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Abstract While candidate gene association studies continue to be the most practi-
cal and frequently employed approach in disease gene investigation for complex 
disorders, selecting suitable genes to test is a challenge. There are several computa-
tional approaches available for selecting and prioritizing disease candidate genes. 
A majority of these tools are based on guilt-by-association principle where novel 
disease candidate genes are identified and prioritized based on either functional or 
topological similarity to known disease genes. In this chapter we review the priori-
tization criteria and the algorithms along with some use cases that demonstrate how 
these tools can be used for identifying and ranking human disease candidate genes.

4.1  Introduction

The majority of common diseases, common traits, and pharmacological drug 
response are genetically intricate, polygenic, multifactorial, and often result from an 
interaction of genetic, environmental, and physiological factors. Although 
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high-throughput, genome-wide studies like linkage analysis and gene expression 
profiling are useful for classification and characterization, they often fail to provide 
sufficient information to identify specific disease causal genes or drug targets. Both 
of these approaches typically result in the identification of hundreds of potential 
candidate genes and cannot effectively reduce the number of target genes to a man-
ageable figure for further validation.

4.2  Bioinformatic Tools for Gene Prioritization

Several computational approaches (Table 4.1) have been developed for gene priori-
tization to overcome the limitations of high-throughput, genome-wide studies like 
linkage analysis and gene expression profiling, both of which typically result in the 
identification of hundreds of potential candidate genes [1–3, 8, 10, 16, 59, 61, 62, 
65, 76]. See recent reviews [7, 29, 43, 46, 50, 60, 64, 76] for technical and algorith-
mic details of various gene prioritization tools. While a majority of these tools are 
based on the assumption that similar phenotypes are caused by genes with similar 
or related functions [9, 20, 27, 55, 65], they differ by the strategy adopted in calcu-
lating similarity and by the data sources utilized [63]. Further, no single source of 
data can be expected to capture all relevant relations. For example, using coexpres-
sion data alone will fail to detect many effects of posttranscriptional modifications, 
while relying on protein–protein interaction data alone will fail to capture transcrip-
tional regulation. Since these different data types are complementary, they need to 
be merged not only to improve coverage but to infer stronger relationships through 
the accumulation of evidence [43]. While this is true, except for Endeavour [3, 63] 
and ToppGene [9, 10], most of the existing approaches mainly focus on the combi-
nation of only a few data sources.

4.2.1  Functional Annotation-Based Approaches

The functional annotation-based candidate disease gene prioritization approaches 
are usually based on the guilt-by-association principle which asserts that reliable 
predictions about the disease involvement (“guilt”) of a gene can generally be made 
if several of its partners (e.g., genes with correlated expression profiles or protein 
interaction partners or genes involved in same biological process or pathway) share 
a corresponding “guilty” status (“association”) [43]. Incorporating the prior infor-
mation or knowledge about a disease is thus critical for this type of approach. One 
of the fundamental challenges for these approaches is the ability to gather, normal-
ize, and integrate heterogeneous data from multiple sources and keeping them cur-
rent. There are now several online tools available which make carrying out such 
analyses intuitively without the need for having programming knowledge or direct 
support of a bioinformatics expert (see [29, 46, 64] for a list of such Web-based 
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tools). While the usage of multiple heterogeneous data in the ranking makes the 
functional annotation-based approaches more thorough and less biased global 
assessment of candidate genes, they still suffer with a bias towards the training set 
and have some limitations. For instance, by using a training set, it is assumed that 
the disease genes yet to be discovered will be consistent with what is already known 
about a disease and/or its genetic basis. This assumption may not always be true. 
Additionally, since these approaches rely on known gene annotation, they tend to be 
biased towards selecting better annotated genes. For example, a “true” candidate 
gene can be missed if it lacks sufficient annotations. Thus, the effectiveness of this 
approach depends critically on how well the disease under investigation is defined 
both molecularly and physiologically. Second, it is important to note that the anno-
tations and analyses provided, and the prioritization by these approaches, can only 
be as accurate as the underlying original sources from which the annotations are 
retrieved. For instance, only one fifth of the known human genes have pathway or 
phenotype annotations, and there are still more than 30 % genes whose functions 
are not well-defined. Third, using an appropriate or “true representative” training set 
is critical. For instance, in an earlier study, we observed that using larger training 
sets (>100 genes) decreases the sensitivity and specificity of the prioritization com-
pared to smaller training sets (7–21 genes) [10]. Lastly, almost all of the current 
disease gene identification and prioritization approaches are coding-gene-centric, 
while it has been speculated that complex traits result more often from noncoding 
regulatory variants than from coding sequence variants [32, 35, 40].

