
227X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_17, © Springer Science+Business Media New York 2013

 Abstract Simulating urban land-use changes involves both high modeling and
computational complexities. This paper focuses on a typical spatio-temporal model-
ing method that has been commonly used in urban land-use change studies—
Cellular Automata (CA). After reviewing the recent development of utilizing
various parallel computing technologies (e.g., computer clusters and Graphics
Processing Unit [GPU]) in CA-based urban models, this paper presents a pilot
study, in which a classical CA model, the Game of Life, was implemented as a par-
allel program over the GPU/CPU heterogeneous cluster architecture, and 300+
speed-up was achieved using 20 GPUs. In conclusion, emerging high-performance
computing technologies, such as GPU/CPU heterogeneous cluster architecture, pro-
vide promising potentials to overcome the computing obstacle of urban land-use
change models, and enable researchers to examine, validate and advance urban
land-use change theories and derive sound urban planning strategies. To effi ciently
utilize the computing power of the GPU/CPU clusters, hybrid parallelism must be
implemented to coordinate the computing among GPU/CPU nodes, as well as
among the threads on each GPU. However, implementing such hybrid parallelism is
challenging for its high development complexity.

 Keywords Parallel computing • GPU • Heterogeneous cluster architecture • Urban
• Land-use change

 Chapter 17
 Opportunities and Challenges for Urban
Land-Use Change Modeling Using
High- Performance Computing

 Qingfeng Guan and Xuan Shi

 Q. Guan (*)
 Faculty of Information Engineering , China University of Geosciences (Wuhan) ,
 Wuhan , Hubei 430074 , China
 e-mail: guanqf@cug.edu.cn

 X. Shi
 Department of Geosciences , University of Arkansas , Fayetteville , AR 72701 , USA
 e-mail: xuanshi@uark.edu

228

17.1 Introduction

 Simulating urban land-use changes (LUC) has been a challenging task because of the
spatiotemporal complexities of interrelationships and interactions between the urban
land system and related natural/socioeconomic systems. The diffi culty of modeling
urban LUC can be aggravated by the massive computational intensity caused by
complicated algorithms and large datasets that are often required in the simulation.
Some large scale simulations have been infeasible because they are computationally
intractable using conventional desktop computers.

 In order to reduce both the modeling and computational complexities in spatio-
temporal simulations, researchers often had to make subjective and/or simplifying
assumptions. However, such simplifying approaches had raised some serious scien-
tifi c questions in regard to the validity and soundness of the fi ndings resulted from
these models, because whether these assumptions could generate reliable calibra-
tion and simulation results and lead to unbiased and accurate scientifi c conclusions
has not been suffi ciently studied yet. To investigate the potential problems and
advance our understanding and theories of urban land dynamics, we must devise
approaches to reduce, or even eliminate, these assumptions.

 Recent advancements in high-performance computing (HPC) infrastructure pro-
vide potential solutions to the above problems. Emerging advanced computing tech-
nologies, such as Graphics Processing Units (GPUs) and heterogeneous cluster
computing systems that combine multiple GPU accelerators and Central Processing
Units (CPUs), have been signifi cantly improving the performance of scientifi c com-
putation in a variety of domains. Therefore, it is time for geographers and geospatial
scientists to examine, validate and advance urban LUC theories as the technological
solutions and computing infrastructure are increasingly mature and effi cient for
such kind of investigations.

17.2 Spatiotemporal Modeling of Urban Land-Use Changes

 Many approaches exist to model urban land-use changes and associated natural and
socio-economic dynamics. A large proportion of them are based on variants of the
Cellular Automata (CA) model, a discrete computational model used to simulate
dynamic spatial processes through a set of transition rules. A classical CA model
has a set of identical elements, called cells. Each cell is located in a regular, discrete
space, called a cellspace. Each cell is associated with a state within a fi nite set. The
model evolves in discrete time steps, changing the states of all its cells according to
transition rules, homogeneously and synchronously applied at every step. The new
state of a certain cell depends on the previous states of the cells within its neighbor-
hood. CA models have been widely used in geographic research to simulate com-
plex spatiotemporal phenomena, including land-use and land-cover change (Batty

Q. Guan and X. Shi

229

et al. 1999 ; Couclelis 1997 ; Wu and Webster 1998 ; Li and Yeh 2000 ; Liu and Phinn
 2003), wildfi re propagation (Clarke et al. 1995), and freeway traffi c (Nagel and
Schreckenberg 1992 ; Benjamin et al. 1996).

