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        Organisms process information in order to survive and reproduce. Biological com-
putation is often distributed across multiple interacting agents, and is more adaptive, 
robust and scalable than traditional computation that relies on a central processing 
unit to schedule and allocate resources. In this chapter we highlight key features of 
computation in living systems, particularly focusing on the distributed computation 
of ant colonies as a model for collaborative human computation. 

 Natural computation is necessarily robust because sensory inputs are noisy and 
error prone, and appropriate behavioral responses are contingent on dynamic and 
unpredictable environments. For example, plant and animal cells extract informa-
tion from the dynamic chemical soup in which they exist and convert that informa-
tion into actions. Cells transmit information from the cell membrane via signal 
transduction pathways throughout the cell. These signals interact with molecules 
and structures built by the cell according to instructions encoded in DNA. Cellular 
computation is distributed across a Byzantine set of chemical reactions that are 
robust to individual component failures (Bray  1990 ,  1995 ). There is no central con-
troller in the cell; instead myriad processes act in parallel and the interaction among 
processes give rise to behavior. 

 The immune system is another information storage and computational system in 
multi-cellular animals. The cells that comprise the immune system collectively 
 distinguish self from other and remember previously encountered pathogens 
(Von Boehmer  1990 ). Immune cells respond only to local information but collec-
tively mount a coherent global response to infection. The tolerance of T cells to 
“self” proteins exemplifi es this process: T cells that bind to an animal’s own healthy 
cells are eliminated in the thymus, thus all remaining T cells can safely attack cells 
to which they bind without checking any central authority. Immune cells release and 
respond to chemical signals such as chemokines that direct cell movement in space 
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and cytokines that regulate cellular activity (Rossi and Zlotnik  2000 ). Cells move 
and react based on random sampling combined with positive and negative reinforce-
ment from chemical intermediaries, enabling the immune system to self-regulate 
without central control (Moses and Banerjee  2011 ). 

 The brain is a more obvious computing machine than a cell or an immune sys-
tem, but similar computation occurs through the interaction of billions of individual 
neurons each responding to thousands of inputs using a redundant and distributed 
network of neural pathways. Animals are computing systems that integrate immune 
systems, brains, sensory input and other organ systems, each made up of individual 
cells carrying out local tasks. 

 Superorganisms, such as ants, and bees are groups of individual organisms in 
which natural selection acts primarily on a colony’s collective behavior. The compu-
tational capabilities of colonies emerge from interactions among individuals (Greene 
and Gordon  2003 ). These interactions range from direct antennal contacts between 
ants to communication via stigmergy, such as laying chemical pheromones in the 
environment where they are sensed, responded to, and sometimes reinforced by 
other ants. Colonies demonstrate how cooperative computation can be organized 
among autonomous agents, each individually capable of its own local computation. 

 Each of these biological systems—cells, brains, and ant colonies have inspired 
successful computational algorithms and heuristics. The behavior of cells inspired 
the development of cellular automata (Von Neumann and Burks  1966 ) and more 
recently, membrane computing (Berry and Boudol  1992 ; Cardelli  2005 ). Neural net-
works, fi rst developed as models of the neuron, were quickly incorporated into the 
fi rst computers (McCulloch and Pitts  1943 ), and have since become ubiquitous tools 
for solving classifi cation problems which require generalization and plasticity. 
Artifi cial immune systems are algorithms and architectures that mimic biological 
immune systems in order to secure computers (Bersini and Varela  1991 ; Forrest and 
Perelson  1991 ). The recognition that evolution itself is a powerful computational 
process led to the fi eld of Genetic Algorithms (Holland  1975 ; Mitchell  2006 ; 
Schwefel  1965 ), which have taken a central place along with neural networks to 
solve a vast array of optimization problems. The collective computational abilities of 
ants inspired Ant Colony Optimization (ACO) algorithms that mimic ant chemical 
communication via pheromones to focus computational resources on successful par-
tial problem solutions (Dorigo  1992 ). ACO have been successful in a wide variety of 
problem domains, particularly in scheduling and routing tasks (Dorigo and Stützle 
 2010 ). ACO are also a key component of the fi eld of Swarm Intelligence, which 
examines how collective computation can emerge from interactions among local 
agents, for example in swarm robotics (Hecker et al.  2012 ; Brambilla et al.  2012 ). 

