
Chapter 1
Parallel Programming Models

Vassilios V. Dimakopoulos

1.1 Introduction

Programming models represent an abstraction of the capabilities of the hardware
to the programmer. A programming model is a bridge between the actual machine
organization and the software that is going to be executed by it. As an example, the
abstraction of the memory subsystem leads to two fundamentally different types of
parallel programming models, those based on shared memory and those based on
message passing. Programming through shared memory can be compared to the use
of a bulletin board. Information is exchanged by posting data to shared locations
which are agreed upon a priori by the sender and receiver of data. In shared-
memory architectures, this is realized directly using ordinary loads and stores.
On the other hand, communication via message passing occurs through point-to-
point transfers between two computing entities and is thus conceptually similar
to the exchange of letters which explicitly identify the sender and receiver of the
information. In distributed-memory architectures, these transfers are realized over
an actual processor interconnection network.

Because a programming model is an abstraction of the underlying system
architecture, it is usually not tied to one specific machine, but rather to all machines
with architectures that adhere to the abstraction. In addition one particular system
may support more than one programming model, albeit often not with the same
efficiency.

A successful parallel programming model must carefully balance opacity
and visibility of the underlying architecture; intricate details and idiosyncrasies
should be hidden while features which enable the full computational power
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of the underlying device need to be exposed. The programming model also
determines how program parts executed in parallel communicate and which types
of synchronization among them are available.

In summary, a programming model enables the developer to express ideas in a
certain way. To put the ideas into practice, however, the developer has to choose a
specific programming language. The correspondence between programming models
and programming languages is close but not one-to-one. Several languages may
implement the same programming model. For instance, Java and CCC with
Pthreads offer very similar shared-memory programming models although the two
languages differ significantly in several other important aspects. Furthermore, it
is possible for a programming language and set of APIs to adhere to several
programming models.

In what follows we present the most significant parallel programming models
available today. In Sect. 1.2 we classify them according to the memory abstraction
they offer to the programmer. In Sect. 1.3 we survey models based on shared
memory while Sect. 1.4 covers distributed-memory models. Section 1.5 surveys
the available models for GPUs and accelerators which represent devices with
private memory spaces. Models that try to combine some of the above categories
are examined in Sect. 1.6. Finally, Sect. 1.7 visits other promising languages and
programming styles that do not fall in the above categories.

1.2 Classification of Parallel Programming Models

Algorithms and whole applications contain parallelism with varying degrees of
regularity and granularity. Parallelism can be exploited at the following granularity
levels: bits, instructions, data, and tasks. Bit-level parallelism is exploited trans-
parently to the programmer by increasing the processor word size thus reducing
the number of instructions required to perform elementary arithmetic and bit
manipulation operations. Similarly, instruction-level parallelism can be exploited
by processors and compilers with little or no involvement from the programmer.
Processors support overlap of instruction execution through techniques such as
instruction pipelining, super-scalar, and out-of-order execution while optimizing
compilers can increase the efficiency of these techniques by careful reorderings of
program instructions.

At higher granularity levels, such as data level, parallelism is not generally
exploitable without programmer intervention and the programming model plays a
major role. For loops in programming languages are a major source of data-level
parallelism and therefore this kind of parallelism is also referred to as loop-
level parallelism. Many processors include single-instruction, multiple-data (SIMD)
instructions which operate on short vectors typically containing two to eight data
values. These differ from single-instruction, single-data (SISD) instructions as the
latter can only compute a single result at a time. Some programming models
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allow the programmer to utilize SIMD instructions either explicitly or implicitly,
by means of a vectorizing compiler. In any case, it is required that the data-parallel
computation can be expressed as operations on vectors, i.e. that a single instruction
can be applied to multiple data values.

Another important way of exploiting data-level parallelism is multiprocessing or
multi-threading, where the data-parallel computation is distributed over multiple
processors, a single processor capable of executing multiple instruction streams
in parallel, or any combination of these. Such architectures are characterized
as multiple-instruction, multiple-data (MIMD) machines as they are capable of
processing multiple independent instruction streams, each of which operates on
separate data items. If data parallelism is found in a loop nest, the workload is
distributed among the processing elements by assigning a fraction of the overall
iteration count to each of them. Unlike SIMD instructions, the distribution of work
can be dynamic if the time to process each of the iterations varies.