 A typical example is the SLEUTH model, one of the most widely used urban
LUC models (Clarke et al. 1997 ; Clarke and Gaydos 1998 ; Silva and Clarke 2002).
The core of SLEUTH is an urban growth model, which uses a modifi ed CA to simu-
late the spread of urbanization across a landscape. The behavior of the simulation is
determined by fi ve parameters (also termed coeffi cients), each ranging from 0 to 100.
Four growth rules are applied in sequence on the space during each growth cycle,
which represents a year of urban growth. 1

 Calibration is needed to determine the appropriate parameter values so that
SLEUTH can produce realistic simulation results. The basic calibration procedure of
SLEUTH uses the brute-force method, which statistically compares multiple test
results produced using combinations of parameter values with the real historical data-
set, in order to determine the best-fi t parameter combination(s). In addition, to simulate
the random processes during urban growth, the Monte Carlo method is applied multi-
ple times, and the outcomes are stored as the cumulative probabilities of change over
multiple runs. In practice, 10–100 Monte Carlo iterations for each parameter combina-
tion are suggested, although fewer may be better than more (Goldstein et al. 2005).

 All of the above together make the calibration highly computationally intensive. A
12-year (1986–1998) simulation over a small-sized dataset (2,074 × 486) of Santa
Barbara County in California took only 1 seconds to complete on a desktop PC.
However, a comprehensive calibration over the same dataset and time period to exam-
ine all 101 5 parameter combinations with only 1 Monte Carlo iteration was estimated
to take over 300 years to complete. This places the SLEUTH model at the edge of
computational tractability. The current version of SLEUTH model uses a simplifying
assumption to ignore those “unimportant” parameter values during seeking the best-fi t
combination(s), which is that the parameters affect the simulation results in a linear
manner. However, due to the random processes involved in the transition rules, the
relationships between the parameters/factors and LUC simulations are very likely
non-linear. Thus the calibration results based on such simplifying assumptions are
hardly fact-proven (due to the incomprehensive calibration), less reliable, and may
lead to inaccurate scientifi c conclusions and improper land management decisions
(Dietzel and Clarke 2007).

 Alternatively, researchers have used Computational Intelligence (CI) methods to
either seek the best-fi t parameter combination(s) without evaluating all the combi-
nations, or construct transition rules for the model (see for example Li and Yeh
 2002 ; Wu and Silva 2010 ; Liu et al. 2010 ; Li et al. 2013). However, the computa-
tional burden of CA itself is not diminished by CI methods, and the computational
intensity may still exceed the capacity of a desktop computer when using complex
transition rules and massive datasets.

1 For details, see http://www.ncgia.ucsb.edu/projects/gig/About/gwRules.htm .

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

http://www.ncgia.ucsb.edu/projects/gig/About/gwRules.htm

230

17.3 Exploratory Studies on High-Performance Spatial CA

17.3.1 Parallel Spatial CA

 The classical CA model has been recognized to be a natural parallel computing
system as the transition rules are applied to the cells homogeneously and synchro-
nously in parallel (Bandini et al. 2001). The cellspace can be easily decomposed
into a set of small sub-cellspaces and assigned onto multiple computing units
(e.g., CPUs and CPU cores) to be processed simultaneously. Several general par-
allel CA-based simulation systems have been developed. Examples include the
Cellular Automata environment for systEms ModeLing (CAMEL) and CellulAR
Programming EnvironmenT (CARPET) language (Spezzano and Talia 1999), and
Cell Driver, a CA modeling module of NEMO (Hecker et al. 1999). Both CAMEL
and Cell Driver were built based on the Message Passing Interface (MPI), a
generic parallel programming library that is available on most parallel computing
systems.

