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    Abstract     The WHOLE approach to personalized medicine represents an effort to 
integrate clinical and genomic profi ling jointly into preventative health care and the 
promotion of wellness. Our premise is that genotypes alone are insuffi cient to pre-
dict health outcomes, since they fail to account for individualized responses to the 
environment and life history. Instead, integrative genomic approaches incorporating 
whole genome sequences and transcriptome and epigenome profi les, all combined 
with extensive clinical data obtained at annual health evaluations, have the potential 
to provide more informative wellness classifi cation. As with traditional medicine 
where the physician interprets subclinical signs in light of the person’s health his-
tory, truly personalized medicine will be founded on algorithms that extract relevant 
information from genomes but will also require interpretation in light of the trig-
gers, behaviors, and environment that are unique to each person. This chapter dis-
cusses some of the major obstacles to implementation, from development of risk 
scores through integration of diverse omic data types to presentation of results in a 
format that fosters development of personal health action plans.  

     It is a truth universally acknowledged that personal genome sequences will be a core 
component of individualized health care in the coming decades [ 23 ]. It is rightly 
claimed that genomic medicine should be predictive, personalized, preventive, and 
participatory, meaning that individuals will be encouraged to understand their own 
health risks and take preemptive measures to avert the onset of disease [ 5 ,  25 ]. Yet 
expert geneticists are debating whether genotypic predictors are now or will ever be 
more predictive than family history and clinical indicators [ 17 ,  28 ,  62 ], and there is 
reasonable skepticism surrounding causal inference from rare deleterious variants 
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[ 37 ,  39 ]. So while tremendous progress is being made toward routine incorporation 
of whole genome sequence analysis for rare congenital disorders detected at birth 
[ 4 ,  22 ,  40 ,  56 ], and in cancer diagnosis and prognostics [ 9 ,  10 ,  18 ,  51 ], broader 
application to the complex common diseases that eventually affl ict most adults 
remains to be introduced. The purpose of this chapter is to argue that the gap 
between hype and reality [ 53 ] needs to be addressed on two fronts: recalibration of 
expectation from prediction to classifi cation and incorporation of functional 
genomic data into integrative predictive health. 

 The WHOLE approach encoded in the acronym for Wellness and Health Omics 
Linked to the Environment also places emphasis on the concept of wellness. 
Whereas the focus of most western medicine is on curing illness, universal public 
health strategies should attend more to disease prevention. As one of the leaders of 
this movement, Dr. Ken Brigham at Emory University remarks [ 7 ], the goal of 
health care should be to assure that “as many of us as possible should age with grace 
and die with painless dignity of natural causes.” Our vision at the Center for Health 
Discovery and Well Being in Atlanta [ 6 ,  47 ] is that genomic data will be integrated 
into primary medical care precisely for this purpose, to help people make better 
lifestyle choices that promote the maintenance of good health. 

 There are three major challenges we see that need to be confronted, which are dis-
cussed successively below. The fi rst is the development of genomic classifi ers that 
explain a suffi cient proportion of the variance in disease risk to be informative. In the 
near future, these will be genotype based, incorporating rare and common variants, 
clearly utilizing advanced statistical methodologies but also requiring adjustment for 
population genetic differences [ 15 ] and family structure [ 49 ]. The second is integra-
tion of sequence data with other genomic data types [ 19 ,  25 ,  33 ], such as transcrip-
tomic, epigenomic, and metabolomic profi les, as well as with relevant clinical and 
biochemical measures and family history data. Whether or not the environment can be 
directly incorporated as well is an open question [ 2 ], though it can be argued that func-
tional genomic data captures lifetime environmental exposure indirectly. The third 
challenge is working out how to present all of this data to healthy adults in a manner 
that is understandable and suffi ciently actionable that they will commit to positive 
health behaviors. To this end I conclude with an outline of one strategy that is likely to 
involve the training of a new generation of professional genomic counselors. 

