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 Introduction

One of the most interesting properties of real networks is modularity, i.e., the 
tendency of nodes to partition themselves into communities (Girvan and Newman 
2002; Newman 2006). Loosely speaking, a community is a group of nodes for 
which the density of links within a group is higher than across the groups. Those 
communities might represent groups of individuals with shared interests in online 
social networks, topic-specific research communities in co-authorship networks, 
and so on.

Much recent research has focused on methods for detecting and analyzing com-
munity structure in networks (for a recent review of existing approaches 
see Fortunato (2010) and references therein). However, the dynamical properties of 
modular and correlated networks have started to attract attention only recently 
(Arenas et al. 2006; Galstyan and Cohen 2007; Gleeson 2008; Melnik et al. 2012; 
Payne et al. 2009).

Understanding the impact of group structure on network dynamics is important 
for social computing applications. Consider, for instance, word-of-mouth (or viral) 
marketing of a new product. If different consumer groups have different rating cri-
teria for the product, or different reaction to marketing strategies, then one needs to 
model how influence propagates within and across communities to predict whether 
the product will be a hit, or confined to a small subset of consumers. Similarly, 
understanding how a political message propagates within and across partisan con-
stituencies could be very important for designing effective political campaigns.

Here we report our analysis of a simple dynamical process in networks with 
community structure. We consider a threshold-based dynamical process on networks 
(Watts 2004) where the nodes can be in two states, passive or active. The actual 
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meaning of those states is application-dependent (e.g., in viral marketing activation 
might correspond to purchasing a product). Starting from initial configuration with 
only a handful of nodes in the active state, we consider a discrete-time dynamics 
where at each time step, a passive node becomes active if the number of his active 
neighbors exceeds some predefined threshold. This process is iterated until none of 
the nodes change his state.

We study the dynamical properties of the above model for networks composed of 
two loosely coupled communities. Our main observation is that if the initially active 
nodes (seeds) are contained in one of the communities, then under certain condi-
tions the cascading process has a two-tiered structure, that is, the peaks of the acti-
vation dynamics in each community are well separated in time. Furthermore, 
depending on the link density between and across the groups, and the fraction of 
seed nodes, the activation might either die out, spread to one of the groups, or spread 
to both groups. In particular, for a given network, there is a critical fraction of the 
seed nodes, so that below this critical threshold the activation process is contained, 
while above the threshold the activation spreads throughout the network. This criti-
cal behavior has implications for problems such as influence maximization, where 
one intends to select initial target nodes so that the size of the resulting cascade is 
maximal. In particular, we demonstrate that simple target selection strategies that 
neglect the network community structure can yield overly sub-optimal results.

The rest of the paper is organized as follows: In the next section we formally 
introduce the cascade model and present its mean-field analysis for networks with 
structural heterogeneity-random graphs consisting of two loosely coupled sub- 
graphs (communities). We then elaborate on the implications of the analysis on the 
influence-maximization problem, and present experiments on synthetically gener-
ated networks. We conclude the paper by discussing our main results in the context 
of the existing literature and pointing out open research questions.

 Mean Field Analysis of the Activation Dynamics

 Cascade Model

There are a number of approaches for modeling activation cascades on networks 
(see Borge-Holthoefer et al. (2013) for a recent survey). In this paper we use the 
Linear Threshold Model (Granovetter 1978) (LTM), which, starting from a set of 
initially active nodes, propagates the activation through a threshold-based mecha-
nism. Let  i  be the set of active neighbors of node i. Then the node i is activated 
whenever 

 wij
j

i

iÎ

³

å q  (1)

 Here wi j is the normalized weight of the link between the nodes i and j, ∑jwi j = 1, and 
θi is the activation threshold for the node i. Usually, θ-s are assumed to be random 
variables from some distribution, reflecting the uncertainty about individuals.
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To simplify the analysis, here we use a modified version of the linear threshold 
model, where the threshold condition is applied not to the fraction of active neigh-
bors, but their number. We stress, however, that our main results are valid for the 
fractional threshold model as well, provided that it demonstrates a phase-transition 
behavior.1

Let us associate a binary state variable with each node, si ∈ { 0, 1}, where the 
states 0 and 1 correspond to passive and active states, respectively. Then the dynam-
ics of the process is characterized by the following set of equations: 

 s t W s t hi ij
j

j i( 1) ( )[ ]+ = −∑Θ  (2)

where Θ(x) is the step function,2 hi is the activation threshold for the ith node, and 
W is the adjacency matrix of the network: For the sake of simplicity, we consider the 
case of an unweighted graph, so that the entries in the adjacency matrix are either 0 
or 1. Equation 2 is iterated until steady state is achieved, that is, none of the nodes 
changes its state upon further iteration.