 Guan and Clarke (2010) developed an open-source general-purpose parallel
Raster Processing programming Library (pRPL), for non-specialist scientists to
easily parallelize their own raster processing algorithms. pRPL supports multi-
layer algorithms that are commonly used in geospatial applications, including spa-
tial CA. pRPL provides multiple data decomposition methods, including a
spatially- adaptive quad-tree-based (QTB) decomposition method for situations
when the computational intensity is extremely heterogeneous over space. pRPL
also automatically takes care of some complicated processes that are required in
parallel computing, e.g., communication, synchronization and load-balancing, thus
provides transparent parallelism for users. A parallel urban LUC model, pSLEUTH,
was developed based on the SLEUTH model using pRPL. Experiments with real-
world datasets showed that pSLEUTH greatly reduced the computing time for the
calibration process, achieving a speed-up of 24 using 32 CPU cores on a computer
cluster composed of 128 dual CPU 3.06 GHz Xeon nodes with 2 GB RAM each.

 However, all above parallel CA systems are based on conventional CPU-only
parallel computing architectures such as multi-core CPUs and computer clusters.
Large-scale parallel computing facilities are extremely expensive and require tre-
mendous amount of fi nancial and labor investments, and very limited to public
access. Also, the waiting time in a job queue on a computer cluster may exceed the
actual computing time, which makes the performance gain from parallel computing
less meaningful. An emerging accelerator technology, GPU with the Compute
Unifi ed Device Architecture (CUDA), is able to accelerate the computation pro-
cesses by deploying hundreds of computing cores on the GPU with very low costs.
A PC equipped with a GPU is considerably cheaper than a computer cluster that has
the same number of cores. GPUs are very suitable for parallel matrix manipulation
and processing, which is similar to CA computing. Some efforts have been made to
implement CA models on GPUs, which generated high speed-ups (Thor 2008 ; Li
et al. 2012). Moreover, the heterogeneous computer cluster architecture can

Q. Guan and X. Shi

231

generate massive computing power by coordinating a set of computational nodes
that consists of one or more CPU(s) and GPU(s). The heterogeneous cluster archi-
tecture has been adopted to build high-end computing platforms to handle super
large-scale scientifi c and engineering computation.

17.3.2 Accelerating CA on GPUs and Heterogeneous
Computer Systems

 In order to explore the possibility and validity of utilizing the emerging HPC tech-
nologies in urban LUC studies, we have successfully prototyped parallel CA mod-
els on both GPU-equipped PCs and GPU/CPU heterogeneous clusters. The Game
of Life (GOL) is a well-known classical CA model. Based on the transition rule, a
cell can live or die depending on the condition of its 3 × 3 neighborhood. As a result,
the living status of the cells can represent various spatial patterns throughout the
course of iterations. The pseudo code of the GOL’s transition rule is as follows:

 FUNCTION Transition (cell, time_t)
 n = number of alive neighbors of cell at time_t
 IF cell is alive at time_t
 IF n ≥ 4
 THEN cell dies of overcrowding at time_t+1
 IF n ≤ 1
 THEN cell dies of loneliness at time_t+1
 IF n = 2 OR n = 3
 THEN cell survives at time_t+1
 ELSE (i.e., cell is dead at time_t)
 IF n = 3
 THEN cell becomes alive (i.e., born) at time_t+1

 In Table 17.1 , the leftmost fi gure displays the initial status for a 10,000 by 10,000
matrix in which half of the matrix would contain living cells. After 100 iterations,
many cells may die and the right-most fi gure displays the result of the simulation.

 Here we introduce the steps taken to create effi cient parallel implementations of
GOL. In order to ensure that all solutions generate the same result, we create a
matrix fi le that contains the initial living status of randomly generated cells. All ver-
sions of the program share a similar initialization phase where this matrix fi le is read
into the appropriate array or arrays in the case of the MPI/CUDA program. Each of
the programs was benchmarked against the same set of matrices for 100 iterations.
We tested all solutions using the matrix that has a dimension of 10,000 × 10,000,
which was initially seeded with half of them as living and half dead.

 The GOL was fi rst implemented in a serial C program. A 100-iteration simula-
tion over a 10,000 × 10,000 cellspace was accomplished in about 100 minutes on a
desktop PC with a 1.60 GHz dual-core CPU. Within the serial C program, for each
iteration, each cell will change its living status by examining the living status of its
neighbors. Finally the number of living cells is accumulated.

