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           Introduction 

 This chapter seeks to explore functional characteristics held in common by neurons 
in the brain and humans in society. A better understanding of the commonalities 
between brain network computation and human social network function may pro-
vide a framework for better understanding the potential for human computation as 
an emergent behavior. Establishing a mechanism by which differences and similari-
ties in the computational potential of brain and human social networks can be evalu-
ated could provide a basis by which human computation may be operationalized. 

 Natural systems are complex and dynamic, characteristics that make accurate 
prediction of their behaviors over time diffi cult if not impossible. This property is 
held in common by both physical systems such as the weather and the movement of 
the earth’s crust and biological systems from genetics to ecosystems. Further, these 
are adaptive systems that have evolved over time to optimize their ability to survive 
in the face of changing environmental conditions at a range of time scales. 

 Complex systems are distinguished from complicated systems not on the basis of 
the number of constituent elements but on the potential to predict system output 
based upon an understanding of behavior of each element and its position in the 
system. The requisite characteristic of a complex system is the presence a large 
number of interacting non-linear elements, be they neurons or humans. The relevant 
property of complex systems for our purposes here is that they exhibit emergent 
properties; that is, macroscopic behaviors emerge from the interaction of constitu-
ent elements rather than being dictated by some controlling source (Chialvo  2010 ). 
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 A hallmark of complex dynamic systems is the presence of abrupt transitions 
from one physical or behavioral state to another that are termed phase transitions. 
Examples of such behavior include such everyday occurrences as the transition of 
water from a liquid to a solid state, or of liquid water to a gas when boiled. Such 
transitions also characterize biological systems with a common state transition seen, 
for example, in the alternations between wake and sleep. 

 A fi nal property common to complex dynamic systems is their organization into 
interlinked networks. Systems are, by defi nition, composed of interconnected ele-
ments or components that act together to process a set of inputs and produce some 
behavioral output. Network theory provides a powerful tool by which to describe and 
analyze the interactions of complex and dynamic systems and has been used in the 
analysis of brain (Bassett and Bullmore  2006 ; He et al.  2007 ), human social (Brown 
et al.  2007 ; Gulati et al.  2012 ) and technical (Barabási et al.  2000 ; Wang and Chen 
 2003 ) systems. Further, network theory offers a common framework within which to 
understand both the similarities and differences in the computational potential of 
both neural and human communication systems that is the goal of this chapter. 

 This chapter will provide overviews of both neural and human social system 
composition and communication together with the network theory view of their 
global operations as complex, non-linear dynamic systems. Within that framework 
we will then move to commonalities in the processing mechanisms of both systems, 
followed by a short discussion of their differences. A more speculative section con-
cerning the potential for human computation will fi nalize the chapter.  

    The Brain as a Complex Dynamic System 

 The brain is a complex adaptive system that controls organismal behavior to environ-
mental stimuli. Accurate assessment of the context in which a behavioral response 
will be generated is essential to successful performance and, in many instances, to 
organismal survival. To achieve appropriate responses to environmental stimuli, the 
brain must be both suffi ciently stable as to estimate the consequences of a response, 
and suffi ciently fl exible to respond to completely novel or unexpected stimuli. 

 The brain is composed of a large set of interacting complex cellular elements, the 
majority of which fall into the two categories of neurons and glia. Brain processing 
of both external and internal environmental stimuli involves a complex and incom-
pletely characterized set of interactions between these cellular elements and their 
extracellular milieu. That said, as the neuronal elements generate the system output 
structure, the vast majority of studies have focused on the neuron as a central pro-
cessing element of the brain and it will be on this element that we also will focus. 

 Neurons, and as is becoming increasingly clear, the glial elements with which 
they interact, communicate both individually and within circuits that enable dynamic 
aggregation of processing-specifi c populations. The system is hierarchical in the 
sense that circuits themselves interact to form increasingly complex circuits, lead-
ing to the identifi cation of processing modules with distinctly different processing 
parameters (Felleman and Van Essen  1991 ; Meunier et al.  2010 ; Zhou et al.  2006 ). 
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An example of one such distinct hierarchical module is the retina of the eye, a com-
plex and hierarchical network of interacting elements that receives light from the 
external environment, processes that input to provide information on both pattern 
and color in the external environment and transmits that highly processed informa-
tion to multiple different circuits in the brain to not only enable the organism to 
“see” the external world, but also to inform other brain circuits as to the level of 
light in the external world as a separate input.  

