Weed



285

metastases, with the histological grade, and with 5-year survival [ 99 ]. Additionally, 
CXCR4 was shown to be important in HNSCC tumor progression and organ-specifi c 
metastasis [ 100 ,  101 ] and could be used as a prognostic marker [ 102 ]. 

 Approximately 50 chemokines and 20 receptors have been identifi ed to date, and 
they can interact in a complex network in which the signal can be differentially 
integrated in each target cell (depending on the particular chemokine receptor pro-
fi le). Each chemokine can bind multiple receptors, and a receptor can be activated 
by different chemokines, allowing chemokine redundancy [ 103 ], robustness [ 103 ], 
integration [ 104 ], and synergy [ 105 ]. While the initially attributed importance of 
redundancy was challenged by subsequent studies [ 106 ], the signifi cance of signal 
integration, robustness, and synergy are being confi rmed and explored by numerous 
studies. Chemokines can form homo- and hetero-dimers, integrating or modulating 
their own signal and the one from the dimeric partner [ 107 ,  108 ]. For example, 
CXCL4 can form a heterodimer with CCL5 that promotes monocyte arrest [ 109 ], 
while each chemokine alone is chemotactic. Chemokine integration and synergy 
can also involve the binding of different chemokines in the same cell that can result 
not only in the activation of the different individual pathways mediated by each 
chemokine but also in the integration of both transduced signals [ 110 – 113 ]. In 
human monocytes, CCL21 engagement of chemokine receptor (CCR)-7 dramati-
cally amplifi es the effect of CCL2 binding to CCR2 [ 114 ]. Because of the signal 
complexity and the different effects on the target cell population, it is not surprising 
that individual chemokines are reported to have opposite effects on tumor outcome. 
For example CCL5 in Ewing sarcoma [ 115 ] can promote tumor immunity by 
recruiting T cells at the tumor site, whereas in other cancers it is thought to inhibit 
tumor immunity and promote tumor angiogenesis and metastasis through MDSC 
and macrophage (tumor-educated myeloid cells (TEMCs)) recruitment [ 116 ,  117 ]. 
Interestingly, the antitumor effect of adoptively transferred T cells is increased by 
CCL5 but only when intratumoral CD11c +  cells are depleted [ 118 ]. Similarly, 
CCL21 was shown to induce Th1 polarization [ 119 ], boost the effi cacy of DNA 
vaccine [ 120 ], and promote the antitumor immunity [ 121 ]. Nevertheless the very 
same chemokine is secreted by many human tumors [ 122 ], and the expression of its 
receptor (CCR7) correlates with the metastatic activity in HNSCC [ 123 ] and is nec-
essary for the formation of a tolerogenic lymphoid-like organ within the tumor 
[ 124 ]. Although the examples of contradictory roles of the same chemokines are too 
numerous to be listed here, it is noteworthy to report the opposite roles of CCL2. 
CCL2 secreted by the majority of solid tumors [ 125 ,  126 ] is able to attract both 
TEMCs and T cells in the tumor microenvironment and plays an important role in the 
proper homing into the tumor of adoptively transferred tumor-specifi c T cells [ 127 ]. 
Nevertheless, CCL2 mediates the recruitment of TEMC to the primary and second-
ary tumor sites, promoting tumor progression and metastasis [ 128 – 131 ]. Several 
studies have demonstrated that, contrary to TEMCs, T cells do not freely travel 
within the tumor but rather they remain trapped in the stroma surrounding the can-
cer cells [ 132 ]. The explanation of this phenomenon was recently clarifi ed: reactive 
nitrogen species produced by TEMCs and neoplastic cells induce the  nitration/
nitrosilation of CCL2 that, once nitrosilated, can no longer attract cytotoxic T cells 
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but can still recruit myeloid cells to the tumor [ 133 ]. These fi ndings implicate 
the existence of a protumoral positive feedback mechanism by which TAM and 
MDSC promote the recruitment of new protumoral myeloid cells while hindering 
T cell infi ltration.   

4     Cellular Network of Immune Modulation in HNSCC 

 It is increasingly clear that tumors enforce strict connections with the surrounding 
environment creating a “microenvironment” that supports tumor progression. 
Moreover, by releasing soluble factors and exosomes, neoplastic cells can also con-
dition distant sites, such as bone marrow, to sustain the demand of myeloid cells and 
precursors necessary for tumor neovascularization and spreading to local and dis-
tant anatomical sites. This creates de facto a complex interplay that can be viewed 
as a tumor-driven “macro-environment.” The recognition that tumor macro- and 
microenvironments play pivotal roles in tumor progression suggests that innovative 
attempts should be made to block tumor/environment interactions that facilitate 
tumor progression and to enhance those counteracting malignancy. 

 Cancers are not only a mass of neoplastic cells; instead, they contain several 
noncancerous stromal cells. In many cases tumor stromal cells, which include 
TAMs, MDSCs, granulocytes, endothelial cells, fi broblasts, and T cells, may out-
number the malignant cells (Fig.  1 ) [ 134 ]. These accessory cells, most of which are 
leukocytes, are not innocent bystanders, but, rather, they interact with the malignant 
cells and play a key role in the disease outcome [ 135 ]. Depending on the composi-
tion and activation status of the immune infi ltrate, the net effect can be either favor-
able or detrimental to tumor progression and metastasis. While effector T cells 
(quality and quantity) infi ltrating the tumor correlate with a better survival in 
HNSCC patients [ 136 – 138 ] by either destroying or inducing dormancy in neoplas-
tic cells, the infi ltration of tumor-educated myeloid cells is associated with a higher 
mortality [ 45 ,  139 ]. 

4.1     Effector T Cells 

 Effector CD4 +  and CD8 +  T cells are considered the most important immune cells act-
ing against cancer promotion and progression, as discussed elsewhere in this book. 
Although patients with HNSCC have reduced number of lymphocytes in their blood 
compared with healthy individuals [ 140 ], a signifi cant shift from naive to effector 
memory T cells is observed in patients with oropharynx or larynx squamous cell 
carcinomas with an increased number of effector memory T cells in HPV +  oropha-
ryngeal squamous cell carcinomas [ 141 ], suggesting that a strong immune response 
against the tumor can be generated. Indeed, in recent years extraordinary progress 
has been made in the identifi cation of tumor-associated antigens (TAA) in HNSCC. 
For example an analysis of the TILs in HNSCC revealed the prevalence of effector 
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lymphocytes against the TAA cyclin B1 and NY ESO-1 that can be expanded in vitro 
and potentially used as a treatment modality [ 138 ]. Additionally, HNSCCs were 
found to express melanoma-associated antigens (i.e., MAGE 1 and MAGE 3) [ 142 , 
 143 ] and, because of the changes in the epidemiology of this malignancy, viral anti-
gens such as HPV E6 and E7 [ 144 ,  145 ]. Despite the presence of effector/memory 
tumor-specifi c T cells, these cells are unable to either reach the tumor or fully per-
form their tumoricidal action most likely because of the presence of a suppressive 
network orchestrated by the tumor. This hypothesis is supported by the fi nding that 
the functional impairment of T cells from HNSCC conferred by intrinsic molecular 
defects that have been demonstrated in this cell population can be reversed by 
removal of immune suppression by a pharmacologic treatment (Serafi ni, Weed 
unpublished data) or by radio- or chemotherapy [ 146 ]. This reversal is suffi cient to 
reestablish T cell functionality in these tumors.  