The coarsest-grained and least regular kind of parallelism is task-level paral-
lelism, which almost uniformly relies on the programmer’s ability to identify the
parts of an application that may be executed independently. Task-level parallelism
is about the distribution of both computation and data among processing elements,
whereas data parallelism primarily emphasizes the distribution of data among
processing elements. Programming models vary significantly in their support of
exploiting task-level parallelism—some are strongly focused on task-level paral-
lelism and provide abstractions which are flexible enough to also exploit data
parallelism while others are mainly focused on the exploitation of structured or
loop-level parallelism and provide only weak support for irregular and dynamic
parallelism at the granularity of tasks.

Except the above considerations on the level and type of parallelism offered,
parallel programming models can also be classified by the memory abstraction
they present to the programmer. The memory organization of typical parallel
computing systems gives rise to two broad architectural categories. In centralized
or shared-memory multiprocessors, the memory is accessible to all processors with
uniform access time (UMA). The processors are usually attached to a bus, sharing
its bandwidth, an architecture also known as a symmetric multiprocessor (SMP).
Unfortunately, buses and centralized memories suffer from increased contention and
longer latencies when more processors are added. This limited scalability means
that central memories are only used in smaller multiprocessors, usually having up
to eight processors. They are also found in the individual nodes of larger systems.

In the second organization, the memory is physically distributed among proces-
sors. Two access policies are then possible; each local memory either is accessible
only to the respective processor or can be accessed by all processors albeit with
nonuniform memory access (NUMA) times through a global address space. The
former is called a (pure) distributed-memory organization, whereas the latter is a
distributed shared-memory organization which can be cache coherent (ccNUMA) or
not. While scalable ccNUMA systems are a challenge to design, they put smaller bur-
den on the programmer because replication and coherence is managed transparently
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by the hardware. Non-cache-coherent distributed shared-memory systems require
either the programmer to make sure that each processor view of the memory is
consistent with main memory or the intervention of a software layer which manages
the consistency transparently in return for some decrease in performance.

The programming models used to target a given platform are closely related to
the underlying memory and communication architecture. Shared-memory models
offer the programmer the ability to define objects (e.g. variables) that are accessible
to all execution entities (e.g. processes or threads) and can be realized most
efficiently on machines containing hardware which keeps the memories and caches
coherent across the system. Explicit message passing, the dominant representative
of distributed-memory models, is commonly used whenever memory is non-
centralized and noncoherent. However, both shared- and distributed-memory orga-
nizations can support any kind of programming model, albeit with varying degrees
of efficiency. For instance, it is possible to support message passing very efficiently
by passing a pointer rather than copying data, on shared-memory architectures.
A global shared-memory model can also be supported on a distributed-memory
machine either in hardware (ccNUMA) or in software with a runtime layer [2],
although obtaining acceptable speedups on a wide range of unmodified, parallel
applications is challenging and still a subject of active research.

The parallel-computing landscape has been augmented with systems that usu-
ally operate as back-end attachments to a general-purpose machine, offering
increased execution speeds for special portions of code offloaded to them. General-
purpose graphical processing units (GPGPUs) and accelerators are typical exam-
ples. Because of their distinct memory and processing element organization these
devices warrant suitable programming models. In addition, their presence gives rise
to heterogeneous systems and programming models in the sense that the host and the
back-end processing elements are no longer of the same type and the programmer
must provide different programs for each part of the system.

It is also possible to combine the above paradigms and thus obtain a hybrid
programming model. This usually requires the programmer to explicitly utilize
multiple and different programming styles in the same program and is, for example,
popular when targeting clusters of multicores/multiprocessors. Another possibility
is represented by the Partitioned Global Address Space (PGAS) languages. Here the
notions of shared and distributed memory are unified, treating memory as a globally
shared entity which is however logically partitioned, with each portion being local
to a processor.

