
Chapter 7
Signal Processing: Radar

Michel Barreteau and Claudia Cantini

7.1 Brief Description of the RT-STAP Algorithm

Space-time adaptive processing (STAP) is a processing technique operating in the
space-time domain that allows the simultaneous cancellation of clutter and jamming
via the computation of a 2D cancellation filter.

Essentially, the radar is required to have an array (for instance, a linear array
along the aircraft axis) of L antennas each receiving K echoes from a transmitted
train of K coherent pulses PRT (pulse repetition time) seconds far apart. The STAP
filter operates the simultaneous processing of the spatial samples, i.e., the different
channels from different antenna elements, and the temporal samples collected
from multiple (consecutive) pulses of the transmitted train. Processing data from
multiple channels enables the control of the directional response of the system,
while processing data from multiple pulses enables the separation of signals based
upon their Doppler frequencies. Unwanted received signals, such as ground clutter
and jamming signals, can thereby be efficiently suppressed. The STAP application
comprises calculations of adaptive weights .w/ and application of these weights on
the input data (vector x) (Fig. 7.1). Under the hypothesis of disturbance having a
Gaussian probability density function and a target with a certain Doppler frequency
and direction of arrival, the output signal of the optimum processor is provided
by the linear combination of the LK echoes x (vector representing the physical
data cube at a certain range cell under test, CUT) with weights w D M �1s�.
M is the noise covariance matrix estimation, i.e., M D Efx�xT g where x

M. Barreteau
Thales Research & Technology, Campus Polytechnique - 1 avenue Augustin Fresnel,
91767, Palaiseau Cedex, France
e-mail: michel.barreteau@thalesgroup.com

C. Cantini (�)
Selex ES, Via Tiburtina Km. 12,400, 00131, Roma RM, Italy
e-mail: claudia.cantini@selex-es.com

M. Torquati et al. (eds.), Smart Multicore Embedded Systems,
DOI 10.1007/978-1-4614-8800-2__7,
© Springer Science+Business Media New York 2014

125

mailto:michel.barreteau@thalesgroup.com
mailto:claudia.cantini@selex-es.com

126 M. Barreteau and C. Cantini

Fig. 7.1 Simplified schema of the real-time STAP radar application

(dimension LK � 1) is the collection of the LK disturbance echoes in a range
cell, and s—the space-time steering vector—is the collection of the LK samples
expected by the target. The superscripts � and T stand, respectively, for complex
conjugate and transpose. Such a processing technique is highly demanding in terms
of computational power requesting the covariance matrix inversion for the weight
calculation [1].

From the computational viewpoint, the input data structure is a data cube, i.e., a
stream, of thousands of vectors of typically 512 or 1,024 complex single-precision
numbers that are used for calculating the covariance matrix estimation. The most
critical phase (bottleneck) in the application workflow is the weight calculation
through covariance matrix inversion, i.e., the resolution of a very large system of
N linear equations on complex numbers, of order O.N 3/. This computation is
applied to each covariance matrix calculated from each vector belonging to the
data cube, according to a streamlike behavior. As performance measures, we are
interested mainly in the throughput parameter, i.e., the average number of computed
cubes per second. Due to the computational characteristics of this application, this
throughput measure is obtained by the evaluation of the service time per matrix.
On a current machine, the sequential execution of a system of linear equations on
complex numbers, of the sizes indicated above, has a service time per matrix equal to
about 102–104 ms for single-precision numbers. For a true real-time exploitation of
STAP, our target service time per matrix is required to be of the order of 100–101 ms;
thus our requirement is a performance improvement of two orders of magnitude
to be achieved through parallelization strategies. This goal can be met only if
we are able to find almost linear scalable solutions for the parallelization (not a
simple task for our target problem due to the large problem size and to the heavy
data dependencies in a nested loop computation). With lower priority, we are also
interested in the latency per matrix. In some applications we could also accept a
latency of the same order of magnitude of the sequential version, while in other
cases a sensible latency decrease could be required too. All the other phases of the

7 Signal Processing: Radar 127

applications, though potential and interesting candidates for parallelization (e.g.,
Doppler processing), have much less stringent performance requirements (they are
at least one order of magnitude faster than the weight calculation) and, nowadays,
they can be implemented according to very efficient sequential algorithms and
libraries (e.g., FFT). However, in massively parallel implementation of the whole
application, also these phases could become candidates for parallelization [1].

