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           Introduction 

 The Web is increasingly centered around contributions by its users:    human compu-
tation is growing increasingly common as a means for accomplishing a wide range 
of tasks, ranging from labeling and categorization of images and other content (with 
workers recruited on paid crowdsourcing platforms like Amazon Mechanical Turk, 
or in systems based on unpaid contribution such as Games with a Purpose or Citizen 
Science projects like GalaxyZoo), to answering questions on online Q&A forums 
(such as Y! Answers, Quora, or StackOverfl ow, to name a few), all the way to peer- 
grading homework assignments in online education. But while some human compu-
tation systems consistently attract high-quality contributions, other seemingly 
similar ones suffer from junk or low-quality contributions, and yet others fail due to 
too little participation. How can we design  incentives  in these systems to elicit desir-
able behavior from potential participants? 

 There are two components to the problem of incentive design for human com-
putation: (i) Identifying the costs and benefi ts of potential contributors to the system 
(the components that help formulate a  model  of agent behavior), and (ii) deciding how 
to assign rewards, or benefi ts, as a function of contribution (analysis and design). 

 The fi rst question of identifying costs and benefi ts relates closely to the question of 
 why  do people contribute—that is, what constitutes a benefi t or a  reward ? The answer 
to this question, of course, varies depending on the particular system in question. While 
some systems (such as those based on the Amazon Mechanical Turk platform), offer 
fi nancial incentives for participation, a vast majority of human computation is driven 
by social-psychological rewards from participation; such rewards include, for example, 
both intrinsic motivators like fun, interest, or the satisfaction of benefi ting a cause, 1  

1   Such as furthering science in a Citizen Science project 
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as well as extrinsic social rewards such as attention, reputation or status. There is now 
a growing literature in social psychology addressing what motivates, or constitutes a 
reward for, users in such systems. 2  

 But even after answering the question of why people contribute, there is a second 
question, which relates to how rewards are  allocated . Given that users value rewards 
(by defi nition, and irrespective of their specifi c nature—fi nancial or social- 
psychological), and incur costs (of time and effort) associated with different actions in 
the system, how rewards are assigned will infl uence what actions users take. That is, 
when a system depends on self-interested agents with their own benefi ts 3  and costs to 
participation, the quality and quantity of contributions will depend on the incentives 
created by the reward allocation scheme being used by the system. Given the under-
standing from the social psychology literature on what constitutes a reward, how 
should the  allocation  of these rewards be designed to incentivize desirable outcomes? 

 The following example illustrates the point. Consider a system with a leader-
board for top contributors (say the users who have classifi ed the most images in a 
Citizen Science project like GalaxyZoo, or earned the most points in a GWAP such 
as the ESP game); such leaderboards appear to be strong motivators for users. While 
there are a number of questions related to leaderboard design, consider a very basic, 
simplifi ed, question—should the system display only the top contributor, or, say, the 
top 5 contributors? On the one hand, if only one top-contributor ‘prize’ is given out, 
it is conceivable that users will try harder to win that solitary prize, leading to higher 
effort than when there are fi ve prizes, since the presence of a greater number of 
prizes could mean one need not do as much to win. On the other hand, one could 
also argue that users will be more likely to put in effort when they know there are 
fi ve prizes to be had, since they have a greater chance of winning something, so that 
their efforts are less likely to ‘go to waste’, in the second case where there are more 
prizes. Which of these is actually the correct prediction of behavior, when all par-
ticipants are facing the same question of how much effort to put in? Now suppose 
these prizes are not positions on a leaderboard, but rather monetary rewards that all 
come out of a fi xed prize budget (for example, as in a crowdsourcing contest)—in 
this case, should the entire budget be spent on one large prize or fi ve smaller prizes? 
Again, informal arguments could be made in favor of either solution; a formal 
game-theoretic analysis is necessary to understand how rewards should be struc-
tured to optimally incentivize effort from contributors. 4  

 A formal game-theoretic approach to incentive design, very broadly, proceeds by 
constructing an appropriate model where users (agents) make choices over actions, 
which are typically associated with costs (note that the term cost does not only refer 

2   The motivations of contributors in human computation are, naturally, closely related to those for 
user-generated content; some of the literature on which is discussed in Jian and 
MacKie-Mason ( 2012 ). 
3   (Arising from a range of motivations including possibly other-regarding, or ‘altruistic’, 
preferences) 
4   This particular problem is addressed in a model stylized for online crowdsourcing (contests, as 
well as crowdsourced content as in Q&A forums), in Ghosh and McAfee ( 2012 ). 
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to fi nancial costs such as an entry fee, but is also used to refer to non-monetary 
quantities such as the cost to time or effort). Action choices in human computation 
systems can consist, for example, of the following: (i) In most 5  systems, participa-
tion is a voluntary action choice (with an associated cost, e.g., of the time required 
to create an account or to log in to the system to participate), and mechanisms must 
be designed to induce adequate participation when entry is an endogenous, strate-
gic, choice. (ii) In many systems, agents can make a choice about how much  effort  
to expend on any given task, potentially infl uencing the quality of their output and 
therefore its value to the system—mechanisms must be designed so as to induce 
agents to expend a high level of effort (which is more ‘costly’ than lower effort). 
(iii) Finally, in some systems, agents may hold information that they can potentially 
strategically misreport to their benefi t, such as in voting or rating—this leads to the 
problem of designing mechanisms that induce agents to truthfully reveal this infor-
mation. (Naturally, any real system might contain a combination of these choices, 
as well as others unique to its function—an example of this latter kind is the choice 
of the order in which to output descriptive words for images in the ESP game; see 
section “GWAPs”). 

