
Xuan Shi · Volodymyr Kindratenko
Chaowei Yang Editors

Modern Accelerator
Technologies
for Geographic
Information Science

 Modern Accelerator Technologies
for Geographic Information Science

 Xuan Shi • Volodymyr Kindratenko
 Chaowei Yang
 Editors

 Modern Accelerator
Technologies for Geographic
Information Science

 ISBN 978-1-4614-8744-9 ISBN 978-1-4614-8745-6 (eBook)
 DOI 10.1007/978-1-4614-8745-6
 Springer New York Heidelberg Dordrecht London

 Library of Congress Control Number: 2013950907

 © Springer Science+Business Media New York 2013
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

 Editors
 Xuan Shi
 Department of Geosciences
 University of Arkansas
 Fayetteville , AR , USA

 Chaowei Yang
 Department of Geography

and GeoInformation Sciences
 George Mason University
 Fairfax , VA , USA

 Volodymyr Kindratenko
 Department of Electrical

and Computer Engineering
 University of Illinois
 Urbana , IL , USA

www.springer.com

v

 Contents

Part I Introduction

 1 Modern Accelerator Technologies
for Geographic Information Science ... 3
Xuan Shi, Volodymyr Kindratenko, and Chaowei Yang

Part II Overview of Modern Accelerator Technologies (MAT)
for Scientifi c Computation

 2 A Brief History and Introduction to GPGPU 9
Richard Vuduc and Jee Choi

 3 Intel® Xeon Phi™ Coprocessors .. 25
Jim Jeffers

 4 Accelerating Geocomputation with Cloud Computing 41
Qunying Huang, Zhenlong Li, Jizhe Xia, Yunfeng Jiang,
Chen Xu, Kai Liu, Manzhu Yu, and Chaowei Yang

Part III MAT in GIScience Applications

 5 Parallel Primitives-Based Spatial Join
of Geospatial Data on GPGPUs ... 55
Jianting Zhang

 6 Utilizing CUDA-Enabled GPUs to Support 5D
Scientifi c Geovisualization: A Case Study
of Simulating Dust Storm Events .. 69
Jing Li, Yunfeng Jiang, Chaowei Yang, and Qunying Huang

vi

 7 A Parallel Algorithm to Solve Near-Shortest Path
Problems on Raster Graphs ... 83
F. Antonio Medrano and Richard L. Church

 8 CUDA-Accelerated HD-ODETLAP: Lossy High Dimensional
Gridded Data Compression.. 95
W. Randolph Franklin, You Li, Tsz-Yam Lau, and Peter Fox

 9 Accelerating Agent-Based Modeling Using Graphics
Processing Units .. 113
Wenwu Tang

Part IV MAT in Remotely Sensed Data Processing and Analysis

10 Large-Scale Pulse Compression for Costas Signal with GPGPU 133
Bin Zhou, Chun-mao Yeh, Wen-wen Li, and Wei-jie Zhang

11 Parallelizing ISODATA Algorithm for Unsupervised
Image Classifi cation on GPU ... 145
Fei Ye and Xuan Shi

12 Accelerating Mean Shift Segmentation Algorithm
on Hybrid CPU/GPU Platforms .. 157
Miaoqing Huang, Liang Men, and Chenggang Lai

Part V Multi-core Technology for Geospatial Services

13 Simulation and Analysis of Cluster-Based Caching Replacement
Based on Temporal and Spatial Locality of Tiles Access 169
Rui Li, Xinxing Wang, Jingjing Wang, and Huayi Wu

14 A High-Concurrency Web Map Tile Service Built
with Open-Source Software ... 183
Huayi Wu, Xuefeng Guan, Tianming Liu, Lan You, and Zhenqiang Li

15 Improved Parallel Optimal Choropleth Map Classifi cation 197
Jason Laura and Sergio J. Rey

Part VI Vision and Applicability of MAT for Geospatial Modeling
and Spatiotemporal Data Analytics

16 Pursuing Spatiotemporally Integrated Social Science
Using Cyberinfrastructure ... 215
Xinyue Ye and Xuan Shi

Contents

vii

17 Opportunities and Challenges for Urban Land-Use Change
Modeling Using High- Performance Computing 227
Qingfeng Guan and Xuan Shi

18 Modern Accelerator Technologies for Spatially-Explicit
Integrated Environmental Modeling ... 237
Dali Wang and Shujiang Kang

Contents

 Part I
 Introduction

3X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_1, © Springer Science+Business Media New York 2013

 Keywords Modern Accelerator Technologies • GIScience

 Geographic Information System (GIS) enables heterogeneous geospatial data
 integration, processing, analysis, and visualization. With a variety of software tools,
GIS makes substantial contribution to the advancements of science, engineering and
decision-making in geospatial-related natural and social sciences, public safety and
emergency response, spatial intelligence analytics and military operations, ecologi-
cal and environmental science and engineering, and public health. Geospatial data
represents real-world geographic features or objects using either vector or raster
data models. In the vector model, features are captured as discrete geometric objects
and represented as points, lines or polygons with non-spatial attributes. In the raster
model, features are represented on a grid, or as a multidimensional matrix, includ-
ing satellite imagery and other remotely sensed data.

 When geospatial data is increasingly available along with an accelerating
increase in data volume, it has been a grand challenge to manipulate large-scale data
and complete data processing and analytics using traditional GIS software tools.
Emerging computer architectures and advanced computing technologies provide a
promising solution to employ massive parallelism to achieve scalability with high
performance for data intensive computing over big geospatial data.

 Chapter 1
 Modern Accelerator Technologies
for Geographic Information Science

 Xuan Shi , Volodymyr Kindratenko , and Chaowei Yang

 X. Shi (*)
 Department of Geosciences , University of Arkansas , Fayetteville , AR 72701 , USA
 e-mail: xuanshi@uark.edu

 V. Kindratenko
 National Center for Supercomputing Applications , University of Illinois
at Urbana- Champaign , Urbana , IL 61801 , USA

 C. Yang
 Department of Geography and GeoInformation Science , College of Science,
George Mason University , Fairfax , VA 22030 , USA

4

 The GIScience community has been an active user of high-performance
 computing (HPC) resources for both data-intensive and compute-intensive applica-
tions. The HPC technology, however, is shifting from homogeneous systems
employing identical processing elements to hybrid computing architectures that
employ multi-core and many core processors in combination with special-purpose
chips. New multi-core architectures combined with application accelerators hold
the promise of increasing performance by exploiting levels of parallelism not sup-
ported by the conventional systems. This book is a response to the research needs
and has accommodated 17 papers in 5 parts, each covers a specifi c category.

 Three chapters in Part II provide an overview of Modern Accelerator Technologies
(MAT) for scientifi c computation and geoscience applications , including Graphics
Processing Units (GPUs), Intel’s Xeon Phi coprocessor, and cloud computing infra-
structure. Today AMD and NVIDIA GPUs and Intel’s Xeon Phi coprocessor are the
leading computational accelerators. While GPU-based accelerators have been
around since 2007, Xeon Phi is a newcomer with up to 61 Intel Architecture general
purpose processor cores plus a powerful, new wide vector processing unit in each
core. Jeffers’ paper provides an overview on the Xeon Phi architecture and how it
can support developing highly parallel, data intensive applications in geosciences.
Choi and Vuduc’s work gives a brief history and overview of modern GPU systems,
including the dominant programming model that has made the compute capabilities
of GPUs accessible to the programming-literate scientifi c community. This chapter
offers examples to discuss GPU hardware and programming environment and the
main principles as well as the new features in NVIDIA’s GPUDirect technology.
Cloud computing is considered as the next generation computing platform with the
potential to address the computing challenges and redefi ne the possibilities of geo-
science and digital Earth. Huang et al. introduces through examples how cloud com-
puting can help accelerate geocomputation by elastically integrate and deliver most
advanced computing technologies including HPC, GPU, and others.

 Part III presents several chapters on the use of MAT in GIScience applications .
Zhang reports on designing and implementing a spatial join algorithm, fundamental to
spatial databases and vector GIS, on GPUs by using generic parallel primitives. The
results demonstrates that when natively implemented on GPUs, such operations can
be speed up signifi cantly close to ten times. Li et al. describes an effort to design and
implement a GPU-based visualization pipeline for 5D geospatial data stored in scien-
tifi c data formats. The developed visualization pipeline runs almost entirely on a GPU.
The authors also discuss advantages and disadvantages of employing GPU and CPU
alternatively for geovisualization applications. Medrano and Church present a new
breadth-fi rst-search parallelization of the Near-Shortest Path algorithm used to gener-
ate route alternatives. The authors introduce a parallel effi ciency measure of how suc-
cessful their parallelization is when distributing the workload among multiple
computational nodes. Franklin et al. present High-dimensional Overdetermined
Laplacian Partial Differential Equations algorithm and its implementation for lossy
compression of high-dimensional arrays of data. The authors developed a MATLAB-
based implementation of the proposed algorithm that uses GPUs to speed-up the exe-
cution of computationally intensive compression tasks. Tang identifi ed and discussed

X. Shi et al.

5

the fundamental aspects when using GPUs to accelerate agent based models (ABMs)
including random number generation, parallelization of agent-based interactions,
analysis of agent and environment patterns, and evaluation of computing performance.
He used a case study of modeling spatial opinion exchange to illustrate the massively
parallel computing power of GPUs for accelerating agent-based modeling.

 In Part IV several authors report on the success with MAT in remotely sensed
data processing and analysis domain. Bin et al. describes an effort to achieve a
high-speed multi-velocity-channel processing of Costas signal pulse compression
for high speed radar signal processing. The authors use a parallel processing scheme
and propose a GPU-based implementation that delivers over two orders of magni-
tude performance improvement over traditional computing platforms allowing deal
with large-scale radar signal processing tasks. The last two articles deal with image
processing algorithms used for image segmentation and classifi cation. Ye and Shi
report on the results of parallelizing ISODATA algorithm for unsupervised image
classifi cation used in remote sensing applications. The authors describe in great
details parallelization and optimization strategies employed on the GPU and com-
pare classifi cation results to a widely-used remote sensing software. Huang et al.
also employ GPUs for speeding up mean shift segmentation algorithm used in
remote sensing applications. The authors also consider a hybrid architecture in
which both CPU and GPU are involved in the computation. As indicated by the
articles presented in this Chapter, image and signal processing problems are particu-
larly suitable for massively-parallel architectures, such as GPUs, and their perfor-
mance can be greatly enhanced by re-implementing key computational components
on such architectures.

 Part V introduces how multi - core technology can accelerate geospatial service
computation and spatial statistical calculation . Web Map Tile Service (WMTS) has
been increasingly adopted in many online mapping services and applications.
In practice, WMTS scalability has been a concern when WMTS servers handle mas-
sive concurrent requests. When client users increase dramatically, the torrent of cli-
ent requests places overwhelming pressure on the web server where the WMTS is
deployed, causing signifi cant response delay and serious performance degradation
of the WMTS. In this chapter, Wu et al. introduced how to build a high performance
cluster (HPC) to handle large scale service request. In another paper, Li et al. intro-
duced how cluster-based caching systems can accelerate users’ access to large- scale
network services. How to confi gure numerous parameters to make cluster- based
caching servers cooperate with each other to effi ciently share cached data is critical
to obtain optimal performance. This paper analyzes tile access characteristics in
Web GIS applications and simulates cluster-based caching system through a trace-
driven experiment based on the log fi les. The confi guration of each parameter in a
cluster-based caching system is quantitatively analyzed to obtain a global optimal
combination of parameters. In the last paper in this Chapter, Laura and Rey intro-
duce an improved parallel optimal choropleth map classifi cation algorithm to sup-
port spatial analysis. This work contributes to the development of a Distributed
Geospatial CyberInfrastructure and offers an implementation of the Fisher-Jenks
optimal classifi cation method suitable for multi-core desktop environments.

1 Modern Accelerator Technologies for Geographic Information Science

6

 Part VI includes the visions and future research needs of utilizing accelerating
technologies for different domains. Ye and Shi discuss how to use high performance
computing to speedup the spatiotemporal interaction and analyses of crime and
police activities for future potential prediction of such social events based on his-
torical records and social sciences. Guan and Shi introduce how urban land use
simulations could be accelerated using latest accelerator technologies including
CPU, GPU, and High performance computing. Following the foundational steps,
they discuss the research challenges and opportunities of using the accelerating
technologies to address the challenges. Wang introduces the challenges in spatially
integrating environmental systems models to address more complex and broader
geographic scope of environmental problems. Future research directions for using
accelerating technologies for integrated environmental modeling are discussed at
the end of the chapter.

 At last, we would like to thank all authors for their excellent works and contribu-
tion to this initiative. Specifi cally we want to thank Springer editors for their
patience, encouragement and continuous support to make this book successful.

X. Shi et al.

 Part II
 Overview of Modern Accelerator
Technologies (MAT) for Scientifi c

Computation

9X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_2, © Springer Science+Business Media New York 2013

 Abstract Graphics processing units (GPU) are increasing the speed and volume of
computation possible in scientifi c computing applications. Much of the rapidly
growing interest in GPUs today stems from the numerous reports of 10–100-fold
speedups over traditional CPU-based systems. In contrast to traditional CPUs,
which are designed to extract as much parallelism and performance as possible from
sequential programs, GPUs are designed to effi ciently execute explicitly parallel
programs. In particular, GPUs excel in the case of programs that have inherent data-
level parallelism , in which one applies the same operation to many data simultane-
ously. Applications in scientifi c computing frequently fi t this model. This
introductory chapter gives a brief history and overview of modern GPU systems,
including the dominant programming model that has made the compute capabilities
of GPUs accessible to the programming-literate scientifi c community. Its examples
focus on GPU hardware and programming environment available from a particular
vendor, NVIDIA, though the main principles apply to other systems.

 Keywords CUDA • GPGPU • High-performance computing • Parallel programming
• SIMD • Vector processors

2.1 A Brief History

 The broader adoption of GPUs today stems from advances in programming and in the
use of power-effi cient architectural designs. We briefl y recount these advances below.

 Chapter 2
 A Brief History and Introduction to GPGPU

 Richard Vuduc and Jee Choi

 R. Vuduc (*) • J. Choi
 School of Computational Science & Engineering, College of Computing ,
 Georgia Institute of Technology, Atlanta , GA 30332 , USA
 e-mail: richie@cc.gatech.edu; jee@gatech.edu

10

2.1.1 From Special-Purpose to General-Purpose Programming

 GPUs were originally designed to accelerate graphics related tasks such as texture map-
ping or vertex shading commonly used in computer games and 3D graphics to render
images. During the early 2000s, to increase the realism of 3D games and graphics,
GPU designs were enhanced to deliver more polygons per second of performance.
This style of geometric computation is heavily fl oating-point intensive, and the raw
throughput of such operations vastly outstripped the capabilities of conventional, albeit
general-purpose, CPU processors. Lured by these capabilities, developers of scientifi c
software began looking for ways to exploit GPUs beyond the graphics rendering tasks
for which they were designed.

 Early GPUs were hard to program for anything other than graphics applications.
The hardware consisted of fi xed graphics pipelines; to program them, one had to use
specifi c application programming interfaces (API) such as OpenGL and DirectX, or
shader languages such as C for Graphics (Cg). (Regarding terminology, we will
refer to languages and/or libraries needed to program a machine as programming
models .) If one wished to program something other than graphics, it was diffi cult to
do so since every operation had to be mapped to an equivalent graphics operation.

 There were numerous efforts in the research community to ease GPU program-
ming through high-level language extensions (Michael et al. 2002 ; Ian Buck
et al. 2004). This research was the basis for NVIDIA’s Compute Unifi ed Device
Architecture (CUDA), a more general-purpose computing platform and program-
ming model, which is arguably the dominant albeit largely vendor-specifi c model
available today. CUDA allows developers to use C (as well as many other languages,
APIs and directives) as a high-level programming language for programming
NVIDIA GPUs. Uptake of CUDA within the scientifi c research community has
been reasonably swift, with approximately 37,000 published research papers on the
use of CUDA and 1.6 million CUDA downloads as of 03/19/13. Arguably, CUDA
and its ilk have turned an otherwise special-purpose platform into one suited to
general-purpose use, hence the term general-purpose GPU (GPGPU) computing.

2.1.2 Single-Instruction Multiple-Data Designs

 Concomitant with the advances in programming models were advances in the hard-
ware design itself. A key idea in GPU architectures is single instruction multiple
data (SIMD) design, a type of parallel computer architecture in which a single
instruction prescribes that the machine perform a computational operation on many
words of data simultaneously (Flynn 1972). The fi rst SIMD computer was the
ILLIAC-IV, built in the late 1960s (Bouknight et al. 1972). It was later followed by
other systems including ICL’s Distributed Array Processor (DAP) (Reddaway 1973).
However, it was not until the 1980s that interest in SIMD computers peaked and led
to the development of Connection Machine CM-1 (Hillis 1982) and MasPar

R. Vuduc and J. Choi

11

MP-1 (Blank 1990). Many of these systems had common architectural features:
there was typically one or more central processing units or sequencers that fetched
and decoded instructions; instructions were then broadcast to an array of simple,
interconnected processing elements.

 Of these systems, Connection Machine CM-1 perhaps most closely resembles
modern GPUs. The CM-1 system consists of four processor arrays, each consisting
of 16,000 processors, and from one to four front-end computers depending on how
the processor arrays are used; the arrays can be used separately, in pairs, or as a
single unit. The front-end computers control the arrays and issue instructions to
them. The CM-1 also provides a virtual number of processors to fi t application
needs; then, the physical processors are time-sliced over multiple data regions that
have been assigned to it, enabling effective and fl exible programming and utiliza-
tion of the available processors. As we will see later, this virtual processor abstrac-
tion closely resembles modern GPGPU programming.

 Modern GPUs have a come a long way since the days of CM-1 and MasPar. For
under $500, one can now purchase a desktop GPU that can execute 3.5 trillion
 fl oating-point operations per second (terafl op per second, or TFLOP/s) within a
power footprint of just 200 Watts. The basic enabling idea is a SIMD execution style.

2.2 Overview of GPGPU Hardware and
Programming Today

 The CUDA programming model, introduced by NVIDIA in November 2006, sim-
plifi es how one may express data parallel programs in a general-purpose program-
ming environment. CUDA originally extended the C++ language, with recent
additional support for Fortran and Java. This chapter summarizes the key C++
extensions; we encourage interested readers to the latest CUDA Programming
Guide for more details (NVIDIA 2013).

2.2.1 A GPU-Based System

 Figure 2.1 shows a typical GPU system. It consists namely of one or more GPU
 devices , which is connected to a host system. The host system is a conventional
computer consisting of one or more general-purpose CPUs and a communication
channel between them and the GPU(s). On desktop and workstation systems, this
channel is typically a PCI Express (PCIe) bus.

 This host-device design implies an offl oad model of execution. In particular, an
application begins running on the host and then offl oads computation to the GPU
device. Moreover, the programmer must copy data from the host to the GPU device
and copy any needed results from the device back to the host as needed. The host
and device may otherwise execute simultaneously (and asynchronously), as permit-
ted by the application.

2 A Brief History and Introduction to GPGPU

12

 This system design has both performance and programming implications. Regarding
performance, an application will only see an improvement from use of the GPU if the
data transfer time is small relative to the speedup from using the GPU in the fi rst place.
Regarding programming, the programmer will write both host code and device code,
that is, code that only runs on the host and separate code that may only run on the
device; he or she must also coordinate data transfer as the application requires.

 Briefl y, the typical steps involved in writing a CUDA program may be as follows:

 1. Allocate and initialize input and output data structures on host.
 2. Allocate input and output data structures on device.
 3. Transfer input data from host to device.
 4. Execute device code.
 5. Transfer output data from device to host.

 CUDA provides an API for manipulating the device (e.g., allocating memory on
the device) and a compiler (nvcc) for compiling the device code.

2.2.2 GPU Architecture

 Before we can go into the details of the CUDA programming model, it is necessary
to talk about the GPU architecture in more detail. This is because the CUDA pro-
gramming model (as well as the other models) closely refl ects the architectural
design. This close matching of programming model to architecture is what enables
programs that can effectively use the GPU’s capabilities. One implication is that
although the programming model abstracts away some details of the hardware, for
a program to really execute effi ciently, a programmer must understand and exploit
a number of hardware details.

CPU

System AgentDRAM

Platform
Controller
Hub (PCH)

n-channel
memory bus

PCI Express
x16

Direct Media
Interface (DMI)

GDDR5 DRAM

Streaming
Multiprocessors

Disk

USB

Sound

Ethernet

 Fig. 2.1 A typical GPU system

R. Vuduc and J. Choi

13

 Figure 2.2 shows a basic GPU architecture. First, the GPU has both processing
units, which perform actual computation, and a main memory, which store all of the
data on which the GPU may operate. The processing units are labeled Streaming
Multiprocessors (SMX) in the fi gure, and the memory is labeled SDRAM . (The
 GDDR5 designation refers to the particular type of memory and protocols used
when transferring data).

 The SMX units are further divided into several components. At the heart of an
SMX is a number of small functional units called “CUDA cores.” One may regard
these CUDA cores as the basic hardware for performing primitive operations, such
as fl oating-point operations.

 These CUDA cores share a number of other hardware resources, the most impor-
tant of which is the register fi le (RegF). A CUDA core may only perform primitive
operations on data stored in registers. Roughly speaking, variables (i.e., “local vari-
ables”) that appear in a CUDA program are stored in registers. The compiler, when it
translates the CUDA program into machine code, manages the use of these registers
and the mapping of program variables to registers. As such, they are not really exposed
to the programmer. However, to achieve good performance, a programmer should
keep in mind that since registers are directly connected to the cores, any data stored in
registers will be much faster to access than data stored elsewhere in the system.

 Indeed, this basic principle underlying register use applies more generally to the
entire memory hierarchy of the GPU. The memory hierarchy refers to the collection
of memories including the main memory (SDRAM), the registers, and a number of
intermediate memories. The relative speed of accessing data in registers may be 100×
or 1000× faster than doing so from main memory. However, the capacity of all the

GDDR5 SDRAM

L2 Cache

SMX
RegF

ShMem
dCache

CUDA
Cores

SMX
RegF

ShMem
dCache

CUDA
Cores

SMX
RegF

ShMem
dCache

CUDA
Cores

SMX
RegF

ShMem
dCache

CUDA
Cores

 Fig. 2.2 Diagram of a basic GPU architecture

2 A Brief History and Introduction to GPGPU

14

GPU’s registers compared to main memory may also differ by that same factor. For
instance, the aggregate register capacity across all SMX units typically numbers in the
millions of bytes, or megabytes, MB; by contrast, the capacity of the main memory is
much larger, numbering typically in the billions of bytes, or gigabytes (GB). Therefore,
using the memory hierarchy effectively is critical to achieving speedups in practice.

 The hierarchy refers to additional intermediate staging levels of progressively
smaller but faster memories between main memory and the register fi le. In Fig. 2.2 ,
these are the caches (i.e., the so-called level-1 or dCache and the so-called level-2
or L2 Cache) and the shared memory (ShMem). Caches are managed automatically
by the hardware: the caching hardware “observes” the data requests from the pro-
cessing units and try to keep frequently accessed data in the cache. By contrast, the
shared memory is programmer-managed: the programmer controls exactly what
data is in the shared memory at any point in time during the computation.

 There are some additional useful details to know about the memory hierarchy.
The CUDA cores on a given SMX share the dCache; all SMX units on the GPU
share the L2 Cache. Regarding their relative capacities, the CUDA cores of a given
SMX share the register fi le (typical capacity is 256 KB). The total ShMem and
dCache capacity is 64 KB per SMX, where the ShMem and dCache may actually be
re-confi gured by the programmer to be either 16 KB of programmer-managed
memory with 48 KB of dCache, or 48 KB of programmer-managed memory and
16 KB of dCache, or split equally between the two on current systems.

 More concretely, Table 2.1 shows the exact specifi cations for the latest NVIDIA
GPU, the GTX Titan (released in late 2012). The sheer number of CUDA cores is
what makes GPUs so compute-rich. Exploiting this relatively large amount of
 parallelism—thousands, compared to tens on conventional processors—requires a
 “non- traditional” programming model.

2.2.3 SIMT and Hardware Multithreading

 To fully utilize the available CUDA cores on a GPU, CUDA adopts a variation of
SIMD, which NVIDIA refers to as the single instruction multiple thread (SIMT) style.

 In SIMT, a program consists of a number of threads and all threads execute the
same sequence of instructions. Therefore, if all threads execute the same instruction
at the same time, just on different data per thread, a CUDA program would simply
be a sequence of SIMD instructions.

 However, SIMT generalizes SIMD in that it allows individual threads to execute
different instructions. This situation occurs when, for instance, threads simultane-
ously execute a conditional (e.g., “if” statement) but execute different branches.
When this occurs, threads are said to diverge . Although this behavior is allowed by
the model, it has an important performance implication. When threads diverge, their
execution is serialized—that is, the threads that take one branch may execute fi rst
while the other threads idle until the fi rst threads complete. In other words, SIMT
allows fl exibility in programming at the cost of performance. For example, the only
way to achieve the peak performance as calculated in Table 2.1 is to have absolutely
no divergent threads in the code.

R. Vuduc and J. Choi

15

 In order to have many CUDA cores, a key design decision in GPUs is to also use
simpler cores, compared to their equivalents in CPU systems. Simpler cores tend to be
smaller and more energy-effi cient, but also slower per instruction . However, the long
latencies associated with these slower instructions—as well as the relatively slower
memory operations—may be mitigated by allowing many simultaneous instructions
to be in-fl ight at any time, with the processors juggling among available instructions.
That is, at any given time, a GPU keeps the context of a large number of threads on the
chip so that it can switch from one set of threads to another quickly whenever threads
are ready to execute. This approach is referred to as hardware multithreading . 1

 Indeed, hardware multithreading is feasible because of the SIMT approach,
which enables (or rather, requires) the programmer to express a large amount of
thread-level parallelism. On the hardware side, generous amounts of on-chip
resources, such as the large register fi le and shared memory, are also necessary.
Although conventional CPUs also employ hardware multithreading (e.g. Intel’s
hyperthreading technology), the number of in-fl ight threads is much smaller—com-
pare 2 in-fl ight threads per core using Intel’s hyperthreading technology, compared
to, say, 64 threads per SMX on a representative GPU.

2.3 CUDA

 Here we go into the specifi cs of the CUDA programming model. We will fi rst cover
three key concepts: the thread hierarchy , the memory hierarchy , and synchroniza-
tion . Then, we will discuss commonly used strategies for optimizing CUDA pro-
grams for performance. All hardware specifi cations mentioned in this section will
be that of the GTX Titan which is based on the latest generation of NVIDIA’s GPU
architecture, the GK110 .

1 It also explains why advocates of GPU design refer to GPUs as being especially suited to
 throughput- oriented execution, rather than latency-oriented execution as in CPUs.

 Table 2.1 Specifi cations for the NVIDIA GTX Titan

 Parameters Values

 SMX 14
 32-bit (Single precision) CUDA Cores 2,688 (192 cores/SMX)
 64-bit (Double precision) CUDA Cores 896 (64 cores/SMX)
 Clock 837 MHz
 Boost clock 876 MHz
 Memory interface width 384 bits
 Memory clock 6.008 GHz a
 Single precision peak performance 4709.38 GFLOP/s b
 Double precision peak performance 1569.79 GFLOP/s
 Peak bandwidth 288.38 GB/s c

 a Effective clock rate since DDR memory reads from both rising and falling edges of the signal
 b Peak Performance = (number of cores) × (boost clock) × 2 FLOP/cycle (fused multiply-add)
 c Peak Bandwidth = (memory interface width) × (memory clock)

2 A Brief History and Introduction to GPGPU

16

2.3.1 Thread Hierarchy

 There are three layers of hierarchy for CUDA threads; threads, thread blocks, and
grids. The relationship between these three layers are shown in Fig. 2.3 .

 Recall that the smallest granularity of computation on a GPU is a thread , which
simply executes a sequence of instructions, or kernel . A programmer may think of
the kernel as the “program” that all threads execute simultaneously. While execut-
ing the kernel code, each thread has a unique integer identifi er that it can use to
determine whether to perform thread-specifi c operations, such as loading a particu-
lar data element. A typical CUDA program consists of anywhere from thousands to
millions of these threads.

 Threads are grouped into thread blocks . A thread block may contain any number
of threads up to some limit, which on current hardware is 1,024 threads per block.
Importantly, thread blocks execute completely independently . That is, once a thread
block begins execution, it runs to completion; moreover, there is no guarantee on
what order thread blocks will execute, so a programmer should not rely on this fact.
Additionally, the thread block may be logically confi gured as a one-, two-, or three-
dimensional array of threads. The purpose of a multi-dimensional confi guration of
threads is to allow for easier mapping of threads to work. 2

2 For instance, if a GPU kernel operates on a 2-D image, it is very likely most “natural” to assign
one thread to perform a computation on each pixel; in this case, a 2-D logical organization of
threads is likely to be a sensible way of mapping threads to work.

 Fig. 2.3 CUDA thread hierarchy

R. Vuduc and J. Choi

17

 The signifi cance of a thread block is scalability. When threads are assigned to a
multiprocessor, they are done so in the granularity of thread blocks. Threads within
a thread block may coordinate their work, but thread blocks—being executed inde-
pendently as noted previously—may not. Additionally, a thread block completes
only when every thread in the block has fi nished its work. This behavior permits
scaling a workload with suffi ciently many thread blocks onto GPUs that may have
differing numbers of SMXs.

 Thread blocks may be further logically organized into grids . That is, a grid is a
collection of thread blocks, also confi gurable as a one-, two-, or three-dimensional
array. Grid size and dimensions are dictated typically by either the work-thread
block mapping, or the total number of thread blocks. A grid can be seen as the entire
collection of CUDA threads that will execute a given kernel.

2.3.2 Memory Hierarchy

 As noted in the architectural overview above, GPUs have multi-level memory hier-
archy. This hierarchy is similar to traditional CPUs; on current generation GPUs,
there is a level-2 (L2) cache that is hardware-managed and shared between all mul-
tiprocessor cores on the GPU and a level-1 (L1) cache that is local to each core. On
current GPUs, the L2 cache is 1,536 KB in size, and all data accesses through the
SDRAM, whether read or write, is stored in the L2 cache. The L1 cache is reserved
for local memory usage such as register spills or local arrays that are either too large
or cannot be indexed with constants.

 Additionally, there is also the programmer-managed shared memory. The hard-
ware used to implement shared memory is identical to that of the L1 cache and
together they make up 64 KB in size. As needed, shared memory can be confi gured
to be 16, 32, or 48 KB, with the L1 cache taking up the rest. Shared memory is local
to a thread block, and is a limited resource that can constrain the number of thread
blocks that can be resident on the multiprocessor at the same time.

 There is also a 48 KB read-only data cache called constant memory. This is part
of the texture unit that is necessary for graphics performance, but is also available
for general purpose use. The availability of constant memory relieves pressure on
the shared and L1 cache by reducing confl ict misses.

 Lastly, GPUs have large register fi les to support hardware multithreading. The
size of the register fi le is 256 KB on the GTX Titan and each thread can use as many
as 255 32-bit registers.

 One interesting point to note is that unlike traditional CPUs where closer you get
to the core, the smaller the cache becomes, GPUs show an opposite trend. That is,
when going from L2 to L1 to register, the size of the cache goes from 1,536 KB to
1,568 KB to 3,584 KB.

 From a programming perspective, CUDA exposes the shared memory to the pro-
grammer. That is, the programmer controls completely how data is placed in shared
memory. By contrast, the compiler controls registers (though the programmer may
infl uence their use) and the hardware manages the caches.

2 A Brief History and Introduction to GPGPU

18

2.3.3 Synchronization

 We noted previously that threads within a thread block may coordinate their activity.
The mechanism for doing so is shared data access and synchronization.

 With respect to shared data access, threads within a thread block all “see” the
same shared memory data. Therefore, they may cooperatively manage this data. For
instance, if the thread block needs to perform computation on some chunk of data,
each thread may be assigned by the programmer to load a designated piece of that
data.

 With respect to synchronization, threads may “meet” at a particular program
point within the kernel. This operation is called a barrier —when a thread executes
a barrier, it waits until all other threads have also reached the barrier before continu-
ing. For example, a common pattern is for threads to cooperatively load a chunk of
data from main memory to shared memory as noted above, then issue a barrier. By
doing so, the threads ensure that all the data is loaded before any thread proceeds
with computation.

 Importantly, this type of synchronization is really only possible within a thread
block, but not between thread blocks, since there is no guarantee on how thread blocks
may be scheduled. The only way to do global synchronization across thread blocks is
to do so on the host: the host is what launches the GPU kernel, and the CUDA API
makes a host function available to check whether all thread blocks have completed.

2.3.4 Performance Considerations

2.3.4.1 Bandwidth Utilization

 GTX Titan boasts 288.4 GB/s of bandwidth, an order of magnitude higher than
most CPUs, due to its high memory clock frequency and wide interface width of its
GDDR5 SDRAM. However, in order to fully utilize the available bandwidth, certain
precautions must be taken on how the data is loaded from the memory.

 By a principle known as Little’s Law (from queuing theory), in order to saturate
the memory system, the number of in-fl ight memory requests must be approxi-
mately equal to the memory bandwidth multiplied by the latency between the
SDRAM and the multiprocessor core. Latency today is typically in the range of
400–800 clock cycles. Consequently, a GPU kernel in practice needs to have several
tens of thousands of bytes of data being requested simultaneously. A computation
that cannot have that level of memory-level parallelism will not make the most effi -
cient use of the GPU’s memory transfer capability.

 Another consideration is to ensure that loads from GPU memory (either to
shared memory or to registers) are coalesced . Conceptually, the GPU memory sys-
tem is designed to load chunks of consecutive data at a time. Furthermore, the
hardware typically schedules consecutively numbered threads at the same time.

R. Vuduc and J. Choi

19

Therefore, a good CUDA programming practice is to ensure that consecutively
numbered threads that are performing load or store operations do so to consecutive
locations in memory. An easy way to make sure data is coalesced is to stream the
data where threads accesses one or more words of data consecutively.

2.3.4.2 Core Utilization

 To understand how to maximize the use of CUDA cores on a GPU, we must briefl y
sketch how threads are executed on a GPU.

 Although threads begin and complete on the multiprocessor cores of a GPU at
the granularity of thread blocks, execution of threads occurs at a smaller granularity.
This minimum unit of execution is called a warp . (On more classical vector proces-
sors, a warp is analogous to the vector or SIMD width.) Although the size of a warp
can vary across different GPUs, the warp size has always been 32. This value will
most likely increase in the future as the number of cores continues to increase with
each successive generation.

 On a current generation GTX Titan, there are 4 warp schedulers on each multi-
processor. Each warp scheduler can take a warp of threads from the same or differ-
ent thread blocks currently residing on the multiprocessor and issue one or two
instructions, depending on the availability of CUDA cores and the number of inde-
pendent instructions in each warp, to 32 or 64 CUDA cores respectively. Since there
are 192 CUDA cores in each multiprocessor, at least 6 sets of instructions need to
be issued every cycle in order to fully occupy the CUDA cores. This is equivalent to
2 warp schedulers issuing 1 instruction each, and 2 warp schedulers issuing 2
instructions each. This means that at least 2 of the warps need to have 2 independent
instructions that can be scheduled simultaneously. Having only data parallelism is
therefore not enough to achieve peak performance on the GTX Titan; instruction
level parallelism is also required.

2.3.4.3 Special Functional Units

 GPUs also have special functional units (SFU) that implement fast approximate
calculation of transcendental operations (e.g., trigonometric functions, exponential
and log functions, square root) on single precision data. There are 32 of these units
in each multiprocessor of a GTX Titan. They can signifi cantly improve performance
when needed.

2.4 Advanced Features of CUDA

 In this section, we list some of the newer and more advanced features that have been
added to the latest versions of CUDA and GPU hardware, version 5.x and compute
capabiilty 3.x respectively at the time of this writing (NVIDIA).

2 A Brief History and Introduction to GPGPU

20

2.4.1 Shuffl e

 Shuffl e instructions have been added in the latest generation of GPUs to enable data
exchange between threads in a warp. The purpose of the shuffl e instructions is simi-
lar to that of shared memory. However, shuffl e instructions have certain perfor-
mance advantages.

 First, sharing data over shared memory requires two steps, a store and a load,
whereas a shuffl e instruction requires only one, reducing the total number of opera-
tions. Secondly, using shuffl e instructions will reduce the shared memory footprint
for each thread block, which may result in more thread blocks fi tting into each
multiprocessor and a subsequent increase in performance. On the downside, shuffl e
instructions are limited to moving 4 byte data types (8 byte data types require 2
shuffl e instructions) and cannot be used for inter-warp communication even within
the same thread block.

 GPUs support three types of shuffl e instructions: arbitrarily indexed, shift left/
right by n , and XOR. Examples of these three types of shuffl e instructions are illus-
trated in Fig. 2.4 .

 Readers should keep in mind that although in theory each thread can read from
any variable of any other thread in the same warp, doing so using conditionals will
create divergence, as exemplifi ed in the topmost shuffl e instruction in Fig. 2.4 .
Therefore, users are recommended to read from the same variable and use comput-
able offsets rather than conditionals whenever possible.

B C D E F G H A

A A A E E E E A

H A B C D E F G

C B A H G F E D

else

 Fig. 2.4 Examples of the shuffl e instruction

R. Vuduc and J. Choi

21

2.4.2 Dynamic Parallelism

 Traditionally, all CUDA programs were initiated from the host. After each kernel
was launched, the host had to wait for it to complete before launching the next
 kernel, effectively creating a global synchronization between kernels. This can be
expensive as well as being redundant.

 In the latest generation of GPUs, CUDA programs can initiate work by them-
selves without involving the host. This feature, called dynamic parallelism , allows
programmers to create and optimize recursive and data-dependent execution pat-
terns, opening the door to more varieties of parallel algorithms running on GPUs.

 Using dynamic parallelism has other benefi ts. The ability to create and launch
new kernels inside another kernel allows the programmer to change the granularity
of the computation on the fl y depending on the results of the current kernel execu-
tion, possibly increasing the accuracy or the performance of the program as a whole.
Finally, it also has the benefi t that the CPU resource can now be left uninterrupted
for other computation, allowing for better resource utilization and heterogeneous
computing.

2.4.3 Hyper Q

 One potential problem of having so many cores on a single device is utilization.
Unless there is enough work, utilizing the GPU to its full potential can often prove
to be diffi cult or impossible. GPUs provide streams , where a single stream is a
series of dependent kernel executions, to allow concurrent execution of different
kernels to better utilize the available resources. However, in older GPUs it suffered
from limitations such as false dependencies due to its single hardware work queue
which limited the concurrency that could be exploited.

 With the introduction of Hyper-Q in the latest generation of GPUs, streams can
now run concurrently with minimal or no false dependencies. Figure 2.5 shows an
example of concurrent streams with and without false dependencies.

2.4.4 Grid Management Unit

 The grid management unit (GMU) is a new feature that allows both CPUs and GPU
kernels to launch a grid of thread blocks for execution. It uses multiple hardware
work queues to paralyze different threads of execution to run concurrently on the
same GPU, allowing true concurrency with little or no false dependencies. The use
of GMU is what allows both dynamic parallelism and Hyper-Q to work on the latest
generation of GPUs.

2 A Brief History and Introduction to GPGPU

22

2.4.5 GPUDirect

 When working with large amounts of data distributed over many GPUs and nodes,
inter-GPU or inter-node communication can become a bottleneck for performance.
NVIDIA’s GPUDirect technology introduces two features that improve
performance.

 First, GPUDirect allows third-party devices such as Infi niband routers and net-
work interface cards (NIC) to directly access the GPU memory without involving
the CPU. This is achieved by having the GPU and the third-party device share the
same memory space on the host which removes the need for the CPU to copy the
same data from one memory location to another. Secondly, GPUDirect allows

C2 B2 A2

C1 B1 A1

C0 B0 A0

B0

A0

C0

B1

A1

C1

B2

A2

C2

Stream 0 Stream 1 Stream 2

Hardware Work Queue

With false dependency

C2 B2 A2

C1 B1 A1

C0 B0 A0

B0

A0

C0

B1

A1

C1

B2

A2

C2

Stream 0 Stream 1 Stream 2

Grid Management Unit

Without false dependency

Multiple
Hardware
Work
Queues

 Fig. 2.5 CUDA streams with and without false dependency

R. Vuduc and J. Choi

23

point-to-point (PTP) communication between GPUs on the same PCIe bus by
 communicating directly over the PCIe instead of the host memory. GPUDirect also
allows the use of direct memory access (DMA) to communicate, effectively elimi-
nating CPU overheads such as latency and bandwidth bottlenecks.

2.5 Conclusion

 In this chapter, we covered the basics of the GPU architecture and its programming
model Although this chapter will allow beginners to understand the basic concepts
behind CUDA and how it differs from traditional programming, it is far from being
a comprehensive guide for GPGPU programming. CUDA and GPU technology
continue to evolve even now, requiring constant study and practice in order to effec-
tively utilize the latest GPUs’ capabilities and features. Readers are recommended
to study the most recent CUDA programming manual and other optimization
guides, as well as the latest research papers and various other resources available on
the internet in order to have a complete and full understanding of how to use CUDA
to leverage the full potential of GPUs.

 References

 T. Blank. The maspar mp-1 architecture. In Compcon Spring ’90. Intellectual Leverage. Digest of
Papers. Thirty-Fifth IEEE Computer Society International Conference. , pages 20–24, 1990.

 W. J. Bouknight, S.A. Denenberg, D.E. McIntyre, J. M. Randall, A.H. Sameh, and D.L. Slotnick.
The illiac iv system. Proceedings of the IEEE , 60(4):369–388, 1972.

 Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat
Hanrahan. Brook for gpus: stream computing on graphics hardware. ACM Trans. Graph. ,
23(3):777–786, August 2004.

 W. Daniel Hillis. New computer architectures and their relationship to physics or why computer
science is no good. International Journal of Theoretical Physics , 21(3–4):255–262, 1982.

 M. Flynn. Some computer organizations and their effectiveness. Computers, IEEE Transactions
on , C-21(9):948–960, 1972.

 Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware , HWWS ’02,
pages 57–68, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Association.

 NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110 Whitepaper .
NVIDIA, Santa Clara, CA, USA.

 NVIDIA. CUDA Toolkit Documentation . NVIDIA, Santa Clara, CA, USA, May 2013.
 S. F. Reddaway. Dap–a distributed array processor. In Proceedings of the 1st annual symposium on

Computer architecture , ISCA ’73, pages 61–65, New York, NY, USA, 1973. ACM.

2 A Brief History and Introduction to GPGPU

25X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_3, © Springer Science+Business Media New York 2013

 Abstract Intel recently launched the Intel® Xeon Phi™ Coprocessor to enhance the
performance of the growing category of highly parallel scientifi c applications. This
chapter provides an overview of the Intel Xeon Phi Coprocessor including its hard-
ware and software architecture and the key usages that enable these highly parallel
applications, like many in Geoscience to achieve new levels of performance while
using familiar, standard programming models.

 Keywords Intel® Xeon Phi™ coprocessor • Coprocessor MPI programming
models

 In late 2012, Intel launched its fi rst in a new line of highly parallel “many-core”
processing products, the Intel Xeon Phi Coprocessor. With up to 61 Intel Architecture
general purpose processor cores plus a powerful, new wide vector processing unit in
each core, these computationally rich processing engines target highly parallel, data
intensive applications such as the GeoScience applications described in this book.
In a world of rapidly growing power requirements in high performance data centers,
an important benefi t is the power effi ciency (performance/watt) the coprocessor
provides. One or more PCI Express compliant Intel Xeon Phi coprocessor cards can
be added to enhance computational capabilities of an Intel ® Xeon ® processor plat-
form or supercomputing cluster node.

 Given that “peripheral attach” paradigm, one might immediately draw the
 conclusion that the coprocessor solely operates in a master-slave relationship with
host Intel Xeon processor applications “offl oading” computational tasks to the
coprocessor occasionally. While this offl oad model is indeed robustly supported on
the Intel Xeon Phi coprocessor, the hardware and software architecture enables a

 Chapter 3
 Intel ® Xeon Phi™ Coprocessors

 Jim Jeffers

 J. Jeffers (*)
 Intel Corporation , 1800 River Rd , New Hope , PA 18938 , USA
 e-mail: james.l.jeffers@intel.com

26

broad set of existing programming models familiar to high performance computing
application developers, system programmers and administrators.

 For example, the Intel Xeon Phi coprocessor uses the same Intel development
tools and product suites used to develop software for Intel Architecture processors,
including compilers, performance libraries, and analysis tools. Even more illustra-
tive is the fact that the coprocessor runs a standard Linux operating system, is IP
addressable, supports well-known tools and protocols like the SSH, can mount fi le
systems with NFS and all other standard Linux capabilities. In other words, the
coprocessor can run complete self-contained applications and operates as a
 networked Linux-based computer.

 In the remainder of this section, we will provide an overview of the Intel Xeon
Phi coprocessor’s hardware and software architecture that enables highly parallel
applications to achieve extraordinary performance.

3.1 Hardware Architecture Overview

 A symmetric multi-processor (SMP) on-a-chip is a good description for the Intel ®
Xeon Phi™ coprocessor. It provides up to 61 cores and signifi cant reliability features
while offering a familiar, well-known programming environment. When launched in
November 2012, Intel Xeon Phi coprocessors were already in seven of the world’s
faster supercomputers (per the “Top 500” list, top500.org) and were used to build the
world’s most power-effi cient supercomputer (per “Green 500” list, green500.org).
The Intel Xeon Phi coprocessor is a true engineering marvel in many ways.

 The ambitious goal for the coprocessor design was to simultaneously enable
evolutionary and revolutionary paths forward for scientifi c discovery through effi -
cient, high performance, technical computing. Evolutionary in creating a generally
programmable solution that matches the training, application investments, stan-
dards, and computing environments of an existing, vibrant High Performance
Computing (HPC) development community. Revolutionary in enabling powerful
new parallel focused computing elements that give a new target for long term sus-
tainable parallel programming optimization.

3.2 The Intel ® Xeon Phi™ Coprocessor Family

 The several different Intel Xeon Phi coprocessor models vary on such factors as
performance, memory size and speed, thermal (cooling) solutions and form factor
(type of card). All the coprocessor products interface to the Intel Xeon processor
host platform through a PCI Express bus connection and consist of a coprocessor
silicon chip on the coprocessor card with other components such as memory.

 Figure 3.1 depicts the two types of double-wide PCI Express cards that are offered
(passive and active cooling solutions). Passive heat sink cards will be used primarily

J. Jeffers

27

in supercomputing cluster data centers where densely packed rack mount compute
blades (nodes) will have high throughput cooling fans drawing air through the entire
unit. Active fan sink cards will typically be used in desk-side workstation units.

3.3 Coprocessor Card Design

 The coprocessor card can be thought of as a motherboard for a computer with up to
61 cores, complete with the silicon chip (containing the cores, caches and memory
controllers), GDDR5 memory chips, fl ash memory, system management controller,
miscellaneous electronics and connectors to attach into a computer system. A sche-
matic view of the key components of the coprocessor card is shown in Fig. 3.2 . The
major computational functionality is provided by the Intel Xeon Phi coprocessor
silicon chip. The silicon chip is, as you’d fi nd with many Intel Xeon processors,
contained in Ball Grid Array (BGA) packaging. This BGA package housing the sili-
con chip is the key component on a coprocessor card much like a processor is the
key component on a computer motherboard.

 Up to 16 channels of high bandwidth GDDR5 memory can be utilized and using a
method known as clamshell , up to 32 memory devices can be attached using wire
connections routed on both sides of the card, doubling the typical memory capacity.

 Fig. 3.1 Intel ® Xeon Phi™
coprocessor card forms (top:
passive cooling, bottom:
active cooling)

3 Intel ® Xeon Phi™ Coprocessors

28

 Flash memory on the card is used to contain the coprocessor silicon’s startup or
bootstrap code, similar to the BIOS in an Intel Xeon processor platform.

 The System Management Controller (SMC) handles monitoring and control
chores such as: tracking card-level information from temperature, voltage, and cur-
rent sensors, as well as adjusting the fan (if installed) accordingly to increase or
decrease cooling capacity. The SMC provides the host’s baseboard management
controller (BMC) vital function status and control via the industry standard
Intelligent Platform Management Interface (IPMI) over the System Management
Bus (SMBus). The operating system software on the coprocessor chip communi-
cates with the SMC via a standard I 2 C bus implementation.

3.4 Intel ® Xeon Phi™ Coprocessor Silicon Overview

 The Intel Xeon Phi coprocessor silicon implements the fundamental computational
and I/O capabilities. As shown in Fig. 3.3 , the many x86-based cores, the memory
controllers, and PCI Express system I/O logic are interconnected with a high speed
ring-based bidirectional on-die interconnect (ODI). Communication over the ODI is
transparent to the running code with transactions managed solely by the hardware.

GDDR GDDR

Intel® Xeon Phi™
Coprocessor BGA

GDDR

Power
Connectors

2×4 − 12V 150W

2×3 − 12V 75W

GDDR

GDDR

GDDR

GDDR

Temp

SMC

Current Voltage

12C

Fan Control

GDDR CHANNEL 9
C

H
A

N
N

E
L

8

C
H

A
N

N
E

L 14

C
H

A
N

N
E

L 15

C
H

A
N

N
E

L 0

C
H

A
N

N
E

L 1

12C

12C

SMBus

P
C

le G
en2×

16

C
H

A
N

N
E

L
7

CHANNEL 10

CHANNEL 11

CHANNEL 12

CHANNEL 13

CHANNEL 6

CHANNEL 5

CHANNEL 4

CHANNEL 3

CHANNEL 2

GDDR

GDDR

GDDR

GDDR

FLASH
SPI

XTAL CK505

PCle 12V 65W, 3.3V 10W

100 MHz

G
D

D
R

G
D

D
R

G
D

D
R

G
D

D
R

10
0

M
H

z

 Fig. 3.2 Intel ® Xeon Phi™ coprocessor card schematic. Note : On-board fan is only available on
the 3100 series active product

J. Jeffers

29

 Each core has an associated 512-KB Level 2 (L2) cache to provide high speed,
reusable data access. Furthermore, fast access to data in another core’s cache over
the ODI is provided to improve performance when the data already resides “on
chip.” Using a distributed Tag Directory (TD) mechanism, the cache accesses are
kept “coherent” such that any cached data referenced remains consistent across all
cores without software intervention.

 From a software development and optimization perspective, a simplifi ed way to
view the coprocessor is as a symmetric multiprocessor (SMP) with a shared Uniform
Memory Access (UMA) system; each core effectively having the same memory
access characteristics and priority regardless of the physical location of the refer-
enced memory.

3.5 Individual Coprocessor Core Architecture

 A high level diagram of each processing core on the coprocessor silicon is shown in
Fig. 3.4 . The structure of the core implies the key design goals of creating a device
optimized for high level of power-effi cient parallelism while retaining the familiar,
Intel architecture–based generally programmability. A 64-bit execution environ-
ment based on Intel64 ® Architecture is provided. Also, an in-order code execution
model with round-robin multithreading is employed to reduce size, complexity, and
power consumption of the silicon versus the deeply out-of-order, highly speculative
execution support used primarily to improve serial-oriented code performance on

GDDR5
Memory

Controller

Coprocessor
Core

L2 Cache

ODI ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core PCIe

Interface

L2 Cache

ODI ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

Coprocessor
Core

L2 Cache

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

GDDR5
Memory

Controller

ODI

 Fig. 3.3 Overview of the Intel ® Xeon Phi™ coprocessor silicon and the on-die interconnect (ODI)

3 Intel ® Xeon Phi™ Coprocessors

30

Intel Xeon processors. This difference in instruction processing fl ow also refl ects
how a programmer might consider partitioning and targeting code and applications
for platforms that include Intel Xeon Phi coprocessors. The multithreading of the
coprocessor plays a critical role in the in-order code execution model for achieving
maximum performance and load balancing which makes it important for virtually
all coprocessor applications to utilize. Coprocessor multithreading should not be
confused with hyper-threading (HT) on Intel Xeon processors which uses opportu-
nistic, event driven thread switching.

 The core includes 32 KB each of L1 instruction (code) cache and L1 data cache,
as well as the private (local) 512-KB L2 cache. Code is fetched from memory into
the instruction cache and then goes through the instruction decoder for dispatch and
execution. There are two primary instruction processing units. The scalar unit
 executes code using existing traditional x86 and x87 instructions and registers.
The vector processing unit (VPU) executes the newly introduced Intel Initial Many
Core Instructions (Intel ® IMCI) utilizing a 512-bit wide vector length enabling very
high computational throughput for both single precision and double precision cal-
culations. Note that there is no support for MMX™ instructions, Intel Advanced
Vector Extensions (Intel ® AVX), or any of the Intel ® Streaming SIMD Extensions
(Intel ® SSE). These instruction families were omitted to save space and power and
to favor 512-bit SIMD capabilities unique to the Vector Processing Unit (VPU) of
the Intel Xeon Phi coprocessor.

Instruction Fetch

Instruction Decode

Scalar
Unit

Vector
Unit

Scalar
Registers

Vector
Registers

L1
32K Icache & 32K Dcache

512 L2 Cache
Local Subset

On-Die Interconnect

 Fig. 3.4 Intel ® Xeon Phi™
coprocessor individual core
structure

J. Jeffers

31

3.6 Coprocessor Software Architecture Overview

 The unique thing for many fi rst introduced to the Intel ® Xeon Phi™ coprocessor
operational software environment and architecture is its intentional goal to not be
unique. As an Intel product, the coprocessor inherits many of the foundational ele-
ments and capabilities of widely used Intel Architecture processing platforms.
These traits enable the coprocessor to be integrated as a peer processing platform
into the well understood standard software infrastructure familiar to systems level
developers, application developers and system administrators for both single work-
station and large cluster supercomputers.

 The most obvious indicator of broad capabilities is that the Intel Xeon Phi copro-
cessor bootstraps and runs a Linux operating system (OS) including Linux’s sub-
stantial networking capability. The ability to run a Linux OS and communicate as a
network peer is one of the primary reasons it is termed a coprocessor and not just an
accelerator (which would require software applications to be managed by the host
platform).

 Another advantage is that the development tools such as compilers, profi ling
tools and debuggers can also be used in a similar manner as an Intel ® Xeon ®
Processor. If fact, the Intel compilers, libraries and development tools suites are one
in the same for both processors and coprocessor. So the Intel Xeon Phi Coprocessor
development allows seamless use of standards and libraries such as OpenMP, Intel
Math Kernel Library, Intel Thread Building Blocks, MPI and many others.

 In this section, we look at the software architecture and components that enable
the coprocessor to operate seamlessly in a standard environment. The architecture
was designed to support a broad range of applications and programming models.
Therefore, we will also discuss the variety of programming models available to take
full advantage of the coprocessor capabilities.

 There are two major components that comprise the software structure used to
build and run applications and system services that utilize the coprocessor.

• Development Tools and Runtimes . The development tools and associated runtime
services and libraries provided by tool packages such as Intel Parallel Studio XE
2013 and Intel Cluster Studio XE 2013. The Intel C/C++ compiler, Intel Fortran
compiler, and Intel MPI library are some of the sub-components of these devel-
opment tools packages.

• Intel ® Manycore Platform Software Stack (Intel ® MPSS). The operational soft-
ware specifi c to the coprocessor including middleware interfaces used by the
development tools, device drivers for communication and control, coprocessor
management utilities (such as the Control Panel), and the coprocessor’s local
Linux operating system. Collectively this set of software is known as the Intel
Manycore Platform Software Stack.

 When installing coprocessors for use in an Intel ® Xeon ® processor platform, an
early step that normally needs to be done is to download, install, and launch the lat-
est version of Intel MPSS (available at the intel.com/software/mic Web site). You

3 Intel ® Xeon Phi™ Coprocessors

32

will then either access an existing toolset or install the available Intel or third party
development tools including compilers.

 Figure 3.5 shows a block diagram of the key components that comprise the
coprocessor software architecture.

 Figure 3.5 is broken into left and right sides as well as top and bottom halves,
represented by the dashed lines. The left side corresponds to components on the
host processor platform and the right side depicts software components on the
coprocessor. In the next few sections, we will touch upon the key architectural con-
cepts this diagram implies.

3.6.1 Symmetry

 Looking at the left and right sides of Fig. 3.5 it should strike you that, with very few
exceptions, the “boxes” on both sides of the diagram are the same. This belies a key
underlying concept at the foundation of the software architecture for a platform with

Intel® TBB Intel® TBBIntel® CILK™ Plus Intel® CILK™ PlusIntel® MKL Intel® MKLOpenMP* OpenMP*

Intel® Vtune
Amplifier

Intel® Vtune
Amplifier

Intel® C/C++ and
Intel® Fortran Compilers

Intel® C/C++ and
Intel® Fortran Compilers

Intel® MPI Intel® MPIDebuggers DebuggersTools & Apps Tools & Apps

Host Intel® Xeon Phi™ Coprocessor

uDAPL

Host (R3)

Host (R0)

OFED* Verbs

HCA
Library

ME

BMC SMC

OFED*/SCIF
Library

User SCIF
Library

MYOCOI

IB Proxy
Daemon

HCA
Proxy

HCA
Driver

OFED*
ulp’s

OFED* Core SW

OFED* /
SCIF Driver

Host/SCIF Driver NetDev

Linux* Kernel

Management
Middleware

Ganglia*

PCI Express*

InfiniBand* HCA

Control
Panel

Board
Tools

TCP/IP
UDP/IP

Sockets

uDAPL

OFED* Verbs

HCA
Library

OFED*/SCIF
Library

User SCIF
Library

MYO COI

HCA
Proxy

OFED* Core SW

OFED* /
SCIF Driver

SCIF DriverNetDev

Coprocessor Linux OS

TCP/IP
UDP/IP

Sockets

MPSS install

Std. SW

Legend

Mod. Linux*

Intel® SW

Std. OFED*

Intel® HW

Other HW

sys./proc

 Fig. 3.5 The Intel ® Xeon Phi™ software architecture

J. Jeffers

33

one or more coprocessors: that concept is symmetry. Making the coprocessor software
components and interfaces symmetric with the host processor platform, in other
words functionally identical, enables the coprocessor to be engaged by software
developers in the same manner as they engage the processor.

 This is a simple yet very powerful concept. This symmetry provides the funda-
mental basis supporting common development tools and common programming
models on both the processor and coprocessor. Developers at all levels including
those implementing tools, system software, and applications benefi t by the familiar
and common interfaces dramatically minimizing the learning curve and porting
time for coprocessor targeted solutions of all kinds.

3.6.2 Ring Levels: User and Kernel

 The top and bottom halves of the diagram in Fig. 3.5 represent the standard operat-
ing system notion of protection domain rings with user-level application code and
system interface execution at ring 3 and more trusted, system level operating system
kernel and driver code running at ring 0.

 It is beyond our scope to more deeply discuss these operating system design
areas other than to indicate access to devices and operating system kernel services
occurs virtually always through counterpart ring 3 user mode library interfaces and
kernel mode ring 0 modules. The user mode library interfaces manage the ring tran-
sitions between the companion kernel-level modules, maintaining the security and
integrity of the system. The concept can be seen in Fig. 3.5 with like-named ring 3
user mode libraries calling upon their corresponding kernel module.

 Now, we will discuss the programming models that are enabled and that infl u-
enced the creation of the coprocessor software architecture. Then the purpose of the
provided system modules will have better context.

3.7 Coprocessor Programming Models and Options

 The overall architecture of a platform that includes Intel Xeon Phi coprocessors
enables a broad array of usages. This fl exibility allows a dynamic range of solutions
to address many target computing needs—from mostly serial processing to highly
parallel processing to a mix of both. Intel and industry partners are delivering and
creating tools and standards for processor/coprocessor platforms that can be used to
develop applications that are optimal for the problem at hand.

 Figure 3.6 illustrates the compute spectrum enabled when coupling processors
and coprocessors. Depending on the application’s compute needs, execution can be
initiated on either a host processor or on one or more coprocessors. Depending on
the application needs and system environment, any mix of computation between the
processor and coprocessor can be chosen for optimal performance.

3 Intel ® Xeon Phi™ Coprocessors

34

 Included in Fig. 3.6 is a conceptual view of how code might be launched and
executed in the key enabled programming uses. From left to right those models are:

• Processor Hosted . The application is launched and executed on processors only.
• Offl oad . The application is launched and primarily managed on processors and

selected portions of code (usually highly parallel) are run on coprocessors using
either the Intel Math Kernel Library automatic offl oad capability, Intel Language
Extensions for Offl oad or OpenMP “target” extensions.

• Symmetric . The application is launched on both coprocessors and processors
with cooperative communication (typically via MPI).

• Coprocessor Hosted . The application is launched and executed on coprocessors
only.

3.7.1 Breadth and Depth

 The software architecture not only enables the breadth of models shown in Fig. 3.6
but also provides well known, deeper level fi ne controls similar to those available on
other Intel Architecture processing platforms. Developers who want or need to
focus on absolute maximum performance, are implementing targeted libraries and
tools, or are developing specialty capabilities not otherwise fully enabled by exist-
ing tools are likely users of these programming alternatives. Figure 3.7 illustrates
some of the layers and options available for developing applications with increasing
levels of control, and, generally, more complexity.

 Fig. 3.6 The wide spectrum of joint programming models for an Intel ® Xeon ® platform with a
coprocessor including primary application usages

J. Jeffers

35

3.7.2 Coprocessor MPI Programming Models

 As previously mentioned, the coprocessor architecture has been designed to readily
support the industry standard Message Passing Interface. In particular, the Intel ®
MPI library supports all the programming execution models described in Fig. 3.6 .
MPI is the de facto library-based communication environment used to enable paral-
lel applications to run, communicate, and scale across multiple processing cores,
either between the multiple cores in a single Intel Xeon processor platform or across
a connected network of nodes (individual platforms) in a cluster. Furthermore, key
MPI supporting sub-component standard layers such as the Open Fabrics Alliance
defi ned Open Fabrics Enterprise Distribution (OFED) interfaces are also supported
on both the processor and the coprocessor.

3.7.3 Offl oad Model

 The offl oad model is characterized by the MPI communications taking place only
between the host processors. The coprocessors are used exclusively through the
offl oad capabilities provided as compiler extensions. This mode of operation is
fairly straightforward, simply enabling offl oading as part of existing or newly devel-
oped MPI-based applications. Making MPI library calls inside offl oaded code is not
supported. Figure 3.8 illustrates the MPI with offl oad model.

 Fig. 3.7 Coprocessor programming options providing different methods of control for developers
at all levels

3 Intel ® Xeon Phi™ Coprocessors

36

3.7.4 Coprocessor-Only Model

 The MPI coprocessor-only or native model has the MPI processes launched and
residing solely on the coprocessor. MPI libraries, the application, and other needed
libraries are uploaded to the coprocessors. Then an application can be launched
from the host or from the coprocessor. Once the application is running, MPI net-
work communications between other coprocessors (either on the local node or to
other network fabric connect nodes) are managed by the Intel ® Coprocessor
Communications Link (Intel ® CCL) services. Intel CCL provides underlying ser-
vices to the MPI library to select the optimal transport for MPI messages. One such
Intel CCL transport mechanism is the peer-to-peer PCI Express DMA support to
directly transfer message data between the coprocessor’s memory and a peer
Infi niBand (IB) adapter without host memory staging. Figure 3.9 illustrates the MPI
Coprocessor-Only model.