4.2.2  Network-Based Approaches

A majority of the current computational disease candidate gene prioritization meth-
ods [1–3, 10, 16, 59, 61, 62, 65, 76] rely on functional annotations, gene expression 
data, or sequence-based features. The coverage of the gene functional annotations, 
however, is still a limiting factor. Currently, only a fraction of the genome is anno-
tated with pathways and phenotypes [10]. While two thirds of all the genes are 
annotated by at least one functional annotation, the remaining one third has yet to 
be annotated. Interestingly, because biological networks have been found to be 
comparable to communication and social networks [28] through commonalities 
such as scale-freeness and small-world properties, the algorithms used for social 
and Web networks should be equally applicable to biological networks.

Recent biotechnological advances (e.g., high-throughput yeast two-hybrid 
screening) have facilitated generation of proteome-wide protein–protein interaction 
networks (PPINs) or “protein interactome” maps in model organisms and humans 
[53, 56]. Additionally, the shift in focus to systems biology in the post-genomic era 
has generated further interest in these networks and pathways. As a result, PPINs 
have been increasingly used not only to identify novel disease candidate genes [17, 
30, 34, 73, 74] but also for candidate gene prioritization [8, 11, 34, 45, 73]. At the 
same time, network topology-based analyses hitherto used in social and Web net-
work analyses have been successfully used in the identification and prioritization of 
disease candidate genes [8, 12, 19, 24, 34, 36, 54, 57, 70, 73]. Broadly, network 
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topology-based candidate gene ranking approaches can be grouped into two catego-
ries: parameter-based and parameter-free methods. The parameter-based methods, 
such as PageRank with Priors (PRP [8]), Random Walk (RW [34]), and PRIoritizatioN 
and Complex Elucidation (PRINCE [70]), as the name indicates require additional 
auxiliary parameters that need to be trained by using available data sets. The PRP, 
for example, needs a parameter β to control the probability of jumping back to the 
initial node [8]. Similarly, the PRINCE algorithm uses a parameter to describe the 
relative importance of prior information [70]. However, selecting optimal parame-
ters is often a challenge, and therefore the more “user-friendly” parameter-free 
approaches are preferred [24]. Further, most of the parameter-based approaches 
take into account the global information in the entire network, and thus they typi-
cally require extensive computation. For instance, in PRP, scores of all the vertices 
in the network need to be updated iteratively until they converge. This process tends 
to be slow and inefficient especially when the network size is large. The parameter- 
free methods (e.g., interconnectedness or ICN [24]), on the other hand, measure 
closeness of each candidate gene to known disease genes by taking into account 
direct link and the shared neighbors between two genes and therefore are relatively 
less intensive computationally. However, the performance of parameter-free meth-
ods was not comparable to those of parameter-based approaches. To address this, 
we recently developed a novel network-based parameter-free framework for discov-
ering and prioritizing human rare disease candidate genes [75]. Our goals were to 
(a) enhance prioritizing performance compared to current parameter-free methods 
and (b) achieve a comparable performance to the parameter-based ones. Using sev-
eral test cases, we compared the performance of our method (Vertex Similarity 
(VS)-based approach) to two approaches, one each from parameter-based (PRP) 
and parameter-free methods (ICN), and also used it to rank the immediate neighbors 
of known rare disease genes as potential novel candidate genes.

Network-based approaches using protein–protein interaction data while useful 
have some practical limitations [29]. First, high-throughput protein–protein interac-
tion sets, especially yeast two-hybrid sets, are inherently noisy and may contain 
several interactions with no biological relevance [18, 26, 37, 66]. Surprisingly, only 
5.8 % of the human, fly, and worm yeast two-hybrid interactions have been con-
firmed by the HPRD (Human Protein Reference Database), a manually curated 
compilation of protein interactions [47]. Second, the protein interactome tends to be 
biased towards well-studied proteins. Third, some of the human protein interactome 
data is derived by extrapolating high-throughput interactions from other species. 
Even though previous studies have shown that PPINs are conserved across species 
[25], there is a possibility for species-specific protein interactions. Fourth, two inter-
acting proteins need not lead to similar disease phenotypes when mutated—for 
instance, they may have redundant or different but overlapping functions, or one 
may be more dispensable than the other [47]. Additionally, disease proteins may lie 
at different points in a molecular pathway and not necessarily interact directly. 
Fifth, disease mutations need not always involve proteins (e.g., telomerase RNA 
component in congenital autosomal dominant dyskeratosis) [47]. Lastly, most of the 
network topology-based algorithms were originally developed to identify “impor-
tant” nodes in networks. Although extended versions of these algorithms are used to 
prioritize nodes to selected “seeds,” they could still be biased towards hubs.

