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    Abstract     Simulating urban land-use changes involves both high modeling and 
computational complexities. This paper focuses on a typical spatio-temporal model-
ing method that has been commonly used in urban land-use change studies—
Cellular Automata (CA). After reviewing the recent development of utilizing 
various parallel computing technologies (e.g., computer clusters and Graphics 
Processing Unit [GPU]) in CA-based urban models, this paper presents a pilot 
study, in which a classical CA model, the Game of Life, was implemented as a par-
allel program over the GPU/CPU heterogeneous cluster architecture, and 300+ 
speed-up was achieved using 20 GPUs. In conclusion, emerging high-performance 
computing technologies, such as GPU/CPU heterogeneous cluster architecture, pro-
vide promising potentials to overcome the computing obstacle of urban land-use 
change models, and enable researchers to examine, validate and advance urban 
land-use change theories and derive sound urban planning strategies. To effi ciently 
utilize the computing power of the GPU/CPU clusters, hybrid parallelism must be 
implemented to coordinate the computing among GPU/CPU nodes, as well as 
among the threads on each GPU. However, implementing such hybrid parallelism is 
challenging for its high development complexity.  

  Keywords     Parallel computing   •   GPU   •   Heterogeneous cluster architecture   •   Urban   
•   Land-use change     
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17.1      Introduction 

 Simulating urban land-use changes (LUC) has been a challenging task because of the 
spatiotemporal complexities of interrelationships and interactions between the urban 
land system and related natural/socioeconomic systems. The diffi culty of modeling 
urban LUC can be aggravated by the massive computational intensity caused by 
complicated algorithms and large datasets that are often required in the simulation. 
Some large scale simulations have been infeasible because they are computationally 
intractable using conventional desktop computers. 

 In order to reduce both the modeling and computational complexities in spatio- 
temporal simulations, researchers often had to make subjective and/or simplifying 
assumptions. However, such simplifying approaches had raised some serious scien-
tifi c questions in regard to the validity and soundness of the fi ndings resulted from 
these models, because whether these assumptions could generate reliable calibra-
tion and simulation results and lead to unbiased and accurate scientifi c conclusions 
has not been suffi ciently studied yet. To investigate the potential problems and 
advance our understanding and theories of urban land dynamics, we must devise 
approaches to reduce, or even eliminate, these assumptions. 

 Recent advancements in high-performance computing (HPC) infrastructure pro-
vide potential solutions to the above problems. Emerging advanced computing tech-
nologies, such as Graphics Processing Units (GPUs) and heterogeneous cluster 
computing systems that combine multiple GPU accelerators and Central Processing 
Units (CPUs), have been signifi cantly improving the performance of scientifi c com-
putation in a variety of domains. Therefore, it is time for geographers and geospatial 
scientists to examine, validate and advance urban LUC theories as the technological 
solutions and computing infrastructure are increasingly mature and effi cient for 
such kind of investigations.  

17.2     Spatiotemporal Modeling of Urban Land-Use Changes 

 Many approaches exist to model urban land-use changes and associated natural and 
socio-economic dynamics. A large proportion of them are based on variants of the 
Cellular Automata (CA) model, a discrete computational model used to simulate 
dynamic spatial processes through a set of transition rules. A classical CA model 
has a set of identical elements, called cells. Each cell is located in a regular, discrete 
space, called a cellspace. Each cell is associated with a state within a fi nite set. The 
model evolves in discrete time steps, changing the states of all its cells according to 
transition rules, homogeneously and synchronously applied at every step. The new 
state of a certain cell depends on the previous states of the cells within its neighbor-
hood. CA models have been widely used in geographic research to simulate com-
plex spatiotemporal phenomena, including land-use and land-cover change (Batty 
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et al.  1999 ; Couclelis  1997 ; Wu and Webster  1998 ; Li and Yeh  2000 ; Liu and Phinn 
 2003 ), wildfi re propagation (Clarke et al.  1995 ), and freeway traffi c (Nagel and 
Schreckenberg  1992 ; Benjamin et al.  1996 ). 