 A recent response to the need for scalable, adaptable and robust computing that 
more closely mimics natural systems is the Movable Feast Machine (MFM, Ackley 
et al.  2013 ). A MFM is composed of relatively simple computational modules con-
taining a processor, memory, and input/output ports; the computational power of the 
MFM comes from spatial interactions among the components that maintain a sort of 
computational homeostasis that is resilient to disturbance from hardware failure or 
malicious attack. In much the same way that multiple ants in a colony contribute to 
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a collective goal while minimizing the propagation of individual mistakes, the MFM 
combines multiple processors into a distributed scalable system in which the com-
putation of the system is more robust than that of its individual components. 

 In this chapter we transcend specifi c classes of algorithms like ACO and explore 
ant colonies more generally as complex systems capable of computation. We 
describe the manner in which ants, seen as simple agents, are able to use local infor-
mation and behavior to produce colony wide behavior that is robust and adaptive. 
Ant colonies are particularly suitable models for distributed human computation 
because they demonstrate how individuals can collaborate in order to perform quali-
tatively different computations from those any individual agent could perform in 
isolation. This feature of ant colonies has led them to become extraordinarily suc-
cessful foragers, dominating ecosystems across the globe for tens of millions of 
years. While there are key differences between ant colonies and collections of 
human agents, the nascent fi eld of human computation can learn from the myriad 
strategies that ants have evolved for successful cooperation. 

    Colony Computation 

 Colony computation is distributed, adaptive, robust and scalable to large numbers of 
ants. Colony computation includes, for example, processes of collective decision- 
making (Franks et al.  2006 ; Marshall et al.  2009 ), task allocation (Gordon  2002 ; 
Pacala et al.  1996 ), and regulation of activities such as selecting new nest sites and 
foraging (Beverly et al.  2009 ; Franks and Deneubourg  1997 ; Gordon  2010 ; Mailleux 
et al.  2003 ). Here we focus on foraging behavior as a collective process in which 
individual ants react to local environmental conditions and information, including 
information produced by other ants, without central control (Bonabeau et al.  1999 , 
 1997 ; Camazine et al.  2001 ). 

 Foraging ants exploit spatial information without building maps, balance explo-
ration and exploitation without explicit planning or centrally directed task assign-
ments, and leverage noise and stochasticity to improve search. Communication 
among ants is embodied in physical signals that are inherently local, decentralized, 
and used only when needed. Foraging is achieved without centralized coordination. 
Ant behavioral responses to local information regulate colony behavior; thus, the 
collective behavior of the colony emerges from local interactions (Gordon  2010 ; 
Pinter-Wollman et al.  2011 ; Prabhakar et al.  2012 ). The resulting colony dynamics 
are adaptive, robust and scalable, similar to other complex distributed biological 
systems such as immune systems (Moses and Banerjee  2011 ). 

  Colony computation is adaptive:  Ant colonies adapt their foraging strategy as they 
sense features of the surrounding environment. For example, foraging behaviors 
change in response to incoming cues that reduce uncertainty about the location and 
availability of food. Pheromones, direct physical contact between ants, and food 
sharing are all examples of interactions that communicate information about food 
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locations. Cues can be conveyed to the colony with the discovery of each food 
source, and the colony can respond with a strategy appropriate to the average 
 availability and distribution of food in that species’ environment (Flanagan et al. 
 2011 ). 