4 Disease Gene Prediction and Ranking
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4.3  ToppGene Suite: A One-Stop Portal for Candidate Gene 
Prioritization Based on Functional Annotations and 
Protein Interactions Network

In this section, we describe the ToppGene Suite (http://toppgene.cchmc.org) [8–10], 
a unique, one-stop online assembly of computational software tools that enables 
biomedical researchers to perform candidate gene prioritization based on (a) func-
tional annotation similarity between training and test set genes (ToppGene) [10], (b) 
protein interactions network analysis (ToppNet) [8], and (c) identify and rank can-
didate genes in the training set interactome based on both functional annotations 
and PPIN analysis (ToppGeNet) [8]. The ToppGene knowledgebase combines 17 
gene features available from the public domain. It includes both disease-dependent 
and disease-independent information in the nature of known disease genes, previous 
linkage regions, association studies, human and mouse phenotypes, known drug 
genes, microarray expression results, gene regulatory regions (transcription factor 
target genes and microRNA targets), protein domains, protein interactions, path-
ways, biological processes, and literature co-citations.

4.3.1  ToppGene: Functional Annotations-Based Candidate 
Gene Prioritization

In the first step, ToppGene generates a representative profile of the training genes 
using as many as 17 features and identifies over-representative terms from the train-
ing genes. Each of the test set genes is then compared to this representative profile 
of the training set, and a similarity score for each of the 17 features is derived and 
summarized by the 17 similarity scores. Different methods are used for similarity 
measures of categorical (e.g., GO annotations) and numeric (i.e., gene expression) 
annotations. For categorical terms, a fuzzy-based similarity measure (see Popescu 
et al. [51] for additional details) is applied, while for numeric annotation, i.e., the 
microarray expression values, the similarity score is calculated as the Pearson cor-
relation of the two expression vectors of the two genes. The 17 similarity scores are 
combined into an overall score using statistical meta-analysis, and a p-value of each 
annotation of a test gene G is derived by random sampling of the whole genome. 
The p-value of the similarity score Si is defined as:

 
p S

count of genes having score higher than in therandom sample

ci( ) = G

oount of genes in therandom samplecontaining annotation
.
 

To combine the p-values from multiple annotations into an overall p-value, 

Fisher’s inverse chi-square method, which states that - ( )
=
å2 2

1

2

i

n

ip nlog ® c  

(assuming the pi values come from independent tests) is used. The final similarity 
score of the test gene is then obtained by 1 minus the combined p-value. Additional 
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details explaining the development of this method along with the validation process 
and comparison with other approaches have been previously published [9, 10].

4.3.2  ToppNet: Network Analysis-Based Candidate  
Gene Prioritization

ToppNet gene prioritization is based on the analysis of the protein–protein interac-
tion network. Motivated by the observation that biological networks share many 
properties with social and Web networks [28], ToppNet uses extended versions of 
three algorithms from White and Smyth [72]: PageRank with Priors (PRP), HITS 
with Priors, and K-step Markov. The disease candidate genes (test set) are ranked by 
estimating their relative importance in the PPIN to known disease-related genes 
(training set). The PageRank with Priors, based on White and Smyth’s PageRank 
algorithm [72], mimics the random surfer model wherein a random Internet surfer 
starts from one of a set of root nodes, R, and follows one of the links randomly in 
each step. In this process, the surfer jumps back to the root nodes at probability β, 
thus restarting the whole process. Intuitively, the PRP algorithm generates a score 
that is proportional to the probability of reaching any node in the Web surfing pro-
cess. This score indicates or measures the relative “closeness” or importance to the 
root nodes. The second algorithm is HITS with Priors, an extension of HITS 
(Hyperlink-Induced Topic Search) developed by Jon Kleinberg to rank Web pages. 
It determines two values for a page: “hubness,” representing the value of its links 
to other pages, and “authority,” which estimates the value of the content of the 
page [33]. Here, too, the surfer starts from one of the root nodes. In the odd steps he/
she can either follow a random “out-link” or jump back to a root node, and in the 
even steps he/she can instead follow an “in-link” or jump back to a root node. As in 
the case of PRP, HITS with Priors also estimates the relative probability of reaching 
a node in the network. The third algorithm is the K-Step Markov method which 
mimics a surfer who starts with one of the root nodes and then follows a random 
link in each step before returning to the root node (after K steps) and restarts surfing. 
For additional details readers are referred to our original published study [8].