 A typical example is the SLEUTH model, one of the most widely used urban 
LUC models (Clarke et al.  1997 ; Clarke and Gaydos  1998 ; Silva and Clarke  2002 ). 
The core of SLEUTH is an urban growth model, which uses a modifi ed CA to simu-
late the spread of urbanization across a landscape. The behavior of the simulation is 
determined by fi ve parameters (also termed coeffi cients), each ranging from 0 to 100. 
Four growth rules are applied in sequence on the space during each growth cycle, 
which represents a year of urban growth. 1  

 Calibration is needed to determine the appropriate parameter values so that 
SLEUTH can produce realistic simulation results. The basic calibration procedure of 
SLEUTH uses the brute-force method, which statistically compares multiple test 
results produced using combinations of parameter values with the real historical data-
set, in order to determine the best-fi t parameter combination(s). In addition, to simulate 
the random processes during urban growth, the Monte Carlo method is applied multi-
ple times, and the outcomes are stored as the cumulative probabilities of change over 
multiple runs. In practice, 10–100 Monte Carlo iterations for each parameter combina-
tion are suggested, although fewer may be better than more (Goldstein et al.  2005 ). 

 All of the above together make the calibration highly computationally intensive. A 
12-year (1986–1998) simulation over a small-sized dataset (2,074 × 486) of Santa 
Barbara County in California took only 1 seconds to complete on a desktop PC. 
However, a comprehensive calibration over the same dataset and time period to exam-
ine all 101 5  parameter combinations with only 1 Monte Carlo iteration was estimated 
to take over 300 years to complete. This places the SLEUTH model at the edge of 
computational tractability. The current version of SLEUTH model uses a simplifying 
assumption to ignore those “unimportant” parameter values during seeking the best-fi t 
combination(s), which is that the parameters affect the simulation results in a linear 
manner. However, due to the random processes involved in the transition rules, the 
relationships between the parameters/factors and LUC simulations are very likely 
non-linear. Thus the calibration results based on such simplifying assumptions are 
hardly fact-proven (due to the incomprehensive calibration), less reliable, and may 
lead to inaccurate scientifi c conclusions and improper land management decisions 
(Dietzel and Clarke  2007 ). 

 Alternatively, researchers have used Computational Intelligence (CI) methods to 
either seek the best-fi t parameter combination(s) without evaluating all the combi-
nations, or construct transition rules for the model (see for example Li and Yeh 
 2002 ; Wu and Silva  2010 ; Liu et al.  2010 ; Li et al.  2013 ). However, the computa-
tional burden of CA itself is not diminished by CI methods, and the computational 
intensity may still exceed the capacity of a desktop computer when using complex 
transition rules and massive datasets.  

1   For details, see  http://www.ncgia.ucsb.edu/projects/gig/About/gwRules.htm . 
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17.3     Exploratory Studies on High-Performance Spatial CA 

17.3.1     Parallel Spatial CA 

 The classical CA model has been recognized to be a natural parallel computing 
system as the transition rules are applied to the cells homogeneously and synchro-
nously in parallel (Bandini et al.  2001 ). The cellspace can be easily decomposed 
into a set of small sub-cellspaces and assigned onto multiple computing units 
(e.g., CPUs and CPU cores) to be processed simultaneously. Several general par-
allel CA-based simulation systems have been developed. Examples include the 
Cellular Automata environment for systEms ModeLing (CAMEL) and CellulAR 
Programming EnvironmenT (CARPET) language (Spezzano and Talia  1999 ), and 
Cell Driver, a CA modeling module of NEMO (Hecker et al.  1999 ). Both CAMEL 
and Cell Driver were built based on the Message Passing Interface (MPI), a 
generic parallel programming library that is available on most parallel computing 
systems. 