4.2     Dendritic Cells 

 Dendritic cells (DCs) are a family of specialized APCs and are essential mediators 
of immunity and tolerance [ 147 ]. DC may derive from the lymphoid (i.e., plasma-
cytoid DC) or myeloid precursors. While plasmacytoid DCs are mainly found in the 
blood and in the secondary lymphoid organs, myeloid DCs can infi ltrate the dermis 
(dermal/interstitial myeloid dendritic cells) or the epidermis (Langerhans cells) of 
the mucosa of the upper aerodigestive tract [ 148 ] where they show an immature 
phenotype and a great capacity to uptake antigens. Upon encountering infl amma-
tory signals (i.e., IL-1, TNF-α) or microbial products (i.e., TLR ligands) they 
migrate to the secondary lymphoid organs, assuming a mature phenotype and the 
capacity to cross-present the captured antigens, promoting the priming and the 
expansion of effector T cells. Because of their immunological role and their local-
ization, myeloid DCs and Langerhans are particularly important in orchestrating the 
interaction between the immune system and HNSCC. Interestingly, tobacco and 
alcohol consumption, two main risk factors in HNSCC, are associated with an 
increased number of oral mucosal Langerhans cells that could suggest an active role 
of these cells in the initial phase of immunosurveillance [ 149 ,  150 ]. Indeed, their 
number seems to be higher in benign lesions than in normal mucosa or in neoplastic 
lesions [ 151 ]. Furthermore, their number seems to decrease with tumor grade [ 152 ], 
and, in laryngeal and nasopharyngeal carcinomas, a strong infi ltration of Langerhans 
cells has been associated with longer disease-free survival, less locoregional recur-
rence [ 153 ], and a better prognosis [ 154 ]. Similarly, a larger number of DCs was 
found to be present in nonmetastatic lymph nodes than in metastatic lymph nodes in 
a series of hypopharyngeal and laryngeal carcinomas [ 155 ]. However, molecular 
defects, an inability to mature, and a reduced number of circulating myeloid DCs 
are found in patients with HNSCC (discussed in more detail below). The fact that 
surgical removal of the tumor is suffi cient to restore the number and the function of 
DC [ 156 ] highlights that this reduction is due to the presence of tumor, is reversible, 
and is most likely one of the mechanisms of immune escape in HNSCC patients.  
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4.3     Myeloid Derived Suppressor Cells and Tumor-Associated 
Macrophages 

 MDSCs have been described in patients affected by different tumors. In HNSCC, 
for example, the release of GM-CSF and the tumor infi ltration with CD34 +  MDSCs 
were determined to be negative prognostic factors and were associated with an 
increased rate of tumor metastasis and recurrence [ 157 ]. The increased frequency of 
CD34 +  cells in the PBMCs was also correlated with the suppression of the anamnes-
tic responses to recall antigens, a frequent fi nding in HNSCC patients [ 158 ]. A more 
extensive study of the peripheral blood of patients with HNSSC, breast cancer, and 
non-small-cell lung cancer better characterized the phenotype of MDSCs that were 
described as immature cells positive for the markers CD34, CD33, and CD13 but 
negative for the myelomonocytic marker CD15. We recently confi rmed these mark-
ers as associated with MDSCs in HNSCC and determined also that IL4Rα +  CD33 +  
cells are the most immunosuppressive myeloid cell subsets in these patients 
(Serafi ni, Weed, unpublished data). Although the murine counterpart of MDSC is 
characterized by the expression of the markers CD11b and Gr1, murine MDSCs 
share many functional features with human MDSC (such as the expression of the 
functional marker IL4Rα, the immature phenotype, and the molecular mechanisms 
of immunosuppression) and have allowed the dissection of the molecular mecha-
nisms employed to restrain the immune response. These mechanisms were shown 
to utilize either the metabolism of  l -arginine ( l -Arg) or TGF-β production to render 
lymphocytes unresponsive to antigen stimulation.  l -Arg is metabolized in myeloid 
cells (macrophages, granulocytes, and DCs) by two enzymes: (1) nitric oxide syn-
thase (NOS), which oxidizes  l -Arg in two steps that generate NO and citrulline, and 
(2) arginase (ARG), which converts  l -Arg into urea and  l -ornithine [ 159 ,  160 ]. By 
up-regulating Arg1 and consuming  l -Arg in the surrounding microenvironment 
MDSC inhibited re-expression of the ζ-chain of CD3 complex in T lymphocytes, 
thereby impairing their function [ 161 ]. Alternatively, by NOS2 up-regulation, 
MDSC can S-nitrosilate, on T cells, crucial cysteine residues of important signaling 
proteins in the IL-2-receptor pathway including JAK1, JAK3, STAT5, ERK, and 
AKT [ 162 ]. S-nitrosilation makes T cells unresponsive to IL-2 inhibiting their pro-
liferation and effector function [ 162 ]. Furthermore MDSC can express both Arg1 
and NOS2. In these conditions MDSCs produce high quantities of peroxynitrite 
[ 163 ] that can induce either apoptosis [ 163 ] or anergy [ 164 ] in activated T cells and 
promote the nitration of particular chemokines affecting T cell infi ltration into the 
tumor [ 133 ]. This hypothesis is further confi rmed by the presence of NOS [ 165 ] and 
peroxynitrate metabolites [ 166 ] in the tumor bed of HNSSC patients. These obser-
vations are of clinical importance, because a reduced T cell proliferative capability 
to mitogenic stimulation has been associated with a poorer outcome for patients 
with HNSCC [ 167 ]. Moreover, the maturation of dendritic cells in patients with 
HNSCC is impaired [ 168 ] and associated with an increase of immature CD34 +  
MDSC in the blood and in the tumor bed [ 169 ]. These observations are supported 
by murine data in which inhibition of DC maturation correlates with MDSC 
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accumulation in the blood [ 170 ]. Attempts to overcome the immune dysfunction of 
patients with HNSCC have included combining in vivo immunization with autolo-
gous, irradiated HNSCC plus GM-CSF [ 171 ,  172 ]. Such treatments of patients with 
recurrent and metastatic HNSCC disease have shown the capacity to stimulate in 
vitro antitumor immune reactivity. However, in most cases the in vitro antitumoral 
activities of these T cells do not translate with a tumoricidal activity in vivo. These 
paradoxical results can be explained by the immunosuppressive network generated 
by the tumor that prevents CTL activities in vivo. These considerations are consis-
tent with the preclinical data demonstrating that tumor-associated MDSC can 
induce anergy or apoptosis in tumor-specifi c T cells [ 173 – 175 ]. Similar inhibitory 
CD34 +  cells are also present within the cancer mass of patients with HNSCC where 
they can inhibit the activity of intratumoral T cells [ 157 ,  176 – 178 ]. 

 The pro-tumoral activity of MDSCs and TAMs is not limited to their immuno-
suppressive role. Upon activation, these leukocytes secrete matrix-remodeling pro-
teases and serine proteases that are associated with more advanced tumor grade and 
metastasis [ 179 – 181 ]. Additionally, following IL4Rα engagement, TAMs and 
MDSCs express elevated levels of the cysteine protease cathepsin B and expression 
of this protease is found within macrophages at the invasive edge of pancreatic can-
cers [ 179 – 181 ]. Metalloproteinase (MMP) and cathepsin B secretion by TAMs and 
MDSCs are partially regulated by IL-6 [ 182 ]. It is important to note that this cyto-
kine, in concert with GM-CSF, is one of the key elements that regulate MDSC dif-
ferentiation [ 52 ] and levels of both are particularly elevated in the sera of HNSCC 
[ 183 ]. In particular, GM-CSF, G-CSF, and IL-6 allowed a rapid generation of 
MDSCs from precursors present in mouse and human bone marrow (BM). These 
cytokines induce the activation of C/EBPβ in the myeloid lineage, a transcription 
factor necessary for MDSC differentiation. Genetic inactivation of this factor in the 
myeloid lineage blocked MDSC differentiation and reestablished the effi cacy of 
antitumor immune interventions [ 52 ].  