Finally, many other different attributes can be considered in order to classify
parallel programming models [3]. For example, they can be categorized based on
their application domain or by the way execution entities (workers) are defined,
managed, or mapped to actual hardware. Another attribute is the programming
paradigm (procedural, object-oriented, functional, streaming, etc). In this chapter
we focus on the memory abstraction offered by the programming model.
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1.3 Shared-Memory Models

Shared-memory models are based on the assumption that the execution entities
(or workers) that carry the actual execution of the program instructions have access
to a common memory area, where they can store objects, uniformly accessible to all.
They fit naturally UMA architectures (SMPs/multicores with small processor/core
counts) and ccNUMA systems. Shared-memory models can be further categorized
by the type of execution entities employed and the way they are handled by the
programmer (explicit or implicit creation, mapping and workload partitioning).

1.3.1 POSIX Threads

A thread is an autonomous execution entity, with its own program counter and
execution stack which is usually described as a “lightweight” process. A normal
(“heavyweight”) process may generate multiple threads; while autonomous, the
threads share the process code, its global variables, and any heap-allocated data.
The Portable Operating System Interface (POSIX) provides for a standard interface
to create threads and control them in a user program. POSIX is a standardization of
the interface between the operating system and applications in the Unix family of
operating systems. The POSIX.1c thread extensions [4] provide a description of the
syntax and semantics of the functions and data types used to create and manipulate
threads and is known as Pthreads [5].

In parallel applications, multiple threads are created by the pthread_create
call. Because the execution speed and sequence of different threads is unpre-
dictable and unordered by default, programmers must be aware of race condi-
tions and deadlocks. Synchronization should be used if operations must occur
in certain order. POSIX provides condition variables as their main synchroniza-
tion mechanism. Condition variables provide a structured means for a thread to
wait (block) until another thread signals that a certain condition becomes true
(pthread_condition_wait/pthread_condition_signal calls). The
real-time extensions to POSIX [6] define barriers as an additional synchronization
mechanism for Pthreads. A thread that calls pthread_barrier_wait blocks
until all sibling threads perform the same call; they are all then released to continue
their execution.

Pthreads provide mutex objects as a primary way of achieving mutual exclusion,
which is typically used to coordinate access to a resource which is shared
among multiple threads. A thread should lock (pthread_mutex_lock)
the mutex before entering the critical section of the code and unlock it
(pthread_mutex_unlock) right after leaving it. Pthreads also provide
semaphores as another mechanism for mutual exclusion.
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Pthreads are considered a rather low-level programming model that puts too
much burden on the programmer. Explicitly managing and manipulating the
execution entities can sometimes give ultimate control to an expert programmer [5],
but this comes at the cost of increased complexity and lower productivity since
larger Pthreads programs are considered hard to develop, debug, and maintain.

1.3.2 OpenMP

Because threads are a versatile albeit a low-level primitive for parallel programming,
it has been argued that they should not be used directly by the application
programmer; one should rather use higher-level abstractions which are possibly
mapped to threads by an underlying runtime. OpenMP [1] can be seen as a
realization of that philosophy. It is a set of compiler directives and library functions
which are used to parallelize sequential C/CCC or Fortran code. An important
feature of OpenMP is its support for incremental parallelism, whereby directives
can be added gradually starting from a sequential program.

Like Pthreads, OpenMP is an explicitly parallel programming model meaning
that the compiler does not analyze the source code to identify parallelism. The pro-
grammer instructs the compiler on how the code should be parallelized, but unlike
Pthreads, in OpenMP threads are not an explicit notion; the programmer primarily
creates and controls them implicitly through higher-level directives.

OpenMP supports a fork-join model of parallelism. Programs begin executing on
a single, master thread which spawns additional threads as parallelized regions are
encountered (enclosed in an omp parallel directive), i.e. a fork. Parallel regions
can be nested although the compiler is not required to exploit more than one level of
parallelism. At the end of the outermost parallel region the master thread joins with
all worker threads before continuing execution.