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

232

 Table 17.1 t = 0 [left] through t = 99 [right]

 The GOL was then parallelized into a CUDA program, called GPU-GOL. The
GOL’s transition rule was implemented as a kernel function. During the simulation,
a large number of computational threads are simultaneously invoked on the GPU,
each executing an instance of the kernel and applying the transition rule on a small
proportion of the whole cellspace.

 Since counting the living cells is a sequential process, it was fi rst excluded from
the GPU kernel program that implements the transition rules of GOL, while count-
ing the neighbors is a device function. After the result is copied back from device to
host, the total number of living cells will be counted in sequential process. The
GPU-GOL experiments were conducted on a desktop PC with a NVIDIA GeForce
GTX 260 GPU, which has 27 streaming multiprocessors (SM), and is able to run up
to 27,648 threads in parallel. The simulation at a size of 10,000 × 10,000 for 100
iterations took about 6 minutes to complete, achieving a speed-up of 16.7.

 Further improvement was taken to implement the process of counting the num-
ber of living cells through atomicAdd function within the kernel program. GOL
simulation at a size of 10,000 × 10,000 for 100 iterations can be completed in about
22 seconds on a single Tesla C2075 Fermi GPU or a single Tesla K20 Kepler GPU,
achieving a speedup of 13 in comparison to GTX 260. When shared memory was
utilized, better performance could be achieved even over a single GPU, though fur-
ther examination needs to be conducted to validate the solution over different
platforms.

 Since a single GPU may not effi ciently handle the scalability of computation due
to the memory limit on individual GPU, we would like to explore the potential of
utilizing multiple GPUs to resolve this problem. Keeneland’s hybrid architecture
exemplifi es its superiority in manipulating the large scale cellular automation com-
putation like GOL. Keeneland is composed of an HP SL-390 (Ariston) cluster with
Intel Westmere hex-core CPUs, NVIDIA 6GB Fermi GPUs, and a Qlogic QDR
Infi niBand interconnect. The system has 120 nodes, each with two CPUs and three
GPUs, while all CPUs and GPUs are bridged together through one I/O hub from
which the CPUs can read/write data.

 To effi ciently utilize and manage the GPU resources in Keeneland, we imple-
mented a combination of MPI and CUDA programs to parallelize the GOL compu-
tation on 20 GPUs. Although the CUDA kernel for this implementation is nearly
identical to what is implemented in the single-GPU program, data communication
become a serious problem due to the strong dependency between the data segments
distributed onto different GPU processors.

Q. Guan and X. Shi

233

 A row-based data partitioning approach was applied to distribute data segments
onto multiple GPUs. We tried to decompose the entire matrix into multiple sections
based on the number of GPUs we utilized. In this case, each MPI process reads in a
unique portion of the matrix fi le based on process rank. When the original matrix is
split in this way and updated separately on different GPUs, each GPU needs to
obtain extra rows of information hosted by the other processors because the state of
the cells along the matrix boundaries are dependent upon cells which now are in
other sub-matrices handled by different MPI processes.

 In order to exchange these boundary rows between the neighboring processors,
we applied the SEND and RECV functions in MPI for sending and receiving the
boundary rows (i.e. head and tail for each block of the grid) between neighboring
processors ranked in MPI, and then copying these rows to the GPU memory.
Script 17.1 describes how to handle the data transfer between the host CPU and
the GPU, and coordinate the computational threads on the GPU. For each itera-
tion, SEND and RECV functions are fi rst implemented to construct the local data
segments to be calculated on each node. The GPU on each node executes the
kernel function (i.e., the transition rule) covering one portion of the matrix.

 for(k = 0; k <ITERATION ; k++) {
 if (myrank % 2 == 1) {
 // send tail and receive head
 MPI_Send(...);
 MPI_Recv(...);
 // send head and receive tail
 MPI_Send(...);
 MPI_Recv(...);
 }
 else {
 // receive head and send tail
 MPI_Recv(...);
 MPI_Send(...);
 // receive tail and send head
 MPI_Recv(...);
 MPI_Send(...);
 }

 Script 17.1 Implementing SEND/RECV for data exchange in MPI program

 When 20 GPUs on Keeneland were used, a 100-iteration GOL with a size of
10,000 × 10,000 was completed in 20 seconds. The results were the same as what
was generated by the serial C program and GPU-GOL. In short, the computing time
was signifi cantly reduced from 100 minutes to 20 seconds, achieving a speed-up of
300. When the atomicAdd approach was applied, GOL over the same size of matrix
can be accomplished in about 2 seconds when 20 GPUs were used.