 A given design for a human computation system corresponds to, or induces, 
some rules that specify the allocation of rewards or benefi ts given each set of pos-
sible actions by agents. Note that in general, an agent’s reward can depend not only 
on her output, but also the outputs (determined by the action choices) of other 
agents. Given a particular system design and the corresponding rules it induces, 
strategic agents will choose actions that maximize their utility (difference between 
benefi t and cost) from the system. Agents’ choices of actions lead to outputs, which 
in turn define the benefit, or reward, that each agent receives from the system. 
A vector of action choices by agents, roughly speaking, constitutes an equilibrium 
if no agent can improve her payoff by choosing a different action. 6  

 There are two aspects to a game-theoretic, or more generally, economic, approach 
to incentives: analysis, and design. Analyzing equilibrium behavior under the 
reward allocation rules of a  given  system leads to a prediction about the behavior of 
agents, and therefore what kind of outcomes one might expect from that system. 
Choosing (or altering) the rules according to which rewards are allocated to induce 
agent behavior that achieves some particular outcome, or family of outcomes, con-
stitutes  design . While a game-theoretic approach to the analysis and design of any 
system with strategic agents has the general structure described above, each setting 
or system comes with its own unique features, depending on the choices of available 
actions, the nature of the available rewards and differing constraints on how they 
can be allocated, and  observability  of agents’ outputs. In the remainder of this chap-
ter, we will illustrate applications of the game-theoretic approach outlined above to 
some specifi c human computation domains in section “Game-Theoretic Models for 
Human Computation Systems”, and then discuss how the same kind of approach 

5   Albeit not all systems; peer-grading in online education being a prominent example 
6   A number of different  equilibrium  concepts exist to predict how strategic agents will behave 
under a given mechanism; see, for instance, Nisan et al. ( 2007 ). 
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can be applied to reward design in the context of gamifi cation, and rewarding 
contributors for their overall site participation in section “Incentivizing Consistent 
Effort: Gamification and Game Theory”. We conclude with a discussion of 
challenges and directions for further work in section “Challenges and Further 
Directions”.  

    Game-Theoretic Models for Human Computation Systems 

 In this section, we will look at three instances of game-theoretic analysis and design 
for human computation systems to illustrate the game-theoretic approach outlined 
in the previous section. Of course, these are not the only examples of game-theoretic 
analysis in the context of human computation; we briefl y mention two other domains 
of interest. 

 The DARPA red balloon challenge 7  was a highly publicized instance of human 
computation—in the sense of a distributed network of human sensors—that required 
incentivizing the rapid mobilization of a large number of participants on a social 
network. The challenge, run in December 2009, consisted of locating ten 8-foot 
high red balloons that had been moored at ten unknown locations throughout the 
US; the fi rst team to correctly identify the locations of all ten balloons would receive 
a cash prize of $40,000. For a team to win the challenge, it was necessary not only 
to recruit members who would look for and report sightings of the balloons them-
selves, but also to incentivize recruits to further recruit team members, since increas-
ing the number of searchers increased a team’s chance of quickly locating the 
balloons. That is, in addition to the problem of incentivizing participation, a team 
also had to incentivize incentivizing further participation. The recursive incentive 
scheme used by the winning MIT team to split the prize money amongst its partici-
pants is described and analyzed in Pickard et al. ( 2011 ), and highlights some of the 
issues that arise in the context of incentives in human computation tasks on social 
networks where performance, albeit not available reward, scales with the number of 
participants. 

 Another interesting family of problems related to incentives in human computa-
tion (broadly defi ned) occurs in online knowledge sharing or question-answer 
forums, such as Y! Answers, StackOverfl ow, or Quora, where questions posed by 
users are answered by other users of the site. There is a growing literature address-
ing a range of questions related to incentives and strategic behavior on such online 
Q&A forums in a game-theoretic framework, including what reward structures 
elicit quicker answers from users (Jain et al.  2012 ), how to allocate attention 
rewards 8  amongst contributors (Ghosh and McAfee  2012 ), as well as regarding the 
implementability of outcomes (i.e., the number and qualities of answers received) 

7   http://archive.darpa.mil/networkchallenge/ 
8   (By choosing which answers to display, and how often or prominently to display them) 
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by the ‘best-answer’ style mechanisms used by Q&A forums such as Y! Answers 
(Ghosh and Hummel  2012 ). 

 We now proceed with an analysis of incentives and strategic behavior in 
three human computation settings—we discuss Games with a Purpose in sec-
tion “GWAPs”, designing mechanisms for crowdsourced judgement aggregation in 
section “Crowdsourced Judgement Elicitation”, and voting in the context of human 
computation in section “Aggregating Quality Estimates: Voting”. 

    GWAPs 

 Games with a Purpose (GWAPs) (Ahn and Dabbish  2008 ) are an outstanding family 
of examples of successful human computation systems. GWAPs are games designed 
so that people who are ostensibly simply playing the game also simultaneously 
produce useful input to a computation or task which cannot be performed by com-
puters alone. For example, the game Verbosity 9  matches two players, who both 
‘win’ if the fi rst player correctly guesses the word being described by the second 
player (who, of course, is forbidden from directly using the word). This gives the 
second player the incentive to produce good descriptions to successfully communi-
cate the word, thereby generating word descriptions in the process. Another game 
TagATune 10  pairs two players, both of whom receive a sound clip and generate 
descriptions for their clips to decide whether they have the same clip or not—since 
players ‘win’ when they correctly determine whether or not they have the same clip, 
this creates incentives for both players to generate descriptive labels for their clips, 
leading to a useful set of labels for sound clips in the system. 

 The fi rst and perhaps best known GWAP is the ESP game, 11  which cloaks the 
task of labeling images under the guise of a game. In the ESP game, two randomly 
paired players are given an image; both players are asked to generate single-word 
descriptions for that image. Players gain points when they agree with their partner 
on a descriptive word, or label, for the image (neither player can see her partner’s 
choices until the two players have entered a common label). Since players do not know 
who their partner is because they are randomly paired by the game, they cannot 
coordinate on descriptions, and so the easiest way to agree on the output (i.e., a label 
for the image) is to base it on the input (i.e., the image itself). Thus the game design 
aligns the incentives of the players, who want to earn points, with that of the system, 
which is to generate descriptive labels for images. 