A parallel region essentially replicates a job across a set of spawned threads. The
threads may cooperate by performing different parts of a job through worksharing
constructs. The most prominent of such constructs is the omp for (C/CCC) or
omp loop (Fortran) directive where the iterations of the adjacent loop are divided
and distributed among the participating threads. This allows for easy parallelization
of regular loop nests and has been the main strength of OpenMP since these loops
are prevalent in scientific codes such as linear algebra or simulation of physical
phenomena on rectangular grids.

Since revision 3.0 of the standard [7] the applicability of OpenMP has been
significantly broadened in applications with dynamic and irregular parallelism
(e.g. when work is created recursively or is contained in loops with unknown
iteration counts) with the addition of the omp task directive. Tasks are blocks
of code that are marked by the programmer and can be executed asynchronously by
any thread. Because of their asynchronous nature, tasks must also carry a copy of
the data they will operate on when actually executed.

It would not be an exaggeration to say that OpenMP has nowadays become
the de facto standard for shared-memory programming. It is used to program
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multiprocessors and multicores alike, whether they physically share memory or
they have ccNUMA organizations. It has also been implemented successfully for
a number of embedded platforms (e.g. [8–10]). There even exist implementations
of earlier versions of OpenMP which target computational clusters though shared
virtual memory software libraries (albeit without reaching high performance levels).
Another important fact is that the directive-based programming style of OpenMP
and its latest addition of tasks have a profound influence on many recent program-
ming model proposals for others architectures (cf. Sect. 1.5). However, notice that
while an intuitive model to use, OpenMP may not always be able to produce the
maximum performance possible since it does not allow fine low-level control.

1.4 Distributed-Memory Models

Distributed-memory systems with no physical shared memory can be programmed
in a multitude of ways. To name a few:

• Low-level socket programming
• Remote procedure calls (e.g., SUN RPC, Java RMI)
• Software shared virtual memory [2], to provide the illusion of shared memory
• Message passing

are among the models that have been used. However, message passing is by
far the dominating programming model for developing high-performance parallel
applications in distributed architectures.

Notice also that approaches similar to the above have also been proposed in
specific domains. For example, in the context of real-time software for embedded
heterogeneous MPSoCs, such as multimedia and signal processing applications, the
TTL [11] and Multiflex [12] frameworks provide programming models based on
tasks or objects communicating by transferring tokens over channels or through
remote procedure calls.

1.4.1 Message-Passing (MPI)

The message-passing model assumes a collection of execution entities (processes, in
particular) which do not share anything and are able to communicate with each other
by exchanging explicit messages. This is a natural model for distributed-memory
systems where communication cannot be achieved through shared variables. It is
also an efficient model for NUMA systems where, even if they support a shared
address space, the memory is physically distributed among the processors.

Message passing is now almost synonymous to MPI, the Message Passing
Interface [13, 14]. MPI is a specification for message-passing operations and is
implemented as a library which can be used by C and Fortran programs. An MPI

program consists of a number of identical processes with different address spaces,
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where data is partitioned and distributed among them (single-program, multiple-data
or SPMD style). Interaction among them occurs through messaging operations. MPI

provides send/receive operations between a named sender and a named receiver,
called point-to-point communications (MPI_Send / MPI_Recv). These operations
are cooperative or two-sided, as they involve both sending and receiving processes,
and are available in both synchronous and asynchronous versions.

A synchronous pair of send/receive operations defines a synchronization point
between the two entities and requires no buffering since the sender remains blocked
until the transfer completes. If the synchronous send/receive pair is not executed
simultaneously, either the sender or receiver blocks and is prevented from per-
forming useful work. Asynchronous message passing allows the sender to overlap
communication with computation thus increasing performance if the application
contains enough exploitable parallelism. In this case buffers are required, and
depending on timing, caution is needed to avoid filling them up.

The second version of the MPI [14] added a number of enhancements. One
of the most significant is the ability to perform one-sided communications
(MPI_Put/MPI_Get), where a process can perform remote memory accesses
(writes or reads) without requiring the involvement of the remote process.

There also exists a very rich collection of global or collective (one-to-many,
many-to-many) operations such as gather, scatter, reduction, and broadcast which
involve more than two processes and are indispensable for both source code
structuring and performance enhancement.