1.1     Genomic Classifi ers 

 The foundation of genomic classifi cation is always likely to be genotypic. Single 
nucleotide polymorphisms identifi ed through genome-wide association studies [ 28 ] 
or classical candidate gene approaches can be combined to more accurately dis-
criminate cases and controls than single locus classifi ers [ 61 ,  63 ]. The simplest 
multivariate scores are allelic sums, where the number of alleles that is associated 
with disease is tallied across all identifi ed loci. For  n  loci, the score theoretically 
ranges from zero to 2 n , and the distribution is normal, but it will be skewed as a 
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function of the allele frequency spectrum. Few individuals will have extreme values, 
but under a liability threshold model, it is assumed that individuals with scores at 
the top of the range are at the most elevated risk of disease. 

 Risk can be modeled as a function of the score as a predictor in the same sense 
as Framingham risk scores predict likelihood of onset of disease in a given time 
period [ 8 ,  59 ], or more simply individuals above and below an appropriate value can 
be classifi ed as high or low risk. For type 2 diabetes, a classifi er based on 18 loci 
established that individuals with the top 1 % of simple allelic sum scores (25 or 
more risk alleles) have quadruple the risk relative to the bottom 2 % (fewer than 12 
risk alleles) and slightly more than double the risk of the general population [ 30 ; see 
also  58 ]. This measure only marginally improves on the Framingham risk score for 
diabetes [ 60 ] and alone does not approach it for predictive power. However, at least 
in our CHDWB study the two measures (allelic sum and FRS) are only mildly cor-
related (unpublished observation), and so it is interesting to ask whether extreme 
genotype scores may suggest an alternative mode of diabetes risk. 

 A slightly more sophisticated approach is to weight the allelic scores by the mag-
nitude of their effect. If one allele has a relative risk of 1.4, then it should have twice 
the impact of one with a relative risk of 1.2. In practice, it is not clear that weighted 
allelic sums improve on simple ones (Fig.  1.1a ), perhaps refl ecting the small amount 
of variance explained by current models built with variants that in general collectively 
explain no more than 20 % of disease risk. There is also likely to be large error in the 
estimation of individual allelic effects both due to sampling biases and incomplete LD 
between tagging SNPs and unknown causal variants. Nevertheless, for type 1 diabe-
tes, a multiplicative allelic model based on 34 loci that collectively explain 60 % of the 
expected genetic contribution has been introduced [ 14 ,  44 ]. A score with a sensitivity 
of 80 % is achieved in 18 % of the population even though only less than half of one 
percent is type 1 diabetic. However, the positive predictive value remains fairly low 
since the false positive rate still exceeds 90 %. It seems that for rare diseases (less than 
1 % of the population), it is unlikely that genotypic measures will ever be predictive 
in a clinical setting. Nevertheless, as a screening tool, there may be enormous fi nan-
cial and medical value in focusing resources on the highest risk portion of the popula-
tion and excluding those least at risk from unnecessary surveillance or treatment.

   If allele sums are used, it also makes sense to attempt to weight scores by allele 
frequencies. Two individuals may have the same score, but if one of them has most 
of the risk attributed to alleles that are not typically the risk allele in the population, 
whereas the other has the common high-risk variants, then it stands to reason that 
the former is likely to be at elevated overall relative risk. This is illustrated in 
Fig.  1.1b . An obvious way to achieve the weighting is to convert relative risks into 
odds ratios, compute the log sum of those odds, and regenerate a probability of 
disease [ 35 ]. Starting with a baseline risk for the relevant gender, ethnicity, and age 
group, each successive allele adds to or subtracts from the log odds, which are a 
function of the allelic effect and frequency. 