    Human Social Organization Is a Complex Dynamic System 

 Human social systems are also adaptive, complex dynamic systems. Human social 
organization, like that of other social organisms, provides the system as a whole 
with an adaptive capacity that improves survival and viability. Social systems pro-
vide a stable organization in which each individual can operate with established 
rules by which fl exible, adaptive responses may occur. Moreover, social systems 
undergo phase transitions at both local and global scales, from abrupt shifts in orga-
nizational leadership to political or social revolutions that dramatically reorder the 
social hierarchy (Garmestani et al.  2009 ; Holling  2001 ; Wilkinson  2002 ). 

 Individual humans are the basic processing element of human social systems. 
Each individual is unique and complex, and highly connected to other individuals in 
the society. Social organization begins with connections between individuals 
(Davidsen et al.  2002 ) which networks are then embedded in larger network(s). 
Communication in its multiple forms provides individual members of a society with 
information required to update experiential data used in decision-making and the 
guidance of appropriate responses to environmental stimuli. 

 Human social organization is hierarchical, and each individual is embedded in a 
complex network that includes family, friends, professional associates and acquain-
tances (for further discussion, see Analysis Section, this volume). This intricate 
extended network is clearly seen in the use of social networking sites such as 
Facebook, Twitter and LinkedIn, where individuals form communication links to 
others based on personal or professional affi liations. Such linkages extend beyond 
the individual through organizational behaviors and organizations, and at larger- 
scale to the behavior of the polity whether local, national, inter-national, or global.  

    Neural Communication Structures 

 Although neuronal morphology varies greatly, a characteristic structure can be 
defi ned that informs our understanding of the processing capabilities of single brain 
elements. Neurons are composed of a cell body, the soma, from which extend two 
different types of processes: the dendrites with are electrically conductive but his-
torically considered passive, and the axon which actively transmits electrical sig-
nals. Classically, the dendrites are receptive cellular processes that act to pass 
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information to the cell soma, which acts as the cellular processing element. While 
recent data points to dendritic processing capability (Spruston  2008 ) information 
fl ow to the soma remains fundamentally characteristic. The soma has a highly com-
plex internal structure that provides substrates for information processing, plastic 
remodeling of cellular morphology and molecular biology, and health maintenance, 
which can be considered the complex internal structure of the basic brain processing 
element and not discussed further. From the soma, information is transmitted to 
other brain cellular elements via the axon. The receptive elements of the neuron are 
the receptors, which are proteins embedded in, and capable of movement within, the 
neuronal membrane. Receptors are found predominantly on dendritic membranes, 
but also exist on the soma. 

 The neuron is an electrically excitable element, with electrical current generated 
by the passage of ions across the cell membrane. As noted above, information is trans-
ferred between elements via specialized protein complexes known as receptors. The 
classical neuronal receptors are activated by chemicals synthesized in the neural soma 
and released based on the voltage potential of the somal membrane, providing the 
electro-chemical communication system of the brain. As these chemicals and their 
receptors are found in the brain they are termed neurotransmitters and neurotransmit-
ter receptors. A large number of neurotransmitters exist, most of which bind to spe-
cifi c receptor proteins, acting to change the protein complex conformation and either 
open ionic channels through the cell membrane or initiate complex intracellular bio-
chemical cascades to affect behavioral changes in the receiving cell. The process of 
electro-chemical neurotransmission occurs at a specialized region of contact between 
two cells known as the synaptic cleft. The synaptic cleft is an area of directed cell-to-
cell communication, i.e., information is passed from one cell (the presynaptic cell) to 
another (the postsynaptic cell) unidirectionally. However, there may be more than one 
synaptic cleft present between two cells, providing for bidirectional information 
transfer. The presynaptic element is specialized for the release of neurotransmitter 
into the synaptic cleft. Once released into the synaptic cleft, neurotransmitters diffuse 
passively across this narrow gap between cell membranes (~ 20 nm). The postsynap-
tic cell membrane is rich in neurotransmitter receptors capable of binding the released 
neurochemical. Termination of signaling is accomplished by several mechanisms 
including reuptake into the presynaptic cell, diffusion out of the synaptic cleft, or 
enzymatic degradation, creating rapid, point-to-point communication. 