4.4     Regulatory T Cells 

 Tregs share the capacity to induce antigen-specifi c T cell tolerance and play an 
important role in preventing the development of autoimmune responses [ 184 ]. 
The very same cells are recruited by growing tumors to protect themselves from the 
immunological assault. In fact, the in vivo depletion of CD4 + CD25 +  T cells by anti-
 CD25 antibody (PC61), prior to tumor challenge, enhances tumor immunosurveil-
lance and induces the rejection of multiple immunogenic tumors in different mouse 
strains [ 185 ]. Phenotypically, Treg cells express CD4 and CD25 and the functional 
marker forkhead/winged helix transcription factor (FoxP3) [ 186 ,  187 ]. Functionally, 
Treg cells inhibit T cell activity through their production of soluble inhibitory medi-
ators such as TGF-β and IL-10 [ 187 ,  188 ]. Increased levels of CD4 + CD25 + FoxP3 +  
Treg have been shown in the peripheral blood of patients with HNSCC [ 186 ] and 
have been associated with poor prognosis [ 189 – 191 ]. Tregs localizing to tumor 
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tissue in HNSCC comprise a unique subset of CD4 + CD25 high  Foxp3 +  T cells, which 
secrete IL-10 and TGF-β1 and mediate a strong suppressor function [ 192 ]. Studies 
with patients with hepatocellular carcinoma showed increased levels of Treg within 
tumor tissue compared with normal tissue and increased levels of TGF-β expression 
in the peripheral blood of these patients compared with controls [ 193 ,  194 ]. The 
presence at the tumor site of these CD4 + CD25 high FOXP3 +  T cells seems to be a 
characteristic feature of T3/T4-stage HNSCC tumors and can be associated with a 
poor prognosis [ 192 ]. Nevertheless, the extent to which Treg cells contribute to the 
immune depression of patients with HNSCC is still unclear. Indeed, contradictory 
reports exist on the role of Treg in patients with oral cavity carcinoma: while initial 
studies associate the tumor infi ltration of FOXP3 +  T cell with a worse prognosis 
[ 195 ,  196 ], other reports associate the infi ltration of FOXP3 +  T cells with a better 
survival [ 197 ] or with better locoregional control of the tumor [ 198 ]. No signifi cant 
associations were found in other studies [ 199 ]. Although technical differences in the 
Treg quantifi cation (i.e., the antibody used, scoring system, number of markers) 
may explain these contradictory reports, the role of biological components also 
needs to be considered. Indeed, it is known that, contrary to murine Treg, human T 
cells may transiently express FOXP3 upon activation [ 200 ]. In this case, FOXP3 
expression is not indicative of a regulatory function but, instead, of either incom-
pletely activated effector cells [ 201 ,  202 ] or activated memory effector T cells [ 202 ]. 
Thus, although the effect of FOXP3 on activated T cells may be to down-regulate 
some of their effector functions, its expression could identify two distinct subsets of 
TILs with opposite effects on tumor outcome. An important breakthrough can 
derive from the work of Magg et al. [ 203 ] demonstrating that activated human effec-
tor T cells express FOXP3 mainly in the cytoplasm whereas Tregs are characterized 
mostly by a nuclear localization of this important transcription factor [ 203 ]. In 
accordance with this observation we recently found in patients with oral tongue 
SCC that the presence of CD4 +  cells expressing FOXP3 in the cytoplasm is associ-
ated with a favorable prognosis whereas its nuclear localization correlates with the 
risk of recurrence [ 204 ].   

5     Immunologic Defects in HNSCC Patients 

 The impact of HNSCC on immune function is underscored by numerous molecu-
lar defects and alteration induced by the tumor in the immune system of the 
patients. The impact of HNSCC on immune function is underscored by the reduced 
number of CD3 + , CD4 + , and CD8 +  T cells (with CD3 + CD4 +  cell levels being more 
prominently reduced in patients with active disease) in the peripheral blood [ 205 ]. 
Even after curative surgery these levels remain low for several years further 
highlighting the profound consequences of this tumor on the immune system. 
The mechanisms by which HNSCC reduce T cell number seem to be multiple 
and complex. The induction of apoptosis can explain a reduction in the number of 
tumor-specifi c T cells. Indeed, neoplastic and stromal cells can trigger different 
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pro-apoptotic signaling on T cells by the engagement of FAS by FAS-L or of DR4 
and 5 by TRAIL [ 2 ]. Alternatively MDSCs and TAMs were shown to promote 
T cell apoptosis by different mechanisms that include nitration, deprivation of semi-
essential amino acids, or production of reactive oxygen species [ 83 ]. Nevertheless 
additional mechanisms mediated by the tumor macro-environment also seem to 
affect the T cells with a specifi city different from the tumor. Indeed, an increase in 
the ratio between the pro-apoptotic protein BAX and the anti-apoptotic factor 
Bcl-2 is found in most of the CD8 T cells of HNSCC patients [ 34 ], suggesting that 
apoptosis is induced in T cells regardless of the specifi city. The defects associated 
with T cells in HNSCC regardless of their intrinsic specifi city can be also partially 
explained by the changes in the cytokine macro-environment induced by the tumor. 
Indeed, compared with plasma cytokine levels of age-matched controls, cytokine 
levels in HNSCC patients demonstrated a shift to a Th2 bias with an increase of 
IL-4, IL-6, and IL-10 and a reduction of IFN-γ [ 69 ]. IFN-γ, besides being extremely 
important for many immunological processes (i.e., increasing antigen presenta-
tion, promotion of Th1 and CTL activity, induction of MHC class I), can inhibit the 
expression of BAX in T cells upon engagement of the beta chain of its receptor 
[ 206 ]. Thus, a signifi cant and prolonged reduction of this cytokine could increase 
BAX expression, promoting T cell apoptosis. Interestingly, although the number of 
IL-2 + CD4 +  and CD8 +  T cells seems to be reduced in HNSCC patients [ 207 ], the 
serological level of IL-2 seems to be higher in this cohort of patients [ 69 ], partially 
excluding a role for IL-2 deprivation in T cell apoptosis. 

 Besides the reduced number of T cells, intrinsic molecular defects are detectable 
in the T cells of HNSCC patients. For example, lymphocytes of HNSCC patients 
show a profound down-regulation of the ζ-chain of the CD3 complex, a low respon-
siveness to IL-2 [ 208 ], and a reduced proliferative capability to mitogenic stimula-
tion. The degree of reduction to the mitogenic stimula correlates with a poorer 
outcome for patients with HNSCC [ 167 ]. Considering that both CD3 ζ-chain down- 
regulation (by  l -Arg deprivation) and IL-2 unresponsiveness (by STAT5 nitration) 
are two of the mechanisms by which MDSCs control the immune response [ 209 ], 
these observations can highlight the role of MDSC accumulation in the immuno-
logical defects observed in HNSCC. 

 HNSCC not only alters T cells but, as mentioned above, also has important 
consequences on the DC and myelopoiesis. Indeed, defects in DC function are 
considered a hallmark of immune system dysfunction in HNSCC [ 210 ]. For exam-
ple, the accumulation of histiocytes/DCs in the distended sinuses of lymph nodes 
is a refl ection of DC defects and is present in the lymph nodes of HNSCC patients. 
The buildup of these cells in the nodal sinuses prevents their entry into the node 
parenchyma, and maturation is, therefore, impaired, preventing optimal T cell stim-
ulation [ 211 ]. A drastic reduction of circulating DC is also observed in HNSCC: 
while patients with early disease show a twofold decrease in circulating DC, patients 
with advanced disease show a fourfold reduction [ 168 ]. The decreased number 
of circulating DC seems to be confi ned to the myeloid subset, whereas the number 
of lymphoid DC is not affected [ 156 ]. The reduction of DC seems to be dependent 
on the release of GM-CSF and VEGF by the tumor that hijacks the physiological 
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hematopoietic differentiation, promoting the accumulation of MDSCs and immature 
DCs in the lymphoid organs and at the tumor site [ 91 ]. The accumulation at the 
tumor site can be explained by the impaired migratory function of DC in hypoxic 
conditions [ 212 ] and by the presence of extracellular adenosine that characterize 
the tumor microenvironment. Under hypoxic conditions, DC not only failed to 
migrate in the lymph node but also acquired the chemokine receptor profi le neces-
sary for homing to the peripheral tissue. Moreover, hypoxia reduced DC matura-
tion [ 212 ] and antigen uptake capability [ 213 ]. Finally, the up-regulation of the 
hypoxia- inducible factor 1α induced the expression of the adenosine receptor A2B 
that, once engaged, caused the DC to drive CD4 +  T cells toward a Th2 phenotype 
[ 213 ], a characteristic of HNSCC.  

6     Immunotherapy for HNSCC 

 Immunotherapeutic strategies for HNSCC can be broadly categorized as antigen 
specifi c or antigen nonspecifi c (Fig.  1 ). Antigen-nonspecifi c therapies are designed 
to broadly enhance the immune response either by the selective addition of various 
immune stimulatory cytokines or by strategies to reverse or abrogate the immuno-
suppression mediated by the tumor. Intuitively it would seem that antigen-specifi c 
therapies would be the most powerful, and perhaps the least likely to generate sys-
temic toxicity, due to their tumor cell-specifi c targeting. Yet it is precisely the host’s 
own failure to generate a suffi cient immune response against the developing tumor 
that suggests the importance of therapeutic strategies to nonspecifi cally enhance the 
immune response against already established tumor antigens. Clinically evident 
tumors have already survived the processes of immunosurveillance and immunoed-
iting to be by their nature resistant to the immune response. Overcoming this resis-
tance is essential to the success of immunotherapeutic strategies. 

