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           Natural Human Computation 

 Human computation (HC) involves the creation of mixed organic-digital systems to 
solve diffi cult problems by outsourcing certain computational tasks to the human 
brain. However, we can distinguish between HC approaches that require a user to 
engage with a specifi c (and arbitrary) program or system, and HC approaches that 
simply leverage a user’s normal activity to compute the solutions to complex prob-
lems. We call this latter approach  natural human computation  (NHC). An instance 
of HC is  natural  when the behavior necessary for carrying out the proposed compu-
tation is already manifest in the system. 

 Eusocial insect colonies are models of natural computation (Dorigo et al.  2000 ; 
Gordon  2010 ). The information processing potential of ant colonies emerges from 
the small-scale, everyday interactions of individual ants: everything individual ants 
do is computationally signifi cant, both for the management of their own lives and for 
the colony’s success. This alignment between individual and colony-level goals 
means that ant colonies need not direct the behavior of individual ants through any 
sort of top-down social engineering. The queen issues no royal decrees; insofar as 
she has any special control over the success of the colony, that control is a product 
of her infl uence on individual colony members with whom she comes into contact. 
The sophisticated information processing capabilities of the colony as a whole are a 
product of each ant obeying relatively simple local interaction rules—those local 
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interaction rules, however, allow an aggregate of ants to infl uence each others’ 
behavior in such a way that together, they are capable of far more complicated com-
puting tasks than individual colony members would be on their own. Crucially, the 
computational power of the colony  just is  the concerted action of individual ants 
responding to the behavior of other ants: any change in the colony’s behavior will 
both be a result of and have an impact on the behavior of colony members. In this 
sense, natural ant behavior is both  stable  and  natural:  the computing activity of the 
colony can’t disrupt the behavior of colony members out of their standard behavior 
routines, since those standard behavior routines  just are  the computing activity of 
the colony. The stability of this behavior can in turn support a number of additional 
ecological functions. The regular harvesting of individual bees not only supports the 
activity of the hive, but also solves the pollination problem for fl owers in what we 
might call “natural bee computing” 1  which piggybacks on the behavior. NHC 
approaches take these natural models of computation as the paradigm case, and seek 
to implement similar patterns in human communities. 

 We have sketched a defi nition for NHC in terms of  stable  and  disruptive  computa-
tion, and turn now to discuss these concepts directly. Disruptive computation requires 
a  change  in an agent’s behavior in order to make their performance computationally 
signifi cant. Human computation is increasingly  stable  as its impact on agent behav-
ior is reduced. Describing an instance of human computation as “natural” is not itself 
a claim that the  human activity  is stable or disruptive, since NHC techniques can be 
used to extract computationally signifi cant data in both stable and disruptive con-
texts. Rather, describing an instance of HC as natural makes the more limited claim 
that the computation in question was not  itself  a source of disruption. We introduce 
the vocabulary of stability and disruption to clearly articulate this aspect of NHCs. 

 It may be instructive to compare NHC and gamifi cation (Deterding et al.  2011 ; 
McGonigal  2011 ) as strategies for human computing. Gamifi cation makes an HC 
task more palatable to users, but often alters user behavior in order to engage with 
the computational system. In contrast, NHC systems transparently leverage existing 
behaviors for computation. For instance, reCAPTCHA (von Ahn et al.  2008 ; von 
Ahn and Dabbish  2008 ) repurposes an existing task (solving text-recognition puz-
zles to gain access to a website) to solve a new problem (digitizing books for online 
use). This pushes HC to the background; rather than explicitly asking users to par-
ticipate in the solution of word recognition problems, it piggybacks on existing 
behavior. Gamifi cation is not always disruptive in the sense used here; in some cases 
described below gamifi cation techniques can serve to  stabilize  (rather than  disrupt ) 
the dynamics of systems to which they are applied. This suggests that we need a 
more robust vocabulary to map the conceptual territory. 

1   Of course, bees and fl owers achieved this stable dynamic through millions of years of mutual-
istic interaction; as we discuss in  “Developing the Attention Economy” , we expect any HC 
technique to require some period of adaptation and development. 
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 Michelucci (this volume) distinguishes between “emergent human computation” 
and “engineered human computation.” Emergent HC systems analyze uncoordi-
nated behavior from populations to do interesting computational work, while engi-
neered HC systems might be highly designed and coordinated for specifi c computing 
needs. We see natural human computation as a concept that is complementary to but 
distinct from Michelucci’s distinction. The defi ning characteristic of NHC is the 
potential for extracting additional computational work from human activity without 
creating additional disturbances in that behavior. This defi nition makes no assump-
tions about the degree to which these behaviors have been designed or coordinated 
for particular computing functions. In fact, we assume that natural human behavior 
involves organizational dynamics that cut across Michelucci’s distinction. NHC 
systems like Swarm!, described in “ Introducing Swarm! ” below, can be understood 
as a method for discerning natural organizational patterns as a potentially fruitful 
source of human computation. 

