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Abstract Brain injuries caused by trauma remain a major cause of death and

serious long-term disability worldwide, especially in children and young adults.

However, nearly all Phase III traumatic brain injury (TBI) clinical trials have failed

to provide safe and effective treatment for improving functional recovery after TBI.

This review discusses recent promising preclinical and clinical data indicating that

TBI promotes angiogenesis (formation of new blood vessels from preexisting

endothelial cells), which couples with neurogenesis (generation of new neurons)

and oligodendrogenesis (generation of new oligodendrocytes), in concert, contrib-

uting to spontaneous functional recovery. Selected cell-based and pharmacological

therapies that can amplify these endogenous neurorestorative effects to enhance

cognitive and neurological functional recovery after TBI are discussed. Perspec-

tives for further investigation of angiogenesis after TBI and associated therapeutic

treatments are provided.

8.1 Introduction

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity world-

wide. TBI survivors often suffer cognitive deficits and sensorimotor dysfunctions

[1]. Many therapeutic strategies have shown promise in the laboratory setting [2–4]

but failed in human clinical trial [5, 6]. Thus, it is imperative to develop therapies

for TBI to reduce neurological deficits.
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Emerging data from preclinical TBI studies indicate that angiogenesis plays an

important role in mediating brain repair by coupling with neurogenesis and

oligodendrogenesis and that cell-based and pharmacological therapies targeting

amplification of angiogenesis and white matter remodeling substantially improve

sensorimotor functions and reduce cognitive impairments. In this chapter, we will

review TBI-induced angiogenesis and the coupling of angiogenesis with

neurogenesis, oligodendrogenesis, and white matter remodeling. We will then high-

light therapies that amplify these events, leading to improvement in neurological

outcomes after TBI.

8.2 Angiogenesis After TBI

The endothelial cells (ECs) of cerebral capillaries, unlike those from non-cerebral

capillaries, are linked by complex tight junctions that along with astrocyte end-feet,

microglial cells, and pericytes form the blood–brain barrier (BBB) [7]. Under

physiological conditions, the cerebral ECs are relatively quiescent with a turnover

rate of approximately 3 years in the adult rodent [8]. Angiogenesis is the sprouting

of new capillaries from preexisting vessels, involving the proliferation and migra-

tion of ECs, formation, branching, and anastomosis of tubes [9, 10]. TBI induces

angiogenesis at an early stage after injury. After TBI, using immunohistochemistry

with antibodies against bromodeoxyuridine (BrdU) and measurement of capillary

density, newly formed vessels are found and capillary density increases [11]. To

monitor development of angiogenesis after TBI noninvasively and longitudinally,

magnetic resonance imaging (MRI) indices including cerebral blood volume

(CBV), cerebral blood flow (CBF), blood-to-brain transfer constant (Ki) marked

with extrinsic-contrast agents, such as gadolinium DTPA (diethylene triamine

pentaacetic acid), and T1- or T2-weighted imaging have been used. Hyperperme-

abilities on the Ki map in the injured brain indicate vascular leakage. New vessels

are permeable at the early phase of angiogenesis, and become less leaky as they

mature [12–14]. The feature of a transient increase in vascular permeability is used

to detect formation of new blood vessels [13]. Newly generated leaky cerebral

vessels with immature BBB which are present in the lesion boundary zone 2 days

after TBI are detected by Ki maps [15, 16]. Angiogenic areas identified on the Ki

map become apparent 3–4 weeks after TBI [15]. These vessels appear less leaky

6 weeks after TBI and may contribute to an increase in CBF [15]. Furthermore, as

confirmed with endothelial barrier antigen (EBA) immunoreactivity, the angio-

genic area on the Ki map identifies enlarged thin-walled vessels [15]. The correla-

tion between increase of CBF and enhancement of vessel density indicates that TBI

induces functional new vessels in the lesion boundary zone. Vessels with BrdU-

positive ECs are detected in the ipsilateral dentate gyrus (DG) in the rats after TBI,

indicating that TBI induces angiogenesis in the DG [17]. Additionally, elevated

CBV is reported starting at day 1 after injury and lasting for 2 weeks in the
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ipsilateral DG after TBI [18]. Elevated CBV in the DG after TBI suggests that

newly generated vessels by TBI-induced angiogenesis present to be functional.