 The immediate problem with this approach is that it is susceptible to variation in 
allele frequencies among populations. Two people with identical weighted allelic 
sums may nevertheless have very different relative risks according to whether they 
are, for example, of African, Asian, or European descent (Fig.  1.1c ). Somewhat 
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paradoxically, heterozygosity at a single contributing locus can either increase or 
decrease the odds in different ethnicities, according to whether the risk allele is rare 
or common in either population. Accommodations can be made by deriving separate 
multi-allelic scores for each ethnicity, but an additional complication arises where 
admixture (population mixing) exists, which is the norm in contemporary America 
at least. Perhaps risk scores should be adjusted by the allelic frequencies expected of 
individuals with the observed mixture of ethnicities, but a case for local ancestry 
adjustment with phased genomes can be made [ 54 ,  55 ], and then the issue of the 
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  Fig. 1.1    Comparison of risk scores. The three  x – y  plots compare risk scores generated by three 
different methods, applied to a simulated dataset consisting of 200 disease SNPs measured in 
1,000 people. The alleles range in risk allele frequency from 0.1 to 0.9 with a bias toward lower 
frequencies, and effect sizes were drawn from a normal distribution with mean of zero and stan-
dard deviation of 0.07. ( a ) Comparison of simple allelic sum score and weighted allelic sum score, 
showing a modest effect of weighting the sum by the effect size. Red points highlight individuals 
in the top decile of scores. ( b ) Comparison of simple allelic sum score and probability calculation 
from odds ratios obtained following the method in Morgan, Chen, and Butte [ 35 ] which computes 
the probability of disease from the summation of log odds ratios that are necessarily conditioned 
on the allele frequency. Despite increased variance of the score refl ecting the multiplicative nature 
of the risk assessment (due to summation of log odds), the correlation in ranks is strong. ( c ) 
Comparison of probability scores for the same data as in ( b ) with computations assessed after 
randomizing the frequencies of one-quarter of the alleles, showing how population structure poten-
tially affects disease risk assessment even where allelic effect sizes are assumed to be constant       
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appropriate baseline prevalence arises. It is not yet clear how much of an issue this 
is, and clearly much more research needs to be done, likely also including attention 
to geographically structured cultural and environmental modifi ers of prevalence. 

 Finally, predictors and classifi ers that do not assume additive effects of GWAS hits 
are being introduced. Sparse factorization and machine-learning approaches offer 
very powerful approaches that generate scores, incorporating SNPs that do not have 
strong univariate associations, or whose effects are conditional on other terms in the 
model [ 1 ,  3 ,  24 ,  29 ]. Often scores are developed purely as mathematical abstractions, 
though the interpretation is that they incorporate cryptic epistasis (genotype-by- 
genotype interactions) as well as environment or gender-specifi c interactions [ 48 ]. In 
these cases, there is always the assumption that the conditions and effects are consis-
tent across populations. Again, it is not yet clear how reliable this assumption is and 
hence how transitive machine-learning based scores typically will be.  

1.2     Integrating Functional Genomic and Clinical Data 
to Capture Environmental Contributions 

 Irrespective of the nature of the risk score, the second major challenge is to combine 
these into an overall personal health profi le. A key insight is that the extensive comor-
bidity of diseases establishes the expectation that genotypic risks should covary [ 42 , 
 52 ]. Given risk scores for dozens or even hundreds of diseases, further mathematical 
manipulations may facilitate gains in prediction or classifi cation accuracy that bor-
row power from across diseases. At the current stage of development of personal 
genomic medicine, there is insuffi cient data to discern robust patterns of covariance, 
with the exception of autoimmune diseases that share common polymorphisms [ 32 , 
 46 ]. So long as individual disease risk scores only capture a minor fraction of the 
genotypic risk, they are unlikely to capture to true architecture of comorbidity, but 
presumably this will change as more comprehensive predictors are developed. 

 In the mean time, Ashley et al. [ 2 ] presented a mode of visualization of combined 
risk that suggests how path analyses might integrate univariate risk scores. This is 
reproduced in Fig.  1.2b  focusing just on a half dozen common disease conditions 
mostly related to metabolic syndrome. On the left (Fig.  1.2a ), the so-called risk-o- 
grams [ 2 ,  13 ,  16 ] show how baseline risk for these conditions is modifi ed by a hypo-
thetical individual’s genotypic risk. The point estimates should not be over- interpreted, 
the more important information being contained in the sign and magnitude of the 
genetic contribution. These are modifi ed by comorbidity and redrawn in the form of 
the size of the font on the right, where larger circles represent increasingly elevated 
risk due to the individual’s genotypes and the disease interactions. Interrelated dis-
ease conditions are connected by directed edges where, for example, the likelihood 
of developing cardiovascular disease is increased by the person’s elevated risk of 
obesity but decreased by their low hypertension risk. Unfortunately, we do not yet 
have the tools to estimate the strengths of the connections, and much theoretical 
work on the optimal multivariate integration strategy remains to be performed.
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   Just as importantly, the grand circle surrounding the disease prediction network 
shows that the environment must also be incorporated into computations. In this 
case, the individual’s heavy alcohol usage and lack of exercise also increase their 
risk of metabolic syndrome, as does a history of early life stress coupled with low 
family support and high work pressure. It is apparent that they are already taking 
statins and eating a low-fat diet to offset some of the risk, and regular yoga practice 
may help qualitatively. A traumatic brain injury suffered in a car accident as a child 
may have been a trigger that cannot be factored into population-based measures of 
risk, but it also feeds into likely cognitive decline with age. Again, it is not yet obvi-
ous how these environmental risks should be formulated from a statistical perspec-
tive. Drug usage can conceivably be incorporated as a cofactor in the computation 
of individual risk scores, but it is less obvious how to model diet and mental stress, 
or what the appropriate multivariate framework may be. A further advantage of this 
visualization is that it readily lends itself to dynamic representation of how lifestyle 
modifi cations may reduce the risk of key diseases, as individuals can observe 
 projected changes in risks if they adopt new health behaviors. 