 We’re thinking about NHC in terms of the impact a computing task has on the 
behavior of its computers; NHC tasks introduce minimal disruptions to existing 
behavior. In contrast, Michelucci’s distinction isn’t concerned with the impact HC 
has on its agents. Rather, it is concerned with the performance of the computing task 
in question. Emergent cases of computing are where the goal is best accomplished 
by passively analyzing agents for specifi c computational results, more or less inde-
pendent of other aspects of their behavior. Engineered systems require increasingly 
coordinated activity to achieve computational results. For these reasons, we con-
sider Michelucci’s distinction to be a system-level or “top-down” perspective on 
computing tasks, while the stable/disruptive distinction is an agent-level or “bot-
tom- up” perspective on the same tasks. Or to cast the issue in techno- 
phenomenological terms: Michelucci is taking a designer’s perspective on human 
computing, where purposes (functions, tasks, goals, ends) are  imposed  on a comput-
ing population; on the other hand, we’re interested in the user’s perspective, where 
the generation and pursuit of purposes is a constitutive aspect of one’s ongoing 
committed engagement with the world. 

 It is worth reiterating that the sense of “natural” being articulated cuts across the 
categories represented in Table  1  below. We can think of these categories as defi ning 
the axes of a continuous space of possible computing systems. Claiming that a given 
system is emergent and disruptive (for instance) is to locate within this space. 
However, claiming that a given instance of human computation is  natural  is to point 
out a very different sort of fact about the system. In the context of human computa-
tion,  naturalness  is something like an indexical, describing words with use-relative 
content like “here” or “now.” Rather than giving an absolute location in the space 
defi ned by the distinctions discussed above, calling an instance of HC “natural” is 
to assert a fact about the HC system  relative  to the current state of the computational 

  Table 1    A two-dimensional 
model of human computation  

 Stable  Disruptive 

 Emergent  American Idol predictions  Yelp 
 Engineered  Zombies Run  FoldIT 
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substrate. A NHC might be engineered, emergent, disruptive, or stable to some 
greater or lesser degree; the ascription of naturalness depends only on a comparison 
between the system’s state  now  and the state that would be necessary for performing 
the desired computation. The distinctions between emergent, engineered, stable, 
and disruptive HC systems can be more clearly illustrated if we consider a few rep-
resentative examples. An absolute attribution of naturalness in any of these cases is 
not possible, as “naturalness” is an index to a user-relative state. As such, the fol-
lowing examples contain no direct appeal to “naturalness”, since the degree of natu-
ralness for some HC process may vary between individual users with distinct 
behavioral profi les. Using Yelp in deciding on some service, or using ZR to moti-
vate your run, will integrate naturally into the usage patterns of some users and may 
be more disruptive in the lives of others.

   Consider the following cases:

    Emergent/Stable:  HC systems are emergent when they exploit uncoordinated 
behavior in a population, and they are stable when that computing goal is met with-
out further disruption. reCaptcha has already been mentioned as an example of HC 
that falls in this quadrant. A more illustrative example can be found in Ciulla et al. 
( 2012 ), which describes modeling approaches to the Twitter datastream that suc-
cessfully anticipate the results of a recent American Idol voting contest. In this 
study, users Tweeted their thoughts on the contest of their own accord, 2  without 
coordination and independently of their potential use in predictive speculation, and 
so meets the defi nition of emergent. Solving the prediction task required no addi-
tional input from the users beyond this existing social behavior, and so also meets 
the defi nition of stable.  

   Engineered/Stable:  Engineered computing tasks are highly coordinated and 
designed for specifi c computing purposes. These designs can be stable in our sense 
when the computation fi ts existing patterns of behavior rather than creating new 
ones. BOINC’s successful @HOME distributed computing projects (Anderson 
 2004 ) are familiar examples of stable computing strategies, using spare processor 
cycles for useful computational work without occupying an additional computa-
tional footprint. For a more explicitly gamifi ed example, consider the 2012 exer-
cise motivation app called “Zombies Run”. 3  Zombies Run (ZR) is designed to 
work in tandem with a player’s existing exercise routine, casting her as a “runner” 
employed by a post-apocalyptic settlement surrounded by the undead. The game’s 
story is revealed through audio tracks rewarding player for gathering supplies, 
distracting zombies, and maneuvering through the dangerous post-apocalyptic 
wasteland, all accomplished by monitoring a few simple features of the user’s run. 

2   We ignore for the sake of the example any potential feedback from advertising or other systems 
that reinforce tweeting behavior surrounding the American Idol event. 
3   From the UK-based Six to Start.  https://www.zombiesrungame.com/ 
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The app motivates runners to continue a routine they’ve already developed, using 
tools already appropriated in that behavior; the app isn’t designed to help users to 
start running, it is designed to help them  keep  running. This is a defi ning feature of 
engineered/stable systems: while they are the product of deliberate design, the 
design’s primary effect is to reinforce (rather than alter) existing patterns of behav-
ior. While ZR players aren’t (necessarily) performing any particularly interesting 
computing function, the app provides a clear example of how a highly designed, 
immersive app can nevertheless be stably introduced into a user’s activity.  

