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           Introduction 

 Machines are good at    handling huge amounts of data, but they lack the fl exibility and 
sensitivity of human perception when making decisions or observations. To under-
stand human perception, we    look toward what defi nes being human. To sense, 
observe, and make sense of the world around us, we combine our biological recep-
tors (eyes, ears, etc.) with our cognitive faculties (memory, emotion, etc.). But the 
memory banks that we pull from to create comparative reasonings are unique from 
individual to individual. Thus, we each see things in slightly different ways, i.e. what 
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is beautiful to one person may not be to another. However, there are trends that 
emerge among our collective human consciousness and efforts to tap a consensus of 
human perception, i.e. crowdsourcing, depend upon these trends to scale up analyti-
cal tasks through massively parallel networks of eyes and minds. This concept of 
crowd based computing has become an important approach to the inevitable “data 
avalanches” we face.

     The Modern Age of Human Information Processing:  More than one quarter 
of the world’s population has access to the Internet (Internet World Stats  2009 ), and 
these individuals now enjoy unprecedented access to data. For example, there are 
over one trillion unique URLs indexed by Google (Google Blog  2008 ), three billion 
photographs on Flickr, over six billion videos viewed every month on YouTube 
(comScore  2009 ), and one billion users of Facebook, the most popular social net-
working site. This explosion in digital data and connectivity presents a new source 
of massive-scale human information processing capital. User generated content fi lls 
blogs, classifi eds (  www.craigslist.org    ), and encyclopedias (  www.wikipedia.org    ). 
Human users moderate the most popular news (  www.reddit.com    ), technology 
(  www.slashdot.org    ), and dating (  www.plentyoffi sh.com    ) sites. The power of the 
internet is the power of the people that compose it, and through it we are fi nding 
new ways to organize and connect networks of people to create increasingly power-
ful analytical engines. 

  Breaking up the Problem:  To combine the large-scale strength of online data 
collection with the precision and reliability of human annotation, we take a creative 
approach that brings the data collection process close to humans, in a scalable way 
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that can motivate the generation of high quality data. Human computation has 
emerged to leverage the vast human connectivity offered by the Internet to solve 
problems that are too large for individuals or too challenging for automatic meth-
ods. Human computation harnesses this online resource and motivates participants 
to contribute to a solution by creating enjoyable experiences, appealing to scientifi c 
altruism, or offering incentives such as payment or recognition. These systems have 
been applied to tackle problems such as image annotation (von Ahn and 
Dabbish  2004 ), galaxy classifi cation (  www.galaxyzoo.org    ), protein folding (Cooper 
et al.  2010 ), and text transcription (von Ahn et al.  2008 ). They have demonstrated 
that reliable analytics can produced in large scales through incremental contribu-
tions from parallel frameworks of human participantion. 

 One approach to human computation motivates participants by creating enjoy-
able, compelling, engaging games to produce reliable annotations of multimedia 
data. Markus Krause’s chapter (in this book) on gamifi cation provides a brilliant 
investigation of this specifi c topic. These “games with a purpose” (von Ahn  2006 ) 
have been applied to classify images (von Ahn and Dabbish  2004 ; von Ahn  2006 ), 
text (von Ahn et al.  2006 ) and music (Mandel and Ellis  2007 ; Barrington 
et al.  2012b ; Law and vonAhn  2009 ). In general, these games reward players when 
they agree on labels for the data and, in turn, collect information that the consensus 
deems reliable. The goal of these games has been to collect data on such a massive 
scale that all the available images, text or music content could be manually annotated 

  Fig. 1    Ultra-high resolution imagery of Mongolia displayed on the HiperSpace visualization 
facility at UC San Diego       
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by humans. Although simple and approachable online games – “casual games” – 
have broadened the video gaming demographic (International Game Developers 
Association  2006 ), designing a human computation game that meets these data col-
lection goals while being suffi ciently attractive to players in massive volumes 
remains a challenge. 

 In this chapter we describe several efforts to produce game like frameworks that 
take on a needle-in-a-haystack problems, often when the needle is undefi ned. 
Specifi cally, we explore innovative networks of human computation to take on the 
ever expanding data challenges of satellite imagery analytics in search and discov-
ery. We describe frameworks designed to facilitate peer directed training, security 
through the partitioning and randomization of data, and statistical validation through 
parallel consensus. In each case it is clear that careful architecture of information 
piping is a determinate in the success of parallel human computation. We begin with 
an overview of our initial efforts in satellite remote sensing for archaeology, fol-
lowed by subsequent experiences in disaster assessment, and search and rescue.  