 Guan and Clarke ( 2010 ) developed an open-source general-purpose parallel 
Raster Processing programming Library (pRPL), for non-specialist scientists to 
easily parallelize their own raster processing algorithms. pRPL supports multi-
layer algorithms that are commonly used in geospatial applications, including spa-
tial CA. pRPL provides multiple data decomposition methods, including a 
spatially- adaptive quad-tree-based (QTB) decomposition method for situations 
when the computational intensity is extremely heterogeneous over space. pRPL 
also automatically takes care of some complicated processes that are required in 
parallel computing, e.g., communication, synchronization and load-balancing, thus 
provides transparent parallelism for users. A parallel urban LUC model, pSLEUTH, 
was developed based on the SLEUTH model using pRPL. Experiments with real- 
world datasets showed that pSLEUTH greatly reduced the computing time for the 
calibration process, achieving a speed-up of 24 using 32 CPU cores on a computer 
cluster composed of 128 dual CPU 3.06 GHz Xeon nodes with 2 GB RAM each. 

 However, all above parallel CA systems are based on conventional CPU-only 
parallel computing architectures such as multi-core CPUs and computer clusters. 
Large-scale parallel computing facilities are extremely expensive and require tre-
mendous amount of fi nancial and labor investments, and very limited to public 
access. Also, the waiting time in a job queue on a computer cluster may exceed the 
actual computing time, which makes the performance gain from parallel computing 
less meaningful. An emerging accelerator technology, GPU with the Compute 
Unifi ed Device Architecture (CUDA), is able to accelerate the computation pro-
cesses by deploying hundreds of computing cores on the GPU with very low costs. 
A PC equipped with a GPU is considerably cheaper than a computer cluster that has 
the same number of cores. GPUs are very suitable for parallel matrix manipulation 
and processing, which is similar to CA computing. Some efforts have been made to 
implement CA models on GPUs, which generated high speed-ups (Thor  2008 ; Li 
et al.  2012 ). Moreover, the heterogeneous computer cluster architecture can 
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generate massive computing power by coordinating a set of computational nodes 
that consists of one or more CPU(s) and GPU(s). The heterogeneous cluster archi-
tecture has been adopted to build high-end computing platforms to handle super 
large-scale scientifi c and engineering computation.  

17.3.2     Accelerating CA on GPUs and Heterogeneous 
Computer Systems 

 In order to explore the possibility and validity of utilizing the emerging HPC tech-
nologies in urban LUC studies, we have successfully prototyped parallel CA mod-
els on both GPU-equipped PCs and GPU/CPU heterogeneous clusters. The Game 
of Life (GOL) is a well-known classical CA model. Based on the transition rule, a 
cell can live or die depending on the condition of its 3 × 3 neighborhood. As a result, 
the living status of the cells can represent various spatial patterns throughout the 
course of iterations. The pseudo code of the GOL’s transition rule is as follows: 

 FUNCTION Transition ( cell, time_t ) 
   n = number of alive neighbors of cell at time_t  
  IF  cell is alive at time_t  
   IF  n ≥ 4  
    THEN  cell dies of overcrowding at time_t+1  
   IF  n ≤ 1  
    THEN  cell dies of loneliness at time_t+1  
   IF  n = 2  OR  n = 3  
    THEN  cell survives at time_t+1  
   ELSE  (i.e., cell is dead at time_t)  
   IF  n = 3  
    THEN  cell becomes alive (i.e., born) at time_t+1  

 In Table  17.1 , the leftmost fi gure displays the initial status for a 10,000 by 10,000 
matrix in which half of the matrix would contain living cells. After 100 iterations, 
many cells may die and the right-most fi gure displays the result of the simulation.

   Here we introduce the steps taken to create effi cient parallel implementations of 
GOL. In order to ensure that all solutions generate the same result, we create a 
matrix fi le that contains the initial living status of randomly generated cells. All ver-
sions of the program share a similar initialization phase where this matrix fi le is read 
into the appropriate array or arrays in the case of the MPI/CUDA program. Each of 
the programs was benchmarked against the same set of matrices for 100 iterations. 
We tested all solutions using the matrix that has a dimension of 10,000 × 10,000, 
which was initially seeded with half of them as living and half dead. 