 But does it? The ESP game has been tremendously successful in terms of partici-
pation—it was played by over 200,000 people, collecting over 50 million tags 
(Ahn and Dabbish  2008 ) in approximately 4 years since its creation. This high 
participation makes it evident that the basic incentives were well-designed—fun 

9   http://www.gwap.com/gwap/gamesPreview/verbosity/ 
10   http://www.gwap.com/gwap/gamesPreview/tagatune/ 
11   http://www.gwap.com/gwap/gamesPreview/espgame/ 
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was clearly a valid reward, and the game clearly generated adequate ‘fun’ reward to 
compensate for the effort involved in playing the game. But what about the  quality  
of the labels generated? It has been observed, both anecdotally and in a more careful 
study by Weber et al. ( 2008 ), that the labels obtained for images in the ESP game 
tend to have a high percentage of colors, synonyms, or generic words—essen-
tially, labels that do not necessarily contribute too much information about the 
image, and are perhaps not the most useful labels that could be collected by the 
system. As we see next, a game-theoretic model and analysis of the ESP game can 
help explain how the specifi c choices made for the rules of the game encourage the 
creation of such tags, and also suggests changes to the game design which might 
address this issue. 

 Consider a simple model (Jain and Parkes  2013 ) for the ESP game. Each player 
independently chooses one of two effort levels (low or high) to exert while playing 
the game. A player who chooses low effort samples labels from the most ‘fre-
quent’, or common, set of words in the universe (such as colors, or generic com-
mon nouns), whereas a player choosing high effort samples labels from the entire 
universe of words; assume that players know the relative frequencies of each word 
they have sampled. Next, a player can choose in what  order  to output her sampled 
words (which are the labels she thinks of for the image). How do the rules of the 
ESP game affect what effort levels players choose, and the order in which they 
output words? 

 The ESP game design rewards players as follows. Each pair of players are 
matched for a set of 15 images, and try to label as many images as they can achieve 
agreement on in 2.5 min. For each image, both players enter a sequence of single- 
word descriptions and can move on to the next image as soon as they enter a com-
mon descriptive word, which then becomes the label for the image. Players receive 
points for each such successful labeling. Since players can see more images (thereby 
potentially earning more points, since points are awarded per labeled image) if they 
agree quickly on a descriptive word for each individual image, the 2.5 min time limit 
means that players would prefer to ‘match’, or agree on a label, as early as possible 
in their sequence of descriptive words for each image. Thus the design of the ESP 
game induces players to have utilities that can be described as  match-early  prefer-
ences (Jain and Parkes  2013 ), where each player obtains a higher utility from 
‘matching’ earlier rather than later with her partner. What kind of player behavior, 
and correspondingly what kind of labels, can be expected from such ‘match-early’ 
preferences induced by the ESP game design? 

  Theorem 1 (Jain and Parkes  2013 ).  

  (Informal.) With match-early preferences, choosing low effort and returning labels 
in decreasing order of frequency (i.e., from most common to least common) is a 
Bayes-Nash equilibrium in the ESP game.   

 Further, it turns out that under reasonable restrictions on strategy choices, such 
undesirable equilibria, where players coordinate on common words, are the only 
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Nash equilibria 12  in the ESP game. This result helps explain exactly  how  the design 
choices, i.e., the specifi c rules of the ESP game, might lead to the observed out-
comes of common or generic labels for images. 

 Now suppose rewards are instead designed so that the number of points received 
by a pair of players depends not just on the  number  of matches, but also on the  qual-
ity  of each match, based on the frequency of the agreed-upon label. Such a reward 
scheme, where a player’s utility depends not on  when  the match occurs (i.e., at 
which point in the sequence of words output by the player), but rather on the fre-
quency of the matched label, induces  rare-words  preferences. How does changing 
the reward structure to remove the ‘need for speed’, and so that agreeing on rare 
labels leads to higher rewards, affect equilibrium outcomes? 

  Theorem 2 (Jain and Parkes  2013 ).  

  (Informal.) With rare-words preferences, returning labels in decreasing order of 
frequency (i.e., common words fi rst) is a strictly  dominated  13   strategy. Returning 
words in  increasing  order of frequency (i.e., least common words fi rst) is an ex-post 
Nash equilibrium in the ESP game, conditional on both players choosing the same 
level of effort.   

 That is, such a change in the reward design leads players to ‘try’ the rarer words 
in their sample fi rst, leading to more useful labels than those obtained under the 
equilibrium strategy of trying more common words fi rst under match-early prefer-
ences. This change in design alone, though, is not adequate to induce effort—high 
effort sampling need not be an equilibrium strategy in the ESP game even when 
rewards are modifi ed to induce rare-words preferences. If, however, the distribution 
of words in the dictionary from which samples are drawn is Zipfi an (as is the case 
for the English language), and if the rewards are designed so that utilities addition-
ally obey a certain (multiplicative or additive) structure, high effort sampling fol-
lowed by coordination on rare words now becomes an equilibrium in the game. 

 This analysis of the ESP game demonstrates both (i) how a game-theoretic model 
and analysis can explain and pinpoint in what way a particular design choice for the 
game leads to the observed outcomes of low-information labels (arising from coor-
dination on common words), and (ii) what kind of reward redesign can lead, under 
what conditions, to high-effort coordination on rare words. In the next subsection, 
we investigate another family of human computation systems where a formal analysis 
of incentives can aid the design of reward mechanisms that induce desirable behavior 
from participants in the system.  