6.1     Antigen-Nonspecifi c Therapies 

 Antigen-nonspecifi c therapies may be used alone or in combination with antigen- 
specifi c immunotherapies. For example, IL-2 is often used in conjunction with 
adoptive cell transfer therapies to sustain the vitality and effi cacy of transferred 
CTLs. Moreover, removal of immunosuppression is thought to be extremely impor-
tant to potentiate the effi cacy of antigen-specifi c immunotherapeutic intervention. 

6.1.1     Cytokine Treatment Approaches 

 Cytokines have been used therapeutically either alone or in combination with che-
motherapy, with varying degrees of success. These represent some of the earliest 
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immunotherapeutic strategies employed against HNSCC. Administration of IL-2 to 
HNSCC patients has resulted in measurable increases in IL-2 levels, an increase in 
the number of NK cells within the tumor, and an increase in the overall activity of 
TIL [ 215 ,  216 ]. In both of these studies the cytokine was delivered locally to the 
tumor by peritumoral [ 215 ] or intranodal injection or intraarterial infusion [ 216 ]. 
Injection of recombinant IL-2 around the cervical lymph node chain for 10 days 
preoperatively in patients with T3-4, N0-3, M0 SCC of the oral cavity or orophar-
ynx who subsequently underwent surgery for defi nitive tumor resection and radio-
therapy resulted in signifi cant increases in disease-free and overall survival with 
limited toxicity [ 217 ]. Systemic infusion of recombinant IL-2 combined with intra-
muscular or subcutaneous administration of interferon alpha resulted in an 18 % 
partial response rate (2/11) with substantial associated toxicity [ 218 ]. High doses of 
IL-2 may result in severe systemic toxicities (hypotension, capillary leak syndrome, 
and oliguria) [ 215 ], while at low doses the therapeutic effi cacy might not be reached. 
Specifi c delivery of IL-2 at the tumor site is being explored in order to reach the 
therapeutic concentration locally while maintaining tolerable concentration system-
ically. For example, ALT-801 [ 216 ], a fusion protein composed of IL-2 and a TCR 
specifi c for the p53 (aa264-272)/HLA-A*0201 complex, is a new drug that moves 
toward this direction that targets IL-2 to the tumor cells overexpressing p53. Its use, 
in patients with different malignancies including head and neck cancer, seems to 
suggest a higher effi cacy and a lower toxicity than high doses of IL-2 [ 216 ]. 
Interferon alpha has been used in combination with cisplatin and 5-fl uorouracil in 
the treatment of advanced esophageal carcinoma (SCC and adenocarcinoma), with 
an overall response rate of 55 and a response rate of 61 % with esophageal SCC. 
Signifi cant toxicities were reported [ 219 ]. Interferon gamma infused intravenously 
over a 24-h period once weekly for four infusions resulted in measurable response 
in three of eight patients with advanced resectable HNSCC with minimal toxicity 
noted and with histopathologic changes attributed to the therapy noted at the time of 
resection [ 220 ]. Intratumoral administration of recombinant IL-12 in patients with 
HNSCC resulted in a signifi cant activation of B cells and the B cell compartment, 
with the presence of tumor-infi ltrating B cells correlating with overall survival in 30 
patients studied (irrespective of IL-12 treatment) [ 221 ]. IL-12 intratumoral admin-
istration resulted in an increase in the number of B cells and B cell proliferation in 
regional lymph nodes, a measurable increase in B cell interferon gamma mRNA 
expression, and a highly signifi cant IgG subclass switch measured in plasma, indi-
cating a switch to a T helper 1 phenotype [ 222 ]. Intratumoral administration of 
IL-12 resulted in increased number of CD56 +  NK cells in the primary tumor with no 
differences seen in primary tumor infi ltration by CD8 +  and CD4 +  lymphocytes, with 
increased production of interferon gamma measured in CD56 +  NK cells and CD8 +  
and CD4 +  lymphocytes in regional lymph nodes [ 222 ]. A more recent strategy 
undergoing ongoing clinical trials is to employ a cocktail of cytokines administered 
subcutaneously in preoperative fashion in patients with HNSCC [ 223 – 226 ]. IRX-2 
is a primary cell-derived biologic containing physiologic quantities of T helper type 
1 cytokines and monokines. Its primary active components are IL-2, IL-1β, IFNγ, 
and tumor necrosis factor alpha (TNF-alpha), which are combined with zinc 
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(important in the development and function of cellular immunity), indomethacin 
(activates immune response and reduces immunosuppressive effects of prostaglandins), 
and low-dose cyclophosphamide (enhances the cell-mediated immune response by 
depleting and inhibiting immunosuppressive Tregs) as complementary methods to 
enhance immune responsiveness [ 225 ]. Preliminary studies have shown increases in 
CD3 + , CD20 + , and CD68 +  cells in surgical tumor specimens compared with pre-
treatment biopsies, with CD3 +  T cells localized to intratumoral regions. CD4 +  cells 
were localized to peritumoral areas, while CD8 +  T cells were mainly intratumoral. 
CD20 +  B cells were primarily peritumoral, with CD68 +  macrophages localized to 
intratumoral regions [ 226 ]. The treatment was well tolerated, with CD3 +  lympho-
cyte infi ltration in the surgical specimen having the strongest association with over-
all survival (all patients were treated without comparison control group) [ 225 ,  226 ].  

6.1.2     Reversal of Immunosuppression 

 While the above-described nonspecifi c strategies for immune stimulation have the 
potential to generate increased quantity and quality of antitumor effector cells, their 
effi cacy can be severely limited by tumor-mediated immunosuppression. Indeed, a 
tumor-specifi c immune tolerance and a generalized immunosuppression are the 
main immunological characteristics of HNSCC. Thus, it is not surprising that dif-
ferent anti-immunosuppressive strategies are being developed now that the multiple 
mechanisms of immunosuppression in HNSCC are being delineated. These strate-
gies are designed to (1) reestablish a micro- and macro-environment favorable for 
immune surveillance, (2) deplete the suppressive populations that are recruited by 
the tumor, or (3) block the molecular mechanisms by which the negative regulators 
of the immune response shield the tumor from immunological recognition. 

 In the fi rst class of immune therapeutic intervention, the signaling by which the 
HNSCC promotes the expansion of immune-modulatory cells (i.e., MDSC, Treg) is 
targeted. For example, it is known that VEGF, PGE2, GM-CSF, IL-6, and other 
tumor-derived factors activate aberrant intracellular pathways (i.e., IL6st, STAT3) in 
the myeloid lineage, expand the pool of MDSCs, and prevent DC maturation. Thus 
inhibition of these intracellular pathways can be a strategy to revert the suppressive 
tumor macro-environment and restore effective immune surveillance. Sunitinib for 
example is a small molecule that inhibits multiple tyrosine kinases (VEGFR-1, 
VEGFR-2, VEGFR-3, PDGFR, c-kit, ret, and STAT3) and that has shown potent 
effects against MDSC in both animal models and human studies [ 227 ]. Clinical 
studies in advanced renal cell carcinomas have found reversal of MDSC accumula-
tion in addition to tumor cell apoptosis in sunitinib-treated patients [ 228 ]. However, 
a clinical trial using sunitinib in HNSCC demonstrated important hematological 
toxicities (i.e., lymphopenia, neutropenia, and thrombocytopenia) or bleeding com-
plications in many patients [ 229 ] and poor therapeutic effi cacy [ 230 ,  231 ]. 
Considering the capacity of this molecule to inhibit multiple tyrosine kinases and 
the fact that some of these pathways need to be transiently activated during normal 
myelopoiesis and lymphopoiesis, these results are not completely surprising. 
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Nevertheless positive antitumor results were obtained when sunitinib was administered 
in conjunction with image-guided radiotherapy for the treatment of patients with 
oligometastases [ 232 ]. Thus, despite the intrinsic toxicity (that could be signifi cantly 
reduced by a nanotargeted delivery in the future) sunitinib may yet maintain its 
therapeutic promise as a component of a possible multimodal therapy or in situations 
of minimal residual disease. 