 The GOL was fi rst implemented in a serial C program. A 100-iteration simula-
tion over a 10,000 × 10,000 cellspace was accomplished in about 100 minutes on a 
desktop PC with a 1.60 GHz dual-core CPU. Within the serial C program, for each 
iteration, each cell will change its living status by examining the living status of its 
neighbors. Finally the number of living cells is accumulated. 
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   Table 17.1     t  = 0 [left] through  t  = 99 [right]   

                        

 The GOL was then parallelized into a CUDA program, called GPU-GOL. The 
GOL’s transition rule was implemented as a kernel function. During the simulation, 
a large number of computational threads are simultaneously invoked on the GPU, 
each executing an instance of the kernel and applying the transition rule on a small 
proportion of the whole cellspace. 

 Since counting the living cells is a sequential process, it was fi rst excluded from 
the GPU kernel program that implements the transition rules of GOL, while count-
ing the neighbors is a device function. After the result is copied back from device to 
host, the total number of living cells will be counted in sequential process. The 
GPU-GOL experiments were conducted on a desktop PC with a NVIDIA GeForce 
GTX 260 GPU, which has 27 streaming multiprocessors (SM), and is able to run up 
to 27,648 threads in parallel. The simulation at a size of 10,000 × 10,000 for 100 
iterations took about 6 minutes to complete, achieving a speed-up of 16.7. 

 Further improvement was taken to implement the process of counting the num-
ber of living cells through atomicAdd function within the kernel program. GOL 
simulation at a size of 10,000 × 10,000 for 100 iterations can be completed in about 
22 seconds on a single Tesla C2075 Fermi GPU or a single Tesla K20 Kepler GPU, 
achieving a speedup of 13 in comparison to GTX 260. When shared memory was 
utilized, better performance could be achieved even over a single GPU, though fur-
ther examination needs to be conducted to validate the solution over different 
platforms. 

 Since a single GPU may not effi ciently handle the scalability of computation due 
to the memory limit on individual GPU, we would like to explore the potential of 
utilizing multiple GPUs to resolve this problem. Keeneland’s hybrid architecture 
exemplifi es its superiority in manipulating the large scale cellular automation com-
putation like GOL. Keeneland is composed of an HP SL-390 (Ariston) cluster with 
Intel Westmere hex-core CPUs, NVIDIA 6GB Fermi GPUs, and a Qlogic QDR 
Infi niBand interconnect. The system has 120 nodes, each with two CPUs and three 
GPUs, while all CPUs and GPUs are bridged together through one I/O hub from 
which the CPUs can read/write data. 

 To effi ciently utilize and manage the GPU resources in Keeneland, we imple-
mented a combination of MPI and CUDA programs to parallelize the GOL compu-
tation on 20 GPUs. Although the CUDA kernel for this implementation is nearly 
identical to what is implemented in the single-GPU program, data communication 
become a serious problem due to the strong dependency between the data segments 
distributed onto different GPU processors. 
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 A row-based data partitioning approach was applied to distribute data segments 
onto multiple GPUs. We tried to decompose the entire matrix into multiple sections 
based on the number of GPUs we utilized. In this case, each MPI process reads in a 
unique portion of the matrix fi le based on process rank. When the original matrix is 
split in this way and updated separately on different GPUs, each GPU needs to 
obtain extra rows of information hosted by the other processors because the state of 
the cells along the matrix boundaries are dependent upon cells which now are in 
other sub-matrices handled by different MPI processes. 