7.1.1 Detailed Description of the Computational Phases

In the following, for the reasons discussed above, we will consider the weight
calculation phase only. For the resolution of the linear system of equations, we
use the Cholesky factorization direct method, which applies correctly to all the
occurrences of this problem in STAP applications and is characterized by lower
complexity compared to other direct methods (QR versions). For our purposes, the
Cholesky factorization is considered the application bottleneck. As discussed above,
the Cholesky factorization operates on matrices of 512 � 512 or 1; 024 � 1; 024

single-precision complex numbers organized in streams, where the generic stream
element is a vector of 512 or 1,024 single-precision complex numbers.

The classical Cholesky factorization transforms a hermitian positively defined
matrix A into the product of a lower triangular matrix L and of its conjugate
transpose upper triangular matrix LT :

A D LLT

The basic algorithm applies the method definition directly. It is described by the
following algorithmic pseudocode to generate matrix L from matrix A:

f o r (j = 0 ; j < n ; j ++) {
sum = 0 ;
f o r (k = 0 ; k < j ; k ++) {

sum += L2
jk ;

}
Ljj = s q r t (Ajj � sum) ;
f o r (i = j + 1 ; i < n ; i ++) {

sum = 0 ;
f o r (k = 0 ; k < j ; k ++) {

sum += Lik � Ljk ;
}
Lij = (Aij � sum) / Ljj ;

}
}

128 M. Barreteau and C. Cantini

In this nested control structure the size of data structures (notably, parts of
columns) varies at every computation step, though according to a statically recog-
nizable and predictable pattern. The literature contains several alternative versions
of the basic sequential algorithm for Cholesky factorization. Some block-based
versions have been studied in order to optimize the locality and reuse properties
of matrix parts accessed during the various computation steps. A is represented
as composed of smaller square blocks. This can improve the locality and reuse
exploitation: though paid in terms of a larger number of elementary operations on
matrix blocks, these properties are the key for potential optimizations of memory
hierarchy structures, especially in architectures where caching is not primitive. The
matrix representation can be the following:

�
A11 AT

21

A21 A22

�
D

�
L11 0

L21 L22

�
�

�
LT

11 LT
21

0 LT
22

�

where

A11 D L11 � LT
11

A21 D L21 � LT
11

AT
21 D L11 � LT

21

A11 D L21 � LT
21 C L22 � LT

22

Denoting chol the application of the Cholesky basic algorithm:

L11 D chol.A11/

and iteratively

L21 D A11=LT
11

L22 � LT
22 D A22 � L21 � LT

21

A22 D L22 � LT
22

L22 D chol.A22/

An algorithmic pseudocode for the block method applied to the Cholesky
factorization is (B denotes the number of blocks composing the original matrix):

f o r (k = 0 t o B) do {
Lkk = c h o l (Akk) ;

7 Signal Processing: Radar 129

LT
kk= t r a n s p o s e (Lkk) ;

L�T
kk = i n v e r t (LT

kk) ;
f o r (i = k + 1 ; i < B ; i ++) {

Lik = Aik � L�T
kk

}
f o r (j = k +1 ; j < B ; j ++) {

LT
jk= t r a n s p o s e (Ljk) ;

f o r (i = j ; j < B ; i ++) {
Aij = Aij � Lik � LT

jk

}
}

}

Here we can statically recognize different patterns for data dependencies with
respect to other versions not operating on blocks.
According to the application environment, it is possible that the application operates
on cubes that are produced in storage subsystems accessible through I/O and/or files.
Owing to the order of magnitudes of the calculation times, the I/O latency for a cube
transfer can be overlapped with the internal calculation of previous cubes [2, 3].

7.1.2 Data-Parallel Cholesky Factorization

The block Cholesky algorithm can be expressed using several methods, but two of
them are the most used: the left-looking method and the right-looking method. Both
methods use the same kernel subroutine to do the numerical work. The differences
are mainly in the memory access pattern and in cache data locality exploitation.
From the parallelization point of view, the right-looking version expresses more
parallelism as the algorithm explores the data dependency graph breadth-first,
whereas the left-looking version is less parallel but more cache-oblivious.

In the following we outline in detail the communication pattern of the block-
based right-looking version for the Cholesky factorization.