4.3.3  ToppGeNet: Prioritization of Disease Gene 
Neighborhood in the Protein Interactome

ToppGeNet allows the user to rank the interacting partners (direct or indirect) of 
known disease genes for their likelihood of causing a disease. Here, given a training 
set of known disease genes, the test set is generated by mining the protein interac-
tome and compiling the genes interacting either directly or indirectly (based on user 
input) with the training set genes. The test set genes can then be ranked using either 
ToppGene (functional annotation-based method) or ToppNet (PPIN-based method).

4 Disease Gene Prediction and Ranking
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4.4  Case Studies to Demonstrate the Utility  
of Computational Approaches for Human  
Disease Gene Prediction and Ranking

In the following sections we present two sets of case studies to demonstrate the util-
ity of computational approaches in discovering and ranking novel candidate genes 
for human diseases. In an earlier study, Tiffin et al. [61] used some of the computa-
tional approaches for disease gene identification and prioritization and concluded 
that using the methods in concert was more successful in prioritizing candidate 
genes for disease than when each was used alone. Hence, in the first case study, we 
select ten diseases and use both functional annotations-based and network-based 
approaches to identify and rank novel candidate genes for these diseases. We used 
ToppGene [9] for functional annotation-based ranking, and for network-based rank-
ing we used both parameter [8]- and nonparameter [75]-based approaches (see next 
section for details). In the second case study, we present two recent examples that 
demonstrate the power of using bioinformatics techniques with the exome sequenc-
ing technologies in identifying novel candidate genes for rare disorders.

4.4.1  Case Study 1: Identifying and Ranking Novel Candidate 
Genes for Ten Human Diseases

The workflow (Fig. 4.1) described here is based on a simulation of a researcher’s 
approach to selecting and ranking candidate disease genes. In this process, a variety 
of relevant database sources are mined for compiling both the training and test set 
genes. Known disease-associated genes for the ten selected diseases (from a recent 
review [43]) were obtained by combining gene lists from OMIM [21], the Genetic 
Association Database [4], GWAS [22], and diseases biomarkers from the 
Comparative Toxicogenomics Database [13] (see Table 4.2 for the list of selected 
ten diseases and their training sets or known causal genes). The test set or candidate 
genes to be ranked are compiled mining protein interactome and functional linkage 
networks. Briefly, for each of the training set genes (known disease causal gene), we 
extracted their interacting partners (both from the protein interactome and func-
tional networks). The protein interactome data was downloaded from the NCBI 
(ftp://ftp.ncbi.nih.gov/gene/GeneRIF/interactions.gz), while for functional net-
works, we used two sources: (a) Functional Linkage Network (FLN) [38] and (b) 
STRING (score ≥ 700) [58]. Thus, for each disease, we compiled three test sets 
using the three databases.