3.7.5 Symmetric Model

 The MPI Symmetric programming model launches and executes the MPI applica-
tion on both the host processor and the coprocessors. Figure 3.10 illustrates the
symmetric MPI model. This is the most fl exible model supporting “any to any”
messaging. Message passing may occur within the coprocessor, within the host
processor, between the coprocessor and the processor within the same node, and
between coprocessors and processors across a cluster through several fabric

Data

Coprocessor

Coprocessor

MPI CPU

CPU

N
et

w
or

k

Data

Offload

Offload

 Fig. 3.8 MPI on the host
processor platform using
offl oad to coprocessors

J. Jeffers

37

C
oprocessor

C
oprocessor

MPI

CPU

CPU

N
et

w
or

k
Data

Data

 Fig. 3.9 MPI running on coprocessors only

Data

C
oprocessor

C
oprocessor

MPI CPU

CPU

N
et

w
or

k

Data

Data

Data

 Fig. 3.10 MPI symmetric communications with MPI running on both processors and
coprocessors

3 Intel ® Xeon Phi™ Coprocessors

38

mechanisms. As with the coprocessor only model, Intel ® CCL optimally manages
communication transport to or from processors and coprocessors across the
network.

3.8 Summary

 The hardware and software architecture of the Intel Xeon Phi Coprocessor draws
heavily from its Intel Architecture heritage while taking a leap forward as a vehicle
for energy effi cient, high performance parallel applications. It retains a familiar
multi-level cache-based memory hierarchy, SIMD vector processing, shared mem-
ory usage among the cores, and hardware threading. These parallel computing capa-
bilities are extended on the coprocessor by adding many in-order processing cores,
wider vector units and four hardware threads per core enabling higher performance
for existing and emerging highly parallel workloads. These hardware architecture
features have allowed existing, well-known operating environments and develop-
ment tools to be used with the coprocessor making it immediately familiar to appli-
cation developers, system programmers, and system administrators.

 Since the Intel Xeon Phi coprocessor retains many of the familiar characteristics
of the Intel Xeon processor, it is useful to understand how to compare their parallel
computing capability. Advice for successful parallel programming can be summa-
rized as “Program with lots of threads that use vectors with your preferred program-
ming languages and parallelism models.” Since most applications have not yet been
structured to take advantage of the full magnitude of parallelism available in any
processor, understanding how to restructure to expose more parallelism is critically
important to enable the best performance for Intel Xeon processors or Intel Xeon Phi
coprocessors. This restructuring itself will generally yield benefi ts on most modern
general-purpose computing systems, a bonus due to the emphasis on common pro-
gramming languages, models, and tools across the processors and coprocessors.

 It has been said that a single picture can speak a thousand words; for understand-
ing Intel Xeon Phi coprocessors (or any highly parallel device) it is Fig. 3.11 that
speaks a thousand words. You should not dwell on the exact numbers. The picture
speaks to this principle: Intel Xeon Phi coprocessors offer the ability to make a
system that can potentially offer exceptional performance while still being buildable
and power effi cient. Intel Xeon processors deliver performance much more readily
for a broad range of applications but do reach a practical limit on peak performance
as indicated by the end of the line in Fig. 3.11 . The key is “ready to use parallelism.”
Note from the picture that more parallelism is needed to make the Intel Xeon Phi
coprocessor reach the same performance level, and that requires programming
adapted to deliver that higher level of parallelism required. In exchange for the pro-
gramming investment, we may reach otherwise unobtainable performance. The
advantage of these Intel products is that the use of the same parallelism model,
programming languages, and familiar tools to greatly enhance preservation of
 programming investments.

J. Jeffers

39

3.9 For More Information

 Some additional reading worth considering includes:

• “Intel ® Xeon Phi™ Coprocessor High Performance Programming”,
 Jim Jeffers, James Reinders, © 2013, publisher: Morgan Kaufmann. http://
lotsofcores.com

• “Intel ® Xeon Phi™ Coprocessor High Performance Programming”
• “An Overview of Programming for Intel ® Xeon ® processors and Intel ® Xeon

Phi™ coprocessors” (Intel 2012) available at http://tinyurl.com/xeonphisum
• Intel® Xeon Phi™ Coprocessor: Intel Developer Zone, documentation and addi-

tional information is also available at http://intel.com/software/mic

2000

Intel Xeon Phi coprocessor Peak

Intel Xeon processor Peak

Sample Xeon Phi perf.

P
er

fo
rm

an
ce

Threads

200

400

600

800

1000

1200

1400

1600

1800

0
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116

S
am

pl
e

X
eo

n
pe

rf.

 Fig. 3.11 This picture speaks a thousand words

3 Intel ® Xeon Phi™ Coprocessors

http://lotsofcores.com/
http://lotsofcores.com/
http://tinyurl.com/xeonphisum
http://intel.com/software/mic

41X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_4, © Springer Science+Business Media New York 2013

 Abstract The scientifi c and engineering advancements in the twenty-fi rst century
pose computing intensive challenges in managing Big Data, using complex
 algorithms to extract information and knowledge from Big Data, and simulating
physical and social phenomena. Cloud computing is considered as the next genera-
tion computing platform with the potential to address these computing challenges
and redefi ne the possibilities of geoscience and digital Earth. This chapter intro-
duces through examples how cloud computing can help accelerate geocomputation
with: (1) easy and fast access to computing resources that can be available in sec-
onds to minutes, (2) elastic computing resources to handle spike computing loads,
(3) high- end computing capacity to address large-scale computing demands, and (4)
distributed services and computing to handle the distributed geoscience problems,
data and users.

 Keywords Spatial computing • Geosciences • Field-programmable gate array
(FPGA) • Many integrated core (MIC) • Parallel computing • CyberGIS

 Chapter 4
 Accelerating Geocomputation
with Cloud Computing

 Qunying Huang , Zhenlong Li , Jizhe Xia , Yunfeng Jiang ,
 Chen Xu , Kai Liu , Manzhu Yu , and Chaowei Yang

 Q. Huang
 Department of Geography , University of Wisconsin,
 Madison , WI 53706 , USA

 Z. Li • J. Xia • Y. Jiang • C. Xu • K. Liu • M. Yu
 Center for Intelligent Spatial Computing , George Mason University ,
 Fairfax , VA 22030- 4444 , USA

 C. Yang (*)
 Department of Geography and GeoInformation Science, Center for Intelligent Spatial
Computing , George Mason University , 4400 Univ. Dr. , Fairfax , VA 22030-4444 , USA
 e-mail: cyang3@gmu.edu

42

4.1 Introduction

 Petabytes of geoscience data are collected on a daily base. Mining information and
knowledge from the data and using the data to simulate large-scale phenomena call
for a computing infrastructure to effi ciently process these computing tasks (Yang
et al. 2011a). However, most traditional computing infrastructure lacks the agility to
keep up with the accelerating demands for more computing resource. Cloud com-
puting, a new distributed computing paradigm, can quickly provision computing
resource in an on-demand fashion. This can be utilized to address Geoscience chal-
lenges of computing, data and concurrent intensities (Yang et al. 2011b). This chap-
ter introduces how cloud computing can help accelerate geocomputation in four
aspects through examples:

• Computing availability . A typical timespan for procuring traditional computing
infrastructure is weeks to months and signifi cant human resources are spent.
After the procurement of the infrastructure, more effort for administrative tasks
is required for daily maintenance. Cloud computing has demonstrated the capac-
ity to accelerate the procurement of computing resource and reduce dedicated
administrative cost (Yang et al. 2011b).

• Computing elasticity . With the availabilities of on-demand computing resources
(e.g., computing power, storage and networking), cloud computing can help
applications to handle spike computing requirement without long-term commit-
ment (Huang et al. 2013b). For example, Amazon Elastic Cloud Computing
(EC2) provides auto-scaling service, allowing cloud consumers to scale Amazon
EC2 computing capacity up or down automatically according to pre-defi ned con-
ditions (e.g., central processing unit [CPU] utilization, and the user concurrent
access number).

• High performance computing (HPC) capability . Infrastructure as a Service
(IaaS), a category of popular cloud services, can easily offer high-end computing
capabilities. For example, Amazon EC2 Cluster, with 17024 CPU cores in total,
a clock speed of 2.93 GHz per core, and 10G Ethernet network connection, was
ranked as 102 th on the TOP 500 supercomputer lists in November 2012. 1 The
HPC capability of cloud computing can be easily leveraged to support critical
scientifi c computing demands (Huang et al. 2013b ; Rehr et al. 2010).

• Service and computing distribution . Cloud computing natively supports process-
ing of distributed data, problems, and users (Yang et al. 2011b). On one hand,
cloud computing providers offer computing and storage services that are glob-
ally distributed (for example, three major cloud providers, Amazon, Microsoft
and Google, have multiple data centers around the world). On the other hand, the
geoscience data, users, and problems are globally dynamically distributed.

 The following sections introduce how cloud computing can help accelerate geo-
computation from these four aspects in details.

1 http://www.top500.org/system/177457

Q. Huang et al.

http://www.top500.org/system/177457

43

4.2 Computing Availability

 Better access to computing resources is one of the reasons that cloud users are tran-
siting from traditional computing to cloud computing. Comparing to using tradi-
tional computing, leveraging cloud computing can help users reduce the time spent
on preparing infrastructure (e.g., purchasing physical machines, and confi guring the
networking). In addition, system administration and maintenance works are signifi -
cantly reduced (Huang et al. 2013b). Table 4.1 compares the average time spent on
deploying and operating dust storm model on Amazon EC2 to that of a local
cluster.

 Only several hours to several days are required for deploying new cloud comput-
ing virtual machines (VMs) for model simulations based on either using public
Amazon machine image (AMI) or hardening image from scratch. Using public
available AMI other than hardening the image from scratch could leverage precon-
fi gured basic operating system (OS) package and required cluster software pack-
ages, such as the scheduling software MPICH2. 2 This could help, for example the
dust storm model, reduce the confi guration effort signifi cantly from several days to
several hours. After the fi rst deployment, EC2 users can use the deployed image to
launch as much as VMs as needed in a few minutes to form a cloud based cluster
(Table 4.1). Considering the time of purchasing the servers and confi guring the
hardware and software, a traditional HPC cluster requires at least several weeks to
set up the deployment environments for the fi rst time.

 In addition to using private physical HPC environments, users can also apply
public HPC computing resources. However, the approval process may take several
weeks to even months. For example, requests for accessing XSEDE, a single virtual

2 http://phase.hpcc.jp/mirrors/mpi/mpich2/

 Table 4.1 Average time spent on deploying dust storm model onto Amazon EC2 and local cluster
(revised based on Huang et al. 2013b)

 Items
 Local
cluster

 Amazon
EC2 Options for cloud environment

 Procure cluster ~4 weeks None N/A
 Confi gure cluster operating

system (OS)
 ~1 week None Use a public AMI with OS installed

 ~1 week Harden image from scratch
 Confi gure dust storm model ~1 day ~2 h Use a public AMI with most required

software dependencies installed
 ~1 days Harden image from scratch

 Start cluster 120 s 45 s N/A
 Stop cluster 60 s 57 s
 Resume cluster N/A 45 s
 Total time needed for the fi rst

time deployment
 ~5 weeks ~2 h Use a public AMI

 ~1 week Harden image from scratch

4 Accelerating Geocomputation with Cloud Computing

http://phase.hpcc.jp/mirrors/mpi/mpich2/

44

system that scientists can use to interactively share computing resources, are
reviewed quarterly by the XSEDE Resource Allocation Committee (XRAC) and
users should summit the requests 2.5 months in advance. 3

 Comparing to both building up a private HPC or applying a public HPC account,
cloud computing can accelerate geocomputation by getting access to the required
computing resources in a few minutes instead of weeks or months.

4.3 Computing Elasticity

 One of the most important characteristics of cloud computing is elasticity (Mell and
Grance 2011). With elasticity, applications, running on the cloud, can increase the
amount of computing resources to handle spike workloads and accelerate geocom-
putation in a few seconds to minutes. Computing resources can be released once the
workloads decreased. In geoscience applications, elasticity is critical since they
may require the allocation of dynamic computing resources dynamically. For exam-
ple, responding to natural disasters (such as, earthquakes, wildfi res and tsunami)
requires elastically bringing up more computing resources to handle the spike
requests from the public and decision makers (Huang et al. 2013b ; Yang et al.
 2011b).

 This section uses Global Earth Observation System of Systems (GEOSS)
Clearinghouse (CLH) as an example to demonstrate how to use elasticity to handle
spiking workloads. GEOSS CLH is the engine of GEOSS common infrastructure to
provide the capabilities of managing, publishing, harvesting, and searching meta-
data (Liu et al. 2011). As a global operational system, GEOSS CLH has been inten-
sively accessed by general end users, developers and other Geospatial
Cyberinfrastructure (GCI) communities (e.g. Group on Earth Observations [GEO]
portal). From December 22nd 2010 to October 31st 2012, the total number user
access is 2,202,660. By analyzing the GEOSS CLH log fi le, two user access pat-
terns that result spike workloads are discovered:

• United States and Europe have a large number of end users who generate mas-
sive concurrent accesses.

• The user access frequency increases and decreases daily with spike workloads in
specifi c time periods (normally at local morning and afternoon hours).

 The concurrent intensity can cause performance issues such as slow response,
network congestion and even system failure of the GEOSS CLH operation. To
address these issues, the elasticity of cloud computing is adopted.

 Figure 4.1 shows the performance of GEOSS CLH on Amazon EC2 (average
response time measured in seconds) by using elasticity to handle different numbers
of concurrent requests. The x-axis indicates the concurrent access number and the
y-axis indicates the average response time. Utilizing elasticity in Amazon EC2

3 https://www.xsede.org/web/guest/allocation-policies#uses:eligibility

Q. Huang et al.

https://www.xsede.org/web/guest/allocation-policies#uses:eligibility

45

requires predefi ned elasticity rules. For instance, the rule could be defi ned as: when
the user request number exceeds a certain limit, or the latency time is longer than
certain seconds (4 seconds in this experiment), a new GEOSS CLH instance will be
automatically launched. 4 In addition, the maximum number of GEOSS CLH
instances can be predefi ned (fi ve instances in this experiment).

 According to the results, elasticity can accelerate the geocomputation and reduce
the average response time. When GEOSS CLH has received 50–60 concurrent
requests, where average response time is longer than 4 seconds, a new GEOSS CLH
instance was launched according to the predefi ned elasticity rules. However, the
new instance cannot respond user quests instantly and require around 1 minute to
boot up. This causes the average time started to drop until the concurrent number
reaches 80. GEOSS CLH started to launch the third, fourth or fi fth instance when
the concurrent access number is 170, 210 or 270. In addition, when workloads are
reduced to a certain level, additional GEOSS CLH instances will be terminated to
release computing resources.

4.4 HPC Capability

 Numerical methods and complex algorithms are computing intensive. And perform-
ing complex computing tasks requires the availability of a large number of comput-
ing resources, and serial computing using a single computer is not suffi cient any
more (Huang et al. 2013a). Traditionally, these needs have been addressed by using
HPC facilities such as clusters and supercomputers (Huang and Yang 2011), which
are diffi cult to confi gure, maintain and operate (Vecchiola et al. 2009). Therefore,
geoscientists are seeking for high-end computing technologies with better fl exibil-
ity and confi gurability.

4 http://aws.amazon.com/autoscaling/

0

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Concurrent Number

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

s)

24
0

25
0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

33
0

34
0

35
0

36
0

37
0

38
0

39
0

40
0

5

10

15

20

25

No Elasticity

Elasticity30

35

 Fig. 4.1 EC2 response performance comparisons by single and fi ve autoscaling instances

4 Accelerating Geocomputation with Cloud Computing

http://aws.amazon.com/autoscaling/

46

 Cloud computing provides scientists with a complete new computing paradigm
for accessing and utilizing the computing infrastructure. Cloud computing services,
especially IaaS, can be easily adopted to offer the prevalent high-end computing
technologies to provide more powerful computing capabilities (Fig. 4.2). A range of
diverse computing resources for users’ computing needs can be offered, such as
Many Integrated Cores (MICs), Graphics Processing Units (GPUs), and Field
Programmable Gate Arrays (FPGAs). For example, Amazon provides GPU-based
VMs in a scalable, elastic environment on a fast, low latency and non-blocking
10 Gbps network.

• GPU Computing
 GPU computing technology becomes popular in the past years (Nickolls and
Dally 2010). As a specialized circuit, GPU is initially designed to accelerate
image processing (Pharr and Fernando 2005). With the distinguished parallel
computing capabilities for processing large volume data, GPU computing began
to be used in geocomputation in the past several years. For example, GPUs have
been demonstrated to be as excellent computing resources to address geoscience
problems such as computational fl uid dynamics, and seismic wave propagation
(Walsh et al. 2009). Li et al. (2013) have utilized many-core GPUs to improve
the performance of visualizing 3D/4D environmental data. High performance
GPUs also enables accelerating batch processing of spatial raster data by per-
forming hundreds of arithmetical operations in parallel (Steinbach and
Hemmerling 2012).

 Currently, GPU computing has been gradually integrated into cloud comput-
ing infrastructure, which is called GPU-based cloud computing (GCC). On one
hand, GCC provides an additional option for applications that can benefi t from

 Fig. 4.2 Cloud computing platforms can provide the latest high end computing devices

Q. Huang et al.

47

the effi ciency of the parallel computing capability of GPUs. 5 On the other hand,
GCC can provide more benefi ts for applications by utilizing cloud capabilities
(e.g., fast accessibility in Sect. 4.2 , and elasticity in Sect. 4.3) compared to that
of leveraging GPU outside of cloud computing platforms. Therefore, GCC is
now used in a variety of scientifi c research and applications. For example, Wang
and Shen (2011) used GCC to support intelligent transportation management.
Sugumaran et al. (2011) compared the performance of CPU and GPU on cloud
platform for processing massive Light Detecting and Ranging (LiDAR) topo-
graphic data.

• MIC Computing
 Inter ® MIC Architecture combines 50 or more Inter ® CPU cores into a single
chip. 6 The MIC architecture supports a high degree of parallelism with smaller,
lower-power performance Intel ® processor core. For example, the microproces-
sor, “Single-Chip Cloud Computer” (SCC), created by the Intel Labs, is capable
of scaling to 100 cores and beyond. 7 Because of its high degree of parallelism,
MIC architecture has been used by many scientists to solve scientifi c problems.
For example, Wald (2012) investigated how to effi ciently build bounding volume
hierarchies with surface area heuristic on the MIC architecture. Satish et al.
(2010) have presented a competitive analysis of comparison and non-comparison
based sorting algorithm on CPUs and GPUs, and implemented and tested the
algorithm on the MIC architectures.

 The ever increasing HPC requirement needs more research and developments
for new computer architectures. As a new multiple processor computer architec-
ture, MIC architecture should be integrated into cloud computing to empower
high- end parallel computing capability.

• FPGA Computing
 FPGA is an integrated circuit that contains a large number of (64 to over 10,000)
identical and programmable logic blocks, and a programmable routing which
allows the logic block inputs and outputs to be connected to form larger circuits
(Betz and Rose 1999). Field Programmable (FP) means that the FPGA’s func-
tion is defi ned by a user’s program rather than by the manufacturer of the device. 8
FPGAs show very high computing capability for image processing, with high
degree of parallelism and a large number of internal memory banks (Saegusa
et al. 2008). Underwood (2004) demonstrated that at one point an FPGA had a
higher peak fl oating-point performance than a CPU core in simple operations
such as single and double precision compliant fl oating-point addition, multipli-
cation and division. This is because FPGAs are able to customize the allocation
of resources to meet the needs of the application while CPUs have fi xed func-
tional units.

5 http://aws.amazon.com/gpu/
6 www.intel.com
7 http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
8 http://www.epanorama.net/links/fpga.html

4 Accelerating Geocomputation with Cloud Computing

http://aws.amazon.com/gpu/
http://www.intel.com/
http://www.intel.com/content/www/us/en/research/intel-labs-single-chip-cloud-computer.html
http://www.epanorama.net/links/fpga.html

48

 In addition to good computing performance, FPGAs also present interesting
opportunities for fault tolerance due to their ability to be reconfi gured (Stott et al.
 2008). Therefore, it is possible to provide more reliable cloud computing ser-
vices using FPGAs-based computing system than that of traditional CPU-based
system. Some creative research have been done on FPGAs in cloud computing
architecture. For example, Shu et al. (2012) presented a DaaS (Desktop-as-a-
Service) with cloud server technologies on FPGA to address the problem caused
by high power consumption and heavy network traffi c.

4.5 Service and Computing Location Distribution

 Cloud computing provides distributed computing resources to support distributed
data processing and computing requirements. Cloud computing could accelerate
distributed geospatial computation in at least two aspects: (1) easily integrating
cloud computing platforms from different organizations to build a larger computing
pool; and (2) optimizing geospatial applications by considering spatiotemporal dis-
tributions of data, computing resources and users.

• Distributed computing resource integration
 Geoscience applications are often data and compute intensive due to the underly-
ing large volume, complex and high dimensional spatiotemporal datasets to be
processed, analyzed and visualized (Yang et al. 2011b). Users of these applica-
tions require the results to be returned in a timely manner or even real time. For
example, dust storm modeling is a typical compute intensive process and near
real time dust storm simulation is essential for dust storm forecasting. Single
computer, even with high-end hardware confi gurations, is far from enough to
fulfi ll this requirement. Cloud computing offers the possibility to build a distrib-
uted computing infrastructure by leveraging less expensive commodity comput-
ers all over the world. Organization can contribute distributed resources to form
a larger computing pool. This distributed infrastructure can serve as a spatial
cloud computation (SCC) platform for best utilizing, managing and supporting
big data processing, accessing, discovery, and dissemination. Building such a
SCC platform is better than that of traditional distributed computing paradigm in
that (1) the virtualization technology can be used to encapsulate the underlying
computing infrastructure to make it more usable; (2) cloud computing provides
the capabilities of the elasticity for different geoscience applications (Yang et al.
 2011b ; Sect. 4.3).

• Geospatial application deployment optimization
 Deploying geoscience applications onto cloud computing enables users to take
the advantage of elasticity, scalability and high-end computing capabilities
offered by cloud computing. However, in order to optimize the deployment, spa-
tiotemporal patterns of computing resources, storage resources and users need to
be considered. These spatiotemporal patterns can be mined from the following
aspects (1) the physical location of computing and storage resources, (2) the

Q. Huang et al.

49

distribution of potential users, and (3) the dynamic massive concurrent access for
users at different locations. Figure 4.3 depicts the relationship among users,
computing resources and storage resources in a distributed cloud-based
environment.

 The fi rst aspect to be considered is the spatial distribution of computing and
storage resources. When deploying applications onto cloud services, the virtual-
ization capability of cloud computing makes the unifi ed computing and storage
resources available at all cloud regions. However, the actual computing resources
(e.g., underlying physical computing resources of a VM) and storage resources
(e.g., data centers that store geospatial datasets) are physically distributed. For
example, Amazon has multiple global data centers and edge locations for applica-
tions to better deliver content to global end users with lower latency. 9 Examining
the distribution pattern of the underlying physical resources as well as considering
the application characteristics will help us better deploy the application and choose
where to store geospatial data to improve the overall system performance.

 Another aspect is the spatial distribution of users and their temporal access
 patterns of the application. For example, if an application is mostly accessed dur-
ing daytime, then users from North America and Asia are less likely to access the
application at the same time due to the time difference of the two continents.
Exploring the users’ spatiotemporal patterns is helpful to address concurrent issues
when many users are interacting with an application simultaneously (Yang et al.
 2011b). This is especially important for the concurrent intensive applications,

9 http://aws.amazon.com/cloudfront/

 Fig. 4.3 Relationship among users, computing resources and geospatial resources

4 Accelerating Geocomputation with Cloud Computing

http://aws.amazon.com/cloudfront/

50

since intensive concurrent accesses may cause serious performance issues
(Sect. 4.3). Once the users’ spatiotemporal access patterns are identifi ed, these
patterns can be applied to defi ne the elasticity rules mentioned in Sect. 4.3 to effec-
tively address the intensive concurrent access issues by handling the load with
scalable servers.

4.6 Conclusion

 Cloud computing becomes a promising computing infrastructure to accelerate geo-
science research and applications by pooling, elastically sharing, and integrating
latest computing technologies, and deploying physically distributed computing
resources. This chapter discusses how cloud computing can accelerate geocomputa-
tion from four aspects including the computing availability (Sect. 4.2), elasticity
(Sect. 4.3), HPC capability (Sect. 4.4), and computing location distribution
(Sect. 4.5). The benefi ts brought by cloud computing to accelerate geocomputation
are also helping redefi ne the possibility of geosciences and digital Earth for the
twenty-fi rst century (Yang et al. 2013).

 References

 Betz V, Rose J FPGA routing architecture: Segmentation and buffering to optimize speed and
density. In: Proceedings of the 1999 ACM/SIGDA seventh international symposium on Field
programmable gate arrays, 1999. ACM, pp 59–68.

 Huang Q, Yang C (2011) Optimizing grid computing confi guration and scheduling for geospatial
analysis: An example with interpolating DEM. Computers & Geosciences 37(2):165–176.

 Huang Q, Yang C, Benedict K, Rezgui A, Xie J, Xia J, Chen S (2013a) Using adaptively coupled
models and high-performance computing for enabling the computability of dust storm fore-
casting. International Journal of Geographical Information Science 27(4):765–784.

 Huang Q, Yang C, Benedict K, Chen S, Rezgui A, Xie J (2013b) Utilize cloud computing to sup-
port dust storm forecasting. International Journal of Digital Earth 6(4):338–355.

 Li J, Jiang Y, Yang C, Huang Q, Rice M (2013) Visualizing 3D/4D environmental data using
many-core graphics processing units (GPUs) and multi-core central processing units (CPUs).
Computer & Geosciences 59:78–89.

 Liu K, Yang C, Li W, Li Z, Wu H, Rezgui A, Xia J The GEOSS Clearinghouse high performance
search engine. In: Geoinformatics, 2011 19th International Conference on, 2011. IEEE, pp 1–4.

 Mell P, Grance T (2011) The NIST defi nition of cloud computing (draft). NIST special publication
800:145.

 Nickolls J, Dally WJ (2010) The GPU computing era. Micro, IEEE 30(2):56–69.
 Pharr M, Fernando R (2005) Gpu gems 2: programming techniques for high-performance graphics

and general-purpose computation. Addison-Wesley Professional ©2005.
 Rehr JJ, Vila FD, Gardner JP, Svec L, Prange M (2010) Scientifi c computing in the cloud.

Computing in Science & Engineering 12(3):34–43.
 Saegusa T, Maruyama T, Yamaguchi Y How fast is an FPGA in image processing? In: Field

Programmable Logic and Applications, 2008. FPL 2008. International Conference on, 2008.
IEEE, pp 77–82.

Q. Huang et al.

51

 Satish N, Kim C, Chhugani J, Nguyen AD, Lee VW, Kim D, Dubey P (2010) Fast sort on cpus,
gpus and intel mic architectures. Technical report, Intel.

 Shu S, Shen X, Zhu Y, Huang T, Yan S, Li S Prototyping Effi cient Desktop-as-a-Service for FPGA
Based Cloud Computing Architecture. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 2012. IEEE, pp 702–709.

 Steinbach M, Hemmerling R (2012) Accelerating batch processing of spatial raster analysis using
GPU. Computers & Geosciences 45:212–220.

 Stott E, Sedcole P, Cheung P Fault tolerant methods for reliability in FPGAs. In: Field Programmable
Logic and Applications, 2008. FPL 2008. International Conference on, 2008. IEEE,
pp 415–420.

 Sugumaran R, Oryspayev D, Gray P GPU-based cloud performance for LiDAR data processing.
In: Proceedings of the 2nd International Conference on Computing for Geospatial Research &
Applications, 2011. ACM, p 48.

 Underwood K FPGAs vs. CPUs: trends in peak fl oating-point performance. In: International
Symposium on Field Programmable Gate Arrays: Proceedings of the 2004 ACM/SIGDA 12 th
international symposium on Field programmable gate arrays, 2004. vol 24. pp 171–180.

 Vecchiola C, Pandey S, Buyya R High-performance cloud computing: A view of scientifi c applica-
tions. In: Pervasive Systems, Algorithms, and Networks (ISPAN), 2009 10th International
Symposium on, 2009. IEEE, pp 4–16.

 Wald I (2012) Fast Construction of SAH BVHs on the Intel Many Integrated Core (MIC)
Architecture. Visualization and Computer Graphics, IEEE Transactions on 18(1):47–57.

 Walsh SD, Saar MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and engineering system
simulations on graphics hardware. Computers & Geosciences 35(12):2353–2364.

 Wang K, Shen Z (2011) Artifi cial societies and GPU-based cloud computing for intelligent trans-
portation management. Intelligent Systems, IEEE 26(4):22–28.

 Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011a) Spatial
cloud computing: how can the geospatial sciences use and help shape cloud computing?
International Journal of Digital Earth 4(4):305–329.

 Yang C, Wu H, Huang Q, Li Z, Li J (2011b) Utilizing spatial principles to optimize distributed
computing for enabling physical science discoveries. Proceedings of National Academy of
Sciences 108(14):5498–5503.

 Yang C, Xu Y, Nebert D (2013) Redefi ning the Possibility of Digital Earth and Geosciences with
Spatial Cloud Computing, International Journal of Digital Earth 6(4):1–8.

4 Accelerating Geocomputation with Cloud Computing

 Part III
 MAT in GIScience Applications

55X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_5, © Springer Science+Business Media New York 2013

Abstract Modern GPU architectures closely resemble supercomputers. Commodity
GPUs that have already been integrated with personal and cluster computers can be
used to boost the performance of spatial databases and GIS. In this study, we report
our preliminary work on designing and implementing a spatial join algorithm on
GPUs by using generic parallel primitives that have been well understood and effi-
ciently implemented in many parallel libraries. In addition to help understand the
inherent data parallelisms in spatial join operations, our experiments have shown
that the reference implementation, which represents a tradeoff between code effi-
ciency and code complexity, is able to achieve a 6.7× speedup when compared to an
optimized CPU serial implementation. The result is encouraging in the sense that
native implementation of spatial joins directly on top of GPU accelerators can
potentially achieve much higher speedups for spatial joins which are fundamental to
spatial databases and vector GIS. The implementations of parallel spatial algorithms
on top of generic parallel primitives can be an important first step towards designing
and developing high-performance spatial-specific parallel primitives to make it
 easier to build parallel spatial databases and GIS.

Keywords  Spatial join • GPU • High-performance • Parallel primitives

5.1 Introduction

Spatial joins are fundamental in Spatial Databases and Geographical Information
System (GIS). Given two geospatial datasets (which can be points, polylines and
polygons), a spatial join finds all pairs of objects satisfying a given spatial

Chapter 5
Parallel Primitives-Based Spatial Join
of Geospatial Data on GPGPUs

Jianting Zhang

J. Zhang (*)
Department of Computer Science, The City College of New York,
138 Street at Convent Avenue, NAC 8/206, New York, NY 10031, USA
e-mail: jzhang@cs.ccny.cuny.edu

56

 relationship between the objects, such as within, intersect and nearest neighbor.
Spatial joins on CPUs have been extensively studied over the past few decades
(Jacox and Samet 2007) given their practical importance. However, while research 
in parallel spatial joins can be dated back to 1990s (Hoel and Samet 1994), it was
not until General Computing on Graphics Processing Units (GPGPU)1 technologies
on commodity hardware become available in recent years that using parallel spatial
join processing to speed up Spatial Databases and GIS performance starts to be
practical, both technologically and economically. As argued in Clematis et al.
(2003), despite significant research on parallel geospatial processing, research
before 2000 has very little impact on real practices at large due to quite a few fac-
tors, especially limited accesses to parallel hardware. On the other hand, the current
GPU architectures closely resemble supercomputers as both implement the primary
Parallel Random Access Machine (PRAM) characteristic of utilizing a very large
number of threads with uniform memory latency (Hong et al. 2011). As such, we
believe research on efficient spatial joins on GPGPUs is timely and can potentially
have a large impact on the geospatial computing community.

It is well known that spatial joins have two phases, i.e., filter and refinement (Jacox
and Samet 2007). The optional filter phase relies on various spatial indexing data
structures to filter out a large portion of candidate pairs to be joined while the refine-
ment phase computes spatial relationships among filtered candidate pairs. A few
GPGPU-based spatial indexing data structures have been proposed in the past few
years (Zhou et al. 2008, 2011; Zhang et al. 2010; Hou et al. 2011; Luo et al. 2011)
and can be applied in the filter phase. In this study, we will be focusing on the refine-
ment phase. Since many spatial operations that are involved in the refinement phase,
such as calculating distances and point-in-polygon tests, are more computing inten-
sive than testing the spatial relationships based on Minimum Bounding Boxes (MBB)
in the filter phase, it is more desirable to use GPUs to speed up the refinement phase.

While computing efficiency is the driving motivation for GPGPU-based parallel
spatial joins, we believe it is also important to understand the inherent parallelisms
in spatial joins so that the proposed parallel spatial join algorithms can sustain
across different GPU architecture generations and interoperate with multi-core
CPUs which increasingly have more GPU features as the numbers of CPU cores
increase. As such, instead of directly providing a CUDA-based implementation,
our prototypical implementation adopts a parallel primitive-based approach and the
implementation is based on Thrust library2 that comes with CUDA distributions
since version 4.0.3 The implementation can serve as a baseline to compare with
both a serial CPU implementation and a native implementation that uses CUDA
directly which is under development. It is well-known that parallel primitives based
implementations represent tradeoffs between coding complexity and code effi-
ciency. Spatial join on multi-dimensional geographical data on top of generic
parallel primitives for one-dimensional vectors may not be the most efficient ones.

1 http://en.wikipedia.org/wiki/GPGPU
2 http://code.google.com/p/thrust/
3 http://developer.nvidia.com/cuda-toolkit-40

J. Zhang

http://en.wikipedia.org/wiki/GPGPU
http://code.google.com/p/thrust/
http://developer.nvidia.com/cuda-toolkit-40

57

Nevertheless, the prototypical implementation can serve as a starting point for
developing efficient spatial-specific parallel primitives to make it easier to build
parallel Spatial Databases and GIS.

Our preliminary results show that, the reference implementation is able to
achieve a 6.7× speedup when compared with an optimized serial CPU implementa-
tion when joining pickup locations of 122,043 taxi trip records (points) with 43,252
MapPluto tax lots4 (polygons) that have 293,335 vertices in the New York City
(NYC) area. We expect significant higher speedups can be achieved when the spa-
tial join algorithm is implemented in CUDA and provided as a parallel geospatial
computing primitive. In addition, the reference implementation is more than 256×
faster than joining the same two datasets using the state-of-the-art open source geo-
spatial packages for indexing (libspatialindex5) and distance computation (GDAL/
OGR6). The result clearly shows the potential of the performance gains in evolving
existing Spatial Databases and GIS software that are optimized for traditional hard-
ware architectures to modern hardware architectures. The features we have exploited
in this study include simple array-based cache conscious data structures (vs. sophis-
ticated pointer-based data structures using dynamic memory allocations), in-
memory processing (vs. disk-resident) and parallel accelerations (vs. using
standalone uni-processors).

The rest of the paper is arranged as follows. Section 5.2 introduces the back-
ground and formulates the research problem. Section 5.3 presents the design of the
proposed spatial join algorithm using parallel primitives. Section 5.4 provides
implementation details and experiment results, including the comparisons with a
baseline serial CPU implementation and an open source implementation using
existing GIS software stack. Finally Sect. 5.5 concludes and discusses future
research directions.

5.2 Background and Problem Formulation

Given two vector geospatial datasets, which can be point, polyline or polygon data
types, spatially joining the two datasets can be performed when neither of the data-
sets, either of the datasets or both of the datasets are indexed (Jacox and Samet
2007). While traditionally indexing geospatial data is considered expensive and
spatial join techniques have been developed for non-indexed spatial data, recent
works have shown that spatial indexing can be efficiently performed on GPUs
(Zhou et al. 2008, 2011; Zhang et al. 2010;  Hou  et  al.  2011; Luo et al. 2011).
Furthermore, many geospatial data can be considered static relative to their update
cycles and spatial indexing can be done offline. As such, we assume both datasets
are indexed and their spatial indices can be used to filter out a large portion of

4 http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
5 http://libspatialindex.github.com/
6 http://www.gdal.org/

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

http://www.nyc.gov/html/dcp/html/bytes/applbyte.shtml
http://libspatialindex.github.com/
http://www.gdal.org/

58

candidate pairs to be joined. The filtered pairs are provided as a vector of (fid, tid)
pairs where fid is the identifier of a basic unit of the joining dataset (DF) and tid is
the identifier of a basic unit of the dataset to be joined (DT). Here the basic unit can 
be a tree node if tree indexing approaches are used to index the geospatial datasets
or a cell of a grid if a grid-file is used for indexing. Gaede and Gunther (1998) and
Samet (2005) provide more details on spatial indexing.

In this study we consider joining a point dataset that is indexed by a quadtree and
a polygon dataset that is indexed by an R-tree although the proposed approach can
be generalized to many other spatial join scenarios. The filter phase can be
 implemented by querying the R-Tree using the expanded bounding boxes of
quadtree nodes, i.e., (x1 − D, y1 − D, x2 + D, Y2 + D) where D is the expansion size.
A quadtree node is paired with an R-tree entry if its expanded bounding box inter-
sects with the bounding box of the entry in a leaf R-tree node. Furthermore, we limit
our discussion to distance based nearest-neighbor spatial join, i.e., for each point in
DF, compute  the minimum distance  from  the point  to polygons  in DT. Here  the 
distance from a point to a polygon is canonically defined as the minimum distance
between the point and all line segments of the rings (including both the outer ring
and the inner rings of polygons with holes) of the polygon. While classic quadtree
indexing on point data put each point in a tree node, we have observed that for large-
scale high-resolution point data, very often points that are close to each other have
similar data access patterns and it is beneficial to group them together in spatial
joins. For example, there are half a million taxi trip records in NYC per day and
there can be thousands of taxi pickup locations roughly at the same point locations.
When joining these points and the nearby tax lot polygons (to associate the taxi trips
with land use categories that are used as proxies of trip purposes), they will be
paired with the same R-Tree entries representing the respective polygons. As such,
we assume a leaf quadtree node can hold a set of points. The mechanism can also be
viewed as indexing a collection of points (which is supported by OGC Simple
Feature Specification as GeometryCollection7) using a single quadtree node. The
refinement phase requires compute pair-wise distances between the points under a
quadtree node and the segments of a polygon indexed by an R-tree. This needs to be
done for all the (fid, tid) pairs derived from the filter phase. We further assume that
the MBBs of both the quadtree nodes and the R-Tree nodes are provided as vectors
and can be accessed by using the fids and tids, respectively. The outputs of the pair-
wise distance computation are a vector of triples of (fid + pid, tid + sid, distance),
where pid is the identifier of a point in the quadtree node referred by fid, sid is the
identifier of a segment of the polygon referred by tid and + denotes concatenation.
To find the shortest distance between a point and a polygon, the binary minimum
function should be applied to all distances under a same concatenation of
fid + pid + tid. We next discuss the layouts of the inputs so that we can concentrate
on parallel primitives based spatial join algorithm to be presented in Sect. 5.3.

7 http://www.opengeospatial.org/standards/sfs

J. Zhang

http://www.opengeospatial.org/standards/sfs

59

As shown in the middle of Fig. 5.1, each input dataset is organized as three
 vectors. For the point dataset, the first vector (M1) records the coordinates of points,
the second vector (M2) records the numbers of points in the quadtree quadrants and
the third vector (M3) records the starting positions of the points in all quadrants
correspond to quadtree leaf nodes. Similarly another set of three vectors are used to
record the similar information for polygons, i.e., N1 for the segments of polygon
rings, N2 for the numbers of polygon segments and N3 for the starting positions of
polygon segments in N1. While a vector of (fid, tid) pair can be intuitively used to
represent the inputs of the refinement phase, the information stored in M2/M3 and
N2/N3 correspond to the fids and tids are copied into four vectors, i.e., U, V, S, T,
for fast and convenient data accesses. Here U stores the numbers of points in the 
quadrants correspond to the fids in the (fid, tid) pairs, V stores the numbers of seg-
ments of polygons correspond to the tids in the (fid,tid) pairs, S stores the starting
positions of the quadrants in M1 and T stores the starting positions of the polygon
segments in N1. As the expanded MBBs of quadtree quadrants many intersect with
MBBs of multiple polygons as indicated in the (fid,tid) pairs after the filter phase,
both U/S and V/T can contain multiple copies of M2/M3 or N2/N3 elements, but the
combinations of (U,V) and (S,T) should be unique in a spatial join.

As shown in the middle of Fig. 5.1, each input dataset is organized as three
 vectors. For the point dataset, the first vector (M1) records the coordinates of points,
the second vector (M2) records the numbers of points in the quadtree quadrants and
the third vector (M3) records the starting positions of the points in all quadrants

Fig. 5.1 Illustration of spatial join on point (indexed by a quadtree) and polygon (R-tree) and stor-
age layout for pair-wise distance computation

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

60

correspond to quadtree leaf nodes. Similarly another set of three vectors are used to
record the similar information for polygons, i.e., N1 for the segments of polygon
rings, N2 for the numbers of polygon segments and N3 for the starting positions of
polygon segments in N1. While a vector of (fid, tid) pair can be intuitively used to
represent the inputs of the refinement phase, the information stored in M2/M3 and
N2/N3 correspond to the fids and tids are copied into four vectors, i.e., U, V, S, T,
for fast and convenient data accesses. Here U stores the numbers of points in the 
quadrants correspond to the fids in the (fid, tid) pairs, V stores the numbers of seg-
ments of polygons correspond to the tids in the (fid,tid) pairs, S stores the starting
positions of the quadrants in M1 and T stores the starting positions of the polygon
segments in N1. As the expanded MBBs of quadtree quadrants many intersect with
MBBs of multiple polygons as indicated in the (fid,tid) pairs after the filter phase,
both U/S and V/T can contain multiple copies of M2/M3 or N2/N3 elements, but the
combinations of (U,V) and (S,T) should be unique in a spatial join.

In the example shown in Fig. 5.1, Q1 is paired with R1 and Q2 is paired with R2.
There are two points in Q1 and three points in Q2. Their starting positions in the
point coordinate array (M1) are 3 and 6, respectively. There are four segments in the
polygon indexed by R1 and three segments in the polygon indexed by R2 and their
starting positions in the polygon segment array (N1) are 2 and 9, respectively. Since
the number of pairs after the filter phase is 2, there are two elements in U, S, V and
T whose values are [2, 3], [3, 6], [4, 3] and [2, 9], respectively. As shown at the bot-
tom of Fig. 5.1, there will be 2*4 = 8 distance computations for the first (fid, tid)
pair, 3*3 = 9 distance computations for the second (fid, tid) pair, and, there will be
8 + 9 = 17 elements in the resulting distance vector. While it is straightforward to
provide a serial implementation on CPUs by using three loops, i.e., the first loop for
all (fid, tid) pairs, the second loop for all points in a quadrant and the third loop for
all polygon segments, as we shall see in Sect. 5.3, it becomes non-trivial using a
parallel computing model as each parallel processing unit (GPU thread) needs to
know exactly where to retrieve the data and where to output the results. As such,
significant coordination efforts are required which is the core part of the primitives
based spatial join algorithm.

Before we present the parallel algorithm in Sect. 5.3, we would like to briefly
discuss related works on parallel relational join on both multi-core CPUs (Samet
2005) and GPUs (Blanas et al. 2011; He et al. 2008) which have attracted consider-
able research interests recently. We note two major differences between relational
joins and spatial joins. First, as many spatial indexing approaches (such as R-Trees)
allow tree node to have overlapped MBBs, filter based on such spatial indexing
structures can result in duplicated tree nodes and subsequently requires non-trivial
combinations in the refinement phase. Second, spatial operations are usually more
computing intensive than equijoin and most types of theta-joins which make
GPGPU accelerations more desirable. Our work is closely related to the seminal
work on parallel primitives based spatial joins and geospatial operations nearly
20 years ago (Hoel and Samet 1994). However, while their work targeted for then 
supercomputers (Thinking Machine8) which were only accessible to a few very

8 http://en.wikipedia.org/wiki/Thinking_Machines_Corporation

J. Zhang

http://en.wikipedia.org/wiki/Thinking_Machines_Corporation

61

selective groups, our work targets at the commodity GPUs that are affordable by
every researcher now days. In addition, while their work was focused on the filter
phase, our research is focused on the refinement phase.

Although it is straightforward to adopt a task-based parallelization schema at the
(fid, tid) pair level on CPUs, it might not be a good choice for GPGPUs for two
reasons. First, unlike the current generation of CPUs that have a few to a dozen
parallel processing cores with each is capable launching 1–2 threads on a single
computing core, GPUs typically have hundreds processing cores and support simul-
taneously launching hundreds of thousands threads. Task-level parallelization many
not provide enough parallelism on GPUs for such spatial joins when the number of
pairs is less than the number of processing units (blocks or threads) on GPGPUs.
Second, the computing loads among the pairs can be highly imbalanced and the
task-level parallelization can be too coarse to fully utilize GPGPU computing
 powers. The skewness can be more severe on GPGPUs than on multi-core CPUs as
more processing units on GPGPUs are prone to be underutilized under a same
degree of skewness. Furthermore, we are more interested in developing data parallel
algorithms that can handle data skewness in an embedded manner than simply pass-
ing the burdens of handling skewness to middleware, operating systems or hardware
built-in schedule modules which usually do not understand the inherent parallelism
among data well.

5.3 Algorithm Design Using Parallel Primitives

While computing efficiency is often the primary motivation for GPGPU applica-
tions including spatial joins, we believe it is also important to understand the
inherent parallelisms in spatial joins from a research perspective. Parallel primi-
tives that have been implemented in quite a few parallel libraries such as Thrust
and CUDPP9 facilitate quick prototypical implementations. The high-level imple-
mentations usually are easy to understand and have better portability although they
may not be the most efficient ones that are achievable on parallel hardware. In this
study, as an exploratory research effort to understand the parallelisms in spatial
joins and their performance on modern GPGPUs, we have decided to adopt a par-
allel primitive based approach. More specifically, our parallel spatial join algo-
rithm is built on top of the Thrust library that becomes part of Nvidia CUDA SDK
after version 4.0. While it is beyond the scope of this paper to introduce the details
of the parallel primitives, we refer to the Thrust project website for more technical
details on the key primitives, including transform, scan, reduce, gather, scatter and
their variants. A brief explanation of the primitives with examples is provided in
our technical report.10

9 http://code.google.com/p/cudpp/
10 http://geoteci.engr.ccny.cuny.edu/primquad/primquad_draft.pdf (pages 4–5).

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

http://code.google.com/p/cudpp/
http://geoteci.engr.ccny.cuny.edu/primquad/primquad_draft.pdf

62

The overall structure of the algorithm is provided in Fig. 5.2 and an illustrative
example is shown in Fig. 5.3. Although the algorithm looks complex, each of the 25
steps corresponds to a single line of code to invoke a parallel primitive which makes
the implementation really simple. The majority of the design (steps 1–21) is devoted
to compute the positions of points and segments in their respective storage arrays
(M1 and N1) for parallel processing units (CUDA threads in this case) so that dis-
tance computation can be performed in parallel (steps 22–25). While it is straight-
forward to perform a two-level loop in a serial program as the two looping variables

Inputs: Vectors M1, N1, U, V, S, T (as defined in Section 2)
Outputs: Pair-wise distance vector among all points and segments across the K (fid,tid)
pairs

1 Transform on U and V to compute the numbers of distance calculation pairs in all
(fid,tid) pairs and store the result as vector X1 using the multiplies binary function.
2 Scan (exclusive) on X1 to compute the boundary positions of all (fid, tid) pairs and
store the result as vector X2.
3 Reduce on X1 to compute the total number of distance calculations for all (fid, tid)
pairs and store the result as scalar tot_pairs.
4 Scatter the sequence of (0..K-1) to X3 using X2 as the map
5 Scan (exclusive) on X3 and store the result in X4 using the maximal binary function
6 Gather on T using X4 as the map and store the results to X5
7 Gather on S using X4 as the map and store the results to X6
8 Scan (exclusive) on U and store the result in X7
9 Reduce on U and compute the number of query points as scalar tot_points.
10 Scatter the sequence of (0..K-1) to X8 using X7 as the map.
11 Scan (exclusive) on X8 and store the result in X9 using the maximal binary function
12 Gather on V using X9 as the map
13 Scan (exclusive) on X10 and store the result in X11
14 Scatter X11 using itself as the map and store the result in X12.
15 Scan (exclusive) on X12 and store the result in X13 using the maximal binary func-
tion
16 Transform on a sequence of (0.. tot_pairs-1) and X13 using the minus binary func-
tion and store the results in X14.
17 Transform X5 and X14 using the plus binary function and store the results in X15
18 Scatter a sequence of (0..tot_points-1) to X16 using X11 as the map
19 Scatter X7 to X17 using X4 as the map.
20 Transform on X16 and X17 using the subtract binary function and store the results
in X18
21 Transform X6 and X18 using the plus binary function and store the results in X19
22 Gather on M1 using X19 as the map and store the results in X20
23 Gather on N1 using X15 as the map and store the results in X21
24 Transform on X20 and X21 using a user-defined point-to-line distance function
and store the results in X22
25 Reduce (by key) on X22 using the minimum binary function and store the results to
the output vector.

Fig. 5.2 Algorithm design using parallel primitives

J. Zhang

63

can be increased sequentially, it becomes non-trivial using a parallel computing
model. A combination of scatter, scan and gather is required to emulate the sequence
of where k loops through all the K (fid, tid) pairs, i loops through all points and j
loops through all the segments within a (fid, tid) pair. We next explain how the serial
loops can be realized using primitives on parallel machines.

Steps 1–5 builds a template vector to mark the boundaries of (fid, tid) pairs
(results stored in X4). Steps 6–7 broadcast the position of the first point in the
quadrant corresponds to the fid of the kth (fid, tid) pair to all U[k]*V[k] pairs
within the boundary of the pair for all the K pairs (results stored in X5). Steps 8–13
calculate the starting positions of all the points in all the K (fid, tid) pairs. After

step 13, vector X11 actually stores
k

P

i

U k

i V k
=

−

=

[]

∑ []
0

1

0
∑ * for all possible combinations of

k and i. Steps 14–17 compute the positions of segments in the N1 vector to be
paired with all points for each (fid, tid) pair. Steps 14–16 essentially generate a
sequence of 0 … V[k] − 1 that is duplicated U[k] times within each of the K (fid, pid)

0

0 0 0 0 0 000

0

0

00

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0

0

0

0 0 0 0 0

0 0 0

0 0

0 1

1

1

1 1 1 1 1 1 1 1 1

1

1

1

1S

1

1 1 1 1 1 1 1

1 1 1

1

1

1

1 1

1

1
1 1

1 11 1

11

11 11

11

11

1 11 1

1
1 11

1

1

11
111

2

2 2 2 2 2

2

2

2

2

2 2 2 2

2 2

2

2

22

2

2

2

2 2 2 2 2 2 2 2 2

2 2 2

22

2 2

3

3

3

3

3

3

3

3 3 3

3 3 3 3

3 3 3 3

3 333

3 3 3

x3

x9x8

x2x1

x10

x12

x13

x14x18

x19

x17

x20

x21

x16

x15

x11

x4

x5

3

3

3

3

4

4

4

4 4 4

44 44

4

4 4 4

4 4

4

4 4 4

4

4
4

4 4 44

5

5

5 5

5

5

6

6 6 6 66

6

6 6 6

6 6 6 6 6 66

6

7

7

7

7 7 7

7

8

8

9

9 9 9

9 99 9 9 9 9 9 9

9

9

1919

9

10

10 10 10

10 10

1112 13 14 1516

x

X21

x7

T

S

S

S

S S S

S S S

M1 N

SU

V

Distance
25

21

20

25

24

Output Vector
FID UPID UTIDT

DD D D D D D D D D D D D D D DD

of pairs

pairs(2)
≤(fid d)

Fig. 5.3 Illustration of the parallel spatial join algorithm using an example

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

64

pairs to emulate the inner loop. Similarly steps 18–21 compute the positions of
points in the M1 vector to be paired with all segments for each (fid, tid) pair. Steps
18–20 generate a sequence of 0 … U[k] − 1 for each (fid, tid) pair with each ele-
ment in the sequence duplicated V[k] times to emulate the outer loop. Despite the
differences among steps 14–17 and steps 18–21, both of the procedures require
broadcast the loop numbers at all levels so that the global information can be used
to compute the correct point/segment positions in their respective storage arrays.
We note that several of the Thrust built-in binary functions, including plus, minus,
multiplies, minimum and maximum, have been used in the design. However, these 
binary functions can be easily implemented if the underlying parallel libraries do
not support them natively.

The key advantage of the parallel design is that, after all required positions are
computed, calculating pair-wise distances across all the K (fid, tid) pairs becomes
embarrassingly parallelizable and can be easily handled by virtually any parallel
libraries. A major disadvantage is that, the positions need to be explicitly computed
and stored. While the computation mostly requires additions and multiplications
which are very fast on modern GPUs, accessing GPU global memory is very expen-
sive (although most of the memory accesses are coalesced). The overall perfor-
mance may depend on the relative weights of the computation part and memory
access part. When more complex distance computation functions are used, the per-
formance gains can be significant. On the other hand, when there are not sufficient
computation workloads, the performance of the parallel design and implementation
can be even worse than a straightforward serial implementation on CPUs. A related
disadvantage is that the design has a large memory footprint requirement. Although
many of the vectors used in the algorithm can be reused in a real implementation,
explicitly storing the position vectors will limit the number of (fid, tid) pairs that can
be processed on a single GPU device. However, as the design can virtually scale up 
linearly with the numbers of GPU devices, it is possible to run the implementation
in a large cluster computer with fast network connection to address the memory
limitation problem.

5.4 Implementation and Experiments

While our initial research is driven more by algorithmic design, to gain more insights
on its performance for practical applications, we have implemented the algorithm on
top of the Thrust library. The source code is available in our website.11 As discussed
previously, the implementation is fairly straightforward using Thrust where each
step is implemented as a call to the respective Thrust primitive. The implementation
is compiled using CUDA SDK 4.0 and the experiments are performed on an
Nvidia  Quadro  6000  GPU  with  448  cores  (1.15  GHz)  and  6  GB  memory.12

11 http://geoteci.engr.ccny.cuny.edu/primspjion/primspjoin.htm
12 http://www.nvidia.com/object/product-quadro-6000-us.html

J. Zhang

http://geoteci.engr.ccny.cuny.edu/primspjion/primspjoin.htm
http://www.nvidia.com/object/product-quadro-6000-us.html

65

The host machine is a Dell Precision T5400 with dual Intel E5405 CPUs (2.0 GHz) 
and 16 GB memory. For point data, we use a 1 % sample of the pickup locations of
taxi trips in Manhattan in January 2009 as the point data which has 122,043 point
locations. For polygon data, the MapPluto Tax Lot data in Manhattan is used which
has 43,252 polygons and 293,335 vertices. Many of the tax lot polygons have regu-
lar shapes. This explains that the average number of vertices per polygon is only
around 7. However, a small portion of the polygons have hundreds of vertices which 
make the polygon data skewed in computation. We have empirically set the maxi-
mum number of points in a quadtree quadrant (P) to 100 and set D to 100 ft for
expanding bounding boxes in the filter phase.

As a comparison, we have also implemented the refinement phase on CPUs
using straightforward loops. Our data storage layout design discussed in Sect. 5.2
actually fits CPU hardware architectures very well. Looping through one dimen-
sional arrays is naturally cache friendly. Given that accesses to memory can be
hundreds of times slower than accesses to registers and CPU architectures increas-
ingly rely on caching to improve memory access performance, it is important to be
cache friendly. Unlike the parallel primitives based GPU implementation that
requires computing, writing and reading positions and distances explicitly to GPU
memory in order to use the parallel primitives, they can reside in CPU registers
which is more efficient. For fair comparison, we have put both the CPU and primi-
tives based GPU implementations in a same program and used –O3 flag to opti-
mize for speed for the CPU code. We note that both implementations use a same
filter phase and thus we will only compare the performance of the refinement
phase. Our results showed that the end-to-end runtime of the primitives based GPU
implementation is 345.75 ms to join the 122,043 points in 8,447 quadrants and
43,252 polygons. A total of 142,927,001 distance computation for 1,503,640 (fid,
tid) pairs has been observed. In contrast, the optimized CPU implementation
requires 2,325.84 ms. As such, a 6.7× speedup is achieved for the primitives based
GPU implementation.

Both the CPU and GPU based implementation are main-memory based using the
storage layout discussed in Sect. 5.2. As existing spatial databases and GIS are
mostly designed for disk-resident data, to understand how main-memory based sys-
tems can improve the performance of geospatial computing, we have implemented
the same spatial join task using open source packages. The open source based
implementation uses libspaitalindex for R-tree indexing and query processing in the
filter phase and GDAL/OGR for distance computation between points and poly-
gons. For each point with a coordinate of (x,y), we first query the R-Tree to extract
polygons that are with a square of (x − D, y − D, x + D, y + D) and then compute the
minimum distance from the point to the polygons. Our experiments have shown that
the end-to-end runtime of the open source implementation is 88,531.18 ms which is
38 times slower than the CPU implementation and 256 times slower than the primi-
tives based GPU implementation. The results clearly demonstrate the efficiency of
main-memory based implementations. We believe the performance gap between
disk-resident and main-memory based implementations can be attributed to the
 following factors. First, traditional Spatial Databases and GIS assume a very limited

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

66

CPU memory capacity and uses sophisticated data structures and algorithms to
accommodate memory limitations. However, given the increasing memory capaci-
ties (tens of GBs to TBs) and decreasing prices (~$5/GB retail prices), the assumed
limitation is not valid anymore. Second, pointers and dynamic memory allocations
have been extensively used in many spatial database and GIS software develop-
ments and they may not be cache friendly which is becoming increasingly important
in modern hardware architectures including both CPUs and GPUs.

Based on the experiments and analysis, we suggest re-examining the perfor-
mance bottlenecks in geospatial computing by adopting an integrated hardware and
software co-design approach. As computer processors are evolving into a parallel
era, it is essential to fully utilize the parallel computing power provided by multi-
core CPUs, many-core GPUs and distributed computing nodes (Zhang 2010).
Existing Spatial Databases and GIS software need to be adapted to the new hard-
ware architectures to efficiently process large-scale geospatial data and effectively
solve real world problems. As a first step towards the adaptation, understanding the
inherent parallelisms in major geospatial computing algorithms and designing their
parallel implementations on top of well-understood and well-supported parallel
primitives can be important. They can lay solid foundation in developing spatial-
specific parallel primitives that are both high-performance and easy to use for geo-
spatial computing applications.

5.5 Conclusion, Discussion and Future Work

We have designed a parallel spatial join algorithm that is suitable to implement on
parallel machines including GPGPUs. Our prototypical implementation using the
Thrust parallel library has demonstrated a 6.7× speedup over an optimized CPU
serial implementation. The result is encouraging in the sense that native implemen-
tations of spatial joins directly on top of GPU accelerators can potentially achieve
much higher speedups for spatial joins which are fundamental to Spatial Databases
and vector GIS.

From a methodological perspective, the serial CPU implementation and the
 parallel primitives based GPU implementation represent two extremes with respect
to efficiency and scalability. The serial implementation is efficient but not scalable
for parallel execution while the primitives based implementation is scalable but not
very efficient due to memory access overheads in storing and retrieving positions
and intermediate results. We believe some hybrid approaches can potentially achieve
both high efficiency and scalability at the levels that are appropriate for applications.
For example, for polygon data that are not extremely skewed, it might be more
 beneficial to use two-levels of parallelisms on CUDA-enabled GPUs, i.e., (fid, tid)
pairs at the computing block level and pair-wise distance computation at the thread
level. In this case, both points and polygon segments correspond to a (fid, tid) pair
can be loaded to GPU shared memory by all the threads in a computing block
 collaboratively so that no direct global memory accesses are needed during distance

J. Zhang

67

computation. Computing within a GPU computing block can be much similar to the
CPU serial implementation with respect to the two-level loop for the pair-wise
 distance computation within a (fid, tid) pair.

For future work, first, we would like to first implement the hybrid idea to explore
design tradeoffs and potential performance gains. Second, we plan to implement a
few indexing algorithms on GPGPUs for the filter phase so that we can perform
spatial joins completely on GPUs. Third, while the framework of the spatial join
algorithm discussed in this paper is generic, our current implementation is limited
to joining points with polygons. We plan to make the implementation more generic
to accommodate spatial joins of other data types for both parallel primitives based
and hybrid designs.

Acknowledgment This research was supported partially by the PSC-CUNY grant 65692-00 43.

References

Blanas, S., Li, Y. and Patel, J., 2011. Design and evaluation of main memory hash join algorithms
for multi-core CPUs. Proceedings of ACM SIGMOD Conference.

Clematis,  A.,  Mineter,  M.  et  al.,  2003.  High  performance  computing  with  geographical  data. 
Parallel Computing 29(10): 1275–1279.

Gaede V. and Gunther O., 1998. Multidimensional access methods. ACM Computing Surveys
30(2): 170–231.

He,  B.,  Yang,  K.,  et  al.  2008.  Relational  joins  on  graphics  processors.  Proceedings  of  ACM 
SIGMOD conference.

Hoel, E. G. and Samet, H., 1994. Performance of Data-Parallel Spatial Operations. Proceedings of 
VLDB Conference, 156–167.

Hong,  S.,  Kim,  S.  K.,  et  al.,  2011.  Accelerating  CUDA  graph  algorithms  at  maximum  warp. 
Proceedings of the 16th ACM symposium on Principles and practice of parallel programming,
267–276.

Hou,  Q.,  Sun,  X.,  et  al.,  2011.  Memory-Scalable  GPU  Spatial  Hierarchy  Construction.  IEEE 
Transactions on Visualization and Computer Graphics 17(4): 466–474.

Jacox, E. H. and Samet, H., 2007. Spatial join techniques. ACM Transaction on Database System 
32(1), Article #7.

Luo, L., Wong, M. D. F., et al., 2011. Parallel implementation of R-trees on the GPU. Proceedings
of the 17th Asia and South Pacific Design Automation Conference (ASP-DAC), 353–358.

Samet, H., 2005. Foundations of Multidimensional and Metric Data Structures Morgan Kaufmann.
Zhou, K., Gong, M., et al., 2011. Data-Parallel Octrees for Surface Reconstruction. IEEE

Transactions on Visualization and Computer Graphics 17(5): 669–681.
Zhang, J., You, S. and Gruenwald, L., 2010. Indexing large-scale raster geospatial data using

massively parallel GPGPU computing. Proceedings of ACM-GIS, 450–453.
Zhou, K., Hou, Q., et al., 2008. Real-Time KD-Tree Construction on Graphics Hardware. ACM 

Trans. on Graphics 27(5).
Zhang,  J.,  2010.  Towards  Personal  High-Performance  Geospatial  Computing  (HPC-G): 

Perspectives and a Case Study. Proceedings of ACM HPDGIS workshop, 3–10.