   Emergent/Disruptive:  A computational state is  disruptive  when implementation 
would involve a signifi cant reorientation of the behavior and/or goals of the agents 
under consideration. This can occur in emergent computing contexts where indi-
viduals are acting independently and arbitrarily. Yelp.com is a popular web-based 
service that compiles crowd-sourced reviews of local businesses and services. These 
reviews are used to compute a rating of a given service based on search criteria. And 
indeed, solving this computing problem itself changes the activity of the population: 
Luca ( 2011 ) fi nds that the a one-star rating increase amounts to a 5–9 % increase in 
revenue. In other words, the self-directed, emergent activity of Yelp reviewers is 
disruptive to the behavior of the dining community, effectively redirecting a portion 
of them to services with higher ratings. It may be supposed that Yelp’s disruptive 
status is a consequence of feedback from the HC system being used to guide the 
decisions of future diners. However, Zombies Run provides an example where feed-
back on HC behaviors can reinforce those behaviors with little disruption. This 
suggests that Yelp’s economic impact involves more than providing feedback on the 
HC task; it refl ects something about the specifi c computations performed by the 
system. We will return to this point in “ Naturally Optimizing the Economy ”.  

   Engineered/Disruptive:  FoldIT is a puzzle-solving game in which the puzzles 
solved by players are isomorphic to protein folding problems (Khatib et al.  2011 ). 
FoldIT is a paradigm case of gamifi cation: it makes a HC task more palatable to the 
users, but signifi cantly disrupts their behavior in the process by demanding their 
focus on the game. FoldIT is engineered in the sense that the task has been deliber-
ately designed to provide computationally signifi cant results, and disruptive in the 
sense that the task is a departure from the behavior in which players otherwise 
engage.    

 The above examples are offered in the hopes of making clear a complex concep-
tual landscape that serves as the backdrop for the discussion of natural human com-
puting. A full discussion of the dynamics of purposive human behavior is beyond 
the scope of this paper, but we understand our contributions here as a step in that 
direction. Despite the perspectival dimensions of “naturalness,” we can talk sensibly 
about designing natural human computing systems that leverage existing HC work 
in minimally disruptive ways. We turn now to describe a NHC system that demon-
strates these features.  
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     Introducing Swarm! 

 Swarm!, an application under development for Google Glass, 4  is an implementation 
of NHC methods for solving a class of economic optimization problems. Swarm! 
uses the GPS coordinates of players to construct a location-based real time strategy 
game that users can “play” simply by going about their everyday routines. Individual 
cognitive systems have limited resources for processing data and must allocate their 
attention (including their movement through space and time) judiciously under 
these constraints. Therefore, we can interpret the data gathered by Swarm! as a 
NHC solution to the task of attention management: Swarm! generates a visualiza-
tion of aggregate human activity as players negotiate their environments and engage 
objects in their world (Fig.  1 ).

   The Swarm! engine is designed as a basic NHC application: it’s a game that’s 
played just by going about your normal routine, frictionlessly integrating game 
mechanics into a player’s everyday life. Swarm! 5  simulates membership in a func-
tioning ant colony, with players assuming the role of distinct castes within one 
 colony or another. Players are responsible for managing their own resources and 

4   Glass is a wearable computer designed and manufactured by Google. The Glass headset features 
a camera, microphone with voice commands, optical display, and a touch-sensitive interface. It 
duplicates some limited functions of a modern smartphone, but with a hands-free design. Figure  1  
depicts a user wearing a Google Glass unit. 
5   Complete game bible can be found at  http://www.CorporationChaos.com . 

   Fig. 1    A person wearing Google Glass       
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contributing to the resource management of the colony. Swarm! data is visualized as 
colorful trails on a map card presented on request to the Glass display in order to 
engage the resulting behavior. These trails are designed so they cannot be used to 
locate or track any individual uniquely. Instead, we’re interested in the broader pat-
terns of behavior: where do players spend their time? When is a certain park most 
likely to be visited? When and where do players from two different neighborhoods 
cross paths most frequently? 

       Swarm! Mechanics 

 Ant behavior is coordinated through purely local interactions between individuals 
and a shared environment without any central direction (Dorigo et al.  2000 ). 
Individual ants exchange information primarily through direct physical contact and 
the creation of pheromone trails. Pheromone trails, which can be used to indicate the 
location of resources, warn of danger, or request help with a tricky job, are tempo-
rary (but persistent) environmental modifi cations laid down by individual that help 
ants coordinate with each other and organize over time to manage colony needs. 

 Swarm! adopts the pheromone trail as its central mechanic. By moving around in 
physical space, players lay down “trails” that are visible through the in-game inter-
face as colorful lines on a map. These trails encode context-specifi c information 
about the history and status of user interactions around a location. Just like real- 
world ants, Swarm! trails are reinforced by repeated interaction with a region of 
space, so the saturation of trails in a particular location represents the degree of 
activity in that location. Trails also encode some information about in-game iden-
tity, but the focus of Swarm! is on impersonal aggregate data and not unique player 
identifi cation. Since trails are semi-persistent and fade slowly with time, the specifi c 
time that a player passed a location cannot be deduced by looking at the map. 
Players also have the option to defi ne “privacy zones” around their homes and other 
sensitive areas where Swarm! data collection is prohibited. 