 1α,25-dihydroxyvitamin D 3  is another compound that may have important thera-
peutic potential in the treatment of HNSCC. This well-tolerated vitamin has previ-
ously been shown to induce, in vitro, the maturation of immune-suppressive CD34 +  
MDSC into immune-stimulatory dendritic cells [ 233 ,  234 ]. Further studies demon-
strate that patients treated with 1α,25-dihydroxyvitamin D 3  for 21 days before sur-
gery had reduced intratumoral levels of MDSCs, an increased level of mature 
dendritic cells, and a higher number of effector CD4 +  and CD8 +  T cells infi ltrating 
the tumor and expressing the early activator marker CD69. More importantly, this 
short presurgical treatment was suffi cient to double the time of HNSCC recurrence 
in the treated patients [ 235 ]. Interestingly, these antitumor effects of 1α,25- 
dihydroxyvitamin D 3  were characterized by a profound modulation of the cytokine 
concentration in the plasma and in the tumor specimen [ 236 ]. Although induction of 
MDSC differentiation into immune-stimulatory DC may be one of the mechanisms 
that promotes the immunomodulatory activity of 1α,25-dihydroxyvitamin D 3 , other 
actions might be involved. Indeed, 1α,25-dihydroxyvitamin D 3  has been shown to 
inhibit tumor angiogenesis in vivo and the production of VEGF and hypoxia factor 
1α in many human tumor cell lines [ 237 ]. Since both VEGF and HIF1α are impli-
cated in the induction of MDSCs by the tumor, it is possible that by modulating the 
transcriptome profi le of neoplastic cells, 1α,25-dihydroxyvitamin D 3  deprives 
tumors of those elements that allow for their escape from immune surveillance. 

 Another agent that has been used to reverse immune suppression in HNSCC 
belongs to the class of cyclooxygenase-2 (COX2) inhibitors. As we mentioned 
above, COX2 is overexpressed in the tumor microenvironment and its expression 
correlates with a poor prognosis in HNSCC [ 65 ]. COX2 expression is localized 
both in the neoplastic cells and in the surrounding stroma [ 65 ], and by producing 
PGE2 it is able not only to activate the suppressive phenotype in the MDSCs but 
also to facilitate the differentiation of MDSCs from their hematopoietic precursors 
[ 68 ]. Thus, COX2 inhibition can be seen as an important opportunity to reverse 
HNSCC- induced immune suppression by blocking both MDSC differentiation and 
activation (i.e., by inducing arginase 1 and iNOS [ 238 ]) at the tumor site. 
Interestingly, celecoxib (a specifi c COX2 inhibitor) has demonstrated antitumor 
activity in advanced HNSCC when used in combination with erlotinib (a specifi c 
inhibitor of EGFR) and in combination with radiotherapy. In combination with 
erlotinib, 25 % of the treated patients with unresectable recurrent locoregional and/
or distant metastatic HNSCC show a partial response and a low toxicity profi le 
[ 239 ]. Instead, when the same treatment was used in combination with local irradia-
tion on patients with previously irradiated HNSCC, 60 % of the patients showed 
locoregional control and 37 % progression-free survival at 1 year [ 240 ]. Celecoxib 
unfortunately was also found to be associated with a dose-dependent cardiovascular 
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morbidity, which limited its dosage and prevented its long-term use in reversing 
tumor-induced immunosuppression [ 241 – 243 ]. 

 In addition to the use of drug to restrain MDSC differentiation, other strategies 
have been developed targeting specifi cally the suppressive mechanisms by which 
these cells inhibit antitumor immunity. We previously demonstrate in preclinical 
models that PDE5 is a key protein that mediates MDSC suppression [ 175 ]. This 
enzyme, by controlling the intracellular concentration of cGMP, directly controls 
the expression of iNOS, IL4Rα, and arginase 1 on MDSCs [ 175 ], thereby control-
ling their suppressive action. Indeed, pharmacologic inhibition of PDE5 using silde-
nafi l or tadalafi l (FDA-approved drugs for the treatment of erectile dysfunction) was 
suffi cient to restrain tumor-induced immune suppression, prime a spontaneous anti-
tumor immune response, and drastically reduce tumor progression in murine mod-
els of breast and colon cancer [ 175 ]. Furthermore, in a lymphoma model of 
tumor-induced tolerance, PDE5 was suffi cient to restrain the MDSC-mediated 
expansion of tumor-specifi c Treg [ 244 ]. Finally, and more importantly, when 
Sildenafi l was added to anti-CD3/anti-CD28-stimulated PBMCs from patients with 
HNSCC and multiple myeloma, PDE5 blockade was suffi cient to restore the other-
wise repressed T cell proliferation [ 244 ]. Based on these results two independent 
clinical trials (at Johns Hopkins University and at the University of Miami) were 
started in HNSCC patients to test the immune modulatory capacity of tadalafi l daily 
administration before surgical resection of the primary tumor. Interim analyses in 
both clinical trials seem to suggest that PDE5 blockade lowers MDSC and Treg 
concentrations in the blood and in the tumor tissue, promotes the tumor infi ltration 
of activated (CD69 + ) CD4 +  and CD8 +  T cells, and expands the systemic pool of 
tumor-specifi c T cells. Only reversible negative side effects (back pain) have been 
found in a small percentage of treated patients suggesting the possible use of PDE5 
inhibitors to down-modulate immune suppression in HNSCC (Weed and Serafi ni 
unpublished observation). 

 It is important to remember that MDSCs are not the only mediator of immuno-
suppression in HNSCC. As described above Tregs are signifi cantly expanded in 
HNSCC patients, and this cell population is thought to play an important role in 
tumor-induced T cell anergy, inhibition of DC maturation, and malignant progres-
sion [ 192 ]. Despite therapies specifi cally aimed at depleting or inactivating Tregs in 
HNSCCs that have not yet been clinically tested (or results are still unavailable) 
there is the indication that low dosage of cyclophosphamide or ifosfamide can 
selectively deplete Treg in cancer patients [ 245 ]. These alkylating agents have been 
shown to be effective in the treatment of HNSCC even when used as a single agent 
[ 246 ]. Interestingly ifosfamide’s therapeutic effi cacy was increased when it was 
administered in association with cisplatin and 13- Cis  retinoic acid, with a response 
rate of 72 % in distant metastatic HNSCC [ 247 ]. In this study a restoration of tumor 
immunity was hypothesized because of the prolonged response observed once the 
chemotherapeutic regimen was terminated. In light of the new understanding that 
13- Cis  retinoic acid can  trans -isomerize in vivo to produce all- trans -retinoic acid 
(ATRA) [ 248 ] and that ATRA can force MDSC to differentiate into mature DC [ 249 ], 
it is highly possible that at least part of the benefi cial effect of this chemotherapeutic 
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combination was due to the restoration of a correct immunological milieu by MDSC 
conversion and Treg depletion. Because of the possible benefi cial role that cyclo-
phosphamide-dependent Treg depletion can act in synergy with other therapies in 
head and neck cancer, different trials are currently ongoing, but results are still 
unavailable. 

 In summary, the better understanding of the cellular and molecular mechanisms 
that regulate tumor immunosuppression in HNSCC and the technical advances in 
drug isolation and development are offering many strategies for the immunomodu-
lation of tumor immunity. Nevertheless, many of the identifi ed pathways are impli-
cated in normal physiological activity, and thus their inhibition may lead to 
extremely serious side effects. A specifi c targeting using nanoparticle or other simi-
lar strategies needs to be developed in order to minimize the negative side effect and 
maximize antitumor effi cacy. It is important to note that despite the coexistence of 
multiple suppressive pathways, the inhibition of only one is often suffi cient to tilt 
the balance and generate a micro- and macro-environment favorable to an effective 
immune surveillance.   

6.2     Antigen-Specifi c Approaches 

 Immune-specifi c therapeutic strategies seek to harness the natural immune response 
to tumor by virtue of amplifying one or more of the effector arms of the immune 
system targeting specifi c tumor antigens. These strategies include antibody thera-
pies, adoptive cell transfer, and various tumor vaccine approaches. The effi cacy of 
these approaches is likely to be substantially improved when combined with non-
specifi c immunotherapeutic approaches and particularly with strategies designed to 
reverse tumor-induced immunosuppression. Additionally, the effi cacy of combina-
tions of both antigen-specifi c and -nonspecifi c immunotherapeutic strategies with 
conventional chemotherapy, radiation therapy, and surgical protocols is only begin-
ning to be elucidated. 