5 Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs

69X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_6, © Springer Science+Business Media New York 2013

 Abstract Visualizing geospatial data from model simulations and fi eld observations
is an important way to support scientifi c data explorations. Compared to general sci-
entifi c visualization, visualizing 5 Dimensional (5D) geospatial data possesses com-
putational challenges of handling large volume unstructured 5D datasets. Utilizing
state-of-the-art computing techniques is essential in developing an effi cient visualiza-
tion pipeline. The recent emerging Compute Unifi ed Device Architecture (CUDA)-
enabled Graphics Processing Units (GPUs) can provide a potential solution to address
computational intensity by offering parallel computing capabilities. This chapter
describes our efforts of designing and implementing a CUDA-based visualization
pipeline for 5D geospatial data stored in scientifi c data formats. Such pipeline includes
four major steps: data fi ltering, coordinate transformation, interpolation and render-
ing. Except for data fi ltering, all other three steps have been implemented with CUDA-
enabled GPUs. Based on the implementations and performance tests, we summarize
the major advantages and disadvantages of employing GPUs to implement 5D scien-
tifi c geovisualization.

 Keywords Geovisualization • Geospatial Cyberinfrastructure • CyberGIS
• EarthCube • Big Data

 Chapter 6
 Utilizing CUDA-Enabled GPUs to Support 5D
Scientifi c Geovisualization: A Case Study
of Simulating Dust Storm Events

 Jing Li , Yunfeng Jiang , Chaowei Yang , and Qunying Huang

 J. Li
 Department of Geography and the Environment , University of Denver , Denver , CO , USA
 e-mail: Jing.Li145@du.edu

 Y. Jiang
 Department of Geography and Geoinformation Science, Joint Center for Intelligent
Spatial Computing , George Mason University , Fairfax , VA , USA
 e-mail: yjiang7@gmu.edu

 C. Yang (*) • Q. Huang
 Department of Geography and Geoinformation Science ,
 George Mason University , Fairfax , VA , USA
 e-mail: cyang3@gmu.edu; qhuang1@gmu.edu

70

6.1 Visualization in Geospatial Sciences

 Geovisualization is a research area that deals with the concepts, methods and tools
of visualizing geospatial data (MacEachren and Kraak 2001). Through applying
graphical representation techniques on data, scientists can understand the structures
of geographic features, identify the driving forces of dynamic phenomena and thus
determine the relations between multiple spatial variables. As generic visualization
methods and tools do not take the special characteristics of geospatial data into
consideration, scientists have been customizing these methods and tools to support
scientifi c explorations of such data. For example, to visualize datasets in different
coordinate systems in the same virtual environment, scientists have developed geo-
metric transformations to facilitate the transformation of geospatial features between
different coordinate systems.

 If we classify geovisualization based on nature of objects that are visualized, two
general forms can be identifi ed: information visualization and scientifi c visualiza-
tion (Card et al. 1999). Information visualization represents the abstract and non-
physical characteristics and properties of data, for example, the relationships
between multiple attributes. In contrast to information visualization in geospatial
sciences, scientifi c visualization focuses on the representation of scientifi c data that
capture the geophysical processes such as ocean currents, movements of hurricanes
and fl uid dynamics. Scientifi c visualization usually gives the initial visual represen-
tations of data which help formalize hypothesis to be tested through information
visualization.

 Over the past few decades, various methods, techniques and tools have been
designed and developed in supporting visualization of geospatial data. Notable open
source visualization tools include VisAD (Hibbard et al. 1996), World Wind (Bell
et al. 2007), GeoViz Toolkit (Hardisty and Robinson 2011) and Integrated Data
Viewer (IDV, McKaskle and Rogers 2009). Through providing multiple visualiza-
tion functions, these tools have greatly enhanced our capabilities in exploring the
hidden patterns captured by complex geospatial data of different spatiotemporal
scales. However, providing an effi cient visualization solution for representing large
scale massive 5D geospatial data is still challenging.

6.2 5D Scientifi c Geovisualization

 Geophysical processes are described by 5D data from model simulations or obser-
vations. By “5D”, we mean three spatial dimensions, one temporal dimension and
one dimension for thematic attribute. As such data are featured with large volume,
multidimensional and high degree of complexity in space and time, interactive sci-
entifi c visualization has been employed as a mean to manipulate the data and view
the processes visually (e.g., Vis5D , Hibbard et al. 1996). To visualize 5D data cap-
turing dynamic volumetric phenomena, a typical strategy is to implement

J. Li et al.

71

volumetric rendering algorithms on the 4D data extracted at different snapshots to
generate a series of visual products (e.g., images for ray casting). The coloring
schema is determined by the range of the chosen attribute to be displayed. With the
visual products sorted by their temporal stamps, animation is triggered to play the
visualization in sequence.

 Three types of bottlenecks can signifi cantly impact the overall performance of
the visualization pipeline (Yang et al. 2011). First, due to the large volume of 5D
datasets, which can easily exceed the maximum memory of computing facilities, it
is infeasible to load all data at one time. Out-of-core solutions should be designed
to improve the I/O effi ciency and therefore handle large volume datasets. Second,
processing data and implementing geometric calculations can be computationally
intensive. The computational intensity is largely determined by the data volume and
the chosen algorithms for visualization and the intensity can be greatly increased
when large volume data are involved. High performance computing techniques
should be incorporated to address the computing intensity. Third, real time interac-
tive rendering requires the implementation of rendering algorithms and displaying
the visual result within a predefi ned time interval (e.g., 0.3 s for frame, Guthe et al.
 2002). Graphics hardware accelerations are necessary to enhance the interactivity.

6.3 Potentials of Using GPUs to Support Scientifi c
Geovisualization

 To address the computing intensity in scientifi c geovisualization, scientists have
implemented parallel computing models with multi-core Central Processing Units
(CPUs) (e.g., Eilemann et al. 2009). Recently, the emerging Compute Unifi ed
Device Architecture (CUDA)-enabled Graphics Processing Units (GPUs) have
greatly altered the parallel computing paradigm, which can contribute to the devel-
opment of an effi cient scientifi c geovisualization platform for 5D data. The CUDA
is “a parallel computing platform and programming model” that allows users to
manage the computing power of GPUs through implementing its C style program-
mable interface (NVIDIA 2007).

 CUDA has the following characteristics: (a) it shows better fl oating point (FP)
performance when applied both general arithmetic calculations and rendering sce-
narios; (b) its threading model allows users to distribute functions, which are called
kernels in GPU, to the multiple blocks and threads through two-level multi-thread-
ing technique; (c) through offering interfaces to various programming languages
such as C++ and Java, it ensures parallel execution on multiple GPU cores and
seamless integration with existing platforms; (d) compared to traditional GPU pro-
gramming interfaces which are designed for graphical applications (e.g., C for
graphics, Cg), CUDA supports a broad range of general purpose GPU (GPGPU)
functions. The modern GPU- enabled graphics card is not only a powerful graphic
rendering device but also a highly parallel programmable processor featuring peek

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

72

arithmetic and memory bandwidth that substantially counterpart CPU. Therefore, in
this research, we explored how CUDA-enabled GPUs can change the visualization
pipeline and improve the overall effi ciency.

6.4 Implementations of a GPU-Based Geovisualization
Framework

 In designing the 5D geovisualization framework, we chose NASA World Wind as
the virtual geographic environment (Fig. 6.1). World Wind serves as a virtual geo-
graphic environment in the visualization framework, which provides the base
remote sensing images and terrain models. As an open source visualization plat-
form, World Wind provides interfaces for users to customize rendering functions for
other types of geospatial data, for example, 5D geospatial data. In this way, users
can better understand the interaction between the dynamic phenomena and existing
geographic settings.

 The 5D geovisualization pipeline consists of the following major modules: data
fi ltering, coordinate transformation, interpolation and sampling, and volumetric

 Fig. 6.1 The 5D visualization pipeline

J. Li et al.

73

rendering and display. Data fi ltering facilitates fast access geospatial data to be
delivered to the visualization pipeline. This involves a spatiotemporal query that
fi lters the data stored in scientifi c data formats (e.g., NetCDF, HDF-EOS) within a
spatiotemporal coverage and loads fi ltered data into the main memory. Coordinate
transformation and 3D interpolation are then performed on the fi ltered data to gen-
erate a series of regular 3D textures as required by the ray casting process. The fi l-
tered 5D data array at a timestamp corresponds to a 3D texture. If users are interested
in a specifi c timestamp, ray casting algorithm is performed on the 3D texture cor-
responding to that timestamp only. Once the ray casting process fi nishes, a 2D tex-
ture generated from the 3D texture is directly attached to the World Wind as a screen
image layer. To view a dynamic volumetric process, the animation mode is enabled.
Time series 3D textures are sent to the ray casting module and the ray casting mod-
ule performs calculations on 3D textures in a sequential manner. As World Wind
provides interfaces that allow users to manipulate the geographic features interac-
tively, the ray casting will be executed whenever the view settings are updated. As
a result, the computational and the rendering intensity can increase signifi cantly.

 We implemented coordinate transformation, interpolation and resampling, and
ray casting with CUDA. Although data fi ltering can be memory intensive, we imple-
mented the process with host programs on CPUs because CUDA does not provide
native interfaces to support reading/writing scientifi c data formats. However, the
computational intensity of the rest three intensive tasks has been shifted to GPUs.
Below, we will describe our implementations of visualization pipeline with a focus
on three major processes which are coordinate transformation, interpolation and ray
casting.

 Before discussing the implementation in detail, we fi rst briefl y review the paral-
lel computing framework of CUDA, which is the foundation of our parallel model
design. CUDA offers a two-level parallel hierarchy: thread-level and block-level.
Threads are grouped into blocks and blocks are grouped into a grid. The number of
threads within a block can be specifi ed with 1D (x), 2D (x, y) or 3 D (x, y, z).
Similarly, the number of block is specifi ed with 1D (x) and 2D (x, y). The total
number of threads is equal to the value of the number of threads within a block
multiplies the total number of blocks. A kernel, similar to a function of CPU pro-
gramming, is executed by an array of threads of a grid. For example, a kernel can be
a coordinate transformation performed on every element of a data array. With the
data parallelism, given the confi gurations of the block size of a grid and the thread
size of a block, the data array can be equally divided into sub-regions with smaller
dimensions and these sub-regions are distributed to different threads. Then each
sub-region is processed by a number of threads within a block. Each thread has a
unique ID that it uses to access the sub-region to the thread. In this way, the total
execution time can be reduced through the parallel processing.

 In the context of 5D geovisualization, the time varying volumetric data can be
treated as time series 3D arrays. We set up 3D thread-blocks and divided the 3D
arrays along three spatial dimensions. For each cell from the data array, the program
derives its geographic coordinates and transfers geographic coordinates into pro-
jected coordinates according to the view settings (Fig. 6.2). The transformation

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

74

equation is provided by World Wind Java Software Development Kit (SDK). Three
CUDA arrays, A, B and C are initiated to store x, y and z coordinates respectively.
This is an implementation of data parallelism.

 We used a simple neighborhood interpolation algorithm to generate 3D textures.
Given the projected coordinates of cells of the 3D array, the interpolation fi rst maps
each cell to the corresponding voxel within the 3D texture and then fi lls the empty
voxels with the values from neighborhood cells. We applied the same parallel strat-
egy as the coordinate transformation to assign the value of a cell (Fig. 6.3).

 Compared to the fi rst two implementations, ray casting is a more complicated
process that interactively checks intersections between rays and a 3D texture. Here
we only describe the implementation of the core function, “d_render”, which

 Fig. 6.2 The kernel function of coordinate transformation

 Fig. 6.3 The kernel function of interpolation

J. Li et al.

75

performs the ray-object intersection for the entire 3D texture (Fig. 6.4). As the
source codes provided by CUDA SDK are designed to implement ray casting within
a unit cube, we modifi ed the ray intersection portion so that the algorithm can be
implemented on any regular 3D texture stored in coordinates in a predefi ned visual-
ization environment.

 To demonstrate the visual effects, we performed the visualization on regional
dust storm data generated from the DREAM Eta 8-bin model. The data are stored in
NetCDF format and the dust density variable was extracted to characterize the dust
storm (Table 6.1). The view frame is 783 pixels in width and 584 pixels in height.
Given the original spatial dimensions of the data, a 3D texture with a size of 512 3 is

 Fig. 6.4 The kernel function of “d_render”

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

76

defi ned to represent the 3D data. Although the texture size is considered as moderate,
this is the maximum texture size given the memory of GPUs used in the experiment.
Figure 6.5 shows the visual representation when the data were rendered in the World
Wind.

6.5 Challenges of Adopting GPUs in 5D Scientifi c
Geovisualization

 While CUDA provides relatively high level programming interfaces, the implemen-
tation of the visualization pipeline is not straightforward. Three major challenges
are (a) integrating kernels with World Wind Java SDK; (b) fi ne tuning the parallel
computing confi guration to achieve best performance and (c) designing and imple-
menting data management and communications between CPUs and GPUs in han-
dling multidimensional geospatial data.

6.5.1 Integrations with Existing Visualization Platform

 In this framework, the World Wind Java SDK was selected as the visualization
development platform. Typical CUDA kernels written in C codes cannot be directly
executed on this platform. Therefore, additional confi gurations and developments

 Table 6.1 Metadata of the
sample dust density data

 Parameter Range Dimension

 Longitude 25.99°–36.01° 242
 Latitude −107.97°−113.01° 481
 Elevation 0–5,000 m 24

 Fig. 6.5 Visual effects of the volumetric rendering from two different view angles

J. Li et al.

77

are required to address the compatibility issue. In this research, two approaches
were designed to kernels with the World Wind Java SDK, which are Java Native
Interface (JNI) and the Java bindings for CUDA (JCUDA). JNI is a traditional
method used to incorporate C/C++ functions into a Java program. With JNI, CUDA
kernels written by in C language can be directly invoked or called by the World
Wind visualization application. As a third party library, JCUDA is a complete
implementation of CUDA interfaces with Java and thus is frequently used as an
alternative solution to call CUDA functions within a Java environment. Such bind-
ing allows users to interact with CUDA interfaces (e.g. CUDA Runtime API) while
kernels should be precompiled to be used in JCUDA.

 Two approaches offer different levels of customizations and interactivities.
Given the abundance of Java-based scientifi c geovisualization tools and software
(e.g. VisAD), developing a set of high level cross-platform interfaces built upon
the functionalities provided by CUDA is essential to improve the performance of
these tools in handling computing intensive tasks. Using the two approaches
described above, all interfaces provided by CUDA can be redesigned and packed
in a Java development environment as a library. This extends CUDA capabilities
by offering cross- platform wrappers. As a result, issues caused by incompatibili-
ties among development platforms and programming languages can be handled by
such wrapper.

6.5.2 Parallel Computation Setup and Confi gurations

 The confi gurations of grid size and block size can change the performance signifi -
cantly. The specifi cations of a CUDA-enabled GPU graphics card usually provide
information regarding the maximum threads, for example, the maximum active
threads. When tuning the parallel confi gurations, these parameters should be con-
sidered. In addition, in executing the kernels, the block size should be a multiple of
32 threads (1 warp) because CUDA triggers the kernels following a SIMT (Single
Instruction, Multiple Thread) fashion (Nickolls et al. 2008). Taking ray casting ren-
dering algorithm as an example, if the resolution of screen is 1,024 × 1,024, per-
forming ray casting rendering with a block size as 17 × 17 is usually faster than that
with a block size as 32 × 32.

 However, such condition may not be always satisfi ed because the grid size and
the block size are constrained by the dimensions of gridded geospatial data. In
Table 6.1 , any dimension of the data array is not a multiple of 32. Therefore, a few
blocks are assigned less data cells. Such inequality leads to the imbalance of tasks
between different threads and further increases the total execution time. To explore
the appropriate confi gurations of block size and grid size, we conducted an experi-
ment with a desktop equipped one CUDA-enabled GPU graphics card. Table 6.2
summarizes its hardware confi gurations and benchmark results. As the selected
GPU has two Streaming Multiprocessors (SM), we also enabled two physical cores
of the CPU to compare the performance of both computing facilities. The volume of

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

78

main memory of CPU does exceed that of device memory of GPU and the clock
speed of the CPU is also higher than that of GPU. However, most GPU-based oper-
ations (both memory and mathematical calculations) except for the image process-
ing have better performance compared to CPU-based operations.

 We examined the impacts of parallel confi gurations in infl uencing the computing
performance through tuning the block size defi ned in the kernels of coordinate
transformation and ray casting (Fig. 6.6). Two kernels employ 3D blocks and 2D
blocks respectively. The interpolation kernel is not evaluated because it has a similar
parallel confi guration as coordinate transformation kernel.

 Figure 6.6 shows that the time cost decreases with the number of threads within
each block in general. Therefore, we can usually assign a large number of threads
within each block size so that all computing units of the GPU can be activated to
reach the peak of computing performance. The minimal value of time cost appears
at the point with 1,024 threads which is the maximal number of threads of a block
given the confi guration of the selected GPU. However, we do not always obtain
performance gains with a larger number of threads.

 Table 6.2 Benchmark testing results of the selected computing equipment

 CPU GPU

 Brand Inter NVIDIA
 Model i7, 920 GT 430
 Cores per unit 2 2 Multiprocessors
 Clock 2,660.01 MHz 1,400 MHz
 Memory 4,096 M + 2,047 MB 1,023.668 MB
 Global memory read 10.685GB/s 13.750GB/s
 Global memory write 7.919 GB/s 19.765 GB/s
 Global memory copy 9.374 GB/s 19.203 GB/s
 Local memory bandwidth 149.252 GB/s Float-Aligned 171.815GB/s
 Float ops(add) 16.917 GFLOPS 127.592 GFLOPS
 Double ops(add) 8.435 GFLOPS 11.014 GFLOPS
 Image processing brightness

histogram
 790.005 MegaPixels/s 765.799 MegaPixels/s

 Fig. 6.6 Time costs of executing kernel functions

J. Li et al.

79

 In addition, given the same number of threads allocated to a block, the
 performance varies with the confi gurations of a block. In the case of coordinate
transformation, every thread executes the transformation for one cell from the data
array. If we evaluate the performance with respect to the dimensions of a block and
the dimension of the original data, the dimensions of a block determine the total
number of blocks of the grid used to execute coordinate transformation. For exam-
ple, 11,712 blocks are needed given the block size 32 × 8 × 1 whereas 11,616 are
needed given the block size 32 × 4 × 2. A few blocks will be assigned cells less than
the number of threads within a block. As a result, time costs of two confi gurations
change slightly. In the case of ray casting, the situation is more complicated. While
the confi guration of a block leads to the variations of total number of blocks (7,300
blocks for 32 × 2 vs. 7,154 blocks for 8 × 8), the life cycles of all threads are not
identical. The ray-data intersection can be terminated depending on the values of
cells along that ray. Consequently, the runtime of a thread executing the ray-data
intersection can signifi cantly differ from another thread within the same block. It is
hard to predict the total execution time. Therefore, further explorations should be
done to identify an appropriate confi guration of a block to obtain the best
performance.

6.5.3 Data Management and Communications
Between GPUs and GPUs

 The communication between CPUs and GPUs plays an important role in the CUDA
programming model as the latency caused by communication directly affects the
performance of computing. In designing the visualization pipeline, we found inter
device communications between host (CPU) and device (GPU) may occur at three
different stages: (a) as the CUDA API does not provide native support for the scien-
tifi c data formats (e.g., NetCDF) and the kernels can be executed on the GPU, data
stored in these formats should be preprocessed with CPU functions and sent to GPU
kernels. If the spatiotemporal coverage used for data fi ltering does not change, such
preprocessing is one time only and therefore the data transfer is one time only oper-
ation; (b) the ray casting is triggered whenever view settings of the visualization
environment are updated. Interactive manipulations on the data change the view
settings continuously. Any changes of the view settings of World Wind should be
notifi ed at GPU side immediately to invoke the ray casting process; (c) 2D textures
generated from the ray casting process can be sent back to CPU to generate 2D
images. The fi rst two communications are mandatory whereas the last communica-
tion is optional.

 To design CPU-GPU data communication components in the pipeline, we should
refer to the memory hierarchy of CUDA because the memory hierarchy determines
the types of variables used to facilitate communications. CUDA threads can access
data from multiple memory spaces during their executions. Each thread can access

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

80

private local memory. Shared memory is accessible to all threads of the same block
whereas global memory is shared by all blocks within a grid (CUDA 2012). As the
CUDA programming model assumes that the CUDA threads execute kernels on a
physically separate device and both host and device maintain own separate memory
spaces, a program should be developed to manage all memory spaces and facilitate
data transfers between CPU and GPU. Data residing on CPU should be copied to
GPU to be used for executing kernels with a CUDA memory copy function.

 Given different scopes of variables, global variables should be used to store sci-
entifi c data and view settings (i.e., projection matrix, model matrix and eye posi-
tions). Through copying the information from host to device, all threads can access
the information to perform ray casting. Except for scientifi c data, variables of view
settings should be consistently updated whenever interactive manipulation occurs.
Similar to the ray casting example provided by NVIDIA SDK, our ray casting host
program allocates device memory to store the 2D texture generated from ray cast-
ing. The texture is directly mapped to a Pixel Buffer Object (PBO) as fi nal display.
While global variables are less effi cient compared to other variables such as shared
variables, these variables are probably the primary variables used to facilitate the
data communication between CPU and GPU.

6.6 Conclusions and Future Work

 GPU-based computing and rendering techniques have been adopted in multiple
application domains. In this study, we explored the usages of CUDA-enabled GPUs
to support scientifi c visualization for multidimensional geospatial data. We found
that due to the different designs of parallel frameworks, GPU-based implementations
and CPU-based implementations and corresponding taxonomies are signifi cantly
different. For example, functions are called kernels with the CUDA. It is highly rec-
ommended that scientists should comprehend the programming architecture before
designing CUDA programs. While our implementations show the potential of using
CUDA to improve the effi ciency of 5D scientifi c geovisualization, current research
focuses on implementing the visualization pipeline with the computing resources
provided by one desktop machine. To optimize the pipeline, future work includes the
following aspects (Li et al. 2013).

 First, an optimal algorithm should be designed for parallel confi guration.
According to the framework, CUDA usually requires two-level parallelism: block-
level and thread-level. Users have to tune the confi gurations of blocks and threads
within a block to obtain the best performance, meanwhile, avoid the invalid paral-
lelism settings (e.g., the total number of threads exceeds the total number of voxels).
While we can always obtain performance gains with GPU-based implementations
by invoking the data and/or task parallelisms, the performance gains can vary with
the types of variables used to execute programs and the parallelism confi gurations.
In our experiment, we found that different thread settings can alter the performance

J. Li et al.

81

of executing parallel programs. The optimal algorithm should automatically identify
the best parallel confi guration given the data and kernels.

 Second, a concrete data management and communication plan should be
 proposed. The communication between CPUs and GPUs plays an important role in
the visualization pipeline. We used global variables to facilitate the communication.
While global variables should be less frequently used because of the low perfor-
mance, such type of variables is essential in the communications between CPUs and
GPUs (e.g., data and message transfer). However, shared variables and device func-
tions can be introduced to kernels to promote the communication within a data
block. Future research should include replacing unnecessary global variables with
shared variables.

 Third, distributed computing paradigm should be introduced to enhance the
capabilities of the current visualization pipeline in handling “Big Data”. Due to the
limitation of GPU memory, we only tested the medium sized data. The tendency is
that large volume data, advanced computing resources and multiple display devices
are distributed within a network environment. Investigating GPU clusters or clouds,
which built upon scalable high performance platforms, is critical in enhancing the
capabilities of the visualization pipeline to visualize massive 5D geospatial data. In
such highly distributed environment, web-based rendering techniques such as
WebGL should be incorporated to leverage the rendering and computing capabili-
ties between servers and clients.

 Acknowledgements Research and development reported is partially supported by NSF (IIP-
1160979 and CNS-1117300) and NASA (NNX12AO34G).

 References

 Bell DG, Kuehnel F, Maxwell C, Kim R, Kasraie K, Gaskins T, Hogan P, Coughlan J (2007)
NASA World Wind : Opensource GIS for Mission Operations, In: Proceedings of IEEE
Aerospace Conference:1–9

 Card SK, Mackinlay JD, Shneiderman B (1999) Readings in Information Visualization: Using
Vision to Think Morgan Kaufmann, San Francisco, CA

 Eilemann S, Makhinya M, Pajarola R (2009) Equalizer: A Scalable Parallel Rendering Framework.
IEEE Transactions on Visualization and Computer Graphics 15:436–452

 Guthe S, Wand M, Gonser J, Strasser W (2002) Interactive rendering of large volume data sets. In:
Proceedings of IEEE Visualization : 53–60

 Hardisty F, Robinson AC (2011) The geoviz toolkit: using component-oriented coordination meth-
ods for geographic visualization and analysis. International Journal of Geographical
Information Science 25:191–210

 Hibbard WL, Anderson J, Foster I, Paul BE, Jacob R, Schafer C, Tyree MK (1996) Exploring
coupled atmosphere-ocean models using Vis5D. International Journal of High Performance
Computing Applications 10:211–222

 Li J, Jiang Y, Yang C, Huang Q, Rice M (2013) Visualizing 3D/4D environmental data using
many-core graphics processing units (GPUs) and multi-core central processing units (CPUs).
Computers & Geosciences 59(9):78–89

6 Utilizing CUDA-Enabled GPUs to Support 5D Scientifi c Geovisualization…

82

 MacEachren AM and Kraak M (2001) Research Challenges in Geovisualization. Cartography and
Geographic Information Systems 28:3–12

 McKaskle, GA, Rogers CC (2009) Integrated Data Viewer. US Patent 12/534,626 Aug.3 2009
 Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable Parallel Programming with CUDA.

Queue 6(2) : 40–53
 NVIDIA (2007) CUDA Compute Unifi ed Device Architecture Programming Guide. NVIDIA

Crop: Santa Clara, CA
 Yang C, Wu H, Huang Q, Li Z, Li J (2011) Using spatial principles to optimize distributed

 computing for enabling the physical science discoveries. Proceedings of National Academy of
Sciences of the United States of America 108(14):5498–5503

J. Li et al.

83X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_7, © Springer Science+Business Media New York 2013

Abstract The Near-Shortest Path (NSP) algorithm (Carlyle and Wood, Networks
46(2): 98–109, 2005; Medrano and Church, GeoTrans RP-01-12-01, UC Santa
Barbara, 2012) has been identified as being effective at generating sets of good route
alternatives for designing new infrastructure. While the algorithm itself is faster
than other enumerative shortest path set approaches including the Kth-shortest path
problem, the solution set size and computation time grow exponentially as the prob-
lem size or parameters increase, and requires the use of high-performance parallel
computing to solve for real-world problems. We present a new breadth- first- search
parallelization of the NSP algorithm. Computational results and future work for
parallel efficiency improvements are discussed.

Keywords Parallel algorithms • Near-shortest paths • kth-shortest paths • Shortest
path algorithms

7.1 Introduction

Since it was first declared in 1965, Moore’s Law has correctly predicted that the
number of transistors on an integrated circuit, and thus computational power, would
double every 2 years. Up until 2005, the additional transistors allowed both proces-
sor clock speeds to increase and more advanced instruction-level parallelism, which
resulted in overall computational processing power of single-threaded code to

Chapter 7
A Parallel Algorithm to Solve Near-Shortest
Path Problems on Raster Graphs

F. Antonio Medrano and Richard L. Church

F.A. Medrano (*) • R.L. Church
Department of Geography, University of California at Santa Barbara,
Santa Barbara, CA, USA
e-mail: medrano@geog.ucsb.edu; church@geog.ucsb.edu

84

 follow Moore’s Law. But around 2005, heat dissipation became a limitation on
 further practical increases in processor clock speeds, and instead processor makers
began using higher transistor densities to pack multiple computer processors onto a
single chip, known as multi-core processors.

Innovation in multi-core processors, starting with dual-core, then quad-core, to
now in 2013 where some processors have 8-cores capable of simultaneously han-
dling 16-threads, have allowed the progress of Moore’s Law to continue. But as
scientists and programmers run programs on larger and more complicated data sets,
they can no longer rely on simply higher processor clock speeds to improve the
performance of their codes (Sutter 2005). Instead, to continue to reap the benefits of
Moore’s Law, programmers must now write their programs to take advantage of
multi-core processors and increasingly inexpensive parallel computing clusters.
This requires looking at ways to incorporate concurrency and multi-threading into
their codes, so that independent control flows can be distributed over numerous
processors. Some algorithms are easier to “parallelize” than others; for example, a
Monte Carlo simulation entails running a model numerous times with various dif-
ferent initial conditions as input. Since each model simulation is an independent
calculation to every other model simulation, then individual computations can sim-
ply be assigned to separate processors without the need for any communication
between the processors while computing. Unfortunately, most programs are not so
simple to make parallel, and more likely a programmer will have to split data and
tasks into numerous pieces, perform some distributed concurrent partial computa-
tion, communicate intermediate results between various processors and then define
new task and data pieces for further partial computation, continuing until the com-
putation is complete; a sort of wash, rinse, and repeat. Communication speeds
between processors become a performance bottle-neck, trade-offs between fine-
grained and coarse-grained parallelism must be calibrated for running on different
hardware configurations, and race conditions and deadlocks open up a whole new
Pandora’s box of software bugs that must be resolved.

But aside from the nuts and bolts associated with parallel programming, some
algorithms are fundamentally difficult to split into concurrent processes. For exam-
ple, parallel irregular graph traversal algorithms remain an active area of research,
as these are inherently difficult to code (Bader et al. 2008; Cong et al. 2008;
Chhugani et al. 2012; Merrill et al. 2012). This chapter addresses an example of one
such irregular graph traversal: the parallelization of a depth-first-search (DFS) path
algorithm that has been proven to be inherently sequential (Reif 1985), and thus
difficult to implement in parallel. While the approach described here does make
some progress in being able to make this path algorithm concurrent, our results sug-
gest that there is considerable room for improvement, and we suggest future research
plans and their associated challenges toward the end of this chapter. While this is a
difficult problem, the development of new parallel path algorithm approaches is an
important need when facing complex tasks such as robot operations and corridor
planning on increasingly large and more complex networks.

Single objective shortest or least cost path tools are common in present day GIS
software packages. These tools are useful in computing an optimal route over a

F.A. Medrano and R.L. Church

85

terrain or road network, in which some objective such as distance or cost is to be
minimized. Real-world problems are often more complicated than simply minimiz-
ing a single objective, and thus designers often need to solve more complex path
problems such as the resource constrained shortest path (minimize cost A while not
exceeding some quantity of cost B) or the multi-objective shortest path (minimize a
weighted sum of numerous costs). The constrained shortest path and related prob-
lems are NP-Complete, and are thus quite difficult to solve.

Various methods using enumeration algorithms have been published for solv-
ing the resource constrained shortest path (Beasley and Christofides 1989;
Carlyle et al. 2008; Handler and Zang 1980) and multi-objective shortest paths
(Clímaco and Coutinho-Rodrigues 1988; Coutinho-Rodrigues et al. 1999; Raith
and Ehrgott 2009). Most of these methods involve enumeration of some sort,
either solving a Kth Shortest Path (KSP) problem, which returns a ranked list of
shortest paths from an origin to a destination; or solving a Near-Shortest Path
(NSP) problem, which returns a set of paths from an origin to a destination such
that all are less than some defined cost. For loopless paths, algorithms for solving
the NSP problem are much more efficient than those for solving KSP problems,
and it has been shown that it is faster to solve the KSP by first solving an NSP
and then post-processing the output (Carlyle and Wood 2005). This being the
case, our research focuses on parallelizing the fastest known NSP algorithm
(Carlyle and Wood 2005). Parallelization is necessary to solve large-scale prob-
lems, since we show that the solution set size will grow exponentially as problem
sizes increases.

7.2 Background

Shortest path algorithms defined for network problems have been an active area of
computational research since the 1950s. While shortest path routing has been a
fundamental human problem since the dawn of time, Alex Orden in 1956 (Orden
1956) was the first to formulate mathematically the shortest path problem, which he
did as a linear program. This was followed shortly by a number of different algo-
rithms developed to solve the shortest path problem, including the well-known
Bellman-Ford Algorithm (Bellman 1958) and Dijkstra’s Algorithm (Dijkstra 1959).
Since then, there have been many advances and refinements in shortest path algo-
rithms, and recent comparisons between various methods can be found in Cherkassky
et al. (1996), Zeng and Church (2009), and Zhan and Noon (2000).

The Kth-Shortest Path (KSP) Problem is an extension of the shortest path prob-
lem on a network, where the goal is to return the 1st, 2nd, 3rd, …, Kth shortest paths
that exist between a pre-specified origin and destination. Initially formulated by
Bock, Kantner, and Haynes (1957), good algorithms for solving this problem for
loopless paths have been developed by Hoffman and Pavley (1959), Yen (1971), and
Katoh et al. (1982). A complete literature review can be found in Medrano and
Church (2011).

7 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

86

The Near-Shortest Path (NSP) Problem, originally formulated by Byers and
Waterman (Byers and Waterman 1984), is a slight variation of the KSP problem.
Unlike the KSP, which returns a ranked list of the k shortest paths on the network,
the NSP problem returns all distinct paths on the network between an origin and
destination longer than the shortest path within a prescribed threshold, ε, expressed
as a decimal fraction. If the shortest path has length Lsp, then the NSP returns all
paths of length ≤ (1 + ε) × Lsp.

7.3 Carlyle and Wood’s Near-Shortest Path Algorithm

In their 2005 paper, Carlyle and Wood (2005) present two different algorithms for
finding loopless NSPs, ANSPR0 and ANSPR1 (Algorithm Near Shortest Paths
Restricted 0 and 1 respectively). ANSPR0 is based on the Byers and Waterman
(1984) method with a modification to output only loopless paths. The general idea
is to find all paths of length ≤ D on the network, where D = (1 + ε) × Lsp. First, it
solves the reverse shortest path tree (all shortest paths from the destination to all
other nodes on the network) to acquire the shortest path cost from any node to the
destination, t. This is the only time that a traditional shortest path algorithm is used.
It then uses depth-first search (DFS) and a first-in last-out stack to generate the set
of NSP’s. This approach is very efficient because the DFS uses only fast addition/
comparison operations, and never has to repeat any shortest path calculations in the
process of generating paths. While it has an exponential worst-case complexity, it
takes a pathological example to create such behavior. ANSPR1, has a better worst-
case complexity, but when implemented was shown to run slower than ANSPR0.
Combined with a binary search tree, Carlyle and Wood showed that the ANSPR1
algorithm could be modified to solve the KSP problem much faster than the fastest
loopless KSP method of Katoh et al. (1982) as implemented by Hadjiconstantinou
and Christofides (1999). While no other experiments have been published that com-
pare Carlyle and Wood’s algorithm to other KSP algorithms, Carlyle et al. (2008)
argue that enumerating paths in order of length requires undue computational effort,
and if it is not necessary to use KSP then the NSP is far superior.

7.4 The Need for Parallelization

To demonstrate the need for a parallelized approach to the NSP algorithm, we first
wrote a serial JAVA implementation of the NSP algorithm and tested it on two
networks:

 1. 20 × 20 manually fabricated raster. This network contains 400 nodes and 2,850
undirected arcs.

 2. 80 × 80 subset of the Maryland Automated Geographic Information System
(MAGI) database. This network contains 6,400 nodes and 49,770 undirected arcs.

F.A. Medrano and R.L. Church

87

Both of these data sets were first used by Huber and Church (1985). Both
 networks have undirected “queen’s and knight’s move” arcs emanating from each
node, as this raster network model has been shown to offer a good compromise
between accuracy and computational burden (Huber and Church 1985).

To characterize the solution set growth rate, we plotted the number of paths
 output by NSP for numerous values of ε on both networks on a log-linear plot.
Figure 7.1 shows this plot for the 20 × 20 network. The logarithmic y-axis is of the
number of paths output, and the x-axis is the ε value. The result is a straight-line
trend, indicating an exponential growth in the number of paths as ε increases.
Similarly, as seen in Fig. 7.2, the computation time as a function of ε was found to
be proportional to solution size growth, and when plotted on the log-linear axis also
showed exponential growth with respect to ε.

The NSP algorithm generated nearly 4 billion solutions on the 20 × 20 raster
region when the epsilon value was set at 0.10, i.e. within 10 % of the optimal path.
Because the number of paths for each given value of ε is much higher for the 80 × 80
network as compared to the 20 × 20, the range of epsilons used in our 80 × 80 experi-
ments were an order of magnitude smaller than those in our 20 × 20 experiments.
For example, for ε = 0.005, on the 20 × 20 data this generated a solution set of 73
near-shortest paths; but for the 80 × 80 with the same ε = 0.005, there were
510,343,616 such paths.

These experiments demonstrated that generating a set of NSPs can be an
 enormous task and may overwhelm computational resources as one increases the
network size or increases the value of ε. Generating all paths within 0.75 % of the
shortest path length on the 80 × 80 network took more than 4 days using an Intel

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120

o

f
p

at
h

s

epsilon

20 x 20 Raster Network
of paths vs. epsilon

Fig. 7.1 20 × 20 network, log number of paths generated by the ANSPR0 vs. epsilon

7 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

88

Core i7 desktop and employing a serial JAVA implementation, even though this
application was able to generate 185,000 paths per second! The quad-core processor
used was capable of running two threads per core, yet the serial code was using only
one out of the eight potential threads of this processor. While we make no claims
that the serial code cannot be further optimized, the reality is that even with the best
serial code, generating all paths within 10 % of the shortest path on a 100 megapixel
raster is beyond the reach of any commercial off-the-shelf computer running a serial
NSP code. Instead, in order to have any hope of making this computation, one must
take advantage of the full parallel capabilities of modern processors.

7.5 Parallelizing Depth-First-Search

Our proposed technique of converting the Carlyle and Wood depth-first-search NSP
algorithm into a parallel algorithm begins with performing an initial breadth-first-
search (BFS) generation of all NSPs emanating from the origin point. Rather than
completely building one NSP at a time with DFS, the BFS simultaneously builds the
start of all NSPs. BFS naturally forms a tree structure, with concurrent paths sharing
branches until they deviate, and the end nodes of the various path stems resulting as
different leaves on the tree. We stored the BFS paths in a “trie” data structure
(Hadjiconstantinou and Christofides 1999; Aho et al. 1983), which is an efficient

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120

co
m

p
u

ta
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

epsilon

20 x 20 Raster Network
computation time vs. epsilon

Note: Simulations run on a
2.53 GHz Pentium 4 PC

Fig. 7.2 20 × 20 network, log computation time of ANSPR0 vs. epsilon

F.A. Medrano and R.L. Church

89

data structure for storing sets of paths which partially overlap. If the entire computa-
tion were performed as a BFS, then every leaf of the final trie would be the destina-
tion node of the network. In our method, the BFS runs until there are as many leaves
on the BFS tree as there are processors available for computation, at which point
each processor is then tasked with running the traditional DFS NSP algorithm using
a trie leaf as a starting point, finding all paths from that point which are less than the
threshold length minus the path-length from the origin to the leaf starting node.

7.6 Analysis of Implementation

Prototyping was done using UCSD’s Triton Supercomputer. Triton consists of 256
gB222X Appro blade nodes, each containing 2 quad-core Intel Nehalem 2.4 GHz
processors, 24 GB of memory, and is capable of a peak processing power of 20
TeraFlops. Our code was written in C++ using the MPI extension to communicate
between the different processors/nodes.

Table 7.1 contains data collected from various runs of our first generation paral-
lel code implementation on the 20 × 20 data set on the Triton nodes. The columns
show epsilon value, number of processors, total NSP runtime in seconds, total paths
found, paths found on the leaf of fewest paths (Min Paths Leaf), paths found on the
leaf of most paths (Max Paths Leaf), speedup, and parallel efficiency. When using
multiple processors, the closer the value of parallel efficiency is to 1.00 the better.
By definition, when one uses only one processor, it will be rated at 100 % efficiency
for that one processor. The main objective in parallelizing a routine is to hopefully
use all processors efficiently with no idle time and reach a parallel efficiency of 1.0
overall, although this rarely happens for all but the most trivial algorithms.

In the computational results shown in Table 7.1 we see that good parallel effi-
ciency was achieved when the ratio between the maximum number of paths found
on a leaf and the minimum number of paths found on a leaf is not too great. For
example, when ε = 0.05, and 5 processors were employed (BFS depth = 1), the ratio
was approximately 6:1 “max to min paths”. This resulted in a very respectable 0.61
value of parallel efficiency. With ε = 0.05 and employing 48 processes (BFS
depth = 2), the “max to min paths” ratio was approximately 50,000:1. The minimum
path leaf quickly finished its work in 0.2 ms, while the maximum path leaf took
2.5 s to complete. This significant amount of relative idle time resulted in a lesser
parallel efficiency of 0.18.

Table 7.2 gives results for computational tests on the 80 × 80 data using the same
parallel implementation. This experiment produced even larger discrepancies
between the number of paths found in the “max” sized leaf and the number of paths
found in the “min” sized leaf, resulting in an unimpressive speedup of 1.61 when
using 38 processors, which is equivalent to a parallel efficiency of 0.04.

As a result of the independent computation of each leaf, we found that that the
expected overall parallel efficiency followed this relationship:

7 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

90

Table 7.1 Parallel NSP runtime results on 20 × 20 network

Epsilon
Number of
processors Time (s) Total paths

Min paths
leaf

Max paths
leaf

Speed-
up

Parallel
efficiency

0.05 1 21.73 4,601,053 Paths 4,601,053 1.00 1.00
Time 21.729
Paths/s 211,747

0.05 5 7.07 4,601,053 Paths 247,446 1,530,887 3.07 0.61
Time 1.30064 7.07048
Paths/s 190,249 216,518

0.05 48 2.51 4,601,053 Paths 11 565,901 8.67 0.18
Time 0.000195 2.50676
Paths/s 56,403 225,750

0.07 1 392.37 86,384,393 Paths 86,384,393 1.00 1.00
Time 392.373
Paths/s 220,159

0.07 5 119.94 86,384,393 Paths 5,782,131 26,620,106 3.27 0.65
Time 27.3463 119.939
Paths/s 211,441 221,947

0.07 50 34.39 86,384,393 Paths 137 8,129,092 11.41 0.23
Time 0.00161 34.3939
Paths/s 85,091 236,353

Table 7.2 Parallel NSP runtime results on the 80 × 80 network

Epsilon
Number of
processors Time (s) Total paths

Min leaf
path

Max leaf
paths

Speed-
up

Parallel
efficiency

0.003 1 33.21 4,459,050 Paths 4,459,050 1.00 1.00
Time 33.21
Paths/s 134,253

0.003 5 25.51 4,459,050 Paths 3,462 3,475,928 1.30 0.26
Time 0.03324 25.5127
Paths/s 104,152 136,243

0.003 11 25.49 4,459,050 Paths 852 3,472,466 1.30 0.12
Time 0.01286 25.4856
Paths/s 66,251 136,252

0.003 12 25.50 4,459,050 Paths 852 3,472,466 1.30 0.11
Time 0.01262 25.5003
Paths/s 67,501 136,174

0.003 14 24.29 4,459,050 Paths 600 3,462,254 1.37 0.10
Time 0.00817 24.2906
Paths/s 73,475 142,535

0.003 22 21.95 4,459,050 Paths 300 3,175,358 1.51 0.07
Time 0.00408 21.9474
Paths/s 73,511 144,680

0.003 38 20.68 4,459,050 Paths 216 3,033,530 1.61 0.04
Time 0.00527 20.68
Paths/s 41,018 146,714

F.A. Medrano and R.L. Church

91

parallel efficiency

Paths

p Paths
Total

Max

=
×

where PathsTotal is the total number of paths found for the given input parameters and
data, and PathsMax is the maximum number of paths found by one processor, and p
is the number of processors. Additionally, as PathsMax → PathsTotal/p, then parallel
efficiency → 1. This is essentially an example of Amdahl’s Law (Amdahl 1967) in
action, which states that the potential parallelism available in any program is limited
by the amount of work that must be run sequentially. This points towards the need
to distribute the work more evenly in order to make the most efficient use of all
processors.

7.7 Implementation Challenges: Distributing Workload

The load imbalances in this problem come from performing a depth-first search on
a raster network, where the task workload sizes are completely unknown until after
execution is completed. Therefore, offline partitioning or scheduling algorithms
cannot be used beforehand, as there is not enough information available in order to
make use of such schemes. The following is a description of several methods for
load balancing and how well they could apply to our parallel approach to the NSP
problem. For further details, please refer to Medrano and Church (2012).

Randomized Task Distribution. As it stood before, the code distributed the work by
running a BFS algorithm until the tree had as many leaves as there were processors,
then assigned one leaf to each processor for it to run to completion. The drawback
was that some leaves contained far more work than others, resulting in lots of idle
processor time for some of the processors.

A randomized task distribution approach would be based on generating far more
leaves than processors, then assign these tasks randomly to each processor. By ran-
domly distributing sufficient work chunks of unknown size to numerous processors,
the hope is that overall work for each processor averages out to be somewhat simi-
lar. Adler et al. (Adler et al. 1995) show that when using randomized algorithms on
normal or Poisson distributions of workload, in order to get a “good” balance one
must generate at the very least p log p tasks, where p is the number of processors. In
a worst-case-scenario though, a large outlier could still result in an overall work
imbalance

Dynamic Centralized Scheduling. Centralized scheduling uses an as-needed
approach for assigning tasks. Like randomized task distribution, centralized
scheduling first generates a list of tasks (≫p), then assigns the first p tasks to the
various processors to compute. When a processor completes a task, it asks the
scheduler for another task. The scheduler assigns a new task, removes it from the
list, and this process would continue until all tasks have been assigned and

7 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

92

computed. This method is susceptible to the possibility of an abnormally large
task being assigned last.

Dynamic Work Stealing. Dynamic work stealing is an approach that assigns all work
to all processors at the start; then when one processor completes its tasks, it steals
part of a task from another processor in order to have more work to do. This approach
is certainly viable for a DFS algorithm; and if one does not consider communication
time between processors, it has the possibility of producing the best theoretical
results. Unfortunately, it is also far more difficult to implement than any of the other
options. Even if implemented, one has to select a strategy for selecting which pro-
cessor to steal work from, including asynchronous round robin, global round robin,
and random polling/stealing. It has been proven that a random polling/stealing
approach is theoretically just as effective as the other two approaches (Blumofe and
Leiserson 1994), although local communication priority is preferred in practice.
This application could use a worker queue that at each time assigns work from the
processor at the front of the queue. Any time a processor steals work or gets stolen
from, it then gets placed at the back of the queue, ensuring it won’t get stolen from
immediately afterward, essentially a FIFO scheme.

Workload Prediction. One reason why it is difficult to balance the workload on
depth-first-search irregular graph traversal algorithms is because the amount of
work in each branch varies widely, and is unknown beforehand. We have consid-
ered working to identify heuristics that estimate the amount of work needed to
resolve each leaf of the BFS tree. If effective, this would allow one to fathom/trim
the tree in portions that have low expected work, while continuing to split leaves on
portions with higher expected work. This would hopefully result in work chunks of
more uniform size and avoid the inefficiencies caused by massively disparate work
task sizes.

For the parallelized NSP algorithm, it appears that the first two approaches would
suffer from the possibility of large work chunks superseding the benefits of random
prescheduling or dynamic work scheduling. On our 80 × 80 data set (Table 7.2),
even dividing the work into 38 chunks, the maximum sized still accounted for 68 %
of the total paths. This is far from the Gaussian or Poisson distribution that is neces-
sary for random prescheduling to be effective. Dynamic work stealing has no theo-
retical drawbacks if implemented properly, but is exceedingly difficult to program
for graph problems. In looking for an optimal balance between performance gains
and ease of implementation, workload prediction heuristics for the purpose of
developing the BFS tree only in portions with a high-expected workload seem most
promising in being an efficient method for more evenly distributing the workload
across processors.

Additionally, the best way to use the strengths and hide the weaknesses of any
approach is to combine it with another complimentary approach. For example, a
hybrid workload prediction/work stealing approach could show promise in giving a
relatively even initial work distribution, then leveling task loads towards the end
using dynamic work stealing. Any hybrid approach would be the most difficult to

F.A. Medrano and R.L. Church

93

implement, as it requires developing several approaches, as well as cooperatively
integrating them together.

7.8 Conclusions

The goal of this research was to develop an efficient parallel implementation of the
fastest NSP algorithm. The approach described here uses breadth-first-search to
split the work up in a pleasingly parallel fashion, and was able to show a significant
speedup when computing with multiple processors. Large variances in the work-
chunk sizes though prevented this approach from running at theoretically optimal
parallel efficiencies. Further work is needed in exploring approaches to more evenly
spread workload across various processors. We described possible methods for fur-
ther improvements in parallel efficiency, and of those we recommend devising a
predictive metric that could be used to estimate the work on each portion of the BFS
tree, and stunting tree growth where small work would be expected, followed by a
work-stealing scheme during the computation. We expect that the former would
result in a more consistent set of work-chunks, while the latter would even-out any
remaining imbalances, leading to improved overall efficiency and performance of
the parallel code. Further research would aim to develop an effective GIS tool able
to solve larger and more complicated path routing problems.

Acknowledgements We would like to thank the Environmental Sciences Division of Argonne
National Laboratories for providing the funding to conduct this research (1F-32422).

References

Adler, M., et al.: Parallel randomized load balancing. In: Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, 238–247 ACM City (1995)

Aho, A.V., J.E. Hopcroft, and J. Ullman: Data structures and algorithms. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, (1983)

Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capa-
bilities. In: AFIPS. Atlantic City, N.J.: ACM. (1967)

Bader, D.: Petascale computing for large-scale graph problems. Parallel Processing and Applied
Mathematics, 166-169 (2008)

Beasley, J.E. and N. Christofides: An Algorithm for the Resource Constrained Shortest-Path
Problem. Networks, 19(4), 379–394 (1989)

Bellman, R.E.: On a routing problem. Q. Applied Math, 1687–90 (1958)
Blumofe, R.D. and C.E. Leiserson: Scheduling multithreaded computations by work stealing. In:

Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. IEEE. (1994)
Bock, F., H. Kantner, and J. Haynes: An algorithm (the r-th best path algorithm) for finding and

ranking paths through a network. Research report, Armour Research Foundation of Illinois
Institute of Technology, Chicago, Illinois, (1957)

Byers, T. and M. Waterman: Determining all optimal and near-optimal solutions when solving shortest
path problems by dynamic programming. Operations Research, 32(6), 1381–1384 (1984)

7 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs

94

Carlyle, W.M. and R.K. Wood: Near-shortest and K-shortest simple paths. Networks, 46(2),
98–109 (2005)

Carlyle, W.M., J.O. Royset, and R.K. Wood: Lagrangian Relaxation and Enumeration for Solving
Constrained Shortest-Path Problems. Networks, 52(4), 256–270 (2008)

Chhugani, J., et al.: Fast and Efficient Graph Traversal Algorithm for CPUs: Maximizing Single-
Node Efficiency. In: Parallel & Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International. IEEE. (2012)

Cherkassky, B.V., A.V. Goldberg, and T. Radzik: Shortest paths algorithms: theory and experimen-
tal evaluation. Mathematical programming, 73(2), 129–174 (1996)

Clímaco, J. and J. Coutinho-Rodrigues: On an interactive bicriteria shortest path algorithm.
Lisbon, Portugal. (1988)

Cong, G., et al.: Solving large, irregular graph problems using adaptive work-stealing. In: Parallel
Processing, 2008. ICPP’08. 37th International Conference on. IEEE. (2008)

Coutinho-Rodrigues, J., J. Climaco, and J. Current: An interactive bi-objective shortest path
approach: searching for unsupported nondominated solutions. Computers & Operations
Research, 26(8), 789–798 (1999)

Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik, 1(1),
269–271 (1959)

Hadjiconstantinou, E. and N. Christofides: An efficient implementation of an algorithm for finding
K shortest simple paths. Networks, 34(2), 88–101 (1999)

Handler, G.Y. and I. Zang: A dual algorithm for the constrained shortest path problem. Networks,
10(4), 293–309 (1980)

Hoffman, W. and R. Pavley: A Method for the Solution of the N th Best Path Problem. Journal of
the ACM (JACM), 6(4), 506–514 (1959)

Huber, D.L. and R.L. Church: Transmission Corridor Location Modeling. Journal of Transportation
Engineering-Asce, 111(2), 114–130 (1985)

Katoh, N., T. Ibaraki, and H. Mine: An efficient algorithm for k shortest simple paths. Networks,
12(4), 411–427 (1982)

Medrano, F.A. and R.L. Church: A New Parallel Algorithm to Solve the Near-Shortest-Path
Problem on Raster Graphs. GeoTrans RP-01-12-01, UC Santa Barbara (2012)

Medrano, F.A. and R.L. Church: Transmission Corridor Location: Multi-Path Alternative Generation
Using the K-Shortest Path Method. GeoTrans RP-01-11-01, UC Santa Barbara (2011)

Merrill, D., M. Garland, and A. Grimshaw: Scalable GPU graph traversal. In: Proceedings of the
17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming. ACM.
(2012)

Raith, A. and M. Ehrgott: A comparison of solution strategies for biobjective shortest path prob-
lems. Computers & Operations Research, 36(4), 1299–1331 (2009)

Reif, J.H.: Depth-first search is inherently sequential. Information Processing Letters, 20(5),
229– 234 (1985)

Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb’s
Journal, 30(3), 202–210 (2005)

Orden, A.: The transhipment problem. Management Science, 2(3), 276–285 (1956)
Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management Science, 17(11),

712–716 (1971)
Zeng, W. and R.L. Church: Finding shortest paths on real road networks: the case for A*.

International Journal of Geographical Information Science, 23(4), 531–543 (2009)
Zhan, F. and C. Noon: A Comparison Between Label-Setting and Label-Correcting Algorithms for

Computing One-to-One Shortest Paths. Journal of Geographic Information and Decision
Analysis, 4(2), 1–11 (2000)

F.A. Medrano and R.L. Church

95X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_8, © Springer Science+Business Media New York 2013

Abstract We present High-dimensional Overdetermined Laplacian Partial
Differential Equations (HD-ODETLAP), an algorithm and implementation for
lossy compression of high-dimensional arrays of data. HD-ODETLAP exploits
autocorrelations in the data in any dimension. It also adapts to regions in the data
with varying value ranges, resulting in the maximum error being closer to the RMS
error. HD-ODETLAP compresses a data array by iteratively selecting a representa-
tive set of points from the array. That set of points, efficiently coded, is the com-
pressed dataset. The compressed dataset is uncompressed by solving an
overdetermined sparse system of linear equations for an approximation to the origi-
nal array. HD-ODETLAP uses NVIDIA CUDA called from MATLAB to exploit
GPU parallel processing to achieve considerable speedup compared to execution on
a CPU. In addition, HD-ODETLAP compresses much better than JPEG2000 and
3D-SPIHT, when fixing either the average or the maximum error. An application is
to facilitate storage and transmission of voluminous datasets for better climatologi-
cal and environmental analysis and prediction.

Keywords ODETLAP • Lossy compression • Geospatial • High dimensional data
• NVidia GPU

8.1 Introduction and Background

The research theme of this paper is the use of modern accelerator technologies to
address the problem of storing increasing volumes of multidimensional geospatial
data using lossy compression. The good compression algorithms needed to

Chapter 8
CUDA-Accelerated HD-ODETLAP: Lossy
High Dimensional Gridded Data Compression

W. Randolph Franklin, You Li, Tsz-Yam Lau, and Peter Fox

W.R. Franklin (*) • Y. Li • T.-Y. Lau • P. Fox
Rensselaer Polytechnic Institute, Troy, NY, USA
e-mail: mail@wrfranklin.org; liyou.rpi@gmail.com; rpi.laut@gmail.com; pfox@cs.rpi.edu

96

maximize the feasible dataset size are quite compute-intensive. Also, the datasets’
multi- dimensional structure is not exploited by current compression algorithms.
In this paper, we introduce HD-ODETLAP, a High-Dimensional Over-determined
Laplacian Partial Differential Equation compression algorithm and implementa-
tion. HD-ODETLAP has various versions, such as 4D-ODETLAP and
5D-ODETLAP. Their novel technique resides in expressing the problem as an
overdetermined sparse system of linear equations.

Our test datasets are the World Ocean Atlas 2005 and 2009 (Locarnini et al. 2010)
from the National Oceanographic Data Center (NODC) and the National
Geophysical Data Center (NGDC), subsidiaries of the NOAA Atmospheric
Administration (NOAA). They contain marine properties temperature, salinity,
nitrate, and silicate over 12 months at 24 standard depths in the ocean. They can be
considered to be five-dimensional: (latitude, longitude, depth, time, property value),
of size 180 ×360 ×24 ×12 ×4. The data is autocorrelated along each dimension:
small changes in any coordinate cause small changes in the measured quantity. This
applies even to the fifth dimension; the observed variables do, to some extent, vary
in concert.

However, current compression methods treating the data as a single-dimensional
stream of bytes ignore that correlation. To the extent that HD-ODETLAP can exploit
this property, HD-ODETLAP will compress better, and it does on the test data.
HD-ODETLAP also adapts to nonhomegenelities in the data, where some local
regions may have larger value ranges than other regions. Therefore, an
HD-ODETLAP representation with a given RMS error may have a smaller maxi-
mum error than do other methods. This is also confirmed by experiment. However,
the problem with HD-ODETLAP is its compute-intensiveness, and so, modern
accelerator techniques are desirable.

ODETLAP, initially in a 2D version, was developed as part of a project to lossily
compress terrain (elevation of the earth’s surface above the geoid or assumed sea
level). A goal was to facilitate operations such as multi-observer siting, and then
path planning to avoid the observers (the Smugglers and Border Guards Problem).
The initial goal was to interpolate terrain from isolated data points and contour
lines. The contour lines may be kidney-bean shaped and might have gaps. Those
properties caused problems with earlier interpolation algorithms, such as running
straight lines in the eight cardinal directions from the test point to the nearest con-
tour line. In addition, terrain data often have limited precision, and may be mutually
inconsistent. However, the interpolated slope should be continuous across lines of
data points; that is, a line of data should not cause a visible “kink” in the generated
surface. ODETLAP addresses these problems well (Franklin 2011), (Franklin
et al. 2006), (Inanc 2008), (Li 2011), (Muckell 2008), (Stookey 2008), (Stookey
et al. 2008), (Tracy 2009), (Xie 2008). Figure 8.1 shows how successfully ODETLAP
handles an example designed to be very difficult, with input contours with sharp
corners. Nevertheless the interpolated output surface has smooth silhouette edges,
and an inferred peak inside the innermost contour. All this is achieved with a mean
error of 2.7 % of the data range (computed on the known points) and a maximum
error of 12.9 %.

W.R. Franklin et al.

97

8.2 Compression Basics

Various compression methods have been created for lower dimensional data, such
as 3D image sequences (Menegaz and Thiran 2002) and 4D (for example, 3D spa-
tial + temporal) functional magnetic resonance imaging (FMRI) (Lalgudi
et al. 2005). Among those methods, the wavelet-based lossy and lossless ones are
the most popular. For example, JPEG 2000 (Taubman et al. 2002) uses irreversible
and reversible wavelet transform for its lossy and lossless compression for 2D
images. For 3D video data, Three Dimensional Set Partitioning in Hierarchical
Trees (3D-SPIHT) (Kim and Pearlman 1997) also bases its compression scheme on
3D wavelet transforms. There are some 4D compression algorithms, such as 4D

5
10

50

50

50

45
45

45 40

40

40

40

35

35
35

35

30

30

30

30

20

20

20

20

15

15
15

15

10

10

10

10

5

5

5

5
00

0

00 10 15 20 25 30 35 40 45 50

5

25

25

25

25

15

25

30

35

40

45

20

Fig. 8.1 ODETLAP fitting a smooth surface to nested square contours

8 CUDA-Accelerated HD-ODETLAP…

98

wavelets (Yang et al. 2006), run length encoding (RLE) (Anagnostou et al. 2000)
and discrete cosine transform (DCT) (Lum et al. 2001).

Data compression techniques may be lossless or lossy. Lossless schemes allow
exact reconstruction of the original data but suffer from a low compression ratio.
Lossy schemes produce much more compact datasets, at an, often modest, increase,
δ, in the dataset’s RMS error, ε. If δ < < ε, then the lossy compression has not cost
very much accuracy. For example, suppose that a uniformly distributed temperature
parameter is quantized to integral degrees, so that ε = ≈1 2 3 0 3/ () . . δ = 0. 1 might
allow a much smaller dataset with a small cost in increased RMS error. Experiments
on elevation data that trade off error with compressed size are described in Franklin
and Said (1996). The reader might also experiment by comparing compression
quality and size when generating JPEG images. For these reasons, HD-ODETLAP
is lossy.

Compression algorithms operate by exploiting redundancies and correlations in
the data. Current techniques that compress high dimensional data by compressing
2D or 3D slices separately ignore the correlation between the slices. We don’t.

3D compression methods can also be applied on 4D spatial-temporal data, since
4D data could be handled as a sequence of 3D volumes. But methods that exploit
the temporal autocorrelation between volumes usually outperform their 3D counter-
parts, such as the video compression methods using motion compensation tech-
nique (Sanchez et al. 2006) and 4D-SPIHT (Ziegler et al. 2004). These methods
fully utilize the spatial and temporal data redundancy in all the dimensions; thus
they can achieve a higher compression ratio.

In GIS, there is an increasing awareness of the significance of compression and
progressive transmission of high dimensional spatial data. Plaza et al. (2010) intro-
duces adaptive run-time data compression of spatial data. Kidner and Smith (2003)
comprehensively studied different compression schemes for efficient maintenance
and dissemination of spatial databases. Research on compression and spatial decor-
relation has been done in digital terrain models, (Bjøke and Nilsen 2002). We have
published a 3D oceanographic data compression method, (Li et al. 2010).

8.3 ODETLAP Definition

We will first present a 2D version of Five Dimensional Over-Determined Laplacian
Partial Differential Equations (5D-ODETLAP), then extend it. The domain is a 2D
array of elevations. The (i, j) entry has the position (x, y) when projected vertically
onto the geoid. (x, y) are typically either latitude and longitude, or Universal
Transverse Mercator (UTM) coordinates. z is the elevation above the geoid.

ODETLAP has two components. The smaller component is to interpolate from a
set of known point elevations to a complete elevation array. The larger component
is to loosely compress an elevation array by selecting an important set of points S
from the array. S is the compressed representation. S is uncompressed by using
ODETLAP to interpolate back to the whole elevation array. The process is illus-
trated in Fig. 8.2.

W.R. Franklin et al.

99

The interpolation component of 2D-ODETLAP is an extension of the
Laplacian PDE

δ
δ

δ
δ

2

2

2

2
0

z

x

z

y
+ =

(8.1)

to an overdetermined linear system. The purpose of this system is to interpolate
elevations from a small set of known points to the entire array. This system com-
prises two types of equations. First, every nonborder point, known or unknown,
induces an averaging equation that sets its value to the average of its neighbors:

4 1 1 1 1z z z z zij i j i j i j i j= + + +− + − +, , , .

(8.2)

Second, we add another equation for each known point,

 z si i= (8.3)

where si stands for the input known value of the point, and zi its output computed
value. Since ODETLAP is lossy, these values will differ slightly; the fitted surface
does not exactly interpolate the known data. This system is over-determined, since
there are more equations than unknowns. Being over-determined, it has essentially
different mathematical properties from a Laplacian, in spite of the superficial simi-
larities. For example, with ODETLAP, unlike with a Laplacian, interior local
extrema can be inferred. Fitting a nested set of contours produces a rounded hill, not
a flat topped mesa. Also, unlike with a Laplacian PDE, the inferred surface is more
continuous across lines of known points, and so, the data points are not as visible (or
not at all visible) in the generated surface, as shown in Fig. 8.1.