    Case Study: Archaeological Remote Sensing 

 In 2010 we launched “Expedition: Mongolia” as the satellite imagery analytics 
solution for the  Valley of the Khans Project  (VOTK), an international collaboration 
between UC San Diego, the National Geographic Society, and the International 
Association for Mongol Studies to perform a multidisciplinary non-invasive search 
for the tomb of Genghis Khan ( Chinggis Khaan ). We turned to massively parallel 
human computation out of frustration from the inability to effectively survey the 
vast quantity of imagery data through automated or individual means. 

 Since the invention of photography, aerial images have been utilized in 
archaeological research to provide greater understanding of the spatial context of 
ground features and a perspective that accentuates features which are not otherwise 
apparent (Riley  1987 ; Bewley  2003 ; Deuel  1969 ; Lyons  1977 ). Buried features can 
produce small changes in surface conditions such as slight differences in ground 
level, soil density and water retention, which in turn induce vegetation patterns 
(cropmarks), create variability in soil color (soilmarks) or even shadows (shadow-
marks) that can be seen from above. 

 The introduction of earth sensing satellites has further contributed to the integra-
tion of remote sensing in archaeology (Fowler  1996 ; Parcak  2009 ). The ability of 
detecting features on the ground from space is largely dependent upon the ratio of 
feature size to data resolution. As sensor technologies have improved, the potential 
to utilize satellite imagery for landscape surveys has also improved (Wilkinson 
et al.  2006 ; Lasaponara and Masini  2006 ; Blom et al.  2000 ). In September of 2008 
the GeoEye-1 ultra-high resolution earth observation satellite was launched by 
GeoEye Inc. to generate the world’s highest resolution commercial earth-imaging 
(at the time of launch) (Madden  2009 ). Generating 41 cm panchromatic and 1.65 m 
multispectral data this sensor further expanded the potential of satellite based 
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archaeological landscape surveys. However, the massive amount of data that is col-
lected each day by these sensors has far exceeded the capacity of traditional analyti-
cal processes. Thus, we turn to the crowds to scale human computation towards a 
new age of exploration. 

 We construct a massive parallel sampling of human perception to seek and sur-
vey the undefi ned. Specifi cally, we aim to identify anomalies in vast quantities of 
ultra-high resolution satellite imagery that represent archaeological features on the 
ground. Because these features are unknown we are searching for something we 
cannot predefi ne. Our internet-based collaborative system is constructed such that 
individual impact is determined by independent agreement from the “crowd” (pool 
of other participants who have observed the same data). Furthermore, the only 
direction that is provided to a given participant comes from the feedback in the form 
of crowd generated data shown upon the completion of each input. Thus, a collec-
tive perception emerges around the defi nition of an “anomaly”. 

    The Framework 

 Ultra-high resolution satellite imagery covering approximately 6,000 km 2  of land-
scape was tiled and presented to the public on a National Geographic website 1  
through a platform that enabled detailed labeling of anomalies. 

 Within the data interface participants are asked to annotate features within fi ve 
categories: “roads”, “rivers”, “modern structures”, “ancient structures”, and “other”. 
For each image tile, participants were limited to create no more then fi ve separate 
annotations. This limitation was designed to limit the infl uence that any single indi-
vidual could have on a given section of imagery (see Fig.  2 ).

   Image tiles (with georeference meta data removed) were distributed to partici-
pants in random order. By providing segmented data in random order a collection of 
participants (or participant with multiple registrations) could not coordinate a 
directed manipulation of any given location. This was designed to both secure the 
system against malicious data manipulation as well as to protect the location of 
potential sites from archaeological looters. 

 At the onset of the analysis, ground truth information did not exist to provide an 
administrative source of feedback of the accuracy of analysis to participants. Thus 
we depend upon peer feedback from data previously collected by other randomly 
and independent observers of that image tile to provide a consensus based reference 
to position ones input in relation to the “crowd” (see Fig.  3 ).