 Another aspect of the environment that we may endeavor to incorporate is cul-
tural and geographic differentiation. Perusal of the Centers for Disease Control 
(CDC) database of morbidity (see, e.g.,   http://www.cdc.gov/cancer/dcpc/data/state.
htm     for cancer data) shows that most diseases have very different prevalence 
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  Fig. 1.2    Risk-o-grams. Following Ashley et al. [ 2 ], a hypothetical risk-o-gram ( a ) shows how 
genotypic risk can be used to generate a point estimate of probability of disease conditioned on the 
population prevalence. The fi gure shows a hypothetical risk assessment on the log scale for 20 
diseases where the black triangles show the prevalence for the individual’s gender, ethnicity, and 
age group, pointing to the right if genotype is predicted to increase risk or left if it decreases risk 
relative to the population average. The horizontal bars show the degree of genotypic effect, where, 
for example, Crohn’s disease risk is highly elevated, but asthma and breast cancer are reduced. ( b ) 
These risks need to be combined, recognizing the comorbidity matrix of disease and the infl uence 
of environmental factors, including dietary and psychological stressors, exercise patterns and drug 
usage, and personal history of illness. The modifi ed risk for each condition conditioned on the 
matrix of infl uences is represented by the size of the font. Although we are a long way from being 
able to generate robust assessments, the fi gure implies that classifi cation into high- and low-risk 
classes should be feasible in the near future       
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according to the location within the United States. An excellent example is the well-
known southern stroke belt [ 11 ] stretching from Louisiana across Alabama to 
Georgia and the Carolinas, but cancer incidence and many other diseases vary from 
region to region. Undoubtedly, rural and urban lifestyles impact disease risk, and we 
have shown that they also impact peripheral blood gene expression profi les [ 26 ,  36 ], 
while emerging data also suggests differences in the microbiome [ 64 ]. Most readily, 
this type of information could be incorporated into risk prediction already at the 
level of baseline prevalence, which might be assessed regionally rather than simply 
by gender and ethnicity. Of course someone who moves from Manhattan, New 
York, to Manhattan, Kansas, does not modify their risk overnight, so yet another 
obstacle to absolute risk prediction lies in assessing the perdurance of lifestyle 
effects and the impact of life stage. Notably, there is accumulating evidence that 
early life stress is among the biggest risk factors for a wide range of diseases, par-
ticularly in lower socioeconomic strata [ 21 ,  34 ,  41 ]. 

 Another unresolved issue is to what extent genotype-by-environment interactions 
need to be taken into account in risk evaluation. There is very little evidence from 
GWAS that G×E is either prevalent or of suffi cient magnitude to be important com-
ponents of population variance [ 57 ], notwithstanding occasional reports, for exam-
ple, of smoking by nicotinic acetylcholine receptor polymorphism interactions with 
lung cancer [ 65 ] and of arsenic by solute carrier interactions for bladder cancer [ 27 ]. 
This is surprising given the prevalence of both genotypic and environmental effects 
on gene expression [ 26 ]. Supposing that low transcript abundance for a particular 
gene in a relevant tissue contributes to disease risk, those homozygous for a low 
expression  cis -regulatory polymorphism, in an environment where expression is sig-
nifi cantly reduced as well, will constitute the most at-risk group. Under a liability 
model, G×E for disease is plausible, even in the absence of interaction effects between 
the genotype and gene expression. However, large eQTL effects do not translate into 
large disease effects measured in case-control GWAS settings. It is possible that 
genotypic risk score-by-environment interactions will be observed, but such studies 
are yet to be performed. Furthermore, perhaps the more important mode of interac-
tion is with individualized effects, such as triggers (accidents, transient stresses) that 
either are not captured in epidemiological surveys or have such high variance that 
interaction effects do not attain signifi cance in population-scale studies. 