Vascular endothelial growth factor (VEGF) and its receptors initiate the forma-

tion of immature vessels, while angiopoietins (Ang 1, Ang 2) and their receptor

Tie2 are essentially involved in maturation, stabilization, and remodeling of vessels

[19]. VEGFR1 and VEGFR2 mRNA and protein are present in vessels adjacent to

the lesion from 1 day after injury [20]. VEGF and VEGFR2 assessed by Western

blot analysis also increase in the ipsilateral hippocampus after TBI [21]. With

double immunofluorescent staining of endothelium and VEGFR2, it is revealed

that increased VEGFR2 is expressed in the endothelium [11]. Although there is no

direct evidence that TBI induces angiogenesis in human brain in response to TBI,

serum and intracerebral extracellular fluid levels of angiogenic factors, such as

VEGF and Ang-1, peak at 14 days post-trauma and subsequently decline [22,

23]. Furthermore, in a 21-day clinical study, serum VEGF level significantly

increases during the entire period while there is no difference of serum Ang-1

level between severe TBI patients and control subjects during the first 4 days after

TBI but then Ang-1 increases after 4 days [23]. However, VEGF and Ang-1 are

expressed not only within vasculature but also in large numbers of platelets

[24–26]. Therefore, in vitro, increased level of VEGF and Ang-1 in serum collected

from patients may also be caused by platelet clotting in serum tubes [27]. For both

healthy controls and patients in this 21-day clinical study [23], the average level of

Ang-1 in serum on day 1 is tenfold higher than the levels reported from other

studies [24, 28]. Therefore, the levels of VEGF and Ang-1 could result from an

artifact caused by platelet activation after TBI [27]. In uninjured rats, none or weak

immunoreactivity with matrix metalloproteinases (MMPs), such as MMP2 and

MMP9, is detected in cortical capillaries [29]. As measured using gelatin

zymography, MMP9 is elevated from 3 h after TBI, reaches a maximum at 24 h,

and persists to 2 weeks, while MMP2 is increased from 1 day and persists to

2 weeks [30–32]. Likewise in humans, as measured by ELISA, serum MMP9 is

significantly increased during the follow-up period after TBI [33]. Robust MMP2

and MMP9 immunoreactivities are found to colocalize to the vessels adjacent to the

lesion site, and particularly in the immature ECs [29]. In vitro studies show that ECs

secrete MMP2 and MMP9 before and after tumor necrosis factor (TNF)-α stimu-

lated injury [34]. Increased expression of VEGFR2 and MMP9 is detected in the

basement membrane of the new capillaries 2 days after TBI [29]. These results

show that TBI also induces the expression of EC MMPs which are involved in

angiogenesis [29]. In vitro, exogenous MMP2 increases EC tube formation while

addition of MMP inhibitors or synthetic MMP agonists decreases EC tube

formation [35].

Collectively, these data indicate that angiogenic factors and MMPs play impor-

tant roles in TBI-induced angiogenesis.

8 Angiogenesis and Functional Recovery After Traumatic Brain Injury 143



8.3 Angiogenesis Couples with Neurogenesis

and Oligodendrogenesis

In addition to providing nutritive blood flow, cerebral ECs regulate biological

activity of neural progenitor cells [36].

Cerebral ECs activated by cerebral ischemia secrete VEGF that acts on neural

stem cells (NSCs) and consequently leads to augmentation of newborn neurons

[37]. Blockage of VEGFR2 not only reduces EBA-immunoreactive vascular den-

sity (an indicator of angiogenesis) but also reduces the number of newborn neurons

in the DG in rats after TBI, which is associated with decreased neurological

function recovery [21]. These data indicate that angiogenesis cooperates with

neurogenesis and is involved in the recovery of neurological function after brain

injury.