 While neurochemical communication is rapid, electrical synapses communicate 
between cells almost instantaneously. Signaling in this type of synaptic contact 
takes place through specialized transmembrane proteins called connexins that 
directly couple the presynaptic and postsynaptic membranes, allowing for rapid 
exchange of ions and metabolites between cells (Nagy et al.  2004 ; Scemes et al. 
 2007 ). This type of cellular communication mechanism has been found to link neu-
ronal and glial elements (Nagy et al.  2004 ), to provide synchronized activity in glial 
elements (Theis and Giaume  2012 ), and to be important in state transitions in the 
brain (Haas and Landisman  2012 ). 

 In addition to rapid, point-to-point communication, less compartmentalized 
forms of communication are demonstrated by extrasynaptic (volumetric) release 
of neurotransmitters that act via receptor complexes outside of the synaptic cleft 
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(Vizi et al.  2010 ). Such interactions may occur through activation of peri-synaptic 
receptors that lie outside of the synaptic cleft but spatially close to it (Oláh et al. 
 2009 ; Vizi et al.  2010 ), or via distant receptors (Fuxe et al.  2013 ). This communica-
tion channel is slower than the point-to-point mechanisms described above (seconds- 
minutes) and takes place over distances as great as 1 mm from the release site. Thus, 
the effector region of this type of communication is suffi cient to modulate circuit 
behaviors in a manner analogous to that described in invertebrate systems (DeLong 
and Nusbaum  2010 ). 

 The cellular elements of the brain communicate on different time scales using a 
wide variety of neurotransmitters whose effects are magnifi ed by their interaction at 
a large number of receptors with different structures and postsynaptic actions. The 
fundamental processing unit of the brain is the neural circuit—aggregates of cellu-
lar elements and their synaptic and extra-synaptic contacts. Such circuits are formed 
at multiple levels of complexity, but fundamentally form dense inter-circuit connec-
tions with a smaller number of connections to other circuits with which they com-
municate resulting in the hierarchical architecture noted above for neural systems. 
To characterize a neural circuit fully would include a full description of the circuit 
wiring diagram and the neural elements embedded within that structural web, a full 
understanding of the neurochemical systems by which information was transferred 
and the time-frame on which such interactions depended together with a compre-
hensive description of the input–output function of that circuit under the recognition 
that its behavior is highly likely to be non-linear. Thus, a full description of even a 
‘simple’ neural circuit has not yet been achieved; although a number of models and 
research studies have pointed to the complex behaviors such circuits are capable of 
producing (Ahrens et al.  2013 ; Guertin  2012 ; Kaneko  2013 ). 

 The hierarchical structure of the brain leads us beyond the ‘simple’ neural circuit, 
to the complex of circuits that together form the large-scale networks described 
using neuroimaging methods such as functional magnetic resonance (fMRI) and 
positron emission tomography (Barch et al.  2000 ; Dosenbach et al.  2007 ; Just et al. 
 2007 ). Using these methods provides a global view of brain connections during 
behavior in which interactions encompassing large brain areas connected over long 
distances can be linked to cognitive behaviors such as learning, memory and atten-
tion. Recently, a new area of research into large-scale brain connectivity has been 
developed based upon imaging of active brain circuitry when the subject is not per-
forming any task, a condition termed ‘the resting state’ (Biswal et al.  1995 ; Cohen 
et al.  2008 ; Fox et al.  2005 ; Mennes et al.  2010 ). The linkage of brain structural 
connectivity to the functional organization defi nable during the resting state pro-
vides a new window on the organization and function of the brain (Deco et al.  2013 ).  