ODETLAP
terrain

reconstruction

any user−supplied
points, even
inconsistent

ODETLAP
point

selection

contour
lines

Small
point
set

~1000

400x400 matrix
of elevations

400x400 matrix
of elevations

Input

Compressed
distributed

data

Reconstructed
data

Fig. 8.2 ODETLAP process

8 CUDA-Accelerated HD-ODETLAP…

100

The least squares solution to this system can be biased by weighting the different
equation classes differently by changing Eq. (8.2) above to

4 1 1 1 1Rz R z z z zij i j i j i j i j= + + +()− + − +, , , .

(8.4)

The multiplicative parameter R trades off smoothness (large R) versus accuracy
(small R) at that point. This concept also allows inconsistent datasets of varying
accuracies (and hence weights) to be conflated.

In the second component of ODETLAP, compressing an array of elevations, we
select some of the points, perhaps 1 %, as known points, and ignore the others. In
some sense, the known points are more important. They might be mountain tops,
valley bottoms, the ends of ridges, river confluences, etc. That set of known points,
S s= {(, ,)}x yi i i , is the compressed representation of the data. Applying the first
component of ODETLAP reconstructs an approximation to the original data.

There is no Eq. (8.4) for points on the border of the region. However those points’
values are part of the equations of their nonborder neighbors. One might, wrongly,
create an equation for a border point to set it equal to the average of the 2 or 3 neigh-
bors that it does have. However that would impose an unwarranted bias towards
horizontality on the surface at the border. To prevent the whole system from being
underdetermined, there must be at least as many known points as border points. In
practice, this is not a problem.

2D-ODETLAP is used to compress a surface, expressed as an array of eleva-
tions, as follows.

 1. Select a random subset S of the points in the input array. Selecting 0.1 % of the
points is reasonable.

 2. Use ODETLAP to compute an initial approximation of the dataset.
 3. Of all the points in the array, find those that are farthest from that approximation.

Again, 0.1 % of the array is a reasonable heuristic.
 4. If the (maximum, average, or whatever desired metric) error is adequate, then

exit this loop. Otherwise:
 5. Insert those worst points into S.
 6. Go back to step 2.

The extension of ODETLAP from 2D to 3D or 4D is obvious. Each nonborder
point now has 8 or 16, rather than 4, neighbors. In our current 5D-ODETLAP
implementation, the fifth dimension in our dataset is a property, of a different nature
than the other four, we currently implement a 4D-ODETLAP for each property
(e.g., temperature, salinity, …) in the fifth dimension. Meanwhile the points’ loca-
tions are constrained to be the same in each 4D-ODETLAP. This utilizes the fact
that the locations of important points for one property are often also important
points for the other properties. Therefore we need to encode the points’ locations
only once, saving considerable space. The representation of the compressed dataset
is the set of positions and vector of values of the elements of S.

W.R. Franklin et al.

101

We encode the known point locations and the respective property values separately.
Note that the bitmap of the positions is like a 2-value facsimile image. For both the
set and vector, we tested various methods to optimize the coding. We used LEDA, a
C++ class library for efficient data types and algorithms (Mehlhorn and Näher 1995),
to build our own entropy coder. LEDA contains a wide range of simple coders,
which could be easily combined; we built the following ten different coders.

• A0: Adaptive Arithmetic Coding
• BMRA: Burrows-Wheeler Transform + Move to Front + RLE for Runs of Zeros

+ Adaptive Arithmetic Coding
• BRA: Burrows-Wheeler Transform + RLE for Runs of Zeros + Adaptive

Arithmetic Coding
• Huff: Adaptive Huffman Coding
• MRP: Move to Front + RLE for Runs of Zeros + Prediction by Partial Matching
• RMP: RLE for Runs of Zeros + Move to Front + Prediction by Partial Matching
• RDP: RLE for Runs of Zeros + Dictionary-based Coder + Prediction by Partial

Matching
• PPM: Prediction by Partial Matching
• Dict_PPM: Dictionary-based Coder + Prediction by Partial Matching
• RLE_PPM: RLE for Runs of Zeros + Prediction by Partial Matching

8.4 Known-Point Position Compression

For the sparse binary 4D matrix representing the positions of the known points, we
first used Binary RLE (binary run length encoding) to convert it into a integer vector,
defined thus:

 P r r r ri k= … …{ }1 2 (8.5)

where ri represents the number of 0’s before the i-th 1 in a row-major order. k is the
total number of known points, i.e., the number of 1’s.

Figure 8.3 shows the result of using the 17 different coders mentioned in the previ-
ous section to compress the 4D binary position file. The 10 coders from LEDA com-
press the integer vector from Binary RLE. We also include the result of the Bzip2 and
JPEG 2000 coder for the integer vector. There are five possible coders in TIFF, which
is widely used for compressing binary images: the International Telegraph and
Telephone Consultative Committee (CCITT) Fax3, CCITTFax4, Lempel-Ziv-Welch
(LZW), PackBits and Deflate. We present the TIFF compression results using them
on a test dataset that is a 90 ×180 ×24 ×12 ×4 array from WOA 2009, with 91119
known points. The RLE_PPM coder is the winner, and so 5D-ODETLAP uses it.

The known-point position compression is lossless since otherwise the points’
positions would move in an unpredictable way. Allowing a lossy compression here
is a possible future research idea.

8 CUDA-Accelerated HD-ODETLAP…

102

8.5 Known-Point Value Compression

For the vector of values for the known points, we used Lloyd relaxation to produce
an optimal quantization for the floating point value. The best-known and earliest
quantization algorithm, generalized Lloyd algorithm (GLA) Lloyd (1982) is based
on minimizing the Mean Square Quantization error (MSEq), which can be
expressed as:

MSE x C x f x dxq

d

d

i

N

x

i

i

= −()
+

∫∑
=

() ()
2

1

1

(8.6)

where x and C(x) are input floating value and quantized output, respectively. N is the
total number of reconstruction levels, and fx(x) is the probability density function
(pdf) of the input vector. The quantization give us two files: one file contains the
integer indices, while the other records floating point codebook.

After the quantization step, we apply a conditional delta encoding to the quan-
tized integer indices. This part of the encoding is conditional because we apply it
only when it benefits the compression. In particular, this step adds one sign bit to the
integer vector. As shown in Table 8.1, this action usually improves the coding effi-
ciency of the subsequent PPM coding only when adding such a bit allows us to store
a value whose number of bits is a multiple of 4 or 8 (because the PPM coder acts on
a byte stream).

Fig. 8.3 Binary position file compressed file size by 17 different coders. The uncompressed 5D
binary position file is 2332800 bytes

W.R. Franklin et al.

103

Figure 8.4 shows the result of using different coders to compress the quantized
floating point vector without delta encoding. The input number of bits used for each
value is 8. The test data is the same as in Fig. 8.3. We also include the result of the
Bzip2 coder for comparison. This figure demonstrates that the PPM coder performs
the best in our 5D-ODETLAP compression framework.

8.6 Challenge of Compute-Intensiveness

The biggest challenge of this compression framework is that solving overdeter-
mined sparse linear systems is compute-intensive. The normal equations transfor-
mation, taking Ax = b to ATAx = ATb, reduces the computation time considerably.
Indeed the system is now exactly determined, instead of overdetermined.
However, this increases the memory requirement, and the computation is still slow.

Table 8.1 Influence of delta encoding on the size of the final compressed floating point value
vector. The test data is the same as in Fig. 8.3

Integer range W/o delta encoding (bytes)
W. delta encoding
(bytes)

Change in
file size (%)

0–8 (3 bits) 11,132 10,790 –3.170
0–16 (4 bits) 18,750 23,497 20.203
0–32 (5 bits) 32,388 32,882 1.502
0–64 (6 bits) 44,236 48,281 8.378
0–128 (7 bits) 58,596 50,916 –15.084
0–256 (8 bits) 59,712 72,132 17.218
0–512 (9 bits) 82,611 83,368 0.916
0–1024 (10 bits) 93,932 97,796 3.951

Fig. 8.4 Floating point value vector final compressed file size by 11 different coders

8 CUDA-Accelerated HD-ODETLAP…

104

For example, solving a 104976 ×104976 linear system takes up to 58 GB main
memory and about 1.8 hours on a 2006-vintage workstation with four 2.4GHz
processors and 60 GB of main memory running Ubuntu 10.04.2 and 64-bit
MATLAB R2009a. Current processors might improve that by a small integer fac-
tor. The following sections show how modern GPU accelerator technologies give
a large factor improvement.

A major sub-challenge is integrating various software tools described below into
an efficient solution. Not having to reinvent those tools allows us to concentrate on
our problem.

Those tools reduce the computation time so much that now the I/O time for trans-
mitting data to the graphics processor is the dominant cost. So, the major future
challenge will be to reduce that.

8.7 Application of Accelerator Technology

Modern accelerator technology is significant in this research because of the greatly
increased potential performance for this CPU-bound application. Fortunately, our
application is already amenable to parallel solution.

8.7.1 CUDA-Based Solver Introduction

The Compute Unified Device Architecture (CUDA) (NVIDIA 2011) by NVIDIA
provides a widely used developer-friendly General Purpose Computing on Graphics
Processing Units (GPGPU) interface. CUSP (Bell and Garland 2010) is an open
source library for sparse linear algebra computations using CUDA. It provides a
flexible, high-level interface for manipulating sparse matrices and solving sparse
linear systems. The CUSP library contains two iterative linear solvers, the Conjugate
Gradient solver (CG) and Biconjugate Gradient Stabilized solver (BICGS) with an
optional Jacobi preconditioner. With a proper construction of the linear system, a
simple function call in MATLAB can solve the linear system using the GPU com-
puting power without any prior knowledge about CUDA GPU programming.
Indeed, that is one of the messages of this paper: that these tools exist and are useful.
Figure 8.5 shows an outline of the solver.

8.7.2 Solver Selection and MATLAB Integration

MATLAB’s Cholesky Factorization (CF) exact solver is compute-intensive.
However a precise solution is not required since 5D-ODETLAP is lossy. The con-
jugate gradient (CG) iterative solver in the CUSP library may work better.

W.R. Franklin et al.

105

First, we tested the CUSP solver on a linear system of size 234256 ×234256
constructed by 5D-ODETLAP. The CUSP CG solver, taking 179 seconds, was
much more efficient than the CF direct solver (49,237 s) and CG solver (5,495 s).
However, of that 179 seconds, only 9 seconds was spent on actually solving the
linear system. The remaining 170 seconds was spent on the data transfer between
5D-ODETLAP, implemented in MATLAB, and the CUSP solver, a C++ executable.
To improve this situation, we utilized the MATLAB Executable interface (MEX),
which allows users to interface C, C++ or Fortran subroutines to MATLAB. MEX-
files are a way to call the custom C, C++ or FORTRAN routines directly from
MATLAB as if they were MATLAB built-in functions. Therefore we can largely
reduce the overhead for transferring data between the MATLAB program and the
CUSP library. But since the CUSP library is implemented both in C++ and CUDA,
this adds a certain amount of complexity to incorporate it into the MEX file.
Fortunately, CUDA compiler allows users to compile CUDA code into C++ code as
an intermediate step using nvcc –cuda. So first we write the CUSP code in a MEX
style. Then this mixed source code will be compiled into C++ code, which can then
be compiled into a MEX file and called directly from the MATLAB program.

In Table 8.2, a comparison of solvers in MATLAB and CUSP demonstrates that
for the linear system from 5D-ODETLAP, the CUSP CG solver with Jacobi precon-
ditioner runs the fastest. The linear systems in this table are constructed from origi-
nal 4D datasets ranging from 84 to 184, so the resulting linear systems’ size ranges
from 4096 ×4096 to 104976 ×104976. This solver runs more than seven times faster
(39.67:4.84) than its CPU counterpart with the same residual size of their solutions
in the test linear system of size 104976 ×104976. Also, it is more than 1340 times

CG solver
based on CUSP

Input data
18x18x18x18

Linear system
4096x4096

5D-ODETLAP
construction

Linear solution
4096x1

CUDA NVCC
complier

CG solver
Matlab Mex

compiler

Integrated CG
solver in Matlab

in. CU format

in. cpp format

Fig. 8.5 Outline of the solver

8 CUDA-Accelerated HD-ODETLAP…

106

faster than the CF direct solve in MATLAB. Not only is the CG solver with Jacobi
preconditioner from CUSP better in terms of running time, it uses only 13.2 GB
main memory and less than 512 MB device memory on GPU on the workstation
described above.

8.8 Comparison with JPEG 2000 and 3D-SPIHT

We used the two real world geospatial 5D datasets mentioned above in Sect. 8.1 to test
our 5D-ODETLAP framework. We geographically divided these two datasets into 8
different datasets each of size 90 ×180 ×24 ×12 ×4, named WOA05_1, WOA05_2,
WOA05_3, WOA05_4, WOA09_1, WOA09_2, WOA09_3 and WOA09_4. This
allowed us to test the robustness of 5D-ODETLAP on 8 distinct datasets, to see how
sensitive it is to the particular data. The property values were pre-truncated to single
precision floats.

Since 3D-SPIHT and JPEG 2000 are among the most popular lossy compression
methods, we compared 5D-ODETLAP with them. For a fair comparison, we used
binary search in 3D-SPIHT to find a suitable bit rate to produce results with the
same mean percentage error in the one test and the same maximum percentage error
in the other. The 90 ×180 ×24 ×12 ×4 5D dataset contains 12 ×4 3D datasets of size
90 ×180 ×24. We applied 3D-SPIHT on each of these 3D datasets and measured the
error together as a 5D reconstruction in decompression.

Table 8.2 Effective solver time efficiency comparisons between the MATLAB Cholesky
Factorization (CF) direct solver, MATLAB CG solver, CUSP CG solver, CUSP CG solver with
Jacobi preconditioner, CUSP BICGS solver with preconditioner and CUSP CG solver. The time
measurement is in seconds.

System Size
Cholesky
factor. solver MATLAB CG CUSP CG CUSP CG Jacobi

CUSP
BICGS
Jacobi

40962 2.46 0.63 0.23 0.20 0.21
65612 6.49 1.11 0.56 0.30 0.36

100002 17.43 2.01 0.52 0.48 0.55
146412 43.02 3.02 0.75 0.70 0.77
207362 93.20 5.55 0.94 0.92 1.08
285612 203.25 5.40 1.29 1.28 1.32
384162 454.41 13.35 1.91 1.74 1.86
506252 816.90 15.58 2.28 2.20 2.34
655362 1791.78 29.30 2.89 2.54 3.03
835212 3332.05 30.67 3.57 3.57 3.41

1049762 6488.24 39.67 4.86 4.84 5.14

W.R. Franklin et al.

107

Similarly, we used binary search to find a compression ratio in JPEG 2000 to
obtain results with the same error in both cases. We also applied JPEG 2000 to each
90 ×180 2D dataset of the overall 24 ×12 ×4 number of 2D datasets. In addition,
since JPEG 2000 takes only unsigned 1, 8 or 16 bit integer input, we first used uni-
form quantization to reduce each input 2D dataset to 16 bit unsigned integer. Thus,
all the three methods had the same mean or maximum percentage error on all the
8 test datasets, again for a fair comparison.

Table 8.3, with data from Li (2011), compares the three methods for the same
mean percentage error. The first observation is that the maximum percentage error
for 5D-ODETLAP is much smaller than that of both JPEG 2000 and 3D-SPIHT.
This advantage of 5D-ODETLAP is credited to its iterative greedy sampling pro-
cess, since it eliminates the points with the largest error at each iteration by adding
them into the known-point set. The JPEG 2000 and 3D-SPIHT methods do not have
this adaptability, and thus produce a much larger maximum percentage error.
Second, the compression ratio of 5D-ODETLAP is generally 4.24–9.8 times as
large as that of the JPEG 2000 method and 1.13–3.75 times as large as that of the
3D-SPIHT method.

Table 8.4, with data from Li (2011), shows the result of forcing the maximum
percentage error to be the same for all three methods. The result may be useful in
scenarios in which, for example, users need to have a compressed file with guaran-
teed no more than 10 % error. 5D-ODETLAP’s mean error is larger than the others
because it spreads out the error more evenly. However 5D-ODETLAP’s compres-
sion ratio is even larger than in the previous fixed mean percentage error case. Here,
the compression ratio of JPEG 2000 and 3D-SPIHT will be considerably worse than
5D-ODETLAP, since the mean error of the compressed file is unnecessarily small.
Comparatively, 5D-ODETLAP’s iterative sampling process ensures that the points
with largest error are always selected, which reduces the maximum error at each step.

8.9 Conclusion and Future Research Plan

5D-ODETLAP demonstrates the efficient application of a massively parallel GPU
to an important GIS problem—compressing multidimensional GIS data.
5D-ODETLAP also exploits spatial and temporal redundancies in the data better
than previous methods. 5D-ODETLAP’s potential impact extends to multidimen-
sional datasets in other domains, such as computational fluid dynamics (CFD). The
NVIDIA GeForce 9800GT, the GPU used in this paper, is several years old; we
anticipate even better results with a current graphics processor.

Currently 5D-ODETLAP only partially exploits correlations between 4D data
layers within a 5D dataset. Also, its coding of the bitmap denoting the points in S ,
and its compression of the floating values at those points might be improvable.
Finally, overdetermined extensions to other PDEs remain to be investigated.
Therefore, we expect even better compression of high-dimensional data in the future.

8 CUDA-Accelerated HD-ODETLAP…

108

Ta
bl

e
8.

3
C

om
pr

es
si

on
 c

om
pa

ri
so

n
be

tw
ee

n
5D

-O
D

E
T

L
A

P,
 J

PE
G

 2
00

0
an

d
3D

-S
PI

H
T

 w
ith

 th
e

sa
m

e
m

ea
n

pe
rc

en
ta

ge
 e

rr
or

 o
n

ei
gh

t d
if

fe
re

nt
 d

at
as

et
s.

 T
he

la

st
 tw

o
co

lu
m

ns
 s

ho
w

 th
e

ra
tio

 o
f

5D
-O

D
E

T
L

A
P’

s
co

m
pr

es
si

on
 r

at
io

 o
ve

r
th

e
co

m
pr

es
si

on
 r

at
io

 o
f

JP
E

G
 2

00
0

an
d

3D
-S

PI
H

T
 r

es
pe

ct
iv

el
y.

D
at

as
et

%
 F

ix
ed

 M
ea

n
E

rr
%

 M
ax

 E
rr

,
JP

E
G

 2
00

0
%

 M
ax

 E
rr

, 3
D

-S
PI

H
T

%
 M

ax
 E

rr
,

5D
-O

D
E

T
L

A
P

R
at

io
5

20
00

D
O

D
E

T
L

A
P

JP
E

G

−

R
at

io

5

3D
O

D
E

T
L

A
P

D
SP

IH
T

−
−

w
oa

05
_1

1.
42

44
.8

3
66

.4
6

10
.4

1
8.

16
2.

40
w

oa
05

_2
1.

48
49

.3
3

59
.1

8
9.

35
9.

56
3.

61
w

oa
05

_3
1.

47
65

.5
6

80
.2

3
8.

94
4.

24
1.

13
w

oa
05

_4
1.

56
67

.5
6

74
.1

4
10

.8
1

8.
57

2.
41

w
oa

09
_1

1.
46

48
.1

3
68

.1
8

9.
02

8.
18

2.
41

w
oa

09
_2

1.
49

51
.2

1
62

.1
5

8.
77

9.
80

3.
75

w
oa

09
_3

1.
54

75
.0

0
79

.3
5

11
.1

3
4.

24
1.

14
w

oa
09

_4
1.

58
65

.5
5

71
.5

0
11

.5
8

8.
58

2.
42

W.R. Franklin et al.

109

Ta
bl

e
8.

4
C

om
pr

es
si

on
 c

om
pa

ri
so

n
be

tw
ee

n
5D

-O
D

E
T

L
A

P,
 J

PE
G

 2
00

0
an

d
3D

-S
PI

H
T

 w
ith

 a
pp

ro
xi

m
at

el
y

th
e

sa
m

e
m

ax
im

um
 p

er
ce

nt
ag

e
er

ro
r

on
 e

ig
ht

di

ff
er

en
t d

at
as

et
s.

 T
he

 la
st

 tw
o

co
lu

m
ns

 sh
ow

 th
e

ra
tio

 o
f 5

D
-O

D
E

T
L

A
P’

s c
om

pr
es

si
on

 ra
tio

 o
ve

r t
he

 c
om

pr
es

si
on

 ra
tio

 o
f J

PE
G

 2
00

0
an

d
3D

-S
PI

H
T

 re
sp

ec
tiv

el
y.

D
at

as
et

%
 F

ix
ed

 M
ax

 E
rr

%
 M

ea
n

E
rr

,
JP

E
G

 2
00

0
%

 M
ea

n
E

rr
, 3

D
-S

PI
H

T
%

 M
ea

n
E

rr
,

5D
-O

D
E

T
L

A
P

R
at

io
5

20
00

D
O

D
E

T
L

A
P

JP
E

G

−

R
at

io

5

3D
O

D
E

T
L

A
P

D
SP

IH
T

−
−

w
oa

05
_1

10
.4

1
0.

52
0.

37
1.

42
16

.3
3

11
.5

1
w

oa
05

_2
9.

35
0.

32
0.

35
1.

48
24

.0
2

15
.7

4
w

oa
05

_3
8.

94
0.

26
0.

28
1.

47
13

.8
4

9.
47

w
oa

05
_4

10
.8

1
0.

37
0.

34
1.

56
22

.2
3

14
.9

1
w

oa
09

_1
9.

02
0.

39
0.

29
1.

46
18

.9
7

13
.8

7
w

oa
09

_2
8.

77
0.

31
0.

36
1.

49
24

.4
3

15
.5

1
w

oa
09

_3
11

.1
3

0.
36

0.
31

1.
54

12
.0

5
8.

91
w

oa
09

_4
11

.5
8

0.
39

0.
34

1.
58

21
.9

2
15

.2
2

8 CUDA-Accelerated HD-ODETLAP…

110

Acknowledgements This research was partially supported by NSF grants CMMI-0835762 and
IIS-1117277.

References

Anagnostou, K., Atherton, T.J., Waterfall, A.E.: 4d volume rendering with the shear warp
factorisation. In: Proceedings of the 2000 IEEE symposium on Volume Visualization,
VVS ’00, pp. 129–137. ACM, New York, NY, USA (2000). DOI http://doi.acm.
org/ 10.1145/353888.353909

Bell, N., Garland, M.: CUSP: Generic Parallel Algorithms for Sparse Matrix and Graph
Computations. http://cusp-library.googlecode.com (2010). Version 0.1.0

Bjøke, J.T., Nilsen, S.: Efficient representation of digital terrain models: compression and spatial
decorrelation techniques. Computers & Geosciences 28(4), 433–445 (2002). DOI DOI:10.1016/
S0098-3004(01)00082-6

Franklin, W.R.: The RPI GeoStar project. In: 25th International Cartographic Conference. Paris
(2011)

Franklin, W.R., Inanc, M., Xie, Z.: Two novel surface representation techniques. In: Autocarto
2006. Cartography and Geographic Information Society, Vancouver Washington (2006)

Franklin, W.R., Said, A.: Lossy compression of elevation data. In: Seventh International
Symposium on Spatial Data Handling. Delft (1996)

Inanc, M.: Compressing terrain elevation datasets. Ph.D. thesis, Rensselaer Polytechnic Institute
(2008)

Kidner, D.B., Smith, D.H.: Advances in the data compression of digital elevation models.
Computers & Geosciences 29(8), 985–1002 (2003). DOI DOI:10.1016/S0098-3004(03)
00097-9

Kim, B.J., Pearlman, W.: An embedded wavelet video coder using three-dimensional set partition-
ing in hierarchical trees (SPIHT). In: Data Compression Conference, 1997. DCC ’97.
Proceedings, pp. 251–260 (1997). DOI 10.1109/DCC.1997.582048

Lalgudi, H., Bilgin, A., Marcellin, M., Nadar, M.: Compression of fMRI and ultrasound images
using 4D SPIHT. In: Image Processing, 2005. ICIP 2005. IEEE International Conference on,
vol. 2, pp. II – 746–9 (2005). DOI 10.1109/ICIP.2005.1530163

Li, Y.: CUDA-accelerated HD-ODETLAP: a high dimensional geospatial data compression
framework. Ph.D. thesis, Rensselaer Polytechnic Institute (2011)

Li, Y., Lau, T.Y., Stuetzle, C., Fox, P., Franklin, W.R.: 3D oceanographic data compression using
3D-ODETLAP. In: 18th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (ACM SIGSPATIAL GIS 2010). San Jose, CA, USA (2010).
(PhD Dissertation showcase)

Lloyd, S.: Least squares quantization in PCM. Information Theory, IEEE Transactions on 28(2),
129–137 (1982). DOI 10.1109/TIT.1982.1056489

Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng,
M.M., Johnson, D.R.: World ocean atlas 2009, volume 1: Temperature p. 184 (2010)

Lum, E.B., Ma, K.L., Clyne, J.: Texture hardware assisted rendering of time-varying volume data.
In: VIS ’01: Proceedings of the conference on Visualization ’01, pp. 263–270. IEEE Computer
Society, Washington, DC, USA (2001)

Mehlhorn, K., Näher, S.: LEDA: a platform for combinatorial and geometric computing. Commun.
ACM 38(1), 96–102 (1995). http://www.mpi-sb.mpg.de/guide/staff/uhrig/leda.html

Menegaz, G., Thiran, J.P.: Lossy to lossless object-based coding of 3-d mri data. IEEE Transactions
on Image Processing 11(9), 1053–1061 (2002). DOI 10.1109/TIP.2002. 802525

Muckell, J.: Evaluating and compressing hydrology on simplified terrain. Master’s thesis,
Rensselaer Polytechnic Institute (2008)

W.R. Franklin et al.

http://doi.acm.org/%2010.1145/353888.353909
http://doi.acm.org/%2010.1145/353888.353909
http://cusp-library.googlecode.com
http://www.mpi-sb.mpg.de/guide/staff/uhrig/leda.html

111

NVIDIA: NVIDIA Corporation: Compute Unified Device Architecture Programming Guide.
http://developer.nvidia.com/cuda (retrieved 1/11/2011)

Plaza, A., Plaza, J., Paz, A.: Improving the scalability of hyperspectral imaging applications on
heterogeneous platforms using adaptive run-time data compression. Computers & Geosciences
36(10), 1283–1291 (2010). DOI DOI:10.1016/j.cageo.2010. 02.009

Sanchez, V., Nasiopoulos, P., Abugharbieh, R.: Lossless Compression of 4D Medical Images
using H.264/AVC. In: 2006 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings, vol. 2, p. II (2006). DOI 10.1109/
ICASSP.2006.1660543

Stookey, J.: Parallel terrain compression and reconstruction. Master’s thesis, Rensselaer
Polytechnic Institute (2008)

Stookey, J., Xie, Z., Cutler, B., Franklin, W.R., Tracy, D.M., Andrade, M.V.: Parallel ODETLAP
for terrain compression and reconstruction. In: W.G. Aref, et al. (eds.) 16th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (ACM GIS 2008).
Irvine CA (2008)

Taubman, D.S., Marcellin, M.W., Rabbani, M.: Jpeg2000: Image compression fundamentals, stan-
dards and practice. Journal of Electronic Imaging 11, 286 (2002). DOI doi:10.1117/1.1469618

Tracy, D.M.: Path planning and slope representation on compressed terrain. Ph.D. thesis,
Rensselaer Polytechnic Institute (2009)

Xie, Z.: Representation, compression and progressive transmission of digital terrain data using
over-determined laplacian partial differential equations. Master’s thesis, Rensselaer Polytechnic
Institute (2008)

Yang, W., Lu, Y., Wu, F., Cai, J., Ngan, K., Li, S.: 4-D wavelet-based multiview video coding.
IEEE Transactions on Circuits and Systems for Video Technology 16(11), 1385–1396 (2006)

Ziegler, G., Lensch, H., Magnor, M., Seidel, H.P.: Multi-video compression in texture space using
4d spiht. In: Multimedia Signal Processing, 2004 IEEE 6th Workshop on, pp. 39–42 (2004).
DOI 10.1109/MMSP.2004.1436410

8 CUDA-Accelerated HD-ODETLAP…

http://developer.nvidia.com/cuda

113X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_9, © Springer Science+Business Media New York 2013

Abstract Agent-based modeling is a disaggregated simulation approach for the
exploration of complex spatial dynamics in geographic systems. The use of agent-
based models for investigating social-ecological complexity in geographic systems
is, however, severely hampered by the computational intensity of agent-based
 models. Graphics Processing Units (GPUs) are cutting-edge many-core parallel
 computing platforms that hold great potential in addressing this computational
intensity. It is thus necessary to identify aspects that are fundamental in guiding the
transformation of agent-based models into GPU environments. The objective of this
paper is to identify and discuss the fundamental aspects that need to be considered
when using GPUs to accelerate agent-based models. Specifically, these aspects
include random number generation, parallelization of agent-based interactions,
analysis of agent and environment patterns, and evaluation of computing perfor-
mance. By linking with these aspects, I used a case study of modeling spatial opin-
ion exchange to illustrate the massively parallel computing power of GPUs for
accelerating agent- based modeling. Experimental results suggest that these aspects
provide valuable guidance for transforming agent-based models into GPUs to best
exploit massively parallel computing power. Further, these aspects are of vital
importance for bridging the gap between advancement in GPUs and their applica-
tions for resolving spatiotemporal problems using agent-based modeling.

Keywords Agent-based modeling (ABM) • GPU • Parallel computing

Chapter 9
Accelerating Agent-Based Modeling
Using Graphics Processing Units

Wenwu Tang

W. Tang (*)
Center for Applied Geographic Information Science, Department of Geography and Earth
Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
e-mail: WenwuTang@uncc.edu

114

9.1 Introduction

Agent-based modeling is a disaggregated simulation approach for the exploration of
complex spatiotemporal dynamics in geographic systems (Epstein and Axtell 1996;
Parker et al. 2003; Brown et al. 2005a). Agent-based models (ABMs) have become
an appropriate virtual laboratory platform that allows for scenario analysis often
intractable for physical experiments. ABMs, with origins from ecology, social sci-
ence, artificial intelligence, and cognitive science (Epstein and Axtell 1996; Ferber
1999; Grimm and Railsback 2005), have a diverse range of applications in investi-
gating social-ecological complexity. In the GIScience domain, ABMs serve as a
flexible modeling approach that has been integrated with GIS (Geographic
Information Systems; see Goodchild 1992; Worboys and Duckham 2004) for repre-
senting spatially explicit dynamics of geographic systems (Gimblett 2002; Brown
et al. 2005b). The integration of GIS and associated spatial analytical capabilities
substantially benefits ABMs in terms of using geographically referenced empirical
data for model calibration and validation.

The use of ABMs for investigating social-ecological complexity in geographic
systems is severely hampered by the computational intensity of ABMs (Wang
et al. 2006; Tang and Wang 2009; Wang and Armstrong 2009). A suite of model-
level aspects lead to the computationally intensive nature of ABMs. These aspects
include stochastic influential factors, nonlinear and concurrent agent-based inter-
actions, iterations for capturing dynamics of systems, and Monte Carlo simula-
tion for inferring modeling outcomes while coping with associated uncertainties
(see Wang et al. 2006; Tang and Wang 2009; Tang et al. 2011). The combination
of these aspects often makes agent-based modeling data- and computation-
intensive. Modelers are increasingly realize the capability of high-performance
and parallel computing (Wilkinson and Allen 2004) in resolving the data- and
computation-intensities of ABMs. Parallel ABMs have been developed to accel-
erate the spatially explicit modeling of complex geographic systems (see Abbott
et al. 1997; Nagel and Rickert 2001; Wang et al. 2006; Tang and Wang 2009;
Tang et al. 2011).

The objective of this paper is to elicit the potential of a massively parallel
 computing technology, Graphics Processing Units (GPUs; see Owens et al. 2008;
Kirk and Hwu 2010), in accelerating ABMs. GPUs represent cutting-edge many-
core computing capabilities that have substantially promoted and advanced
 mainstream computing paradigm (Owens et al. 2007). This study focuses on iden-
tifying fundamental aspects that guide the use of GPUs for computationally inten-
sive agent- based modeling. The rest of the paper is organized in the following
manner. First, I introduce basics in GPU-accelerated general-purpose computa-
tion. Second, I identify and discuss in detail the fundamental aspects that need to
be considered when using GPUs to accelerate ABMs. Third, I used a case study
to illustrate the massively parallel computing power of GPUs for accelerating
agent-based modeling. Fourth, this paper ends with conclusion and discussion on
future research themes.

W. Tang

115

9.2 General-Purpose Graphics Processing Units

GPUs are programmable graphics processors that are built on many-core architec-
ture to provide massively parallel computing power for accelerating general- purpose
computation (Owens et al. 2007, 2008; Kirk and Hwu 2010). Since 1980s, GPUs
have been developed for the purpose of accelerating graphics operations. APIs
(Application Programming Interfaces), such as OpenGL and DirectX, have been
available to make GPUs programmable for graphics acceleration (Kirk and Hwu
2010). The potential of GPUs in enabling general-purpose computing has been real-
ized, especially as performance improvement on a single Central Processing Unit
(CPU) reached its physical limits. However, the burgeoning of GPUs into general-
purpose computing began in 2007 when Nvidia released its parallel computing plat-
form, Compute Unified Device Architecture (CUDA; see CUDA 2013). The use of
GPUs for general-purpose computing relies on a multi-threading mechanism for
exploiting many-core stream computing power in GPUs (Kirk and Hwu 2010). This
makes GPUs capable of high-throughput computing, well-suited to the processing
of massive data (data parallelism). A modern CUDA-capable GPU typically com-
prises multiple streaming multiprocessors each consisting of a collection of stream-
ing processors. For example, the latest Nvidia Tesla K20 GPU, built on the advanced
Kepler architecture (Kepler 2013), has in total 2,496 cores in 13 streaming multi-
processors (192 cores per processor). The many-core architecture and multi-
threading mechanism lead to the supercomputing power of GPUs at a level of
tera-FLOPs (FLoating point Operations Per Second), compared with giga-level
floating point performance provided by modern CPUs (Kirk and Hwu 2010). In
particular, as computing power in a single GPU grows continually, multi-GPU com-
puting resources that coordinate a cluster of GPU devices become increasingly
popular. This creates great opportunities for leveraging GPUs for complex domain-
specific problem-solving.

Besides CUDA, a suite of software platforms (e.g., OpenCL and OpenACC; see
http://www.khronos.org/opencl/ and http://www.openacc-standard.org/) have been
developed for GPU-based programming. These platforms provide interfaces for
alternative programming languages (e.g., C/C++, Fortran, and Python). In particu-
lar, CUDA is the GPU programming platform that has been most commonly used
for general-purpose computation. Standard data structures and algorithms for
general- purpose computation are now implemented and available as libraries in
CUDA (see https://developer.nvidia.com/gpu-accelerated-libraries). Essentially,
CUDA is a scalable programming platform based on a grid-block-thread hierarchy
to harness the many-core computing power in GPUs (Kirk and Hwu 2010).
Algorithms of a domain-specific model are encapsulated as kernel functions invok-
ing thread-based grids for acceleration. The number of threads allowed in a thread
grid can reach 1012 (e.g., in the latest Tesla K20 GPU). These threads are grouped
into blocks while they are ported into streaming multiprocessors in GPUs. Threads
and blocks can be organized into different dimensions (1D, 2D, and 3D) according
to data characteristics and algorithmic design. Alternative levels of memory

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

http://www.khronos.org/opencl/
http://www.openacc-standard.org/
https://developer.nvidia.com/gpu-accelerated-libraries

116

(e.g., local, shared, and global) are available for maintaining data at different thread
levels (thread, block, and grid). The hierarchical multi-threading design in CUDA
allows for using multi-level parallelism to achieve the high scalability of domain-
specific models transformed onto GPUs.

9.3 Accelerating Agent-Based Models Using Graphics
Processing Units

ABMs rely on the concept of agents to represent real-world entities (e.g., decision
makers) that interact with their peers and environments (Epstein 1999; Ferber 1999;
Grimm and Railsback 2005). Agents employ rules to characterize their interacting
behavior in response to change in system dynamics. Regarding model development,
agents are implemented as objects interacting with spatially explicit environments
that are continuous or discretized (i.e., vector- or raster-based environmental repre-
sentation; see Worboys and Duckham 2004; Brown et al. 2005b). Agent-based
interactions (including agent-agent and agent-environment) are often decentralized,
nonlinear, and self-organized. These interactions drive the emergence of high-level
patterns in geographic systems. Model configuration (e.g., the number of agents,
spatial extent, and temporal duration) of most CPU-based sequential ABMs is lim-
ited because of computational burden induced by calibration and validation. For
example, the spatial extent of most raster-based ABMs is often smaller than
1,000 × 1,000 cells. This greatly inhibits the use of ABMs for investigating geo-
graphic systems often driven by multi-scale influential factors.

Because agent-based interactions are decentralized and concurrent, ABMs have
great potential to leverage many-core parallel computing capabilities in GPUs.
Though general-purpose GPU technologies emerged several years ago, a suite of
modeling efforts have been reported to investigate the use of GPUs for accelerating
ABMs. Table 9.1 summarizes existing modeling efforts in terms of agent types
(plants, animals, and human decision makers). These GPU-enabled ABMs were
developed to address research questions (e.g., collective behavior or movement)
from different domains, including computer science, ecology, social science, and
transportation. Note that in this study, cellular automata are regarded as a special
form of ABMs in which agents are immobile and interact with their spatial neigh-
borhood (see Ferber 1999). CUDA is the software platform mostly chosen to imple-
ment ABMs for GPU acceleration. Programming languages mainly include C/C++
and Java. The massively parallel computing power in GPUs allows modelers to
further extend model configuration. For example, the number of agents allowed
reaches a level of millions or billions. Environmental representation in these exist-
ing GPU-enabled ABMs is vector- (including networks) or raster-based.

The key challenge for using GPUs to accelerate ABMs is how to transform an
ABM into GPU-enabled environments (see Fig. 9.1 for illustration). Most of the
sequential ABMs were developed specifically to cope with the CPU-based

W. Tang

117

Table 9.1 Summary of agent-based models accelerated using GPUs

Category Citation Modeling questions

Plant species van de Koppel et al. (2011) Pattern formation of tiger bush
Keenan et al. (2012) Tree dispersal and competition

Animal species Passos et al. (2009) Bird flocking
Li et al. (2009) Fish schooling
Erra et al. (2009)
van de Koppel et al. (2011) Mussel disturbance

Human decision makers Perumalla et al. (2009) Mood diffusion
Residential segregation

Richmond and Romano (2008) Pedestrian movement
Chen et al. (2011) Crowd gathering
Tang and Bennett (2011) Opinion exchange
Strippgen and Nagel (2009) Vehicle mobility
Wang and Shen (2012)

Fig. 9.1 Transformation of an agent-based model into GPUs (an example of mobile agents was
used)

computing environments. These CPU-enabled ABMs cannot be directly run within
the GPU environments. The transformation of ABMs into GPUs requires the con-
sideration of fundamental aspects that couple modeling and computing domains.
These aspects include (but are not limited to): random number generation for sto-
chastic modeling, the mapping of agent-based interactions to GPU-supported
threads, the analysis of agent and environment patterns, and the evaluation of accel-
eration performance. In this section, I discuss in detail these aspects.

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

118

9.3.1 Random Number Generation for Stochastic Modeling

In ABMs of geographic systems, agent-based interactions are driven by influential
factors that are often uncertain—i.e., these ABMs are stochastic. Random number
generation is thus required for stochastic agent-based modeling. Random number
generation libraries have been well developed within CPU environments. However,
these CPU-enabled libraries of sequential random number generation cannot be
directly used within GPU environments. Random number generation algorithms
have to be re-implemented for GPU-enabled ABMs. Two approaches exist for gen-
erating random numbers in GPUs (see Li et al. 2009). One approach is to generate
random numbers in CPU memory first, and then transfer these numbers to GPU
device memory. This approach is relatively straightforward since it is based on
capabilities already available within CPU environments. The other approach is to
directly generate random numbers on GPUs. While CUDA now provides support
for generating random numbers in the CURAND library (CURAND 2013), early
versions of CUDA toolkits do not have such capabilities. The CURAND library
supports multiple random number generation algorithms, including xor-shift, com-
bined multiple recursive, and Mersenne Twister families (CURAND 2013).

Modelers can use either the parallel library in CUDA or implement their own
random number generation in agent-based modeling, contingent on modeling needs
and programming background of modelers. For example, Li et al. (2009) imple-
mented a Mersenne Twister algorithm to generate random numbers that drive fish
schooling behavior in their agent-based fish simulation. Li et al. (2009) utilized
block-level shared memory to improve the parallel generation of random numbers.
Park and Fishwick (2010) developed a Mersenne Twister random number genera-
tion algorithm in their discrete event simulation. The parallel algorithm by Park and
Fishwick (2010) supports random numbers following alternative probabilistic dis-
tributions. Keenan et al. (2012) developed parallel GPU-enabled pseudo-random
number generation based on the Tausworthe algorithm to simulate the stochastic
dispersal behavior of individual tree species.

9.3.2 Parallelize Agent-Based Interactions
Using Thread Parallelism

Interactions in ABMs comprise agent-agent, agent-environment, and environment-
environment interactions. Update of these interactions leads to the computational
intensity of ABMs. The key to the use of GPUs for accelerating ABMs is to map
these interactions and data structures that represent agents and environments to
thread and memory hierarchies on GPUs. Because of massive concurrent threads
supported, GPUs have great potential to empower the computation of massive
updates induced by interactions in ABMs. This makes it possible to conduct GPU-
enabled agent-based modeling in which the number of agents, the length of

W. Tang

119

temporal iterations, or the number of environmental features reach several order of
magnitude of those developed within CPU environments. How to map interactions
in ABMs to threads in GPUs (i.e., domain decomposition in parallel computing; see
Ding and Densham 1996; Wilkinson and Allen 2004) is dependent on, for example,
the number of agents used and the computational intensity of agent-level interac-
tions. In a large ABM enabled by GPUs, each thread can handle interactions associ-
ated with a small sub-set of agents, given that agent-based interactions are
light-weighted. For ABMs in which agent-based interactions are highly intensive
(the number of agents may be limited), updates on an agent’s interactions can be
mapped to a single thread or multiple threads.

GPUs are based on multi-threading and shared-memory mechanisms for parallel
computing. When the set of threads updates interactions in an ABM, the state of an
agent or environmental feature is likely to be accessed and modified by multiple
threads. CUDA supports simultaneous access to the state of an agent. However, an
issue of mutual exclusion (Raynal 1986; Anderson et al. 2003) arises when multiple
threads attempt to modify (write operation) the state of an agent or environmental
feature simultaneously. This causes the incorrect update of agent or environment state.
To resolve this issue, atomic functions, which ensure an agent or environment state
cannot be modified by another thread while it is updated by a thread, are often needed.
For example, Keenan et al. (2012) used an atomic compare-and-swap function to sup-
port the establishment of new trees in their individual-based model of tree dispersal
and competition.

The iterative nature of ABMs requires that all interactions within a discrete time
step are completed before entering next step—i.e., synchronization at each time step
is required. While we use many concurrent threads to update interactions in ABMs,
we need to make sure the update of these interactions is synchronized at each time
step. CUDA does not support the synchronization of grid-level threads (the entire
collection of threads recruited) within a kernel function. However, when different
kernel functions are invoked or a kernel function is invoked multiple times, the syn-
chronization of grid-level threads is achieved. Thus, iterations of ABMs in GPUs
can be implemented by repetitively invoking kernel functions corresponding to
model iterations. Further, threads within a block can be synchronized in a kernel
function in CUDA. Thus, modelers can synchronize agent-based updates handled
by threads within a block. The two levels of synchronization (grid- and block-level)
have been commonly used in most existing ABMs accelerated using GPUs.

9.3.3 Analysis of Agent or Environmental Patterns

ABMs are often associated with a significant amount of agent- or environment-
related patterns (simulated or observed). Quantitative metrics (e.g., spatial or non-
spatial, local or global, and spatial or spatiotemporal) can be used to evaluate these
patterns (see Brown et al. 2005a). To derive the metrics of agent- or environment-
related patterns often requires the traversal of the entire set of agents or

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

120

environmental features. Depending on the size of agent population or environmental
features and the computational intensity of metrics, the computation of these met-
rics can be allocated on CPUs (small size and low computational intensity) or GPUs
(large size or high computational intensity).

Parallel scan or reduction algorithms (see Harris et al. 2007) exist to support the
concurrent and efficient computation of these metrics. For example, in their
Schelling segregation model, Perumalla and Aaby (2008) used parallel reduction
for counting the number of agents to detect whether a residential system reaches
equilibrium. Richmond and Romano (2008) conducted summary statistics in their
agent-based pedestrian model with support from parallel reduction operations.
Chen et al. (2011) applied the metric of information entropy into their large crowd
simulation to evaluate the diversity of behavioral types of pedestrians. Keenan et al.
(2012) developed a GPU-enabled parallel approach to derive the crowding index of
trees in their individual-based model using parallel reduction operations available in
the CUDA thrust library.

9.3.4 Evaluation of Computing Performance

The evaluation of computing performance of GPU-accelerated ABMs lies in the
comparison of computing time between GPU-enabled parallel ABMs with CPU-
based sequential counterparts. A commonly used performance metric is accelera-
tion factor (Preis et al. 2009), which is the ratio of CPU execution time over GPU
time. Although it is conceptually similar to the metric of speed up in CPU-based
parallel computing (Wilkinson and Allen 2004), acceleration factor has reliance on
both GPU and CPU configuration. The metric of acceleration factor allows for
examining variation in computing performance in response to change in model
parameters or CUDA configuration. Acceleration factors of most ABMs reported in
the literature reach at least one order of magnitude, depending on the complexity of
agent-based interactions and the problem size with which ABMs are associated
(e.g., the size of agent populations).

Li et al. (2009) simulated the schooling behavior of fishes, driven by attraction or
repulsion influence from neighboring fishes. The acceleration factor obtained by Li
et al. (2009) is around 230–240, given 100 fishes simulated on NVIDIA GeForce
8800 GTX (128 cores; see http://www.nvidia.com/page/geforce_8800.html) for
GPU against Intel Pentium CPU. Passos et al. (2009) examined the computing per-
formance of their agent-based flocking boid model. Passos et al. (2009) compared
GPU and CPU computing time over the number of flocking boids. A nonlinear
response of computing performance was observed when the number of boids
changes from 64 to 1 million. Correspondingly, acceleration factors (calculated
from results reported by Passos et al. (2009)) increase from 0.283 to 138.464.
Acceleration factors tend to increase rapidly when the number of agents increases
from 64 to 262,144. Besides the number of agents, rules that represent agent-based

W. Tang

http://www.nvidia.com/page/geforce_8800.html

121

interactions may have substantial influence on the computing performance of
 GPU-accelerated ABMs. In Keenan et al. (2012), acceleration factors increase from
about 60 to 360 when the crowding effect of tree species was computed. These
reported performance results suggest that computationally intensive agent-based
updates in ABMs can really reap benefits from GPUs.

9.4 Case Study

In this section, I used a parallel agent-based model of spatial opinion exchange to
investigate the potential of GPUs for accelerating spatial agent-based modeling.
This GPU-enabled model has been detailed in Tang and Bennett (2011). In this
study, I focus on using this model to demonstrate the strength of GPUs for accelerat-
ing ABMs by linking with the fundamental aspects highlighted in Sect. 9.3.

9.4.1 Parallel Agent-Based Opinion Modeling

The agent-based opinion model was designed to investigate how spatially aware
decision makers communicate among themselves to develop consensus on topics of
interest. The consensus development represents a complex space-time diffusion
process in which the communication behavior of individuals and their spatial distri-
butions play a pivotal role. In this model, individuals are simulated as agents situ-
ated on a raster-based 2D landscape. An agent exchanges opinion (as in a continuous
normalized variable; i.e., in the range of [0, 1]) with her/his neighbors, and this
opinion exchanging behavior is characterized by distance-decayed spatial neighbor-
hood search and opinion update (driven by a bounded confidence model; see
Weisbuch et al. 2002). Each iteration, an agent will randomly pick a neighboring
agent within her/his influential range to decide whether the two agents will update
opinions based on an opinion threshold (in the range of [0, 0.5]; large values repre-
sent open-mindedness). If opinion distance between the two agents is less than the
opinion threshold, the opinion of the current agent will be modified using the
bounded confidence model.

The agent-based opinion model has been parallelized using GPUs to cope with
large agent populations. Random numbers in this model were produced at thread
level based on a linear congruential generator (Gentle 2003). Seeds of these thread-
level random number sequences were generated and fed from CPU. A probability,
denoted as p, for a thread is obtained using the following equations.

 p RND rmaxn= / (9.1)

RND a RND b rmaxn n= +()−

*
1 mod

(9.2)

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

122

where RNDn and RNDn−1 are random numbers generated at the nth and n − 1th
 iteration. RND0 is assigned by a random number transferred from CPU. rmax is the
maximal random number allowed (rmax = 232 in this study). a and b are coeffi-
cients to generate the nth random number based on the n − 1th random number
(a = 1,664,525 and b = 1,013,904,223 in this study). “mod” without quotation refers
to the modulus operator.

In the parallel model, a kernel function was developed to recruit threads for opin-
ion exchange among agents. To update interactions for opinion exchange needs the
traversal of the entire agent population each iteration. Thus, domain decomposition
is based on the partitioning of the entire agent population and assigning partitioned
sub-populations to CUDA threads. Because the number of threads that CUDA sup-
ports is large (giga-level), each thread only needs to handle a small group of agents
(one-to-many relationship between threads and agents) even for the model with
large agent population. The spatial neighborhood search and opinion update pro-
cesses of agents are decentralized and concurrent. It is likely that an agent’s opinion
may be updated by two or more agents from different threads simultaneously.
Consequently, the opinion of the agent may not be updated correctly—a mutual-
exclusion issue. Atomic operations were used to resolve this mutual-exclusion
issue. Further, to assure the opinions of all agents are updated each iteration syn-
chronously, the kernel function of opinion exchange is invoked each iteration.

Two metrics, Shannon’s entropy and Simpson index, were used to evaluate the
degree of opinion diversity of agents. These metrics are based on the statistical dis-
tribution of agent opinions (Hill 1973; Keylock 2005). Equations 9.3 and 9.4 show
the derivation of the Shannon’s entropy and Simpson index.

entropy p p

i

n

i i= − ()
=
∑

1

* ln

(9.3)

simpson p

i

n

i=
=
∑

1

2

(9.4)

where entropy and simpson are the Shannon’s entropy and Simpson index of agent
opinion. pi denotes the proportion of agents in opinion group i. n represents the
number of opinion groups. Low entropy or high Simpson index represents a homo-
geneous opinion pattern (i.e., the opinion system reaches consensus). While these
two metrics allow for evaluating modeling performance, acceleration factor was
used to examine the computing performance of the model.

9.4.2 Experiment and Discussion

I designed an experiment to examine the impact of the proportion of open- and
narrow-minded agents on the development of consensus. Two types of agents, open-
and narrow-minded, were used. Open-minded agents have a large opinion threshold

W. Tang

123

(0.26) and a long communication range for spatial neighborhood search. Narrow-
minded agents are characterized by a relatively small opinion threshold (0.20) and
a short communication range. All agents’ opinions were initialized between 0 and
1. I varied systematically the proportion of open-minded agents from 95 % down to
5 % at an interval of 5 %, in total 19 treatments (noted as T1–T19). Landscape size
is 3,000 × 3,000. Each cell is situated by one agent. The type (open- or narrow-
minded) of the agent in a cell was determined randomly, and each agent has equal
probability to be either open- or narrow-minded. Figure 9.2 is an example showing
spatial patterns of agent type and initial opinion. The number of iterations is 1,000.
The number of model repetitions for each treatment is 20. Regarding GPU configu-
ration, the number of threads per block is 256. Thus, the number of thread blocks is
35,157. The GPU device is Tesla M2050 (448 cores; 1.15 GHz of clock rate; 3 GB
global memory). Intel Xeon processors with 2.67 GHz of clock rate and 12 GB of
memory were CPUs for sequential execution.

Table 9.2 reports results of computing performance of the 19 treatments.
Computing time and acceleration factors are based on averaged results of 20 model
repetitions for each treatment. The GPU execution time for a model run (memory
transferring time is included) is about 5–6 min. However, the sequential CPU time
of a model run is about 1 h. Acceleration factors for the 19 treatments vary around
10–11. Further, execution time for both GPU- and CPU-enabled models tends to
increase as the proportion of open-minded agents decreases.

Figure 9.3 shows the spatial patterns of agent opinion at iteration 1 and 1,000 for
treatment T1 (95 % open-minded agents) and T19 (5 % open-minded agents). The
opinion system dominated by open-minded agents reaches consensus, but for the
system with low percentage of open-minded agents, agent opinions remain diverse
after 1,000 iterations (i.e., consensus was not obtained). Figure 9.4 depicts results of
Shannon’s entropy and Simpson index over iterations for the 19 treatments.

Fig. 9.2 Spatial patterns of agent opinion and types (landscape size: 3,000 × 3,000; ratio of open-
minded over narrow-minded agents: 1:1; agent opinion was scaled to the range of 0–1,000)

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

124

In general, entropy exhibits a decreasing trend over iteration, but Simpson index
shows an increasing pattern. This is because agents interact with each other to mod-
ify their opinions based on influence from others. Initially, agent opinions are ran-
domly distributed, corresponding to a most diverse opinion pattern (entropy is high
and Simpson index is low). Through the opinion update process, agents tend to
move close on their opinion space. Consequently, a decreasing (increasing) pattern
of entropy (Simpson index) was observed. A more interesting pattern is that agent
opinions in a population with a large number of open-minded agents (e.g., treatment
T1 with 95 % open-minded agents) tend to converge to consensus quickly. As the
number of open-minded agents’ declines, agent opinions tend to converge slowly.
As an extreme case, when the proportion of open-minded agents is 5 %, no conver-
gence reaches (also see Fig. 9.3b, d).

Figure 9.5 depicts the number of iterations at which agent opinions converge for
the 19 treatments. The convergence speed of agent opinions demonstrates a nonlin-
ear increasing pattern with a threshold at about 40 % in terms of the proportion of
open-minded agents (treatment T12). When the proportion of open-minded agents
is higher than 40 %, the number of iterations at which agent opinions converge
increases slowly from 130 to 290. However, once this proportion is lower than
40 %, the opinion system tends to converge more slowly and even no convergence
reaches. This indicates that the proportion of open-minded agents, or generally
agent types, in agent population is important in driving consensus development.

Table 9.2 Results of computing performance of the experiment (time units:
seconds; T1–T19: treatments for the proportion of open-minded agents varying
from 95 to 5 % at an interval of 5 %)

Treatment GPU time CPU time Acceleration factor

T1 338.39 3,507.14 10.36
T2 339.85 3,556.21 10.46
T3 336.90 3,490.12 10.36
T4 336.73 3,598.97 10.69
T5 335.54 3,543.13 10.56
T6 334.35 3,559.00 10.64
T7 335.10 3,705.77 11.06
T8 337.38 3,665.08 10.86
T9 341.11 3,729.63 10.93

T10 338.61 3,814.69 11.27
T11 341.30 3,716.15 10.89
T12 343.33 3,804.65 11.08
T13 343.47 3,882.67 11.30
T14 348.78 3,896.29 11.17
T15 348.93 3,915.16 11.22
T16 348.72 3,965.70 11.37
T17 357.95 3,998.21 11.17
T18 352.17 3,876.38 11.01
T19 358.08 3,903.55 10.90

W. Tang

125

Results of computing performance indicate that GPUs can accelerate consider-
ably the agent-based opinion model. Because the high proportion of open-minded
agents leads to the quick convergence of the opinion system, the amount of agent-
based interactions associated with computational workload is low. Thus, the
 computing time for both GPU- and CPU-enabled opinion models tends to be short
when the proportion of open-minded agents is high. This demonstrates the impor-
tance of appropriately mapping and parallelizing agent-based interactions within
GPU environments.

9.5 Conclusion

This study presented the use of GPUs for accelerating ABMs of complex geo-
graphic systems. The massively parallel computing power of GPUs for general-
purpose computation has been admitted as GPUs’ hardware performance almost

Fig. 9.3 Spatial patterns of opinions for agent population with different proportions of open-
minded agents (a and b: maps of initial opinions for agent population with 95 and 5 % open-
minded agents; c and d: maps of final opinions for agent population with 95 and 5 % open-minded
agents; number of iterations: 1,000)

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

126

doubles every year (Kirk and Hwu 2010). GPU resources tend to be ubiquitously
available on alternative computing platforms, including mobile devices, desktop
computers, clusters, and supercomputers. This trend has greatly motivated modelers
to harness parallel computing power in GPUs for domain-specific modeling.

The use of GPUs for parallel agent-based modeling often requires a solid under-
standing of ABMs, software and hardware characteristics of GPUs. Researchers
with collective knowledge from both modeling and computational domains will
greatly benefit from the supercomputing capabilities of GPUs. This study identified
and discussed fundamental aspects in the exploitation of GPUs for accelerating
ABMs. These aspects include random number generation, parallelization of agent-
based interactions, analysis of agent and environment patterns, and evaluation of
computing performance. The consideration of these aspects will facilitate the trans-
formation of sequential ABMs into GPU-enabled parallel counterparts.

Fig. 9.4 Opinion diversity indices over iterations for different treatments (a: Shannon’s entropy;
b: Simpson index; T1–T19: treatments for the proportion of open-minded agents varying from 95
to 5 % at an interval of 5 %)

W. Tang

127

However, the application of GPUs for accelerating ABMs still remains in its
early stage, suggesting a thread of future research themes. First, there is a set of
spatiotemporal problems (e.g., global- or regional-level land cover change,
landscape- level mosquito dynamics) often requiring large agent-based modeling. It
is imperative to identify concurrent characteristics in these large models and then
transform them into many-core GPU-enabled computing environments to gain high
acceleration. Second, it is necessary to develop and examine scalable parallel spatial
strategies (e.g., spatial domain decomposition and synchronization) for agent-based
modeling to efficaciously exploit massively parallel computing power in GPUs.
Third, heterogeneous multi-GPU resources (i.e., GPU clusters) are increasingly
available while single GPUs’ performance keeps improving. To better exploit these
multi-GPU resources for large agent-based modeling hinges on the combination of
CPU-based parallel programming architectures or platforms (e.g., MPI, OpenMP)
with GPU programming environments (e.g., CUDA and OpenCL). While this
exploitation may require more knowledge from heterogeneous parallel computing,
the size and complexity of the spatiotemporal problems represented by ABMs are
enhanced significantly.

Acknowledgements The author thanks support from US NSF Human Social Dynamics
#0624292—Collaborative Research: AOC Social Complexity and the Management of the
Commons and Faculty Research Grant at the University of North Carolina at Charlotte. University
Research Computing (URC) at the University of North Carolina at Charlotte provided partial com-
puting resources for this study. The author would like to thank Meijuan Jia, Jing Deng, Wenpeng
Feng, Huifang Zuo, and Dr. Jian Gong for their assistance in manuscript preparation.

Fig. 9.5 Number of iterations at which agent opinions converge (T1–T19: treatments for the pro-
portion of open-minded agents varying from 95 to 5 % at an interval of 5 %)

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

128

References

Abbott, C.A., Berry, M.W., Comiskey, E.J., Gross, L.J. and Luh, H., 1997, Parallel individual-
based modeling of Everglades deer ecology. Computational Science & Engineering, IEEE, 4,
60–78.

Anderson, J.H., Kim, Y.-J. and Herman, T., 2003, Shared memory mutual exclusion: major
research trends since 1986. Distributed Computing, 16, 75–110.

Brown, D.G., Page, S., Riolo, R., Zellner, M. and Rand, W., 2005a, Path dependence and the vali-
dation of agent-based spatial models of land use. International Journal of Geographical
Information Science, 19, 153–174.

Brown, D.G., Riolo, R., Robinson, D.T., North, M. and Rand, W., 2005b, Spatial process and data
models: Toward integration of agent-based models and GIS. Journal of Geographic Systems, 7,
1–23.

Chen, D., Wang, L., Tian, M., Tian, J., Wang, S., Bian, C. and Li, X., 2011, Massively parallel
modelling & simulation of large crowd with GPGPU. The Journal of Supercomputing, 1–16.

CUDA, 2013, CUDA. http://www.nvidia.com/object/cuda_home_new.html.
CURAND, 2013, CURAND. http://docs.nvidia.com/cuda/curand/index.html.
Ding, Y.M. and Densham, P.J., 1996, Spatial strategies for parallel spatial modelling. International

Journal of Geographical Information Systems, 10, 669-698.
Epstein, J.M., 1999, Agent-based computational models and generative social science. Complexity

4, 41–60.
Epstein, J.M. and Axtell, I., 1996, Growing Artificial Societies: Social Science from the Bottom Up

(Cambridge: The MIT Press).
Erra, U., Frola, B., Scarano, V. and Couzin, I., 2009, An efficient GPU implementation for large

scale individual-based simulation of collective behavior. In High Performance Computaitonal
Systems Biology (HiBi09), October 14–16, 2009 (Trento, Italy).

Ferber, J., 1999, Multi-agent Systems: An Introduction to Distributed Artificial Intelligence
(New York: Addison-Wesley).

Gentle, J.E., 2003, Random number generation and Monte Carlo methods (Springer).
Gimblett, R.H., 2002, Integrating geographic information systems and agent-based technologies

for modeling and simulating social and ecological phenomena. In Integrating Geographic
Information Systems and Agent-based Modeling Techniques for Simulating Social and
Ecological Processes, R.H. Gimblett (Ed.), 1-20 (Oxford: Oxford University Press).

Goodchild, M.F., 1992, Geographical Information Science. International Journal of Geographical
Information Systems, 6, 31–45.

Grimm, V. and Railsback, S.F., 2005, Individual-based Modeling and Ecology (Princeton, NJ:
Princeton University Press).

Harris, M., Sengupta, S. and Owens, J.D., 2007, Parallel prefix sum (scan) with CUDA. GPU
Gems, 3, 851–876.

Hill, M.O., 1973, Diversity and evenness: a unifying notation and its consequences. Ecology, 54,
427–432.

Joselli, M., Passos, E. B., Zamith, M., Clua, E., Montenegro, A., and Feijó, B., 2009, A Neighborhood
Grid Data Structure for Massive 3D Crowd Simulation on GPU. In 2009 VIII Brazilian
Symposium on Games and Digital Entertainment (SBGAMES) (pp. 121–31). Brazil: IEEE.

Keenan, M., Komarov, I., D’Souza, R.M. and Riolo, R., 2012, Novel graphics processing unit-
based parallel algorithms for understanding species diversity in forests. In Proceedings of the
2012 Symposium on High Performance ComputingSociety for Computer Simulation
International), 10.

Kepler, 2013, Nvidia Kepler Architecture. http://www.nvidia.com/object/nvidia-kepler.html.
Keylock, C., 2005, Simpson diversity and the Shannon–Wiener index as special cases of a general-

ized entropy. Oikos, 109, 203–207.
Kirk, D.B. and Hwu, W.-m., 2010, Programming Massively Parallel Processors: A hands-on

Approach (Burlington, MA, USA: Morgan Kaufmann).