Suppose an N � N input matrix A. By choosing a block size of m, the input
matrix can be split in a set of N

m
� N

m
blocks. Exploiting maximum parallelism in the

computation of the Cholesky algorithm, each block can be computed by a distinct
virtual processor, i.e., a concurrent entity which can be executed on an abstract
machine. This results in a set of virtual processors (VPs), which cooperate in getting
the factorization done by using explicit messages to resolve data dependencies (for
the sake of simplicity we assume a message-passing abstract machine). Without any
loss of generality, we also assume that the input matrix is distributed onto the set
of VPs row-wise, i.e., the VPij owns the matrix block data Lij in his local virtual
memory.

130 M. Barreteau and C. Cantini

Fig. 7.2 The pseudo code of the generic VP ij (left)

The pseudocode of the generic abstract executor VPij , and the communications
among VPs at each steps for the case N D 5, is sketched in the following figure
.B D N

m
/.

The abbreviated notation VP�k informally stands for “all valid VPs in the column
k”; in the same way VPk� stands for “all valid VPs in the row k”.

At each step of the main for loop, it is possible to identify four sets of distinct
VPs, each one with different data dependencies (i.e., activation condition). In
Fig. 7.2 we represent different sets with different colors.

At the k-th step, first the VPkk is executed by using only the local block data
values, and then the resulting block Lkk is sent to all VPs in the k-th column; thus,
upon receiving the block, each VP�k can be executed in parallel. The resulting Lik

block produced by the VPik is then sent in parallel to all VPs in the sets VP�i and
VPi�, i.e., to all VPs whose row index and column index is equal to the current
VP row index i . The VPs in the right-side submatrix of size ŒN � .k C 1/�, upon
receiving the blocks, update their local value Aij . It is worth noting that no explicit
barrier is needed to synchronize different sets of VPs during external loop iterations.

As the k index approaches B , the number of computing VPs decreases and the
communications stencil changes his shape (thus changing the number and the size
of the communications). A critical aspect to take into account is the mapping of the

7 Signal Processing: Radar 131

VPs onto the physical processors (generally a subset of the number of VPs) or, in
other words, the data distribution of the input matrix [4, 5].

7.2 Related Tool-Chain

The demonstrator leverages a tool-chain which includes:

• A front-end tool: SpearDE by Thales Research & Technology, which offers a
graphical interface for describing computation kernels interacting in a data-flow
model. It also allows to graphically model the target platform and the mapping
of the computation kernels onto this platform.

• A back-end tool: Par4All by SILKAN, which is a source-to-source parallelizing
compiler able to provide automatic parallelization of loops.

• A MCAPI layer by CEA which provides a number of low-level tools and run-
times for thread management, memory allocation, and communication.

The tool-chain used for the demonstrator is sketched in Fig. 7.3. It consists in
coupling SpearDE [6] (front-end tool), Par4All [7] (back-end tool) and a MCAPI
runtime. SpearDE is a graphical model-based design environment which pro-
vides the user with both domain-specific application interfaces and heterogeneous
execution platform description interface in order to help the implementation of
data-streaming applications on parallel machines. Par4All is a source-to-source
parallelizing tool generating tasks or parallel programs for various targets from
sequential code (C, Fortran, Scilab, Matlab). The MCAPI runtime is built on top
of STHORM.

Fig. 7.3 Tool-chain used for the demonstrator

132 M. Barreteau and C. Cantini

SpearDE allows rapid prototyping on the STHORM platform having the possi-
bility to generate the SMECY IR1 (called SME-C). SpearDE is suited for regular
data-streaming applications. It easily handles multidimensional arrays to partition
and distribute them onto the STHORM memories. Starting from IR1, the Par4All
tool is used to find parallelism in the computational kernels by discovering parallel
loop nests through data dependency analysis. This is done by relying on the
PIPS open source project [8] which is able to analyze the effects of the program
operations by using an abstract interpretation. Parallel loop nests can be replaced by
a corresponding kernel call on the low-level platform. The MCAPI layer provides
thread management, memory allocation and communication primitives.

The main design steps in this tool-chain are the following ones:

Modeling Both the application (RT-STAP) and the execution platform
(STHORM) have to be graphically modeled. The real-time STAP application
will be built from scratch here but SpearDE also accepts C99-based code with a
set of coding rules.