MPI dominates programming on computational clusters. Additionally, there exist
implementations that allow applications to run on larger computational grids. There
also exist lightweight implementations specialized for embedded systems, such as
LMPI [15]. MPI is generally considered an efficient but low-level programming
model. Like Pthreads, the programmer must partition the work to be done by
each execution entity and derive the mapping to the actual processors. Unlike
Pthreads, one also needs to partition and distribute the data on which the program
operates.

1.5 Heterogeneity: GPGPU and Accelerator Models

General-purpose graphics processing units (GPGPUs) employ the power of a GPU

pipeline to perform general-purpose computations instead of solely graphical
operations. They have been recognized as indispensable devices for accelerating
particular types of high-throughput computational tasks exhibiting data paral-
lelism. They consist typically of hundreds to thousands of elementary processing
cores able to perform massive vector operations over their wide vector SIMD
architecture.

Such devices are generally nonautonomous. They assume the existence of a host
(CPU) which will off-load portions of code (called kernels) for them to execute.
As such, a user program is actually divided in two parts—the host and the device
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part, to be executed by the CPU and the GPGPU correspondingly, giving rise to
heterogeneous programming. Despite the heterogeneity, the coding is generally
done in the same programming language which is usually an extension of C.

The two dominant models for programming GPGPUs are Compute Unified
Device Architecture (CUDA) and OpenCL. The first is a programming model
developed by NVIDIA for programming its own GPUs. The second is an open
standard that strives to offer platform-independent general-purpose computation
over graphics processing units. As such it has also been implemented on non-
GPU devices like general or special-purpose accelerators, the ST P2012/STHORM

being a characteristic example [16]. Other models have also been proposed, trying
to alleviate the inherent programming heterogeneity to some degree.

1.5.1 CUDA

In CUDA [17, 18] the computation of tasks is done in the GPU by a set of threads
that run in parallel. The threads are organized in a two-level hierarchy, namely, the
block and the grid. The first is a set of tightly coupled threads where each thread is
identified by a thread ID while the second is a set of loosely coupled blocks with
similar size and dimension. The grid is handled by the GPU, which is organized as
a collection of “multiprocessors.” Each multiprocessor executes one or more of the
blocks and there is no synchronization among the blocks.

CUDA is implemented as an extension to the C language. Tasks to be executed
on the GPU (kernels) are functions marked with the new __global__ qualifier.
Thread management is implicit; programmers need only specify grid and block
dimensions for a particular kernel and do not need to manage thread creation and
destruction. On the other hand, workload partitioning and thread mapping is done
explicitly when calling the __global__ kernel using the «<gs,bs»> construct,
where gs (bs) specifies the dimensions of the grid (block).

The memory model of CUDA consists of a hierarchy of memories. In particular,
there is per-thread memory (registers and local memory), per-block memory (shared
memory, accessed by all threads in a block), and per-device memory (read/write
global and read-only constant memory, accessed by all threads in a grid and by the
host). Careful data placement is crucial for application performance.

1.5.2 OpenCL

OpenCL [19] is a standardized, cross-platform, parallel-computing API based on
the C99 language and designed to enable the development of portable parallel
applications for systems with heterogeneous computing devices. It is quite similar
to CUDA although it can be somewhat more complex as it strives for platform
independence and portability.
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As in CUDA, an OpenCL program consists of two parts: kernels that execute on
one or more devices and a host program that manages the execution of kernels.
Kernels are marked with the __kernel qualifier. Their code is run by work items
(cf. CUDA threads). Work items form work groups, which correspond to CUDA

thread blocks. The memory hierarchy is again similar to CUDA with the exception
that memory shared among the items of a work group is termed local memory
(instead of shared), while per-work item memory is called private (instead of
local).

In OpenCL, devices are managed through contexts. The programmer first creates
a context that contains the devices to use, through calls like clCreateContext.
To submit work for execution by a device, the host program must first create a
command queue for the device (clCreateCommandQueue). After that, the host
code can perform a sequence of OpenCL API calls to insert a kernel along with its
execution parameters into the command queue. When the device becomes available,
it removes and executes the kernel at the head of the queue.