6.2.1     Antibody Therapies 

 The most widely studied antibody therapy for HNSCC involves the use of antibodies 
targeting the epidermal growth factor receptor (EGFR). These strategies are sum-
marized in useful reviews by De Costa and Young [ 250 ], Ferris et al. [ 251 ], and 
Russell and Colevas [ 252 ]. The EGFR is overexpressed in oral premalignant and 
malignant lesions [ 253 ] and is the most common tumor antigen against which anti-
body therapies are directed in HNSCC. Other antibody targets include HER2/neu 
and VEGF. Corresponding therapeutic antibodies include cetuximab (EGFR/HER1), 
panitumimab (EGFR/HER/1), trastuzumab (HER2/neu), and bevacizumab (VEGF). 

 The tumor antigens mentioned above are cell surface molecules that have func-
tional capabilities as mediators of signaling pathways responsible for cell growth 
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and endothelial cell proliferation as examples. These receptors are found on normal 
cells as well as tumor, indicating that toxicity to normal tissues can occur with these 
therapies. Monoclonal antibody-based therapies can therefore have a dual effect on 
tumor cells bearing increased expression of these receptor antigens. The signaling 
pathway initiated by the receptor may be inhibited by antibody blockade, typically 
a preferred outcome for these tumors. Additionally, cell-mediated cytotoxicity may 
be initiated by the monoclonal antibody bound to the tumor antigen resulting in tumor 
cell death. Fortunately treatment with these antibodies does not typically result in 
severe allergic reactions or systemic toxicity [ 251 ]. Treatment with these antibodies 
alone can result in limited responses, even in advanced pretreated disease [ 254 ]. 
Their effi cacy is typically increased in combination with chemotherapy and radia-
tion therapy. 

 The clinical success of cetuximab has been demonstrated in single agent and 
combinational phase I studies, showing both good patient tolerance and clinical 
effi cacy [ 255 – 257 ]. The most common side effect of treatment is an acneiform rash. 
A phase III trial of 424 HNSCC patients randomized to radiation alone or cetux-
imab and radiation resulted in an increase in locoregional control in the cetuximab 
group (24.4 months vs. 14.9 months,  p  = 0.005) [ 258 ]. This study, and its relatively 
limited toxicity, resulted in FDA approval of cetuximab for use in combination with 
radiation therapy for locally advanced HNSCC in 2006. The longer term follow-up 
of this trial still showed effi cacy of the cetuximab-treated patients, with 45.6 % vs. 
36.4 % overall 5-year survival and the notable observation that improved overall 
survival was seen in patients experiencing at least a grade 2 acneiform rash during 
treatment [ 259 ]. Studies combining cetuximab with both chemotherapy and radia-
tion therapy have noted considerably greater toxicities that become therapy limit-
ing, making demonstration of effi cacy diffi cult over standard platinum-based 
chemo-radiation strategies [ 252 ,  260 ,  261 ]. Studies comparing the effi cacy of cetux-
imab combined with radiation therapy vs. cisplatin-based chemoradiation therapy 
are ongoing [ 252 ]. 

 The mechanism of action of monoclonal antibody blockade leading to tumor 
response and death is likely twofold, as mentioned above. Blockade of signal trans-
duction alone is not likely to yield the clinical benefi ts described above, with an 
immunologic mediated cell death being an important component of the success of 
monoclonal antibody-based therapies as well as a key contributor to the variable 
responses seen with such therapies [ 251 ,  262 – 264 ]. In cell culture tumor cell apop-
tosis does not occur with treatment by monoclonal antibody alone but only when 
lymphocytes are added to the culture system [ 251 ,  265 ]. Clinical response can be 
correlated in patients with polymorphisms of monoclonal antibody-binding recep-
tors on NK cells, monocytes, and granulocytes that are known to have lytic activity 
[ 251 ]. Interestingly, the level of EGFR expression, activation, or gene amplifi cation 
does not correlate with clinical response to monoclonal antibody therapy. This fi nd-
ing suggests that factors other than blockade of signal transduction contribute to the 
observed clinical effect [ 251 ,  266 ]. Possible explanations for the variability of 
response are many. The monoclonal antibody isotype subclass plays an important 
role in the extent of cell-dependent lysis of the target cell. IgG1 and IgG3 subclasses 
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are more effi cient than IgG2 and IgG4 subclasses at mediating lysis of target cells 
[ 251 ,  267 ,  268 ]. This is clinically relevant as cetuximab is an IgG1 isotype, whereas 
panitumimab, another monoclonal antibody targeting the EGFR, is an IgG2 isotype 
and is predicted to have a lower ability to induce cellular immune reactions [ 251 , 
 265 ,  269 ]. Complement-dependent cytotoxicity can be seen with IgG1 isotype 
monoclonal antibodies, but this mechanism of cell death occurs rapidly and is not 
consistent with the observed clinical responses seen in cetuximab therapy in HNSCC 
where tumor shrinkage is noted over weeks. This is also inconsistent with an NK 
cell-mediated cell death, which should occur over a matter of hours, and is more 
indicative of a T-lymphocyte-mediated lytic effect [ 251 ]. Another factor which may 
infl uence clinical response to monoclonal antibody-based therapies includes Fc 
gamma R polymorphisms, particularly as this relates to the role of NK cell- mediated 
cytotoxicity, although clinical relevance of such polymorphisms is not well eluci-
dated [ 251 ,  267 ]. It is also possible that an initial antibody-mediated neoplastic cell 
death and macrophage infi ltration result in the release of tumor antigens and increase 
cross-priming that allows the generation of an adaptive immune response that pro-
motes tumor regression. 

 Taken together, data regarding antibody-based immunotherapies for HNSCC 
have clearly demonstrated the greatest clinical effi cacy and certainly the most wide-
spread use in clinical practice today. The complexity of interactions that occur at the 
cellular level with such strategies likely explains the variable responses seen and the 
lack of clear correlation with antigen (receptor) levels and treatment response. This 
complexity also argues for further investigation of treatment strategies designed to 
exploit the immunologic effects of monoclonal antibody-based therapies, in the 
form of either combined strategies to reverse immunosuppression or perhaps adop-
tive T cell therapies that may ultimately further strengthen the already established 
clinical effi cacy of these treatments [ 270 ].  

6.2.2     Adoptive Cell Transfer 

 Adoptive cell transfer is a therapeutic strategy designed to provide a primed antigen- 
specifi c population of effector cells that can result in cell-mediated tumor cytotoxic-
ity. Studies utilizing this method are few, in part due to the technically challenging 
and cumbersome nature of the therapies. One such trial [ 171 ] involved a study of 17 
patients with recurrent and metastatic HNSCC who were vaccinated in the thigh 
with irradiated autologous tumor cells admixed with GM-CSF followed by three 
additional daily injections of GM-CSF at the vaccination site. Eight to ten days later 
inguinal lymph nodes draining the vaccine site were resected, and lymphocytes har-
vested from these nodes were activated with staphylococcal enterotoxin A and 
expanded in IL-2 in vitro. The cultured cells were then infused back into the patients 
peripherally as outpatients. 15 patients were successfully infused (2 showed insuf-
fi cient vaccine response), with the toxic effects of infusion limited to grade 2 reac-
tions in 3 of 16 total treatments. The infused cells were predominately CD3 + , a 
mixture of CD4 +  and CD8 +  cells. Three patients showed disease stabilization where 

The Immune System in Head and Neck Squamous Cell Carcinoma…



300

progression had been evident pre-treatment, with two patients described as having a 
favorable clinical course [ 171 ]. 

 Another adoptive cell strategy [ 271 ] was employed utilizing the antibody catu-
maxomab that binds epithelial cell adhesion molecule (EpCAM) with one arm and 
CD3 +  T cells with its other arm. Peripheral blood mononuclear cells (PBMC) of 
four patients were collected by leukopheresis, then incubated ex vivo with catumax-
omab for 24 h, and cleared and released from cytokines. Each patient received an 
escalated dose of the opsonized PBMC intravenously at bi-weekly intervals. The 
opsonized PBMC released signifi cant amounts of IFN-γ and TNF-α in vitro, which 
was removed prior to administration. Catumaxomab up-regulated CD25, CD69, and 
CD83 on PBMC, and catumaxomab-loaded PBMC released IFN-γ and granzyme B 
when coincubated with EpCAM( + )BHY cells. This suggested cell activation and 
target-directed biological activity. Adverse events were signifi cant at higher doses, 
but lower doses were well tolerated and one patient showed stable disease at 
6 months and one in complete remission at 27 months [ 271 ]. 