 Swarm! gameplay is styled after many popular resource collection games, with 
central goals revolving around fi nding enough food to stay alive, disposing of trash 
(“midden”), and defending the colony from incursions by rivals. However, Swarm!’s 
central innovation is its emphasis on self-organized dynamic game maps and fric-
tionless player interaction. Player interactions result primarily from trail crossings: 
when one player crosses the trail laid down by another player, an appropriate 
context- dependent event is triggered. Note that this activity does not require players 
to be present simultaneously at one location. Trails laid down by users decay gradu-
ally over time, and require reinforcement to sustain. Thus, crossing the trail of a 
rival ant means that ant (or possibly several ants from the same colony) have rein-
forced this trail within the decay period. In other words, all player activity is ren-
dered on the map as “active” and will trigger engagements and events specifi c to 
those interactions. 
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 Players also have caste-specifi c abilities to augment the structure of the game 
map. These abilities are triggered by more in-depth interaction with a location—for 
instance, spending an extended amount of time in the same public place, or taking 
some number of pictures of an important game location. Each caste has a unique set 
of strengths, weaknesses, and abilities that affect the range of in-game options avail-
able to the player. These augmentations can provide powerful bonuses to members 
of a player’s colony, hinder the activities of rivals, or alter the availability of 
resources in the area. Strategic deployment of these abilities is one of the most tacti-
cally deep and immersive aspects of Swarm! gameplay. 

 For illustration, consider the following in-game scenario (Fig.  2 ). Suppose a 
player (call her Eve) consistently moves through territory that is controlled by an 
enemy colony—that is, she crosses a region that is densely saturated with the trails 
of hostile players. Moving through this region has a signifi cant negative impact on 
Eve’s resource collection rate, and unbeknownst to Eve (who doesn’t like to be 
bothered by game updates) this penalty has been adversely affecting her contribu-
tions to her colony for weeks, keeping her at a relatively low level than where she 
might be otherwise. However, suppose that 1 day Eve decides to actively play 
Swarm!. Upon downloading the latest game map she observes the impact this region 
has had on her collection rate. Swarm!’s game mechanics reward this attention to 
detail, and allow Eve to do something about it. When Eve photographs the locations 
that are controlled by a rival colony, she creates an in-game tag that calls attention 
to her predicament and provides caste-specifi c in-game effects that potentially off-
set the impact of the rival colony’s trail. In other words, her action (taking a picture) 

  Fig. 2    Our player Eve (indicated by the lower green trail that makes a right angle) considers a 
regular interaction at a busy intersection with a hostile colony (indicated by the bumpy red trail), 
which imposes caste-specifi c effects on a region (Image credit: Kyle Broom)       
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has produced an in-game structure that warps the map and partially ameliorates the 
penalty that she would otherwise suffer. This in-game structure might attract other 
active players to the territory to build more structures that further magnify these 
changes. In this way, close attention to (and interaction with) the game map is 
rewarded, while casual players are still able to contribute meaningfully to the over-
all game dynamic.

   This reveals an important aspect of Swarm! related to the distinctions drawn in 
“ Natural Human Computation ”. Although the game is designed to passively harvest 
aggregate user behavior, it also incentivizes the curation of that data allowing for 
active user engagement. Thus, some users may experience Swarm! as unobtrusive 
and stable, with computation occurring largely in the background, while others may 
enjoy signifi cant disruptions as they actively play the game. Moreover, the two 
might interact with each other through in-game mechanics around shared spaces 
without either player being aware of the other’s presence. When Eve tags a highly 
traffi cked area of the map with her picture, she is highlighting an attractor 6  in  both  
the physical space and the game space. Those attractors emerge naturally in the 
behavior of some Swarm! players, and Eve’s active engagement with the trails fur-
ther augments the map to highlight the relevance of those attractors. These attractors 
can in turn coordinate others to further document and engage an area, fi lling out the 
digital profi le of regions that are of central use in human social behaviors, and effec-
tively turning Swarm! players into an engineered team of self-directed, self- 
organized content curators. Every Swarm! player’s behavior is thus infl uenced both 
by the structure of the game map, and the structure of the game map is infl uenced 
by the behavior of Swarm! players. However, since the initial structure of the 
Swarm! game map is dictated by the antecedent behavior of Swarm! players, this 
mechanic only serves to reinforce extant patterns of behavior. 