1.5.3 Directive-Based Models

Because programming GPGPUs with the CUDA and OpenCL models is tedious and
in a rather low abstraction level, there have been a number of proposals for an
alternative way of programming these devices. The common denominator of these
proposals is the task-parallel model; kernels are simply denoted as tasks in the user
programs and thus blend naturally with the rest of the code, reducing thus the impact
of heterogeneity. Moreover, these models are heavily influenced by the OpenMP
directive-based style of programming.

GPUSs [20] uses two directives. The first one allows the programmer to annotate
a kernel as a task, while also specifying the required parameters and their size and
directionality. The second one maps the task to the device that will execute it (in the
absence of this directive, the task is executed by the host CPU). This also determines
the data movements between the host and the device memories.

Another example is HMPP [21] which offers four types of directives. The first
one defines the kernel (termed codelet) to be executed on the accelerator. The
second one specifies how to use a codelet at a given point in the program, including
which device will execute it. The third type of directives determines the actual
data transfers before executing the codelet. Finally, a fourth directive is used for
synchronization.

Finally, OpenACC [22] is another attempt to provide a simplified programming
model for heterogeneous CPU/GPU systems. It is developed by Cray, CAPS, NVIDIA,
and PGI and consists of a number of compiler directives and runtime functions.
OpenACC is expected to be endorsed by the upcoming version of OpenMP.



1 Parallel Programming Models 13

1.6 Hybrid Models

Hybrid programming models try to combine two or more of the aforementioned
models in the same user program. This can be advantageous for performance reasons
when targeting systems which do not fall clearly in one architectural category.
A characteristic example is a cluster of multicore nodes. Clusters are distributed-
memory machines. Their nodes are autonomous computers, each with its own
processors and memory; nodes are connected through an interconnection network
which is used for communicating with each other. Within a node, however, the
processors (or cores) have access to the same local memory, forming a small shared-
memory subsystem.

Using one programming model (e.g. OpenMP combined with software shared
virtual memory layers, or MPI only) to leverage such platforms is a valid option
but may not be the most efficient one. Hybrid programming utilizes multiple
programming models in an effort to produce the best possible code for each part
of the system.

A similar situation occurs in systems consisting of multiple nodes of CPUs
and/or GPU cards. There have been works that combine, for example, OpenMP and
CUDA [23] or even CUDA and MPI [24]. However, this case is not considered in
detail here as the various GPU models are more or less hybrid by nature in the sense
of already supporting heterogeneous CPU/GPU programming.

1.6.1 Pthreads C MPI

Under this model, Pthreads are used for shared-memory programming within a
node while MPI is used for message passing across the entire system. While the first
version of the MPI standard was not designed to be safely mixed with user-created
threads, MPI-2 [14] allows users to write multithreaded programs easily. There are
four levels of thread safety supported by systems and selectable by the programmer
(through the MPI_Init_thread call): MPI_THREAD_SINGLE, MPI_
THREAD_FUNNELED, MPI_THREAD_SERIALIZED, and MPI_THREAD_
MULTIPLE. Except for SINGLE all other levels allow multiple threads. In the
FUNNELED level, however, only one of the threads is allowed to place MPI calls.
The other two levels allow MPI calls by all threads (albeit nonsimultaneously in the
SERIALIZED level). Notice that not all implementations support all thread safety
levels.

While there have been some application studies reported with the hybrid Pthreads
C MPI model (e.g. [25, 26]), this is not an extensively used approach; OpenMP is
the most popular choice for spawning shared-memory parallelism within a node.
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1.6.2 OpenMP C MPI

This is the most widely used combination, where OpenMP is employed to leverage
the shared-memory features of a node [27–29]. This, of course, guarantees porta-
bility since both OpenMP and MPI are industry standards. Many application classes
can benefit from the usage of this model. For example, some applications expose two
levels of parallelism, coarse-grained (suitable for MPI) and fine-grained (suitable for
OpenMP). The combination may also help in situations where the load of the MPI

processes is relatively unbalanced. Finally, OpenMP threads may provide a faster
communication mechanism than multiple MPI processes within a node.