   The semi-transparent feedback tags provide a reference to gauge one’s input to 
the perceptive consensus of a crowd. This reference information cannot be used to 
change the input provided to that particular image tile, however is designed to infl u-
ence the participant for the following image tiles. Basing training on an evolving 

1   http://exploration.nationalgeographic.com/mongolia 
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peer generated data set we allow a form of emergent collective reasoning to deter-
mine the classifi cations, an important design element when searching for something 
that cannot be predefi ned. 

 The emergence of “hotspots” of human agreement also provide a form of valida-
tion through agreement among independent observers (a multiply parallel blind test). 
The mathematical quantifi cation of agreement is the basis for extracting insight from 
the noisy human data. A detailed investigation of this framework and the role of col-
lective reasoning will be reported in a forthcoming manuscript (Lin et al.  2013 ).  

  Fig. 2    User interface for online participants to identify anomalies within randomly presented 
 sub- sectioned satellite imagery (Presented on   http://exploration.nationalgeographic.com/mongolia    )       
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    Opening the Flood Gates 

 Since its launch over 2.3 million annotations from tens of thousands of registered 
participants were collected. Recruitment was facilitated through public media high-
lights, i.e. news articles and blogs. These highlighting events provide observable 
spikes of registration/participation, as seen in Fig.  4 . We show this trend to articulate 
the importance of external communities to drive participation in crowdsourced 
initiatives.

   Overlaying this huge volume of human inputs on top of satellite imagery creates 
a complex visualization challenge (Huynh et al.  2013 ) a subset of which is depicted 
in Fig.  5 . While independently generated human inputs are inherently noisy, clusters 

  Fig. 3    Peer based feedback loop (Presented on   http://exploration.nationalgeographic.com/
mongolia    )       

  Fig. 4    Registration ( blue ) and image view ( red ) statistics across the duration of the experiment       
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of non-random organization do emerge. Categorical fi ltering highlights road networks, 
rivers, and archeological anomalies, respectively.

   Guided by this global knowledge of public consensus, we launched an expedi-
tion to Mongolia to explore and groundruthed locations of greatest convergence 
(defi ned mathematically through kernel density estimations). From three base camp 
locations along Mongolia’s Onon River Valley we were restricted to a proximity 
boundary based upon 1 day’s travel range and limitations associated with extreme 
inaccessibility. This created an available coverage distance of approximately 
400 square miles. Within these physical boundaries we created and explored a prior-
ity list of the 100 highest crowd rated locations of archaeological anomalies. The 
team applied a combination of surface, subsurface geophysical (ground penetrating 
radar and magnetometry), and aerial (UAV based) survey to ground truth identifi ed 
anomalies (Lin et al.  2011 ). Of those 100 locations, over 50 archaeological anoma-
lies were confi rmed ranging in origins from the Bronze age to the Mongol period 
(see example in Fig.  6 ).

        Case Study: Christchurch Earthquake Damage Mapping 

 Born out of the success of “Expedition:Mongolia” Tomnod Inc. was formed in 2011 
to explore broader application of human computation in remote sensing. While 
search targets varied, the computation challenge was consistent. The methodology 
of large scale human collaboration for earth satellite imagery analytics was quickly 
applied in the aftermath of a 6.3 magnitude earthquake that devastated the city of 
Christchurch, New Zealand in February 2011. 

  Fig. 5    Human generated tags overlaid on satellite imagery showing emergent agreement around 
features. Tag categories “road” and “ancient” are represented in  red  and  yellow , respectively. We 
have explored methods of clustering to defi ne linear features through tags (roads and rivers, Huynh 
and Lin ( 2012 ))       
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 Once again, a website was developed to solicit the public’s help in analyzing 
large amounts of high-resolution imagery: in this case 10 cm aerial imagery 
(Barrington et al.  2012a ). Users were asked to compare imagery taken before and 
after the quake and to delineate building footprints of collapsed or very heavily 
damaged buildings. The interface was designed to be simple and intuitive to use, 
building on widespread public familiarity with web-mapping platforms (Google 
Maps, Google Earth, Bing Maps, etc.), so that more of the user’s time is spent ana-
lyzing data versus learning how to use the interface. Using a simple interface that 
runs in a web browser, rather than an ‘experts-only’ geographic information system 
(GIS) platform, opens the initiative to a larger group of untrained analysts drawn 
from the general Internet public (Fig.  7 )