 Ants adjust collective and individual behaviors in response to the availability 
and distribution of food. Colonies increase activity when resources are more abun-
dant (Crist and MacMahon  1992 ; Davidson 1997). Group foragers tend to focus on 
high-density resources, with distinct trails forming to rich resource patches 
(Davidson  1977 ), which become increasingly longer with decreasing resource den-
sity in the environment (Bernstein,  1975 ), providing an effi cient search strategy for 
dispersed resources and greater energetic return for the colony. Ants can commu-
nicate food locations by laying chemical pheromone trails that other ants follow 
and reinforce if they successfully lead to food (Wilson  1965 ). Pheromones exem-
plify how colonies incorporate the physical environment (in this case, the ground) 
and stochastic interactions into their computation. In this system, the chance 
encounters of foragers with physically embodied pheromone signals balances 
exploration with exploitation: ants that happen not to encounter pheromones will 
explore for other resource locations, while ants that follow pheromones reinforce 
exploitation of known resources. Trails allow the colony to adjust the number of 
foragers to form stronger trails towards more abundant food (Detrain et al.  1999 ). 
The Argentine ant  Iridomyrmex humilis  makes extensive use of pheromone trails 
to recruit other ants to newly discovered food sources (Aron et al.  1989 ). New 
World leafcutter ants ( Atta  and  Acromyrmex  spp.) create large visible trunk trails 
in order to harvest massive quantities of leaves clumped on individual trees (Wilson 
and Osborne  1971 ). 

 Pheromones are not the only form of communication. For example, in 
 Pogonomyrmex  seed harvesters, foragers are stimulated to leave the nest by the 
return of successful foragers: the probability of beginning a new foraging trip 
increases as the encounter rate with foragers returning with seeds increases. 
This positive feedback mediated by the simple encounter rate among ants enables 
the colony to increase foraging activity in response to currently available food 
(Schafer et al.  2006 ). 

  Colony computation is robust : Workers of ant colonies face a variety of predators, 
parasites (Whitford and Bryant  1979 ) and adverse environmental conditions that 
impose mortality risks (Whitford and Ettershank  1975 ). Sometimes, whole- colony 
disturbances can disrupt colony tasks (Backen et al.  2000 ). Two particular features 
of colonies lead to robustness: the absence of central control or communication 
prevents single points of failure, and the ability of many individuals to perform the 
same task provides the fl exibility necessary to tolerate disturbances and loss of col-
ony members. While the redundancy required to respond to changing needs may 
appear ineffi cient, when integrated over long time periods and dynamic and unpre-
dictable environments, such robustness may actually optimize performance of tasks 
such as food collection. For example, in a redundant work-force, individual ants are 
able to take risks because similar ants are available to compensate for mistakes. 
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Additionally, small individual differences among ants may cause slight variations in 
foraging behaviours which may be useful in unpredictable and dynamic environ-
ments. Successful behaviours can be reinforced through recruitment. 

 While some colonies have a few morphologically distinct castes, most ants are 
arranged in much more fl exible task groups, often with individuals cycling through 
different tasks as they age (Gordon  1999 ). Ants respond to changes in demand for a 
particular task by reacting to local cues and switching to a task when that task is 
completed at a slower rate compared to other tasks. For example, in  Leptothorax  ant 
colonies, after a disturbance, each individual reacts independently, returning quickly 
to its work zone and resuming the disrupted task (Backen et al.  2000 ). This decen-
tralized task allocation provides the colony fl exibility and responsiveness to internal 
and external changes without reliance on any centralized authority (Bourke and 
Franks  1995 ). Thus, robustness arises from this independent action of individuals 
combined with the redundancy of individuals that can tackle a task concurrently or 
easily switch tasks. Similar to the “c-factor” which predicts success at collective 
tasks in groups with high social sensitivity and equity (Woolley et al.  2010 ), the 
ability of ants to simultaneously communicate effectively and substitute the actions 
of one ant for another may contribute to colony success. 

  Colony computation is scalable:  Colonies range in size from dozens to millions of 
ants (Beckers et al.  1989 ). Distributed communication and lack of central control lead 
to colony computation being highly scalable. When communication and actions are 
executed locally, each ant can respond quickly regardless of the size of the colony. 