On the other hand, some applications possess only one level of parallelism.
In addition, the utilization of OpenMP is not without its costs; it introduces the
overheads of thread creation, synchronization, and worksharing. Consequently,
the hybrid OpenMP C MPI model may not always be the better choice (see,
e.g. [30, 31]).

The user program is structured as a collection of MPI processes. The code of
each process is enhanced with OpenMP directives to take advantage of the presence
of shared memory. Depending on the programming and the capabilities of the
MPI implementation MPI calls may be made by the master thread only, outside
parallel regions. The other option is to allow MPI calls within parallel
regions and thus have some thread(s) communicate while others compute (the
SERIALIZED or MULTIPLE safety levels are required). As a result, one can
overlap communication with computation. This requires the most complicated
control, but can result in performance improvements.

The hybrid OpenMP C MPI model has been used successfully in many cases
(e.g. [32–34]). We should also note the existence of frameworks that facilitate
programming with this model while also combining it with others, such as task-
centric ones (e.g. HOMPI by [35]).

1.6.3 PGAS

PGAS stands for Partitioned Global Address Space and represents a class of
programming languages and runtime libraries that try to marry the shared- and
distributed-memory models when targeting clusters of SMPs or multicores. How-
ever, while the other hybrid approaches force the programmer to mix two different
models in the same code, PGAS presents a single, unified model which inherits
characteristics of both.

In the PGAS model multiple SPMD threads (or processes) share a part of their
address space. However, this globally shared area is logically partitioned, with each
portion being local to a processor. Thus, programs are able to use a shared address
space, which generally simplifies programming, while also exposing data/computa-
tion locality in order to enhance performance. Because of this, PGAS is sometimes
termed locality-aware shared-memory programming.
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Two characteristic examples of the PGAS model are Co-array Fortran (CAF, [36])
and Unified Parallel C (UPC, [37]). The first one is an extension to Fortran 95 and
is now incorporated in the recent Fortran 2008 standard. A program in CAF consists
of SPMD processes (images). The language provides for defining private and shared
data, accessing shared data with one-sided communications and synchronization
among images. Similarly, UPC extends the C programming language to allow
declaring globally shared variables, partitioning and distributing their storage across
the available nodes. It offers an affinity-aware loop construct (upc_forall) as
well as built-in calls for collective communications among threads.

1.7 Other Parallel Programming Models

In this section we briefly discuss other approaches to parallel programming. We
take a different view from the previous sections in that we do not categorize them
according to their memory abstraction. We first take a look at new languages
or notable parallel extensions to well-known sequential languages, irrespectively
of the memory model they follow. Then we visit a different way of parallel
programming—skeleton-based models.

1.7.1 Languages and Language Extensions

Cilk [38] is a language extension to C which adds support for parallel programming
based on tasks or Cilk procedures. Syntactically, a Cilk procedure is a regular
C function where the cilk keyword has been added to its definition to allow
asynchronous invocation. Cilk procedures can then be invoked or spawned by
prefixing the function invocation with the spawn keyword. A key strength of Cilk is
its support for irregular and dynamic parallelism. Work stealing, a provably optimal
technique for balancing the workload across processing elements, was developed
as part of the Cilk project. It has subsequently been adopted by numerous other
parallel programming frameworks. CilkCC is a commercial implementation of the
language.

Sequoia [39] is a language extension to a subset of C. In Sequoia tasks are
represented via a special language construct and are isolated from each other in that
each task has its own address space and calling a subtask or returning from a task is
the only means of communication among processing elements. To achieve isolation
tasks have call-by-value-result semantics and the use of pointer and reference types
inside tasks is disallowed. First-class language constructs are used to express data
decomposition and distribution among processing elements and locality-enhancing
transformations such as loop blocking; for instance, the blkset data type is used
to represent the tiles or blocks of a conventional array. Another characteristic of
Sequoia is that the memory hierarchy is represented explicitly via trees of memory
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modules. Generic algorithmic expression and machine-specific optimizations are
kept (mostly) separate. The source code contains tunable parameters and variants of
the same task which are optimized for different hardware architectures. A separate
set of mapping files stores values of tunable parameters and choices of task variants
for the individual execution platform.