12   A Nash equilibrium is a set of  strategies , one for each player, such that no player can benefi t by 
deviating from her strategy given the strategy choices of other players; see, for instance, Nisan 
et al. ( 2007 ). 
13   A strategy is strictly dominated if there is another strategy that always leads to larger payoffs 
regardless of other players’ choices, i.e., for all possible strategies of other players. 
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    Crowdsourced Judgement Elicitation 

 An increasingly prevalent application of human computation is in the domain of 
using the crowd to make evaluations, or  judgements . Suppose each of a set of objects 
has one of many possible properties or belongs to one of many categories, and the 
task is to judge, or evaluate, what property the object has or which category it 
belongs to—for instance, categorizing galaxies or identifying birds (as in Citizen 
Science projects), deciding whether some text content is abusive or an image is 
pornographic, or deciding whether a homework assignment is correct or incorrect, 
or what score it should get. When the number of objects to be evaluated is too 
large for a single expert and the evaluation cannot be accurately performed by a 
computer, a human computation-based solution is to replace the expert’s opinion by 
an aggregate evaluation based on judgements from a ‘crowd’ of non-experts, typi-
cally recruited via some online platform. Crowdsourced judgement elicitation is 
now used in a wide range of applications including image classifi cation, identifying 
adult content online, rating learners’ translations on the language-learning site 
Duolingo, and most recently for peer grading in online education, where Massively 
Open Online Courses (MOOCs) with huge enrollments crowdsource the problem of 
evaluating homework assignments back to the students in the class. 

 Consider a worker, say, on Amazon Mechanical Turk who is classifying images, 
or a Duolingo user who has been asked to rate another user’s translation into his 
native language. Such a worker could potentially just arbitrarily categorize the 
object (an image, a translation, and so on) into some category—incurring no effort 
cost, or alternately, she can put in effort to properly evaluate the object.  If  the system 
could check the accuracy of the worker’s output (e.g., the correctness of her catego-
rization), and reward based on accuracy, the worker might be incentivized to put in 
effort into making judgements more accurately—but the reason for using human 
computation, of course, is that the system does not have this information in the fi rst 
place. Given that the only source of information about the ground truth—the true 
category for each object—is judgements from the crowd, how should the system 
reward agents based on the received reports? 

 This question is related, although not the same as, the growing literature on 
mechanisms for  information elicitation , also pertinent to human computation. 
Broadly, that literature addresses the question of designing mechanisms that incen-
tivize agents to  truthfully  reveal information they already happen to possess, such as 
their opinions about a product or service (as in the peer-prediction literature (Miller 
et al.  2005 )), or their beliefs about the probabilities of an event    as in prediction mar-
kets, a literature by now too vast to properly discuss here (Chap. 26, Nisan 
et al.  2007 ). The problem encountered in the crowdsourced judgement elicitation 
domain is somewhat different than the one addressed by this literature, since here 
agents (workers) do not already possess the information they are being asked to 
share—they must expend an  effort cost  to acquire that information in the fi rst place. 
Of course, having acquired the information, the reward structure additionally needs 
to induce agents to truthfully report what they observe. 
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 Given both formal studies (Ipeirotis et al.  2010 ) and anecdotal reports 14  of 
 effort- shirking by raters under ad-hoc or output-independent reward structures in 
real- world systems, there is a need for mechanisms that will incentivize agents to 
exert effort to make useful judgements on their tasks. Suppose an agent’s utility is 
the difference between the reward she receives, and the cost of the effort she puts in, 
aggregated over all the tasks she performs. A mechanism for judgement elicitation 
in such human computation settings should make it ‘most benefi cial’, if not the only 
benefi cial strategy, for agents to not just  report  their observations truthfully, but to 
also to expend effort to  make  the best observations they can in the fi rst place, rather 
than simply making arbitrary reports. Also, it is even more important here to ensure 
that the payoffs from an outcome where all agents blindly and consistently report 
the same observation (such as declaring all content to be good) are strictly smaller 
than the payoffs from truthfully reporting observations of the actual input, since 
declaring all tasks to be of some predecided type (without even observing the input) 
requires no effort and therefore incurs no cost, whereas actually putting in effort to 
make observations about the input will incur a nonzero cost. Dasgupta and 
Ghosh ( 2013 ) provide a simple model for this setting of crowdsourced judgement 
elicitation with unobservable ground truth, where an agent’s profi ciency—the prob-
ability with which she correctly evaluates the underlying ground truth (i.e., the true 
category or property of the object)—is determined by her  strategic choice  of 
how much effort to put into the task. They provide a mechanism—a set of rules 
which determines how to allocate rewards to agents— M   , for binary information 
elicitation for multiple tasks when agents have such endogenous (i.e., strategically 
determined) profi ciencies, that has the following properties. 

  Theorem 3 (Dasgupta and Ghosh  2013 ).  

  Exerting maximum effort into making judgements, followed by truthful reporting of 
observations is a Nash equilibrium in mechanism   M    . Further, this is the equilib-
rium with  maximum payoff  to all agents, even when agents have different maximum 
profi ciencies, can use mixed strategies, and can choose a different strategy for each 
of their tasks.   

 Informally, the main idea behind the mechanism  M    is to use the presence of 
 multiple  tasks and ratings to estimate a reporting statistic that identifi es and penal-
izes  blind , or low-effort, agreement—since the only source of information about the 
ground truth comes from agents’ reports, it is natural to use agreement as a proxy 
for accuracy, and reward an agent for agreement with another agent’s evaluation 
of the same task. However, rewarding only for agreement can lead to low-effort 
equilibria with high payoffs (for instance, where all agents report the same observa-
tion independent of the input and therefore always agree), which is undesirable. 
The mechanism  M    therefore does reward agents for agreeing with another ‘reference’ 
report on the same task, but also penalizes for  blind agreement  by subtracting out a 

14   Such as in Duolingo and peer-grading systems 
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statistic term, which is based on the extent of the agreement that would be ‘expected 
anyway’ given these agents’ reports over all the other tasks they rate. This statistic 
term is designed so that agents obtain nonzero rewards  only  when they put in effort 
into their observations, and so that reward is increasing in effort: this yields the 
maximum payoff property of the full effort-truthful reporting Nash equilibrium. 

 This crowdsourced judgement setting thus demonstrates another instance in 
which game-theoretic models and mechanism design provide useful input into the 
incentive-centric design of a broad family of human computation systems, where—
given the accounts of effort shirking by raters under ad-hoc or output-independent 
reward structures in real-world systems—properly incentivizing agents is key to 
obtaining worthwhile, or valuable, input from the humans in the system.  