Neurogenesis occurs in the subventricular zone of the lateral ventricle and the

subgranular zones of the DG in mammalian adult brains under normal conditions

[38, 39] and pathological situations including TBI [40–44]. In the normal hippo-

campus, newborn neurons are detected after 1 h of [3H]thymidine injection and

continually generated from the DG subgranular zone, with a significant increase

after 2 weeks, and these newborn cells migrate laterally into the granule cell layer,

projecting axons to the CA3 region of the hippocampus within a 4-week study

[45]. Following TBI, by immunofluorescent double-labeling of the proliferation

cell marker BrdU and the mature neuronal marker NeuN or the astrocytic marker

GFAP, there is a significant peak period of cell proliferation at 2 days post-injury in

the DG both in injured juvenile and adult rats compared to shams [44], and the

majority of BrdU+ cells which survive for 10 weeks become dentate granule

neurons [46]. Injured animals display significant cognitive deficits at 11–15 days

post-moderate injury, while there is no significant difference of cognitive deficits at

days 56–60 between injured and sham animals, which shows cognitive recovery

over time following TBI [46]. Therefore, injury-induced limited endogenous

neurogenesis may partially contribute to spontaneous cognitive functional recovery

after TBI.

In the central nervous system (CNS), the neurovascular unit (NVU) comprises

ECs, pericytes, neurons and glial cells, as well as growth factors and extracellular

matrix proteins close to the endothelium [47, 48]. New blood vessels in peri-infarct

cortex are closely associated with new neurons identified by BrdU+/doublecortin+

(DCX, a marker of migrating neuroblasts) after ischemic injury, which indicates

that neurogenesis coexists with angiogenesis in peri-infarct cortex [49]. Correlation

analysis shows that the cognitive function outcome is significantly correlated with

the number of the newborn neurons generated in the DG [50] and also with the

increased number of vessels in ipsilateral cortex, DG, and CA3 region examined

35 days after TBI [51]. This evidence indicates that angiogenesis is coupled with

neurogenesis and may improve neurological functional outcome after TBI sponta-

neously or with therapy [15, 16, 52, 53].
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Oligodendrocytes (OLGs) are the major cell type in the white matter in the CNS,

maintaining the integrity of the white matter in the adult brain. Mature OLGs

generate myelin which forms sheaths for axons in the adult mammalian CNS but

are unable to proliferate in response to injury [54]. However, there are plentiful

oligodendrocyte progenitor cells (OPCs) in the white matter of normal CNS with

functions including proliferation and maturation to remyelinate the demyelinated

axons [55, 56]. Oligodendrogenesis occurs after injury in the lesion area and corpus

callosum where OPCs proliferate, mature, migrate, and are regulated by the factors

secreted from ECs such as fibroblast growth factor (FGF), VEGF, brain-derived

neurotrophic factor (BDNF), and MMPs. TBI alone significantly increases the

number of OPCs in the ipsilateral cortex and hippocampus (CA3, DG) compared

to sham controls, suggesting that oligodendrogenesis may partially be responsible

for spontaneous functional recovery presumably myelinating axons [57, 58]. Cog-

nitive function recovery is significantly and positively correlated with both angio-

genesis and neurogenesis in the hippocampus region after TBI [51]. After TBI,

myelin content, as measured by staining with myelin-specific stain Luxol fast blue,

is reduced in many white matter regions [59]. Therefore, OPCs may play an

important role in remyelination in the injured brain even though the axonal regen-

eration is limited in adult brain after injury [60].

An interaction between OLGs and cerebral ECs has been investigated. In OLGs

culture system derived from 1- to 2-day SD rats, MMP9 is not detected in OLGs

under normal conditions but is secreted after stimulation by IL-β [61]. U0126, a

MEK inhibitor, is able to block MMP9 secretion in IL-β-treated OLGs culture

system, indicating that the MEK/ERK signaling pathway regulates OLGs to secrete

MMP9 under stimulated situation [61]. Furthermore, the inhibition of MMP9

decreases newborn ECs and EC density [61]. Therefore, MMP9 released from

OLGs after injury plays a critical role in white matter remodeling.