We have previously developed a mean-field theory of activation dynamics on 
modular graphs (Galstyan and Cohen 2007) in the case when the thresholds were the 
same for all the nodes, hi = H. Here we generalize the framework to the case when 
nodes have different activation thresholds, drawn from a specified distribution Ph.

 Activation Cascades in Single-Community Networks

Let us first focus on a single-community network, and consider a graph composed 
of N nodes, where each of the N N 1 2( ) /−  edges is present with probability p. In 
the limit of large N, the resulting degree distribution of nodes in this network is the 
Poisson distribution with a mean z = p N.

Let ρh(t) be the fraction of active nodes with activation threshold h at time t. 
Initially, it equals to the fraction of nodes that have been targeted, r rh ht( 0) ,0= = . 
We assume that probability for a node to be selected as a seed is independent of its 
activation threshold, so that ρh, 0 = ρ0. The total fraction of active nodes is ρ(t) = 
∑hρh(t)Ph. Further, let P(k; t) be the probability that a randomly chosen node is con-
nected with exactly k active nodes at time t. It is easy to see that at time t = 0, k is 
given by Poisson distribution with a mean p N0 ≡ z ρ0.3 To study the dynamics of the 
process, we need to estimate these distributions for later times. To do so, here we use 

1 Furthermore, we would like to argue that the modified model with integer threshold also seems 
more plausible from the social-choice standpoint. Indeed, it is hard to imagine that, when trying to 
make a decision based on our friends’ recommendations, we normalize the number of recommen-
dations by the total number of our friends.
2 Θ(x) = 1 if x ≥ 0, and Θ(x) = 0 otherwise.
3 Strictly speaking, P(k; t) is given by a binomial distribution B(N0, p). However, in the limit of large 
network sizes considered here, we approximate the binomial distribution by the Poisson distribu-
tion as it simplifies the analysis.
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the so called annealed approximation, which has been used to study the dynamical 
properties of random boolean networks (Derrida and Pomeau 1986; Derrida and 
Stauffer 1986; Rohlf and Bornholdt 2002). Within the annealed approximation, one 
averages over the disorder by “rewiring” the network after each iteration. Since 
during the rewiring process all edges are equally likely, it is easy to see that P(k; t) is still 
given by a Poisson distribution: However, the mean now depends on the fraction of 
active nodes ρ(t) = ∑hρh(t)Ph: 

 P k t e
z t

k
z t

k

( ; )
[ ( )]

!
( )= r r  (3)

Consider all the nodes with an activation threshold h. On the first step of the 
cascading process, the fraction of active nodes among those is given by ∑k ≥ hP(k; t 
= 0). In later iterations, the fraction of active nodes can be calculated as follows. 
There are Nh(1 − ρh(t)) passive nodes at time t, and each one of these nodes will 
probability ∑k ≥ hP(k; t). Also, due to the rewiring, some of the Nh(ρh(t) − ρh, 0) active 
nodes will switch to passive state with the rate ∑k < hP(k; t). We note that the initially 
targeted nodes are not allowed to de-activate. Combining these together, and using the 
normalization condition P k t

k=å =
0

( ; ) 1
¥

, we obtain the following set of equations 

 r r rh ht Q h z t( ) (1 ) ( ; ( )),0+ = − −1 1  (4)

where Q h x e x / kk h
x k( , ) !<= -å  is the regularized gamma function.

To get the total fraction of activated nodes, we multiply Eq. 10 by Ph and sum over 
h, which yields 

 r r r( ) (1 ) ( ; ( ))0t P Q h z th
h=0

+ = − − ∑1 1
∞

 (5)

Equation 5 describes the dynamics of the cascading process in the network. For 
a fixed connectivity z, the dynamics depends on the fraction of initially targeted 
nodes, ρ0, as well as on the threshold distribution function Ph. Let us elaborate on 
the latter dependence in more details. First of all, we assume that P0 = 0, i.e., there 
are no nodes that activate spontaneously, aside from the initially targeted nodes. 
Furthermore, simple inspection shows that the dynamical properties of the model 
depend on the fraction of nodes with threshold h = 1, P1. We call these nodes vulner-
able since they will activate whenever one of their neighbors is active. Clearly, if the 
fraction of the vulnerable nodes is sufficiently large, a single node might trigger a 
global cascade throughout the network. Without going into much mathematical 
details, we simply observe that such a global cascade will happen whenever the 
vulnerable nodes form a giant connected component, which, for the random Erdos–
Renyi graphs translates into P1z ∼ 1. In this paper we focus on the case when P1 is 
either zero, or sufficiently small, P1 ≪ 1 ∕ z, so that for a network of size N, the number 
of nodes required to cause a global cascade must be of order O(N).