    Aggregating Quality Estimates: Voting 

 We illustrate a third kind of incentive problem in human computation by examining 
settings where user ratings are used to compute the (absolute or relative) quality of 
online content, such as photographs on Flickr, reviews on Amazon or Yelp, shared 
articles on Reddit, and so on. Rating and ranking are natural applications for human 
computation—in all the examples we just mentioned, it is hard for a computer to 
accurately process the task at hand, which is inferring content quality or rankings 
(for example, how does Flickr know whether a photograph is appealing?), whereas 
humans can easily accomplish the task. 

 Where do incentives and game theory come in? In a number of such voting or 
rating contexts, the set of people producing ratings is not disjoint from, and often 
has high overlap with, the set of people producing the content or objects 15  to be rated 
(for example, consider a community of photographers such as on Flickr, who both 
post photos themselves, and rate other contributors’ photos). Since having a high 
relative rating for one’s own content is desirable (highly-ranked content receives 
more attention, which seems to be clearly desired by contributors), a contributor 
who is rating other contributions might have an incentive to strategize her votes so 
as to increase her relative ranking—for instance, by downvoting other highly-rated 
contenders. A natural question then is the following: Is it possible to design a 
scheme for aggregating ratings that can ‘get at’ the true qualities, or perhaps the true 
underlying ranking of objects, or identify the set of the  k -best objects, when the 
creators of the objects being rated are also the raters? 

 A simple abstract model for this problem is studied in Alon et al. ( 2011 ). Suppose, 
for simplicity, that the set of raters is exactly the same as the set of creators of the 
content; abstractly, this can be modeled by a voting scenario where the set of agents 

15   Note that these objects can also be the producers themselves, rather than only the content pro-
duced, as might be the case when constructing rankings of users based on their contributions in 
some online community. 
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who vote are identical to the set of candidates being voted on. 16  Consider a directed 
graph over this set of  n  agents, where an edge from agent  i  to agent  j  is taken to 
mean that  i  ‘upvotes’ or supports (for example, likes the content produced by) agent 
 j . 17  Suppose the system wants to fi nd the  k  most popular agents—for example, a site 
might want to prominently display the  k  most popular contributions. Each agent is 
only interested in being selected in this set of  k  ‘winners’, and so may misreport its 
opinions, or ratings, to this end. A  mechanism  in this setting is a way to aggregate 
the set of votes from the  n  agents into a set of  k  selected agents. Is it possible to 
design a mechanism which is simultaneously  strategyproof —i.e., where no agent 
can benefi t by misreporting which other agents she approves (or does not approve) 
of, i.e., her edges—as well as  approximately optimal , in the sense that the total 
number of votes on the chosen set of  k  agents is ‘close’ to (i.e., not much smaller 
than) the total votes for the  k  most popular agents? Alon et al. ( 2011 ) analyze stra-
tegic behavior in this model to fi rst show a surprising impossibility result: 

  Theorem 4 (Alon et al.  2011 ).  

  For any number of agents n ≥ 2, and any number of winners k between 1 and n − 1, 
there is no  deterministic  strategyproof k-selection mechanism with a fi nite approxi-
mation ratio.   

 However, Alon et al. ( 2011 ) constructs a  randomized  mechanism (i.e., where the 
choice of the set of  k  winners also depends on the outcome of some random coin 
tosses) which is both strategyproof, and selects a reasonable set of agents: 

  Theorem 5 (Alon et al.  2011 ).  

  For any k between 1 and n − 1, there is a  randomized  k-selection mechanism that is 
both strategyproof, and has an approximation ratio  18   no worse than 4; this mecha-
nism is approximately optimal as k diverges.   

 Together, these results, based on a formal analysis of strategic behavior in a 
simple voting model, establish the tradeoffs that the designer of a human 
computation- based rating or ranking system should expect to fi nd when dealing 
with self-interested users—while no simple (i.e., deterministic) mechanism for 
aggregating ratings can be both strategyproof and optimal for all inputs, there exists 
a more complex (randomized) mechanism that can eliminate any benefi ts from mis-
reporting while also not compromising the quality of the winner set too much, espe-
cially as the size of that set diverges.   

16   An example of such a situation, outside of the context of human computation or the Internet, is 
the election of the pope in the papal conclave. 
17   For readers familiar with the voting literature, this setting is a special case of  approval voting  
where the set of voters coincides with the set of options. 
18   That is, the set of winners obtains at least 1⁄4 as many votes as the k most popular agents 
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    Incentivizing Consistent Effort: Gamifi cation 
and Game Theory 

 In the previous section, we saw the role of formal game-theoretic analysis and 
design in three human computation contexts—specifi cally, we saw how rewards, 
or benefi ts, for particular tasks can be restructured to provide incentives to agents 
to undertake the ‘right’, i.e., system-desired, behaviors. In this section, we will 
discuss an application of game-theoretic techniques to a broader class of incen-
tives for participation: an increasing number of human computation systems are 
now accompanied by corresponding  online communities , with discussion forums, 
leaderboards, reputation scores, and various other features, all of which also pro-
vide rewards (typically of a social-psychological nature) to participants, albeit not 
for performance on a particular task. While our previous analyses looked at incen-
tives and cost-benefi t tradeoffs from a  single  action or contribution, there are also 
rewards that relate directly to the identity of a  contributor  typically based on her 
overall contribution, rather than to single actions or contributions. In this section, 
we will discuss very recent work on formal approaches to designing incentives 
that motivate  overall contribution  in human computation systems via their 
communities. 19  

 A common theme in a growing number of online communities and social media 
sites relying on user contributions is  gamifi cation —via badges, leaderboards, and 
other such forms of (competition or accomplishment based) social-psychological 
rewards. These rewards, meant to provide an incentive for participation and effort 
on a given system or site, usually refl ect various site-level accomplishments based 
on a user’s cumulative ‘performance’ over multiple contributions. Such badges or 
top-contributor lists clearly appear to motivate users, who actively pursue and com-
pete for them—for example, users on StackOverfl ow are observed to increase their 
effort levels when they get close to the contribution level required for a 
badge (Anderson et al.  2013 ), and there are entire discussion communities on the 
Web centered around how to break into Amazon’s Top Reviewer list or how to 
maintain a Top Contributor badge on Yahoo! Answers, while users who have just 
earned entry into top contributor lists often fi nd an increased number of negative 
votes from other users attempting to displace them. 