   After just a few days, thousands of polygons outline areas of damage were con-
tributed by hundreds of users. The results are visualized in Fig.  8  below where areas 
of crowd consensus can be clearly identifi ed by densely overlapping polygons. The 
crowd’s results were validated by comparison to ground-truth fi eld surveys con-
ducted in the days immediately following the earthquake. The fi eld surveys marked 
buildings with red (condemned), yellow (dangerous) or green (intact) tags, indicat-
ing the level of damage. Ninety-four percentage of the buildings tagged by the 
crowd were actually reported as damaged (red or yellow) by the fi eld survey 
(Foulser-Piggott et al.  2012 ).

  Fig. 6    Rectangular burial mound (identifi ed through our human computation network) from early 
to late Bronze Age origins (Allard and Erdenebaatar  2005 ; Jacobson-Tepfer et al.  2010 )       
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       Case Study: Peru Mountain Search & Rescue 

 The previous case studies demonstrated the capability of large networks of distrib-
uted human analysts to identify undefi ned features and apply visual analytics to 
remote sensing datasets on a massive scale. The fi nal application of crowdsourced 
remote sensing we discuss highlights the timeliness that can be achieved when hun-
dreds of humans help search through imagery and rapidly identify features of inter-
est. On July 25, 2012, two climbers were reported to be lost in the Peruvian Andes. 
Missing in a remote, inaccessible region, the fastest way for their friends in the US 
to help fi nd them was to search through satellite images. DigitalGlobe’s WorldView-2 
satellite captured a 50 cm resolution image and, once again, Tomnod launched a 
crowdsourcing website to facilitate large scale human collaboration. Friends, family 
and fellow climbers scoured the mountain that the climbers were believed to have 
been ascending. The crowd tagged features that looked like campsites, people, or 
footprints and, within hours, every pixel of the entire mountainside had been viewed 
by multiple people (Fig.  9 ).

   One of the fi rst features identifi ed within just 15 min of launching the website 
showed the 3-man rescue team making their way up the glacier in search of the 
climbers. Over the next 8 h, consensus locations were validated by experienced 

  Fig. 7    Tomnod Disaster Mapper Interface in the Christchurch GEOCAN effort       
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  Fig. 8    Results of the crowd-contributed damage outlines and highlights of two destroyed 
 buildings.  Red  = completely destroyed,  orange  = heavy damage,  yellow  = light damage       

  Fig. 9    Comprehensive crowdsourcing maps an entire mountain in just a few hours. The crowd 
identifi ed possible footsteps ( orange ), people ( green ), campsites ( blue ) and avalanche regions ( red )       
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mountaineers and priority locations were sent to the rescue team on the ground 
(e.g., footprints in the snow, Fig.  10 ).

   The search ended the next morning when the climbers bodies were discovered 
where they had fallen, immediately below the footprints identifi ed by the crowd. 
While this case study has a tragic ending, the story highlights the power of human 
collaboration networks to search a huge area for subtle clues and, in just a few 
hours, go from image acquisition to insight. Furthermore, we observe that in times 
of need, humans want to help, and when channeled in appropriate collaborative 
pipelines can do so through computation.  

    Next Step: Collaborating with the Machine 

 While we have shown three examples of scalable human analytics, it would be a 
challenge for human computation alone to analyze every image on the web, every 
galaxy in the sky or every cell in the human body. However, human computation 
systems can produce well-labeled examples in suffi cient volume to develop machine 
learning methods that can tackle such massive problems autonomously 
(Barrington et al.  2012b ; Snow et al.  2008 ; Novotney and Callison-Burch  2010 ). By 
integrating machine intelligence systems with human computation, it is possible to 
both focus the human effort on areas of the problem that can not yet be understood 
by machines and also optimize the machine’s learning by actively querying humans 
for labels of examples that currently confound the machine. 