For the latter case, the analysis of Eq. 5 yields the following observation: For a 
given connectivity z, there is a critical fraction ρc such that for ρ0 < ρc the activation 
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process is localized, while for ρ0 > ρc activation spreads to all the nodes in the net-
work. This is schematically illustrated in Fig. 1a, where we plot ρ(t + 1) against ρ(t). 
Note that the intersections characterize the steady state of the dynamics, or in other 
words, the fraction of activated nodes at the end of the cascading process. Note, that 
there is always one intersection around r r( ) ( ) 1t t+ =1 ≈ . For smaller ρ0, however, 
there is another stable fixed point. One can calculate the critical density by requiring 
that the left hand side of Eq. 5 be tangential to the right hand side, as indicated in the 
inset of Fig. 1a. This yields the following expression for the critical density:
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where x0 satisfies the following equation: 
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Here Dk = ∑i ≤ kPi is the cumulative distribution function for the activation 
thresholds.

In Fig. 1b we compare the analytical prediction with simulation results for the 
case when all the activation thresholds are set to h = 3. The simulations were done 
for a graph with 5 ×104 nodes, and for 50 random trials. Each pair (z, ρc) was con-
sidered to be above the critical line if a global cascade was observed in the majority 
of trials for that parameters. One can see that the agreement of analytical prediction 
and the simulation results are excellent.
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Fig. 1 (a) Graphical representation of Eq. 5 for below-critical (red) and above-critical (blue) val-
ues of ρ0. The inset shows the equation (in the vicinity of the solution) for the critical value ρ = ρc. 
(b) The critical connectivity plotted against the fraction of seed nodes for the threshold parameter 
H = 3. The solid line shows the phase boundary obtained analytically
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 Activation Cascades in Bi-community Networks

Now let us focus on heterogeneous networks where not all the links have the same 
probability. In particular, here we focus on networks that are composed of a rela-
tively small, tight community that is connected with a larger population of nodes, as 
schematically depicted in Fig. 2. We call the nodes in the first and the second com-
munity as A and B, respectively. Note, that the group B itself might be comprised of 
a larger number of sub-communities. This is the case for the networks that we use 
in our experiments. From the analysis perspective, however, we assume that the 
links are homogeneously distributed within each community. In other words, we 
assume that each community is represented by a random Erdos–Renyi graph of Na 
and Nb nodes, respectively, and the interaction between two communities are intro-
duced by linking each of the NaNb with a uniform probability. Such a network is 
fully characterized by within-group connectivities za, zb, and the across the group 
connectivities zab ≡ (Nb ∕ Na)zba.  

For the sake of simplicity, let us assume that the cascading dynamics in group A 
is not affected by the nodes in group B. This is a reasonable assumption as long as 
there are not that many active B-nodes, which is usually the case at the beginning of 
the cascading process. Thus, the activation dynamics of A nodes is still governed by 
the Eq. 5. For the B nodes, the activation dynamics is given by a similar equation, 
with the only difference that it is affected by active A nodes: 

 r r r rb b h
h

b b ba at P Q h z t z t( ) 1 (1 ) ( ; ( ) ( )),0
0

+ = − − +
=

∑1
∞

 (8)

The steady state fraction of active B nodes satisfies the following equation: 

 r r r rb
s

b h
h

b b
s

ba a
sP Q h z z= − − +

=
∑1 (1 ) ( ; ),0

0

∞

 (9)

where ρa
s is the steady state fraction of active A nodes. Thus, the presence of the 

active A nodes facilitates the activation of B nodes, and the effect depends on the 
across the group connectivity zba. Specifically, if zba is very small, then the activa-
tion dynamics in group B can be described as in the previous section. Namely, there 

A

B
Fig. 2 Schematic illustration 
of a bi-community network
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is a threshold fraction of seed nodes so that above the threshold all the B will be 
eventually activated. However, even below the threshold, there is a possibility of a 
global cascade in group B if the across the group connectivity zba is sufficiently 
large. Indeed, our analysis has shown (Galstyan and Cohen 2007) that for a fixed 
within-group connectivity zb, there is a critical across the group connectivity zba

c so 
that for zba > zba

c the activation will propagate from group A to group B and cause a 
global cascade.