W. Tang

http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/curand/index.html
http://www.nvidia.com/object/nvidia-kepler.html

129

Li, H., Kolpas, A., Petzold, L. and Moehlis, J., 2009, Parallel simulation for a fish schooling model
on a general-purpose graphics processing unit. Concurrency and Computation: Practice and
Experience, 21, 725–737.

Nagel, K. and Rickert, M., 2001, Parallel implementation of the TRANSIMS micro-simulation.
Parallel Computing, 27, 1611–1639.

Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E. and Phillips, J.C., 2008, GPU
Computing. Proceedings of the IEEE, 96, 879–899.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E. and Purcell, T.J.,
2007, A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics
Forum, 26, 80–113.

Park, H. and Fishwick, P.A., 2010, A GPU-Based Application Framework Supporting Fast
Discrete-Event Simulation. SIMULATION, 86, 613–628.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J. and Deadman, P., 2003, Multi-agent
systems for the simulation of land-use and land-cover change: A review. Annals of the
Association of American Geographers, 93, 314–337.

Passos, E.B., Joselli, M., Zamith, M., Clua, E.W.G., Montenegro, A., Conci, A. and Feijo, B.,
2009, A bidimensional data structure and spatial optimization for supermassive crowd simula-
tion on GPU. Computers in Entertainment (CIE), 7, 60.

Perumalla KS and Aaby BG (2008) Data parallel execution challenges and runtime performance
of agent simulations on GPUs. In Proceedings of the 2008 Spring Simulation Multiconference.
(ed.), Vol. pp. 116–23, International Society for Computer Simulation, Ottawa, Canada.

Perumalla, K.S., Aaby, B.G., Yoginath, S.B. and Seal, S.K., 2009, GPU-based real-time execution
of vehicular mobility models in large-scale road network scenarios. In Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation IEEE
Computer Society), 95–103.

Preis, T., Virnau, P., Paul, W. and Schneider, J.J., 2009, GPU accelerated Monte Carlo simulation
of the 2D and 3D Ising model. Journal of Computational Physics, 228, 4468–4477.

Raynal, M., 1986, Algorithms for Mutual Exclusion (Cambridge, Massachusetts: The MIT Press).
Richmond, P. and Romano, D.M., 2008, A high performance framework for agent based pedes-

trian dynamics on gpu hardware. In EUROSIS ESM 2008 (European Simulation and Modelling)
(Le Havre, France.

Strippgen, D. and Nagel, K., 2009, Multi-agent traffic simulation with CUDA. In High Performance
Computing & Simulation, 2009. HPCS’09. International Conference onIEEE), 106–114.

Tang, W. and Bennett, D.A., 2011, Parallel agent-based modeling of spatial opinion diffusion
accelerated using graphics processing units. Ecological Modelling, 222, 3605–3615.

Tang, W., Bennett, D.A. and Wang, S., 2011, A parallel agent-based model of land use opinions.
Journal of Land Use Science, 6, 121–135.

Tang, W. and Wang, S., 2009, HPABM: A Hierarchical Parallel simulation framework for spatially-
explicit Agent-Based Models. Transactions in GIS, 13, 315–333.

van de Koppel, J., Gupta, R. and Vuik, C., 2011, Scaling-up spatially-explicit ecological models
using graphics processors. Ecological Modelling, 222, 3011–3019.

Wang, D., Berry, M.W., Carr, E.A. and Gross, L.J., 2006, A parallel fish landscape model for eco-
system modeling. Simulation, 82, 451–465.

Wang, K. and Shen, Z., 2012, A GPU based traffic parallel simulation module of artificial trans-
portation systems. In Service Operations and Logistics, and Informatics (SOLI), 2012 IEEE
International Conference on, 160–165.

Wang, S. and Armstrong, M.P., 2009, A theoretical approach to the use of cyber infrastructure in
geographical analysis. International Journal of Geographical Information Science, 23, 169–193.

Weisbuch, G., Deffuant, G., Amblard, F. and Nadal, J.-P., 2002, Meet, discuss, and segregate!
Complexity, 7, 55–63.

Wilkinson, B. and Allen, M., 2004, Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers (Second Edition) (Upper Saddle River, NJ
USA: Pearson Prentice Hall).

Worboys, M. and Duckham, M., 2004, GIS: A Computing Perspective, Second Edition (Boca
Raton: CRC Press).

9 Accelerating Agent-Based Modeling Using Graphics Processing Units

 Part IV
 MAT in Remotely Sensed Data Processing

and Analysis

133X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_10, © Springer Science+Business Media New York 2013

Abstract Costas signal, which is able to provide good time and frequency resolu-
tion simultaneously, is widely adopted in modern radar systems, especially for the
radar with low interception performance. However, because of the widely acknowl-
edged superb ambiguity properties, the pulse compression for Costas signal requires
multi-velocity-channel processing, and hence, the computational load is increased
accordingly. In this paper, based on the characteristics of “General Purpose Graphics
Processing Unit (GPGPU)”, a new pulse compression scheme for Costas signal is
proposed and validated. According to the experiment, this processing scheme will
provide a good reference for the design of radar signal processors with high com-
puting performance.

Keywords High speed radar signal processing • Costas signals • Multi-velocity
channel processing • General purpose graphics processing unit • GPGPU

Chapter 10
Large-Scale Pulse Compression for Costas
Signal with GPGPU

Bin Zhou, Chun-mao Yeh, Wen-wen Li, and Wei-jie Zhang

B. Zhou (*)
Institute of Oceanographic Instrumentation, Shandong Academy of Sciences, Qingdao, China
e-mail: synosy@gmail.com

C.-m. Yeh
Beijing Institute of Radio Measurement, Beijing, China
e-mail: chunmaoyeh@gmail.com

W.-w. Li
GeoDa Center for Geospatial Analysis and Computation,
Arizona State University, Tempe, AZ, USA
e-mail: wenwen@asu.edu

W.-j. Zhang
Science and Technology on Electronic Information Control Laboratory, Chengdu, China
e-mail: arrowbit@gmail.com

134

10.1 Introduction

Pulse compression is a widely-used technique in modern radar, sonar and communi-
cation systems. It can obtain high distance resolution, while maintaining acceptable
signal to noise ratio. Pulse compression technique modulates the transmitting pulse
and then calculates the correlation between received and modulated pulses. The
common waveforms are chirp signal, nonlinear frequency modulation and phase
encoding pulse. Linear frequency modulation pulse has distance-speed coupling
effect, which leads to serious measuring errors. But in phase encoding, Barker code
with the length of more than 13 has not yet been found and pulse compression ratio
does not exceed 22.3 dB. In addition, although pseudorandom sequences can obtain
higher pulse compression ratio, its range side-lobe is also higher. This affects the
following signal detection, such as described in paper (Wenhua and Yixian 1996).

Phase encoding technique has several advantages: firstly, it can obtain high pulse
compression ratio, which is needed in any outstanding pulse compression system.

Secondly, because of obvious “thumbtack” characteristic in its ambiguity graph,
it can achieve higher velocity resolution and still keeps good range resolution.
Finally, the signal possesses better anti-jamming ability (Wenhua and Yixian 1996).
Costas signal also draws attention in acoustic applications because of these good
properties (Zhiguang et al. 2010). However, when using Costas signal on many
speed channels, the time and space complexity are huge. Single processor cannot
handle it. Hence it requires Massively Parallel Processing (MPP) (Hongxun and
Xiuchun 2004). The ordinary MPP system includes distributed share memory
(DSM), parallel processor array (PPA), cluster system and so on. Cluster system is
low-cost, flexible and expandable. But it has large size and high power consump-
tion. PPA and DSM systems are smaller and low-power-consuming, but expensive
and insufficient. As the latest technique development trend, heterogeneous systems
begin to emerge, providing high computing capacity, with much smaller cost. Field-
programmable gate array (FPGA) and general purpose graphic processing units
(GPGPU) (David et al. 2006) are used as synergistic processors, achieving high
computing density and throughput.

Traditionally, GPU specifically works on graphic in computer systems. But mod-
ern GPGPU has been gradually moving towards general purpose computing. Other
than CPU, GPGPU puts most of transistor budgets to processing unit. Only a few
are used for controlling. So it is especially suitable for concurrency processing tasks
with single instruction multiple data (SIMD) model. Old-fashion DSP, such as
ADI’s TS201, only has 3.6 GFLOPS (Qiang et al. 2009); mainstream quad-core
CPU has about 40 ~ 50 GFLOPS (Victor et al. 2010); NVIDIA Tesla C2050 has 515
GFLOPS double-precision and 1.03 TFLOPS single-precision, with 448 processing
cores and memory bandwidth is up to 144 GB/s; NVIDIA Tesla C2090 has 665
GFLOPS, 1.33 TFLOPS and 177 GB/s, respectively (NVIDIA Tesla C2050
Specification 2010). Those comparisons show that GPGPU system has high com-
puting power. With efficient parallel programming model, it can handle heavy paral-
lel tasks and show great potentials in large-scale signal processing field (Jinghong
et al. 2009). Mccool, M.D. analyzed many application matters of using GPGPU for

B. Zhou et al.

135

signal processing in paper (Mccool 2007); Blom and Follo (2005) used GPGPU to
achieve high speed SAR imaging; by using GPGPU, Karasev et al. (2007) obtained
35× speedup on 2-dimensional phase unwrapping.

In this paper, based on GPGPU, high-speed multi-velocity-channel processing of
Costas signal pulse compression is achieved, which provides a verification case and
good reference for heterogeneous stream processing design for high speed radar
signal processing.

10.2 Costas Signal Pulse Compression

10.2.1 Costas Echo Signal

Costas signal is a time-frequency hopping signal. Its carrier frequency varies with
Costas code. It can be expressed as

g t
NT

u t n T
c n

N

n c() = − −()()
=

∑1
1

1

(10.1)

Among which,

u t t T j f t f c fn c n n n() = () () = −()rect / exp 2 1π D

(10.2)

Therein, rect() is unit gating signal; Tc is sub-pulse width; N is sub-codes num-
ber, fn is the frequency of the n-th pulse, cn is Costas coding sequence; f is frequency
hopping step. Generally, Δf = 1/Tc. The spectrum of above Costas signal is

G f

T

N
T f f j f n Tc

n

N

c n c() = −()() ×{ − −()()}
=

∑
1

2 1sin expc π

(10.3)

For a target with a distance of r0 and a constant radial velocity, the echo signal
after coherent demodulation is

s t g t j f j f tcm o c o d o() = −()() × −() × − −()()δ π πt t texp exp2 2

(10.4)

Therein, δrm and δcm are relative velocity factors and echo scale factors of the
target respectively; fd and τo = 2ro/c are Doppler frequency and echo delay; c is light
speed, fc is carrier frequency; λ = c/fc is subcarrier wavelength. They have relations:

 δ δ δ δrm r cm rm d c rmv c f f= = − =2 1/ , (10.5)

Generally, if bandwidth-time product of radial velocity and transmit signal
 satisfy 2vr/c < < 1/(BT), the baseband signal affected by scaling effect can be ignored.

10 Large-Scale Pulse Compression for Costas Signal with GPGPU

136

Narrow band analysis model can be used for signal pulse compression. The echo
signal spectrum approximates to

S f G f f j f fd c o() = +() − +()()exp 2 π τ

(10.6)

where G(f) is baseband Costas signal spectrum.

10.2.2 Computation Analysis

For narrow band analysis model, narrow ambiguity function can be used to analyze
waveform characteristics. The one of Costas signal can be expressed as

χ τ τ π

π

, f g t g t j f t dt

N
j n f T

d d

n

N

d c

() = () +() ()

= −()

∫

∑
=

* exp

exp

2

1
2 1

1

(() × () + − −()()

= ≠

∑Φ τ Φ τnn d
m m n

N

mn c df m n T f,
1,

,

(10.7)

Among which,

Φ α π mn d
c c

nf
T T

j j ft
t t

b t, c() =

−

× () − −rect
2

1 2sin exp(()

(10.8)

and,

α τ π τ= − −() −() = − −() +()f f f T f f f Tm n d c m n d c, b

(10.9)

The ambiguity function approximately shows “thumbtack” shape. It could pro-
vide better distance and velocity resolution, while maintaining lower side-lobe char-
acteristics. It is an ideal waveform.

For Costas frequency modulation signal, multi-channel processing is needed to
get target information about distance and radial velocity. If transmitted signal dura-
tion is Tp, as for the maximum radial velocity of target is Vrmax, the Doppler channel
number is (Vrmax integer of upward taken)

N
v

T

T v
d

r

p

p r=

=

2

2

1
2

2
max max/

/

l
l

(10.10)

Figure 10.1 shows the multi-channel processing. The main operation in pulse
compression process of Costas signal is the fast Fourier transform (FFT). Considering
the reference spectrum can be pre-calculated and stored, its computing time can be
negligible. Hence the most computing time is consumed on FFTs. For FFT

B. Zhou et al.

137

operation with length of P (P is of 2’s integer power), the butterfly computation
number is (P/2)log2P.

Assuming the transmitting signal pulse width is Tp, bandwidth is B, sampling
frequency is fs, maximum range is RM, the duration of receiving channel is TP + 2RM/c.
Accordingly, receiving channel sampling points P is 2M, among which,
M = ⌈ log 2((Tp + 2RM/c)fs)⌉. In conclusion, the calculation time of multi-channel
pulse compression Tpc can be expressed as

T N T P P PT N M P Tpc d B M d M= ⋅ +() ≈ ⋅ +()⋅ ⋅0 5 0 5 12. log .

(10.11)

in which, TB and TM are the computing times of butterfly computation and complex
multiplication computation, respectively. It is commonly assumed that TB ≈ TM.

Take America “pave paws” AN/FPS-115 radar as an example, it is of maximum
pulse width 16 ms; maximum signal width 1 MHz, max effective distance 6,000 km.
If two-channel I/O sampling frequency is 4 MHz, according to (10.11), the range
gate number is 262,144. Combined with (10.10), Nd = 5,418 Doppler processing
channels are needed. M = ⌈ log 2((Tp + 2RM/c)fs)⌉ = 18. If the time interval of the pulse
compression operation is 10 ms, the total complex multiplication number is:

N M Pd ⋅ +()⋅ ⋅ = ⋅ ⋅ +()⋅ ⋅ ≈ ×0 5 1 5 5418 0 5 18 1 2 5 7 1 1018 9. . .

(10.12)

This is divided by 10 ms to get the computing requirement 7.1 TFLOPS. If fully
using DSP to build the processing system, the cost and difficulty will be huge. In
fact, putting the commercial products in use has become priority consideration in
long range warning radar and other high performance radar processing systems
(Derham et al. 2003).

Fig. 10.1 Costas signal multi-channel pulse compression diagram

10 Large-Scale Pulse Compression for Costas Signal with GPGPU

138

10.3 GPGPU Processing System Design

10.3.1 CPU/GPGPU Heterogeneous Supercomputing Platform

Heterogeneous computing platform is a processing system built by different types
of processors. With the development of integrated circuit technique, the traditional
model of main frequency and single processing core improvement has been con-
strained by the physical limit. Multi-core systems become the new trend. Commonly,
heterogeneous system is made of general processing cores and massive parallel
computing cores: the former complete the task of logic control, data management,
and user interaction and so on; the latter is responsible for processing high density
computing tasks. In signal processing field, FPGA and DSP mixed structure build
the typical heterogeneous systems. However, CPU-GPU heterogeneous system has
superior processing capacity, while keeping scalability and flexibility, which leads
to a very nice signal processing platform. Figure 10.2 shows the latest hardware
architecture of CPU/GPGPU heterogeneous system. CPU and GPGPU are con-
nected through high-speed inter-node bus within the same node and then intercon-
nected by network between nodes. CPU is responsible for task flow control, data
distribution, preprocessing and part of computing, while GPGPU handles the heavy
computing tasks, such as FFT or matrix operations.

10.3.2 Software Task Flow Design

Through the analysis of Chap. 2, we can map the Fig. 10.1 into hardware as shown
in Fig. 10.3.

Firstly, CPU main controller starts overall processing. It transfers data to GPGPU.
GPGPU then launches many hardware threads, executes the parallel algorithms, and

Fig. 10.2 Hardware architecture of heterogeneous CPU/GPGPU processing system

B. Zhou et al.

http://dx.doi.org/10.1007/978-1-4614-8745-6_2

139

then transfers the final results back. Different channels processing are independent,
so effective loop unrolling could be obtained. The data flow diagram is presented in
Fig. 10.4. The “S” state means startup, which prepares all the needed resources and
data. “M” state means point-to-point multiplication and “I” state performs IFFT
operation. The “A” state computes the maximum. Every branch could be organized
into a GPU stream, which could be scheduled and optimized with overlapping data
transfer and execution. Finally, all the results are paralleled reduced to “E” end
state, where only one result is produced.

Fig. 10.3 Flow graph of task

Fig. 10.4 Task flow graph unfolding and stream processing model

10 Large-Scale Pulse Compression for Costas Signal with GPGPU

140

10.4 Experimental Verification and Analysis

10.4.1 Experimental Environment and Parameters

Experiments imitate “pave paws” radar parameters. The tests are performed on an
8-GPU accelerated computing server. Table 10.1 lists the test parameters; Table 10.2
lists software configuration; Table 10.3 contains hardware specifications. Through
GPGPU, the hardware provides a peak computing power of more than 8TFlops.

Table 10.1 Test parameter Parameter Value

Carrier frequency 4 GHz
Band width 1 MHz
Sampling frequency 4 MHz
Maximum distance 6,000 km
Pulse width 16 ms
Doppler channel 5,418
Range gate unit number 262,144

Table 10.2 Test software
environment

Software Version

Operating system Redhat Linux AS 5.5 64bit
NVIDIA CUDA library version 3.2
NVCC compiler 3.2 64bit
cuFFT library 3.2 64bit
cuBlas library 3.2 64bit
gcc compiler 4.3

Table 10.3 Hardware
environment

Hardware Type Value

CPU Intel Nehalem 552 2.27 GHz 2
Memory DDR3 1,033 MHz 36GB
GPU accelerator Tesla C2050 448-core 1
GPU accelerator Tesla C1060 240-core 8
GPU video memory GDDR3 32GB
GPU video memory GDDR5 3GB

B. Zhou et al.

141

10.4.2 Experimental Results

 1. Threads configuration
Firstly, the effects on different concurrent threads within single device are tested.
For comparison, relative throughput is used and expressed as the processing time
divided by 105. The speedup against the Intel Nehalem E5520 CPU is shown in
Fig. 10.5. For the Tesla C1060 series, because each internal execution unit can
simultaneously launch 32 hardware threads, maximum throughput is achieved
after every block has 32 threads. For C2050, this number is 64. The tests show
that when fully occupancy is achieved, it is not always true to get better perfor-
mance with more hardware threads.

 2. Speedup and Efficiency
Figure 10.6 shows the speedup and efficiency obtained from using different
number of accelerators. More accelerators lead to larger speedup. But the growth
rate of speedup slows down. The efficiency reduces with the number of accelera-
tor increases. It means that other overheads (such as scheduling, queuing and
communication) increase with the system scale, which requires more optimiza-
tion. But the final efficiency reaches more than 50 %.

 3. Final Results
A high-end dual-slot server is taken as test bed. It has two Intel Nehalem CPU @
2.27 GHz with totally eight cores. One Tesla C1060 can get over 150 times
speedup. When using 8 C1060, 574× speedup is achieved. The processing time
is reduced to nearly 0.5 s. But if real-time processing is required, over ten times
computing power of this platform is required. The real-time processing makes a
great challenge (Table 10.4).

Fig. 10.5 Block internal threads number effect on performance

10 Large-Scale Pulse Compression for Costas Signal with GPGPU

142

10.5 Summary and Future Work

In this paper, through the analysis of large-scale pulse compression for Costas sig-
nal, a parallel processing scheme is proposed. The same parameters with America
“pave paws” radar are used and tested on heterogeneous CPU/GPGPU computing
system. The experimental results show that, the GPGPU accelerated system has
supercomputing capacity, and can get higher performance speedup than general
CPU system. The test system with 8 GPGPU accelerators can obtain 574 times
speedup and processing time of 514.3 ms. It is proved that GPGPU accelerated
system can effectively deal with large-scale radar signal processing tasks. The
future work includes fully real-time processing system design, scheduling optimiza-
tion and the distributed system design.

Acknowledgements Dr. Bin ZHOU works as the chief scientist of marine remote sensing lab at
Institute of Oceanographic Instrumentation, Shandong Academy of Sciences. This work is sup-
ported by the institute funding.

Table 10.4 Final
optimization results

Platform Execution time (s) Speedup

CPU Intel Nehalem 295.24 1
GPU C1060 1.956 151
GPU C2050 1.265 233
GPU C1060*2 1.036 285
GPU C1060*4 0.719 411
GPU C1060*8 0.514 574

Fig. 10.6 Speedup and efficiency varies with accelerators number

B. Zhou et al.

143

References

Blom, M., Follo, P., 2005, VHF SAR image formation implemented on a GPU. Geoscience
and Remote Sensing Symposium. IGARSS ’05. Proceedings. 2005 IEEE International,
pp: 3352 – 3356.

David L, Mark H, Naga G, et al., 2006, GPGPU: general-purpose computation on graphics hard-
ware. Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 208.

Derham, T., Woodbridge, K., Griffiths, H., et al., 2003, The design and development of an experi-
mental netted radar system. Proceedings of the International Radar Conference, 293–298.

Hongxun, H., Xiuchun, W., 2004, Application of Parallel Computer to Modern Radar Signal
Processing. Morden Radar, 26(3):25–32.

Jiang Jinghong, J., Li, Y., Huizhi, C., Weiming, H., 2009, Feasibility research of real-time signal
processing system using GPU. Technical Acoustics, 28(2):129–131.

Karasev P.A., Campbell D.P., Richards M.A., 2007, Obtaining a 35x Speedup in 2D Phase
Unwrapping Using Commodity Graphics Processors. IEEE Radar Conference, Boston, MA,
574–578.

Mccool, M.D., 2007, Signal Processing and General-Purpose Computing and GPUs [Exploratory
DSP]. IEEE Signal Processing Magazine, 24(3):109–114.

NVIDIA Tesla C2050 Specification, 2010, http://www.nvidia.com/object/product_tesla_C2050_
C2070_us.html.

Victor W.L., Changkyu, Chhugani, J., et al., 2010, Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. ISCA ’10 Proceedings of the 37th
annual international symposium on Computer architecture, 38(3):451–460.

Qiang, W., Qing, G., Xuwen, L., 2009, Hardware design of image information processor based on
ADSP-TS201 DSPs. 2009 IEEE International Workshop on Imaging Systems and Techniques,
155–158.

Wenhua, M., Yixian, Y., 1996, Frequency hopping encoding technique in morden radar. Morden
Radar, 18(5):82–88.

Zhiguang, X., Yingmin, W., Zhiqiang, L., 2010, Analysis of detective performance of sonar target
based on Gostas signal. Audio Engineering, 34(3):49–53.

10 Large-Scale Pulse Compression for Costas Signal with GPGPU

http://www.nvidia.com/object/product_tesla_C2050_C2070_us.html
http://www.nvidia.com/object/product_tesla_C2050_C2070_us.html

145X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_11, © Springer Science+Business Media New York 2013

 Abstract Iterative Self-Organizing Data Analysis Technique Algorithm
(ISODATA) is commonly used for unsupervised image classifi cation in remote
sensing applications. Although parallelized approaches were explored, previous
works mostly utilized the power of CPU clusters. We deploy the many-cores in the
Graphics Processing Unit (GPU) to accelerate the unsupervised image classifi cation
over GPU. The proposed solution is scalable and satisfactory to speed up the com-
putational time, while the quality of classifi cation is almost the same as that from
ERDAS, a well known remote sensing software.

 Keywords ISODATA • Unsupervised image classifi cation • Graphics processing
unit (GPU)

11.1 Introduction

 Graphics Processing Unit (GPU) was traditionally built for the purpose of effi -
ciently manipulating computer graphics. For this reason, image processing has been
a primer application that benefi t from the marvelous parallelism inherent in graphic
processing. Today’s GPU has been rapidly evolved to support General-Purpose
computing [thus called GPGPU] though many-core processors capable of intensive
computation and data throughput thus a modern GPU enables massively parallel
computing and is not limited only to process computer graphics. By simultaneously

 Chapter 11
 Parallelizing ISODATA Algorithm for
Unsupervised Image Classifi cation on GPU

 Fei Ye and Xuan Shi

 F. Ye
 School of Computational Science and Engineering, Georgia Institute of Technology ,
 266 Ferst Dr. NW , Atlanta , GA 30332 , USA
 e-mail: yefei@gatech.edu

 X. Shi (*)
 Department of Geosciences , University of Arkansas , Fayetteville , AR 72701 , USA
 e-mail: xuanshi@uark.edu

146

executing tens of thousands of threads from hundreds of specialized GPU cores,
GPGPU can even achieve high performance computing over the desktop and laptop
computers (Pankratius et al. 2011).

 While satellite imagery and aerial photo are increasingly available, processing
quantum size of data needs effi cient solutions to complete the tasks of image analy-
sis. Accelerating the computation to improve the performance of image processing
and analytics will directly benefi t the societal needs. Among a variety of image
processing modules, unsupervised image classifi cation has been fundamental but
computation intensive. This paper introduces the implementation of a classic algo-
rithm for unsupervised image classifi cation over the GPU. Iterative Self-Organizing
Data Analysis Technique Algorithm (ISODATA) is a heuristic procedure that auto-
matically classifi es the image through multiple iterations for optimization. In com-
parison to the same function implemented over a commercial software product, the
solution on the GPU can achieve a speedup up to 40+ depending on the number of
classes. In face of the big data challenge in image processing, deploying multiple
GPUs over hybrid computer architectures and systems will be the future direction
to achieve both scalability and high performance.

11.2 Parallelizing ISODADA for Unsupervised
Image Classifi cation

 ISODATA is one of the most frequently used algorithms for unsupervised image
classifi cation algorithms in remote sensing applications. It is also the default algo-
rithm for unsupervised image classifi cation in ERDAS, a well-known remote sens-
ing software. This section will fi rst summarize the ISODATA algorithm and its
implementation in sequential procedures. Implementing the parallelized solution on
CUDA/GPU is followed by a brief review of previous works on parallelized unsu-
pervised image classifi cation.

11.2.1 ISODATA in Sequential Procedure

 In general, ISODATA can be implemented in three steps: (1) calculate the initial
mean value of each class; (2) classify each pixel to the nearest class; and (3) calcu-
late the new class means based on all pixels in one class. The second and third steps
are repeated until the change between two iterations is small enough.

 To perform ISODATA classifi cation, several parameters need to be specifi ed in
Table 11.1 .

 In ERDAS and this pilot study, the initial class means is derived by the statistics
of original data sets, although the initial means can be assigned arbitrarily.
Accordingly, the initial class means are evenly distributed in a multi-dimensional

F. Ye and X. Shi

147

feature space along a vector between two points (μ 1 − σ 1 , μ 2 − σ 2 , …, μ k − σ k) and
(μ 1 + σ 1 , μ 2 + σ 2 , …, μ k + σ k) in the fi rst iteration, where μ i denotes the mean of the i th
band (i = 1 , 2 , …, k) and k is total number of bands in the dataset, and σ i is the stan-
dard deviation of band i . In the following iterations, when the maximum number of
iterations (M) and the convergence threshold (T) are not reached, the means of all
classes are recalculated, causing the class means to shift in the feature space. During
the iterative calculations, each pixel is compared to the new class means and
assigned to the nearest class mean.

 During the process of classifi cation, each class is labeled as a certain type of
object. The change between two consecutive iterations can be either the percentage
of pixels whose class labels have been changed between two iterations, or the accu-
mulated distances of the class means that have been changed in the feature space
between two iterations. The iterative process will be terminated until the conver-
gence threshold (T) is reached or exceeded, which means the change between two
iterations is small enough, that is, the maximum percentage of pixels whose class
values that are unchanged between iterations. Classic ISODATA algorithm also
includes merging and splitting of classes between iterations for refi nements. Since
ERDAS is used to compare the quality and performance of the proposed solution,
this paper does not consider the refi nement issues since ERDAS does not include
these features.

 The sequential ISODATA algorithm can be described in the following
pseudo-code:

 p rocedure label := ISODATA (data , C , M , N , T)
 /* data is the input image dataset */
 /* C is the number of classes to be created */
 /* M is the maximum number of iterations */
 /* N is the number of pixels */
 /* T is the convergence threshold*/
 /* label is the returned array containing the label of
class to which each pixel is assigned */
 begin

 Calculate mean of the value of the pixels in the data-
set (mean);
 Calculate standard deviation of the value of the pixels
in the dataset (dev);
 Calculate initial means of C classes (class_mean);

 Table 11.1 Prerequisites for ISODATA implementation

 Symbol Defi nition

 C The number of classes to be created
 T Convergence threshold which is the maximum percentage of pixels whose class values

are allowed to be unchanged between iterations
 M The maximum number of iterations to be performed

11 Parallelizing ISODATA Algorithm for Unsupervised Image…

148

 m := 0; /* m is the counter of the iteration */
 con := 0; /* con is convergence*/
 while m < M AND con < T

 Update class means based on the pixels in one class
(class_mean);
 Calculate the labels (label);
 Count the labels of each class (count);
 Calculate the convergence (con);
 Update the previous labels (pre_label);
 m := m + 1;

 end while
 end ISODATA

 In summary, the procedures will be iterated until the two preconditions (m < M
and con < T) are satisfi ed.

11.2.2 Previous Works on Parallelized Unsupervised
Image Classifi cation

 Obviously when more iterations are executed, it takes longer time to complete the
classifi cation tasks. In order to gain speedup, several approaches were reported by
deploying MapReduce and clusters of computers or workstations via Message
Passing Interface (MPI).

 MapReduce (Dean et al. 2004) is a programming model introduced by Google in
2004 to support distributed computing on large data sets on clusters of computers.
Zhao et al. (2009) proposed a parallel k-means clustering algorithm based on
MapReduce. It experimented on 1GB, 2GB, 4GB and 8GB datasets on cluster of 1,
2, 3 and 4 nodes. The limitation of this research is the resulted speedup is around 3
which might not be very satisfactory. Inspired by the this work, Lv et al. (2010)
implemented a parallel K-means clustering of remote sensing images based on
MapReduce which has a speedup of around 10.

 Li et al. developed a parallel ISODATA algorithm in MapReduce (Li et al. 2010).
Its environment setting was 1 NameNode and 8 DataNodes. The NameNode used 8
2.0GHz CPUs and 4GB RAM. Each DataNode used 8 2.0GHz CPUs and 8GB
RAM. All nodes shared 20TB drive space and were connected by a gigabit switch.
Its experiment was performed on images of data size of 1GB, 2GB, 4GB and 8GB
respectively. It did show some execution time speedup. But the limitation of this
research is that it didn’t take into account the condition of only 1 node. The speedup
of 8 nodes versus 4 nodes is roughly 5. In general, converting binary image data into
ASCII text fi les to use MapReduce seems not an optimized and practical solution in
remote sensing applications.

 Message Passing Interface (MPI) (Snir et al. 1995) is a standard for parallel
 programs running on computer clusters or supercomputers by sending and receiving
messages to communicate between computing processes. Riccardi and Schow

F. Ye and X. Shi

149

implemented ISODATA on a vector computer and it ran about ten times faster than
its corresponding scalar version (Riccardi 1988). However, this old fashioned super-
computer is no longer competitive. In another research, a distributed ISODATA
(D-ISODATA) algorithm was designed and developed (Dhodhi et al. 1999). It pro-
posed a supervisor-worker mode to use a supervisor node to coordinate other work-
ers nodes over a network of workstations. The basic idea of this approach is to
distribute time-consuming part of the algorithm among workers. It took calculation
of the Euclidean distance as the time-consuming part. By dividing image pixels into
smaller and equal sized blocks, each worker as well as the supervisor is responsible
for computation of pixels in its own assigned block. When running on a network of
eight workstations, it resulted in an execution time speedup of less than 8.

11.2.3 ISODATA by CUDA/GPU

 Compute Unifi ed Device Architecture (CUDA) is NVIDIA’s general-purpose paral-
lel computing architecture. Here, the Central Processing Unit (CPU) is referred to
as a host, while an individual GPU is referred to as a device. The kernel is the func-
tion that runs on the device and is executed by an array of threads, while all threads
can run the same code concurrently. Each thread has a unique thread identifi er and
can be accessed via the threadIdx variable. Thread identifi ers (threadIDs) can be
defi ned in one, two or three dimensions. Furthermore, threads can be grouped into
thread blocks and grids. Threads in same thread block can cooperate with each other
via shared memory, atomic operations or barrier synchronization. Threads in differ-
ent blocks cannot cooperate. A user-defi ned number of threads can be organized in
a block with a maximum number of 512 threads. Similarly a group of thread blocks
can be organized into a grid in which each thread may be executed independently
and thus may execute in parallel.

 In this pilot study, the GPU is a NVIDIA GeForce GTS 450, which has 192
cores. According to the technical specifi cation, this GPU has 24 streaming multi-
processors (SM). Each SM has eight CUDA cores called as streaming processor
(SP). In this GTS 450 with a compute capability of 2.1, up to 1,024 threads can be
assigned to each SM. Thus a maximum of 1,024 × 24 = 24,576 threads can run con-
currently in parallel on the physical GPU, although the maximum sizes of each
dimension of a block is 512 × 512 × 64 and the maximum sizes of each dimension of
a grid is 65,535 × 65,535 × 1. If the number of threads is more than the maximum
number [24,576], the remaining threads have to wait.

 In the CUDA programming model, ISODATA algorithm can be parallelized in
many procedures documented in the above sequential pseudo-code: (1) The compu-
tational procedures of the mean value and standard deviation can be parallelized
since they are basically the summation over all pixels in the whole dataset; (2) After
the fi rst iteration, the computation of class means can also be parallelized since it
consists of summations over pixels in each class; (3) The labeling process, which is
assigning class labels to all pixels, can be carried out in parallel; (4) Operations for

11 Parallelizing ISODATA Algorithm for Unsupervised Image…

150

counting the labels in each class and the calculation of convergence can be parallelized;
and (5) the procedures for updating class labels of the previous iteration can be eas-
ily parallelized.

 These fi ve processes can be parallelized and are highlighted in the following
pseudo-code that can be conveniently implemented in CUDA programming in
which the computing kernels have ample amount of parallelism:

 procedure label := ISODATA_CUDA (data , C , M , N , T)
 /* data is the input image dataset */
 /* C is the number of classes to be created */
 /* M is the maximum number of iterations */
 /* N is the number of pixels */
 /* T is the convergence threshold*/
 /* label is the returned array containing the label of
class to which each pixel is assigned */

 begin
 /* calculate mean of the dataset – parallelized pro-
cess (1) */
 mean := PARALLEL_REDUCTION_MEAN (data);
 mean := mean / N ;
 /* calculate standard deviation of the dataset – par-
allelized process (1) */
 dev := PARALLEL_REDUCTION_DEV (data);
 dev := dev / N ;
 /* calculate initial means of C classes */
 step := dev * 2 / (C - 1);
 for i := 0 to C - 1

 class_mean [i] := mean – dev + i * step ;
 end for
 m := 0; /* m is the counter of the iteration */
 con := 0; /* con is convergence*/
 while m < M AND con < T

 /* update class means based on pixels in one class –
 parallelized process (2) */
 if m != 0 then

 for i := 0 to C - 1
 class_mean [i] := PARALLEL_REDUCTION_CLASSMEAN

(data , label , i);
 class_mean [i] := class_mean / count [i];

 end for
 end if

 /* calculate labels – parallelized process (3) */
 label := PARALLEL_CAL_LABEL (data , class_mean);
 /* count labels of each class – parallelized process
(4) */

F. Ye and X. Shi

151

 for i := 0 to C - 1
 count [i] := PARALLEL_REDUCTION_COUNT (label , i);

 end for
 /* calculate convergence – parallelized process (4) */
 if m != 0 then

 con := PARALLEL_REDUCTION_SAME (pre_label , label);
 con := con / N ;

 end if
 /* update previous labels – parallelized process (5) */
 pre_label := PARALLEL_PRELABEL (label);
 m := m + 1;
 end while

 end ISODATA_CUDA

 All CUDA functions in the above pseudo code are marked with PARALLEL at
the beginning, such as PARALLEL_REDUCTION_MEAN . Below is a CUDA code
segment that implements this function to calculate the mean value of the dataset.

 // PARALLEL_REDUCTION_MEAN is a reduction (summation)
function on the GPU for calculating the mean
 // value of the input image dataset. Below is a description
about the input and output variables used in this
function.
 // Input: fDataset_d - data stored in device memory
 // sdata_d - memory used to store intermediate results
 // nNumData - number of data (data size)
 // nNumBands - number of bands (layers)
 // k - current band number for which we are calculating
the sum
 // Output: odata_d - the output of each block in device
memory
 __global__ void reduce_mean(fl oat *fDataset_d, fl oat
*odata_d, fl oat *sdata_d, int nNumData, int k)
 {

 unsigned int tid = threadIdx.x; // get thread indux
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

// get global index
 sdata_d[i] = (i < nNumData) ? (fDataset_d[k*nNumData +

i]) : 0.0; // load data from device memory
 __syncthreads();
 // do reduction in global mem
 for(unsigned int s = blockDim.x / 2; s > 0; s >>= 1) {

 if (tid < s) {
 sdata_d[i] += sdata_d[i + s];

 }
 __syncthreads();

 }

11 Parallelizing ISODATA Algorithm for Unsupervised Image…

152

 // write result for this block to global mem
 if (tid == 0) odata_d[blockIdx.x] = sdata_d[blockIdx.x*

blockDim.x + 0];
 }

 In CUDA, a function using the __global__ declaration specifi er is called a kernel
or device function and runs on the device. A function using __host__ declaration
specifi er is called the host function and runs on the host. Parallel portions of a pro-
gram are executed on the device as kernels. The keywords “threadIdx.x”,
“blockIdx.x”, and “blockDim.x” in the above CUDA code refer to the index of a
thread in a certain thread block that has a maximum of three dimensions. Since all
threads execute the same kernel function, CUDA API offers such a mechanism to
distinguish each thread by a unique identifi er through a combination of the thread
identifi er, the block identifi er, and the dimension of the block. Thus a thread can be
referred by blockIdx.x*blockDim.x + threadIdx.x.

 Since the host (CPU) and devices (GPU) have separate memory spaces, in order
to execute a kernel function on a device, the CUDA program needs to fi rst allocate
the memory for both input and output data on the device and transfer the data from
the host to devices. Similarly, after the execution is completed on the device, the
output data needs to be transferred from the device back to the host and free up the
device memory that is no longer used.

 Given the example in the above mean calculation, before this function is imple-
mented, the data [named as fDataset] on the CPU memory has to be transferred to
the GPU memory [named as fDataset_d] through the following CUDA API
 cudaMemcpy . The enumeration variable cudaMemcpyHostToDevice denotes that
this operation transfer the data from the host memory to the device memory by
assigning the size of the memory as sizeof(fl oat)*nXSize*nYSize*nNumBands . Here
on the device memory, the data type is fl oat. The size is the number of pixel rows
times the number of pixel columns times the number of the bands, while such infor-
mation is derived from GDAL API when reading the input image.

 cudaMemcpy (fDataset_d, fDataset, sizeof(fl oat)*nXSize*
nYSize*nNumBands, cudaMemcpyHostToDevice);

 Given the other example, after the classifi cation is completed, the output data
[named as nLabel_d] on the device memory has to be transferred back to the host
memory [named as nLabel] through the CUDA API cudaMemcpy . The enumeration
variable cudaMemcpyDeviceToHost denotes that this operation transfer the data
from the device memory to the host memory by assigning the data type as unsigned
char and the data size as sizeof(unsigned char)*nXSize*nYSize .

 cudaMemcpy(nLabel, nLabel_d, sizeof(unsigned
char)*nXSize*nYSize, cudaMemcpyDeviceToHost);

 To invoke the above kernel function from the CPU to calculate the mean value of
the input image dataset, CUDA API has a special syntax to specifi es the dimensions
of the block per grid and the dimensions of each thread block between <<< and
>>>, such as

F. Ye and X. Shi

153

 reduce_mean <<< blocksPerGrid, threadsPerBlock >>>
(fDataset_d, odata_d, sdata_d, nNumData, k);

 This kernel function is called from a host function to do the summation of pixel
values in each band of the image data by utilizing such a series of threads for paral-
lel computing.

11.3 Comparison of the Quality and Performance
of CUDA Program

 The proposed algorithm is implemented in CUDA C program and compiled in
Visual Studio 2010 with CUDA Toolkit 3.2. The program runs on a single desktop
computer, in which the CPU is Intel Pentium 4 CPU with 3.00 GHz main frequency,
while the RAM size is 4 GB. The GPU on this machine is GeForce GTS 450 which
has 192 cores with the Fermi architecture and has 1 GB global memory. The image
data used in this pilot study, dc_ikonos_subset.img, can be found from ERDAS data
DVD. The fi le size is 89.6 MB and has three bands. The image has 15.6 million
pixels which are 4,293 pixels in width and 3,263 pixels in height. Data I/O stream-
ing is implemented via GDAL APIs. Figure 11.1 displays the source image, while
Fig. 11.2 displays the result of classifi cation.

 The proposed solution of parallelized ISODATA on GPU is evaluated by com-
paring both the quality and the performance to the same unsupervised classifi cation
function in ERDAS 2010. Table 11.2 describes the convergence values derived from
CUDA and ERDAS in the case when the image is classifi ed into fi ve classes (C = 5).
Table 11.3 displays the number of pixels in each class in the case when the image is
classifi ed into fi ve classes (C = 5).

 The performance is evaluated by the execution time of ISODATA by CUDA and
by ERDAS when the image is classifi ed into different classes. The speedup can be
defi ned as Speedup = Te/Tc , where T c is the execution time by CUDA and T e is the
execution time by ERDAS. In this experiment, T c includes the time of reading image
fi le, classifi cation, and writing output result. T e also includes fi le reading, classifi ca-
tion and writing output result but does not include the time of signature accumula-
tion. Table 11.4 is a comparison of the execution time and number of iterations by
CUDA and ERDAS when the image is classifi ed into different classes.

11.4 Conclusion

 This paper proposed a method to parallelize ISODATA algorithm for unsupervised
image classifi cation using CUDA on the GPU. The parallel execution of ISODATA
on GPU achieves much better performance while the classifi cation results have
desirable quality. Thus the high performance computing power of GPUs is verifi ed
in processing remote sensing image data. How to deal with the memory limit on the
GPU to process large scale image data remains a signifi cant research challenge in

11 Parallelizing ISODATA Algorithm for Unsupervised Image…

154

 Fig. 11.2 The result of classifi cation

 Fig. 11.1 The source image

155

 Table 11.2 Comparison of the convergence value of each iteration
by CUDA and ERDAS (C = 5)

 Iteration
 Convergence value
by CUDA

 Convergence value
by ERDAS

 1 0.000 0.000
 2 0.910 0.910
 3 0.943 0.943
 4 0.948 0.948
 5 0.950 0.950
 6 0.951 >=0.95

 Table 11.3 Comparison of number of pixels in each class by
CUDA and ERDAS (C = 5)

 Class
 # of pixels in each class
by CUDA

 # of pixels in each
class by ERDAS

 1 3,808,329 3,808,329
 2 4,038,247 4,038,270
 3 4,303,206 4,303,184
 4 2,907,823 2,907,825
 5 495,934 495,931

 Table 11.4 Performance comparison

 Classes

 CUDA ERDAS

 Speedup times (Te/Tc) Time (Tc) # of iteration Time (Te) # of iteration

 3 3.602 4 109.2 4 30
 4 4.513 6 188.6 6 42
 5 5.430 6 227.4 6 42
 6 4.274 4 149.6 4 35
 7 4.692 4 111.7 4 24
 8 5.316 4 82.5 4 16
 9 4.966 4 60.6 4 12

 10 5.260 4 54.7 4 10
 11 6.062 4 52.1 4 9
 12 5.577 4 45.8 4 8
 13 7.868 4 48.6 4 6
 14 6.005 4 50.5 4 8
 15 6.306 4 49.2 4 8
 20 15.079 9 120.8 9 8

the future. Currently, GPU for supercomputing use may have up to 6 GB memory
which might not be suffi cient enough to process large image data that has high reso-
lution and large fi le size that is over several gigabytes, considering the memory
needs to handle intermediate outcomes from parallelized computation. Therefore, a
memory swapping strategy needs to be explored when a single GPU is used.

11 Parallelizing ISODATA Algorithm for Unsupervised Image…

156

Alternatively large image data can be processed in parallel on CUDA by distributing
the data and computation onto multiple GPUs. This solution can be implemented on
supercomputers which have multiple GPUs and CPUs using MPI to schedule tasks
between CPUs and GPUs.

 Acknowledgements This research was supported partially by the National Science Foundation
through the award OCI-1047916.

 References

 Bo Li; Hui Zhao; ZhenHua Lv. 2010. Parallel ISODATA Clustering of Remote Sensing Images
Based on MapReduce. In Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2010 International Conference on , pp. 380-383, 10–12 Oct. 2010. doi: 10.1109/
CyberC.2010.75 .

 Dean, Jeffrey and Ghemawat, Sanjay. 2004. MapReduce: Simplifi ed Data Processing on Large
Clusters. OSDI’04: Sixth Symposium on Operating System Design and Implementation, 2004.
 http://labs.google.com/papers/mapreduce-osdi04.pdf

 Dhodhi M.K., Saghri J.A., Ahmad I., Ul-Mustafa R. 1999. D-ISODATA: A Distributed Algorithm
for Unsupervised Classifi cation of Remotely Sensed Data on Network of Workstations. Journal
of Parallel and Distributed Computing, 59 (2), pp. 280–301.

 Riccardi, Schow. 1988. Adaptation of the ISODATA clustering algorithm for vector supercom-
puter execution. Proceedings of the 1988 ACM/IEEE conference on Supercomputing vol. 2,
1988 pp.141–150

 Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack. 1995. MPI: The
Complete Reference. MIT Press Cambridge.

 Victor Pankratius, Wolfram Schulte, and Kurt Keutzer. 2011. Guest Editors’ Introduction:
Parallelism on the Desktop. IEEE Software, vol. 28, no. 1, pp. 14–16, Jan./Feb. 2011.

 Weizhong Zhao, Huifang Ma, Qing He. 2009. Parallel K-Means Clustering Based on MapReduce.
CloudCom ’09 Proceedings of the 1st International Conference on Cloud Computing.

 Zhenhua Lv, Yingjie Hu , Haidong Zhong, Jianping Wu, Bo Li, Hui Zhao. 2010. Parallel K-means
clustering of remote sensing images based on mapreduce. Proceedings of the 2010 interna-
tional conference on Web information systems and mining, October 23–24, 2010, Sanya, China

F. Ye and X. Shi

http://dx.doi.org/10.1109/CyberC.2010.75
http://dx.doi.org/10.1109/CyberC.2010.75
http://labs.google.com/papers/mapreduce-osdi04.pdf

157X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_12, © Springer Science+Business Media New York 2013

Abstract Image segmentation is a very important step in many GIS applications.
Mean shift is an advanced and versatile technique for clustering-based segmenta-
tion, and is favored in many cases because it is non-parametric. However, mean shift
is very computationally intensive compared with other simple methods such as
k-means. In this work, we present a hybrid design of mean shift algorithm on a
computer platform consisting of both CPUs and GPUs. By taking advantages of the
massive parallelism and the advanced memory hierarchy on Nvidia’s Fermi GPU
and Kepler GPU, the hybrid design achieves a 30 ×speedup compared with the pure
CPU implementation on the filtering step when dealing with images bigger than
4096 ×4096 pixels.

12.1 Introduction

Segmentation is the process of partitioning a digital image into multiple segments
to simplify and/or change the representation of an image into a fashion that is more
meaningful and easier to analyze. Image segmentation is typically used to locate
objects and boundaries (lines, curves, etc.) in images (Shapiro and Stockman 2001).
The result of image segmentation is a set of segments that collectively cover the
entire image, or a set of contours extracted from the image. Many methods have
been designed to achieve the image segmentation goal, such as thresholding, clus-
tering, edge detection, region growing among others.

In this work, we focus on accelerating the mean shift image segmentation algo-
rithm on hybrid CPU/GPU computer platforms. Mean shift was introduced by
Fukunaga and Hostetler (1975) and has been extended to be applicable in other

Chapter 12
Accelerating Mean Shift Segmentation
Algorithm on Hybrid CPU/GPU Platforms

Miaoqing Huang, Liang Men, and Chenggang Lai

M. Huang (*) • L. Men • C. Lai
University of Arkansas, 1125 W Maple St, Fayetteville, AR 72701, USA
e-mail: mqhuang@uark.edu

158

fields like Computer Vision (Cheng 1995; Comaniciu and Meer 2002). Mean shift
is a versatile non-parametric iterative algorithm that has better robustness than other
clustering-based image segmentation algorithms such as k-means (Kanungo
et al. 2002). However, mean shift algorithm is computationally intensive. It’s time
complexity is O(T n2), where T is the number of iterations for processing each data
point and n is the total number of data points in the data set, e.g., the number of
pixels in the image. As it is shown in Sect. 12.4, the processing time of a large image
becomes prohibitively long. This prompts the use of graphics processing units to
accelerate the most computationally intensive part of the mean shift algorithm.
Although the processing of an individual pixel is an iterative process, which is suit-
able to execute on CPU, the processing of individual pixels is independent. The
processing independence between individual pixels provides a good chance to
improve the performance by concurrently processing hundreds of pixels on mas-
sively parallel GPUs.

The remainder of the text is organized as follows. In Sect. 12.2 the mean shift
algorithm is briefly introduced. The implementation detail is described in Sect. 12.3.
Section 12.4 presents the results, and the conclusions are given in Sect. 12.5.

12.2 Mean Shift Algorithm

Mean shift considers feature space as an empirical probability density function.
If the input is a set of points then mean shift considers them as sampled from the
underlying probability density function. If denser regions are present in the feature
space, then they correspond to the local maxima of the probability density function.
For each data point, mean shift associates it with the nearby peak of the data set’s
probability density function. For each data point, mean shift defines a window
around it and computes the mean of the data point. Then it shifts the center of the
window to the mean and repeats the algorithm till it converges. After each iteration,
we can consider that the window shifts to a more denser region of the data set. At
the high level, we can specify mean shift as follows:

 1. Define a window around each data point;
 2. Compute the mean of data within the window;
 3. Shift the center of the window to the mean and repeat till convergence, i.e., the

center of the window no longer shifts.

This process is illustrated in Fig. 12.1 in which particles are used as an example.
The original position of the window is shown in Fig. 12.1a. The geometric center of
the window (i.e., G C1) does not overlap with the center of the mass (i.e., M C1).
Therefore, the geometric center of the window is shifted to the center of the mass
(i.e., G C2 ← M C1) in Fig. 12.1b. Then a new center of the mass is calculated (i.e.,
M C2). If the geometric center and the mass center do not overlap, the geometric
center will keep shifting until these two centers overlap (i.e., G Cn = M Cn), as shown
in Fig. 12.1d.

M. Huang et al.

159

In image segmentation, each pixel is dealt with as a data point. The coordinate of
the pixel is initially set as the geometric center of the window. Then a center of pixel
intensity is calculated using the pixels within the window. The geometric center of
the window will shift to intensify center of the window until these two centers over-
lap, i.e., the convergence is reached.

12.3 Hybrid Design of Mean Shift Image Segmentation

The pure software implementation of the mean shift algorithm is adapted from the
open source code developed by the Robust Image Understanding Lab at Rutgers
University and is based on papers (Christoudias et al. 2002; Comaniciu and
Meer 2002). Given an image, the segmentation consists of two major steps. In the
first step, the original image is filtered using mean shift method. Two parameters are

Step 1.

a b

c d

Step 2.

Step 3. Step 4: converge.

Search
window

Center of
mass

Search
window

Center of
mass

Search
window

Center of
mass

Search
window

Center of
mass

Mean Shift
vector

Mean Shift
vector

Mean Shift
vector

Fig. 12.1 The steps in mean shift algorithm using mass as an example (a) Step 1. (b) Step 2. (c)
Step 3. (d) Step 4: converge

12 Accelerating Mean Shift Segmentation Algorithm…

160

needed, the spatial bandwidth (hs) and the range bandwidth (hr). The hs defines the
radius of the window used in mean shift. The filtered image consists of numerous
regions. In the second step, i.e., region fusion, three stages are carried out in
sequence, including connecting regions, applying transitive closure, and pruning
spurious regions.

In our experiments, it is found that the first step, i.e., mean shift filtering, takes
significantly longer time than the second step when the image size is smaller than
2,048 ×2,048, therefore the mean shift filtering step is executed on GPU. In the three
stages in region fusion, the stage of connecting regions is very short. Therefore it is
implemented on CPU. The computation times for both the stage of applying transi-
tive closure and the stage of pruning spurious regions significantly increase when
the image size is bigger than 2,048 ×2,048. In these two stages, the parts with good
parallelism are implemented on GPU and the others are executed on CPU. The
detailed distribution of computation is shown in Table 12.1.

Given a pixel Pa in the source image and a search window with radius hs, the
mean shift process is to repeatedly calculate the mean shift vector Mh

� ���
 (shown in

Fig. 12.1) until the squared magnitude of Mh
� ���

, i.e., � �Mh
� ���� 2

, is less than a threshold
ε. The number of elements in vector Mh

� ���
 can be 5 if dealing with color images, i.e.,

the change of x coordinate (Δ x), the change of y coordinate (Δ y), and the changes
of intensities in RGB (Δ R, Δ G, Δ B). For grayscale image, only three elements are
needed for Mh

� ���
, i.e., Δ x, Δ y, and Δ I. If we use S to denote the window centered at

Pa, and use s to denote a pixel within the window, Δ x can be calculated as (12.1), in
which Is, xs, and ws are the intensity, the x coordinate, and the weight of pixel Ps,
respectively. The weight of each pixel in an image is specified by a predefined
weight map.

∆x K
I I

h
w x K x

if x

if xs S

s a

r
s s=

−

=
<
≥

∈

∑ , () where
1 1

0 1

� �
� �

(12.1)

 Δ y and Δ I are computed in a similar way. A new center of the window Pb is calcu-
lated as P P Mhb a

��� ��� � ���
¬ + . Then the mean shift vector to Pb is calculated until the

center of the window no longer shifts.
The above computation in the mean shift filtering on a pixel is implemented in a

GPU kernel function. When the kernel is launched, each pixel in the source image
is handled by a GPU thread. If the size of image is m ×n, m ×n threads are created
and scheduled to execute on hundreds of processing cores on a GPU device.

Table 12.1 Hybrid design of mean shift segmentation on CPU/GPU platforms

Step Platform

Mean shift filtering GPU
Region fusion Stage 1: Connecting regions CPU

Stage 2: Applying transitive closure Part on CPU, part on GPU
Stage 3: Pruning spurious regions Part on CPU, part on GPU

M. Huang et al.

161

12.4 Experiments and Results

The platform is a hybrid workstation consisting of an Intel Core i7-930 quad-core
CPU, a Tesla C2075 Fermi GPU (NVIDIA Corporation 2009), and a Tesla K20
Kepler GPU (NVIDIA Corporation 2012). The system has a main memory of 18
GB and runs Ubuntu 10.04.2. The GPU implementation of the mean shift filtering
process contains only one GPU kernel function, which is responsible for generating
one pixel in the filtered image. Therefore the number of GPU threads is same to the
number of pixels in the original image. These threads are grouped into 1- dimensional
thread blocks, each of which contains 128 threads. Due to the improved memory
hierarchy on Fermi/Kepler GPU architectures, typical performance optimization
techniques, such as memory coalescing and memory prefetching (Stratton
et al. 2012), are not implemented in the mean shift filtering.

We first applied two versions of the mean shift segmentation algorithm on
the image shown in Fig. 12.2a, which is an airborne image of a water dam.

Fig. 12.2 Image segmentation on an airborne image using mean shift (a) Original image (1,164
×945). (b) Filtered image. (c) Segmented image. (d) Region boundaries

12 Accelerating Mean Shift Segmentation Algorithm…

162

These two versions include the pure software implementation and Fermi GPU
implementation. Figure 12.2b shows the image after applying mean shift filtering.
It can be seen that the filtered image has been segmented into numerous regions
with unnecessary details. For example, different parts of a hill may belong to differ-
ent regions. After applying the region fusion step, which is carried on CPU for this
image, many neighbor regions are fused together, providing a more meaningful
segmentation as shown in Fig. 12.2c. The corresponding boundaries between the
regions are shown in Fig. 12.2d. For this airborne image, the software implementa-
tion of the mean shift filtering process takes 176.24 s, while the Fermi GPU imple-
mentation takes only 11.44 s, achieving a 15 × speedup.

In order to further demonstrate the benefit of the hybrid implementation, we
tested three implementations of mean shift filtering on spaceborne globe images of
various resolutions. The globe image with resolution 640 × 640 and its segmenta-
tion are shown in Fig. 12.3. The clouds are difficult to be distinguished from the
oceans and the lands in grayscale images. However, as shown in Fig. 12.3b, mean
shift algorithm is capable of providing a meaningful segmentation by separating
lands, oceans, and clouds. The performance of mean shift filtering is shown in
Table 12.2. It can be found that the performance improvement climbs as the size of
image increases until hitting a plateau around 20 × for Fermi GPU and 30 × for
Kepler GPU, respectively. When the image resolution increases, more GPU thread
blocks are available to be scheduled to stream multiprocessors, resulting in a higher
GPU occupancy and a better performance. Once the occupancy is maximized, add-
ing more thread blocks cannot further increase the processing throughput.

It is noticed that the time spent on the region fusion step is negligible compared
with the mean shift filtering step when the image size is smaller than 2,048 × 2,048.

Fig. 12.3 Image segmentation on a spaceborne image using mean shift (a) Original image (640
×640). (b) Segmented image

M. Huang et al.

163

Ta
bl

e
12

.2

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t o

n
m

ea
n

sh
if

te
r

fil
te

ri
ng

Im
ag

e
Pr

oc
es

si
ng

 ti
m

e
(s

)
Im

ag
e

Pr
oc

es
si

ng
 ti

m
e

(s
)

si
ze

C
PU

Fe
rm

i
K

ep
le

r
Sp

ee
du

p
si

ze
C

PU
Fe

rm
i

K
ep

le
r

Sp
ee

du
p

24
0

×
24

0
 4

.6
7

0.
42

0.
36

11
.1

2
/ 1

2.
97

1,
02

4
×

1,
02

4
86

.7
0

5.
35

3.
44

16
.2

1
/ 2

5.
20

32
0

×
32

0
 8

.2
5

0.
62

0.
52

13
.3

1
/ 1

5.
87

2,
04

8
×

2,
04

8
35

4.
91

18
.0

1
13

.3
7

19
.7

1
/ 2

6.
55

50
0

×
50

0
19

.0
6

1.
37

0.
98

13
.9

1
/ 1

9.
45

4,
09

6
×

4,
09

6
13

21
.7

6
61

.5
9

40
.9

0
21

.4
6

/ 3
2.

32
64

0
×

64
0

31
.2

6
2.

19
1.

51
14

.2
7

/ 2
0.

70
8,

00
0

×
8,

00
0

40
46

.1
5

20
2.

5
13

9.
05

19
.9

8
/ 2

9.
10

12 Accelerating Mean Shift Segmentation Algorithm…

164

However, the complexity of the region fusion increases exponentially when the
image becomes larger, i.e., > 2,048 ×2,048 as shown in Table 12.3. The degree of
parallelism in the region fusion step is much lower than the degree of parallelism
in the filtering step. In the hybrid implementation on CPU/GPU platform, part of
both Stage 2 and Stage 3 is implemented on Kepler GPU. For Stage 2, the hybrid
implementation is still able to achieve more than 2 folds of speedup. The speedup
on Stage 3 is very marginal.

One other very popular image segmentation algorithm is k-means, which is
extremely faster compared with mean shift algorithm. The k-means algorithm is an
iterative technique that is used to partition an image into k clusters. The basic algo-
rithm is as follows.

 1. Pick k cluster centers, either randomly or based on some heuristic;
 2. Assign each pixel in the image to the cluster that minimizes the distance between

the pixel and the cluster center;
 3. Re-compute the cluster centers by averaging all of the pixels in the cluster;
 4. Repeat steps 2 and 3 until convergence is reached (e.g., no pixels change

clusters).

The quality of the solution depends on the initial set of clusters and the value of k.
The most common form of the algorithm uses an iterative refinement heuristic
known as Lloyd’s algorithm (Lloyd 1982). Lloyd’s algorithm starts by partitioning
the input points into k initial sets, either at random or using some heuristic data.
It then calculates the mean point, or centroid, of each set. It constructs a new partition
by associating each point with the closest centroid. Then the centroids are recalcu-
lated for the new clusters, and algorithm repeated by alternate application of these
two steps until convergence, which is obtained when the points no longer switch
clusters (or alternatively centroids are no longer changed). We implemented the
Lloyd’s algorithm and applied on the globe image as the results shown in Fig. 12.4.
It can be seen that k-means algorithm does not produce quite meaningful segmenta-
tion when dealing with complex remote sensing images.

12.5 Conclusions

Mean shift is a robust and non-parametric image segmentation algorithm that is
capable of generating better results than other algorithms such as k-means. However,
it is a computationally intensive process taking hours to deal with large images.
Thanks to the intrinsic parallelism of mean shift algorithm, GPU can be leveraged
to accelerate its performance. In this work, the mean shift filtering step is imple-
mented on GPU. The experimental results on a Tesla K20 GPU demonstrate a 30 ×
speedup compared with an Intel i7-930 CPU for the mean shift filtering step. The
hybrid implementation of the region fusion step, however, achieves a much smaller
speedup due to a lower degree of parallelism in this step.

M. Huang et al.

165

Ta
bl

e
12

.3

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t o

n
th

e
m

ea
n

sh
if

te
r

se
gm

en
ta

tio
n

al
go

ri
th

m

C
PU

 im
pl

em
en

ta
tio

n
tim

e
(s

)
C

PU
/G

PU
 (

K
ep

le
r)

 im
pl

em
en

ta
tio

n
tim

e
(s

)

Sp
ee

du
p

Im
ag

e
Fi

lte
ri

ng
R

eg
io

n
fu

si
on

To
ta

l

Im
ag

e
Fi

lte
ri

ng
R

eg
io

n
fu

si
on

To
ta

l
si

ze
St

ag
e

1
St

ag
e

2
St

ag
e

3
si

ze
St

ag
e

1
St

ag
e

2
St

ag
e

3

24
0×

24
0

4.
67

0.
01

0.
01

0.
02

4.
71

24
0×

24
0

0.
36

0.
01

0.
01

0.
02

0.
40

11
.7

8
32

0×
32

0
8.

25
0.

01
0.

03
0.

03
8.

32
32

0×
32

0
0.

52
0.

01
0.

03
0.

02
0.

58
14

.3
4

50
0×

50
0

19
.0

6
0.

01
0.

12
0.

11
19

.3
0

50
0×

50
0

0.
98

0.
01

0.
10

0.
10

1.
19

16
.2

2
64

0×
64

0
31

.2
6

0.
03

0.
33

0.
18

31
.8

0
64

0×
64

0
1.

51
0.

03
0.

19
0.

13
1.

86
17

.1
0

1,
02

4×
1,

02
4

86
.7

0
0.

07
0.

83
0.