 All of these considerations add uncertainty to risk assessment and raise the ques-
tion of whether it might not be better to measure the impact of the environment 
biochemically. The notion is that a person’s individuality results from the longitudi-
nal interaction of their genome with all of the above lifestyle and environmental 
factors. These infl uences mediate disease risk ultimately by modifying metabolism 
and physiology, which in turn are a function of gene expression, which is subject to 
epigenetic modifi cation. Consequently, measurement of the metabolome, transcrip-
tome, and epigenome (e.g., chromatin methylation) should provide parallel omic 
information of high relevance to health care [ 25 ]. This systems biology approach is 
much hyped [ 53 ], but many would argue that it has yet to provide the clinical or 
mechanistic insights that have stemmed from genotype and sequence-based genomic 
medicine. A major limitation of course is that only a few tissues, principally 
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peripheral blood or sometimes adipose biopsy, are readily available for high-
throughput analysis. Blood does refl ect immune and metabolic function and possi-
bly mirrors psychological stressors [ 20 ,  31 ], so there is undoubtedly much to be 
learned from characterization of the sources of variance, and major advances in 
predictive health can be expected from this approach in the next decade. 

 Just to briefl y highlight two strategies from our own work. First, characterization 
of extremes of individual transcript abundance detected by either microarray or 
RNASeq analysis of individuals is in many ways equivalent to rare deleterious cod-
ing variant detection from sequencing. We do not yet know how to read regulatory 
variation directly, but this is unnecessary if it can be directly demonstrated that an 
RNA (or protein) is not expressed in a particular individual. Association of such 
differential expression with phenotypes is subject to the same caveats as rare variant 
association analysis. Second, transcriptional variation is highly structured and char-
acterized by major axes that represent aspects of lymphocyte function such as B and 
T cell signaling, antiviral responsiveness, and infl ammation [ 45 ]. This variability is 
evident in the principal components of peripheral blood gene expression, but also 
appears in modules and axes of variation that are captured by the expression of 
biomarker genes [ 12 ], or blood informative transcripts. We postulate that the level 
of activity of gene expression in these axes will be found to correlate with aspects 
of immune and metabolic health.  

1.3     Presenting and Interpreting Genomic Risk for Wellness 

 The third great challenge is to present genomic indicators of disease risk to healthy 
individuals in a manner that will help them to make sensible health behavior choices. 
This is one of the major goals of the emerging discipline of medical informatics. 
Risk-o-grams (Fig.  1.2a ) are an excellent starting point since they present risk both 
in absolute terms as well as apportioning the genetic contribution relative to the 
population average. However, they have some obvious drawbacks, not least of 
which is the overwhelming number of assessments, many of which are for rare con-
ditions or are clinically not actionable. They also fail to convey a sense of the error 
associated with risk assessments: we are used to the notion that heavy smoking 
more than doubles your lifetime risk of lung cancer, yet know heavy smokers who 
never get lung disease and never-smokers who do. Inevitably inappropriate presen-
tation of genetic risks will engender skepticism toward genomic medicine that may 
undermine the certain benefi ts that stand to be realized. 