Now let us look at the transient dynamics of the activation cascade; see Galstyan 
et al. (2009) for more details. In the continuous time limit, the dynamics can be writ-
ten as 

 t
r

r r r r
d

dt
P Q h z t z ta b

a b a b h
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Let r ar a r( ) ( ) ( ) ( )t t ta b= + −1 , a = +N N Na a b/ ( ) , be the fraction of active 
nodes in the whole network. In Fig. 3 we compare the solutions obtained from 
Eq. 10 with the results of simulations on randomly generated graphs for the same 
network parameters but two different values of the threshold parameter. The param-
eters of the network are Na = 5, 000, Nb = 15, 000, z zaa bb= = 15 , zab = 4. The frac-
tion of seed nodes is ρa

0 = 0. 1, and t − =1 0.1 . The simulations are averaged over 
100 random realizations.

We note that the agreement between the analytical prediction and results of the 
simulations is quite good. The network settles to the same steady state for both val-
ues of the threshold parameter H: that is, all of the nodes are activated at the end of 
the cascading process. However, the transient dynamics depend on the threshold 
parameter H. For H = 2, activation spreads very quickly through both communities 
and after a short interval all of the nodes are activate. For H = 4, on the other hand, 
the fraction of active nodes seems to saturate, then, in later iterations, ρ(t) increases 
rapidly and eventually all the nodes become active. In Fig. 3b we plot the rate of 
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Fig. 3 Analytical (solid lines) and simulation (circles) results for the activation dynamics. 
The upper panel shows the fraction of active nodes vs. time for threshold parameter H = 2 and 
H = 4. The lower panel shows the activation rate d ρ ∕ d t vs. time for H = 4

Activation Cascades in Structured Populations



786

activation process d ρ ∕ d t vs. time for H = 4. Apparently, the peak rates of activation 
in the two communities are separated in time. We call this phenomenon two-tiered 
dynamics. We would like to note that previously such a multi-peak structure has 
been observed in Gupta et al. (1989), where the authors studied the impact of different 
mixing patterns on the spread of sexually transmitted infection.

 Influence Maximization

We now focus on influence maximization in modular networks. From the algorith-
mic standpoint, the influence maximization problem can be stated as follows 
(Domingos and Richardson 2001; Kempe et al. 2003): Given a social network, an 
influence model, and a set of nodes S, let σ(S) be the expected number of nodes 
that will be activated by the end of the cascading process. Then, for a given budget 
M, the influence maximization problem is concerned with finding the set S of size 
M that maximizes the return σ(S). While this problem is known to be NP hard for 
the many influence models, several approximate methods have been developed. 
An important result established in Kempe et al. (2003) states that for a class of 
models that obey the so called diminishing returns property, a simple hill-climb-
ing algorithm, which works by greedily selecting the next best candidate node, 
yields a solution which is guaranteed to be within ∼ 63 % of the optimal. This 
result was further extended to more general models (Kempe et al. 2005; Mossel 
and Roch 2007).

It is quite safe to assume that the diminishing returns property is satisfied in satu-
rated, or near-saturated, niche markets. However, those models might fail to capture 
the dynamics of emerging markets, where the condition of the sub-modular growth 
can be violated. Indeed, many economical and social phenomenon are better 
described in terms of critical phase transitions, where a huge growth is observed 
only after some threshold conditions are met. Here we are interested in this latter 
case. As we demonstrate below, in such critical systems, the structural properties of 
networks can play a significant role in the cascading dynamics. Consequently, selec-
tion strategies that discard the community structure might result in sub-optimal 
solution to the influence maximization problem. The intuition is as follows: since 
the critical number of nodes necessary to cause a cascade for a given connectivity 
grows linearly with the network size, then it might be beneficial to target the smaller 
group first and cause an activation cascade in that group. Afterwards, the activation 
will propagate through the larger network, provided that the density of links between 
the groups is sufficiently strong.