67
88

.2
7

1,
02

4×
1,

02
4

3.
44

0.
07

0.
40

0.
58

4.
49

19
.6

6
2,

04
8×

2,
04

8
35

4.
91

0.
27

18
.8

4
10

.4
1

38
4.

43
2,

04
8×

2,
04

8
13

.3
7

0.
27

9.
49

9.
32

32
.4

5
11

.8
5

4,
09

6×
4,

09
6

1,
32

1.
76

1.
26

85
3.

35
57

6.
80

2,
75

3.
17

4,
09

6×
4,

09
6

40
.9

0
1.

26
33

5.
95

51
7.

58
89

5.
69

3.
07

8,
00

0×
8,

00
0

4,
04

6.
15

4.
80

12
,7

25
.0

9
8,

39
1.

56
25

,1
67

.6
0

8,
00

0×
8,

00
0

13
9.

05
4.

80
5,

38
5.

40
7,

73
0.

77
13

,2
60

.0
2

1.
90

12 Accelerating Mean Shift Segmentation Algorithm…

166

Fig. 12.4 Segmentation using k-means (a) k = 5. (b) k = 10

Acknowledgements Both Fermi GPU and Kepler GPU used in this work were donated by Nvidia
Corporation. The authors would like to thank Dr. John Gauch for the discussion and sharing the
source code of k-means algorithm.

References

Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Machine
Intell 17(8):790–799

Christoudias CM, Georgescu B, Meer P (2002) Synergism in low level vision. In: Proc. 16th
International Conference on Pattern Recognition (ICPR’02), pp 150–155

Comaniciu D, Meer P (2002) Mean shift: A robust approach towards feature space analysis. IEEE
Trans Pattern Anal Machine Intell 24(5):603–619

Fukunaga K, Hostetler LD (1975) The estimation of the gradient of a density function, with appli-
cations in pattern recognition. IEEE Trans Inform Theory 21(1):32–40

Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient
k-means clustering algorithm: Analysis and implementation. IEEE Trans Pattern Anal Machine
Intell 24(5):881–892

Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28(2):129–137
NVIDIA Corporation (2009) NVIDIA’s next generation CUDA compute architecture: Fermi.

White paper V1.1, available online on http://www.nvidia.com
NVIDIA Corporation (2012) NVIDIA’s next generation CUDA compute architecture: Kepler

gk110. White paper V1.0, available online on http://www.nvidia.com
Shapiro LG, Stockman GC (2001) Computer Vision. Prentice Hall, Upper Saddle River, New

Jersey
Stratton J, Anssari N, Rodrigues C, Sung IJ, Obeid N, Chang L, Liu GD, Hwu W (2012)

Optimization and architecture effects on GPU computing workload performance. In: Proc.
2012 Innovative Parallel Computing: Foundations & Applications of GPU, Manycore, and
Heterogeneous Systems (InPar2012), pp 1–10

M. Huang et al.

http://www.nvidia.com
http://www.nvidia.com

 Part V
 Multi-core Technology for Geospatial

Services

169X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_13, © Springer Science+Business Media New York 2013

 Abstract Cluster-based caching systems can accelerate users’ access to large-scale
network services. One of the diffi cult issues for realizing a cluster-based caching
system, however, is how to confi gure numerous parameters, to make cluster-based
caching servers cooperate with each other, to share cached data, and thus obtain
optimal performance from the system. This paper analyzes tile access characteris-
tics in networked geographic information systems and simulates cluster-based cach-
ing system through a trace-driven experiment based on the log fi les from the digital
earth. Using a collaborative approach between cluster-based caching servers, each
parameter in a cluster-based caching system is quantitatively analyzed to obtain a
global optimal parameter combination. This research provides a reference for the
realization of a cluster-based caching system in networked geographic information
applications, to improve the quality of service in networked geographic information
systems.

 Keywords Cluster • Cache • Replacement • Network GIS

13.1 Introduction

 Networked geographic information systems (NGISs) are increasingly popular, with
huge numbers of user visits. Scalable network services are needed to meet the
increasing quantity of service demands being placed on NGISs. An effi cient cach-
ing strategy can greatly shorten the response time for users’ access requests, to

 Chapter 13
 Simulation and Analysis of Cluster-Based
Caching Replacement Based on Temporal
and Spatial Locality of Tiles Access

 Rui Li , Xinxing Wang , Jingjing Wang , and Huayi Wu

 R. Li (*) • X. Wang • J. Wang • H. Wu
 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing , Wuhan University , Wuhan , Hubei 430079 , P.R. China
 e-mail: RuiLi@whu.edu.cn

170

accelerate the extraction of spatial data (Li et al. 2012). A cache replacement
 algorithm is the core for caching, and directly affects the utilization of the cache
memory system and the effi ciency of the cache strategy. A cluster-based framework
can overcome insuffi cient processing ability and limited I/O bandwidth of a single
server (Chism and Enos 2006 ; Barroso et al. 2003). Such an algorithm can improve
the reliability and availability of a NGIS service. Therefore, by applying cluster
technology to a cache system and the deployment of cached data, better availability
and scalability for cache systems are possible, providing better NGISs services in
spite of many concurrent requests for spatial data.

 Cluster-based cache technology has the following advantages: First, caching can
accelerate the data extraction process. A cluster-based cache system caches the data
requested by a large number of users, reducing not only the read request times for
data storage servers, but also the traffi c load. Second, the cluster-based cache serv-
ers can cooperate with each other and the localized data in the GIS application
server, thereby further saving I/O bandwidth for the data storage servers. Finally,
since the cluster-based caches are in the GIS application servers, the cached data
can be shared by a large-scale user population (Li et al. 2005) to reduce the response
time when users are roaming and to improve the interactivity and quality of service
(Wu et al. 2011 ; Yang et al. 2005a). However, one of the challenging issues is how
to confi gure many parameters in a cluster-based caching system. A good confi gure
can make cluster-based servers cooperate with each other and share cached data,
thereby obtaining the optimal performance of the cluster-based caching system.
Google Earth, NASA’s World Wind, and Microsoft Virtual Earth all use a high per-
formance cluster-based caching system as the system access entrance to achieve
good service performance. However, the technological details of cluster-based
caching systems have not been published.

 Access requests for tiles have temporal and spatial locality (Podlipnig 2003 ;
Baentsch et al. 1997). For example, when a user is interested in a region for a
 sustained period of time, he will access the spatial data for this region repeatedly.
This refl ects the temporal locality characteristic of tile access. When a user is
accessing the spatial data of a region, the user will also be interested in the spatial
data immediately around that region. The accessed area will therefore expand to the
adjacent area of the current region. This also refl ects the spatial locality characteris-
tic when accessing tiles. However, cache size is limited. When it is fi lled by the tiles
that have been visited and then saved, the latest visited tile cannot be cached. Thus
it must delete the data with the “lower value for caching” according to a cache
replacement strategy and cache the newly defi ned hotspot data.

 If the cache replacement algorithm considers the behavior of users, analyzes the
correlation between the current request and the previous requests, and leaves tiles
with higher correlation for access in the cache, the cache hit rate and utilization of
the cache will be improved, while replacing tiles that are not likely to be accessed in
the near future. Many classic replacement algorithms can do it well, such as Least
Frequently Used (LFU) (Dan and Towsley 1990) replacement algorithm, Least
Recently Used (LRU) replacement algorithm, First in First out (FIFO) replacement
algorithm (Lee et al. 1999), the replacement algorithm based on the specifi c access
content, or transmission time cost, such as size, the weights of the last access time

R. Li et al.

171

(Cao and Irani 1997), etc. Google and NASA have used the LRU replacement
 algorithm in their caching system (O’Neil 1993 ; Boulos 2005 ; Bell et al. 2007).
All these algorithms did not involve multi-server cluster-based caching or a collab-
orative approach for a cluster-based caching system. A cache replacement algorithm
is the soul of a cluster-based caching system (Yang et al. 2005b ; Barish and Obraczke
 2000). The confi guration of the parameters in a cluster-based caching system is
critical for whole system performance. Network simulation effi ciently obtains the
optimal global parameters for cluster-based caching and secures valuable experi-
mental results to focus future research.

 This paper discusses the cache replacement algorithm and its relation to the
 temporal and spatial locality characteristics of tile access. Using a trace-driven
experiment based on the server log fi les from the digital earth system developed by
the authors, this paper simulates cluster-based caching and a collaborative approach
between cluster-based caching servers. By quantitatively analyzing each parameter
of the cluster-based caching system, it obtains the global optimal parameter combi-
nation, and provides a measurable reference for deploying cluster-based servers in
NGISs applications meeting the quality of service needs for NGISs.

13.2 Caching Replacement and the Temporal
and Spatial Locality of Tile Access

 Localized accessed hotspots exist since 80 % of requests target only 20 % of the
data (Wang 2009). The locality characteristics in tile access are featured as temporal
locality and spatial locality. Many caching replacement strategies consider the
locality characteristics to yield better performance of services.

13.2.1 The Temporal Locality of Tile Access

 Temporal locality implies that recently accessed tile has a higher probability of
being accessed again in the future (Wang 2009). The interval between current time
and the user last access time to a tile is a representation of temporal locality. LRU is
a typical algorithm based on temporal locality. It considers that access probability is
inversely proportional to the interval between the current time and the user last
access time. The probability can be stated as formula (13.1). p is the access proba-
bility, ∆t stands for the interval time, and ← is a proportional symbol.

 p t t current System Time last Access Time← = −1 / Δ Δ, . (13.1)

 LRU refl ects the short-term popularity of the accesses to tiles (Lee et al. 1999).
When ranking the access probability of a tile according to LRU by descending
order, the tiles which have been accessed recently are placed on the top rank and the
tiles which have been accessed at an earlier time are places on the lower rank.
The tiles are ranked by the last access time.

13 Simulation and Analysis of Cluster-Based Caching Replacement…

172

 The well-known First In First Out (FIFO) algorithm where tile access probability
is inversely proportional to the interval between current time and the fi rst access
time. It can be expressed as:

 p t t current System Time first Access Time← = −1 / , .Δ Δ (13.2)

 The tiles are ranked by the fi rst access time according to FIFO.

13.2.2 The Spatial Locality of Tile Access

 Spatial locality of tile access implies that the tiles tend to be accessed at adjacent
time if they have a spatially adjacent relationship (Wang 2009). If a tile is accessed
at a given time, the tiles around it, including the tile itself, have a higher probability
of being accessed again at the next time. The space distance between the currently-
accessed tile and the tiles in the storage system is a representation of spatial locality.
LFU is the typical algorithm, based on a power law (Wu et al. 2011), using the long-
term popularity of tile access. Another tile access probability is proportional to the
tile access frequency. The probability can be expressed as:

 p total Access Times← . (13.3)

 LFU uses the access times to measure the importance of spatial data. The more
access times the more importance of the spatial data. LFU takes into account the hot
distribution of user’s requests to a certain extent.

13.3 Simulation and Analysis

 The aim of the simulation is to obtain the optimal combinations of parameters, to
improve the cache hit rate and thus reduce the response time in a cluster-based cach-
ing system. First, the user’s requests were recorded in detail for high-resolution
raster data as log fi les. Then, these log fi les were input into the trace-driven simula-
tion experiments.

13.3.1 Cluster-Based Caching Replacement Model

 Cluster-based caching technology is a combination technology of cluster technol-
ogy and caching technology. It unites these cache servers with cluster technology,
providing a transparent and accelerated service for users’ access. Figure 13.1 is a
simple cluster-based caching system model.

R. Li et al.

173

 In this model, users send requests over the Internet. When the requests arrive at
the load distributor, the load distributor chooses a server to respond to the requests
according to the load balancing strategy.

 Based on this model, the collaboration workfl ow of cluster-base caching system
was designed as shown in Fig. 13.2 . The load balancing server distributes requests
to one of the servers in the cluster-based caching system, according to a load balanc-
ing strategy. If a requested tile was hit, namely the tile in the selected server, it is
termed a “local hit”. If the requested tile was hit on other server of the cluster-based
caching system, it is termed a “cluster hit”. If it does not hit anywhere in the whole
cluster-based caching system, it is termed “cluster missing”. For requests with a
cluster missing status, we start the cache replacement algorithm if the number of
current caching tiles exceeds the replacement threshold value, and replace the tiles
with the lower caching value by the tiles with the higher caching value. It maintains
a reasonable number of the cached tiles, to improve the performance of the cluster-
based caching system.

 Figure 13.2 shows the key parameters in cluster-based cooperative caching sys-
tem include the load balancing algorithm, the neighbor selection algorithm, then
cache size, the number of cache servers, the replacement threshold value, and the
cache replacement algorithm. There has been a great deal of scientifi c research
about load balancing and neighbor selection algorithms, however, and a detailed
analysis of these algorithms is beyond the scope of this paper. Thus, the classic
round-robin algorithm is effi cient for load balancing was used in the simulation.

Cache server

Cache server

Cache server

requests

user

user

user

Distributor

Cluster-based
Caching

Storage server

Storage server

Storage server

Cluster-based
storage

requests

requests

 Fig. 13.1 Simple cluster-based caching system model

13 Simulation and Analysis of Cluster-Based Caching Replacement…

174

Thus, the simulation only addresses the size of the cache, the number of cache
 servers, the replacement threshold value and the cache replacement algorithm, and
their impact on the cooperation workfl ow of the cluster-based caching system. The
replacement threshold value is the threshold value for the size of current cached tiles
when it needs start the cache replacement algorithm.

13.3.2 Simulation Design

 The paper describes a simulation of the cluster-based caching system in a network-
ing simulation environment. Twelve Linux servers were connected via a 1,000 Mbps
switch to form a fast Ethernet. The number of user access requests arriving on the
cluster-based caching system in a unit time is smooth, with no aftereffect, and dem-
onstrate universality. A Poisson distribution was used to describe users’ access
requests arriving. The process-time of a request on a server is memory-less,
described by a negative exponential distribution. The cache replacement algorithms,

 Fig. 13.2 Collaboration workfl ow of cluster-base caching system

R. Li et al.

175

such as FIFO, LRU and LFU, are classical algorithms, and can effectively refl ect the
locality of the access to tiles. Thus, the experiments in this paper use them as a
parameter for the cache replacement algorithms and compare their performance.
Based on the cluster-based caching collaborative model, a load dispatcher with suf-
fi cient processing power is placed at the entrance to the cluster system to prevent
forwarding bottlenecks. The cache hit rate gives an indication of the accuracy of the
cache policy. In the NGISs, an important objective of a clustered cache system is to
reduce the average request response time, making user navigation faster and
smoother. Therefore, the simulation takes the cache hit rate and the average request
response time as indicators of the performance of a cluster cache system. The simu-
lation confi gurations are as follows (Table 13.1).

13.3.3 Simulation of Cache Size

 There are two parameters that affect the cache hit ratio. One is the cache size and the
other is replacement threshold value. To simplify the experiment, this paper will
fi rst consider these two parameters on a single-server. The relative size of the cache
expresses the size of cache, which is the ratio of the cache size to the total size for
the tiles requested.

 The replacement threshold value was set to 100 %, starting the cache replace-
ment algorithm when the cache space is used up. Then, the relationship between
relative size of the cache and the cache hit rate can be examined. FIFO, LRU, and
LFU simulation results are compared, while the relative cache size is increased from
10 to 100 % by step of 5 %.

 As described in Fig. 13.3 , the hit rate of FIFO is lower than the LRU and LFU hit
rates. The cache hit rates for LRU and LFU are almost the same. This is because
LRU considers only the temporal locality characteristic of tile access while LFU
considers only the spatial locality characteristic. However FIFO does not take into
account either temporal or spatial locality, nor considers other characteristics of tile
access patterns. LRU and LFU can improve the cache hit rate, if the temporal or

 Table 13.1 Simulation confi gurations

 Clients 360 clients with 6 fast Ethernet connections, connected by an Ethernet switch
with 64 ports. The number of tile requests are 100,000.

 Load-balancing
server

 A Linux Server with Intel Xeon E5620 2.40 GHz, quadruple-core processor,
8GB RAM. The request arrival rate for tile access obeys a Poisson
distribution.

 Cluster servers 12 Linux servers with Intel Xeon E5620 2.40 GHz, quadruple-core CPU, 8GB
RAM, connected via a 1,000 Mbps switch to form a fast Ethernet. The
server time for processing of a request obeys a negative exponential
distribution.

 Spatial data 90 m of global SRTM terrain data, size 128 × 128, and 30 m of global Landsat7
satellite image data, size 512 × 512.

13 Simulation and Analysis of Cluster-Based Caching Replacement…

176

spatial locality of tile access is considered and the increasing levels of both methods
in cache hit rate are similar. When the relative size of the cache increases, the value
of the cache hit rate has an upward trend, but the rate of increase gradually
slows down.

 Figure 13.4 describes the growth rate of the cache hit rate when the relative cache
size increases. f(x) stands for the cache hit rate when relative size of the cache is x.

Growth rate 1= +() − () ()f x f x f x/

 (13.4)

 As illustrated in Fig. 13.4 , when the relative size of the cache is increases, the
growth rate of the hit rate gradually reduces. When the relative size of the cache is
smaller (15–30 %), the cache hit rate increases quickly with an increasing cache
size. When the relative size of the cache is 35–50 %, the cache hit rate increases
slowly, while the growth rate is almost 5 %. When the relative size of the cache is
more than 60 %, the growth rate remains steady at almost 2 %. This indicates that
enlarging the cache size has a little impact on caching performance when the rela-
tive size of the cache is more than 60 %.

13.3.4 Simulation of Replacement Threshold Value

 Section 13.3.3 shows that the cluster based server’s cache is wasted when the rela-
tive cache size is increased to over 60 %. The simulation selects 60 % as the optimal
value for the relative cache to study the replacement threshold value parameter.

 Fig. 13.3 Cache hit rate for different relative sizes of the cache

R. Li et al.

177

The value of replacement threshold ranges from 50 to 100 %, and the step is 5 %.
Three different replacement algorithms were simulated.

 Figure 13.5 shows that the cache hit rate increases monotonically when the
replacement threshold value increases, the higher the replacement threshold value,
the higher the cache hit rate.

 Fig. 13.4 Growth rate of cache hit rates for different relative sizes of the cache

0.55
50% 100%95%90%

FIFO
LRU
LFU

85%80%75%
value of replacement threshold

70%65%60%55%

0.65

0.75

0.85

0.8

0.7

0.6

ca
ch

e
hi

t r
at

e

 Fig. 13.5 Cache hit rate for the value of replacement threshold

13 Simulation and Analysis of Cluster-Based Caching Replacement…

178

 However, two types of data, tiles requested and pre-fetched tiles, are usually
stored in the cache. Cache prefetching is an active cache technology. It prefetches
tiles that are likely to be accessed in advance and saves them to cache. The higher
the value of the replacement threshold, the smaller the space left for pre-fetched
tiles. Considering the correlation of caching technology and prefetching technol-
ogy, their impacts on the cache hit rate, and the fact that a cache hit rate is propor-
tional to the value of replacement threshold, 95 % was chosen as the best value for
a replacement threshold. The missed cache hit rate caused by the remaining 5 %
cache can be made up with a pre-fetching strategy.

13.3.5 Simulation of a Cluster-Based Caching System

 The simulation obtained the optimal parameters for the size of cache and the value
of replacement threshold, the optimal size of the cache is 60 % and the optimal
value of the replacement threshold is 95 %. The values of the two parameters were
then used simulate the cluster-based caching system, to get the optimal value of the
number of servers.

 It can be seen from the workfl ow of the cluster-based caching system that the
cache hit rate includes the local hit rate and cluster hit rate. Using the cache hit
rate as an indication of the performance of the cluster-based caching system will
make the simulation complicated, because it needs to record both the local hit
rate and the cluster hit rate. Therefore, this paper counts the cache miss-rate in
this simulation, namely the cache miss-rate on both the local server and cluster-
based servers.

 The size of the cache in a cluster-based caching system is the ratio of the sum
of the cache size of all cluster-based caching servers to the total size for the tiles
requested. As described in Figs. 13.6 and 13.7 , when the number of cluster-
based caching servers increases, the cache miss-rate and the average response
time decline gradually; the reliability of services will be enhanced. On the other
hand, this cluster- based caching system will need more hardware. Figures 13.6
and 13.7 also show that the cache miss-rate and the average response time
become steady when the number of servers is greater than 16. Therefore, it is
useless to add servers to the cluster-based caching system when there are
already 16 servers.

 From the simulations above, we obtained a group of values of optimal param-
eters: the value of the relative cache space is 60 %, the value of replacement
threshold is 95 %, and the number of the cluster-based servers is 16. If cache
replacement algorithms follow the characteristics of the user access pattern for
tiles, and consider the temporal and spatial locality of tile access, they will yield
better performance.

R. Li et al.

 Fig. 13.6 Cache miss-rate for cluster-based servers

 Fig. 13.7 Average tile request response times for cluster-based servers

180

13.4 Conclusions

 Cluster-based cache replacement is a combination of cluster and cache technologies
and a cache replacement algorithm. The key to cluster-based caching systems is to
confi gure the many parameters in cluster-based systems, before services are
 provided, so as to get a higher hit rate and accelerate the responses to tile requests.
Simulation results demonstrate that the optimal set of parameters as obtained from
the simulation can improve the utilization effi ciency of cluster-based systems to
yield better performance. In future research, both the temporal and spatial locality
of tile access patterns will be considered, toward a better cache replacement
 algorithm to gradually reduce the request response time.

 Acknowledgements This work was supported by the National Natural Science Foundation of
China (Grant No. 41071248), Project supported by the Foundation for Innovative Research Groups
of the National Natural Science Foundation of China (Grant No. 41021061), and the LIESMARS
Special Research Funding.

 References

 Baentsch M, Baun L, Molter G, Rothkugel S, Sturm P (1997) World wide web caching: the
application- level view of the Internet. IEEE.COMM.M 35:170–178

 Barish G, Obraczke K (2000) World wide web caching: Trends and techniques. IEEE.COMM.M.
38:178–184

 Barroso L A, Dean J, Holzle, U (2003) Web search for a planet: The Google cluster architecture.
IEEE micro 3(2):22–28

 Bell D G, Kuehnel F, Maxwell C, Kim R, Kasraie K, Gaskins T, Hogan P, Coughlan J (2007)
NASA World Wind: Opensource GIS for Mission Operations. In: 22nd Asian Conference on
Remote Sensing. IEEE Press, Big Sky, MT, pp 1–9

 Boulos M NK (2005) Web GIS in practice III: creating a simple interactive map of England’s
strategic health Authorities using Google maps API, Google earth KML, and MSN virtual
earth map control. INT.J.HE.GEO 4(22)

 Cao P, Irani S (1997) Cost-aware WWW proxy caching algorithms. In: Proceedings of the USENIX
Symposium on Internet Technologies and Systems. USENIX Press, California, pp 193–206

 Chism F, Enos J (2006) Running a Top-500 benchmark on a windows compute cluster server
 cluster. In: ACM New York, NY, 2006

 Dan A, Towsley D (1990) An approximate analysis of the LRU and FIFO buffer replacement
schemes. ACM.SIGMETRICS. P.E. R. 18:143–152

 Lee D, Choi J, Kim J H, Noh S H, Min S L, Cho Y, Kim C S (1999) On the existence of a spectrum
of policies that subsumes the least recently used (LRU) and least frequently used (LFU) poli-
cies. ACM.SIGMETRICS. P.E. R. 27:134–143

 Li R, Guo R, Xu, Z Q, Feng W (2012) A prefetching model based on access popularity for geospa-
tial data in a cluster-based caching system. International Journal of Geographical Information
Science 26 (10):1831–1844

 Li H S, Zhu X Y, Li J W, Chen J (2005) Research on Spatial Data Distribution Cache Technology
in WebGIS. Geomatics and Information Science of Wuhan University 30(12):1092–1095

 O’Neil E J, O’Neil P E, Weikum G (1993) The LRU-K page replacement algorithm for database
disk buffering. In: Proceedings of the 1993 ACM SIGMOD international conference on
Management of data. ACM New York, NY, USA, pp 297–306

R. Li et al.

181

 Podlipnig S, BÖSZÖRMENYI L (2003) A survey of web cache replacement strategies.
ACM.C.SURV 35:374–398

 Wu H Y, Li Z L, Zhang H W, Yang C, Shen S (2011) Monitoring and Evaluating Web Map Service
Resources for Optimizing Map Composition over the Internet to Support Decision Making.
Computers and Geosciences, 37:485–494

 Wang H (2009) Research on distributed load balancing and cache technologies for multimedia
networked GIS. Ph.D., Dissertation of Wuhan University

 Yang C, Wong D W, Yang R, Kafatos M (2005) Performance-improving Techniques in Web-based
GIS. INT.J.GEO.I. 19:319–342

13 Simulation and Analysis of Cluster-Based Caching Replacement…

183X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_14, © Springer Science+Business Media New York 2013

 Abstract As an Open Geospatial Consortium (OGC) standard, the Web Map Tile
Service (WMTS) has been widely used in many fi elds to fast and conveniently share
geospatial information with the public. In practice, however, when client users
increase dramatically, the torrent of requests places overwhelming pressure on the
web server where WMTS is deployed, causing signifi cant response delay and seri-
ous performance degradation. The architecture of high-concurrency WMTS there-
fore must be extended to automatically scale with the requests of client users. This
paper introduces a prototype for such a high-concurrency WMTS, built totally with
open-source software, including Nginx, GeoWebCache, and MongoDB. Several
experiments were carried out to test the effi ciency and scalability of the proposed
high-concurrency WMTS using Web-bench. The results illustrate that our WMTS
can function well even when enduring more than 30,000 concurrent connections.
The request throughput of the proposed high-concurrency WMTS is twice as large
as that of traditional WMTS deployed in a single web server.

 Keywords WMTS • Web service • High-concurrency • Reverse proxy • NoSQL

14.1 Introduction

 To improve the performance of Web Map Service (WMS), OGC released a standard
for tile-based web mapping, Web Map Tile Service (WMTS) (Open Geospatial
Consortium Inc. 2010). Instead of creating a new image for each request, the WMTS

 Chapter 14
 A High-Concurrency Web Map Tile Service
Built with Open-Source Software

 Huayi Wu , Xuefeng Guan , Tianming Liu , Lan You , and Zhenqiang Li

 H. Wu • X. Guan (*) • T. Liu • L. You • Z. Li
 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing , Wuhan University , 129 Luoyu Road , Wuhan 430079 , P.R. China
 e-mail: wuhuayi@whu.edu.cn; guanxuefeng@whu.edu.cn

184

returns small pre-generated images to users. WMTS provides an open-source alter-
native to proprietary web mapping services, such as Google Maps, Microsoft Bing
Maps.

 A Web Map Tile Service (WMTS) is a fast, convenient, and highly effi cient way
to share geographic information with the public over the internet. Because of its
effi ciency, WMTS has been increasingly adopted in many applications, such as pub-
lic service, navigation, location-based services, and social networking. However,
there still exist problems with WMTS scalability in practice, i.e. how WMTS serv-
ers handle massive concurrent requests. When client users increase dramatically, the
torrent of client requests places overwhelming pressure on the web server where the
WMTS is deployed, causing signifi cant response delay and serious performance
degradation of the WMTS. Therefore, it is of great necessity to study the architec-
ture for high-concurrency WMTS that can automatically scale with the requests of
client users.

 This paper fi lls the gap in the research concerning high concurrency WMTS and
implements a prototype system on a high performance cluster (HPC). The high-
concurrency WMTS is totally built with open-source software, including MongoDB,
GeoWebCache, and Nginx. In this prototype system, MongoDB is used to store
massive tile images in the HPC; GeoWebCache is customized to publish WMTS
service and process requests from users; Nginx acts as a powerful load balancer to
client requests. Several experiments were carried out to evaluate the scalability of
the proposed high-concurrency WMTS with Web-bench. The results illustrate that
our WMTS can function even when enduring more than 30,000 concurrent connec-
tions. The request throughput of this proposed high-concurrency WMTS is twice as
large as that of a traditional WMTS deployed in a single web server.

 The rest of the paper is arranged as the following. Section 14.2 presents related
work on the research of high-concurrency system and web service benchmarks.
Section 14.3 explains the architecture of high-concurrency WMTS. Section 14.4
presents the results and discussion of the experiments. Section 14.5 closes the paper
with our conclusions.

14.2 Related Work

14.2.1 High-Concurrency Web Services

 High-concurrency systems have been an active research fi eld for many years.
Presently, there is large body of work in this fi eld, but the following literature is
representative of existing research directions and solutions.

 Sharifi an et al. (2008) built and validated a prototype system on cluster web serv-
ers and proposed a load balancing algorithm. The Intelligent Queue-based Request
Dispatcher (IQRD) aims to achieve better load balancing with the help of request
classifi cation, performance isolation, and dynamic remaining capacity estimation
mechanisms.

H. Wu et al.

185

 Yang et al. (2006) carried out research on modeling and simulation of perfor-
mance analysis of a cluster-based Web server consisting of fi ve real servers. Three
ways of load balancing are introduced, including network address translation, IP
tunneling, and direct routing. After evaluation and tuning, the maximum process
capability of this system is identifi ed and a conclusion is achieved that increasing
the number of real servers can be used to tackle the performance bottleneck.

 Gautam (2002) investigated the location effects of web proxy servers. His
research addressed how to determine the optimal number and locations of proxy
servers in a network to minimize costs associated with delay, throughput, and
demand constraints. An algorithm called DEJAVU is proposed to solve this optimi-
zation problem. The DEJAVU algorithm can take less than a minute to achieve
nearly same optimal results compared with genetic algorithms.

 Faour et al. (2006) presented a cluster-based web server named Weblins with a
fully distributed architecture. Weblins implements a content-aware request distribu-
tion policy. Simulation results show that the policy used by Weblins is more suitable
for cluster based Web servers in comparison with a pure content-aware strategy or
pure cooperative caching strategy.

 Chiang et al. (2008) implemented an effi cient and scalable web cluster, LVS-
CAD/FC (i.e. LVS with Content-Aware Dispatching and File Caching). In LVS-
CAD/FC, a content-aware web switch based on TCP Rebuilding is implemented to
examine and distribute the HTTP requests to web servers. Besides, a fi le-based web
cache stores a small set of the most frequently accessed web fi les in server RAM to
reduce disk I/O. Experimental results show that LVS-CAD/FC is effi cient and scales
well. Besides, LVS-CAD/FC with the proposed policies can achieve 66.89 % better
performance than the Linux Virtual Server with a content-blind web switch.

 These above-mentioned research works can be divided into two categories, load-
balance strategies and performance tuning. Basically these research works have
focused on the general web server and these solutions cannot deal with the dynam-
ics and huge data throughput of geospatial web services. However, all these research
works provide a valuable foundation for high-concurrency WMTS.

14.2.2 Benchmark of Web Services

 Dependencies are very common between requests in a web service session, i.e. some
later requests depend on the responses of earlier requests in one session. Based on
request dependency, the benchmark systems of web services can be divided into
request-based systems and session-based systems. In the request-based systems,
same or random requests are sent to the target web services in a batch mode.
Compared with request-based systems, the core of session-based systems is to model
real users and mimic each request session. Thus, the workload generation for ses-
sion-based systems must address the issue of handling request dependencies.

 Numerous benchmark tools have been developed, e.g. S-Client (Banga and
Druschel 1999), httperf (Mosberger and Jin 1998), SURGE (Ferrari 1984), WAGON

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

186

(Liu et al. 2001), and SWAT (Krishnamurthy et al. 2006). These general purpose
workload generators support common workload characteristics, which can be tuned
for many different workloads of interest. These characteristics contain queuing
delays, idle time, session length, think time, etc. S-Client, httperf, and SWAT use
the single-threaded, event-based design, whereas the other tools listed employ the
multi-threaded paradigm.

 However, the access patterns for geospatial web services are much different from
other web services. For example, the web application, Microsoft HotMap (Fisher
 2007), represents heat areas in the requests to Bing Maps service. Illustrated by
HotMap, tile popularity tends to follow human population. Therefore, new bench-
mark system for geospatial web services must be developed to address these special
access patterns.

14.3 The Architecture of High-Concurrency WMTS

 This paper introduces the architecture of a proposed high-concurrency WMTS and
implements a prototype system on a high performance cluster (HPC). This high-
concurrency WMTS integrates several cutting-edge information technologies, such
as reverse proxy, NoSQL database, and server benchmark. It is built totally with
open-source software, including MongoDB, GeoWebCache, and Nginx.

14.3.1 Web Map Tile Service

 The OGC has specifi ed a suite of web service standards supporting geospatial
interoperability, e.g. WMS, Web Feature Service (WFS) and Web Coverage Service
(WCS), etc. The WMS specifi cation supports the publishing of cartographic maps
on the internet in an interoperable manner.

 Currently WMS is widely accepted as an open standard for map visualization
and implemented by the majority of GIS software vendors. It standardizes the way
in which web clients request maps. Clients can request maps from a WMS provider
by specifying map layers and providing parameters such as the size of the returned
map and the spatial reference system. When the WMS server receives the client
requests, it will generate each requested map image on the fl y and realize an almost
“instant” zoom and pan for users. However, this fl exibility comes at a price. Due to
ineffi cient on-the-fl y generation, WMS cannot scale well with client requests.

 To improve the performance of WMS, three types of web mapping services were
proposed, including WMS-C, Tile Map Service, and WMTS. The fi rst two services
were proposed by Open Source Geospatial Foundation (OSGeo), and the last one
was proposed by OGC.

 The goal of a WMS-C is to fi nd a way to optimize the delivery of map imagery
across the Internet. WMS-C defi nes a constrained profi le of OGC WMS that per-
mits servers to optimize their image generation, and allows tiles to be cached at

H. Wu et al.

187

intermediate points. A WMS-C service is likely to only deliver images for bounding
boxes aligned to a given rectangular origin and grid, and only at some fi xed scale
levels. A WMS-C server should be free to return an exception or a redirect, if it
receives a WMS request that is not WMS-C compliant, or involves a bounding box
that does not correspond to a single tile in the cache.

 A Tile Map Service (TMS) provides access to cartographic maps by predefi ned
cached images, not by direct access to the data itself. The TMS renders spatial data
into cartographic tiles at fi xed scales. These predefi ned tiles are provided via a
“REST” interface, starting with a root resource describing available layers, then
map resources with a set of scales, then scales holding sets of tiles.

 WMTS is an evolution of OSGeo’s Tile Map Service. WMTS uses a tiling model
to describe the predefi ned images. A tiling model divides the space into a fi xed tile
matrix, illustrated by Fig. 14.1 . The WMTS server can simply return the appropriate
pre-generated image (e.g., PNG or JPEG) fi les to client users. In addition, WMTS
supports multiple architectural patterns—KVP, REST and SOAP.

14.3.2 The Architecture of High-Concurrency WMTS

 The architecture of high-concurrency WMTS can be segmented into three tiers of
services. The three tiers, from top to bottom, are load balancer, WMTS application,
distributed tile database. In this architecture, Nginx acts as a powerful load balancer
for client requests; GeoWebCache is customized to publish WMTS service and to
process user requests; while MongoDB is used to store massive tile images in
the HPC.

Coarser
Resolution

Finer
Resolution

 Fig. 14.1 The illustration of
tiling model in the WMTS
specifi cation

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

188

14.3.2.1 Nginx

 In the proposed high-concurrency WMTS architecture, a reverse proxy is used as a
load balancer to dispatch the incoming tile requests. A reverse proxy is placed in
front of a Web server or cluster servers to handle incoming requests. Reverse proxy
parses the request parameters, route incoming requests to one web server, retrieves
result information from the web server and then forwards it to the user. A reverse
proxy can also be deployed to handle SSL acceleration, intelligent compression,
and caching. Being different from a traditional forward proxy located near clients,
the reverse proxy acts as an intermediary for its associated servers. The function of
one reverse proxy can be illustrated by Fig. 14.2 .

 Many web servers can be deployed as a reverse proxy, such as Nginx (Reese
 2008), HAProxy, and Apache, etc. Among them, Nginx is the second most popular
open source web server on the Internet. Its functionality includes HTTP server,
HTTP and mail reverse proxy, caching, load balancing, compression, request throt-
tling, connection multiplexing and reuse, SSL offl oad and HTTP media streaming.
It can process 100,000+ concurrent connections per server. The core confi guration
of the Nginx in the proposed high concurrency WMTS architecture is listed as fol-
lows when acting as reverse proxy. This confi guration means all requests to the
front-end node (192.168.0.151) in the port 80 are redirected to the port 8080 of
upstream web servers (from 192.168.0.152 to 192.168.0.15x).

 upstream web_servers {
 server 192.168.0.152:8080;
 …
 server 192.168.0.15x:8080;

 }
 server {

 listen 192.168.0.151:80;
 server_name proxy;
 access_log /var/log/nginx/proxy.access.log;

Client Reverse
Proxy

Web1

Web2

 Fig. 14.2 The illustration of the reverse proxy

H. Wu et al.

189

 error_log /var/log/nginx/proxy.error.log;
 location / {

 proxy_pass http://web_servers;
 }

 }

14.3.2.2 GeoWebCache

 In the proposed high-concurrency WMTS architecture, GeoWebCache provide an
implementation of the required WTMS service. GeoWebCache is a Java web appli-
cation used to cache map tiles coming from a variety of sources, such as WMS, or
pre-generated tile storage. It implements various service interfaces (such as WMS-
C, WMTS, TMS, Google Maps KML, Virtual Earth) in order to accelerate and
optimize map image delivery. It can run as a standalone application or be integrated
with web map server, e.g. GeoServer. Figure 14.3 shows the process workfl ow of
client request in GeoWebCache.

14.3.2.3 MongoDB

 MongoDB, one of the most popular NoSQL databases, is selected to store massive
tile images. As opposed to the widely-used relational database management system
(RDBMS), NoSQL database is a class of database management systems identifi ed
by the following features.

Client

Services

WMS

WMTS

TMS

KML

GMAPS

VE

Layer

Storage

MetaStore

BlobStore

Sources

WMS1

WMS2

HTTP

HTTP

Tile

 Fig. 14.3 The workfl ow of processing client request in GeoWebCache

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

190

 1. Schema-free . In a NoSQL database, data can be stored without defi ning a rigid
database schema. The data stored are normally self-descriptive. This schema- free
feature provides immense fl exibility for users.

 2. Auto-sharding . NoSQL database systems usually employ a distributed architec-
ture. The database automatically spreads data across servers without user partici-
pation. In this way, the system can easily scale out by adding more servers, and
failure of one server can be tolerated. This type of database typically scales hori-
zontally and is used for managing massive amounts of data.

 3. Distributed query support . NoSQL database systems possess the ability to per-
form complex data queries. They can retain full query expressive power even
when distributed across hundreds or thousands of servers.

 MongoDB is one of the most widely used NoSQL databases available in the cur-
rent marketplace. Besides the common features of NoSQL databases, MongoDB
stores data in the format of JSON-style document. It supports full indexing on any
attribute of stored documents. One WMTS tile record is illustrated as follows. The
two entries, level and location, provides the position information of one tile in the
tiling pyramid. A 2D spatial index is ensured in the location entry. The tile data is
stored as a binary object in the content entry.

 mongos> db.EPSG_900913_ 8.fi ndOne()
 {
 "_id" : ObjectId("4f0008f8db7ecff1831b15f3"),
 "name" : 10313,
 "level" : 8,
 "location" : {

 "col" : 56,
 "row" : 174

 },
 "hitTimes" : 0,
 "CacheTime" : null,
 "content" : BinData(0,"/9j/4AAQSkZA****WxgULUpOx//Z")
 }

14.3.2.4 The Distributed High-Concurrency WMTS Architecture

 The proposed distributed high-concurrency WMTS architecture is built on a stan-
dard SMP (Symmetric Multiprocessor) cluster, illustrated in Fig. 14.4 . In a SMP
cluster, each node is equipped with two or four symmetric processors. Each proces-
sor is multicore-enabled. Thus, there are two levels of parallel computing resources
available for one SMP cluster: inter-node and inner-node parallelism. The whole
distributed high-concurrency WMTS architecture is illustrated in Fig. 14.5 .

 A prototype was built for the high-concurrency WMTS following the proposed
architecture. The prototype system is constructed on a 16-node virtual Linux cluster
running CentOS 6.2. Each node has two CPUs, 3GB memory, and 100GB hard disk.

H. Wu et al.

191

Node

CPU

Core Core

CPU

Core Core

Shared
Memory

Disk

Node

CPU

Core Core

CPU

Core Core

Shared
Memory

Disk

Node

CPU

Core Core

CPU

Core Core

Shared
Memory

Disk

. . .

Ethernet

 Fig. 14.4 The illustration of a standard SMP cluster

Users

Nginx

Internet

Mongod Mongod

Mongod

GeoWebCache

MongoS

GeoWebCache

MongoS

GeoWebCache

MongoS

GeoWebCache

MongoS

GeoWebCache

MongoS

GeoWebCache

MongoS

Mongod Mongod

Mongod

Mongod Mongod

Mongod

 Fig. 14.5 The architecture of the proposed high-concurrency WMTS

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

192

In this cluster, one node is confi gured as the load balancer running Nginx. Three
identical MongoDB databases are built to store tile images of the experimental
WMTS. The other six nodes are added to the WMTS application tier for processing
client requests.

14.4 Experiments

 Web-bench, a very powerful tool to benchmark web server, is used to evaluate the
request throughput of the proposed high-concurrency WMTS. It will simulate hun-
dreds of thousands of clients to issue WMTS requests. The URL and result of one
WMTS tile request are listed in Fig. 14.6 . The following WMTS URL means to
request one tile which is stored in the “EPSG:900913” dataset and can be located by
“EPSG:900913:3”, 56 and 174 (i.e. level, row and column respectively).

 http://192.168.0.151/geospeed/service/wmts?request=GetT
ile&version=1.0.0&layer=Shanghai&style=default&format
=image/gif&TileMatrixSet=EPSG:900913&TileMatrix=EPSG:
900913:3&TileRow=56&TileCol=174

 The proposed high-concurrency WMTS(H-WMTS in the following tables and
fi gures) was compared with a traditionally deployed WMTS(WMTS in the

 Fig. 14.6 The URL
and result of one WMTS
tile request

H. Wu et al.

193

following tables and fi gures), in which client requests are directly sent to one
GeoWebCache and tile images are stored in a MongoDB database on three com-
puter nodes. The Web-bench commands are listed as following (-c means the num-
ber of concurrent connections; -t means the running time of continuous requests;
and wmts_url is the request URL for one specifi c tile). Here, the continuous request
time is defi ned to 30 s.

 webbench -c n -t 30 wmts_url

 A comparison of request throughput (requests per minute) for high-concurrency
WMTS and traditionally deployed WMTS is shown in Table 14.1 as well as in
Figs. 14.7 and 14.8 . Figure 14.7 describes that, when the concurrent client connec-
tions is about 30,000, the high-concurrency WMTS can handle nearly 420,000
request per minute while the traditionally deployed WMTS only can process
200,000 request in a minute.

 Table 14.1 Request throughput (pages/min) from concurrent connections

 Conn. 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
 WMTS 195,814 205,202 208,376 209,110 204,090 202,072 187,708 190,506
 H-WMTS 50,130 269,708 281,002 332,124 291,974 382,162 363,644 400,108
 Conn. 18,000 20,000 22,000 24,000 25,000 26,000 28,000 30,000
 WMTS 194,908 188,650 198,416 200,234 198,368 204,206 204,950 127,820
 H-WMTS 424,956 414,922 431,064 422,440 435,130 418,470 403,668 245,262

 Fig. 14.7 The request throughput comparison between two types of WMTS

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

194

14.5 Conclusion

 In order to tackle the scalability problem of traditionally deployed WMTS, this
paper proposes a novel architecture of high-concurrency WMTS with several
cutting- edge information technologies, such as reverse proxy, NoSQL database, and
server benchmark. We also implemented a prototype system to validate the pro-
posed architecture, which is built totally with open-source software, including
Nginx, GeoWebCache, and MongoDB. Experimental results show that our high-
concurrency WMTS can function well even when enduring more than 30,000 con-
current connections. The request throughput of the proposed high-concurrency
WMTS is about twice as large as that of traditional WMTS deployed in a single web
server.

 Acknowledgements This work is supported by the National High Technology Research and
Development Program of China (Grant: 2012AA121401) and the China Postdoctoral Science
Foundation (Grant: 2012M511672).

 References

 Banga, G., Druschel, P.: Measuring the capacity of a web server under realistic loads. World Wide
Web 2(1), 69–83 (1999)

 Chiang, M. L., et al.: Design and implementation of an effi cient web cluster with content-based
request distribution and fi le caching. Journal of Systems and Software 81(11), 2044–2058
(2008)

 Faour, A., Mansour, N.: Weblins: A scalable WWW cluster-based server. Advances in Engineering
Software 37(1), 11–19 (2006)

 Fig. 14.8 The speedup of request throughput between two types of WMTS

H. Wu et al.

195

 Ferrari, D.: On the foundations of artifi cial workload design. ACM SIGMETRICS Performance
Evaluation Review 12(3), 8–14 (1984)

 Fisher, D.: Hotmap: Looking at geographic attention. IEEE Transactions on Visualization and
Computer Graphics 13(6), 1184–1191 (2007)

 Gautam, N.: Performance analysis and optimization of web proxy servers and mirror sites.
European Journal of Operational Research 142(2), 396–418 (2002)

 GeoWebCache. http://GeoWebCache.org/
 Krishnamurthy, D., et al.: A Synthetic Workload Generation Technique for Stress Testing Session-

Based Systems. In: Proceedings of the IEEE Transactions on Software Engineering 32(11),
868– 882 (2006)

 Liu, Z., et al.: Traffi c model and performance evaluation of web servers. Performance Evaluation
46(2-3), 77–100 (2001)

 MongoDB. http://www.mongodb.org/
 Open Geospatial Consortium Inc. OpenGIS Web Map Tile Service Implementation Standard,

OGC 07–057r7, 2010.04
 Mosberger, D., Jin, T.: httperf: A tool for measuring web server performance. ACM SIGMETRICS

Performance Evaluation Review 26(3), 31–37 (1998)
 Reese, W.: Nginx: the high-performance web server and reverse proxy. Linux Journal, (2008)
 Sharifi an, S., et al.: A content-based load balancing algorithm with admission control for cluster

web servers. Future Generation Computer Systems 24(8), 775–787 (2008)
 Yang, J., et al.: Modeling and simulation of performance analysis for a cluster-based Web server.

Simulation Modelling Practice and Theory 14(2), 188–200 (2006)

14 A High-Concurrency Web Map Tile Service Built with Open-Source Software

http://geowebcache.org/
http://www.mongodb.org/

197X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_15, © Springer Science+Business Media New York 2013

Abstract In this chapter we introduce an improved parallel optimal choropleth
map classification algorithm to support spatial analysis. This work contributes to the
development of a Distributed Geospatial CyberInfrastructure and offers an imple-
mentation of the Fisher-Jenks optimal classification method suitable for multi-core
desktop environments. We provide a description of both a single-core vectorized
implementation and a parallelized implementation. Our results show that single
core vectorization alone provides computational speedups compared to previous
parallel implementations and that a combined, parallel and vectorized, implementa-
tion offers significant speed improvements.

Keywords  Parallelization • Vectorization • Spatial analysis • PySAL

15.1 Introduction

The current trend to deploy institutional High Performance Computing (HPC) clus-
ters composed of hundreds or thousand of computing cores and the increase in multi-
core micro-compute (desktop) units provides the means by which vast quantities of
spatial  data  can  be  rapidly  analyzed  (Wang  and  Armstrong  2009; Yang
et al. 2008; Yang and Raskin 2009). The continual increase in spatial data size is a
product of increased data capture initiatives, improved remote sensing capabilities,
and increasingly complex processing models (Wang and Armstrong 2003). Spatial
algorithm performance, as measured by total compute time, has not kept pace, largely
due to limitations in serial, single core, processing. Current research focuses on the

Chapter 15
Improved Parallel Optimal Choropleth
Map Classification

Jason Laura and Sergio J. Rey

J. Laura (*) • S.J. Rey
School of Geographical Sciences and Urban Planning,
GeoDa Center for Geospatial Analysis and Computation, 
Arizona State University
e-mail: jlaura@asu.edu; srey@asu.edu

198

development and implementation of a unified Geospatial Cyberinfastructure(GCI)
that provides data storage and retrieval functionality, distributed spatial analytical
tools, and a middleware layer to facilitate communication (Yang and
Raskin 2009; Yang et al. 2010). A key middleware research theme seeks to address 
the disparity between serial spatial analytical algorithm performance and rapid
increases in data volume (Wang and Armstrong 2003, 2009; Yang et al. 2008).

Research into distributed or parallel spatial algorithm implementation falls
largely into two categories: theoretical or applied. Armstrong et al. (1993), Wang
and Armstrong (2003), Yang et al. (2008, 2011) explore the potential benefits of
distributed analytical methods as a means to process large data sets or utilize com-
plex process models. Through distributed data storage, computation, and end-user
access capabilities, it should be possible to both facilitate multi-domain collabora-
tive research efforts and reduce or eliminate the need for data aggregation. Applied 
research, focusing on the decomposition and implementation of parallel spatial
algorithms can be further divided into two broad temporal categories. Before the
widespread  adoption  of  multi-core  desktop  computers  (Armstrong  and 
Marciano 1995, 1996; Armstrong et al. 1993; Griffith 1990) develop hardware spe-
cific parallel implementations designed to run on super-computers. These imple-
mentations are largely constrained to a single piece of hardware due to implementation
specifics. As multi-core desktop computers permeated the consumer market, Wang 
and Armstrong (2003, 2009) explore domain decomposition through the implemen-
tation of parallel spatial analytical tools and Rey et al. (2013) tests multiple pro-
gramming libraries to facilitate parallelization of a single spatial algorithm. Each of
these applied implementations seeks to leverage additional computational potential
through the parallelization of serial spatial algorithms.

The rapid increase in data size and increasingly complex process models vastly
outpace the current computational abilities of serial spatial analytical algorithms
(Wang and Armstrong 2003). Anecdotally, Anselin et al. (2004) laments the inabil-
ity to perform Exploratory Spatial Data Analysis (ESDA) due to programming lan-
guage performance limitations and overall computational expense as the number of
observations becomes non-trivial. These limitations are extensible beyond algo-
rithms  classified  under  ESDA  and  limitations  correlating  only  to  sample  size. 
Parallelization across the entire spatial analysis stack requires knowledge of tech-
niques to rapidly employ heuristic methods for complex combinatorial problems or
iterative analytical algorithms requiring high numbers of Monte Carlo permutations
(Duque et al. 2011; Rey et al. 2013; Wang  and Armstrong  2003).  Acceleration 
through parallelization and vectorization provides a means by which the spatial
analysis stack can leverage the available computational power of modern desktops.
This in turn provides the opportunity for researchers to avoid process generalization
or areal unit aggregation to combat long runtimes.

The remainder of this chapter is organized as follows: In Sect. 15.2 we provide
an introduction to parallelization, vectorization, and the use of a single shared mem-
ory space. These three implementation paradigms provide a means by which
improved performance can be realized. Section 15.3 describes a technique for opti-
mal map classification for the generation of choropleth map visualizations and is
broadly segmented into three subsections. Section 15.3.1 provides the formulation

J. Laura and S.J. Rey

199

of the Fisher-Jenks optimal data partitioning algorithm, 15.3.2 describes previous
parallel implementation initiatives of said algorithm, and 15.3.3 introduces PySAL 
a spatial analytics library used to implement our work. In Sect. 15.4 we provide a
description of our implementation experiment, test hardware, and results.
Section 15.5 highlights the key implementation challenges and Sect. 15.6 concludes
with a summary and identification of areas of future research.

15.2 Parallelization, Vectorization, and Shared Memory

Three programming paradigms provide tools to utilize all available computational
power and decrease total compute time. Parallelization, or the process of distribut-
ing concurrent computation to two or more processing cores, facilitates the greatest
reduction in total processing times for large data sets. Vectorization, defined below, 
leverages the ability for modern processors to perform multiple concurrent compu-
tations in a single processor cycle. This is a single core optimization technique that
provides notable speed improvements. Finally, shared memory facilitates concur-
rent read and write access to a single Random Access Memory (RAM) space. This 
alleviates the need for in memory data duplication for processing, i.e. data available
to the mother process is also available to the child processes without copying.

15.2.1 Parallelization

Parallelization is the process by which previously sequential computation is distrib-
uted over multiple Central Processing Units (CPUs) or Graphics Processing Units
(GPUs) and concurrently performed. In the context of this work, parallelization is
controlled by a single mother process and load is delegated to child processes. This
is a hierarchy of task allocation, by the mother, and job completion, by the child.
Broadly, it is possible to classify the parallelization of serial algorithms as either
embarrassingly parallel, where communication between children is not necessary
and synchronization is managed by the mother, or complexly parallel where the
mother manages asynchronous communication between the children.

The maximum achievable speedup through parallelization is governed by
Amdahl’s Law. This law states that the total theoretical speedup attainable is a func-
tion of the processing that can occur in parallel and the processing that must occur
in serial. Serial computational expense includes communication between cores,
serial input / output (I/O), and job distribution. This law can be formulated as:

Speedup
f

f

n

=
- +

1

1()

(15.1)

15 Improved Parallel Optimal Choropleth Map Classification

200

where 1 − f is the portion of the computation that must be computed in serial and
f

n
is the portion of the program distributed over n cores (Hill and Marty 2008).
Maximum speedup, attained through the application of Amdahl’s Law, can be found 
through the parallelization of the most computationally expensive, sequential,
 portions of an algorithm, i.e the bottlenecks (Hill and Marty 2008). A reduction in 
f, in the numerator, directly impacts the attainable speed increase.

15.2.2 Vectorization

Single Instruction, Multiple Data (SIMD) processors are capable of performing
vectorized computation (Flynn 1972). Vectorized computation takes multiple input 
elements and performs the same operation on each of the elements. For example,
the addition of two vectors on a non-SIMD processor requires that each element is
sequentially accessed, queried for the arithmetic operation to be performed,
 processed, and  returned. A processor capable of vector computation can concur-
rently access all elements of the input data and apply a single arithmetic operation
(single instruction) to all elements (multiple data). A key component of leveraging 
this type of computation is data representation. When possible we represent data as
vectors and leverage a high level processing library, NumPy (Oliphant 2006), to
handle machine level vectorization. Successful vectorization requires that the input
data be a single vector, a row of a matrix, or a subset of a row; the dimensionality of
the input data is key, not the overall storage strategy (Buzbee 1986).

15.2.3 Shared Memory

The goal of this research is to reduce spatial algorithm compute time and facilitate
the analysis of large datasets with complex process models. Therefore, RAM pro-
vides a high speed data access and storage platform. Adam Jacobs (2009) suggests
that randomly ordered access to RAM is 100,000 times faster than a traditional hard 
drive lookup and 100 times faster than a lookup on a solid state hard drive. In imple-
mentation this means that parallel algorithms should strive to store all required
information in RAM. This requires that both the mother and child processes have 
access to the same data.

The distribution of data from the mother process to the child process differs based
upon the underlying operating system. On POSIX compliant or nearly compliant
 system, data is seamlessly shared between the mother, managing I/O and all child
processes (van Rossum and Drake 2013). Conversely, the Windows operating system
does not dynamically share memory space between processes and therefore access to
data available to the mother is not explicitly available to the children. For both system
types it is possible to allocate a shared memory space, populate it with data, and then

J. Laura and S.J. Rey

201

share that data either as a variable pointer, for POSIX systems or a direct to memory
pointer, for non-POSIX systems. Access to a single read / write memory space for all 
processes removes data copy overhead and shared memory is essential to achieve the
highest possible speeds with the lowest necessary memory overhead.

15.3 Optimal Map Classification for Choropleth Mapping

Considerable research effort has been applied to the application, suitability, and
generation of choropleth maps (Brewer and Pickle 2002; Burrough and
McDonnell 1998; Slocum et al. 2008). Choropleth maps utilize color or patterning
to differentiate between areal units based upon some underlying attribute. The par-
titioning of attribute data for visualization is the focus of this work. Classification,
or data partitioning, can take many forms including equal interval, frequency, or
standard deviations from a mean (Brewer and Pickle 2002). One popular method for
data segmentation employs the Fisher-Jenks optimal classification algorithm to
break data into statistically derived classes such that the variation between classes is
maximized and the variation within classes is minimized. This is a non-spatial data
partitioning algorithm applied to spatial data.

15.3.1 Fisher-Jenks Algorithm

The Fisher-Jenks algorithm optimally classifies n observations into k classes such that all
observations are members of a single class. Structured as an optimization problem, the
algorithm is constrained to minimize some measure of variance within each class and
maximize variance between classes. This can be the absolute sum of squares deviation
from the class median or the sum of the squared deviations around the class mean (Rey
et al. 2013). The Fisher-Jenks algorithm has an O(nk) runtime for unordered data and an
O(kn) runtime for ordered data sets (Hartigan 1975; Rey et al. 2013). Given the runtime,
computation of medium to large dataset is infeasible in a serial ESDA environment.

The Fisher-Jenks algorithm consists of three steps: (1) the computation of a
diameter matrix which stores the sum of squares variance from the mean for all
clusters, (2) the computation of an error matrix which stores the minimum variance
of a set of n observations for k classes, and (3) the query of the error matrix to find
those pivots which fulfill the optimization constraints (Hartigan 1975).

 1. Compute the diameter Di, j for all pairs of n such that 1 ≤ i ≤ j ≤ n. Diameter in this
work is defined as the sum of squared deviations about the mean.

 2. Populate each element, L, of the error matrix for rows [2, k] by
E P min D E Pi L j j L[] ([]), , ,= +− − −1 1 1 1 . This is dynamically generated as the error of
the optimal partition for the current row index, 2 ≤ j ≤ k, is derived from the pre-
ceding row index, j − 1.

 3.  Locate the optimal partition from the error matrix as  E P E P Dn k j k j n[] [], , ,= +- -1 1

15 Improved Parallel Optimal Choropleth Map Classification

202

We reduce the total number of steps to three by populating the first row of the error
matrix from the first row of the diameter matrix. This is in contrast to the original
publication by Hartigan (1975) and subsequent work by Rey et al. (2013) which
describe a fourth step, occurring between steps one and two to populate the first row
of the error matrix. Additionally, previous works implemented this algorithm either in 
serial, or through the parallelization of step one. We parallelize both steps one and two.

15.3.2 Previous Work

Rey et al. (2013) implemented a parallel Fisher-Jenks algorithm using three freely
available parallel Python libraries: the built-in Python module multiprocessing,
Parallel  Python,  and  PyOpenCL.  Language  syntax  requirements  differ  between 
each library and therefore require divergent implementations. The built-in multipro-
cessing module ships with Python versions greater than 2.6, offers shorter develop-
ment times due to more straightforward implementation requirements, and reported
the best results. Parallel Python, an external library, requires an additional user
installation  and  reported  the  worst  parallel  performance.  Finally,  PyOpenCL,  a 
library designed to leverage either the Central Processing Unit (CPU) or Graphics
Processing Unit (GPU), requires an additional installation step, complex implemen-
tation requirements, and returned repeated memory allocation errors. In light of
these results, our implementation utilizes multiprocessing.

In addition to implementing and testing three libraries (Rey et al. 2013) offer
multiple insights into the parallelization and implementation of the Fisher-Jenks
algorithm. These insights have been utilized to drive our research to further improve
algorithm portability and performance. First, in-memory duplication limited total
sample size to half of the available RAM space. Second, the parallel computation of 
the diameter matrix improved total compute time sufficiently that the computation
of the error matrix is revealed as a new bottleneck. Third, parallelization is only
beneficial with medium to large sample sizes as costs associated with parallel over-
head must be accounted for.

15.3.3 PySAL

PySAL, an open-source spatial analytics library, written entirely in Python provides 
the test platform for our work (Rey and Anselin 2010). Being open-source, the code
is freely available to end users for modification, exploration, and usage. This open
source model provides transparency in implementation as well as the ability to inte-
grate externally coded contributions from non-core developers. Additionally, rapid 
and iterative code generation is a hallmark of Python and a driving reason behind
the creation of PySAL using this language (Rey et al. 2013). This design philosophy
extends to our implementation, which is undergoing integration into the core of

J. Laura and S.J. Rey

203

PySAL. We utilize the core implementation of the serial Fisher-Jenks algorithm and 
a parallel branch which includes an implementation using the Python built-in library
multiprocessing to benchmark our code.

15.4 Implementation Specifications

Our improved implementation focuses on three extensions of the work by Rey
et al. (2013). First, we explore the ability to avoid in-memory data duplication
through the use of shared memory space. Second, we refractor the computation of
the diameter matrix to leverage vectorized computation. Finally, we parallelize and
vectorize the computation of the error matrix. After implementing these changes we 
test a range of sample sizes (n) and classes (k) to compare our results to both the
serial Fisher-Jenks implementation and the initial parallel implementation.

15.4.1 High Level Parallel Implementation

Recall from above the Fisher-Jenks algorithm consists of three phases: computation
of the diameter matrix, computation of the error matrix, and identification of the
data pivot points. We parallelize phases one and two of the algorithm. We conclude
that the parallelization of the pivot point computation, phase three, is not necessary
as total compute times remain less than 0.5 % of total compute time and decreases
with increases to n.

15.4.2 CTypes Shared Memory

Prior to initiating the three algorithm phases, described above, we initialize all the
necessary data structures. This alleviates the need for in memory data duplication
(Rey et al. 2013). Accomplishing this requires that two contiguous memory blocks 
be pre-allocated using the built-in ctypes library (van Rossum and Drake 2013).
This library provides a Pythonic interface to non-local functions and, in our usage,
facilitates the access of a single globally available memory space by all child pro-
cesses. In this context, in RAM storage must either be allocated at the largest pos-
sible data type, 64-bit floating point, or the input data must be sampled and the data
type intelligently determined. We utilize the former approach in our implementa-
tion. Finally, this implementation can be classified as embarrassingly parallel and
concurrent writes are not required. Therefore, the ctypes allocated memory does not
have accompanying locking mechanisms (locks or semaphores).

Two constraints and two benefits are introduced through the use of shared mem-
ory. First, access to shared memory using Python requires the use of pointers to a

15 Improved Parallel Optimal Choropleth Map Classification

204

memory address; this is not direct in-language access to the stored elements. It is
therefore necessary to read directly from the memory buffer. This is accomplished
through the use of the from buffer () function within NumPy (Oliphant 2006). The
second constraint requires that the buffer is stored as a flat array, (i.e. one dimen-
sional). The Fisher-Jenks algorithm requires that the diameter matrix be n x n and
the error matrix be n x k. Therefore, it is necessary to reshape the buffer view before
in-language processing. While it is not possible to make a pythonic view of the
shared memory space globally available to all children on a non-POSIX system, it
is possible to pass the pointer to a shared memory space and then recapture a
pythonic view without issue. In this manner, the use of ctypes facilitate OS portabil-
ity in a manner that the use of global shared memory, internal to python, would not.

The pre-allocation phase concludes with packing each row of the diameter matrix
with the sorted input values. This is to facilitate the vectorization of the computation
in the next phase.

15.4.3 Diameter Matrix Computation

Generation of the diameter matrix is the most computationally expensive portion of
the Fisher-Jenks algorithm and Rey et al. (2013) show that the parallelization of this
phase provides non-trivial speed increases for medium and large problem sets. Our
implementation follows theirs, but differs in two ways. First, we avoid the use of
memory duplication by passing a pointer and row indices from the mother to the
child process. Second, we remove all for loops from the code to leverage vectoriza-
tion in the computation of the diameter matrix. These two general improvements
provide substantial speed improvements over the initial parallel implementation and
are more explicitly described below.