 A recent study evaluated a bimodal ex vivo expansion method to harvest tumor- 
specifi c T cells [ 272 ]. TIL bulk cultures were established from primary and recurrent 
HNSCC in high-dose IL-2. Next selected bulk cultures were rapidly expanded using 
anti-CD3 antibody, feeder cells, and high-dose IL-2. T cell subsets were phenotypi-
cally characterized using fl ow cytometry. Interferon gamma detection by Elispot and 
 51 Cr release assay was used to determine the specifi city and functional capacity of 
selected TIL pre- and post-rapid expansion. Bulk TIL cultures were expanded in 
80 % of the patients included with tumor specifi city demonstrated in 60 %. Rapid 
expansions generated up to 3,500-fold expansion of selected TIL cultures within 17 
days. The cultures consisted primarily of T-effector memory cells, with varying 
distributions of CD8 +  and CD4 +  subtypes. TCR clonotype mapping demonstrated 
oligoclonal expanded cultures with 10–30 T cell clonotypes. The TIL from large-
scale rapid expansions maintained both functional capacity and contained tumor-
specifi c T cells. This study provides the basis for future clinical trials utilizing this 
method of ex vivo T cell expansion in adoptive cell transfers in HNSCC [ 272 ]. 

 Nevertheless adoptive cell transfer strategies are limited by the need to isolate 
and expand antitumor reactive lymphocytes that preexist in the patient and often are 
anergic to the in vitro restimulation [ 273 ]. Gene modifi cation of T lymphocytes 
[ 217 ,  225 ] may overcome the requirement for preexisting tumor-specifi c immunity. 
With this strategy, PBMCs from patients are retrovirally transduced with TCR spe-
cifi c for the tumor, thus conferring them with additional specifi city for the neoplas-
tic cells before reinfusion. Additional genes that protect the lymphocytes from the 
tumor-suppressive mechanisms can also be added, making this strategy extremely 
interesting [ 220 ]. As a proof of concept for the therapy, PBMCs from melanoma 
patients were retrovirally transfected with high-affi nity TCR specifi c for p53–HLA- 
A2 complex and, as anticipated, were shown to be able to recognize different 
p53-expressing human tumor cell lines [ 274 ]. Considering the importance that p53 
antigen plays in HNSCC and that this strategy is already being tested in other malig-
nancies, the use of TCR-transduced PBMCs could be rapidly tested in P53 +  head 
and neck cancer. 
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 Besides the transfer of CTL, the antitumor effi cacy of adoptively transferred 
effector Vα24 NKT cells has been tested in HNSCC [ 275 ]. Since NKT cells have an 
antitumor effect, Yamasaki et al. evaluated the safety and therapeutic effi cacy of ex 
vivo-expanded NKT cells adoptively transferred to ten locally recurrent and opera-
ble HNSCC patients. One course of nasal submucosal administration of αGalCer- 
pulsed APCs and intra-arterial infusion of activated NKT cells via tumor-feeding 
arteries was given before salvage surgery. Five patients achieved objective tumor 
regression. The number of NKT cells increased in cancer tissues in seven cases and 
was associated with tumor regression [ 275 ]. 

 Adoptive cell transfer of HNSCC-reactive cells seems to be a promising thera-
peutic option that could be used in association with anti-immunosuppressive strate-
gies and/or with other standard therapeutic options.  

6.2.3     Antitumor Vaccines 

 The intrinsic genetic instability and the particular etiology of HNSCC result in the 
expression of both unique and shared TAA by the malignant cells. These differences 
provide an important therapeutic opportunity to educate the immune system to rec-
ognize and destroy the neoplastic cells while preserving the normal tissues. TAA are 
presented as epitope by the MHC of the cancerous and precancerous cells, allowing 
their identifi cation by the cytotoxic T cells. Many HNSCC-associated antigens have 
been identifi ed and characterized, and vaccine strategies aimed to mount an immune 
response against these antigens are being developed. For example, 71 % of HNSCC 
express antigens from at least one of the six melanoma antigen genes (MAGE) [ 142 , 
 276 – 278 ]. Additionally, NY-ESO-1, a testis-specifi c antigen, is highly expressed in 
HNSCC [ 279 ]. Moreover, mutations of normal protein (i.e., p53) are extremely 
common in HNSCC because they contribute to the malignant phenotype, and these 
give rise to tumor-specifi c antigens [ 62 ]. Finally, because of the changes in HNSCC 
epidemiology, the HPV-associated antigens E6 and E7 can be used as epitopes to 
target the immune response against the tumor [ 280 ]. 

 Different strategies (described elsewhere in this book) can be used to promote an 
immune response against the tumor; however, the clinical evaluation of these strate-
gies in HNSCC remains in its infancy, with few clinical studies available. 
Nevertheless several lines of evidence make the development of HNSCC-specifi c 
vaccines extremely appealing. For example, p53-specifi c CTL can be expanded in 
patients with HNSCC [ 281 ]. By using autologous DC pulsed with the HLA-A2.1- 
restricted wt p53 264–272  CTL-specifi c clones could be expanded in vitro and detected 
in vivo from the PBMCs of many HNSCC patients. Interestingly, while p53-specifi c 
T cells could be expanded and detected in vivo from the group of patients whose 
tumors express low levels of p53, the group of patients whose tumor expresses high 
levels of p53 showed fewer circulating P53-specifi c CTLs that only rarely could be 
expanded in vitro [ 281 ]. These data are in line with the hypothesis that immune 
selection and immune editing might have intervened in the fi rst group selecting 
those neoplastic clones with a lower p53 expression but also indicate that it might 
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be diffi cult to raise an immune response in patients in whom immune surveillance 
has already failed. Nevertheless, in these cases different strategies might be adopted: 
more immunogenic modifi ed epitope might be used for the immunization or the 
immunogen can be given with an adequate adjuvant such as on DC co-pulsed with 
adjuvant helper peptides. Indeed, more immunogenic variants of the p53 264–272  are 
able to rescue the expansion even from the PBMCs of patients with high p53- 
expressing tumor [ 282 ]. Furthermore, an appreciable immune response was 
observed when autologous DC pulsed with the p53 peptide and a tetanus-derived 
helper peptide were given as a vaccine in stage I–IVa patients (pts) with HNSCC 
with no active disease [ 266 ]. Vaccination was well tolerated by all HNSCC patients. 
Increased p53-specifi c T cells were seen in 11/16 patients (69 %) with positive 
IFN-γ secretion in 4/16 patients (25 %). Frequencies and absolute number of Treg 
were signifi cantly decreased after vaccination ( p  = 0.006). Disease-free survival 
(85 %) at 24 months of follow-up appeared to be favorable as compared to historical 
unvaccinated HNSCC patients [ 283 ].   