 However, foraging presents a particular challenge to scalability. Central place 
foraging may incur substantial travel costs for each ant when the foraging area is 
large. As ants transport resources between a central place and the space of the terri-
tory, the work a colony must do to acquire food increases faster than the number of 
foragers (Moses  2005 ). Thus, colonies experience diminishing returns as the indi-
vidual cost of transport increases with colony size. 

 To achieve effi ciency at scale, each forager can react to local cues and interact 
within a small local range with others, forming large information-sharing networks 
linked by individual interactions and pheromone trails (Holldobler and Wilson 
 1990 ). These structures particularly improve foraging effi ciency in large colonies 
that have more workers to acquire information to make effective group decisions 
and mobilize a large, fast response (Anderson and McShea  2001 ; Aron et al.  1989 ). 

 Polydomous ant colonies have evolved multiple interconnected nests which 
decentralize foraging in space and increase scalability. In  Myrmicaria opaciventris  
(Kenne and Dejean  1999 ) and the invasive Argentine ant, Linepith the exploitation of 
a foraging area is transformed into an additional nest site, enabling reduction of the 
transport cost in colonies with a large number of foragers (Debout et al.  2007 ). The 
wide- ranging trail and dispersed nest system of the polydomous Argentine ant 
includes dynamic, fl exible foraging trails (Fig.  1a ) that grow and contract seasonally 
(Heller and Gordon  2006 ) and in synchrony with the availability of food sources. 
Dynamic local recruitment of ants from trails rather than from more distant nests 
further reduces individual travel costs (Fig.  1b ) (Flanagan et al.  2013 ).
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   The Argentine ant strategy of recruitment from trails suggests a solution to 
a common engineering problem, that of collecting or distributing resources in 
“the last mile” where infrastructure networks connect to individual consumers. 
In biological and engineered networks, the dynamics in the last mile can set the pace 
of the entire system (Banavar et al.  2010 ). The last mile presents a challenge, 
because if a network delivers or collects resources in a large area, the majority of 
the network wires may be in the many short-distance low-capacity links that fi ll the 
last mile. 

 Wireless networks make coverage of the last mile less diffi cult. Just as cell phone 
towers maintain links only when a phone is active, the ephemeral recruitment trails 
of invasive Argentine ants appear and disappear as needed, allowing ants to gather 
dispersed resources without the infrastructure costs of permanant trails. Ants that 
discover new food, and go to the trail to communicate that discovery to nearby ants, 
act as relays that effi ciently route ants to ephemeral food. The network exists only 
when it is needed—when the resource is exhausted, the network can disappear so 
that effort can be invested elsewhere. The ability of Argentine ants to cover the last 
mile with ephemeral trails is yet another example of a solution to a search and com-
munication problem evolved by ants that mirror or inspire approaches used by engi-
neers (Dorigo et al.  2006 ; Prabhakar et al.  2012 ). 

 There are tradeoffs inherent in the adaptive, robust and scalable computing 
 strategies used by ants. For example, ant colonies balance the costs and benefi ts 
of private individual information versus communicated social information. The 
location of food may be stored in individual memory (Czaczkes et al.  2011 ) or com-
municated via pheromone trails (MacGregor  1947 ; Wilson and Osborne  1971 ). An 
individual ant can forage effi ciently by making repeated trips from the nest to a 