 The resulting model highlights patterns of natural human behavior that can be 
directly harvested for computational work. For instance, consider the problem of 
locating a working electrical outlet at the airport. 7  Traditional resource distribution 
structures (like the fi nancial markets or public regulatory structures) have until now 
failed to provide enough incentive to curate a digital outlet location map for wide 
public use, despite its potential value to both customers (who may wish to charge 
their electronics while they wait for a connecting fl ight), and the airport businesses 
(who might be able to draw customers and control the fl ow of airport patrons by 
advertising their location). Online databases like Yelp work well for services that 
have existing advocates, like restaurant owners, who can represent those interests by 
responding and reacting to Yelp reviews, but little incentive exists for a curation task 

6   An  attractor  is just a location or state in a system toward which nearby states or locations tend to 
be “sucked.” Minimum-energy states in mechanical system are commonly attractors. For instance, 
in a system consisting of a marble confi ned to the inside of a mixing bowl, the state in which the 
marble is at rest at the bottom of the bowl is an attractor: no matter where you start the marble, it 
will eventually end up at rest at the bottom of the bowl. For an accessible introduction to the lan-
guage of attractors and dynamical systems theory, see Strogatz ( 2001 ) and Morrison ( 2008 ). 
7   Credit goes to Robert Scoble for raising the example during a recent conversation about Swarm!. 
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like this. On the other hand, with suitable resolution Swarm! provides an immediate 
visual representation of the activity of airport patrons that allows for intuitive pre-
dictions about where the outlets might be: look for clustering behavior near walls. 
Moreover, Swarm! rewards active players for tagging public spaces with pictures 
and notes that fi ll in details of the interaction history at that location. The result is an 
NHC method for computing a solution to the problem of fi nding electrical outlets 
without the need for natural advocates or market representation to explicitly engi-
neer this behavior. 

 This example has Swarm! players uncovering the use-value of objects which 
have been under-represented by other records of social value, and it has accom-
plished this without creating any additional demand on social behaviors. Perhaps a 
close analog is the use of GPS requests for identifying traffi c congestion (Taylor 
et al.  2000 ), but the game mechanics of Swarm! generalizes the approach for a 
broad range of human activities. We turn now to a general discussion of the strate-
gies described above.  

    NHC Applications of Swarm!? 

 Consider the mechanic described in “ Swarm! Mechanics ” for modifying the game 
map by taking and tagging pictures. A strategically-minded Swarm! player will not 
use this ability at just any location (Rashid 2006; Ames and Naaman  2007 ); rather, 
she will study the structure of local trails over the course of a few days, and engage 
with the map in a tactically-optimal location—that is, a location that already experi-
ences heavy traffi c of the right sort. In this way, the Swarm! map will become a 
fairly detailed representation of patterns of player engagement with the real world; 
locations that are naturally highly traffi cked will become increasingly important, 
and thus increasingly saturated with trails and in-game structures. 

 The fact that interesting locations in the game tends to mirror the interesting 
locations in the real world is central to Swarm!’s design. While Swarm!’s mechanics 
might well have some infl uence on the behavior of more strategically-minded play-
ers, that infl uence will  remain  a mirror of the aggregate pre-game behavior of the 
community, and thus a useful starting point for NHC data collection about use 
behavior. Ingress, a somewhat similar augmented reality game developed by Niantic 
Labs for Android mobile devices (Hodson  2012 ), makes for an instructive contrast 
case. Ingress features two in-game “teams” (Enlightened and Resistance) involved 
in attempts to capture and maintain control of “portals,” which have been seeded by 
Google at various real-world locations. Players take control of a portal by visiting 
the location (sometimes in cooperation with other players), and remaining there for 
a set amount of time. Players may also “attack” portals controlled by the opposing 
team through a similar location-based mechanic. 

 Notice the difference between tracking the behavior of Ingress players and track-
ing the behavior of Swarm! players. Despite both games featuring similar location- 
based mechanics, the fact that Ingress’ portals—the signifi cant in-game attention 
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attractors—have been seeded by the game’s designers renders the activity of Ingress 
players a poor proxy for their natural, out of game behavior, and thus a poor proxy 
for NHC data collection. In contrast, Swarm! players create the structure of the map 
themselves, and the strategically optimal approach to modifying it involves reinforc-
ing existing patterns of behavior. The structure of the Swarm! map reveals at a glance 
sophisticated facts about the natural attention patterns of Swarm! players. It is this 
fact that makes Swarm! an important fi rst step toward a mature NHC application. 

 Transitioning Swarm! from a NHC-oriented game to a real NHC application will 
involve tightly integrating Swarm!’s mechanics with real-world tasks. We suggest 
that Swarm!’s existing mechanics might be easily tied in to a service like Craigslist.
org. Craigslist is a popular and free web-based service facilitating the exchange of 
good and services that run the gamut from used cars and furniture to prospective 
romantic encounters—all of which are organized geographically and easily search-
able. The Swarm! platform, with its built-in mechanics for tracking location, activ-
ity, and experience could serve as a platform for visualizing Craigslist service 
requests and evaluating the results of the transaction. If successful, such a system 
would allow for a self-organized, entirely horizontal resource and labor manage-
ment system for its users. Such integration would be a large step toward turning 
Swarm! into the sort of robust economic HC application that we discuss in 
“ Developing the Attention Economy ”. 