Diameter matrix computation is initiated with the mother process computing the
load for each core using the equation

interval

n

c
= ,

(15.2)

where n is the total number of values and therefore rows, and c is the number of
cores. Data decomposition using this method often leaves excess rows that are pro-
cessed by the first core to complete its initial load. Once the segmentation of the load
is computed a memory pointer and the indices of the rows to be processed are passed

to each child process. Once distributed, each core is assigned
n

numbercores
 rows.

Each child process then iterates over its assigned rows and computes each row
using vectorized computation that fully leverages the SIMD capabilities of the pro-
cessor. Due to the fact that the lower triangle of the matrix is zero, before processing
a row we first replace the i elements with zero where i is the row number. Once pre-
processing of the row is completed, we compute the entire diameter matrix row with
a single operation, i.e. same instruction multiple data, using the scalar equation

J. Laura and S.J. Rey

205

D y yI J i I J

i I

J

, ,()= -
=
å 2

(15.3)

where DI, J is the diameter of the cluster consisting of values I through J,

y
J I

yI J i
i I

J

, =
- + =

å1

1
, and yi is the attribute value for observation i. Each row of the

matrix D is obtained through vectorization.
Once each child has completed the assigned load the jobs synchronize and the

mother process initiates computation of the error matrix. In all phases the mother
process manages synchronization, but also acts as a child process, performing a seg-
ment of the total load. This functionality exists within the Python language without
programmer implementation.

15.4.4 Error Matrix Computation

Unlike Rey et al. (2013) we also parallelize the computation of the error matrix.
This is a direct extension to earlier work as computation that was sufficiently fast
previously now becomes the primary processing bottleneck. The first step of this
phase is to copy the top row of the diameter matrix to the top row of the error matrix.
This reduces the total number of computations from kn to ()k n- +1 1 .

The computation of the error matrix is decomposed differently than the diameter
matrix. Instead of sending complete rows to each child process, the decomposition
technique used for the diameter matrix, it is necessary to send segments of a single
row to each process. This is because each row of the error matrix depends upon
values from both the diameter matrix and the preceding row of the error matrix.
Therefore, we distribute the computation of each row over each available core using
the process summarized in Table 15.1. Here e is an element in the error row, c is a
child process (core), n is the total number of values, and m is a total count of the
available cores. As the row index increases the total computational load increases, 
but the computational load required to intelligently distribute the load exceeds the
total computational cost of this phase.

Once row segmentation is computed, the mother process distributes memory
pointers and row indices to each child process, as above. We then compute each
error element as the minimum of the sum of elements from the preceding error
matrix row and elements from a column of the diameter matrix. Both sequences can
be represented as vectors and therefore provide a means to performed vectorized
computation using the following equation

E e e e e ei j i j i j i j i j n i j n, , , , ,() ,()[, , , ,= − − − − − − − − + − − +1 1 1 2 1 3 1 2 1� 11

1 2 1

]
[, , , , ,]

(
, , , , () , ,

,

D d d d d d
e min E

i j i j i j i j i k j i k j

i j

=
=

+ + + − +�

ii j i jD, ,) ,+

(15.4)

15 Improved Parallel Optimal Choropleth Map Classification

206

where Ei, j is a vector extracted from the previous row of the error matrix, Di, j is a
vector extracted from the diameter matrix, and ei, j is the minimum scalar element of
Ei, j + Di, j. While we still must iterate over each index in the error matrix, it is possible
to leverage the SIMD capabilities of the processor to populate each error index.

15.4.5 Pivot Matrix Computation

Finally, we find the pivot indices or values in the error matrix such that the variance
is maximized between classes and minimized within classes. This is an extremely
fast lookup that is performed in serial. The implementation is identical to that of
Rey et al. (2013), except that our underlying data structure is an array instead of a
list. This incurs a negligible performance hit to our implementation less than 0.5 %
of total compute time.

15.4.6 Experiment, Hardware, and Results

Below we report the results of testing the improved parallel implementation against
both the implementation created by Rey et al. (2013) and the original serial implemen-
tation in PySAL, which mirrors (Hartigan 1975). To control for hardware variation we
report comparative results from a single machine after performing a clean reboot. To
test the impact of parallelization of both the diameter matrix and error matrix computa-
tion we test k = 5,7,9, which are reported to be the most commonly selected numbers
of classes (Rey et al. 2013) and a range of sample sizes from n = 1000 to n = 12, 000,
incrementing in intervals of 2000 once that threshold is attained. For tests including the
original serial implementation the maximum value tested is n = 8, 000 due to excessive
runtimes. The test data is randomly generated floating point numbers with a range of
(0, 1]. Finally, we test n > 12, 000 on a server level machine to extend the performance
curve and explore the current upper bounds of this implementation.

Table 15.1 Segmentation of the error matrix over available cores

Core number Error row segment (vector)

c1 ei, 1 ei, 2 ei, 3 ei, 4 ⋯ e
i

n

c
,

c2 e
i

n

c
, +1

e
i

n

c
, +2

e
i

n

c
, +3

e
i

n

c
, +4

⋯ e
i

n

c
, ()2*

⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
cm e

i m
n

c
, ()* +1

e
i m

n

c
, ()* +2

e
i m

n

c
, ()* +3

e
i m

n

c
, ()* +4

⋯ ei, n

J. Laura and S.J. Rey

207

15.4.7 Hardware

The test hardware consisted of an Intel 3.1GHz i3-2100 Sandy Bridge dual core
processor, that reports as 4 cores due to hyper-threading (Intel 2003), with 4GB of
RAM,  running  KUbuntu  linux.  This  is  a  pseudo  POSIX  compliant  system  that 
offers processor level process forking and mirrors a low end machine users are
likely to find readily accessible. For n > 12, 000 we utilize a 12-core 2.26 GHz Mac
Pro with 64 GB of RAM.

15.4.8 Results

A  single-core,  serial  Fisher-Jenks  implementation  provides  a  benchmark  against 
which it is possible to compute the total speedup attained through parallelization.
Figure 15.1 shows the piece-wise linear compute time curves generated by the serial
algorithm which  clearly grow with  the  sample  size. Additionally,  the number of 
classes increases total compute time, but this impact is small when compared to the
correlation between n and t, the total compute time.

To compare the results speedup results we utilize the standard speedup curve
formulated as

speedup
S

P
n k

n k

= ,

,

,

(15.5)

0
1000 2000 4000 600050003000 8000

k=5
k=7
k=9

7000
n

800

600

400

200

1000

T
im

e(
s)

1200

Serial Compute Times
1800

1600

1400

Fig. 15.1 Piecewise linear speed curve showing total compute time of the serial Fisher-Janks
algorithm

15 Improved Parallel Optimal Choropleth Map Classification

208

where Sn, k is the serial computation time as a function of the number of samples, n,
and the number of classes k, and Pn, k is the total parallel computation time given
identical n and k values.

Figure 15.2 illustrates the speedup attained compared to the original serial
implementation. We find that for n > 1, 000 the overhead associated with paral-
lelization is significantly less than the total speedup attained. This is in-line with
previous results (Rey et al. 2013). The speedup curves are largely linear and
clearly vary with k. This is expected as increases in k introduce both an addi-
tional kn computations and the associated parallelization overhead. Unlike, Rey
et al. (2013) we do not find a plateau at n = 2, 000. Finally, we find total speedups
ranging from 50 times faster to nearly 1,000 times faster.

Moving to a comparison of our implementation to the previous parallel imple-
mentation (Rey et al. 2013), we again show, in Fig. 15.3, a general speed increase
between 25 times and 200 times faster. This is largely attributable to the reduction
in in-memory duplication, the use of vectorization, and the parallelization of com-
putation for the error matrix. Interestingly, we see a plateau and overall decrease in
speedup from n = 8, 000 to n = 12, 000. This is potentially a product of naive data
decomposition for error matrix computation and additional tests comparing larger
numbers of samples are required. Finally, we also see a marked improvement com-
paring our single core, vectorized, algorithm to the previously published multi-core
algorithm (Rey et al. 2013).  Vectorization  alone  provides  speedups  of  between 
twenty-five and fifty over non-vectorized multi-core implementations.

Figure 15.4 compares the speed gains attained by a solely vectorized implementa-
tion and the final implementation leveraging both vectorization and parallelization.
Clearly the later provides greater speed increases, but the total difference between
implementations is negligible until n > 1, 000. Given the hardware specific require-
ments inherent to leveraging all available processing cores, and the human time
required to implement a parallel implementation, we suggest that single core vector-
ization may provide implementations which are sufficiently fast. This must be assessed

0
1000 2000 4000 600050003000 7000 8000

k=5
k=7
k=9

n

1000

200

400T
s

/T
p 600

Parallel Implementation vs. Serial Implementation Speedup Curve

800

Fig. 15.2 Speedup curve benchmarking the serial implementation to our parallel implementation

J. Laura and S.J. Rey

209

0
0 2000 4000 6000 8000

n
1200010000

50

100

150

T
p

/T
p

200

Parallel, k=5

Parallel and Vectorized Speedup Curves Compared to Rey et al. (2012)

Parallel, k=7
Parallel, k=9
Vectorized, k=5
Vectorized, k=7
Vectorized, k=9

250

Fig. 15.3 Speedup curve comparing the original and improved parallel implementations

0
1000 2000 3000 4000

n
5000 6000 7000 8000

200

400

600

T
s

/T
p

800

Parallel, k=5

Parallel and Vectorized Speedup Curves vs. Serial Implementation

Parallel, k=7
Parallel, k=9
Vectorized, k=5
Vectorized, k=7
Vectorized, k=9

1000

Fig. 15.4 Speedup curve benchmarking comparing both vectorized and parallel implementations
to the serial implementation

on a problem specific basis. For n < 1, 250 we see that vectorization out performs par-
allelization; this is due to the overhead associated with spawning child processes.

Finally, Fig. 15.5 depicts benchmarking performed on the server level machine
to compare total computational time for the parallel and vectorized implementa-
tions. Tests were performed from n = 1, 000 to n = 42, 000 and show total compute
time leveraging both parallelization and vectorization for large problem sets remains
well under two minutes. We can report a piece-wise linear function for solely vec-
torized computation. Additional testing with larger values of n is required to classify
the expected behavior of the parallel implementation speed curve.

15 Improved Parallel Optimal Choropleth Map Classification

210

15.5 Implementation Challenges

The development of an improved parallel Fisher-Jenks algorithm was an iterative
process encountering multiple implementation challenges and identifying opportu-
nities for future work. First, refactoring the original Fisher-Jenks algorithm to allow
for vector representation in the computation of the diameter and error matrices was
human time intensive. This required that the problem be recast and represented in a
completely different structure. Second, attempting to scale this work for big data is
an ongoing challenge as the problem grows quadratically in not only time, but also
in memory consumption. Finally, porting this code from a POSIX to a non-POSIX
system required an additional refactoring of the shared memory space and explora-
tion of efficient means to pass access to shared memory between processes which
do not exist in the same variable space (namespace).

15.6 Extensions and Future Work

This extension to Rey et al. (2013) highlights future research objectives and pro-
vides additional insight into deploying parallel algorithms throughout the spatial
analysis stack. First, using open source, built-in libraries, it is possible to develop
and deploy system agnostic, parallel, code. This requires that code be developed
understanding the limitations placed by each of the three modern desktop operating
systems. Second, we concur with Rey et al. (2013) in that speed improvements
attained through parallelization are valid only for medium to large values of n. This
is in-line with expectations as process forking and inter-core communication incur

0
0 5000 10000 15000 20000

n
3000025000 35000 40000 45000

50

100

150

T
im

e
(s

)

200

Parallel, k=5

Parallel and Vectorized Compute Times

Parallel, k=7
Parallel, k=9
Vectorized, k=5
Vectorized, k=7
Vectorized, k=9

250

300

Fig. 15.5 Total computation of the vectorized and parallel implementations

J. Laura and S.J. Rey

211

an overhead that is non-trivial above a threshold. Vectorization provides a method 
by which increased performance can be attained for small values of n.

Through this work, we can highlight the following three insights into the
 parallelization of this algorithm. First, the representation of data as regular arrays,
when possible, is essential to providing the means by which vectorization can occur.
Major performance gains are attainable without parallelization, i.e. in serial, when
the underlying vector computation capabilities of the processor can be leveraged.
Additional research is required to determine the best methods to represent jagged 
arrays, i.e. non standard number of columns per row, and still leverage vector com-
putation. Second, when refactoring for a high level parallelization implementation,
it is necessary to iteratively deploy code and highlight processing bottlenecks at
each iteration. This is evidenced by the performance gains attained by leveraging
and improving computation of the distance matrix (Rey et al. 2013) as well as paral-
lelizing the computation of the error matrix. This highlights the necessity for an
iterative approach to code parallelization as individual bottlenecks may not exist
prior to refactoring. Third, this algorithm is still memory constrained and the paral-
lelization of spatial algorithms to improve performance must focus on both overall
computational speed and efficient data representation.

Future work will focus on a low-level parallelization whereby the algorithm
undergoes structural changes. This implementation is still limited by n as the total
memory footprint increases quadratically with n. As HPC clusters often limit the 
total amount of available RAM per node and desktop computers with large quanti-
ties of RAM are not normally deployed, a low level parallelization that concurrently 
computes, utilizes, and overwrites the diameter matrix is essential. This implemen-
tation could theoretically scale without limit to RAM as a row in the diameter matrix 
would exist only long enough to derive the associated error matrix elements. This
would be an asynchronous implementation requiring inter-core communication and
dynamic load balancing.
Additional future work is also required to explore porting this implementation to 

a HPC cluster. The extensive use of shared memory space requires that all cores,
and by extension nodes, access the same data. In some HPC environments this level
of shared-memory is not available and inter-node communication, which is slower
than RAM access, is required. The potential exists that a low level parallelization, 
as outlined above, could alleviate this issue, or another refactoring of the algorithm
is required.

Finally, this work is a single parallelization of a single algorithm within the spa-
tial analysis stack. To fulfill the goal of providing a taxonomy of parallel spatial
algorithm implementation methodologies additional parallelization techniques, of
divergent spatial algorithms classes must be undertaken. This work should be broad
in scope and provide documentation of successful and unsuccessful parallelization
efforts specific to the domain of spatial analysis.

Acknowledgements This  research was  funded  in part by NSF Award OCI-1047916, SI2-SSI: 
CyberGIS Software Integration for Sustained Geospatial Innovation. We thank the anonymous
referees and the editors for their constructive comments.

15 Improved Parallel Optimal Choropleth Map Classification

212

References

L. Anselin, Y. W. Kim, and I. Syabri. Web-based analytical tools for the exploration of spatial data. 
Journal of Geographical Systems, 6(2):197–218, June 2004.

M.P Armstrong and R. Marciano. Massively parallel processing of spatial statistics. International
Journal of Geographical Information Systems, 9(2):169–189, 1995.

M.P. Armstrong and R. Marciano. Local Interpolation Using a Distirbuted Parallel Supercomputer. 
International Journal of Geographical Information Systems, 10(6):713–729, 1996.

M.P Armstrong, C.E. Pavlik, and R. Marciano. Parallel Processing of Spatial Statistics. Computers
& Geosciences, 20(2):91–104, 1993.

C. A Brewer and L. Pickle. Evaluation of methods for classifying epidemiological data on choro-
pleth maps in series. Annals of the Association of American Geographers, 92(4):662–681,
2002.

P.A.  Burrough  and  R.  McDonnell.  Principles of geographical information systems. Oxford
University Press, 1998.

B.L. Buzbee. A Strategy for Vectorization. Parallel Computing, 3:187–192, 1986.
J.C. Duque, R.L. Church, and R.S. Middleton. The p-Regions Problem. Geographical Analysis,

43(1):104–126, January 2011.
M.J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Transactions on

Computers, C-21(9):948–960, September 1972.
D.A.  Griffith.  Supercomputing  and  Spatial  Statistics:  A  Reconnaissance.  The Professional

Geographer, 42(4):481–492, 1990.
J. A. Hartigan. Partition by Exact Optimization. In Clustering Algorithms, chapter 6, pages 130–
142. Wiley, New York, New York, USA, 1 edition, 1975.

M.D. Hill and M.R. Marty. Amdahl s Law in the Multicore Era. Computer, 41(7):33–38, 2008.
Intel. Intel Hyper-Threading Technology. Technical Report January, Intel Corporation, 2003.
Adam Jacobs. The pathologies of big data. Communications of the ACM, 256:1–12, 2009.
T.E. Oliphant. Guide to NumPy. Provo, UT, March 2006.
S.J. Rey and L. Anselin. PySAL: A Python library of spatial analytical methods. In A. Fischer, 

M.M ; Getis, editor, Handbook of Applied Spatial Analysis, pages 175–193. Springer, 2010.
S.J. Rey, L. Anselin, R. Pahle, X. Kang, and P. Stephens. Parallel optimal choropleth map classifi-

cation in pysal. International Journal of Geographical Information Science, pages 1–17, 2013.
T. Slocum, R. McMaster, F. Kessler, and H. Howard. Thematic cartography and geovisualization.

Prentice Hall., 2008.
G. van Rossum and F.L. Drake. Python Reference Manual, 2013.
S. Wang and M.P. Armstrong. A quadtree approach to domain decomposition for spatial interpola-

tion in Grid computing environments. Parallel Computing, 29(10):1481–1504, October 2003.
S. Wang and M.P. Armstrong. A  theoretical  approach  to  the use of  cyberinfrastructure  in geo-

graphical analysis. International Journal of Geographical Information Science, 23(2):169–
193, February 2009.

C. Yang, W. Li, J. Xie, and B. Zhou. Distributed geospatial information processing: sharing distrib-
uted geospatial resources to support Digital Earth. International Journal of Digital Earth,
1(3):259–278, September 2008.

C. Yang and R. Raskin. Introduction to distributed geographic information processing research.
International Journal of Geographical Information Science, 23(5):553–560, May 2009.

C. Yang, R. Raskin, M. Goodchild, and M. Gahegan. Geospatial Cyberinfrastructure: Past, present
and future. Computers, Environment and Urban Systems, 34(4):264–277, July 2010.

C. Yang, H. Wu, Q. Huang, Z. Li, and J. Li. Using spatial principles to optimize distributed com-
puting for enabling the physical science discoveries. Proceedings of the National Academy of
Sciences of the United States of America, 108(14):5498–503, April 2011.

J. Laura and S.J. Rey

http://dx.doi.org/_6

 Part VI
 Vision and Applicability of MAT for

Geospatial Modeling and Spatiotemporal
Data Analytics

215X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_16, © Springer Science+Business Media New York 2013

 Abstract The rich details of space-time complexity in social science remain largely
unexplored because of the challenge of intensities of data and computing. The cur-
rent space-time simulation and statistics for social science research can only deal
with a limited amount of data. We introduce a pilot study about how to deploy the
modern accelerator technology and hybrid computer systems to extend the National
Institute of Justice-funded Near-repeat calculation, a typical social science applica-
tion? This pilot study demonstrates that it is promising to leverage high performance
computing for solving large-scale space-time interaction problems, which has long
been a challenging statistical issue for spatiotemporally integrated social science.

Keywords Space-time complexity • Social science • Near-repeat • High perfor-
mance computing • Spatiotemporally integrated social science

16.1 Introduction

 According to Waldo Tobler, “everything is related to everything else, but near things
are more related than distant things” (Tobler 1970). Ignoring this relationship may
lead to overlooking many possible interactions and dependence among space, time,
and attributes in decision-making and policy-generation. As a result, spatiotemporally
differentiation could be inevitably uneven when the same policy can be imple-
mented or perceived differently over space-time and by different persons, socioeco-
nomic or partisan groups.

 Chapter 16
 Pursuing Spatiotemporally Integrated Social
Science Using Cyberinfrastructure

 Xinyue Ye and Xuan Shi

 X. Ye (*)
 Department of Geography , Kent State University , Kent , OH 44242 , USA
 e-mail: xye5@kent.edu

 X. Shi
 Department of Geosciences , University of Arkansas , Fayetteville , AR 72701 , USA
 e-mail: xuanshi@uark.edu

216

 Spatial thinking has become a common interest in a growing research community
of spatiotemporally integrated social science, aiming at analyzing spatial patterns of
socioeconomic trends and the dynamics of geographical structures, in order to har-
ness large volumes of digital socioeconomic data towards improving human well-
being (Goodchild 2009 ; Ye and Rey 2011). There is growing consensus that many
socioeconomic dynamics are spatiotemporally concentrated Since resources are
always limited, socioeconomic development would have been concentrated in
 different regions but evolving in accordance with the changing market and environ-
ment. While place-based public policy has been effective (Ye and Carroll 2011 a),
location-based information is diffi cult and expensive to retrieve (Batty 2010). At the
same time, researchers have recognized that spatial and temporal components of
events should be addressed jointly instead of being treated separately (Andrienko
and Andrienko 2006 ; Goodchild 2009 ; Anselin 2012 ; Ye and Liu 2012). Researchers
thus have to pay more attention to both spatial and temporal aspects in thematic
research (Andrienko and Andrienko 2012). For example, economic events such as
massive layoffs are highly correlated across space and over time (Ye and Carroll
2011b). While many socioeconomic theories cover the space- time dimensions and
there is an increasing awareness of its importance in the empirical analysis, the rich
details of space-time complexity remain largely unexplored because of the con-
straint in computation capacity in response to the challenge of data and intensive
computing. As a result, the current space-time simulation and statistics for social
science research can only deal with a limited amount of data.

 Timely and rigorous analysis of emerging socioeconomic events will open up a
rich empirical context for the social sciences and policy interventions (Ye and
Carroll 2011 a). It is critical and helpful to understand the impact of and response to
certain socioeconomic policies and events in a timely fashion (Warf and Sui 2010).
Although integrated space-time analysis has the potential to provide an unprece-
dented opportunity to researchers in studying the socioeconomic dynamics, it raises
the research challenges on data intensive computation (White House 2012). The
current space-time simulation and statistics for social science research, however,
can only deal with a limited amount of data. As a result, the rich details of space-
time complexity remain largely unexplored partially due to the constraint in compu-
tation capacity in handling large scale data (Guo and Mennis 2009 ; Andrienko and
Andrienko 2012).

 Recent advancements in environmental criminology revealed repeat and near-
repeat phenomena among shootings. More specifi cally, the location at which a
shooting occurred and its immediate surroundings face an increased risk of experi-
encing subsequent shootings within a fairly short period of time (Ratcliffe and
Rengert 2008 ; Wells, Wu, and Ye 2012). This fi nding has direct policy relevance
because it provides cues for preventing possible subsequent shootings and can be
used to direct interventions such as increased patrol activities.

 Exploring the potential of analyzing multi-level interaction among event data to
understand the socioeconomic dynamics could lead to transformative concepts and
methodologies to advance the socioeconomic research. We introduce a pilot study
about how to deploy the modern accelerator technology and hybrid computer archi-
tecture and systems to extend the National Institute of Justice-funded Near-repeat

X. Ye and X. Shi

217

calculation formulated by Ratcliffe (Ratcliffe and Rengert 2008). The near-repeat
calculator is used to determine whether signifi cant repeat and near-repeat patterns
exist before and during the intervention at the city and district levels. This software
combines a revised Knox test (Knox 1963 , 1964) and Monte Carlo simulation pro-
cess to detect near repeat crime phenomenon. The revised Knox test divides space
(0–d) and time (0–t) into a number of bands indicating various spatial and temporal
constraints, such as from 0 to d1, from d1 to d2, from d2 to d3, and more than d3;
from 0 to t1, from t1 to t2, from t2 to t3, and more than t3. Except for the last band
for space and time, all of the bands have the same bandwidth. All pairs incidents can
be placed into a category that combines those spatial and temporal bands (e.g.,
between d2 and d3 and between t1 and t2). In other words, the number of incident
pairs in each space-time band can be identifi ed.

 A Monte Carlo simulation approach is used to randomly impute the times of
incidents, while holding their locations constant, because incidents are not assumed
to be independent. This assumption is based on previous research that reports sig-
nifi cant spatial clustering of crime. Each simulation generates a new value of the
number of incident-pairs (simulated number) in each space-time band. With many
simulations for each space-time band, all derived values form a distribution that
refl ects the expected distribution under a null hypothesis of no spatial-temporal rela-
tionship. This simulation makes it possible to calculate the number of observed
events (i.e., shooting pairs) in each bandwidth differs from the simulated number of
events. For example, if 999 simulations are run and the observed number in a spe-
cifi c space-time band exceeds the simulated numbers 989 times, the signifi cant level
is 1−[989/(999 + 1)] = 0.011. That is, the signifi cant level is very low (0.011) so the
null hypothesis is less likely to be true. Put differently, there is signifi cant space-
time clustering in this specifi c space-time band at the 0.05 level.

 Permutations are part of a numerical approach to calculate the statistical signifi -
cance of the observed value. In other words, it is used to determine how likely it
would be to observe the values of an actual distribution under conditions of spatial
randomness. To derive the relatively stable statistical signifi cance, 999 simulations
are usually adopted. This has a major impediment consisting of the computational
bottlenecks encountered when carrying out simulations for large data sets. N inci-
dents will generate N × (N−1)/2 pairs for investigation at each single run splitting
into multiple bands defi ned by space and time, with an additional 999 simulated
runs to get the statistical signifi cance for each band. When N reaches 30,000 for
example, the calculation goes beyond the capacity of Ratcliffe’s Near-repeat
Calculator and computer memory. Traditional solution over desktop computer could
hardly accomplish the calculation on such a scale of data. When a single GPU on
desktop machine is used, we accomplish the calculation and permutation in about
48.5 min. When 100 GPUs are used in Keeneland, we accomplish the calculation
and permutation in about 4 min. Building essential capability for scalable analytics
on socioeconomic trends and the dynamics of geographical patterns and events
using the Cyberinfrastructure will be critical to enable the research community affi l-
iated in the social, behavioral, and economic sciences with the capability to process
large scale of data in affordable time frame in order to advance the research in
 spatiotemporally integrated socioeconomic science.

16 Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure

218

16.2 Research Context

 The availability of large-size geo-referenced event data sets along with the high
performance computing technology has raised the fundamental challenges and
opportunities to mainstream social science research on whether and how these new
trends in data and technology can be utilized to collect thematic information and
help understand the socioeconomic dynamics, in order to enhance and advance the
research in social, economic, and behavior sciences in general. A variety of themes
can be addressed in the research of spatiotemporally integrated socioeconomic stud-
ies. Socioeconomic dynamics can be better mapped, detected, and understood
through synthesizing and analyzing event data (Warf and Sui 2010).

 There is a growing consensus that many socioeconomic dynamics is spatially
concentrated, such as unemployment and violence. Since resource is always lim-
ited, it should have been targeted in these concentrated regions. This place-based
public policy has been effective in reducing the impacts of unemployment/crimes as
well as the related social and family problems associated with them. Most recently,
researchers have recognized that spatial and temporal components of crimes should
be addressed jointly instead of being treated separately. Researchers are thus begin-
ning to pay more attention to both spatial and temporal aspects of crimes. The dis-
covery of space-time interaction among these events indicates that locations at
which unemployment/crimes have occurred and their geographical surroundings
face an elevated risk of experiencing follow-up layoffs/crimes in the immediate
aftermath of the initial layoff/crimes.

 Traditional cartographic methods and legacy spatial analysis tools might need
further improvement for mapping large amounts of event data. Mapping and analyz-
ing event data requires an innovative design of visualization methods and spatial
analysis algorithms. These research challenges may facilitate a paradigm shift in the
discipline of geography because geographers and cartographers are facing a crisis
about how to represent this new form of information. Throughout the course of this
research, we will build capability in both data intensive computing and intelligent
data mining through improved near repeat analysis. This research will build,
enhance and expand the community including researchers and participants from
broader domain science, governmental and non-profi t agencies, who share the com-
mon interest in analyzing events. Meanwhile, spatiotemporal dynamics has been a
central theme to GI Scientists (Goodchild 2004).

 Recent advancements in environmental criminology revealed repeat and near-
repeat crime phenomena whereby a victimized location and its immediate surround-
ings face an increased risk of a subsequent crime for a short period of time. The fi rst
shooting is an initiator, the follow-up shooting at the same location and close in time
with the initiator is a repeat, and the one close in space and time with the initiator is
a near-repeat (Morgan 2001). Both repeat and near-repeat phenomena have direct
implications for preventing possible follow-up shootings.

 Repeat victimizations have been characterized by Skogan as “probably the most
important criminological insight of the decade.” He claims that the “pilling up of

X. Ye and X. Shi

219

repeat multiple victimization is mostly what makes a high-crime neighborhood a
high-crime neighborhood” (Brady 1996 , p. 3). Trickett et al. (1992) explain a feasi-
ble policy implication of this research: “if high crime rates occur because of repeat
victimization, crime prevention should correspondingly focus on preventing people
who have already been victimized from being victimized again” (p. 81).

 Evidence of repeat and near-repeat phenomena has primarily been derived from
research on burglaries (Bennett and Durie 1999 ; Bernasco 2008 ; Bowers and
Johnson 2004 , 2005 ; Grubesic and Mack 2008 ; Johnson and Bowers 2004 ; Johnson
et al. 2007 ; Johnson et al. 2009 ; Sagovsky and Johnson 2007 ; Townsley et al. 2000).
Johnson and Bowers (2004), for instance, fi nd that “a burglary event is a predictor
of signifi cantly elevated rates of burglary within 1-2 months and within a range of
up to 300-400 meters of a burgled home” (p. 250). Researchers are beginning to
examine these phenomena among gun violence. In Philadelphia, Ratcliffe and
Rengert (2008) fi nd that the risk of a near-repeat shooting within 14 days and 400 ft.
of a previous shooting was elevated 33 % compared with the normal risk back-
ground. Moreover, Wells et al. (2012) fi nd signifi cant and meaningful patterns for
both repeat and near-repeat shootings in Houston.

 Repeat and near-repeat patterns of crime are evident, but theoretical explanations
and empirical tests are underdeveloped (see Maguire et al. 2008). Researchers have
proposed two rival hypotheses to explain these patterns among burglaries (Bowers
and Johnson 2004 ; Sagovsky and Johnson 2007). More specifi cally, the “fl ag” thesis
suggests that some premises have unique characteristics that attract many opportu-
nistic burglars, while the “boost” thesis states that a subsequent burglary is depen-
dent on or substantively related to the fi rst. A typical example of the “boost” thesis
is that the same offender(s), based on the experience gained during the fi rst offense,
will commit subsequent burglaries at the same dwelling or nearby dwellings
(Townsley et al. 2000). Research is just beginning to offer preliminary evidence to
support the boost thesis by using police detection data where the identities of bur-
glars are known (Bernasco 2008). Both studies fi nd that substantial percentages of
repeat and near-repeat burglaries involve the same offender(s).

 For example, incident A has a near-repeat follow-up with incident B, while inci-
dent B has a near-repeat follow-up with incident C (suppose incident C is also a
near-repeat follow-up with incident A). The near repeat calculator can identify three
space-time pairs: incident A and incident B, incident B and incident C, incident A
and incident C. The shooting chain among the three incidents (A, B, and C) fails to
be detected because only pairs are examined. However, it would be more informa-
tive to identify the three incidents as a “space-time chain” instead of three space-
time pairs. It will be more useful to identify the concentration of multiple incidents
than a concentration of two incidents. Detecting hot spots of violence can lead to
more effective police patrol deployments and can be used to evaluate policing strat-
egies, because limited policing resource can be directed the concentration of crimes.
The criterion used to identify a hot spot is the spatial concentration of events.
However, this criterion clearly misses the temporal dimension. This study suggests
integrating the merits of near-repeats (space-time interaction) and hot spot.
Nevertheless, when the scale of event goes from three to more, the computation

16 Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure

220

challenge emerges. A method for assessing space-time chain has three parameters:
spatial band, temporal band, and the number of the incidents (at least three inci-
dents). This serves a fi rst step to better our understanding of the role of space and
time among a series of events.

 From the methodological perspective, this method further implements the idea
of temporal hot spots, by combing near repeat analysis and hot spot detection meth-
ods. In other words, a temporal hot spot is formed by multiple related events (each
event has location and occurrence time), instead of only based on the locations of
events. Hence, this tool can be used to examine the effects of hot spot policing from
the policy perspective. Since the location and time of each shooting is available, the
spatial and temporal distances between any two incidents can be measured.
The distances are then divided into four groups regarding the proximity of incidents:
close in space and close in time; close in space and not close in time; not close in
space and close in time; not close in space and not close in time. The defi nitions of
proximity and “series” will be based on a predefi ned space-time band and number
of incidents. Let’s imagine the following scenario: many local police offi cers in a
city said that they were very concerned about series of shootings. According to
them, these shootings have the following features: at least three shootings occurred
within two weeks, and the spatial distance among any two shootings is less than one
mile. To fi nd out whether such patterns exist and whether they are statistically sig-
nifi cant, intensive simulation is expected. The signifi cant existence of paired shoot-
ings does not mean the signifi cant existence of multiple shootings in the same
space-time band. Otherwise, all the initiators or follow-up shootings should be
close to each other and these shootings should form one spatial cluster in a city.
However, it is far from the truth.

 First, for each shooting, we can identify some possible follow-up shootings which
are within its spatial-temporal band, and a fi ltering technique can be applied to retrieve
a shooting list. This fi ltering technique is the core of the chain calculator. 1 Multiple
shootings need to be retrieved to form a space-time chain (shooting list). This fi ltering
technique is designed as follows: the most immediate (by time order) follow-up shoot-
ing will be selected as the second shooting in the list. A third shooting will also be
chosen by time order, but at the same time it needs to be within one mile to both the
fi rst and second shootings. If this spatial criterion cannot be met, the next shooting by
the time order will be chosen and the spatial distance between the candidate shooting
and each of the shootings in the list will be calculated until both spatial and temporal
criteria are met. This fi ltering is applied until the shooting list has three incidents or no
candidate is available. Hence, the fi nal shooting list might not include all the original
follow-up shootings. However, this procedure guarantees that any two shootings in
the list are within two weeks and one mile. In other words, the fi nal shooting list will
have three shootings which cluster in the defi ned space and time band. The number of
all possible lists is counted for each shooting (the initiator of the space-time chain).
This number is then summed, which is the number of observed space-time chains for

1 The near-repeat calculator uses a simpler fi ltering technique. The near-repeat calculator fi lters out
the shootings which are either not close in time or not close in space to the focal shooting.

X. Ye and X. Shi

221

all the shooting incidents. Finally, a Monte-Carlo test is used to evaluate whether the
number of observed space-time chains is signifi cantly larger than expected on the
basis of a random distribution of shootings in space and time.

16.3 Implementation of Near-Repeat Calculation

16.3.1 Near-Repeat Calculation by Python

 The current version utilizes NumPy, the fundamental package for scientifi c comput-
ing with Python. It contains a powerful N-dimensional array object. First this program
reads the csv fi le of incidents (spatial coordinates with time) and transforms it to an
integer array. Then both spatial and temporal distances among incidents are calculated
for each pair. In the demo, we use 5,000 as the spatial distance band, and 100 as the
temporal distance band. Five categories are specifi ed for both space and time. Hence,
the fi ve categories for space are: 0, (0, 5,000), (5,000, 10,000), (10,000, 15,000),
≥15,000. The fi rst spatial category is the same geographical location and the last one
is those beyond 15,000. The fi ve temporal categories are 0, (0, 100), (100, 200), (200,
300), ≥300. Combing these possibilities, a 5 × 5 matrix is formed. The top left corner
cell represents the pairs occurring at the same location and at the same time, while the
bottom right corner cell locate those beyond the geographical distance of 15,000 and
the temporal distance of 300. The traditional space-time interaction occurs among
paired events. In other words, we need to assign pairs to its corresponding cells with
related spatial and temporal categories. The logic for more than three events follows:
in each cell (one of 25 cells in the matrix), check how many three-event groups exist.
To be qualifi ed as a three-event group, all the three events must be within the space-
time requirement set by that cell for each pair. For example, in the cell of space (0,
5,000) and time (0, 100), if we want to put three-event: a, b, c to this cell, an event
must be with such space and time with event b, event b must have such relationship
with event c, and event c must have such relationship with event a. The solution is: (1)
fi rst run two-event test, get the record fi le (list all the pairs in the corresponding cell).
(2) For each cell, check the existing two-event pairs. For example, in the cell of space
(0, 5,000) and time (0, 100), we have (a,b), (a,c), (b,c), (c,d), and (d,e). To be qualifi ed
as a three-event, the event must appear at least twice, so a,b,c,d qualifi es and e doesn't
qualify. Then the search only limits to a, b, c, and d. Eventually we can decide only
a,b, and c can be included. This logic applies to all multiple-event series. To illustrate
the statistical signifi cance of the observed pair number, the time of incidents are relo-
cated among geographical coordinates in each run of 999 simulations. A loop is used
in the program which allows each pair of incidents to be examined one by one. This
procedure put the risk of computation time and complexity at the size of incidents,
because the intensive-computation part of the program cannot run simultaneously.
When the size of events reaches 30,000, paired events calculation with 999 simula-
tions will collapse.

16 Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure

222

16.3.2 High Performance Solution Over GPU and Keeneland 2

 Emerging advanced computing technologies such as Graphics Processing Units
(GPUs), many-core chips such as Intel Many Integrated Core (MIC) architecture,
and heterogeneous computer systems such as Keeneland and Blue Waters that com-
bine accelerators and multi-core nodes, can accelerate scientifi c computation.
Today’s GPU is high-performance many-core processor. GPUs are designed as gen-
eral purpose parallel processor with support of accessible programming interfaces
and standard programming languages. Impressively as Prof. Jack Dongarra indi-
cated, “GPUs have evolved to the point where many real world applications are
easily implemented on them and run signifi cantly faster than on multi-core systems.
Future computing architectures will be hybrid systems with parallel-core GPUs
working in tandem with multi-core CPUs”. Keeneland is a powerful hybrid system
sponsored by NSF. At the time of its release in 2010, it ranked 118th in the list of
top 500 supercomputers in the world. Keeneland is composed of an HP SL-390
(Ariston) cluster with Intel Westmere hex-core CPUs, NVIDIA Fermi GPUs, and a
Qlogic QDR Infi niBand interconnect. The system has 120 nodes with 240 CPUs
and 360 GPUs. Each node has 2 Westmere hex-core CPUs, while each CPU has 67
GFLOPS of computing power and three GPUs. Each GPU can generate 515
GFLOPS of computing power. Every four nodes are placed in the HP S6500 Chassis,
and every six Chassis is placed in a rack. In total, seven racks are included in the
Keeneland system. The Keeneland full-scale system was added to the XSEDE in
July 2012.

 We have successfully implemented the near-repeat calculation for two event
chains over a sample data with 32,507 records on a desktop GPU and the Keeneland,
a supercomputer with hybrid architecture that has 240 CPUs and 360 GPUs spon-
sored by NSF. Through a re-engineering process, the near-repeat calculation is fi rst
parallelized on to a NVIDIA GeForce GTX 260 GPU, which has 27 streaming mul-
tiprocessors (SM). Each SM has eight CUDA cores as streaming processor (SP). In
this GTX 260 with a compute capability of 1.3, up to 1,024 threads can be assigned
to each SM. Thus a maximum of 1,024 × 27 = 27,648 threads can run in parallel.

 Keeneland is a powerful hybrid system jointly developed by Georgia Institute of
Technology, the University of Tennessee at Knoxville and the Oak Ridge National
Laboratory through sponsorship from NSF. Keeneland is composed of an HP
SL-390 (Ariston) cluster with Intel Westmere hex-core CPUs, NVIDIA 6 GB Fermi
GPUs, and a QLogic QDR Infi niBand interconnect. The system has 120 nodes with
240 CPUs and 360 GPUs. Each node has 2 Westmere hex-core CPUs, while each
CPU has 67 GFLOPS of computing power and three GPUs. Each GPU can generate
515 GFLOPS of computing power. Every four nodes are placed in the HP S6500
Chassis, and every six Chassis is placed in a rack. In total, seven racks are included
in the Keeneland system

2 This work was supported partially by the National Science Foundation through the award
OCI-1047916.

X. Ye and X. Shi

223

 When the near-repeat calculation is parallelized for calculating two event chains
over desktop GPU, while a duplication of the paired values occurs on the GPU side,
the duplicated pairs can be eliminated during the integration process on the CPU
side. It takes about 48.5 min to complete the entire calculation and simulation pro-
cesses for a 1,000 runs. Furthermore, the near-repeat calculation was implemented
on the Keeneland. Through a combination of MPI and GPU programs, we can
 dispatch the simulation work onto multiple nodes in Keeneland to accelerate the
simulation process. We use 100 GPUs on Keeneland to implement 1,000 simula-
tions. It spends about 264 s to complete this task. If more GPUs were used, the
simulation time can be reduced expectedly.

16.4 Conclusion

 The importance of space to many socioeconomic theories has been gaining atten-
tion and recognition (Krugman 1999 ; Goodchild et al. 2000 ; Rey and Ye 2010). The
fast growth in socioeconomic dynamics analysis is increasingly seen as attributable
to the availability of space-time datasets (Goodchild and Glennon 2008). Research
in the spatiotemporally integrated socioeconomic dynamics covers a variety of
themes across multiple disciplines coupled with complex methodologies (Stefanidis
et al. 2011). However, spatial social scientists have been slower to adopt and imple-
ment new spatiotemporally explicit methods of data analysis due to the lack of data
and computation power, which becomes a major impediment to promote successful
place-based policy implementation and evaluation. The vision and pilot study in this
paper aims to develop the computational capability of exploring space-time socio-
economic measurements based on event data, which lend support to the notion that
space and time cannot be meaningfully separated. This research bridges emerging
advanced computer infrastructure and computing technology with socioeconomic
analysis, which is among the burgeoning efforts seeking the cross-fertilization
among multiple fast-growing interdisciplinary communities. This research will
especially build computing capability to develop, evaluate, and implement a frame-
work to comprehensively quantify the changes and level of hidden variation of
space-time event datasets.

 This pilot study demonstrates the promising feature of high performance
 computing on the solution of large-scale space-time interaction, which is a chal-
lenging statistical issue in spatiotemporally integrated social science. Researchers
are beginning to pay more attention to both spatial and temporal aspects of large
amounts of event data. The discovery of repeat and near-repeat phenomena among
events is a typical example. A growing list of literature, for instance, has made sig-
nifi cant contributions to identifying repeat and near-repeat patterns of crimes. These
research fi ndings appeal to police and crime prevention specialists, because of their
potential to improve policing policies on detecting the crime hot spots. More spe-
cifi cally, this research provides cues for preventing possible follow-up shootings
and can thus be used to direct police activities at fi ner spatiotemporal scales.

16 Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure

224

Research on repeat and near-repeat shootings will provide practical information on
gun violence prevention. The analysis will directly guide limited police resources to
be prioritized in risky locations during risky time periods once a shooting occurs.
Nevertheless, to date, little is known about how a series of events are formed at the
statistical level due to the lack of such intensive computation design. The statistical
limitation of repeat and near-repeat analysis should be noted. For example, this
statistical analysis can be considered as a before-and-after analysis of a specifi c type
of event in any specifi c location and its vicinity. The assumption is that the space-
time pattern of such events at any location and its vicinity is random before a shoot-
ing occurs. After the shooting, a spatial cluster of arrests is expected near or at the
same location. Given that these concentrations of shootings occur in high-crime
areas, a series of events, instead of paired events, should be expected (policing
activities, followed by shootings, and then by additional police responses). To deal
with such time-series spatial data in the context of big data, computation capability
is a must. The near repeat test only determines whether there are more event-pairs
in a close proximity of space and time than would be expected on the basis of a
random distribution. The challenge is that the linkage beyond paired events is
ignored in the near-repeat analysis. Space-time chain is defi ned as a series of more
than three incidents which signifi cantly cluster in space and time. However, it is
very computational-intensive to do so. Given the example for a sample data with
30,000 events, near repeat calculation and simulation can be a petascale (10 15) prob-
lem to derive all three event chains, or one run of fi ve event chain calculation is over
exascale (10 18). With the aid of high performance computing, space-time based pre-
ventive patrol and social service towards the most at-risk offenders and places can
be much more effi ciently implemented by utilizing limited resources.

 Through building the capability to explore and compare the potential interactions
among emerging themes of event data across different space-time scales and dimen-
sions, this analysis can motivate new queries that are worthy of additional research
(Sun et al. 2011). Such data intensive analysis enables access to a much wider think-
ing which addresses the role of dimensions and scales at different stages of socio-
economic dynamics for more in-depth study. Through exploratory endeavors, this
study will motivate social scientists to formulate and verify new hypotheses from
theoretical and policy perspectives. This space-time work provides an important
contribution to the current spatial science sciences literature, which lacks both real-
time data and computation power. The proposed research can also be applied to a
wide set of socioeconomic processes with geo-referenced data measured over time.
The project will contribute to the promotion of the next generation scientists who
have interdisciplinary knowledge and advanced skills for data and computational
social science research.

X. Ye and X. Shi

225

 References

 Andrienko, N., & Andrienko, G. (2006). Exploratory Analysis of Spatial and Temporal Data:
A Systematic Approach. Berlin: Springer

 Andrienko, N., & Andrienko, G. (2012). A visual analytics framework for spatio-temporal analysis
and modeling. Data Mining and Knowledge Discovery, 1–36. doi: 10.1007/s10618-012-0285-7

 Anselin, L., From SpaceStat to CyberGIS. (2012). Twenty Years of Spatial Data Analysis Software.
International Regional Science Review, 35(2),131–157

 Batty, M. (2010). The pulse of the city. Environment and Planning B: Planning and Design,
37(4):575–577. doi: 10.1068/b3704ed

 Bennett, T., & Durie, L. (1999). Preventing Residential Burglary in Cambridge : From Crime
Audits to Targeted Strategies (Police Research Series Paper 108). London: Home Offi ce

 Bernasco, W. (2008). Them again?: Same-offender involvement in repeat and near repeat burglar-
ies. European Journal of Criminology , 5 , 411–431

 Bowers, K. J., & Johnson, S. D. (2004). Who commits near repeats? A test of the boost explana-
tion. Western Criminology Review , 5 , 12–24

 Bowers, K. J., & Johnson, S. D. (2005). Domestic burglary repeats and space-time clusters.
 European Journal of Criminology , 2 , 67–92

 Brady, T. V. (1996). Measuring what matters part one : Measures of crime , fear and disorder
(National Institute of Justice: Research in Action Series). Washington: US Department of
Justice

 Goodchild, M. F., Anselin, L., Appelbaum, R., & Harthorn, B. (2000). Toward spatially integrated
social science. International Regional Science Review, 23 , 139–159

 Goodchild, M. F. (2004). GIScience, geography, form, and process. Annals of the Association of
American Geographers 94(4),709–714

 Goodchild, M. F. (2009). Geographic information systems and science: today and tomorrow.
Annals of GIS, 15(1), 3–9. doi: 10.1080/19475680903250715

 Goodchild, M. F., & Glennon, A. (2008). Representation and computation of geographic dynamics.
In K.S. Hornsby & M. Yuan (Ed.), Understanding Dynamics of Geographic Domains
(pp. 13–30). Boca Raton: CRC Press

 Grubesic, T. H., & Mack, E. A. (2008). Spatiotemporal interaction of urban crime. Journal of
Quantitative Criminology, 24 , 285–306

 Guo, D., & Mennis, J. (2009). Spatial data mining and geographic knowledge discovery-An intro-
duction, Computers. Environment and Urban Systems, 33(6), 403–408

 Johnson, S. D, & Bowers, K. J. (2004). The burglary as clue to the future: The beginnings of
 prospective hot-spotting. European Journal of Criminology , 1 , 237–255

 Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J. H., Rengert, G. F., & Townsley,
M. (2007). Space-time patterns of risk: A cross national assessment of residential burglary
victimization. Journal of Quantitative Criminology , 23 , 201–219

 Johnson, S. D., Summers, L., & Pease, K. (2009). Offender as forager? A direct test of the boost
account of victimization. Journal of Quantitative Criminology , 25 , 181–200

 Knox, G. (1963). Detection of low intensity epidemicity: Application to cleft lip and palate. British
Journal of Preventive and Social Medicine , 17 , 121–27

 Knox, G. (1964). Epidemiology of childhood leukaemia in Northumberland and Durham. British
Journal of Preventive and Social Medicine , 18 , 17–24

 Krugman, P. (1999). The role of geography in development. International Regional Science
Review, 22(2), 142–161

 Maguire, E. R., Willis, J. A., Snipes, J. B., & Gantley, M. (2008). Spatial concentrations of vio-
lence in Trinidad and Tobago. Caribbean Journal of Criminology and Public Safety , 13 , 48–92

 Morgan, F. (2001). Repeat burglary in a Perth suburb: Indicator of short-term or long-term risk? In
G. Farrell, & K. Pease (Ed.), Repeat Victimization (pp. 83–118). Monsey, New York: Criminal
Justice Press

16 Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure

http://dx.doi.org/10.1007/s10618-012-0285-7
http://dx.doi.org/10.1068/b3704ed
http://dx.doi.org/10.1080/19475680903250715

226

 Ratcliffe, J. H., & Rengert, G. F. (2008). Near-repeat patterns in Philadelphia shootings. Security
Journal , 21 , 58–76

 Rey, S. J. & Ye, X. (2010). Comparative spatial dynamics of regional systems. In Pàez, A., Gallo, J.
L., Buliung, R., & Dall’Erba, S. (Ed.), Progress in Spatial Analysis: Methods and Applications
(pp.441–463). London, New York: Springer

 Sagovsky, A., & Johnson, S. D. (2007). When does repeat burglary victimization occur? The
Australian and New Zealand Journal of Criminology , 40 , 1–26

 Stefanidis, A., Crooks, A., & Radzikowski, J. (2011). Harvesting ambient geospatial information
from social media feeds. GeoJournal. doi: 10.1007/s10708-011-9438-2

 Sun, A., Valentino-DeVries, J., & Seward, Z. (2011). A week on Foursquare. The Wall Street
Journal. Available online at: http://graphicsweb.wsj.com/documents/FOURSQUAREWEEK
1104/ [Last Accessed 11/12/2011]

 Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region.
 Economic Geography , 46 , 234–240. doi: 10.2307/143141

 Townsley, M., Homel, R., & Chaseling, J. (2000). Repeat burglary victimization: Spatial and
 temporal patterns. Australian and New Zealand Journal of Criminology , 33 , 37–63

 Trickett, A., Osborn, D. R., Seymour, J., & Pease, K. (1992). What is different about high crime
areas? British Journal of Criminology , 32 , 81–89

 Warf, B., & Sui, D. (2010). From GIS to neogeography: ontological implications and theories of
truth. Annals of GIS, 16, 197–209

 Wells, W., Wu, L., & Ye, X. (2012). Patterns of near-repeat gun assaults in Houston. Journal of
Research in Crime and Delinquency, 49, 186–212

 White House (2012). Executive Offi ce of the President (March 2012). “Big Data Across the
Federal Government”. White House. http://www.whitehouse.gov/sites/default/fi les/microsites/
ostp/big_data_fact_sheet_fi nal.pdf (Last Access on: 01-29-2013)

 Ye, X., & Carroll, M. (2011a). Exploratory space-time analysis of local economic development.
Applied Geography, 31, 1049–1058

 Ye, X., & Carroll, M. (2011b). Warn notice toolbox: open-source geovisualization of large lay-off
events, GeoInformatics 2011 proceedings DOI: 10.1109/GeoInformatics.2011.5981136

 Ye, X., & Liu, L. (2012). Special issue on Spatial crime analysis and modeling, Annals of GIS,
18(3), 157–241

 Ye, X., & Rey, S. J. (2011). A framework for exploratory space-time analysis of economic data.
Annals of Regional Science. DOI: 10.1007/s00168-011-0470-4

X. Ye and X. Shi

http://dx.doi.org/10.1007/s10708-011-9438-2
http://graphicsweb.wsj.com/documents/FOURSQUAREWEEK1104/
http://graphicsweb.wsj.com/documents/FOURSQUAREWEEK1104/
http://dx.doi.org/10.2307/143141
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final.pdf
http://dx.doi.org/10.1109/GeoInformatics.2011.5981136
http://dx.doi.org/10.1007/s00168-011-0470-4

227X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_17, © Springer Science+Business Media New York 2013

 Abstract Simulating urban land-use changes involves both high modeling and
computational complexities. This paper focuses on a typical spatio-temporal model-
ing method that has been commonly used in urban land-use change studies—
Cellular Automata (CA). After reviewing the recent development of utilizing
various parallel computing technologies (e.g., computer clusters and Graphics
Processing Unit [GPU]) in CA-based urban models, this paper presents a pilot
study, in which a classical CA model, the Game of Life, was implemented as a par-
allel program over the GPU/CPU heterogeneous cluster architecture, and 300+
speed-up was achieved using 20 GPUs. In conclusion, emerging high-performance
computing technologies, such as GPU/CPU heterogeneous cluster architecture, pro-
vide promising potentials to overcome the computing obstacle of urban land-use
change models, and enable researchers to examine, validate and advance urban
land-use change theories and derive sound urban planning strategies. To effi ciently
utilize the computing power of the GPU/CPU clusters, hybrid parallelism must be
implemented to coordinate the computing among GPU/CPU nodes, as well as
among the threads on each GPU. However, implementing such hybrid parallelism is
challenging for its high development complexity.

 Keywords Parallel computing • GPU • Heterogeneous cluster architecture • Urban
• Land-use change

 Chapter 17
 Opportunities and Challenges for Urban
Land-Use Change Modeling Using
High- Performance Computing

 Qingfeng Guan and Xuan Shi

 Q. Guan (*)
 Faculty of Information Engineering , China University of Geosciences (Wuhan) ,
 Wuhan , Hubei 430074 , China
 e-mail: guanqf@cug.edu.cn

 X. Shi
 Department of Geosciences , University of Arkansas , Fayetteville , AR 72701 , USA
 e-mail: xuanshi@uark.edu

228

17.1 Introduction

 Simulating urban land-use changes (LUC) has been a challenging task because of the
spatiotemporal complexities of interrelationships and interactions between the urban
land system and related natural/socioeconomic systems. The diffi culty of modeling
urban LUC can be aggravated by the massive computational intensity caused by
complicated algorithms and large datasets that are often required in the simulation.
Some large scale simulations have been infeasible because they are computationally
intractable using conventional desktop computers.

 In order to reduce both the modeling and computational complexities in spatio-
temporal simulations, researchers often had to make subjective and/or simplifying
assumptions. However, such simplifying approaches had raised some serious scien-
tifi c questions in regard to the validity and soundness of the fi ndings resulted from
these models, because whether these assumptions could generate reliable calibra-
tion and simulation results and lead to unbiased and accurate scientifi c conclusions
has not been suffi ciently studied yet. To investigate the potential problems and
advance our understanding and theories of urban land dynamics, we must devise
approaches to reduce, or even eliminate, these assumptions.

 Recent advancements in high-performance computing (HPC) infrastructure pro-
vide potential solutions to the above problems. Emerging advanced computing tech-
nologies, such as Graphics Processing Units (GPUs) and heterogeneous cluster
computing systems that combine multiple GPU accelerators and Central Processing
Units (CPUs), have been signifi cantly improving the performance of scientifi c com-
putation in a variety of domains. Therefore, it is time for geographers and geospatial
scientists to examine, validate and advance urban LUC theories as the technological
solutions and computing infrastructure are increasingly mature and effi cient for
such kind of investigations.

17.2 Spatiotemporal Modeling of Urban Land-Use Changes

 Many approaches exist to model urban land-use changes and associated natural and
socio-economic dynamics. A large proportion of them are based on variants of the
Cellular Automata (CA) model, a discrete computational model used to simulate
dynamic spatial processes through a set of transition rules. A classical CA model
has a set of identical elements, called cells. Each cell is located in a regular, discrete
space, called a cellspace. Each cell is associated with a state within a fi nite set. The
model evolves in discrete time steps, changing the states of all its cells according to
transition rules, homogeneously and synchronously applied at every step. The new
state of a certain cell depends on the previous states of the cells within its neighbor-
hood. CA models have been widely used in geographic research to simulate com-
plex spatiotemporal phenomena, including land-use and land-cover change (Batty

Q. Guan and X. Shi

229

et al. 1999 ; Couclelis 1997 ; Wu and Webster 1998 ; Li and Yeh 2000 ; Liu and Phinn
 2003), wildfi re propagation (Clarke et al. 1995), and freeway traffi c (Nagel and
Schreckenberg 1992 ; Benjamin et al. 1996).

 A typical example is the SLEUTH model, one of the most widely used urban
LUC models (Clarke et al. 1997 ; Clarke and Gaydos 1998 ; Silva and Clarke 2002).
The core of SLEUTH is an urban growth model, which uses a modifi ed CA to simu-
late the spread of urbanization across a landscape. The behavior of the simulation is
determined by fi ve parameters (also termed coeffi cients), each ranging from 0 to 100.
Four growth rules are applied in sequence on the space during each growth cycle,
which represents a year of urban growth. 1

 Calibration is needed to determine the appropriate parameter values so that
SLEUTH can produce realistic simulation results. The basic calibration procedure of
SLEUTH uses the brute-force method, which statistically compares multiple test
results produced using combinations of parameter values with the real historical data-
set, in order to determine the best-fi t parameter combination(s). In addition, to simulate
the random processes during urban growth, the Monte Carlo method is applied multi-
ple times, and the outcomes are stored as the cumulative probabilities of change over
multiple runs. In practice, 10–100 Monte Carlo iterations for each parameter combina-
tion are suggested, although fewer may be better than more (Goldstein et al. 2005).

 All of the above together make the calibration highly computationally intensive. A
12-year (1986–1998) simulation over a small-sized dataset (2,074 × 486) of Santa
Barbara County in California took only 1 seconds to complete on a desktop PC.
However, a comprehensive calibration over the same dataset and time period to exam-
ine all 101 5 parameter combinations with only 1 Monte Carlo iteration was estimated
to take over 300 years to complete. This places the SLEUTH model at the edge of
computational tractability. The current version of SLEUTH model uses a simplifying
assumption to ignore those “unimportant” parameter values during seeking the best-fi t
combination(s), which is that the parameters affect the simulation results in a linear
manner. However, due to the random processes involved in the transition rules, the
relationships between the parameters/factors and LUC simulations are very likely
non-linear. Thus the calibration results based on such simplifying assumptions are
hardly fact-proven (due to the incomprehensive calibration), less reliable, and may
lead to inaccurate scientifi c conclusions and improper land management decisions
(Dietzel and Clarke 2007).

 Alternatively, researchers have used Computational Intelligence (CI) methods to
either seek the best-fi t parameter combination(s) without evaluating all the combi-
nations, or construct transition rules for the model (see for example Li and Yeh
 2002 ; Wu and Silva 2010 ; Liu et al. 2010 ; Li et al. 2013). However, the computa-
tional burden of CA itself is not diminished by CI methods, and the computational
intensity may still exceed the capacity of a desktop computer when using complex
transition rules and massive datasets.

1 For details, see http://www.ncgia.ucsb.edu/projects/gig/About/gwRules.htm .

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

http://www.ncgia.ucsb.edu/projects/gig/About/gwRules.htm

230

17.3 Exploratory Studies on High-Performance Spatial CA

17.3.1 Parallel Spatial CA

 The classical CA model has been recognized to be a natural parallel computing
system as the transition rules are applied to the cells homogeneously and synchro-
nously in parallel (Bandini et al. 2001). The cellspace can be easily decomposed
into a set of small sub-cellspaces and assigned onto multiple computing units
(e.g., CPUs and CPU cores) to be processed simultaneously. Several general par-
allel CA-based simulation systems have been developed. Examples include the
Cellular Automata environment for systEms ModeLing (CAMEL) and CellulAR
Programming EnvironmenT (CARPET) language (Spezzano and Talia 1999), and
Cell Driver, a CA modeling module of NEMO (Hecker et al. 1999). Both CAMEL
and Cell Driver were built based on the Message Passing Interface (MPI), a
generic parallel programming library that is available on most parallel computing
systems.

 Guan and Clarke (2010) developed an open-source general-purpose parallel
Raster Processing programming Library (pRPL), for non-specialist scientists to
easily parallelize their own raster processing algorithms. pRPL supports multi-
layer algorithms that are commonly used in geospatial applications, including spa-
tial CA. pRPL provides multiple data decomposition methods, including a
spatially- adaptive quad-tree-based (QTB) decomposition method for situations
when the computational intensity is extremely heterogeneous over space. pRPL
also automatically takes care of some complicated processes that are required in
parallel computing, e.g., communication, synchronization and load-balancing, thus
provides transparent parallelism for users. A parallel urban LUC model, pSLEUTH,
was developed based on the SLEUTH model using pRPL. Experiments with real-
world datasets showed that pSLEUTH greatly reduced the computing time for the
calibration process, achieving a speed-up of 24 using 32 CPU cores on a computer
cluster composed of 128 dual CPU 3.06 GHz Xeon nodes with 2 GB RAM each.

 However, all above parallel CA systems are based on conventional CPU-only
parallel computing architectures such as multi-core CPUs and computer clusters.
Large-scale parallel computing facilities are extremely expensive and require tre-
mendous amount of fi nancial and labor investments, and very limited to public
access. Also, the waiting time in a job queue on a computer cluster may exceed the
actual computing time, which makes the performance gain from parallel computing
less meaningful. An emerging accelerator technology, GPU with the Compute
Unifi ed Device Architecture (CUDA), is able to accelerate the computation pro-
cesses by deploying hundreds of computing cores on the GPU with very low costs.
A PC equipped with a GPU is considerably cheaper than a computer cluster that has
the same number of cores. GPUs are very suitable for parallel matrix manipulation
and processing, which is similar to CA computing. Some efforts have been made to
implement CA models on GPUs, which generated high speed-ups (Thor 2008 ; Li
et al. 2012). Moreover, the heterogeneous computer cluster architecture can

Q. Guan and X. Shi

231

generate massive computing power by coordinating a set of computational nodes
that consists of one or more CPU(s) and GPU(s). The heterogeneous cluster archi-
tecture has been adopted to build high-end computing platforms to handle super
large-scale scientifi c and engineering computation.

17.3.2 Accelerating CA on GPUs and Heterogeneous
Computer Systems

 In order to explore the possibility and validity of utilizing the emerging HPC tech-
nologies in urban LUC studies, we have successfully prototyped parallel CA mod-
els on both GPU-equipped PCs and GPU/CPU heterogeneous clusters. The Game
of Life (GOL) is a well-known classical CA model. Based on the transition rule, a
cell can live or die depending on the condition of its 3 × 3 neighborhood. As a result,
the living status of the cells can represent various spatial patterns throughout the
course of iterations. The pseudo code of the GOL’s transition rule is as follows:

 FUNCTION Transition (cell, time_t)
 n = number of alive neighbors of cell at time_t
 IF cell is alive at time_t
 IF n ≥ 4
 THEN cell dies of overcrowding at time_t+1
 IF n ≤ 1
 THEN cell dies of loneliness at time_t+1
 IF n = 2 OR n = 3
 THEN cell survives at time_t+1
 ELSE (i.e., cell is dead at time_t)
 IF n = 3
 THEN cell becomes alive (i.e., born) at time_t+1

 In Table 17.1 , the leftmost fi gure displays the initial status for a 10,000 by 10,000
matrix in which half of the matrix would contain living cells. After 100 iterations,
many cells may die and the right-most fi gure displays the result of the simulation.