Hierarchically tiled arrays (HTA, [40]) are an attempt to realize efficient parallel
computation at a higher level of abstraction solely by adding specialized data types
in traditional, imperative languages such as CCC. As the name implies, HTAs are
hierarchies of tiles where each tile is either a conventional array or an HTA itself.
Tiles serve the dual purpose of controlling data distribution and communication at
the highest level and of attaining locality for the sequential computation inside each
task. Like Sequoia, HTA preserves the abstraction of a global shared memory while
automatically generating calls to a message-passing library on distributed-memory
architectures.

Java is one of the most popular application-oriented languages. However, it also
provides support for parallel programming. For one, it was designed to be multi-
threaded. Additionally, Java provides Remote Method Invocation (RMI) for trans-
parent communication among virtual machines. A number of other programming
models can also be exercised using this language. For example, MPJ Express [41]
is a library that provides message-passing facilities to Java. Finally, Java forms the
basis for notable PGAS languages such as Titanium [42].

1.7.2 Skeletal Programming

Algorithmic skeletons [43] represent a different, higher-level pragmatic approach
to parallel programming. They promote structured parallel programming where
a parallel program is conceived as two separate and complementary concerns:
computation, which expresses the actual calculations, and coordination, which
abstracts the interaction and communication. In principle, the two concepts should
be orthogonal and generic, so that a coordination style can be applied to any parallel
program, coarse- or fine-grained. Nonetheless, in conventional parallel applications,
computation and coordination are not necessarily separated, and communications
and synchronization primitives are typically interwoven with calculations.

Algorithmic skeletons essentially abstract commonly used patterns of parallel
computation, communication, and interaction (e.g. map-reduce, for-all, divide and
conquer) and make them available to the programmer as high-level programming
constructs. Skeletal parallel programs can then be expressed by interweaving
parametrized skeletons using composition and control inheritance throughout the
program structure. Based on their functionality, skeletons can be categorized as data
parallel (which work on bulk data structures and typically require a function or
sub-skeleton to be applied to all elements of the structure, e.g. map or reduce),
task-parallel (which operate on tasks, e.g. farm, pipe, for), or resolution (which
outline algorithmic methods for a family of problems, e.g. divide and conquer or
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branch and bound). Notice that the interface of the skeleton is decoupled from its
implementation and as a consequence the programmer need only specify what is to
computed and not how it should be deployed on a given architecture.

Most skeleton frameworks target distributed-memory platforms, e.g. eSkel [44],
SKELib [45], and ASSIST [46], which deliver task- and data-parallel skeletal APIs.
Java-based Skandium [47] and CCC-based FastFlow [48], on the other hand, target
shared-memory systems. The FastFlow framework is differentiated as it focuses
on stream parallelism, providing farm, divide and conquer, and pipeline skeletons.
A detailed survey of algorithmic skeleton frameworks is given in [49].

1.8 Conclusion

In this chapter we attempted to outline the parallel programming models landscape
by discussing the most important and popular ones. The reader should be aware
that what we presented is just a portion of what is available for the programmer
or what has been proposed by researchers. We classified the models mainly
according to the memory abstraction they present to the programmer and then
presented the representative ones in each category. We covered shared-memory
models, distributed-memory models, and models for GPUs and accelerators. Hybrid
models combine the aforementioned ones in some way. We finally concluded with
a summary of other models that do not fit directly in the above categories.

Parallel programming models is a vast area of active research. The multitude of
platforms and architectures and the variety of their combinations are overwhelming
but at the same time a source of new problems and ideas. The domination of
multi- and many-core systems even on the desktop has pushed research on parallel
programming even further. This is not without reason since the “concurrency
revolution is primarily a software revolution. The difficult problem is not building
multicore hardware, but programming it in a way that lets mainstream applications
benefit from the continued exponential growth in CPU performance” [50].
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