 Given that the rewards created by these virtual badges and leaderboards appear 
to be valued by users (a phenomenon that appears to be quite general, occuring 
across a range of online communities) and that participating and putting in the effort 
required to obtain them is costly, a particular way of allocating these rewards creates 
a corresponding set of incentives, or more formally, induces a  mechanism  in the 
presence of self-interested contributors. So gamifi cation also involves reasoning 
about incentives in a game-theoretic sense—given that there are several different 

19   For a broad set of general guidelines on incentivizing participation and engagement in online 
communities, see Kraut et al. ( 2012 ). 
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ways to ‘gamify’ a site, how should these rewards for overall contribution be 
designed to incentivize desired levels of contribution? For instance:

    1.    What incentives are created by mechanisms induced by an  absolute  standard of 
output that must be met to earn a badge (such as a threshold number of images 
that must be tagged, or questions that must be answered), and what incentives are 
created by a  competitive , or relative, standard, such as top-contributor badges or 
leaderboards? And how do these ‘compare’?   

   2.    When badges are awarded for meeting absolute standards, should multiple 
badges be awarded, and if yes, how should they be ‘placed’ relative to each other 
in terms of the accomplishments required to earn successively higher levels of 
badges?   

   3.    Consider a very simple form of a relative standard, corresponding to handing out 
an (identical) ‘top-contributor badge’ to some set of ‘best’ contributors on the 
site. How exactly should badges for competitive standards be specifi ed—should 
the site award some fi xed number of top-contributor badges  independent  of the 
number of actual participants, such as a Top 10 Contributors list (call this mecha-
nism  Mr

p

 
 ), or should the number of winners be some fraction of the number of 

 actual  participants (mechanism  Mr
c )

 
 ? Note that since participation in all these 

human computation systems is a voluntary choice, the number of actual con-
tributors is  not fi xed  apriori, but rather is determined by the choices made by 
self-interested users—so these two specifi cations are  not  equivalent.    

  This family of questions brings us to the frontiers of research on game theory for 
human computation, which we summarize below. First we address the questions 
about what kinds of incentives are created by absolute and relative standards mecha-
nisms. Call the awarding of badges for achieving some absolute standard, say  α , of 
output (such as receiving  α  positive ratings for one’s contributions, or labeling  α  
images correctly), an absolute standards mechanism  Ma   . Call the awarding of 
badges for belonging amongst some set of top  ρ  contributors to the site a relative 
standards mechanism  Mr  

 . Easley and Ghosh ( 2013 ) investigates the existence and 
nature of equilibrium outcomes in these two classes of mechanisms in a simple 
game-theoretic model where users who value badges (presumably for social- 
psychological reasons), and have a cost to effort, strategically choose whether to 
participate and how much effort to put into the site. 20  

  Easley and Ghosh ( 2013 ) fi nd that even the existence of equilibria for relative 
standards mechanisms  Mr  

  depends on  how  the number of top contributor awards 
 ρ  is specifi ed (i.e., whether there are a fi xed number of top-contributor badges that 
will be awarded, or whether the number of badges scales as a fraction of the number 
of actual participants)—this is due to endogenous participation, i.e., the fact that 
users make a voluntary choice about whether to participate depending on the 

20   An equilibrium here consists of some level of participation and some level of effort from partici-
pants, such that no participant can benefi t from either dropping out or choosing to exert a different 
level of effort, and no non-participant would prefer to participate. 
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rewards being offered. While the two versions of the relative standards mechanism 
behave identically for  ρ  lying in a certain range, the result below suggests that at 
least for settings that are reasonably captured by the model in Easley and 
Ghosh ( 2013 ), the mechanism corresponding to announcing a fi xed number of 
top- contributor badges that is independent of the number of actual participants is 
a more robust mechanism than one that declares some fraction of participants to 
be winners, i.e., where the number of winners scales with the number of actual 
contestants. 

  Theorem 6 (Easley and Ghosh  2013 ).  

  (Informal.) 

    1.     For relative standards mechanisms   Mr  
  , equilibria exist for all values of ρ > 0 if 

the site specifi es ρ as a fraction of  potential  contributors, i.e., as a  fi xed number 
 of winners, but not if ρ refers to a  fraction  of  actual  contributors.    

   2.     For absolute standards mechanisms   Ma    , equilibria exist for all possible values 
of the standard α. However, there is a maximum standard α  max   such that the only 
equilibria for all standards higher than α  max   involve zero participation, leading 
to no contributions.     

   This equilibrium analysis suggests an interesting contrast between using relative 
and absolute standards for rewarding overall contribution—while  Mr

p

 
  elicits non- 

zero participation in equilibrium for every value of  ρ  > 0,  Ma    can lead to zero equi-
librium participation when  α  is too large. However, there is also a  partial  equivalence 
between absolute and relative standards  Ma    and  Mr

p

 
 , of the following form. Every 

absolute standard  α  ≤  α  max  leads to an equilibrium outcome that is identical, in terms 
of induced effort and participation, to the equilibrium outcome in the relative stan-
dards mechanism with some appropriate value of  ρ  ∈ [ ρ  min , 1), where  ρ  min  > 0 is the 
equilibrium fraction of winners at the standard  α  max —and in fact, the value of  ρ  that 
elicits the  maximum  effort from contributors occurs at a relative standard  ρ  that lies 
in this range [ ρ  min , 1). So for a site designer who wants to optimize elicited effort, 
and has adequate information about the parameters of the population to choose an 
optimal value of the standard  α  or  ρ , the absolute and relative standards mechanisms 
are equivalent. In the absence of such information, however, or with uncertainty 
about the population’s parameters, a ‘top contributor’ style mechanism  Mr

p

 
  based 

on competitive standards that always elicits non-zero equilibrium participation might 
be, informally speaking, more desirable than an absolute standards mechanism. 