 For this reason, in the context of wellness, classifi cation is the more appropriate 
emphasis than prediction. Classifi cation into very-high-, high-, normal-, low-, and 
very-low-risk levels should help individuals to focus on those aspects of their health 
that will benefi t from close attention. It draws attention away from the myriad statis-
tical issues discussed above, instead promoting joint consideration of genetic and 
clinical measures. Furthermore, it is consistent with a simplifi cation of risk presenta-
tion in health domains that recognize patterns of comorbidity and leverage existing 
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modes of health assessment. At the Center for Health Discovery and Well Being, we 
are promoting the idea that comprehensive clinical evaluation annually, starting in 
the fourth decade of life, will foster prevention over reaction as it engages individu-
als in their own health choices [ 43 ]. Figure  1.3  suggests one mode of presentation of 
genomic data that may be incorporated into the preventative medicine framework.

   Each radiating axis on the spider-web plots represents one of ten health domains. 
The bold polygon crosses each axis at a point, representing genomic risk in that 
domain (points further out mean higher risk), while the size of the circle at that point 
represents the observed clinical risk and/or evidence for disease. A quick glance at 
the spider-web plot tells an individual where they have high or low genetic and 
clinical risk. Areas of continuity between genetics and clinical data are highlighted 
as green dots. Discontinuities may be even more interesting. Those indicated in red 
where genetic risk is high but there is no sign of clinical danger (cardiovascular 
disease for A and musculoskeletal decay for B) suggest situations where the indi-
vidual may pay close attention despite current good health. By contrast, situations 
where the genetic risk is low but clinical signs are not hopeful (respiratory disease 
for the smoker A and psychiatric problems for the socially isolated person B) may 
suggest that lifestyle changes are likely to have an impact. The main objective of 
this combined genomic and clinical classifi cation is not to predict disease but to 
help individuals focus attention on areas where they should concentrate their health- 
related behaviors and surveillance. 
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  Fig. 1.3    Spider-web plots representing genomic and clinical risk in ten health domains for two 
hypothetical individuals. Genomic risk scores, generated by combining genotypic and functional 
genomic evidence, place each person in one of fi ve risk classifi cations from very high ( outer band ) 
to very low ( inner band ) in ten health domains ( IMM  immunological,  MET  metabolic,  CVD  cardio-
vascular,  MSK  musculoskeletal,  RSP  respiratory,  REP  reproductive,  COG  cognitive,  PSY  psychiat-
ric,  ONC  oncological,  ORG  organ failure). Clinical risk assessments generated from comprehensive 
medical examinations as well as personal and family history of disease are indicated by the size of 
the dots in each axis. Colors represent discordance between genomic and clinical risk as these situ-
ations are likely to be of greatest interest for individuals, alongside concordance for high risk, as they 
develop health action plans. Details and actual individual examples are described in Patel et al. [ 43 ]       
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 The proposed ten common health domains are as follows:

•    Immunological, including autoimmune (type 1 diabetes, multiple sclerosis, SLE, 
arthritis), infl ammatory (especially bowel diseases), and infectious (viral and 
microbial) disease susceptibility, many of which show comorbidity and all of 
which should be related to gene expression in various blood cells  

•   Metabolic syndrome, generally referring to obesity and either hyperlipidemia or 
high blood glucose, leading to type 2 diabetes, and encompassing impaired insu-
lin production and sensitivity  

•   Cardiovascular, primarily atherosclerosis and hence related to metabolic dys-
function, but also including cardiomyopathy, arrhythmia, and heightened risk of 
myocardial infarction or stroke  

•   Respiratory discomfort, namely, asthma, COPD, and fi brosis, all of which are 
exacerbated by smoking and call for attention to genotype-by-environment 
interaction  

•   Musculoskeletal problems, such as low bone density, chronic back pain, and 
muscle weakness or wasting, which are a primary cause of reduced quality of life 
for large percentage of the elderly  

•   Mental health, manifesting as depression and/or anxiety in an increasingly 
alarming percentage of adults, but also including schizophrenia, autism spec-
trum, and attention defi cit disorders in adolescents and young adults  

•   Cognitive decline, whether due to Alzheimer’s disease, Parkinson’s disease, or 
generalized senile dementia and expected to become the major public health 
burden of the twenty-fi rst century  

•   Cancer risk, assessed from family history and possibly peripheral blood 
biomarkers  

•   Organ malfunction, which is unlikely to have a common genomic foundation but 
collectively loss of eyesight, hearing, and renal and liver function, are a major 
source of morbidity  