  Fig. 1    ( a ) Argentine ants form dynamic trail and nest systems that grow and contract according to 
availability of food sources. Trails to ephemeral food sources are short-lived, disappearing once 
the food is no longer available. Trails to stable food sources become more permanent and may give 
way to other branches. Circles are nests, solid lines are permanent trails to permanent food sources 
( blue stars ). Dotted lines are transient trails to ephemeral food sources ( orange stars ) ( b ) the box-
plot shows round trip transport time from bait to the trail versus the round trip time from the bait 
to the closest nest. Mean travel time is signifi cantly reduced ( p  < 0.001) by recruiting from the 
nearest trail instead of the nest (Data from Flanagan et al.  2013 )       
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known foraging site, without recruiting other foragers to the effort (Letendre and 
Moses  2013 ), a behavior known as site fi delity (Holldobler  1976 ). If a forager dis-
covers a particularly good foraging site, whole-colony foraging success may be 
improved by communicating the location to its nestmates. However, too much 
 communication can reduce foraging success if too many foragers are recruited to a 
site; that overshoot leaves foragers searching an area depleted of seeds (Wilson 
 1962 ). Thus, ants must balance the use of private and social information in their 
foraging (Grüter et al.  2011 ; Letendre and Moses  2013 ). 

 In order to gain insights into how ants make this trade-off, we have used genetic 
algorithms (GAs) to fi nd the optimal balance of site fi delity and recruitment to max-
imize seed collection rates by colonies of simulated ants (Flanagan et al.  2011 , 
 2012 ; Letendre and Moses  2013 ). We select for solutions that maximize food col-
lection at the level of the colony, even though simulated ants can only perceive and 
communicate locally. The GA selects individual behaviors that are adaptive in 
obtaining a whole colony solution. 

 Ants make decisions based on local knowledge of a foraging site: when to recruit 
other ants to the site; when to continue foraging at the known site; or when to aban-
don a known site and instead follow recruitment trails to a new site. Because an 
individual ant knows food availability on only a small portion of the colony’s terri-
tory, it cannot know with certainty if other ants have discovered better foraging sites 
than its own. The group level selection in our model results in ants with behavioral 
responses to local conditions which produce, on average, optimal colony-level 
responses to a particular food distribution, and the repeated interaction of the ants 
and repeated sampling of the environment tends to overcome individual errors in 
decision-making. In colonies evolved by GAs, ants recruit to sites where the avail-
ability of food outweighs the problem of overshoot and ants continue to forage at 
sites until the availability of food is reduced to the point that, on average, it would 
be more benefi cial to follow a pheromone trail to a new site. We hypothesize that 
natural selection acts similarly, balancing an individual’s reliance on its own com-
putation (its own local sensory information or memory) and communicated infor-
mation (by pheromones, interaction rates or other forms of communication). Thus, 
each individual’s behavior improves collective function on average for that species 
and its particular foraging ecology. 

 We have illustrated the potential benefi ts of individual memory and social infor-
mation in simulations in which ants may use site fi delity or recruitment alone, or both 
together, and compared their performance at food collection to models in which ant 
use no information and search at random (Letendre and Moses  2013 ). We found that 
in an environment which food is power-law distributed spatially—a random scatter-
ing of seeds, many small piles, and a few large, dense piles of seeds—site fi delity and 
recruitment increase foraging rate by 35 % and 19 % respectively (Fig.  2 ). For these 
simulated ants, individual memory appears to be generally of more benefi t than 
social information when the two are isolated. However, combining the two forms of 
information further increases foraging rate to 48 % over colonies of ants that use no 
information. Differences in foraging success are even more pronounced when ants 
are foraging on foods more patchily  distributed in the environment.
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   Our analysis illustrates a synergy between private and social information. This 
synergy is especially remarkable in light of the fact that after the optimal balance is 
struck by the GA between site fi delity and recruitment, 98 % of foraging trips begin 
with site fi delity compared with only 2 % that begin by following a recruitment trail 
to a foraging site. The small number of trips that begin following a recruitment trail 
provide an out-sized benefi t by bringing ants to new foraging sites where thereafter 
they can return to the site using individual memory. The two behaviors are also 
synergistic in the sense that ants foraging with site fi delity are more successful if 
they are foraging at a high quality patch to which they have previously been 
recruited. Additionally, pheromone trails are more useful when they can be limited 
to very high quality sites because seeds from smaller patches can be collected using 
site fi delity (Fig.  3 ). Thus site fi delity can allow recruitment to work more effec-
tively and vice versa.