To validate this observation, we performed experiments on synthetic random 
graphs as well as real-world citation networks, using both integer and fractional 
versions of the linear threshold model.4 We examined several different targeting 
strategies. The results presented below are for the random selection (RS), and 

4 Due to space restrictions, here we report our findings only for the integer threshold model on 
synthetic graphs.

A. Galstyan



787

greedy selection with two different tie-breaking mechanisms in case there are more 
than one candidates for selection: A random tie-break, where one of the candidates 
is chosen randomly, and a maximum degree tie-break, where the candidate with the 
maximum number of links is selected. We denote the corresponding algorithms as 
GR S and GM D. Furthermore, we complemented each of those strategies by another 
strategy, which work exactly the same way, but now the candidate nodes are selected 
only from the community A. The corresponding strategies will be differentiated by 
a superscript A: RSA, GRS

A, and G AMD.
We constructed synthetic networks using a generative model known as stochastic 

block model (Holland et al. 1983). Namely, we assume that the network is com-
posed of m groups, with Nm nodes in each. Each pair of nodes within the same group 
are linked with probability pi n, while the pairs across the groups are linked with 
probability po u t. Thus, the corresponding connectivities within and across the 
groups are zi n = pi nNm and z p N Nout out m= −( ) , respectively. In the experiments 
below we used m = 10, and Nm = 100, so that the total network size is N = 1, 000. 
We assume that one of those ten groups constitute the group A, while the remaining 
nine communities form the group B.

In Fig. 4 we plot the fraction of activated nodes against the number of targeted 
nodes for the integer-threshold model, and for different selection strategies. The 
connectivities are set to z zin out= = 10 . The integer thresholds were chosen ran-
domly and uniformly from the interval [2, 10]. One can see that the selection strate-
gies that explicitly target nodes from the smaller community are generally much 
more efficient, compared to the targeting from the general population of nose. 
Namely, for small and large values of N0, both methods have a similar performance. 
However, there is a window [N1

c, N2
c], within which the selection of A nodes is 

clearly superior. Recalling the analysis from the previous section, it is clear that N1
c 

corresponds to the critical threshold for which the activation spreads throughout 
group A, and the spills into the rest of the network. If one targets nodes from the 
general population, on the other hand, this critical effect does not come into play 
until later, when larger number of nodes, N0

2, have been selected. The difference 
N2

c − N1
c depends on the particular selection strategy (e.g., greedy, random selection, 

etc.), as well as the size of the network. For instance, for random selection strate-
gies, the difference can be estimated as ρc(Nb − Na), where ρc is the critical fraction 
of seed nodes required to cause a global cascade (see section “Activation Cascades 
in Single-Community Networks”).

Fig. 4 Results for the integer-threshold LTM
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 Discussion

We have examined linear threshold model of activation cascades in structured 
heterogeneous networks. We demonstrated that for models with critical behavior, 
the structural properties of the network, and specifically, its community structure, 
can have a strong impact on the cascading process. For two-community networks, 
we demonstrated that by targeting nodes from the smaller community, one can 
achieve a cascade with fewer number of seed nodes. This effect is especially signifi-
cant if the sizes of two communities are vastly different.

We note that the networks considered here mimic scenarios where innovations 
are introduced through a small community of early adopters. In this respect, our 
work is related to the organizational viscosity model of Krackhardt (1997) and 
McGrath and Krackhardt (2003) that describes the diffusion of ideas in an organiza-
tion. In their approach, the organization is modeled as a number of interacting sub- 
units, with closer social ties within each unit. When the organization has a more or 
less homogenous structure, then a newly introduced idea cannot survive unless it is 
initially adopted by a large number of individuals. However, if the network describ-
ing the interaction of sub-units meets certain structural conditions, then the idea 
might take over the whole population even starting from a small number of initial 
adopters.

While the analysis shown here was for Erdos–Renyi networks, a similar behavior 
is observed also for communities with power-law degree distribution; see Galstyan 
et al. (2009). One important implication of the heavy tail is that it might affect net-
works dynamical properties, and, in some cases, suppress critical behavior. Finally, 
we note that the binary-state, single-stage model considered here might be too naive 
to capture certain dynamical processes on real-world networks. A number of authors 
have started examining multi-stage models that allow for more fine-grained notion 
of influence (Bruyn and Lilien 2008; Melnik et al. 2013). Another important exten-
sion is enabling nodes with more elaborate temporal dynamics, where the activity 
patterns can be sustained and reinforced over time (Piedrahita et al. 2013). 
Understanding the impact of network modularity on more elaborate dynamical 
models is an interesting future problem. 
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