 Consider the following hypothetical future in-game scenario: Eve, our intrepid 
player from “ Swarm! Mechanics ”, has access to a Craigslist-like service integrated 
with an advanced version of Swarm!, and this service informs her (on request) about 
posts made by other players in her immediate geographical region. With access to 
this information, Eve can decide whether or not to accommodate the requests of 
other players in her vicinity. Suppose, for instance, that Eve notices a posting near 
her home base requesting a 40 W CFL light-bulb to replace a bulb that just burned 
out. Eve was targeted with the request because her patterns of behavior repeatedly 
cross paths with the requesting user; depending on how sophisticated the service has 
become, it might even recognize her surplus of light bulbs. In any case, Eve knows 
that she has several matching bulbs under her kitchen sink, and considers using the 
bulb to gain experience and infl uence within Swarm!. Eve notices that the specifi ed 
drop point is on her way to work, and agrees to drop the bulb by as she walks to the 
subway. Perhaps the dropoff is coordinated by each party taking a picture of the 
object using QR codes that signal drop off and receipt of the object. Upon comple-
tion, this transaction augments player statistics within Swarm! to refl ect the success 
of the transaction. As a result, Eve’s public standing within the player community 
increases, just as it would have if Eve had participated in a coordinated attempt to 
seize a food source for her colony. Her increased infl uence within game environment 
might increase the chances that her next request for a set of AA batteries is also fi lled. 

 This mechanic creates an environment in which contributing to the welfare of 
other Swarm! players through the redistribution of goods and services is rewarded 
not monetarily, but through the attraction of attention and the generation of infl u-
ence and repute. The attention attracted by the request is converted into user experi-
ence upon completion of the task, allowing the user’s behavior to have a more 
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signifi cant impact on the dynamics of the game. Again, this mechanic helps to blur 
the line between in-game and out-of-game interactions: the in-game world of 
Swarm! is a distillation and refl ection of the everyday out-of-game world of 
Swarm!’s players. Eve’s history as a Swarm! player disposed to help other players 
in need might be intuitively presented to other members of her colony through fea-
tures of her trail. When Eve makes a request for aid other players will be more dis-
posed to respond in kind. 8  

 Although our examples have focused on minor transactions of relatively little 
signifi cance, the game mechanics described here suggest a number of important prin-
ciples for designing HC systems that harvest the computational dynamics of natural 
human activity, and the profound impacts these applications might have on a number 
of vitally important human activities, including education, politics, and urban devel-
opment. We focus the remaining discussion on economic considerations.   

     Naturally Optimizing the Economy 

 We can think of the global economy as being a certain kind of HC system in which 
the problem being computed involves the search for optimal (or near-optimal) 9  allo-
cations of raw materials, labor, and other fi nite resources (“the economic optimiza-
tion problem”). This approach to economic theory is broadly called “computational 
economics” (see e.g. Velupillai  2000 ; Norman  1996 ), and it takes economic theory 
to be an application of computability theory and game theory. Historically, some 
economists have argued that a free capitalist market composed of minimally con-
strained individual agents (and suitable technological conditions supporting their 
behavior) provides the most effi cient possible economic system (Hayek  1948 ). We 
shall conclude our paper with a discussion of NHC applications as an alternative 
approach for tackling the economic optimization problem. 

 Kocherlakota ( 1998 ) argues that money is best thought of as a “primitive form of 
memory” ( ibid.  p. 2). That is, money is a technological innovation that provides a 
medium for a limited recording of an agent’s history of interactions with other 
agents. On this view, rather than being an intrinsic store of value or an independent 
medium of exchange, money is merely a way to record a set of facts about the past. 

8   The infl uence of perceptions of fairness on economic interactions is an increasingly well-studied 
phenomenon among economists and psychologists. For a comprehensive overview, see Kolm and 
Ythier ( 2006 ), especially Chap. 8 (Fehr and Schmidt). 
9   The defi nition of “optimal” is disputed, but the discussion here does not turn on the adoption of a 
particular interpretation. In general, recall that solving the economic optimization problem involves 
deciding on a distribution of fi nite resources (labor, natural resources, &c.). Precisely which distri-
bution counts as “optimal” will depend on the prioritization of values. A robust literature on deal-
ing with confl icting (or even incommensurable) values exists. See, for example, Anderson ( 1995 ), 
Chap. 13 of Raz ( 1988 ), and Sen ( 1997 ). 
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Kocherlakota argues that this technological role can be subsumed under “memory” 
in a more general sense, and that while access to money provides opportunities for 
system behavior that wouldn’t exist otherwise, other (more comprehensive) kinds of 
memory might do all that money does, and more: “…in at least some environments, 
memory [in the form of high quality information storage and access] may techno-
logically dominate money” ( ibid.  p. 27). 

 If this characterization is correct, then solving the economic optimization prob-
lem involves accomplishing two distinct tasks: identifying precisely  what  informa-
tion should be recorded in economic memory, and we must devising ways to store 
and manipulate that information. We might understand Yelp as recording user 
accounts of a service that attempts to meet these memory challenges. Yelp users 
leave comments, reviews, and ratings that provide a far more detailed and relevant 
transaction history with customers than is represented by the relative wealth of the 
business as a market agent. Luca ( 2011 ) fi nds not only that these reviews have an 
impact on revenue, but that impact is strengthened with the information content of 
the reviews, suggesting one place where money may be showing evidence of domi-
nation by rich sources of memory. 