 Finally, we ask a question about multiple badges—consider badges that are 
handed out for absolute achievements. At what levels of achievement should badges 
should be awarded to sustain effort on the site, and how should they be designed to 
steer user behavior towards different actions on the site? Anderson et al. ( 2013 ) 
address this question in a model where there is a multi-dimensional space represent-
ing the possible types of actions on the site. Users have a time-discounted value to 
earning badges and incur a cost when they choose actions from a distribution that 
differs from their preferred mixture of actions on the site. If users act to maximize 
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their utility in this model of costs and benefi ts, how should badges be placed to align 
ideal user behavior with users’ utility-maximizing actions? Anderson et al. ( 2013 ) 
fi nds that the effectiveness of badges in inducing desirable behavior depends signifi -
cantly on their ‘placement’ (i.e., for what level of contribution they are awarded), 
with the optimal location being, roughly speaking, one that is hard to achieve and 
therefore motivates users for a signifi cant length of ‘time’ (contributions). Also, 
multiple badges should be ‘spread out’ with roughly equal values, rather than placing 
them at nearby levels of contribution, suggesting that multiple smaller rewards 
provide more effective incentives than a small number of larger rewards at least in 
settings that are well-described by the model in Anderson et al. ( 2013 ). 

 The literature on a game-theoretic approach to overall contributor reward design 
is very young, and has looked at the most immediate questions under relatively 
simple models and reward structures. There are a number of questions still to be 
modeled and answered, an immediate one being the design of leaderboards. In con-
trast to top-contributor badges, not all ‘winners’ receive equal rewards in leader-
boards since arguably, the reward from placing fi rst (or say in the top 5 positions) is 
somewhat larger than, say, ranking 100th on the leaderboard, even in a site with a 
large population. A number of interesting game-theoretic questions arise, starting 
from the very basic question of how many positions the leaderboard should have to 
optimally elicit effort from contributors; this question is related to our motivating 
example early in this chapter, and a fi rst step towards such questions, although in a 
model with perfectly observable outputs, is taken in Ghosh and McAfee ( 2012 ). 

 Finally, a commonly used reward structure is that of user reputations. The question 
of how to design—and use and update—user reputations to create the right incen-
tives in a human computation system is one that can draw from a vast body of litera-
ture on the design on reputation systems (Chap. 27, Nisan et al.  2007 ), but comes 
with challenges unique to human computation systems that will require the develop-
ment of convincing new models and schemes  21 : In addition to differences in details 
from the models in prior work on reputation systems (for example, in the context of 
electronic marketplaces such as EBay or Amazon), there are also potentially funda-
mental differences that might arise due to the differences in the nature of the rewards 
that agents seek from these systems, which are primarily fi nancial in online market-
places but to a large degree social-psychological (such as status or reputation within 
a community) in human computation systems. We briefl y explore these ideas in 
section “Challenges and Further Directions”.  

    Challenges and Further Directions 

 In the previous sections, we saw how a game-theoretic, or more broadly, an economic 
approach, can help with analyzing strategic behavior and incentive design in human 
computation systems. But there remain many challenges, unique to such online 

21   For preliminary work on social norms for reputation, see Ho et al. ( 2012 ). 
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contribution domains, that need to be understood before we can fully develop the 
game-theoretic foundations for incentives in human computation. First, of course, 
there are a number of immediate questions regarding theoretical modeling and 
analysis. In addition to questions we have already alluded to in previous sections, 
there is also an interesting family of problems arising from the diversity of roles that 
participants play in many systems (for example, contribution versus moderation in 
an online community). How should incentives be designed to ensure that each 
participant is incentivized to properly contribute to her role(s) in the system, given 
that different roles might require different incentives, and that these incentives could 
potentially interact with each other? A principled framework that helps answer this 
question will need to begin with new models that appropriately capture such multi-
role participation as well as interactions between different sets of incentives—an 
issue relates, at least in spirit, to the question of what incentives are created by 
simultaneously using different forms of gamifi cation on a site. A further question 
along these lines, arising from the voluntary nature of participation, is how to struc-
ture incentives to also induce different potential participants to  choose  their socially 
optimal roles in the system. 

 In addition to problems related to modeling and theoretical analysis, there are 
also a number of cross-disciplinary questions. One family of problems lies at the 
interface of game theory and  interaction design . By infl uencing usability, and usage, 
the design of the user interface in a human computation system also interacts with 
incentives in a game-theoretic sense—after all, any game-theoretic analysis involves 
modeling the behavior of the agents (i.e., users) in the system, which is determined 
not only by its rules for reward allocation but also by its interface. As a very simple 
example, consider a system that rewards contributors based on the quality of their 
outputs, as measured by the ratings, or votes, provided by users who view these 
contributions. An interface design which leads to very little rating by users (for 
example, a hard-to-fi nd rating button or an overly complex menu of options), or one 
that leads to ambiguity in the meaning of a rating (such as a thumbs-up button which 
is interpreted by some users to mean ‘Helpful’ and others to mean ‘I agree’) results 
in ‘noisier’ ratings than an interface which elicits meaningful votes from a large 
number of users. A greater degree of noise, roughly speaking, means that reward 
depends on effort in a more uncertain way, which in turn affects the incentives 
for agents to put in effort in the system. It is easy to see that even in this specifi c 
example there is much more to consider at the interface of interaction design and 
incentives, such as the question of  which  users are allowed to rate contributions, and 
whether raters are offered a more or less expressive set of ratings to choose from. 
Another example of the connection between interaction design and game theory can 
be found in the context of badges and gamifi cation—how much information 
about users’ behavior and performance is revealed to other users can potentially 
affect users’ valuations of badges, and consequently their strategic choices; see 
Sect. 5.3 in Easley and Ghosh ( 2013 ). Generally, therefore, how users respond to a 
given mechanism in a strategic or game-theoretic sense, as well as the space of 
available mechanisms itself, can depend on the choice of interface in the interaction 
design phase—an ideal design paradigm would take into account both the 
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infl uence of the user interface and the reward allocation rules on user behavior to 
provide an integrated, complete approach to the design of incentives in human com-
putation systems. 