    Human Social Communication 

 Human communication structures exist at multiple scales, from small groups where 
contact is frequent, to increasingly distributed interactions where contact is less 
frequent. Humans transmit information in the form of both oral interactions and via 
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the more permanent and globally accessible forms of written communication. 
Particularly in oral communication, transmitted information content is often modu-
lated by emotional content or non-verbal communication in the form of body- 
language cues. While visual modulatory cues are not present in written 
communication, they are often inferred by the reader. 

 Human social groups cluster at multiple levels, with small groups (cliques, clans, 
tribes, etc.) having high degrees of internal communication but little communication 
with other groups (Bryden et al.    2011), an organization termed community structure 
(Girven and Newman 2002). This organization, described for many aspects of 
human social interactions, imparts a modular structure to the large-scale network in 
which communities are richly interconnected locally, but only sparsely connected to 
other communities in the global networks (Gulati et al.  2012 ). 

 Studies examining social network behavior in organizations note that highly 
local and isolated networks tend toward a homogeneous knowledge and decision 
base, making it desirable to seek outside contact to drive creativity and innovation 
(Gulati et al.  2012 ). The current emphasis on knowledge as a commodity in modern 
society has led to an increased interest in better understanding the means by which 
knowledge is disseminated in human social networks (Dupouët and Yıldızoğlu 
 2006 ; Morone and Taylor  2004 ). Human actors can accumulate knowledge by indi-
vidual learning or through processes of interactive learning, processes that can be 
carried out both under formal learning conditions such as educational institutions or 
under informal conditions. An interesting result of simulation studies suggests that 
widely divergent levels of knowledge within a network tends to lead to a gap in 
knowledge dissemination, leading to community divisions into a highly knowledge-
able, a group that is attaining greater knowledge at a slower rate, and a marginalized 
group that could be considered ignorant (Morone and Taylor  2004 ). Moreover, this 
division does not arise from community structure per se, as communities in which 
knowledge levels are not highly variable tend to disseminate knowledge effi ciently 
and more equitably (Morone and Taylor  2004 ). 

 A sea change in human communication mechanisms was driven by the global 
introduction of computer-enhanced methods such as email, communication plat-
forms such as Facebook and Twitter, and the interactive informational ‘blogger- 
sphere’. An important feature of social communication networks is the 
interrelationships between them—such that the network of friends, colleagues, and 
trade-partners infl uence responses of any individual agent to all networks to which 
that agent belongs (Szell et al.  2010 ). While social media can be seen to provide an 
unprecedented mechanism for the global exchange of knowledge, information, and 
opinion, to fully comprehend its reach requires a much fuller understanding of these 
complex inter-relationships. 

 As is true of the brain, the hierarchical and dynamic properties of human social—
and, by extension, economical, technological and political—interactions lead to 
unpredictable emergent behaviors at multiple levels. Network theory provides a 
method by which such complexities may be evaluated in both space and time.  
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    Network Theory Links Neural and Social 
Communication Systems 

 We have seen that the brain is a complex dynamic system (Amaral et al.  2004 ) con-
sisting of on the order of 10 11  neurons and 10 15  synaptic connections (Sporns et al. 
 2005 ). In common with other complex dynamic systems, the brain exhibits critical 
dynamics (Chialvo  2010 ; Poil et al.  2008 ) and scale-free behavior (as explained 
below). Human social systems are also complex dynamic systems, with a global 
population of approximately 7 × 10 9  human beings according to the US Census 
Bureau (  www.census.gov    ). 