   The combination of individual memory and local computation with communica-
tion expands the behavioral repertoire of responses to varying quality of foraging 
sites. Ants can use site fi delity to effectively collect seeds from small patches and 
pheromones to collect seeds from large patches. Optimization schemes might simi-
larly be applied in human computation to balance the use of communication versus 
independent action.  

  Fig. 2    Foraging success of simulated ants selected by a genetic algorithm to maximize collective 
foraging success. Colonies of 100 ants forage for power-law distributed seeds using site fi delity, 
recruitment, both together, or neither, for 10,000 time steps (Letendre and Moses  2013 , in press)       
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    Conclusions 

 The adaptive, robust and scalable computation achieved by ant colonies serves as a 
model for human computation. The features of social computing in ants have been 
tuned by natural selection for millions of years to accomplish a wide variety of tasks 
in a wide variety of environments. Social computing in ants demonstrates that indi-
vidual behaviors can be selected to maximize collective performance, even when the 
individuals are unaware of the global goal. Ants act locally, but colonies act globally. 

 Ant colonies offer several suggestions for how human computation can strive for 
more than connecting many humans together to gain additive benefi t from each 
human. Ultimately, as in the emergent computation of ant colonies, the sum of 
human computation should be greater than the individual contributions of each indi-
vidual. Ants demonstrate the feasibility of collective coherent behavior, even when 
individuals have only a narrow local perspective. By tuning the rules of interaction, 
individual behaviors can be rewarded to maximize collective benefi t. 

 It is worth contrasting colony computation with market economies, another com-
plex system in which collective function emerges from interactions among indi-
vidual agents. While economies and colonies are collective entities whose properties 
emerge from the interactions of individual agents, colonies largely avoid a pitfall of 
market economies—the tragedy of the commons in which individuals acting in their 
own short term best interests deplete shared resources, diminishing the long term 
interests of the group. While ants in a colony and humans in an economy both 

  Fig. 3    Frequency that simulated ants using recruitment successfully fi nd a seed at the site to which 
they have been recruited, and frequency that ants using site fi delity successfully fi nd a seed at a site 
to which they have returned based on individual memory. The addition of site fi delity to recruit-
ment improves the success rate of recruitment trips; and the addition of recruitment to site fi delity 
improves the success rate of trips based on site fi delity       
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respond to locally perceived information, human agents in an economy are rewarded 
based on their own self-interest; in contrast, ants are rewarded based on collective 
colony interests. Colonies demonstrate how interaction rules can be designed to 
maximize collective performance rather than individual performance, even when 
individuals respond only to local information. 

 The mechanisms by which cooperation emerges in colonies are in some sense 
unique to the particular physiology of ants. Pheromone communication is useful for 
animals with highly sensitive smell; ants may react to encounter rates with other ants 
simply because they are incapable of integrating more complex information. Humans 
are obviously capable of vastly more sophisticated computation, learning and inno-
vation. Technology allows humans to communicate at any distance. Further, humans 
can, potentially, choose among numerous biological behaviors to imitate and adapt 
to their own needs. 

 Regardless of whether the actual mechanisms for cooperation are the same, suc-
cessful cooperation in both systems may rest on similar principles. The cooperative 
behaviors of ants refl ect not just the particular physiology of these insects, but also 
more general principles for cooperative computation that form a foundation for 
human computation. Like ant colonies, human computational systems should:

•    Balance reliance on local verses communicated information  
•   Decide when successful individuals should guide others and when individuals 

should explore independently  
•   Trade-off an individual’s attention to a task with the cost of switching to new 

tasks  
•   Reinforce good solutions while being robust to local errors    

 The proper balance of these tradeoffs in individuals results in a synergy at the 
collective level that balances exploitation of what is already known with exploration 
for novel solutions. In ants, natural selection has developed an incentive structure 
that rewards individuals who balance this tradeoff to maximize contributions to 
global rather than individual goals. Human computational systems will have to 
engineer incentives to individuals to create the right balance of behaviors for collec-
tive computational goals.     
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