 Swarm! offers a natural approach for meeting the same challenges, in which 
NHC is leveraged to help solve the economic optimization problem without intro-
ducing new economic frictions. This computational work is accomplished through 
the recording of trails that represents incremental changes in the use history of that 
location. As Swarm! maps become increasingly detailed and populated they like-
wise come to function as an effective representation of the attention economy 
(Simon  1971 ; Weng et al.  2012 ) in which the saturation of trails around an object 
approximates a quantitative measure of the value of objects relative to their use. 10  
We treat this measure as the aggregate “use-value” of the object (Vargo et al.  2008 ), 
and argue that a model of the use-value of objects allows for novel NHC-based solu-
tions to a variety of standard problems in the optimization of economic systems. A 
full articulation of the attention economy is not possible here, but we will provide a 
sketch of one possible implementation using the Swarm! framework.  

      Developing the Attention Economy 

 Recall the central mechanic of Swarm!. GPS data about players’ movement patterns 
are aggregated, whether or not a player is actively engaged with the game. 
Strategically-minded players are rewarded for tagging and modifying the map in a 
way that gives rise to a detailed refl ection of how all Swarm! players use the space 
covered by the map. The data collected by a Swarm!-like application has the poten-
tial to encode many of the facts that might otherwise be encoded less explicitly. 
Monetary transaction records act as proxy recordings for what we have called 

10   As opposed to value relative to  exchange . See Marx ( 1859 ). 
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  use- value  . The mechanics of Swarm! suggest a way to measure use-value directly 
by recording how economic agents move through space, how their movement is 
related to the movement of others, what objects they interact with, the length and 
circumstances of those interactions, and so on. By tracking this data, we can trans-
form the everyday activities of agents into records of what those agents value and to 
what degree. This is the “high quality information storage and access” that 
Kocherlakota suggests may come to technologically dominate currency as eco-
nomic memory. Still, a number of practical challenges must be surmounted before 
a NHC/AE based approach to solving the economic optimization problem is realis-
tically viable. 

 Any implementation of an attention economy in which the economic optimization 
problem is solved with NHC will clearly involve data collection on a scale that goes 
far beyond what’s possible in Swarm! or with Google Glass, as the mere tracking of 
gross geospatial position will not record enough information to (for instance) assay 
the value of individual material objects like pens and lightbulbs. Swarm! is an incre-
mental step in that direction, with the more modest and technologically feasible goals 
of acclimating people to regular engagement with AE platforms, and with developing 
the social norms appropriate to the demands of an AE. The structure of human com-
munities is strongly coupled to the technology available during their development. 
Absent major catastrophes, the sort of ubiquitous computing and social norms neces-
sary for the implementation of an AE will continue to develop in tandem. 

 Indeed, the success of AE in some sense depends on the development of social 
customs and attitudes to compensate for the more invasive social coordination tech-
nologies that dominated the Industrial Age, which are almost universally character-
ized by the establishment of hierarchical institutions of control. In such a system, 
power is concentrated in the hands of the very few, to be executed within very nar-
row channels of operation. For the disenfranchised, fi nding ways to circumvent or 
usurp this power is often a more attractive than accumulating power through so- 
called “legitimate” means—especially as the powerful increasingly protect their 
positions through deliberate corruption and abuse, thereby weighting the system 
heavily against “fair play”. In other words, enterprising opportunists looking for 
success in systems with limited hierarchical control have a disproportionate incen-
tive to “game the system”, or exploit loopholes in the rules in ways that give them a 
disproportionate advantage. Preventing the exploitation of such loopholes requires 
an ever increasing concentration of power, creating greater incentives to break the 
system, and greater costs for failing in those attempts. Social customs discouraging 
such behavior must be imposed from the top, often with violence, as a means of 
retaining control, since these customs are not reinforced from below. 

 In contrast, the AE describes a self-organizing system without hierarchical con-
trol or concentrations of power, because the rules for operating within the system 
also support the success of the system as a whole, and so are supported from the 
bottom without need for top-down enforcement. In other words, the impulse to 
game an attention economy can be actively encouraged by all parties, since indi-
vidual attempts to gain a disproportionate advantage within the system simultane-
ously reinforce the success of the system overall. Recall from “ Swarm! Mechanics ”, 
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when Eve snaps a picture of a highly traffi cked block. This apparently self-interested 
act to improve her own in-game resource collection rate is simultaneously a contri-
bution to the economic optimization problem, and is therefore reinforced by her 
colony’s goals. Of course, Eve is not only rewarded by pursuing self-interested 
goals; potentially everything Eve does in an attention economy is computationally 
signifi cant for her community, and therefore her community can support Eve in the 
pursuit of any goals she wishes without worrying about how her actions might upset 
the delicate balance of power that supports institutional control. In an attention 
economy, Eve is not rewarded to the extent that she appeals to existing centers of 
power; instead, she is rewarded to the extent that her participation has an impact on 
the development of her community (see also, Rashid et al.  2006 ). 