 Complex systems exhibit non-random linkages over multiple temporal and spa-
tial scales, a relationship captured by the popular ‘six degrees of freedom’ concept 
(Watts  2004 ). Although not without controversy, many such systems are described 
as scale-free or scale-invariant and follow power law distributions (Kello et al. 
 2010 ). Scale-free systems are characterized by the property of criticality; that is, 
they sit on the cusp between completely predictable (rigid) and completely unpre-
dictable (chaotic) behavior. This is precisely the state we noted above as useful for 
a system that needs to be both highly adaptive and yet stable; these properties have 
been described in brain networks at multiple scales, from local and large-scale cir-
cuits (Fiete et al.  2010 ; Kitzbichler et al.  2009 ; Rubinov et al.  2011 ) to cognitive 
behaviors as complex as language (Kello et al.  2010 ; Steyvers and Tenenbaum 
 2005 ), online collaborative interactions (Woolley and Hashmi  2013 —this volume), 
and the phase shifts from wake to sleep (Bedard et al.  2006 ; Zempel et al.  2012 ). 

 Scale-free systems share a common architecture described in the seminal paper 
of Watts and Strogatz ( 1998 ) as a small world network. In this architecture, network 
elements (termed nodes) are linked by connections (termed edges) such that the 
majority of connections are local while there are only sparse linkages between dis-
tant elements (Butts  2009 ; Watts and Strogatz  1998 ). This architecture confers sev-
eral important properties to the system, and points to interesting system behaviors. 
As it is this architecture that links human social organization and behavior to that of 
the brain network, a brief description of some of these properties will be provided 
along with references for those interested in learning more. 

 A characteristic of small world networks is the presence of hub elements—ele-
ments that are richly connected to other network elements—while the majority of 
elements are more sparsely connected (Eguiluz et al.  2005 ). This organizational 
feature has been shown to be present in the brain for both structural and functional 
linkages (Collin et al.  2013 ; van den Heuvel et al.  2012 ), and has formed the basis 
for designation of a set of linking hubs labeled as ‘rich club’ elements. The same 
feature has been shown to be critical to human social interactions, from dissemina-
tion of information via communication (Opsahl et al.  2008 ; van den Heuvel et al. 
 2012 ; Vaquero and Cebrian  2013 ) to the diffusion of disease epidemics (Christakis 
and Fowler  2008 ; Pastor-Satorras and Vespignani  2001 ; Zhang et al.  2011 ). 
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 These hub elements are critical to communication in small world networks as 
they provide the links between modules or communities in the global network. 
While many studies have relied upon analysis of network interactions in stable peri-
ods, the interactions described are dynamic, with both the structure of local com-
munities and the links that bind them in fl ux on multiple time scales. No single 
node, whether human or neural, is embedded in only a single community, so that its 
behaviors are the result of both its structural embedding and the multirelational 
networks in which it operates.  

    The Computational Power of Human Social Communication 

 The concept of harnessing human elements for computation is not new (Grier  2005 ), 
and the practice of using humans as computational elements can be found as early 
as the eighteenth century. Modern computing has been argued to have developed 
from the intersection of scientifi c problem solving, technological innovation, and 
the social practice of computing teams (Rall  2006 ). Human computers calculated 
solutions to problems, often using pen and pencil but in later periods augmented 
with simple adding machines. In some instances, the human computers were well 
trained, but this was not always the case (Grier  1998 ,  2005 ; Rall  2006 ). While the 
period of human computers focused on calculating solutions to problems, as has 
been noted by others, the modern view of human computation rests on a partnership 
between electronic—or perhaps quantum—computers and humans in which each 
provides a unique skill set (Heylighen  2013 ). 

 One similarity remains as essential to the new view of human computation as it 
was to earlier views and that is the need to clearly and carefully defi ne the problem 
at hand and the solution space within which it resides. While crowd-sourcing and 
citizen science are clear paths toward social modes of computation, they do not erase 
the need for expert knowledge and successful implementation of human computation 
will require a solid understanding of the social interrelationships needed to interleave 
expert and unskilled team members. This is not to suggest that, for example, all such 
teams are comprised of non-expert members—teams may also be composed of teams 
of interlinked experts in different arenas. However, regardless of the team composi-
tion, from the sheer number of individuals and computers involved to the skill sets 
of individual agents, social interaction and cultural biases must be understood to 
optimize any solution. Network analysis is one tool that may aid in this endeavor.     
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