 In order to exchange these boundary rows between the neighboring processors, 
we applied the SEND and RECV functions in MPI for sending and receiving the 
boundary rows (i.e. head and tail for each block of the grid) between neighboring 
processors ranked in MPI, and then copying these rows to the GPU memory. 
Script 17.1 describes how to handle the data transfer between the host CPU and 
the GPU, and coordinate the computational threads on the GPU. For each itera-
tion, SEND and RECV functions are fi rst implemented to construct the local data 
segments to be calculated on each node. The GPU on each node executes the 
kernel function (i.e., the transition rule) covering one portion of the matrix. 

 for(k = 0; k <ITERATION ; k++) { 
 if (myrank % 2 == 1) { 
  // send tail and receive head 
  MPI_Send(...); 
  MPI_Recv(...); 
  // send head and receive tail  
  MPI_Send(...); 
  MPI_Recv(...); 
 } 
 else { 
  // receive head and send tail 
  MPI_Recv(...); 
  MPI_Send(...); 
  // receive tail and send head 
  MPI_Recv(...); 
  MPI_Send(...); 
 } 

 Script 17.1 Implementing SEND/RECV for data exchange in MPI program 

 When 20 GPUs on Keeneland were used, a 100-iteration GOL with a size of 
10,000 × 10,000 was completed in 20 seconds. The results were the same as what 
was generated by the serial C program and GPU-GOL. In short, the computing time 
was signifi cantly reduced from 100 minutes to 20 seconds, achieving a speed-up of 
300. When the atomicAdd approach was applied, GOL over the same size of matrix 
can be accomplished in about 2 seconds when 20 GPUs were used. 

 The parallel solution over heterogeneous computer architecture and systems 
have shown promising prospect to break through the computational bottleneck of 
CA models that include complex transition rules and use massive datasets. By 
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simply changing the CA’s transition rules to simulate more complex spatiotemporal 
processes, we may use such an approach to conduct some large-scale urban LUC 
simulations within a practical length of time.   

17.4     Conclusion 

 Modeling the spatiotemporal dynamics of land use and land cover in the urbaniza-
tion process often involves complex algorithms and large volume of datasets, which 
greatly increases the computational intensity, hence sometimes requires unfeasibly 
long computing time. Simplifying assumptions have been used in previous studies 
to reduce the computational intensity, but they may generate unreliable results and 
lead to inaccurate scientifi c conclusions and improper land management decisions. 
Emerging high-performance computing technologies, such as GPU and GPU/CPU 
heterogeneous cluster architecture, provide promising potentials to overcome the 
computing burden of urban LUC models, thus to enable researchers to examine, 
validate and advance urban LUC theories and derive sound urban planning strate-
gies. To effi ciently utilize the computing power of the GPU/CPU heterogeneous 
clusters, hybrid parallelism must be implemented to coordinate the parallel comput-
ing among GPU/CPU nodes, as well as among the threads on each GPU. However, 
implementing such hybrid parallelism is challenging for its high development com-
plexity in integrating MPI and CUDA. 

 In this pilot study, we demonstrated the potential for accelerating CA  applications 
using parallel implementation on hybrid computer clusters. While parallel imple-
mentation of CA through MPI + GPU has achieved signifi cant performance improve-
ment, the emerging new architecture of Intel’s Many-Integrated Core (MIC) could 
be another potential accelerator technology for urban LUC simulations. It was 
found from our other initiatives that the simple MPI-direct-host programming 
model on Intel MIC cluster can achieve a performance equivalent to the MPI + GPU 
model on GPU clusters when the same number of processors are allocated for 
Kriging interpolation calculation and for unsupervised image classifi cation. 

 Exploring effi cient cross-node communication mechanism could be a key com-
ponent in the future work so as to achieve a strong scalability for CA-based applica-
tions running on multiple parallel nodes. For example, the latest Tesla K20 Kepler 
GPU is able to outperform the Fermi GPU for most applications without special 
performance tuning. However, K20’s direct cross-GPU communication mechanism 
needs to be explored and deployed to enhance CA-based modeling that has inten-
sive data communication between the nodes. Meanwhile solutions based on Intel 
MIC architecture is worthy to try since each MIC core has direct support of MPI, 
making it straightforward to port MPI + CPU code to MIC cluster to achieve signifi -
cant performance improvement. Exploring a combination of MPI and OpenMP 
solutions will help handle inter-node and intra-node communications to effi ciently 
utilize the heterogeneous computer architecture and systems.     
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