 We conclude by mentioning some design considerations inspired by Swarm! for 
building an “Internet of Things” that facilitates the use of NHCs for managing the 
attention economy. Most obviously, Swarm! is a step toward the creation of perva-
sive, universally accessible, comprehensive record of the relationship between 
agents, locations, and objects. As we have said, widespread location and identity 
tracking of at least  some  sort is essential for the implementation of a true AE. This 
is a major design challenge in at least two senses: it is a technical engineering chal-
lenge, and a social engineering challenge. 

 The solution to the fi rst challenge will still require technological progress; we do 
not yet have ubiquitous distribution of the sort of computing devices that would be 
necessary to implement the fi ne-grained level of data collection that a real AE would 
require. In addition to aggregate movement patterns, an AE platform will need to 
track patterns in the relationships between agents and physical objects. Sterling 
( 2005 ) introduces the term “spime” to refer to inanimate objects that are trackable 
in space and time, and broadcast this data throughout their lifetimes. Objects that 
are designed to live in an attention economy must track more than just their own 
location and history: they must be able to track their own use conditions, and change 
state when those use conditions have been met. This will require objects to be sensi-
tive not just to their own internal states, but also to the states of the objects (and 
agents) around them: this is the so-called “Internet of Things” (Atzori et al.  2010 ). 
There is already some precedent for very primitive functions of this sort. Consider, 
for instance, the fact that modern high-end televisions often feature embedded opti-
cal sensors to detect ambient light levels, and adjust backlighting accordingly for 
optimal picture quality. We can imagine expanding and improving on that kind of 
functionality to develop (say) a television that mutes itself when the telephone rings, 
pauses when you leave the room, or turns itself off when a user engages deeply with 
another object (for instance a laptop computer) that’s also in the room. These exam-
ples are relatively mundane, but they are suggestive of the sort of industrial design 
creativity and integration needed to design AE-optimized artifacts. 

 Swarm! approaches this design challenge by imposing some novel clustering 
methods represented by the caste and colony system. The colony system is a geo-
graphical constraint designed to cluster colony members to ensure that they aren’t 
spread so thin as to undermine the game dynamics. The caste system is a design 
constraint on the patterns of user activity, and allows users to tell at a glance the 
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functional results of some possible sequence of engagements without knowing too 
many details about other players. This latter feature is inspired directly by ant colo-
nies, and is important to the organizational dynamics of an AE. In particular, it gives 
contexts in which it is appropriate for certain agents to have disproportionate infl u-
ence on some computing task, thereby carving out emergent hierarchies and cliques. 
The AE/NHC platform is thus applicable to the solution of non-economic social 
problems, and can be leveraged to help compute solutions to other legal, political, 
and social puzzles. 

 As an illustration of how NHCs might be applied to the distribution and manage-
ment of resources and labor, consider the transaction history for some arbitrary 
object X. If this record has been reliably maintained on a user-per user basis, it might 
serve as the basis for resolving disputes about ownership, rights of use, and other 
coordination problems traditionally settled by legal and political frameworks. If I 
have years of history driving a specifi c car on Wednesday mornings, and the use 
record shows you driving this car some particular Wednesday morning, then absent 
some explanation this appears to be a disturbance in use patterns. This information 
might itself be enough to warrant a complaint through offi cial channels and initiate 
the machinery of the public justice system to account for this disturbance. In other 
words, a well-maintained record of the use history of an object might serve as a foun-
dation for NHC solutions to political and legal disputes, and provides a framework 
for dealing naturally with apparent cases of “stealing” without requiring anything 
like the disruptive technologies of property, contracts, and other legal frictions. 

 This is the real heart of the AE/NHC approach to economic optimization: the 
NHC acts entirely upon data about local patterns of attention, use, and interaction 
without signifi cantly disturbing the behavioral patterns that generate the data. 
Rather than indirectly recording facts about my contribution to (or value of) some 
object or process in monetary memory, which requires its own set of social conven-
tions and techniques to maintain, those facts are recorded  directly  in the history of 
my relationship to the object or process. We suggest that careful management of 
those facts, combined with a distributed NHC framework, might allow for a far 
more effi cient economic system than any money-based system. 

 We’ve given a characterization of the shape and character of the fi rst of the two 
design challenges we mentioned above: the technical engineering challenge. While 
solving this challenge is central to the implementation of the AE, we should not 
overlook the importance of solving the second challenge either. While technological 
advances are important, so are advances in the relationship between humans, tech-
nology, and society at large. Just as the dissemination of other major, epoch- defi ning 
technologies (like the automobile or the telephone) were accompanied by a certain 
degree of widespread anxiety and social disruption, we expect that the adoption of 
the ubiquitous computing platforms required for AE implementation (and their con-
comitant changes in social practice) will be associated with some unrest as society 
acclimates to some of the underlying changes. In this respect, Swarm! is more than 
just an experiment in designing a NHC application—it is an attempt to give society 
at large a chance to experience the artifacts and socio-cultural practices required for 
a well-managed AE. The more time we have to grapple with those issues as a com-
munity, the smoother the transition to the future will be.     
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