 Here we introduce the steps taken to create effi cient parallel implementations of
GOL. In order to ensure that all solutions generate the same result, we create a
matrix fi le that contains the initial living status of randomly generated cells. All ver-
sions of the program share a similar initialization phase where this matrix fi le is read
into the appropriate array or arrays in the case of the MPI/CUDA program. Each of
the programs was benchmarked against the same set of matrices for 100 iterations.
We tested all solutions using the matrix that has a dimension of 10,000 × 10,000,
which was initially seeded with half of them as living and half dead.

 The GOL was fi rst implemented in a serial C program. A 100-iteration simula-
tion over a 10,000 × 10,000 cellspace was accomplished in about 100 minutes on a
desktop PC with a 1.60 GHz dual-core CPU. Within the serial C program, for each
iteration, each cell will change its living status by examining the living status of its
neighbors. Finally the number of living cells is accumulated.

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

232

 Table 17.1 t = 0 [left] through t = 99 [right]

 The GOL was then parallelized into a CUDA program, called GPU-GOL. The
GOL’s transition rule was implemented as a kernel function. During the simulation,
a large number of computational threads are simultaneously invoked on the GPU,
each executing an instance of the kernel and applying the transition rule on a small
proportion of the whole cellspace.

 Since counting the living cells is a sequential process, it was fi rst excluded from
the GPU kernel program that implements the transition rules of GOL, while count-
ing the neighbors is a device function. After the result is copied back from device to
host, the total number of living cells will be counted in sequential process. The
GPU-GOL experiments were conducted on a desktop PC with a NVIDIA GeForce
GTX 260 GPU, which has 27 streaming multiprocessors (SM), and is able to run up
to 27,648 threads in parallel. The simulation at a size of 10,000 × 10,000 for 100
iterations took about 6 minutes to complete, achieving a speed-up of 16.7.

 Further improvement was taken to implement the process of counting the num-
ber of living cells through atomicAdd function within the kernel program. GOL
simulation at a size of 10,000 × 10,000 for 100 iterations can be completed in about
22 seconds on a single Tesla C2075 Fermi GPU or a single Tesla K20 Kepler GPU,
achieving a speedup of 13 in comparison to GTX 260. When shared memory was
utilized, better performance could be achieved even over a single GPU, though fur-
ther examination needs to be conducted to validate the solution over different
platforms.

 Since a single GPU may not effi ciently handle the scalability of computation due
to the memory limit on individual GPU, we would like to explore the potential of
utilizing multiple GPUs to resolve this problem. Keeneland’s hybrid architecture
exemplifi es its superiority in manipulating the large scale cellular automation com-
putation like GOL. Keeneland is composed of an HP SL-390 (Ariston) cluster with
Intel Westmere hex-core CPUs, NVIDIA 6GB Fermi GPUs, and a Qlogic QDR
Infi niBand interconnect. The system has 120 nodes, each with two CPUs and three
GPUs, while all CPUs and GPUs are bridged together through one I/O hub from
which the CPUs can read/write data.

 To effi ciently utilize and manage the GPU resources in Keeneland, we imple-
mented a combination of MPI and CUDA programs to parallelize the GOL compu-
tation on 20 GPUs. Although the CUDA kernel for this implementation is nearly
identical to what is implemented in the single-GPU program, data communication
become a serious problem due to the strong dependency between the data segments
distributed onto different GPU processors.

Q. Guan and X. Shi

233

 A row-based data partitioning approach was applied to distribute data segments
onto multiple GPUs. We tried to decompose the entire matrix into multiple sections
based on the number of GPUs we utilized. In this case, each MPI process reads in a
unique portion of the matrix fi le based on process rank. When the original matrix is
split in this way and updated separately on different GPUs, each GPU needs to
obtain extra rows of information hosted by the other processors because the state of
the cells along the matrix boundaries are dependent upon cells which now are in
other sub-matrices handled by different MPI processes.

 In order to exchange these boundary rows between the neighboring processors,
we applied the SEND and RECV functions in MPI for sending and receiving the
boundary rows (i.e. head and tail for each block of the grid) between neighboring
processors ranked in MPI, and then copying these rows to the GPU memory.
Script 17.1 describes how to handle the data transfer between the host CPU and
the GPU, and coordinate the computational threads on the GPU. For each itera-
tion, SEND and RECV functions are fi rst implemented to construct the local data
segments to be calculated on each node. The GPU on each node executes the
kernel function (i.e., the transition rule) covering one portion of the matrix.

 for(k = 0; k <ITERATION ; k++) {
 if (myrank % 2 == 1) {
 // send tail and receive head
 MPI_Send(...);
 MPI_Recv(...);
 // send head and receive tail
 MPI_Send(...);
 MPI_Recv(...);
 }
 else {
 // receive head and send tail
 MPI_Recv(...);
 MPI_Send(...);
 // receive tail and send head
 MPI_Recv(...);
 MPI_Send(...);
 }

 Script 17.1 Implementing SEND/RECV for data exchange in MPI program

 When 20 GPUs on Keeneland were used, a 100-iteration GOL with a size of
10,000 × 10,000 was completed in 20 seconds. The results were the same as what
was generated by the serial C program and GPU-GOL. In short, the computing time
was signifi cantly reduced from 100 minutes to 20 seconds, achieving a speed-up of
300. When the atomicAdd approach was applied, GOL over the same size of matrix
can be accomplished in about 2 seconds when 20 GPUs were used.

 The parallel solution over heterogeneous computer architecture and systems
have shown promising prospect to break through the computational bottleneck of
CA models that include complex transition rules and use massive datasets. By

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

234

simply changing the CA’s transition rules to simulate more complex spatiotemporal
processes, we may use such an approach to conduct some large-scale urban LUC
simulations within a practical length of time.

17.4 Conclusion

 Modeling the spatiotemporal dynamics of land use and land cover in the urbaniza-
tion process often involves complex algorithms and large volume of datasets, which
greatly increases the computational intensity, hence sometimes requires unfeasibly
long computing time. Simplifying assumptions have been used in previous studies
to reduce the computational intensity, but they may generate unreliable results and
lead to inaccurate scientifi c conclusions and improper land management decisions.
Emerging high-performance computing technologies, such as GPU and GPU/CPU
heterogeneous cluster architecture, provide promising potentials to overcome the
computing burden of urban LUC models, thus to enable researchers to examine,
validate and advance urban LUC theories and derive sound urban planning strate-
gies. To effi ciently utilize the computing power of the GPU/CPU heterogeneous
clusters, hybrid parallelism must be implemented to coordinate the parallel comput-
ing among GPU/CPU nodes, as well as among the threads on each GPU. However,
implementing such hybrid parallelism is challenging for its high development com-
plexity in integrating MPI and CUDA.

 In this pilot study, we demonstrated the potential for accelerating CA applications
using parallel implementation on hybrid computer clusters. While parallel imple-
mentation of CA through MPI + GPU has achieved signifi cant performance improve-
ment, the emerging new architecture of Intel’s Many-Integrated Core (MIC) could
be another potential accelerator technology for urban LUC simulations. It was
found from our other initiatives that the simple MPI-direct-host programming
model on Intel MIC cluster can achieve a performance equivalent to the MPI + GPU
model on GPU clusters when the same number of processors are allocated for
Kriging interpolation calculation and for unsupervised image classifi cation.

 Exploring effi cient cross-node communication mechanism could be a key com-
ponent in the future work so as to achieve a strong scalability for CA-based applica-
tions running on multiple parallel nodes. For example, the latest Tesla K20 Kepler
GPU is able to outperform the Fermi GPU for most applications without special
performance tuning. However, K20’s direct cross-GPU communication mechanism
needs to be explored and deployed to enhance CA-based modeling that has inten-
sive data communication between the nodes. Meanwhile solutions based on Intel
MIC architecture is worthy to try since each MIC core has direct support of MPI,
making it straightforward to port MPI + CPU code to MIC cluster to achieve signifi -
cant performance improvement. Exploring a combination of MPI and OpenMP
solutions will help handle inter-node and intra-node communications to effi ciently
utilize the heterogeneous computer architecture and systems.

Q. Guan and X. Shi

235

 Acknowledgements This research was supported partially by the National Science Foundation
through the award OCI-1047916.

 References

 Bandini, S., Mauri, G. & Serra, R., 2001. Cellular Automata: From a Theoretical Parallel
Computational Model to Its Application to Complex Systems. Parallel Computing , 27,
pp. 539–553.

 Batty, M., Xie, Y. & Sun, Z., 1999. Modeling urban dynamics through GIS-based cellular autom-
ata. Computers, Environment and Urban Systems , 23(3), pp.205–233.

 Benjamin, S.C., Johnson, N.F. & Hui, P.M., 1996. Cellular automata models of traffi c fl ow along
a highway containing a junction. Journal of Physics A: Mathematical and General , 29(12),
pp.3119–3127.

 Clarke, Keith C. & Gaydos, L.J., 1998. Loose-coupling a Cellular Automaton Model and GIS:
Long-term Urban Growth Prediction for San Francisco and Washington/Baltimore.
 International Journal of Geographical Information Science , 12(7), pp.699–714.

 Clarke, Keith C., Hoppen, S. & Gaydos, L., 1997. A Self-modifying Cellular Automaton Model of
Historical Urbanization in the San Francisco Bay Area. Environment and Planning B: Planning
and Design , 24(2), pp.247–261.

 Clarke, Keith C., Riggan, P. & Brass, J.A., 1995. A cellular automaton model of wildfi re
 propagation and extinction. Photogrammetric Engineering and Remote Sensing , 60(11),
pp.1355–1367.

 Couclelis, H., 1997. From Cellular Automata to Urban Models: New Principles for Model devel-
opment and implementation. Environment and Planning B: Planning and Design , 24(2),
pp.165–174.

 Dietzel, Charles & Clarke, Keith C, 2007. Toward Optimal Calibration of the SLEUTH Land Use
Change Model. Transactions in GIS , 11(1), pp.29–45.

 Goldstein, N.C., Dietzel, C. & Clarke, K. C., 2005. Don’t stop ‘til you get enough–sensitivity test-
ing of Monte Carlo iterations for model calibration. In Proceedings of the 8th International
Conference on GeoComputation . Ann Arbor Michigan.

 Guan, Q. & Clarke, K. C., 2010. A general-purpose parallel raster processing programming library
test application using a geographic cellular automata model. International Journal of
Geographical Information Science , 24(5), pp.695–722.

 Hecker, C. et al., 1999. System Development for Parallel Cellular Automata and Its Applications.
 Future Generation Computing Systems , 16(2–3), pp.235–247.

 Li, D. et al., 2012. GPU-CA model for large-scale land-use change simulation. Chinese Science
Bulletin , 57(19), pp.2442–2452.

 Li, X. et al., 2013. Calibrating cellular automata based on landscape metrics by using genetic
algorithms. International Journal of Geographical Information Science , 27(3), pp.594–613.

 Li, X. & Yeh, A.G.O., 2000. Modelling Sustainable Urban Development by the Integration of
Constrained Cellular Automata and GIS. International Journal of Geographical Information
Science , 14(2), pp.131–152.

 Li, X. & Yeh, A.G.O., 2002. Neural-network-based Cellular Automata for Simulating Multiple
Land Use Changes Using GIS. International Journal of Geographical Information Science ,
16(4), pp.323–343.

 Liu, Xiaoping et al., 2010. Simulating land-use dynamics under planning policies by integrating
artifi cial immune systems with cellular automata. International Journal of Geographical
Information Science , 24, pp.783–802.

 Liu, Y. & Phinn, S.R., 2003. Modelling urban development with cellular automata incorporating
fuzzy-set approaches. Computers, Environment and Urban Systems , 27(6), pp.637–658.

17 Opportunities and Challenges for Urban Land-Use Change Modeling…

236

 Nagel, K. & Schreckenberg, M., 1992. A cellular automaton model for freeway traffi c. Journal of
Physics I France , 2, pp.2221–2229.

 Silva, E.A. & Clarke, Keith C., 2002. Calibration of the SLEUTH Urban Growth Model for Lisbon
and Porto. Computers, Environment and Urban Systems , 26(6), pp.525–552.

 Spezzano, Giandomenico & Talia, Domenico, 1999. Programming Cellular Automata Algorithms
on Parallel Computers. Future Generation Computing Systems , 16(2), pp.203–216.

 Thor, M., 2008. Performance comparison of CPU and GPU based simulation of an avalanche
using a cellular automata . Master Thesis. Sweden: Ume°a University.

 Wu, F. & Webster, C.J., 1998. Simulation of Land Development through the Integration of Cellular
Automata and Multi-criteria Evaluation. Environment and Planning B , 25(1), pp.103–126.

 Wu, N. & Silva, E.A., 2010. Artifi cial Intelligence Solutions for Urban Land Dynamics: A Review.
 Journal of Planning Literature , 24(3), pp.246–265.

Q. Guan and X. Shi

237X. Shi et al. (eds.), Modern Accelerator Technologies for Geographic Information Science,
DOI 10.1007/978-1-4614-8745-6_18, © Springer Science+Business Media New York 2013

 Abstract Integrated environmental system modeling is a promising practice to
 better understand interactions between the human and major components of envi-
ronmental systems. Spatially-explicit modeling approach is a natural choice for
those modeling activities because landscape is one of few shared components across
all models. In this chapter, authors fi rst present several examples of integrated envi-
ronmental modeling, then explain the importance and role of spatially-explicit land-
scape in those efforts. After that, authors review current applications of modern
accelerator technologies in environmental modeling. At last, authors identify the
several potential research of integrated environmental system model, which could
further be developed in the near future using modern accelerator technologies.

 Keywords Integrated environmental modeling • Spatially-explicit modeling
• accelerator technologies • Parallel computing

18.1 Introduction

 Environmental system modeling presents a variety of challenges. Through the past
several decades, along with the rapid development of computing technologies, and
strong interests of understanding large-scale environmental phenomena, many com-
puter models have been developed to capture our knowledge on numerous facts of
environmental systems, and to explore better options for system-wide management
(AERMIC 2004 ; ATHENA 2007 ; EPANET 2008 ; eQUEST 2010). The complexity of

 Chapter 18
 Modern Accelerator Technologies
for Spatially-Explicit Integrated
Environmental Modeling

 Dali Wang and Shujiang Kang

 D. Wang (*) • S. Kang
 Oak Ridge National Laboratory , Oak Ridge , TN 37831 , USA
 e-mail: wangd@ornl.gov; kangs@ornl.gov

238

environmental models varies greatly and represents modelers’ own view on the
 environmental system. For example, many models were developed, focusing on a
 specifi c aspect or component of an environmental system (Fernando et al. 2001 ;
Makropoulos et al. 2008 ; Trusty 2004 ; Waddell 2000). Researchers have emphasized
integrated environmental system modeling (Chen et al. 2006 ; Li et al. 2007) on
advanced computing platforms, which involves complex interactions between some
or all components of an integrated environmental system, and results in model sys-
tems that link multiple components. Using those model systems, researchers can
investigate the system behaviors using several modeling approaches developed by dif-
ferent research groups. There are non-disputable advantages to embrace this modeling
approach. It is a very practical method to leverage existing modeling efforts (espe-
cially based on open source models) into a comprehensive model system, which oth-
erwise cannot be built by any single institution (Voinov et al. 2008). Those model
systems can naturally broaden community engagement. Also from the system design
perspective, multi-component system will impose restrictions over each individual
component and provide a way to valid those subsystems (Li et al. 2007).

 Herein, considering the general interest of readers of this book, authors focus on
applications of simulation framework for multi-component environmental systems
over spatially-explicit landscape. This chapter is organized as following: authors
fi rst present some examples of spatially-explicit, integrated environmental system
modeling. Then authors explain their opinions that modern accelerator technologies
(with focus on Graphic Processing Unit (GPU) and multicore) are much needed to
address some aspects of those computational challenges. At last, authors identify
several potential research areas that could take advantage of modern accelerator
technologies to meet computational challenges associated with integrated environ-
mental modeling over landscape.

18.2 Three Examples of Spatially-Explicit Integrated
Environmental Modeling (SIEM)

 This section reviews several examples of integrated environmental modeling efforts.
They are (1) ecosystem modeling over landscape, (2) sustainable urban infrastruc-
ture, (3) spatially-explicit agroecosystem modeling.

18.2.1 Ecosystem Modeling over Landscape

 From a mathematical or computational ecology perspective, ecosystem modeling
presents a different set of challenges. Much of classical ecological theory origi-
nates from very simple differential equations in which a single variable represents
population densities. Although highly infl uential in ecological theory, the models’

D. Wang and S. Kang

239

aggregated form is particularly diffi cult to relate to observational biology.
Applying them to complex natural systems with spatially and temporally varying
environmental factors, for example, typically produces analytically intractable
models that must be investigated numerically. Researchers have begun emphasiz-
ing integrated, multicomponent ecosystem models (Gross and DeAngelis 2002).
These models adapt a linear food chain conceptual model, involve complex inter-
actions between some or all of an ecosystem’s trophic layers (feeding levels),
resulting in models that link multiple components that researchers can model
using several different mathematical approaches for organisms at different trophic
positions. Specifi cally, at a lower trophic level, compartment models can be estab-
lished to place more emphasis on the kinetics of the ecosystem’s energy or nutri-
ent fl ow, or the pollutant transport within the food web. At a higher level—especially
for endangered species with small populations—researchers could use individual
based models to monitor and simulate each individual member’s basic behaviors,
and to indicate the global consequences of local interactions among population
members. In the middle trophic level, Structured models average certain popula-
tion characteristics and attempt to simulate changes in these characteristics for the
whole population.

 Across Trophic Level System Simulation (ATLSS), developed at the University
of Tennessee, is an example of spatially-explicit ecosystem modeling system.
ATLSS is designed to assess how alternative water management plans for regulating
water fl ow across the Florida Everglades’ landscape will affect key biota. ATLSS’s
immediate objective is to assist various stakeholders in assessing the biotic impacts
of alternative future scenarios for restoring South Florida’s natural systems. The
long-term goals are to better understand how the biotic communities of South
Florida are linked to various physical driving infl uences—particularly hydrology—
and to provide a predictive tool for both scientifi c research and ecosystem manage-
ment (ATLSS). Within ATLSS, compartment models deal with variables representing
spatially localized biota—mainly the biomasses of lower trophic-level organisms,
such as algae, which only interact locally. The age- and size-structured population
and community models represent intermediate trophic levels, such as fi sh (Gaff
et al. 2000 ; Wang et al. 2006), macroinvertebrates, and small nonfl ying vertebrates.
Finally, individual-based models represent populations of top predators and other
large-bodied species, such as wading birds (Wolf 1994) and panthers (Comiskey
et al. 1994). The internal connections between all the models is developed based on
a spatially-explicit landscape library (Duke-Sylvester and Gross 2002). A high per-
formance multilayered software system was developed, which includes a data
assimilation layer, a components layer for ecological models, and an information
analysis and data representation layer (Wang et al. 2005a). This integrated, spatially
explicit ecosystem modeling requires tightly coupled modeling framework (Wang
et al. 2007 , 2011) and parallel computations (Wang et al. 2008 , 2006) on a variety
of computing infrastructure. Furthermore, grid computing has been adapted to
deliver advanced ecosystem simulation functionalities to naive computer users
(biologists, natural resource managers, and so on) (Wang et al. 2005a , b).

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

240

18.2.2 Sustainable Urban Infrastructure Modeling

 Dense urban areas have complex and interdependent infrastructure systems. With the
urban infrastructure expected to increase by more than 40 % between 2000 and 2030
(Nelson 2004), an opportunity exists to signifi cantly change how urban communities
consume energy/resources and produce wastes. The current generation of urban infra-
structure is predicated on the abundance of cheap carbon-based fuels and plentiful
non-renewable resources, which is not sustainable. A Sustainable Urban Infrastructure
(SUI) system is being developed at the Georgia Institute of Technology to provide
decision support tools for the next generation of urban infrastructure as well as for the
renovation of the current urban infrastructure, to use renewable energy/resources and
to meet societal, economic and environmental goals. Those decision support tools
will allow stakeholders to quantitatively evaluate the benefi ts of new technologies and
to produce a blueprint for sustainable and resilient urban infrastructures as well as the
cyberinfrastructure required to monitor them. Technically, SUI will coordinate and
leverage experiences from existing projects: (1) examining the resiliency and sustain-
ability of distributed water, energy, and recycling systems; (2) understanding hazard
vulnerability and simulating fl ood protection and river restoration measures; (3)
examining the durability and recyclability of materials that are used in urban infra-
structure; (4) understanding market forces that shape the demand for more sustainable
urban infrastructure; (5) forecasting urban growth and redevelopment; (6) designing
high-performance buildings; (7) developing sensors for monitoring urban infrastruc-
ture and material fl ows; (8) predicting economic and social losses due to infrastruc-
ture destruction, including understanding responses to changes in urban infrastructure;
(9) simulating earthquake and hurricane impacts on infrastructure; (10) understanding
future climate impacts on urban areas; (11) creating carbon mitigation strategies for
cities; and (12) developing a blueprint for more sustainable urban infrastructure. From
software design perspective, based on spatially-explicit landscape, a fl exible multi-
component modeling framework has being developed to integrate an urban growth/
land use forecasting model with the following infrastructure and natural system mod-
els: (1) building stock, (2) air quality, (3) transportation, (4) climate/heat island, (5)
water supply, (6) wastewater, (7) water quality, (8) stormwater runoff, and (9) electric
power. The SUI modeling framework will embed critical engineered infrastructure
systems within their social, economic and natural environment. The framework will
support the modeling of interactions between and among infrastructure systems and
with the relevant social, economic and natural environmental systems at different
temporal and spatial scales. Specifi cally, the high performance multi- component soft-
ware system combines several existing models, such as UrbanSim (Waddell 2000),
TransSims (Barrett et al. 1995), Community Multiscale Air Quality (CMAQ) model
(Byun and Schere 2006), PECAS (Hunt and Abraham 2005), Xplorah (Delden
et al. 2008) and What If? (Klosterman 1999), where available, and will develop new
models as required to fi ll important gaps in our understanding of infrastructure system
performance and interactions under stress.

D. Wang and S. Kang

241

18.2.3 Spatially-Explicit Agroecosystem Modeling

 Multiple concerns over the impact of wide scale changes in agricultural ecosys-
tems have motivated comprehensive analysis of environmental sustainability of
food and biofuel production (Lobel et al. 2011). These call for spatial-explicit
high-resolution land management models that enable comprehensive analysis of
agricultural natural resources for decision-making. Agroecosystem modeling
applications have expanded beyond their traditional role in summarizing data and
interpreting information from fi eld trials. They have been used to provide informa-
tion for guiding regional and national scale economic analysis (Adams
et al. 1996 ; Edmonds et al. 1997), and to estimate regional-scale environmental
services and impacts (Thomson et al. 2005) and global change impacts on agricul-
tural production (VEMAP_Members 1995). For agroecosystem simulation models
to perform well, precise inputs of edaphic conditions, management operations, and
weather forcing are required. Recent developments in soil resource mapping, land-
use remote sensing, availability of inventory data like crop yield, and consistent
fi ne spatial resolution weather data products enable modeling exercises to meet the
demands. The increase of the data volumes and the computational demands for
conducting the large number of simulations requires a framework that incorporates
these features into a high performance computing environment, along with tools
for simulation input data preparation, and for the simulation output data visualiza-
tion and analysis over spatially-explicit landscape. A typical example of these
efforts is the high- performance computational framework for spatially-explicit
agroecosystem modeling (Wang et al. in press). Based on spatially-explicit land-
scape concepts, this framework consists of four key steps: (1) landscape-based
simulation data preparation, (2) site-based agroecosystem simulation on high per-
formance computers, (3) cross-landscape data management, and (4) exploratory
data analysis over landscape. The batched simulations were executed using a high
performance computing environment (HPC-EPIC), which was designed on basis
of a widely applied agroecosystem model, Environmental Policy and Impacted
Climates (EPIC) at Oak Ridge National Laboratory (Nichols et al. 2011). HPC-
EPIC provides an effi cient computational approach for deployment of agricultural
management at high-resolution spatial scales over large scape spatially-explicit
landscape (Kang et al. 2012). The HPC-EPIC has been applied to production and
environmental analysis of regional and global ecosystem. In the regional simula-
tion designed for four counties at 56-m resolution, 140,000 simulations were fi n-
ished in a total of 10 h on an HPC cluster using 20 nodes. Totally, 62,482 simulation
units were organized for a global analysis of bioenergy biomass production analy-
sis, and simulations were completed within 3 h. However, since the original agro-
ecosystem model was designed at fi ne resolution (at fi eld plot level), therefore, a
huge number of simulations are needed to cover large geographic regions, even
after using the Simulation Unit (SU) concept. Each agroecosystem model simula-
tion produces very detailed agricultural (such as crop yield, biomass, etc.) and

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

242

environmental information (such as soil organic carbon and nitrogen, and soil
water, etc.). Analysis and management of the large amount of detailed information
at the same fi ne resolution defi ned by the input data source is quite challenging.
Therefore, large-scale data assembly capability was developed to generated aggre-
gated simulation results across spatially-explicit landscape in a self-described for-
mat. Furthermore, interactive data visualization and exploration software utilities
have been developed for those gridded data products over spatially-explicit land-
scapes. Based on those spatially-explicit data products, other environmental mod-
els, such as water quality models, biodiversity, as well as environmental impact
model can linked together to provide a more comprehensive knowledge system for
sustainable landscape management.

18.3 Landscape Is the Key Component Within
Integrated Environmental Modeling

 As presented in all of those three examples, one of the fundamental concepts for
integrated environmental system modeling is to identify shared relationships
between all subsystems of the modeled environment. Take the integrated model
system for a urban environment as an example, the connections between some
systems, such as the transportation system and regional air quality modeling,
are explicit and direct. However, in the same environment, the relationship
between the water quality treatment and transportation system not directly, but
indirected connected. Considering the strong interests on the water-energy-
transportation-social simulation, the spatially-explicit landscape became one of
few direct links across all the model systems. There are different approaches to
manage those data processing across spatially-explicit landscape, for example,
a dedicated landscape library was developed in the ATLSS case, a GIS-based
landscape was used in the sustainable urban infrastructure effort, and self-
descried data format (netCDF and geoTIFF) was used in the agroecosystem
modeling practices. From our experience a light- weighted, high performance
georeferencing processing capability is one of the essential functions for the
landscape component. Other key functions are regriding/projection between
multiscale computational domains, basic IO functions, as well as point, poly-
gon and raster overlay.

18.4 Integrated Environmental System Modeling
Needs Modern Accelerator Technologies

 This section reviews current environmental modeling literature which adopted mod-
ern accelerator technologies with focus on general purpose graphic processing units
and multicore system.

D. Wang and S. Kang

243

18.4.1 Spatially-Explicit Environmental Applications
Using Graphical Processing Unit

 Agent parallelism approaches provide unique features for the large scale of spatial-
explicit agent-based models (Parry and Evans 2008). One is the agent-parallel
method that splits agents between cores. It is able to decompose functions or pro-
cesses and executed on different cores. Some successful applications of the agent-
parallel method include a series of ecological agent-based models, such as aphids
and hoverfl ies (Parry and Evans 2008), Tress (one processor for each tree; Host
et al. 2008), and landscape vegetation model (Cornvell et al. 2001). This type of
application can directly balance load across cores, but need to pay attention on spa-
tial co-location in space. The other is the environment-parallel approach that can
divide geographical location between cores. The grid cells are assigned for different
cores. The advantage of this method is that cores associated with agents are inde-
pendent, and easy to manage or track. Forest modeling (Chave 1999), disaster miti-
gation (Takeuchi 2005) and Land Use Change (Tang et al. 2011) are the application
examples of the environment-parallel design of agent-based models.

 GPU application provides a promising tool for spatial explicit environmental
modeling. A framework of personal high-performance geospatial computing (HPC-
G) was proposed to use multi-processors CUPs and massively parallel GPU devices
for large scale of geospatial data processing (Zhang 2010). This framework with
limited costs is suitable to both numerical modeling and interactive visualization.
Bryan (2013) explored how different high-performance computing tools with multi-
nodes, multi-core and GPU. Compared with single-machine GIS application, the 64
parallel GPU application demonstrated a speed-up of 63,643 fold for
250-m- resolution national social-ecological modeling (∼ 100 million simulation
units) in Australia, demonstrating a high potential than other HPC designs.

 Because of the enormous computing power, GPU also provides new opportunities
for uncertainty quantifi cation and sensitivity analysis of environmental applications.
However, the new hardware architecture generally requires large effort to related to
software re-engineering of existing environmental applications. From this perspec-
tive, it will take time for the environmental modeling community to take the GPU as
a general purpose computing platform as the multicore systems, but authors are con-
fi dent that GPU will be featured in many environmental modeling areas, such as those
typical spatially-explicit environmental applications, mentioned in this paper.

18.4.2 Environmental Applications Using
Multicore Technologies

 Over the past decades, multicore technologies have been adopted to expedite the
large-scale environmental applications, including water resource modeling (Yu 2010),
air quality modeling (Matthias Lieber1 and Wolke 2008), climate modeling (Wang
et al. 2011), and ocean modeling (Chen et al. 2006). More recently, integrated

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

244

modeling was emphasized, resulting in several system modeling (Collins et al. 2005)
and computational (both simulation and data processing) frameworks (Bader
et al. 2011 ; Wilbert et al. 2011). There are also reports on the high performance mod-
eling architecture design (Collins et al. 2005 ; Bader et al. 2011) and the coupling
component implementations (Wang et al. 2011 ; Larson 2005). From the environmen-
tal modeling perspective, a meta-modeling framework was presented for large-scale,
spatially-explicit ecosystem modeling on computing grids (Wang et al. 2005a). High
performance geographic information systems have been used to handle large envi-
ronmental and ecosystem information (Wang et al. 2006 ; Yin et al. 2011).

 Embarrassingly parallel design with multi-nodes or multi-cores has also been
applied to high-resolution ecosystem modeling through scientifi c workfl ow systems
under clusters or distributed computing grids. Most early ecosystem or environmen-
tal system models were designed sequentially in last century, and are not able to
directly fi t current parallel systems for a large scale of modeling. Redesigning and
coding these models for parallel application together with testing would be very
time consuming. The embarrassingly parallel computing by separating tasks for
individual spatial explicit modeling unit provides an effi cient tool of these tradi-
tional sequential environmental models. Nichols et al. (2011) developed a scheme
to execute 120,000 simulations for 56-m resolution of environmental modeling of
agricultural ecosystems (EPIC) on a cluster within 8 h. In a high-resolution of land-
scape and water quality study of Europe, a sequential watershed model, soil and
water assessment tool (SWAT) was split into major sub-models, and executed in
parallel on the Enabling Grids for E-scienceE (EGEE) Grid (Yalew et al. 2010). The
initial test indicated that the SWAT model can reach speed-up of about three with
seven CPUs for the Balaton Lake watershed. A hybrid approach distributes tasks
across a heterogeneous grid simulated 325 management scenarios (nitrogen appli-
cation rates and stubble management) at a daily time step over 122 years for 12,707
units using the Windows-based Agricultural Production Systems SIMulator
(APSIM) (Zhao et al. 2012). These simulations would have taken over 30 years on
a single computer. The hybrid high performance computing (HPC) approach based
on embarrassingly parallel design completed the modeling within 10.5 days-a
speed-up of over 1,000 times. High performance visualization tools have also been
developed to display a three-dimensional environment for farming system analysis
(Gaff et al. 2000). A successful application of improved hydraulic modeling based
on OpenMP designed by Neal et al. (2008) was tested on different number of cores
of machines. The results show that this improvement facilitates high-resolution
modeling (millions of cells) for a large basin such as Amazon in Brazil.

18.5 Opportunities of Adopting Accelerator Technologies
for SIEM

 In the previous sections, we have reviewed some literatures on adopting modern
accelerator technologies for environmental system modeling. There are many
reports on the application of GPU on both agent-based modeling and environmental

D. Wang and S. Kang

245

model implementations. Herein, authors layout several computational opportunities
in the general context of spatially-explicit environmental system modeling, which
can directly take advantages of the modern accelerator technologies. Here three
areas are listed, including (1) data management for multiscale environmental data
processing over landscape, (2) social-environmental system interactions, and
(3) global sustainable landscape management scenarios development.

18.5.1 High-Performance Data Management to Support
Multiscale Data Processing over Landscape

 A central issue in integrated environmental modeling is the need to link dynamic
models that operate across different spatial regions and at different rates. Therefore,
the data and information processing over landscape component is the key compo-
nent of spatially-explicit, integrated environmental modeling. The main functional-
ities of the landscape component include (1) provide a uniform structure to integrate
spatial information and information about physical data (such as fl ux and energy)
from different model components; (2) generate appropriate computational domains
(meshes) for different models; (3) conduction conservative mapping of energy and
mass between the different computational domains; and (4) determine parameter
estimates for environmental models at different spatial resolution.

 One possible solution could be the development of a standalone landscape librar-
ies to transform and translate the spatial data to and from other forms. Universal
transect mercator (UTM) is widely adopted in GIS, and could be used to extract
regional information from geo-spatial data. In a GIS, regions are usually based on
the polygon’s shape and location, defi ned in terms of UTM coordinates. It’s there-
fore possible to extract the same regional information from data sets with different
resolutions, registrations, or spatial extents. Based on the UTMs, re-projections and
regrid function can be developed to facilitate data transformation between different
resolutions and registrations. Users can confi gure and initialize these Regrid classes
by providing the size of a single cell or assigning the exact number of rows and
columns to which the data sets should be resized. Spatial data sets can then be
passed to the object, which creates and returns a new, rescaled map. Other important
functions, which are frequently used in environmental data analysis, include Zonal
Statistics for summarizes a raster/point layer based on the zones defi ned in a poly-
gon layer. One promising approach could be to develop a novel data organization
scheme to virtually integrate heterogamous data sources and another is a set of
parallel algorithms to support the important operations based on the data organiza-
tion scheme using modern accelerator technologies. These algorithm could be
viewed as the geospatial indexing and processing engines to speed up data process-
ing without requiring signifi cantly reorganizing raw data. Technically, we could
implement the software modules using the techniques actively scan relevant data
and generate different types of indices to regularize workloads for effi cient parallel
computing.

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

246

18.5.2 Large-Scale Social-Environmental System
Interactions via Agent-Based Modeling

 Large-scale agent based models could be used to help understand the effects of
micro-level consumer psychological factors (e.g., attitudes, preferences, satisfac-
tion, and behavior) and social networks where consumers interact on the macro level
innovation diffusion processes via dynamic simulation methods. How the impact of
government policies and regulations on the dynamics of innovation diffusion can be
modeled at microscopic level (e.g., the behavior and interactions of fi rms and adopt-
ers). Take the sustainable urban infrastructure project as an example, sustainable
homes and neighborhoods are about incorporating green technologies to design and
operate homes, buildings and neighborhood infrastructures. Green technologies
cover a broad set of creative inventions including renewable materials, distributed
energy production, rainwater harvesting, water-saving facilities, low impact devel-
opment, and so on. As a novel strategy to create more sustainable and resilient living
environment, sustainable homes and neighborhoods are still in its infancy and the
wide adoption among home developers and homeowners will be a long and slow
process. Agent based model can be developed to predict and compare the innovation
diffusion processes under different policies and strategies. This evaluation can help
policy makers and stakeholders fi nd the most effective policies and strategies in
fostering the diffusion of sustainable homes and neighborhoods.

 Agent based model could be developed to understand the social decision making
that is involved in increasing the adoption of more sustainable homes and neighbor-
hoods, and how we can improve citizen capacity building to create more informed
citizens. This understanding represents the beginning step to understand the socio
economic drivers that would be required for building more sustainable cities and
infrastructure. After all, citizens make decisions two feet at a time in the shopping
aisle and voting booth and this is the driving force for more sustainable decision mak-
ing. A computational infrastructure based on modern accelerator technologies could
facilitate the assessing procedure how decisions by households and fi rms relate to
sustainability outcomes for larger regions under different policies such as fees and
incentives. Computational models could be created to examine the benefi t of green
urban infrastructure on water, material and energy use and return on investment for
the following approaches to increasing sustainability: (1) decentralized, combined
heat and power using air-cooled gas fi red turbines, (2) electrifi cation of personal
transportation, (3) decentralized storm water and water production using low impact
development, (4) increased common green space and higher population density.

18.5.3 Global Sustainable Landscape Management
Scenario Development

 The concerns over the urgent global issues (e.g. food security, bioenergy produc-
tion and climate change impact) associated with agroecosystems call for examin-
ing and redesigning current ecosystems. These need detailed information of

D. Wang and S. Kang

247

agroecosystem responses to various management practices. Spatially-explicit
agroecosystem modeling frameworks with parallel design provide a unique
 capability of upscaling fi eld simulations to regions and globe without losing
details. A series of research projects (e.g. Global Sustainable Bioenergy (GSB)
and Knowledge Systems for Sustainability (KSS)) have been conducting or are
under planning to provide the best data and knowledge of global ecosystem man-
agement with large-scale biophysical simulations on the basis of multi-core paral-
lelism techniques. Specifi cally, The Global Sustainable Bioenergy (GSB) project
seeks to contribute to a sustainable world by expanding, disseminating, and apply-
ing understanding of the possibility and necessity of producing bioenergy on a
very large scale (Lynd et al. 2011). However, critics off current bioenergy tech-
nologies in combination with extrapolation of current trends and practices see as
negatively impacting food security, having an inadequate resource base to mean-
ingfully impact energy-related challenges, and contributing to environmental deg-
radation. A joint research initiated by multiple international institutions targets the
issues of land competition and sustainability by implementing global high-resolu-
tion food and bioenergy crop simulations (Kang et al. 2012). A platform has been
designed and tested for a bioenergy crop, switchgrass. Over 10 bioenergy crops
and fi eld-scale resolution modeling have been planning, which require redesigning
current platform for adapting millions of simulations on supercomputers. For
example, with the HPC-EPIC platform, 2.2 billion of simulations for global agro-
ecosystem at a 30-s resolution (∼ 1 km) under 10 management scenarios would be
implemented under a cluster or supercomputer. This can not only facilitate detailed
management optimization at a local scale, but also easily aggregate regional,
national and global distributions of production and environmental impacts for
multi-level of decision making.

18.6 Conclusions and Future Readings

 In this section, authors have discussed three research areas, which can benefi t
directly from the further adoption of modern accelerator technologies. There are
other areas, such as large-scale data exploration and information synthesis, will also
benefi t from accelerator technologies, but authors leave out those applications,
because of the focus on chapter was placed on the spatially explicit integrated envi-
ronmental modeling.

 Integrated environmental system modeling is a promising practice to better
understand interactions between the human and major components of environmen-
tal systems. Spatially-explicit modeling approach is a natural choice for those mod-
eling activities, because landscape is one of few shared components across all
models. In this chapter, authors explained the importance and role of spatially-
explicit landscape in those efforts, and listed three potential research areas, within
the scope of integrated environmental system model, which could be further devel-
oped in the near future using modern accelerator technologies. Interested readers
should look into the references for further detailed information.

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

248

 Acknowledgements Authors thanks the support from the Offi ce of Science of the U.S.
Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle LLC for
the Department of Energy under contract DE-AC05-00OR22725.

 References

 AERMIC. (2004). “AERMOD atmospheric dispersion modeling system.” from http://www.epa.
gov/scram001/7thconf/aermod/aermod_mfd.pdf .

 ATHENA. (2007). “Impact Estimator for Buildings.” from http://www.athenasmi.org/our-soft-
ware-data/impact-estimator/ .

 Adams, D. M., Alig, R. J., Callaway, J.M., McCarl, B. A., Winnet, S.M. (1996). The forest and
agricultural sector optimization model (FASOM): model structure and policy applications.
Department of Agriculture, Forest Service, Pacifi c Northwest Research Station: Portland, OR.
p. 60.

 Bader, M., Mehl, M., Rde, U., Wellein, G. (2011). Simulation software for supercomputers,
Journal of Computational Science, 2(2), 93–94.

 Barrett, C., Birkbigler, K., Smith, L., Loose, V., Beckman, R., Davis, J., Roberts, D., Williams, M.
(1995). An Operational Description of TRANSIMS. Technical Report. Los Alamos, NM, Los
Alamos National Laboratory.

 Byun, D., Schere K.L. (2006). “Review of the governing equations, computational algorithms, and
other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling sys-
tem.” Appl. Mech. Rev 59(51–77).

 Bryan, B.A. (2013). High-performance computing tools for the integrated assessment and model-
ing of social-ecological systems. Environmental Modeling & Software, 39, 295–303.

 Chen, C., Beardsley, R. C., Cowles, G. (2006). “An unstructured grid, fi nite-volume coastal ocean
model (FVCOM) system.” Oceanography 19(Special Issue entitled “Advance in Computational
Oceanography): 78–89.

 Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang, W., Hill,
C, Silva, D. (2005). Design and Implementation of Components in the Earth System Modeling
Framework. International Journal of High Performance Computing Applications, 3, 341–350.

 Comiskey, E. J., Gross, L. J., Fleming, D. M., Huston, M. A., Bass, O. L., Luh, H.K., Wu,Y.
(1994). A spatially-explicit individual-based simulation model for Florida panther and white-
tailed deer in the Everglades and Big Cypress landscapes. Florida Panther Conference, Ft.
Myers Fla, U.S. Fish and Wildlife Service.

 Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using
TROLL, a spatially explicit forest model. Ecological Modeling, 124, 233–254.

 Cornvell, C.F., Wille, L.T., Wu, Y.G., Sklar, F.F. (2001). Parallelization of an ecological landscape
model by functional decomposition. Ecological Modeling, 144, 13–20.

 Duke-Sylvester, S., Gross, L.J. (2002). Integrating Spatial Data into an Agent-Based Modeling
System: Ideas and Lessons from the Development of the Across Trophic Level System
Simulation (ATLSS). Integrating Geographic Information Systems and Agent-Based Modeling
Techniques for Stimulating Social and Ecological Processes. H. R. G. (ed), Oxford Univ. Press:
125–136.

 Delden, H. V., Gutirrez, E.R., Vliet, J. (2008). Xplorah, a multi-scale integrated land use model.
International Congress on Environmental Modeling and Software, Barcelona.

 EPANET. (2008). “Software That Models the Hydraulic and Water Quality Behavior of Water
Distribution Piping Systems.” from http://www.epa.gov/nrmrl/wswrd/dw/epanet.html .

 EQUEST. (2010). “The QUick Energy Simulation Tool.” from http://doe2.com/equest/index.html .
 Edmonds, J., Wise, M., Pitcher, H., Richels, R., Wigley, T., MacCracken, C. (1997). An Integrated

Assessment of Climate Change and the Accelerated Introduction of Advanced Energy
Technologies. Mitigation and Adaptation Strategies for Global Change, 1, p. 311–319.

D. Wang and S. Kang

http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf
http://www.epa.gov/scram001/7thconf/aermod/aermod_mfd.pdf
http://www.athenasmi.org/our-software-data/impact-estimator/
http://www.athenasmi.org/our-software-data/impact-estimator/
http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
http://doe2.com/equest/index.html

249

 Fernando, H. J., Lee, S. M., Anderson, J., Princevac, M., Pardyjak, E., Grossman-Clarke, S.
(2001). “Urban fl uid mechanics: air circulation and contaminant dispersion in cities.”
Environmental Fluid Mechanics 1(1), 107–164.

 Gross, L., D. DeAngelis (2002). Multimodeling: New Approaches for Linking Ecological Models.
Predicting Species Occurrences: Issues of Accuarcy and Scale. P. J. H. J.M. Scott, and M.L.
Morrison, Island Press: 471–476.

 Gaff, H., DeAngelis, D. L., Gross, L. J., Salinas, R., Shorrosh,M. (2000). “A dynamic landscape
model for fi sh in the Everglades and its application to restoration.” Ecological Modelling 127:
33–52.

 Hunt, J. D., Abraham, J.E., Ed. (2005). Design and implementation of PECAS: A generalized
system for the allocation of economic production, exchange, and consumption quantities.
Integrated Land-Use and Transportation Models: Behavioural Foundations. Oxford, UK:,
Elsevier.

 Host, G.E., Stech, H.W., Lenz, K.E., Roskoski, K., Mather, R. (2008). Forest patch modeling:
using high performance computing to simulation aboveground interactions among individual
trees. Function Plant Biology, 35, 976–987.

 Klosterman, R. (1999). “The What if? collaborative planning support system.” Environment and
Planning B 26(393–408).

 Kang, S., Nair, S.S., Kline, K.L., Nichols, J.A., Wang, D., Post, W.M., Brandt, C.C., Wullschleger,
S.D., Singh, N., Wei., Y. (2012). Global simulation of bioenergy crop productivity: analytical
framework and case study for Switchgrass. GCB Bioenergy (accepted).

 Larson, J., Jacob, R., Ong, E. (2005). The Model Coupling Toolkit, A New Fortran90 Toolkit for
Building Multiphysics Parallel Coupled Models. International Journal of High Performance
Computing Applications, 19(3), 277–292.

 Li, K., Zhang, P., Crittenden, J.C., Guhathakurta, S., Chen, Y., Fernondo, H., Sawhney, A.,
McCartney, P., Grimm, N., Kahhat, R., Joshi, H., Knjevod, G, Choi, Y., Fonseca, E., Allenby,
B., Gerrity, D., Torrens, P. (2007). “Development of a Framework for Quantifying the
Environmental Impacts of Urban Development and Construction Practices.” Environmental
Sciences and Technologies 41(14), 5130–5136.

 Lobell, D.B., Schlenker, W., Costa-Roberts, J. (2011). Climate trends and global crop production
since 1980. Science, 29, 616–620.

 Lynd, L., Aziz, R., Cruz, CH, et al. (2011) A global conversation about energy from biomass: The
continental conventions of the global sustainable bioenergy project. Interface Focus, 1,
271–279.

 Makropoulos, C. K., Natsis, K., Liu, S., Mittas, K., Butler, D. (2008). “Decision support for sus-
tainable option selection in integrated urban water management.” Environmental Modelling &
Software 23(12): 1448–1460.

 Matthias Lieber1, M., Wolke, R., Optimizing the coupling in parallel air quality model systems,
Environmental Modeling and Software, Volume 23, Issue 2, 2008, pages 235–243

 Nelson, A. (2004). Toward a New Metropolis: The Opportunity to Rebuild America. Washington,
DC, The Brookings Institute.

 Neal, J., Fewtrell, T., Trigg, M. (2008). Parallelization of storage cell fl ood models using OpenMP.
Environmental Modeling & Software, 24, 872–877.

 Nichols, J., Kang, S., Post, W., Wang, D., Bandaru, V., Manowitz, D., Zhang, X., Izaurralde, R.
(2011). HPC-EPIC for high resolution simulations of environmental and sustainability assess-
ment. Computers and Electronics in Agriculture, 79, 112–115.

 Parry, H.R., Evans, A.J. (2008). A comparative analysis of parallel processing and super-individual
methods for improving the computational performance of a large individual-based model.
Ecological Modeling, 214, 141–152.

 Trusty, W. B. (2004). Life cycle assessment, databases and sustainable building. Latin-American
Conference on Sustainable Building. Sao Paolo.

 Takeuchi, I. (2005). A massively multi-agent simulation system for disaster mitigation. In
Massively Multi-agent Systems I: First International Workshop MMAS 2004. Kyoto Dec
2004. Heidelberg: Springer-Verlag.

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

250

 Tang, W., Bennett, D., Wang, S. (2011). A parallel agent-based model of land use opinions. Journal
of Land Us Science, 6, 121–135.

 Thomson, A.M., Rosenbergy, N.J., Izauralde, R.C., Brown, R.A. (2005). Climate change impacts
for the conterminous USA: an integrated assessment. Climate Change, 69, p. 27–41.

 Voinov, A., Hood, R. R., Daues, J. D., Assaf, H., Stewart, R. (2008). Building a Community
Modeling and Information Sharing Culture. Environmental Modelling, Software and Decision
Support, Volume 3: State of the art and new perspective (Developments in Integrated
Environmental Assessment). A. J. Jakeman, Voinov A. A., Rizzoli, A. E., Chen, S. H.
Amsterdam, The Netherlands, Elsevier: 345–365.

 VEMAP_Members, Vegetation/Ecosystem Modeling and Analysis Project: Comparing biogeog-
raphy and biogeochemistry models in a continental-scale study of terrestrial ecosystem
responses to climate change and CO2 doubling. Global Biogeochem. Cycles, 1995. 9(4):
p. 407–437.

 Waddell, P. (2000). “A behavioral simulation model for metropolitan policy analysis and planning:
residential location and housing market components of UrbanSim.” Environmental Planning
27(2), 247–263.

 Wang, D., Berry, M.,W., Gross, L.J. (2008). “A Parallel Structured Ecological Model for High End
Shared Memory Computers.” Proceedings of the First International Workshop on OpenMP
4315.

 Wang, D., Berry, M.W., Carr, E. A., Gross, L.J. (2006). “On Parallelization of a Spatially-Explicit
Structured Ecological Model.” International Journal on High Performance Computer
Applications: 571–581.

 Wang, D., Berry, M.W., Buchanan, N., Gross, L.J. (2006). A GIS-enabled Distributed Simulation
Framework for High Performance Ecosystem Modeling. ESRI International User Conference.

 Wang, D., Berry, M.W., Comiskey, J., Gross, L.J. (2007). A Parallel Simulation Framework for
Integrated Regional Ecosystem Modeling. The 2007 International Conference on Parallel and
Distributed, Processing Techniques and Applications PDPTA’07.

 Wang, D., Carr, E., Gross, L.J., Berry, M. W. (2005). “Toward Ecosystem Modeling on Computing
Grids.” IEEE Computing in Science and Engineering(Sep/Oct): p 44–52.

 Wang, D., Carr, E.A., Berry, M.W., Gross, L.J. (2005). “A Grid Service for Natural Resource
Managers.” IEEE Internet Computing(Jan/Feb): pp 35–41.

 Wang, D., Carr, E.A., Berry, M.W., Gross, L.J. (2006). “A Parallel Fish Model for Ecosystem
Modeling.” Simulation: Transactions of The Society of Simulation and Modeling
International(July): 451–465.

 Wang, D., Harmon, M., Berry, M.W., Gross, L.J. (2011). On Design of a Coupling Component for
Parallel Multimodeling. International Journal on Modeling, Simulation, and Scientifi c
Computing.

 Wang, D., Post, W., Wilson, B. (2011). Climate Change Modeling: Computational Opportunities
and Challenges, IEEE Computing in Science and Engineering, 13(5), 36–42.

 Wolff, W. F. (1994). “An individual-oriented model of a wading bird nesting colony.” Ecological
Modelling 72, 75–114.

 Wang, D., Kang, S., Post. W., Nichols, J., Zhao, Z., Liu, S. (in press) A Computational Framework
for Spatially-explicit Agroecosystem Modeling: Application to Regional Simulation, Journal
of Computational Sciences, DOI:10.1016/j.jocs.2012.08.018

 Wilbert, N., Zito, T., Schuppner, R., Jedizejewski-Szmek, Z., Wiskott, L., Perkes, P. (2011).
Building extensible frameworks for data processing: The case of MDP, Modular toolkit for
Data Processing, Journal of Computational Science, (in press) Available online 29 October
2011, http://dx.doi.org/10.1016/j.jocs.2011.10.005

 Yalew, S.G., Griensven, A.V. (2010) Kokoszkiewicz, L. Parallel computing of a large scale spa-
tially distributed model using the soil and water assessment tool (SWAT). International
Environmental Modeling and Software Society(iEMs), International Congress on

D. Wang and S. Kang

http://dx.doi.org/10.1016/j.jocs.2011.10.005

251

Environmental Modeling and Software Modeling for Environment’s Sake, fi fth biennial
meeting.

 Yin, L., Shaw, S.L., Wang, D., Carr, E., Berry, M., Gross, L., Comiskey, J. (2011). A problem solv-
ing framework of integrating GIS and parallel computing for spatial control problems: A case
study of wildfi re control. International Journal of Geographic Information Science, Vol 26,
December. p 1–21. DOI: 10.1080/13658816.2011.609487

 Yu, D. (2010). Parallelization of a two-dimensional fl ood inundation model based on domain
 decomposition, Environmental Modelling and Software, 25(8), 935–945.

 Zhao, G., Bryan, B.A., King, D., Liu, Z., Wang, E., Bende-Minchl, B., Song, X., Yu, Q. (2012).
Large-scale, high-resolution agricultural systems modeling using a hybrid approach combining
grid computing and parallel processing. Environmental Modeling & Software 10, http://dx.doi.
org/10.1016/j.envsoft.2012.08.007

 Zhang, J. (2010). Towards personal high-performance geospatial computing (HPC-G): perspec-
tives and a case study. HPDGIS’ 10 Proceeding of the ACM SIGSPATIAL International
Workshop on High Performance and Distributed Geographic Information Systems.
doi:10.1145/1869692.1869694

18 Modern Accelerator Technologies for Spatially-Explicit Integrated…

10.1080/13658816.2011.609487
http://dx.doi.org/10.1016/j.envsoft.2012.08.007
http://dx.doi.org/10.1016/j.envsoft.2012.08.007

	Contents
	Part I:Introduction
	Chapter 1: Modern Accelerator Technologies for Geographic Information Science

	Part II:Overview of Modern Accelerator Technologies (MAT) for Scientific Computation
	Chapter 2: A Brief History and Introduction to GPGPU
	2.1 A Brief History
	2.1.1 From Special-Purpose to General-Purpose Programming
	2.1.2 Single-Instruction Multiple-Data Designs

	2.2 Overview of GPGPU Hardware and Programming Today
	2.2.1 A GPU-Based System
	2.2.2 GPU Architecture
	2.2.3 SIMT and Hardware Multithreading

	2.3 CUDA
	2.3.1 Thread Hierarchy
	2.3.2 Memory Hierarchy
	2.3.3 Synchronization
	2.3.4 Performance Considerations
	2.3.4.1 Bandwidth Utilization
	2.3.4.2 Core Utilization
	2.3.4.3 Special Functional Units

	2.4 Advanced Features of CUDA
	2.4.1 Shuffle
	2.4.2 Dynamic Parallelism
	2.4.3 Hyper Q
	2.4.4 Grid Management Unit
	2.4.5 GPUDirect

	2.5 Conclusion
	References

	Chapter 3: Intel ® Xeon Phi™ Coprocessors
	3.1 Hardware Architecture Overview
	3.2 The Intel ® Xeon Phi™ Coprocessor Family
	3.3 Coprocessor Card Design
	3.4 Intel ® Xeon Phi™ Coprocessor Silicon Overview
	3.5 Individual Coprocessor Core Architecture
	3.6 Coprocessor Software Architecture Overview
	3.6.1 Symmetry
	3.6.2 Ring Levels: User and Kernel

	3.7 Coprocessor Programming Models and Options
	3.7.1 Breadth and Depth
	3.7.2 Coprocessor MPI Programming Models
	3.7.3 Offload Model
	3.7.4 Coprocessor-Only Model
	3.7.5 Symmetric Model

	3.8 Summary
	3.9 For More Information

	Chapter 4: Accelerating Geocomputation with Cloud Computing
	4.1 Introduction
	4.2 Computing Availability
	4.3 Computing Elasticity
	4.4 HPC Capability
	4.5 Service and Computing Location Distribution
	4.6 Conclusion
	References

	Part III:MAT in GIScience Applications
	Chapter 5: Parallel Primitives-Based Spatial Join of Geospatial Data on GPGPUs
	5.1 Introduction
	5.2 Background and Problem Formulation
	5.3 Algorithm Design Using Parallel Primitives
	5.4 Implementation and Experiments
	5.5 Conclusion, Discussion and Future Work
	References

	Chapter 6: Utilizing CUDA-Enabled GPUs to Support 5D Scientific Geovisualization: A Case Study of Simulating Dust Storm Events
	6.1 Visualization in Geospatial Sciences
	6.2 5D Scientific Geovisualization
	6.3 Potentials of Using GPUs to Support Scientific Geovisualization
	6.4 Implementations of a GPU-Based Geovisualization Framework
	6.5 Challenges of Adopting GPUs in 5D Scientific Geovisualization
	6.5.1 Integrations with Existing Visualization Platform
	6.5.2 Parallel Computation Setup and Configurations
	6.5.3 Data Management and Communications Between GPUs and GPUs

	6.6 Conclusions and Future Work
	References

	Chapter 7: A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs
	7.1 Introduction
	7.2 Background
	7.3 Carlyle and Wood’s Near-Shortest Path Algorithm
	7.4 The Need for Parallelization
	7.5 Parallelizing Depth-First-Search
	7.6 Analysis of Implementation
	7.7 Implementation Challenges: Distributing Workload
	7.8 Conclusions
	References

	Chapter 8: CUDA-Accelerated HD-ODETLAP: Lossy High Dimensional Gridded Data Compression
	8.1 Introduction and Background
	8.2 Compression Basics
	8.3 ODETLAP Definition
	8.4 Known-Point Position Compression
	8.5 Known-Point Value Compression
	8.6 Challenge of Compute-Intensiveness
	8.7 Application of Accelerator Technology
	8.7.1 CUDA-Based Solver Introduction
	8.7.2 Solver Selection and MATLAB Integration

	8.8 Comparison with JPEG 2000 and 3D-SPIHT
	8.9 Conclusion and Future Research Plan
	References

	Chapter 9: Accelerating Agent-Based Modeling Using Graphics Processing Units
	9.1 Introduction
	9.2 General-Purpose Graphics Processing Units
	9.3 Accelerating Agent-Based Models Using Graphics Processing Units
	9.3.1 Random Number Generation for Stochastic Modeling
	9.3.2 Parallelize Agent-Based Interactions Using Thread Parallelism
	9.3.3 Analysis of Agent or Environmental Patterns
	9.3.4 Evaluation of Computing Performance

	9.4 Case Study
	9.4.1 Parallel Agent-Based Opinion Modeling
	9.4.2 Experiment and Discussion

	9.5 Conclusion
	References

	Part IV:MAT in Remotely Sensed Data Processing and Analysis
	Chapter 10: Large-Scale Pulse Compression for Costas Signal with GPGPU
	10.1 Introduction
	10.2 Costas Signal Pulse Compression
	10.2.1 Costas Echo Signal
	10.2.2 Computation Analysis

	10.3 GPGPU Processing System Design
	10.3.1 CPU/GPGPU Heterogeneous Supercomputing Platform
	10.3.2 Software Task Flow Design

	10.4 Experimental Verification and Analysis
	10.4.1 Experimental Environment and Parameters
	10.4.2 Experimental Results

	10.5 Summary and Future Work
	References

	Chapter 11: Parallelizing ISODATA Algorithm for Unsupervised Image Classification on GPU
	11.1 Introduction
	11.2 Parallelizing ISODADA for Unsupervised Image Classification
	11.2.1 ISODATA in Sequential Procedure
	11.2.2 Previous Works on Parallelized Unsupervised Image Classification
	11.2.3 ISODATA by CUDA/GPU

	11.3 Comparison of the Quality and Performance of CUDA Program
	11.4 Conclusion
	References

	Chapter 12: Accelerating Mean Shift Segmentation Algorithm on Hybrid CPU/GPU Platforms
	12.1 Introduction
	12.2 Mean Shift Algorithm
	12.3 Hybrid Design of Mean Shift Image Segmentation
	12.4 Experiments and Results
	12.5 Conclusions
	References

	Part V:Multi-core Technology for Geospatial Services
	Chapter 13: Simulation and Analysis of Cluster-Based Caching Replacement Based on Temporal and Spatial Locality of Tiles Access
	13.1 Introduction
	13.2 Caching Replacement and the Temporal and Spatial Locality of Tile Access
	13.2.1 The Temporal Locality of Tile Access
	13.2.2 The Spatial Locality of Tile Access

	13.3 Simulation and Analysis
	13.3.1 Cluster-Based Caching Replacement Model
	13.3.2 Simulation Design
	13.3.3 Simulation of Cache Size
	13.3.4 Simulation of Replacement Threshold Value
	13.3.5 Simulation of a Cluster-Based Caching System

	13.4 Conclusions
	References

	Chapter 14: A High-Concurrency Web Map Tile Service Built with Open-Source Software
	14.1 Introduction
	14.2 Related Work
	14.2.1 High-Concurrency Web Services
	14.2.2 Benchmark of Web Services

	14.3 The Architecture of High-Concurrency WMTS
	14.3.1 Web Map Tile Service
	14.3.2 The Architecture of High-Concurrency WMTS
	14.3.2.1 Nginx
	14.3.2.2 GeoWebCache
	14.3.2.3 MongoDB
	14.3.2.4 The Distributed High-Concurrency WMTS Architecture

	14.4 Experiments
	14.5 Conclusion
	References

	Chapter 15: Improved Parallel Optimal Choropleth Map Classification
	15.1 Introduction
	15.2 Parallelization, Vectorization, and Shared Memory
	15.2.1 Parallelization
	15.2.2 Vectorization
	15.2.3 Shared Memory

	15.3 Optimal Map Classification for Choropleth Mapping
	15.3.1 Fisher-Jenks Algorithm
	15.3.2 Previous Work
	15.3.3 PySAL

	15.4 Implementation Specifications
	15.4.1 High Level Parallel Implementation
	15.4.2 CTypes Shared Memory
	15.4.3 Diameter Matrix Computation
	15.4.4 Error Matrix Computation
	15.4.5 Pivot Matrix Computation
	15.4.6 Experiment, Hardware, and Results
	15.4.7 Hardware
	15.4.8 Results

	15.5 Implementation Challenges
	15.6 Extensions and Future Work
	References

	Part VI:Vision and Applicability of MAT for Geospatial Modeling and Spatiotemporal Data Analytics
	Chapter 16: Pursuing Spatiotemporally Integrated Social Science Using Cyberinfrastructure
	16.1 Introduction
	16.2 Research Context
	16.3 Implementation of Near-Repeat Calculation
	16.3.1 Near-Repeat Calculation by Python
	16.3.2 High Performance Solution Over GPU and Keeneland �

	16.4 Conclusion
	References

	Chapter 17: Opportunities and Challenges for Urban Land-Use Change Modeling Using High-�Performance Computing
	17.1 Introduction
	17.2 Spatiotemporal Modeling of Urban Land-Use Changes
	17.3 Exploratory Studies on High-Performance Spatial CA
	17.3.1 Parallel Spatial CA
	17.3.2 Accelerating CA on GPUs and Heterogeneous Computer Systems

	17.4 Conclusion
	References

	Chapter 18: Modern Accelerator Technologies for Spatially-Explicit Integrated Environmental Modeling
	18.1 Introduction
	18.2 Three Examples of Spatially-Explicit Integrated Environmental Modeling (SIEM)
	18.2.1 Ecosystem Modeling over Landscape
	18.2.2 Sustainable Urban Infrastructure Modeling
	18.2.3 Spatially-Explicit Agroecosystem Modeling

	18.3 Landscape Is the Key Component Within Integrated Environmental Modeling
	18.4 Integrated Environmental System Modeling Needs Modern Accelerator Technologies
	18.4.1 Spatially-Explicit Environmental Applications Using Graphical Processing Unit
	18.4.2 Environmental Applications Using Multicore Technologies

	18.5 Opportunities of Adopting Accelerator Technologies for SIEM
	18.5.1 High-Performance Data Management to Support Multiscale Data Processing over Landscape
	18.5.2 Large-Scale Social-Environmental System Interactions via Agent-Based Modeling
	18.5.3 Global Sustainable Landscape Management Scenario Development

	18.6 Conclusions and Future Readings
	References