 The parallel solution over heterogeneous computer architecture and systems
have shown promising prospect to break through the computational bottleneck of
CA models that include complex transition rules and use massive datasets. By

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

234

simply changing the CA’s transition rules to simulate more complex spatiotemporal
processes, we may use such an approach to conduct some large-scale urban LUC
simulations within a practical length of time.

17.4 Conclusion

 Modeling the spatiotemporal dynamics of land use and land cover in the urbaniza-
tion process often involves complex algorithms and large volume of datasets, which
greatly increases the computational intensity, hence sometimes requires unfeasibly
long computing time. Simplifying assumptions have been used in previous studies
to reduce the computational intensity, but they may generate unreliable results and
lead to inaccurate scientifi c conclusions and improper land management decisions.
Emerging high-performance computing technologies, such as GPU and GPU/CPU
heterogeneous cluster architecture, provide promising potentials to overcome the
computing burden of urban LUC models, thus to enable researchers to examine,
validate and advance urban LUC theories and derive sound urban planning strate-
gies. To effi ciently utilize the computing power of the GPU/CPU heterogeneous
clusters, hybrid parallelism must be implemented to coordinate the parallel comput-
ing among GPU/CPU nodes, as well as among the threads on each GPU. However,
implementing such hybrid parallelism is challenging for its high development com-
plexity in integrating MPI and CUDA.

 In this pilot study, we demonstrated the potential for accelerating CA applications
using parallel implementation on hybrid computer clusters. While parallel imple-
mentation of CA through MPI + GPU has achieved signifi cant performance improve-
ment, the emerging new architecture of Intel’s Many-Integrated Core (MIC) could
be another potential accelerator technology for urban LUC simulations. It was
found from our other initiatives that the simple MPI-direct-host programming
model on Intel MIC cluster can achieve a performance equivalent to the MPI + GPU
model on GPU clusters when the same number of processors are allocated for
Kriging interpolation calculation and for unsupervised image classifi cation.

 Exploring effi cient cross-node communication mechanism could be a key com-
ponent in the future work so as to achieve a strong scalability for CA-based applica-
tions running on multiple parallel nodes. For example, the latest Tesla K20 Kepler
GPU is able to outperform the Fermi GPU for most applications without special
performance tuning. However, K20’s direct cross-GPU communication mechanism
needs to be explored and deployed to enhance CA-based modeling that has inten-
sive data communication between the nodes. Meanwhile solutions based on Intel
MIC architecture is worthy to try since each MIC core has direct support of MPI,
making it straightforward to port MPI + CPU code to MIC cluster to achieve signifi -
cant performance improvement. Exploring a combination of MPI and OpenMP
solutions will help handle inter-node and intra-node communications to effi ciently
utilize the heterogeneous computer architecture and systems.

Q. Guan and X. Shi

235

 Acknowledgements This research was supported partially by the National Science Foundation
through the award OCI-1047916.

 References

 Bandini, S., Mauri, G. & Serra, R., 2001. Cellular Automata: From a Theoretical Parallel
Computational Model to Its Application to Complex Systems. Parallel Computing , 27,
pp. 539–553.

 Batty, M., Xie, Y. & Sun, Z., 1999. Modeling urban dynamics through GIS-based cellular autom-
ata. Computers, Environment and Urban Systems , 23(3), pp.205–233.

 Benjamin, S.C., Johnson, N.F. & Hui, P.M., 1996. Cellular automata models of traffi c fl ow along
a highway containing a junction. Journal of Physics A: Mathematical and General , 29(12),
pp.3119–3127.

 Clarke, Keith C. & Gaydos, L.J., 1998. Loose-coupling a Cellular Automaton Model and GIS:
Long-term Urban Growth Prediction for San Francisco and Washington/Baltimore.
 International Journal of Geographical Information Science , 12(7), pp.699–714.