6.3     HPV as a Potential Immunological Target 

 With the recognition of the important role of HPV infection in HNSCC tumorigen-
esis, particularly in nonsmokers, this expanding subset of patients is a particularly 
attractive patient population in which to study novel vaccine strategies. One reason 
for this is that the HPV is an immunoreactive target for which a vaccine has already 
been established and currently approved for prophylactic use [ 272 ]. One strategy 
for vaccine therapy in HNSCC, therefore, is a preventive one. Vaccination of not 
just girls but also boys should result in more than an additive effect in the long-term 
prevention of HPV-related malignancies given that HPV-related malignancies are 
sexually transmitted diseases [ 284 ]. Vaccination programs targeting both boys and 
girls will likely result in a signifi cant reduction in the overall incidence of HPV- 
related HNSCC in the future. Nevertheless therapeutic HPV vaccines are also being 
developed. These vaccines are being designed to target not the HPV capside anti-
gens L1 and L2, that are not expressed once the virus is integrated, but rather E6 and 
E7 that are constitutively expressed in all levels of epithelium and that are critical 
for the maintenance of malignant transformation in HPV-infected cells by inactivat-
ing the tumor-suppressor protein p53 and retinoblastoma (RB) [ 280 ]. Different 
methods of immunization are currently being tested in cervical and head and neck 
cancer. These vaccines include the use of HPV-E6 peptides, live attenuated listeria 
 monocytogenes  bacteria carrying E7 fusion protein, vaccinia-based vaccines, naked 
DNA vaccines, and DC-based vaccines. Live attenuated listeria  monocytogenes  
bacteria encoding E6 and E7 vaccines (ADXS11-001) are a relatively new and 
interesting method of immunization that takes advantage of capacity of listeria 
 monocytogenes  to both stimulate the innate immunity and, by naturally infecting the 
antigen-presenting cells, to promote DC antigen cross-presentation activating both 
CD4 +  and CD8 +  T cells [ 285 ]. Preclinical data demonstrate that ADXS11-001 
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vaccine induces the regression of established tumors, by reducing the suppressive 
activity of Treg and MDSCs at the tumor site, by promoting the chemotaxis 
and maturation of dendritic cells, and by generating memory effector T cells [ 286 ]. 
An initial phase I clinical trial was performed in a population of refractory cervical 
cancer patients in which no therapy had been shown to extend survival [ 287 ]. 
Despite the presence of a transient adverse fl u-like effect in 100 % of the patients, 
73 % of the patients had a performance status ECOG 2–4, 1-year survival increased 
to 53 % from the historical 5 %, and a signifi cant reduction of tumor size was appre-
ciated in 33 % of the patients [ 287 ]. Considering that listeria  monocytogenes  can 
be killed by the use of antibiotics, this strategy is extremely promising for the treat-
ment of HPV +  HNSCC. Based on these and other results, a clinical trial started in 
the UK in which patients with HPV16 +  oropharyngeal SCC are being treated with 
three different doses of ADXS11-001 in addition to the current chemo-, radio-, and/
or surgical treatment (T.M. Jones, Liverpool CR-UK Centre, personal communica-
tion). Results of this ongoing trial are still unavailable. 

 Another strategy being explored for inducing a strong immune response against 
HPV epitope is the use of “Trojan” peptides. Trojan peptide-based vaccines contain 
a penetrin peptide sequence derived from HIV-TAT which allows the entire peptide 
to translocate through the cell membrane and penetrate directly into the endoplas-
matic reticulum and the Golgi apparatus. There, they can form peptide–HLA com-
plexes without the need of proteosomal processing and TAP transportation. This 
strategy has been used to vaccinate patients with advanced HNSCC against the TAA 
MAGE 3 and HPV-16 [ 288 ]. In particular the penetrin peptide was fused via furin 
cleavable linker to MAGE and HPV-16-derived HLA-I- and HLA-II-restricted pep-
tides. Following four immunizations with GM-CSF and Montanide ISA 51 as adju-
vant, systemic immune response against the Trojan and the HLA-II-restricted 
peptides were measurable in most patients whereas the CD8-mediated responses 
were less pronounced [ 288 ]. Interestingly, analysis of the tumor specimen of one 
patient that underwent surgical resection of the malignancy after treatment revealed 
great infi ltration of MAGE-specifi c CD4 +  and CD8 +  T cells (absent in the pretreat-
ment biopsies) and large areas of apoptotic tumor cells [ 288 ]. Although this was 
only a proof-of-concept pilot study, the obtained data strengthen the enthusiasm for 
the development of tumor vaccines in HNSCC.  

6.4     Whole Tumor Vaccines in HNSCC 

 Since the use of a small number of epitopes in a vaccine formulation can result in 
further immune editing and relevant antigen lost from tumor, other vaccination 
methods include the use of the whole tumor with the rationale to target the whole 
repertoire of tumor antigens. As mentioned above, patients have been vaccinated 
with autologous irradiated tumor cells and then received adoptive transfer of in 
vitro-expanded CD4 +  and CD8 +  lymphocytes harvested from lymph nodes draining 
the vaccination site [ 171 ]. This strategy achieved a limited clinical response while 
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being well tolerated and is an example of one way in which two separate but related 
types of cellular immunotherapies can be combined in an effort to achieve greater 
effi cacy with appropriate toxicity profi le [ 171 ]. Another example of a vaccine strat-
egy that utilized autologous tumor cells involved modifi cation of autologous tumor 
cells harvested at the time of tumor resection with Newcastle disease virus [ 271 ]. 
The treated patients were divided into groups receiving IL-2 alone or IL-2 com-
bined with vaccination with virus-modifi ed autologous tumor. The vaccinated group 
showed increased levels of tumor-reactive T cells, enhanced antitumor delayed-type 
hypersensitivity responses, and a prolonged long-term survival that was associated 
with an increase in immune reactivity [ 271 ]. Finally, another strategy exploited to 
prime an HNSCC-specifi c immune response is based on the use of oncolytic virus 
encoding for immune-stimulatory cytokines. Indeed, oncolytic virus therapy is a 
promising approach to cancer treatment, particularly for the locoregional control of 
solid tumors. The rationale for the use of these viruses is that they selectively repli-
cate in tumor in a way that tumor cells are killed by lytic virus replication while 
normal cells are spared. Thus, having the virus encoding immune-stimulatory cyto-
kines such as GM-CSF, the tumor mass is reduced not only by the direct viral effect 
but also by the release of tumor antigens in an immune-stimulatory environment, 
inducing a tumor-specifi c immune response that protects the host from local and 
distant recurrence. 

 One of the fi rst examples reported in HNSCC was a phase I clinical trial using an 
oncolytic herpes simplex virus expressing GM-CSF [ 289 ]. In this clinical trial, the 
virus was injected intratumorally in patients with head and neck cancer, breast can-
cer, and malignant melanoma that had failed previous therapies. The virus was gen-
erally well tolerated with local infl ammation, erythema, and febrile responses being 
the main side effects. Nineteen of 26 patient posttreatment biopsies contained resid-
ual tumor, of which 14 showed tumor necrosis, which in some cases was extensive, 
or apoptosis. The overall responses to treatment were that three patients had stable 
disease, six patients had tumors fl attened, and four patients showed infl ammation of 
un-injected as well as the injected tumor, which, in nearly all cases, became infl amed 
[ 289 ]. Interestingly, in some patients both injected and un-injected lesions became 
infl amed and fl attened over time suggesting that either the virus spread to distant 
metastases or an important immune response was generated. Additional studies 
were performed in patients with stage III/IVA/IVB HNSCC in conjunction with 
chemoradiotherapy (cisplatin plus 70 Gy/35 fractions) and underwent neck dissec-
tion 6–10 weeks later. 82.3 % of the patients showed tumor response by Response 
Evaluation Criteria in Solid Tumors, and pathologic complete remission was con-
fi rmed in 93 % of patients at neck dissection. HSV was detected in injected and 
adjacent un-injected tumors at levels higher than the input dose, indicating viral 
replication. All patients were seropositive at the end of the treatment. No patient 
developed locoregional recurrence, and disease-specifi c survival was 82.4 % at a 
median follow-up of 29 months [ 290 ]. Although an extensive analysis of tumor 
immunity in head and neck cancer patients treated with oncoviral vector has not yet 
been performed, similar studies performed in melanoma as well as preclinical stud-
ies indicate that the therapeutic potential of oncolytic virus is linked to both innate 
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and adaptive immunity [ 291 ]. Indeed, in melanoma patients, regression of untreated 
lesions has been reported after treatment with oncolytic GM-CSF-encoding virus 
[ 291 ,  292 ]. In a murine model, tumor-bearing mice treated and cured are resistant 
to subsequent challenge with the same but not an unrelated tumor [ 292 ]. In summary, 
signifi cant progress is being made in promoting an HNSCC-specifi c antitumor 
immunity using a variety of strategies in currently ongoing clinical trials.   

7     Conclusion 

 The promise of immunotherapy in HNSCC remains elusive, yet its realization is 
closer now than ever. Advances in our understanding of the complex interactions of 
head and neck squamous cell carcinomas and the immune system have led to inno-
vative immunotherapeutic approaches tested in both preclinical and clinical settings. 
It is increasingly apparent that efforts to stimulate an effective immune response 
must be coupled with strategies to abrogate the immune-suppressive environment 
characteristic of these tumors. Preclinical studies and clinical trials have yielded 
very promising results and provide the foundation for further refi nements in a broad 
variety of immunotherapeutic strategies targeting all components of the immune 
system. Combining such approaches with the established treatment options of surgi-
cal resection, radiotherapy, and chemotherapy may ultimately yield substantive 
improvements in overall survival that to date have been lacking. Novel combinations 
of immunotherapies with traditional therapies may further reduce both disease-
related and treatment-related morbidities for this debilitating and deadly disease.     
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