In vitro, coculture of OPCs with cerebral ECs promotes OPC survival and

proliferation via the Akt and Scr signaling pathways [62]. In addition, VEGF,

involved in angiogenesis, is primarily released by EC and its receptor, VEGFR2,

is expressed in OPCs [63]. In endothelial-conditioned media, VEGF promotes OPC

migration at 24 h after incubation and its effect can be inhibited by anti-VEGFR2

antibody. Therefore, these findings provide a novel concept of the oligovascular

niche, with trophic factors secreted from ECs, activated through the Akt and Src

signaling pathways to regulate OPC function including proliferation and migration.

Furthermore, sensorimotor function is significantly correlated with the axonal

density of ipsilateral hemisphere after TBI [64]. Taken together, these data indicate

that angiogenesis coupling with oligodendrogenesis may contribute to white matter

remodeling including axons and synapses after brain injury, which improves

sensorimotor function recovery.
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8.4 Enhancement of TBI-Induced Angiogenesis by

Cell-Based Therapies

8.4.1 Bone Marrow Stromal Cells

Marrow stromal cells (MSCs) are extracted from bone marrow and include mes-

enchymal stem or progenitor cells [65–68], which can replicate and differentiate to

other cells including neural cells [69–72]. The restorative therapy of MSCs has

been performed intravenously or through direct implantation. Intravenous admin-

istration of MSCs after TBI significantly enhanced improvement in functional

outcome [73]. In vitro, TBI-conditioned cultured hMSCs increase BDNF, NGF,

VEGF, and hepatocyte growth factor (HGF) [74]. Furthermore, in vivo, MSCs also

induce intrinsic parenchymal cells to produce the above growth factors after TBI

[73]. Rats treated with MSCs cultured with BDNF and NGF have more engrafted

cells than the group treated with MSCs cultured without these factors, and more

robust motor function recovery is detected in the MSC groups cultured with

neurotrophic factors [75]. These data suggest that motor function recovery after

TBI is accomplished by transplantation of MSCs and enhanced by additional

neurotrophic factors. To investigate the changes of the vascular system after TBI

with acute treatment of human MSCs (hMSCs), MRI T2 maps are used to monitor

and quantify the volumetric changes in the lesion area, while CBF (measured by

perfusion-weighted MRI) and Ki (extrinsic-contrast agents) are used to monitor

hemodynamic alteration and the BBB permeability, respectively [15]. After TBI,

Ki-detected angiogenesis occurs significantly earlier in the MSC-treated group

compared to the control group and the angiogenic area on Ki map is confirmed

histologically by enlarged thin-walled vessels [15]. Furthermore, compared to

control subjects, this early angiogenesis is not only associated with a significantly

higher vessel density in the lesion boundary region of cell-treated animals but also

associated with improved behavioral status after MSC treatment [15]. Pre-labeled

MSCs can be tracked in the brain using MRI and verified by immunostaining

[76–78]. After hMSCs are injected intravenously and detected to migrate into

brain around the injury site [79], they promote cell proliferation in the

subventricular zone, hippocampus, and boundary zone of injury, and some of

these newly generated cells expressed the neuronal markers (Tuj1 for immature

neurons, DCX for migrating neuroblasts, NeuN for mature neurons) with improved

cognitive function recovery [80]. Compared to hMSCs alone injected intracere-

brally or intravenously 1 week after TBI, hMSC-impregnated scaffolds

transplanted into the lesion cavity 1 week after TBI significantly increase the

number of hMSCs which migrate from lesion cavity to the boundary zone and

also increase the vascular density in the boundary zone and hippocampus after TBI,

and enhance cognitive and sensorimotor function [81]. Thus, scaffolds impregnated

with MSCs provide a promising therapy option to tissue repair and functional

recovery after TBI. With enhanced neurological and cognitive function recovery,
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MRI shows that white matter reorganization is located in the extended area of the

corpus callosum where labeled hMSCs are co-localized [78]. hMSCs secrete

angiogenic factors such as VEGFA, FGF1, and MMP9 after TBI associated with

enhanced neurologic and cognitive function recovery [82], which may lead to the

restructuring of axons and myelin after TBI to reorganize the white matter through

oligodendrogenesis.

In summary, MSC treatment amplifies neurogenesis, angiogenesis, and

oligodendrogenesis after TBI.