The test sets were then ranked by three approaches: (a) functional annotations- 
based ranking (using ToppGene), (b) PageRank with Priors (parameter-dependent 
network topology-based approach), and (c) Vertex Similarity (parameter-free net-
work topology-based approach). We used the harmonic mean of the individual 
ranks from the three approaches to obtain the final-ranked list. We repeated the 
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same process for two other test sets obtained from functional networks (FLN and 
STRING). In the final step, we intersected the top ten genes from the three networks 
(PPIN, FLN, and STRING) to see the intersection. The last column in Table 4.2 
shows those genes that are ranked among the top ten in the three networks. For 
example, in congenital diaphragmatic hernia (CDH), four genes (LRAT, ZFPM2, 
NKX2-5, and PDGFRB) were ranked among top ten in all the three networks. 
Interestingly, the retinol status in newborns is associated with CDH, and genetic 
analyses in humans suggest a role for retinoid-related genes in the pathogenesis of 
CDH [6]. LRAT (lecithin retinol acyltransferase) ranked among the top mediates 
cellular uptake of retinol and plays an important regulatory role in cellular vitamin 
A homeostasis [31]. Similarly, Wat et al. [71] identified three unrelated patients 
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Fig. 4.1 Panel (a) shows schematic representation of the workflow for identifying and ranking 
novel disease candidate genes using functional annotation- and network-based approaches. 
Candidate genes are compiled using both protein interactions and functional associations 
(Functional Linkage Network and STRING). The candidate genes are ranked using both functional 
annotations (ToppGene) and network topology (PageRank with Priors and Vertex Similarity-based 
approaches). The final ranks are generated by taking the harmonic mean of the ranks of a gene 
from the three methods (ToppGene, PRP, and VS). Panel (b) shows the top-ranked genes for con-
genital diaphragmatic hernia using functional annotation- and network-based approaches. 
Highlighted genes (LRAT, ZFPM2, NKX2-5, and PDGFRB) represent those that have been ranked 
among top ten by different approaches
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with CDH who had a heterozygous deletion of chromosome 8q involving ZFPM2, 
which was ranked among the top five in the three networks. It is beyond the scope 
of this chapter to discuss about the top-ranked genes for all the ten diseases. The 
supplementary file (Supplementary File 1) shows the complete lists of training and 
ranked test set genes for the ten select diseases along with the details of rankings 
from each of the three approaches using three different networks (PPIN, FLN, and 
STRING).

Table 4.2 Top-ranked novel candidate genes for ten select diseases

Disease name Known disease-causing genes (training set)

Top-ranked novel 
candidate genes (using 
different approaches 
and data sets)

Congenital  
diaphragmatic 
hernia

GATA4, HCCS, NR2F2, PDGFRA, RBP1, RBP2, 
SLIT3, STRA6, WT1

LRAT, NKX2-5, 
PDGFRB, ZFPM2

Bipolar disorder ABCA13, BCR, BDNF, BRCA2, COMT, CUX2, DRD4, 
HTR4, PALB2, SLC6A3, SLC6A4, TRPM2, XBP1

ADRB2, BRCA1, 
DRD2, NTRK2

Nasopharyngeal 
carcinoma

CCND1, CDH13, COX7B2, CTLA-4, CYP2A6, 
CYP2E1, CYP2F1, ERCC1, FAS, GABBR1, 
GSTM1, HHATL, HLA-A, HLA-B, HLA-C, 
HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1, 
HLA-E, HLA-F, HP, HSPA1B, IFNA17, IL10, 
IL12A, IL16, IL18, IL1B, IL8, ITGA9, LOC344967, 
MDM2, MECOM, MICA, MMP1, MMP2, N4BP2, 
NAT2, NFKB1, OGG1, PLUNC, PTGS2, RASSF1A, 
TAP1, TGFB1, TLR10, TLR3, TLR4, TNF, 
TNFRSF19, TP53, UBAP1, VEGFA, XPC, XRCC1

HLA-G, HLA- DPA1, 
HLA-DRA

Testicular germ  
cell tumor

ATF7IP, BAK1, DMRT1, FGFR3, KIT, KITLG, LTA, 
SPRY4, STK11, TGFB1, TNF

LTB, IFNG

Crohn’s disease ATG16L1, C11orf30, CCR6, CDKAL1, FUT2, 
ICOSLG, IL12B, IL23R, IRGM, ITLN1, JAK2, 
LRRK2, MST1, MUC19, NKX2-3, NOD2, 
ORMDL3, PTGER4, PTPN2, PTPN22, STAT3, 
TNFSF15, ZNF365

IL12RB1, IL23A, 
JAK1, STAT1, 
STAT5B

Asthma ACE, ADAM33, ADRB2, CC16, CCL11, CCL5, CD14, 
CMA1, CSF1R, CTLA4, FLG, GPRA, GSTM1, 
GSTP1, GSTT1, HAVCR1, HLA- DPB1, HLA-
DQB1, HLA-DRB1, IL10, IL13, IL18, IL4, IL4R, 
LTA, LTC4S, NAT2, NOS1, SPINK5, STAT6, 
TBXA2R, TGFB1, TNF