  Fig. 10    Fresh foot tracks in the snow outlined through crowdsource analytics of near real time 
ultrahigh resolution satellite imagery       
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 The detection of anomalies within an image is a diffi cult problem: we know that 
they may be located in regions of the image, but we don’t know exactly where. We 
believe the application of multiple instance learning (Babenko et al.  2006 ; Maron 
and Lozano-Pérez  1998 ; Maron and Ratan  1998 ; Zhang et al.  2002 ) would be best 
suited for the problem at hand. Unlike the classical approach to learning, which is 
based on strict sets of positive and negative examples, multiple instance learning 
uses the concept of positive and negative bags to address the nature of fuzzy data. 
Each bag may contain many instances, but while a negative bag is comprised of 
only negative instances, a positive bag is comprised of many instances which are 
undetermined. While there may be negative examples in the positive bag due to 
noisy human input, the majority the positive examples will tend to lie in the same 
feature space, with negative examples spread all over. Multiple instance learning is 
able to rely on this insight to extrapolate a set of features that describes the positive 
bag. This is very appropriate for our data since a single image patch may contain 
many alternative feature vectors that describe it, and yet only some of those feature 
vectors may be responsible for the observed classifi cation of the patch. A schematic 
of a proposed workfl ow for combining human computation and multiple instance 
learning (a machine based method) is outlined in Fig.  11 .

   If we are able to pool human perception to identify and categorize hard to defi ne 
anomalies, we can begin applying this approach. From each of the many instances 
in a given category bag (i.e. ancient structure) we extract a set of image feature vec-
tors. Since not every instance in the bag truly represents the labeled concept, some 
of these features will describe random image details, while others may be drawn 

  Fig. 11    Three phase approach to combine machine learning with search and discovery human 
computation: consensus convergence; feature extraction; and multiple instance learning       
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from an actual ancient structure and will, for example, exhibit a certain rectangular 
shape. As we iterate through all the instances in multiple bags, the aim is that the 
features that describe an anomaly will become statistically signifi cant. As the signal 
from multiple positive instances emerges from the uniformly distributed background 
noise, we can identify the features that best describe certain classes of anomaly. 
Thus even with multiple, noisy, weakly-labeled instances from our training set, 
applying multiple-instance learning will result in a set of features that describe each 
anomaly and which we can apply to new data to fi nd anomalies therein.  

    Conclusions 

 The idea of collecting distributed inputs to tap the consensus of the crowd for deci-
sion making is as old as the democratic function of voting, but in this digital age, 
networks of individuals can be formed to perform increasingly complicated compu-
tational tasks. Here, we have described how the combined contribution of parallel 
human micro-inputs can quickly and accurately map landscapes and features 
through collective satellite imagery analytics. 

 In “Expedition:Mongolia” we designed a system of peer based feedback to 
defi ne archaeological anomalies that have not been previously characterized, to 
leverage a collective human perception to determine normal from abnormal. 
Participants without pre-determined remote sensing training were able to indepen-
dently agree upon image features based on human intuition, an approach avails of 
the fl exibility and sensitivity of human perception that remains beyond the capabil-
ity of automated systems. This was critical in our search for the “undefi ned needle 
in a haystack”. 

 While this initial effort focused on an archaeological survey, applications of 
crowdsourced remote sensing exist across domains including search & rescue and 
disaster assessment. This was demonstrated through the efforts of Tomnod Inc., a 
group born out of the experiences in Mongolia to tackle the data challenges of the 
commercial satellite imaging industry through crowdsourced human computation. 
In the Christchurch disaster mapper effort we observe a remarkable 94 % accuracy 
to ground truth. This result opens new possibilities for human computation and 
remote sensing in the assessment and ultimately recovery of disaster events. The 
Peruvian Mountain search & rescue operation demonstrated the remarkable speed 
with which insight could be gained from pooling human effort for large scale data 
analytics, suggesting that a combination of networked human minds and fast data 
pipelines could actually save lives. 

 Each example demonstrates the potential of online communities to mine 
unbounded volumes of digital data and catalyze discovery through consensus-based 
analytics. We have shown how human perception can play a powerful role when 
seeking unexpected answers in noisy unbounded data. 

 However, while our approach depends upon emergent trends of agreement as the 
validating principle of actionable information, we observe this inherently does not 
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capture the value of outliers (independent thinkers). Future work may identify 
mechanisms to reward “out of the box” thinking, possibly through a more detailed 
understanding and utilization of the individual human variables that contribute to a 
distributed human computation engine. 

 Finally, we observe that the natural next step in the evolution of human centered 
computation will be the collaboration between human and automated systems. This 
synergy will likely be required as we face the increasingly overwhelming data ava-
lanches of the digital world.     
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