Parallelization First it consists in allocating computing tasks to hardware
resources. Then data parallelism is pointed out. Finally communication tasks
will be inserted where needed and scheduling may be refined.

Code generation All the previous parallelization steps are exploited to generate
the appropriate IR1 code. This guides Par4All to generate an efficient IR2 code
through several passes.

Execution The IR2 primitives rely on the MCAPI layer to ensure an efficient
execution on STHORM.

7.2.1 Application and Execution Platform Modeling

The application model of the demonstrator is shown in Fig. 7.4. The block Cholesky
algorithm (green dashed lines around the Chol module) has been decomposed into
several nodes. Each node in the graph matches a computing task (one step of the
Cholesky algorithm) that includes a (parallel) loop nest; it executes a so-called
elementary task that is usually iterated by several static affine nested loops. The
elementary task represents a basic operation (e.g., matrix multiply or inversion,
convolution) or a function already optimized or inherently sequential. The Cov
module (in blue) and the Wei module (in orange) were not decomposed in multiple
elementary nodes. The first and last tasks are artificial tasks that, respectively,
generate inputs and test results.

The SpearDE model of the STHORM platform is shown in Fig. 7.5. The platform
model gives a hierarchical representation of the target system which is not the
exact representation of the physical platform (the 16 cores of each cluster are
not detailed because the generated code will be executed at cluster level but the

7 Signal Processing: Radar 133

Fig. 7.4 SpearDE application model

Fig. 7.5 SpearDE model of the STHORM platform

number of cores is known under the form of an attribute) but is detailed enough to
allow automatic generation of communication nodes in case of distributed memory
data accesses or when data reorganization is needed between two existing nodes.
SpearDE relies on the described topology to compute communications between the
different memories.

Due to STHORM cluster memory constraints and considering the proposed
parallelization in SpearDE, the maximum input size for the demonstrator input data
cube is 128 � 128 � 20 complex float numbers (total size of 2.5 MB). The block size

134 M. Barreteau and C. Cantini

Fig. 7.6 Mapping of different application modules in SpearDE

is set to 16 � 16 elements in order to have a good balance between parallelism and
computation granularity.

7.2.2 Parallelisation on the STHORM Platform

Considering the STHORM platform which includes four clusters, each one with 16
processing elements and 256 KB of local shared memory, the following mapping of
modules has been applied:

• The Cov module is mapped on the host processor (the red coloured modules at
the bottom of Fig. 7.6).

• All modules composing the block Cholesky factorization (Chol) are replicated
on each cluster of the STHORM platform in order to be able to compute four
matrices at a time (all orange-colored modules).

• The Wei module is mapped on the host processor working in pipeline with the 4
Chol modules (the green-colored modules).

This allocation is quickly done thanks to a graphical interface (through drag
and drops). At the top of Fig. 7.6, computing tasks (flattened view) are listed on
the left-hand side and hardware resources on the right-hand side. An association
(depicted in the center by a color) between a subset of computing tasks and a part
of available computing resources means that these tasks will be executed by the
selected hardware resources (same color).

7 Signal Processing: Radar 135

Fig. 7.7 Hierarchical view of the parallelized application under SpearDE

Once this task parallelism decided, the user has to repeat the Chol tasks 16
times to cover the whole matrix (through a push-button mechanism again). The
next step consists in operating a task fusion around these tasks (including the
communication tasks) to implement a round-robin distribution. This task fusion
optimizes the memory occupancy (depending on the life duration of arrays) that fits
the STHORM memory sizes. Communications between the Host and the STHORM
are automatically inserted by pressing a button. This is done in order to send input
data to the accelerator and to receive results back from STHORM.

The resulting parallelized application is shown in Fig. 7.7.

7.2.3 IR Code Generation

7.2.3.1 SpearDE/IR1 and Par4All/IR2

SpearDE translates the results of these parallelization steps into an IR1 code. The
related Fig. 7.8 shows:

• Parallel loops (#pragma omp parallel) with other OpenMP directives
(e.g., schedule(static,1) means 1 thread per processor with a static
scheduling)

• Some SMECY-specific mapping directives (#pragma smecy map)

136 M. Barreteau and C. Cantini

• The round-robin distribution (num_threads(4) schedule(static,1))
• Some communication primitives (#pragma smecy communication) that

make this IR1 executable.