 Finally, a very important family of questions relate to properly understanding 
contributor motivations and rewards in a more nuanced fashion. One particularly 
interesting issue that is pertinent to most human computation systems is that of 
 mixed incentives : unlike in most traditional economic analysis, human computation 
systems typically involve a  mixture  of potential contributor rewards. Systems with 
fi nancial rewards for contributing, such as Amazon Mechanical Turk, mix two 
entirely different kinds of rewards (fi nancial and social-psychological); even in sys-
tems without fi nancial incentives, there are usually multiple social-psychological 
rewards, either intrinsic or site-created: for instance, von Ahn and Dabbish ( 2008 ) 
describes fun as the primary motivator in the ESP game, but there are also social- 
psychological rewards from leaderboards (competition) as well as from successful 
‘collaboration’ with partners on the image labeling task. 

 How do people—the agents in a game-theoretic model—value these different 
kinds of rewards in combination, and also, how do they value them relative to each 
other? What happens when virtual points are used to create an economy with 
money-like properties (a currency for exchange of goods and services), versus using 
virtual points to create psychological rewards (such as status)? Second, how do 
social-psychological rewards, even individual ones, aggregate in terms of the per-
ceived value to contributors? While utility from money—both in terms of value as a 
function of total wealth, and the change in value of wealth with time—is a relatively 
well-studied subject in the economics literature, very little is known or understood 
about how social-psychological rewards aggregate, and how they retain (or gain 
or lose) value over time; also, unlike fi nancial rewards, this could be partially 
controlled by system design. Understanding how multiple rewards infl uence incen-
tives when they occur simultaneously in a system, and how social-psychological 
rewards provide value—starting with understanding agent preferences from a 
behavioral economics perspective, and then integrating this understanding into 
formal game- theoretic models—is an essential component to a strong foundation for 
incentive design for human computation, and one of the most exciting directions for 
future work in this area.     

   References 

       Alon N, Fischer F, Procaccia A, Tennenholtz M (2011) Sum of us: strategyproof selection from the 
selectors. In: Proceedings of the 13th conference on theoretical aspects of rationality and 
knowledge (TARK), Groningen  

      Anderson A, Huttenlocher D, Kleinberg J, Leskovec J (2013) Steering user behavior with badges. 
In: 22nd international world wide web conference (WWW’13), Rio de Janeiro  

    Dasgupta A, Ghosh A (2013) Crowdsourced judgment elicitation with endogenous profi ciency. 
In: Proceedings of the 22nd ACM international world wide web conference (WWW), Rio de 
Janeiro  

Game Theory and Incentives in Human Computation Systems



742

       Easley D, Ghosh, A (2013) Incentives, gamifi cation, and game theory: an economic approach to 
badge design. In: Proceedings of the 14th ACM conference on electronic commerce (EC), 
Philadelphia, 2013  

   Ghosh A, Hummel P (2012) Implemeting optimal outcomes in social computing. In: Proceedings 
of the 21st ACM international world wide web conference (WWW), Lyon, 2012  

     Ghosh A, McAfee RP (2012) Crowdsourcing with endogenous entry. In: Proceedings of the 21st 
ACM International World Wide Web conference (WWW), Lyon, 2012  

    Ho C, Zhang Y, Vaughan J, Schaar MVD (2012) Towards social norm design for crowdsourcing 
markets. In: Proceedings of the AAAI workshop on human computation, San Francisco  

   Ipeirotis P, Provost F, Wang J (2010) Quality management on amazon mechanical turk. In: Proceedings 
of the ACM SIGKDD workshop on human computation (HCOMP), Washington, DC      

      Jain S, Parkes D (2013) A game-theoretic analysis of the ESP game. ACM Trans Econ Comput 
1(1):3     

   Jain S, Chen Y, Parkes D (2012) Designing incentives for online question-and-answer forums. 
Games and Economic Behavior, forthcoming      

   Jian L, MacKie-Mason JK (2012) Incentive-centered design for user-contributed content, Oxford 
Handbook of the Digital Economy, edited by Martin Peitz and Joel Waldfogel, forthcoming     

    Kraut R, Resnick P, Kiesler S, Ren Y, Chen Y, Burke M, Kittur N, Riedl J, Konstan J (2012) 
Building successful online communities: evidence-based social design. MIT, Cambridge  

    Miller N, Resnick P, Zeckhauser R (2005) Eliciting informative feedback: the peer-prediction 
method. Management Science 51(9):1359–1373  

       Nisan N, Roughgarden T, Tardos E, Vazirani V (2007) Algorithmic game theory. Cambridge 
University Press, New York  

    Pickard G, Pan W, Rahwan I, Cebrian M, Crane R, Madan A, Pentland A (2011) Time-critical 
social mobilization. Science 334:509–512  

     von Ahn L, Dabbish L (2008) Designing games with a purpose. Commun ACM 51(8):58-67      
   Weber I, Robertson S, Vojnovic M (2008) Rethinking the ESP game. Technical report, Microsoft 

Research    

A. Ghosh


	Game Theory and Incentives in Human Computation Systems
	Introduction
	 Game-Theoretic Models for Human Computation Systems
	GWAPs
	 Crowdsourced Judgement Elicitation
	 Aggregating Quality Estimates: Voting

	 Incentivizing Consistent Effort: Gamification and Game Theory
	 Challenges and Further Directions
	References