•   Reproductive health, namely, the capacity to conceive and maintain pregnancy or 
to produce fertile sperm, but also including endometriosis and other causes of 
uterine discomfort    

 Pharmacological variation, for both toxicity and responsiveness to specifi c drugs, 
is also an important aspect of genomic health, sometimes having a simple genetic 
basis (e.g., warfarin [ 50 ]) but generally as complex as disease risk [ 38 ]. This is not 
by any means an exhaustive list of disease but is meant to capture the major domains 
that concern adults as they enter middle age and begin to make lifestyle modifi ca-
tions in response to self-perception of personal health concerns. Genome- wide 
association studies have been performed for specifi c diseases in each domain, and 
thousands of variants are available for generation of risk scores. Similarly, relevant 
clinical measures can be taken during routine medical checkups or as part of a dedi-
cated wellness program such as the CHDWB and collectively generate risk profi les 
in these ten domains as well. 

 An immediate concern is how to collapse disparate genotypic and clinical risk 
scores into summary measures of risk for the various domains. For clinical mea-
sures, z-scores place each person in relative risk categories with those within one 
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standard deviation of the mean being at intermediate risk, those between 1 and 2 
standard deviations at high (or low) risk, and everyone at the extremes at the very- 
high- or low-risk categories. A similar strategy could be applied to genotypic risk, 
or thresholds can be established based on the risk score distributions. Geometric 
means might be used to combine multiple scores, enhancing the relevance of indi-
vidual high-risk values. My concern here is not with the optimal mode of collapsing 
but rather to suggest how spider-plot or similar visualization might be interpreted. 

 After consulting the spider-web plot with a physician or other health profes-
sional, the next step would be to examine the contributing risk factors in more detail. 
Consider the three examples. (1) In the cardiovascular domain, individual B in 
Fig.  1.3  has intermediate overall risk, but close examination shows that she is dis-
cordant for high blood pressure and lower than average genotypic risk of hyperten-
sion. This may suggest that some aspect of lifestyle, either high levels of job stress 
or a high salt diet, is responsible, and the low genetic risk might in some cases 
provide impetus for the individual to address the root cause. (2) Person A is concor-
dant for obesity and high genetic risk of obesity, both of which produce high scores 
in the metabolic domain. Rather than accepting this as a fait accompli, with appro-
priate counseling she may learn that much of the genetic risk is due to neurological 
factors rather than any defi cit in metabolic enzyme function, and this may help him 
to seek guidance in controlling dietary compulsions. (3) Another individual may be 
discordant in the organ failure domain for high genetic risk of age-related macular 
degeneration, but as a 70-year-old with above average eyesight has paid no attention 
to the possibility that he may soon suffer from loss of vision. Knowing the genetic 
risk, he will now have regular eye exams and follow emerging guidelines directed at 
preventing onset of the disease. 

 As discussed earlier, I envisage that genomic risk assessment will eventually 
incorporate transcriptional, epigenomic, and metabolic measures. The costs involved 
will be an obstacle for the foreseeable future, and it is not clear who will pay. It is 
nevertheless not diffi cult to see how a few thousand dollars spent on genomic analy-
ses in middle age may save tens or hundreds of thousands of dollars in acute medi-
cal care for people approaching retirement age. Employers stand to benefi t from 
reduced absenteeism and elevated productivity, and economic modeling suggests 
that the savings can be substantial. Scientifi c demonstration of the clinical effi cacy 
of joint genomic and clinical profi ling will likely take thousands of case studies over 
several years, a daunting challenge, but given the stakes, one that must be taken on.  

1.4     Conclusion 

 Assuming success of the WHOLE paradigm, there will also be a need for training 
of a new class of health-care professional. A few genetic counseling programs are 
beginning to provide training in the interpretation of genome sequences. At the 
CHDWB, we have developed a Certifi cate program for Health Partners who consult 
with participants on the interpretation of their clinical profi les and help them to 
formulate personal health action plans. The combination of advanced genetic 
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counseling with a health partner is expected to yield genomic counselors, masters 
level professionals who will work alongside physicians, dieticians, personal train-
ers, and clinical geneticists to provide people who care to take advantage of the 
wealth of information implicit in genomic medicine, with a path to health mainte-
nance and extended well-being.     
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