All these informations enable to guide Par4All in producing an efficient IR2
code. As Par4All is a source-to-source compiler, it refines this SME-C code through
several passes: it uses SMECY-specific macros (see below SMECY_*)

Listing 7.1 SMECY-specific macros generated by Par4All
v o i d smecy _ f u n c_ f u s i o n _ F_ F2 _ f f t _ C F_ 6 () {

SMECY_set (f u s i o n _ F_ F2 _ f f t _ C F , 6 ,STHORM, 1 , 0) ;
SMECY_send_arg_vector (fu s i o n _ F_ F2 _ f f t _ C F , 1 , C p l f l o a t , ((C p l f l o a t (�) [3 2UL]) (UG �> S e g C l u s t e r s . S2 . S3 .
F_X_4_out[0]
+ 0)) , 1 9 3 � 3 2 ,STHORM, 1 , 0) ;
SMEC Y_ p r ep are_ g et _ arg _ v ec t o r (fu s i o n _ F_ F2 _ f f t _ C F , 2 , C p l f l o a t , ((C p l f l o a t (�) [3 2UL]) (UG �>

S e g C l u s t e r s . S2 . S3 . F_ Fi l t _ Do p _ o u t [0] + 0)) , 1 9 3 � 3 2 ,STHORM, 1 , 0) ;
SMECY_launch (f u s i o n _ F_ F2 _ f f t _ C F , 2 ,STHORM, 1 , 0) ;
SMECY_get_arg_vector (fu s i o n _ F_ F2 _ f f t _ C F , 2 , C p l f l o a t , ((C p l f l o a t (�) [3 2UL]) (UG �> S e g C l u s t e r s . S2 . S3 .

F_ Fi l t _ Do p _ o u t [0] + 0)) , 1 9 3 � 3 2 ,STHORM, 1 , 0) ;
SMECY_cleanup_send_ arg_v ec to r (fu s i o n _ F_ F2 _ f f t _ C F , 1 , C p l f l o a t , ((C p l f l o a t (�) [3 2UL]) (UG �> S e g C l u s t e r s . S2 . S3 .

F_X_4_out[0] + 0)) , 1 9 3 � 3 2 ,STHORM, 1 , 0) ;
SMECY_accelera tor_ en d (fu s i o n _ F_ F2 _ f f t _ C F , 6 ,STHORM, 1 , 0) ;
/ / C a l l t o f u s i o n _ F _ F 2 _ f f t _ C F }

that are translated into SMECY MCAPI primitives (see SMECY_MCAPI_*).

Fig. 7.8 SpearDE IR1 piece of code

7 Signal Processing: Radar 137

Listing 7.2 SMECY MCAPI primitives generated by Par4All
v o i d smecy _ f u n c_ f u s i o n _ F_ F2 _ f f t _ C F_ 6 (v o i d) { {

m c a p i _ s t a t u s _ t SMECY_MCAPI_status ;
s i z e _ t P 4 A _ r e c e i v e d _ s i z e ;
C p l f l o a t �p4a_STHORM_1_0_fusion_F_F2_fft_CF_1_msg ;
mcap i _ p k t ch an _ r ec v (P4 A_ r ece i v e , (v o i d ��)&p4a_STHORM_1_0_fusion_F_F2_fft_CF_1_msg ,

&P4 A_ rece i v ed _ s i z e , &SMECY_MCAPI_status) ;
SMECY_MCAPI_check_status (SMECY_MCAPI_status , " acce l _ smecy _ g en co d e . c " , __func__ , 3 4 5) ;
C p l f l o a t �p4a_STHORM_1_0_fusion_F_F2_fft_CF_1 = p4a_STHORM_1_0_fusion_F_F2_fft_CF_1_msg ;
C p l f l o a t p4a_STHORM_1_0_fusion_F_F2_fft_CF_2[1 9 3 � 3 2] ;
f u s i o n _ F _ F 2 _ f f t _ C F (p4a_STHORM_1_0_fusion_F_F2_fft_CF_1 , p4a_STHORM_1_0_fusion_F_F2_fft_CF_2) ;
mcap i _ p k t ch an _ sen d (P4 A_ t r an smi t , p4a_STHORM_1_0_fusion_F_F2_fft_CF_2 , 193 � 32 � s i z e o f (C p l f l o a t)

, &SMECY_MCAPI_status) ;
SMECY_MCAPI_check_status (SMECY_MCAPI_status , " acce l _ smecy _ g en co d e . c " , __func__ , 3 4 8) ;
m c a p i _ p k t c h a n _ r e l e a s e (p4a_STHORM_1_0_fusion_F_F2_fft_CF_1_msg , &SMECY_MCAPI_status) ;
SMECY_MCAPI_check_status (SMECY_MCAPI_status , " acce l _ smecy _ g en co d e . c " , __func__ , 3 4 9) ; } }

The final MCAPI primitives then run on the GEPOP Posix simulator in this case.