IL1B, HLA-DRA

Metopic 
craniosynostosis

FGFR1, FGFR2, FGFR3, GLI3, TWIST1 FGF9, FGF2

Nonsyndromic cleft 
lip/palate

BMP4, IRF6, MSX1, MTR, PVRL1, STOM, SUMO1, 
TP63

MSX2, PAX3

Arthrogryposis MYH3, TNNI2, TNNT3, TPM2, UTRN ACTA1, DMD, 
TNNC1, TNNC2, 
TNNT1, TPM1

Bipolar  
schizoaffective 
disorder

ABCA13, BCR, BDNF, COMT, CUX2, DRD4, 
GABRR1, HTR4, PALB2, SLC6A3, SLC6A4, 
TRPM2, XBP1

ADRB2, DRD2, 
ITPR3, SLC6A9

C. Zhu et al.



79

4.4.2  Case Study 2: Exome Sequencing and Bioinformatics 
Applications to Identify Novel Rare Disease Causal 
Variants

In the following sections we present two examples from recently published studies 
[5, 14] where computational approaches for candidate gene ranking were used in 
concert with exome sequencing to identify novel disease causal variants.

The first example [14] illustrates the potential of combining genomic variant and 
gene level information to identify and rank novel causal variants of rare diseases. 
Combining computational gene prediction tools with traditional mapping approaches, 
Erlich et al. [14] demonstrated how rare disease candidate genes from exome rese-
quencing experiment can be successfully prioritized. In this study, a familial case of 
hereditary spastic paraparesis (HSP) was analyzed through whole- exome sequencing, 
and the four largest homozygous regions (containing 44 genes) were identified as 
potential HSP loci. The authors then applied several filters to narrow down the list 
further. For instance, a gene was considered as potentially causative if it contains at 
least one variant that is either under purifying selection or not inherited from the par-
ents or absent in dbSNP or the 1,000 Genomes Project data. Because majority of the 
known rare disease variants affect coding sequences, the authors also checked if the 
variant is non-synonymous. After this filtering step, 15 candidate genes were identi-
fied and this list was further prioritized using three computational methods (Endeavour 
[3], ToppGene [9], and Suspects [2]). As a training set, a list of 11 seed genes associ-
ated with a pure type of HSP was compiled through literature mining. Interestingly, 
the top-ranking gene from all the three bioinformatics approaches (each of which uses 
different types of data and algorithms for prioritization) was KIF1A. Subsequent con-
firmation of KIF1A as the causative variant was done using Sanger sequencing.

In the second example, Benitez et al. [5] used disease-network analysis approach 
as supporting in silico evidence of the role of the adult neuronal ceroid lipofuscinosis 
(NCL) candidate genes identified by exome sequencing. In this case, the authors 
used Endeavour [3] and ToppGene [9] to rank the NCL candidate variant genes iden-
tified by exome sequencing. Known causal genes of other NCLs along with genes 
that are associated with phenotypically close disorders were used as training set. 
Interestingly, the three variants identified by exome sequencing (PDCD6IP, DNAJC5, 
and LIPJ) were among the top five genes in the combined analysis using ToppGene 
and Endeavour, suggesting that they may be functionally or structurally related with 
NCL encoded genes and constituting true causative variants for adult NCL.

4.5  Final Remarks

The selection of “best” computational approach for identifying and ranking disease 
candidate genes is not an easy task and depends on several various factors. Since a 
majority of these approaches are based on guilt-by-association principle, having a 
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“good” or representative training set is critical. The training set may not necessarily 
be always a set of known causal genes but can be an implicated pathway or biologi-
cal process or even a list of symptoms (or phenotype). Additionally, prior knowl-
edge can sometimes be also inferred from related or similar diseases. This similarity 
can be either similar manifestation or symptoms or similar molecular mechanisms 
of related or similar diseases. Second, selecting an appropriate approach is also 
important and frequently depends on the disease type and the molecular mechanism 
that causes it. For example, using protein–protein interaction data for identifying 
novel candidates may be useful when a disease is known to be caused by the disrup-
tion of a larger protein complex. On the other hand, using a protein interaction net-
work may not be totally justified for a disease known to be caused by aberrant 
regulatory mechanisms. In such cases, either using gene regulatory networks and/or 
high-throughput gene expression data may be more apt [50]. Third, since several 
previous studies have shown that the computational approaches for disease gene 
ranking are largely complementary [5, 14, 44, 61], we recommend using a combina-
tion of at least two different approaches (e.g., functional annotation-based and net-
work topology-based approaches).
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