 Clarke, Keith C., Hoppen, S. & Gaydos, L., 1997. A Self-modifying Cellular Automaton Model of
Historical Urbanization in the San Francisco Bay Area. Environment and Planning B: Planning
and Design , 24(2), pp.247–261.

 Clarke, Keith C., Riggan, P. & Brass, J.A., 1995. A cellular automaton model of wildfi re
 propagation and extinction. Photogrammetric Engineering and Remote Sensing , 60(11),
pp.1355–1367.

 Couclelis, H., 1997. From Cellular Automata to Urban Models: New Principles for Model devel-
opment and implementation. Environment and Planning B: Planning and Design , 24(2),
pp.165–174.

 Dietzel, Charles & Clarke, Keith C, 2007. Toward Optimal Calibration of the SLEUTH Land Use
Change Model. Transactions in GIS , 11(1), pp.29–45.

 Goldstein, N.C., Dietzel, C. & Clarke, K. C., 2005. Don’t stop ‘til you get enough–sensitivity test-
ing of Monte Carlo iterations for model calibration. In Proceedings of the 8th International
Conference on GeoComputation . Ann Arbor Michigan.

 Guan, Q. & Clarke, K. C., 2010. A general-purpose parallel raster processing programming library
test application using a geographic cellular automata model. International Journal of
Geographical Information Science , 24(5), pp.695–722.

 Hecker, C. et al., 1999. System Development for Parallel Cellular Automata and Its Applications.
 Future Generation Computing Systems , 16(2–3), pp.235–247.

 Li, D. et al., 2012. GPU-CA model for large-scale land-use change simulation. Chinese Science
Bulletin , 57(19), pp.2442–2452.

 Li, X. et al., 2013. Calibrating cellular automata based on landscape metrics by using genetic
algorithms. International Journal of Geographical Information Science , 27(3), pp.594–613.

 Li, X. & Yeh, A.G.O., 2000. Modelling Sustainable Urban Development by the Integration of
Constrained Cellular Automata and GIS. International Journal of Geographical Information
Science , 14(2), pp.131–152.

 Li, X. & Yeh, A.G.O., 2002. Neural-network-based Cellular Automata for Simulating Multiple
Land Use Changes Using GIS. International Journal of Geographical Information Science ,
16(4), pp.323–343.

 Liu, Xiaoping et al., 2010. Simulating land-use dynamics under planning policies by integrating
artifi cial immune systems with cellular automata. International Journal of Geographical
Information Science , 24, pp.783–802.

 Liu, Y. & Phinn, S.R., 2003. Modelling urban development with cellular automata incorporating
fuzzy-set approaches. Computers, Environment and Urban Systems , 27(6), pp.637–658.

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

236

 Nagel, K. & Schreckenberg, M., 1992. A cellular automaton model for freeway traffi c. Journal of
Physics I France , 2, pp.2221–2229.

 Silva, E.A. & Clarke, Keith C., 2002. Calibration of the SLEUTH Urban Growth Model for Lisbon
and Porto. Computers, Environment and Urban Systems , 26(6), pp.525–552.

 Spezzano, Giandomenico & Talia, Domenico, 1999. Programming Cellular Automata Algorithms
on Parallel Computers. Future Generation Computing Systems , 16(2), pp.203–216.

 Thor, M., 2008. Performance comparison of CPU and GPU based simulation of an avalanche
using a cellular automata . Master Thesis. Sweden: Ume°a University.

 Wu, F. & Webster, C.J., 1998. Simulation of Land Development through the Integration of Cellular
Automata and Multi-criteria Evaluation. Environment and Planning B , 25(1), pp.103–126.

 Wu, N. & Silva, E.A., 2010. Artifi cial Intelligence Solutions for Urban Land Dynamics: A Review.
 Journal of Planning Literature , 24(3), pp.246–265.

Q. Guan and X. Shi

	Chapter 17: Opportunities and Challenges for Urban Land-Use Change Modeling Using High-�Performance Computing
	17.1 Introduction
	17.2 Spatiotemporal Modeling of Urban Land-Use Changes
	17.3 Exploratory Studies on High-Performance Spatial CA
	17.3.1 Parallel Spatial CA
	17.3.2 Accelerating CA on GPUs and Heterogeneous Computer Systems

	17.4 Conclusion
	References