Fig. 7.9 SpearDE IR2 piece of code

7.2.3.2 SpearDE/IR2

Note that SpearDE is also able to generate the MCAPI IR2 from the same (graph-
ical) parallelized application as seen in Fig. 7.7. Moreover SpearDE automatically
manages the different communication protocols between communication ports of
the host and the clusters (for instance no more than 16 ports per node are allowed by
the MCAPI implementation). SpearDE also allows computation / communication
overlapping (for latency optimization purpose).

138 M. Barreteau and C. Cantini

Figure 7.9 shows the kind of MCAPI code that has been validated under the
GEPOP Posix simulator.

7.3 Conclusion

This semiautomatic approach (through SME-C) brings some significant advan-
tages:

• The user masters the parallelisation at high level.
• The parallelized application can be functionally tested at early stage since SME-

C is executable (SME-C relies on pragmas that are close to standards like
OpenMP).

• The user can rely on the design space exploration facilities for rapid prototyping
purpose.

• A lot of parallelization information eases the back-end tool role (e.g., no need to
analyze loops that are already declared as parallel).

Hence SME-C (generated by the front-end tool) provides the back-end tool with
several hints that guide its work to generate an efficient low-level code on the target.

Acknowledgements This work also relies on the following Embedded Systems Lab’s members:
Teodora Petrisor (application modeling), Remi Barrere (tool enhancements, IR1 code generation),
Paul Brelet (IR2 code generation) and Eric Lenormand (mapping). Claudia Cantini wishes to
thank Prof. Marco Vanneschi and the Parallel Computing Laboratory of the Computer Science
Department of the University of Pisa.

References

1. K. Cain, C. Torres, and R. Williams, “Rt-stap: Real-time space-time adaptive processing
benchmark,” 1997.

2. Wikipedia, “Cholesky decomposition,” http://en.wikipedia.org/wiki/Choleskydecomposition,
2012. [Online]. Available: http://en.wikipedia.org/wiki/Choleskydecomposition

3. J. Choi, J. Dongarra, L. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, “The design and
implementation of the scalapack lu, qr and cholesky factorization routines,” 1994.

4. E. Rothberg and R. Schreiber, “Improved load distribution in parallel sparse cholesky factoriza-
tion,” in In Proceedings of Supercomputing ’94, 1994, pp. 783–792.

5. E. Rothberg and A. Gupta, “An efficient block-oriented approach to parallel sparse cholesky
factorization,” pp. 1413–1439, 1994.

6. E. Lenormand and G. Edelin, “An industrial perspective: a pragmatic high-end signal processing
design environment at thales,” in In proceedings of the Workshop on Systems, Architectures,
Modeling and Simulation SAMOS, 2003, pp. 52–57.

7. SILKAN, http://www.par4all.org/, 2012. [Online]. Available: http://www.par4all.org/
8. MINES-ParisTech, “PIPS,” http://pips4u.org, 1989–2009, open source, under GPLv3.

http://en.wikipedia.org/wiki/Cholesky decomposition
http://en.wikipedia.org/wiki/Cholesky decomposition
http://www.par4all.org/
http://www.par4all.org/
http://pips4u.org

	7 Signal Processing: Radar
	7.1 Brief Description of the RT-STAP Algorithm
	7.1.1 Detailed Description of the Computational Phases
	7.1.2 Data-Parallel Cholesky Factorization

	7.2 Related Tool-Chain
	7.2.1 Application and Execution Platform Modeling
	7.2.2 Parallelisation on the STHORM Platform
	7.2.3 IR Code Generation
	7.2.3.1 SpearDE/IR1 and Par4All/IR2
	7.2.3.2 SpearDE/IR2

	7.3 Conclusion
	References