8.4.2 Neural Stem Cells

Stem cells are able to self-renew and differentiate into multiple cell types. NSCs

can differentiate into neurons, astrocytes, and OLGs [83, 84]. NSCs with their

intrinsic ability of regeneration have been used in the treatment of many neurolog-

ical diseases in animal models including TBI [85–87]. After transplantation into

corpus callosum of brain-injured animals 2 days after TBI, some of NSCs which are

derived from the neonatal murine cerebellar external germinal layer express NG2

(marker for OPCs) and migrate to the injury area 2 weeks after transplantation

[88]. In a subacute therapy (1 week after injury), NSCs injected in the striatum

remain in the brain and improve motor recovery on a rotarod test at 14 days after

cell placement [89]. There are two possible strategies for NSC treatment of TBI:

transplantation of exogenous NSCs and stimulation of endogenous NSCs

[90]. Local or systemic administration of pre-differentiated human fetal neural

progenitor cells improves long-term motor and sensory function recovery,

decreases trauma lesion size, and increases neuronal survival in the border zone

of the lesion, which are likely to be attributable to transiently increased angiogen-

esis and reduced astrogliosis in the border zone instead of cell replacement from

donor cell transplantation [91].

8.5 Augmentation of TBI-Induced Angiogenesis by

Pharmacological Therapies

8.5.1 Erythropoietin

Erythropoietin (EPO) and its receptor (EPOR) are essential for erythropoiesis and

EPO has been widely used in the clinic for treatment of anemia since it regulates the

maturation, differentiation, and survival of hematopoietic progenitor cells [4]. In

normal adult brains, low levels of EPO and EPO receptors are detected, while after

injury, increased levels of EPO and EPO receptors are found in neurons, NPCs,

glial cells, and ECs [92]. EPO treatment (24 h after TBI) increases expression of
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VEGF and phosphorylation of VEGFR2 as well as results in a significant increase

of newborn neurons and vascular density in the cortex, DG, and CA3. However,

after blockage of VEGFR2 with SU5416, newborn neurons and vascular density are

all significantly decreased and functional recovery in EPO-treated TBI rats is

abolished [21]. Therefore, EPO therapy improves sensorimotor and cognitive

functional recovery after TBI by promoting neurogenesis and angiogenesis through

upregulating VEGF/VEGFR2 expression in the brain [21, 43, 93]. Previous studies

show that cognitive function recovery is mediated by neurogenesis coupled with

angiogenesis in the hippocampus [42, 43, 51] while sensorimotor function recovery

is associated with brain angiogenesis and spinal cord axon remodeling [94]. How-

ever, in animals null for the EPOR gene in neural cells, EPO treatment still

significantly reduces cell loss in the hippocampus compared with saline controls,

as well as improves sensorimotor and cognitive function after TBI, which suggests

that therapeutic benefits of EPO may be mediated through its vascular protection

but not via neural EPOR [95]. Carbamylated erythropoietin (CEPO), a modified

erythropoietin molecule that does not affect hematocrit, is as effective as EPO in

terms of reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis

in the injured cortex and hippocampus, and improving sensorimotor functional

recovery and spatial learning in rats after TBI [53, 96]. EPO and its derivatives

have a potential value in TBI therapy.

8.5.2 Statins

Statins lower cholesterol levels and also have neuroprotective and neurorestorative

effects including angiogenesis, neurogenesis, and synaptogenesis and improve

function recovery in rats after TBI [97, 98]. To measure the effect of atorvastatin

on improvement of microvascular integrity and cognitive function recovery after

TBI, animals are perfused with FITC–dextran to track the vascular changes, and the

water maze test is performed to investigate the spatial learning on injured rats

[97]. Compared with saline treatment group, atorvastatin treatment significantly

improves spatial learning, increases the vessel-to-tissue ratio and vascular length on

days 8 and 15 after TBI in both hippocampal CA3 region and boundary zone of

injured area, and also augments vascular diameter on day 8 after TBI in the

boundary zone of contusion [97]. Simvastatin upregulates VEGFR2 expression

after TBI, increases the BrdU+ ECs in the lesion boundary zone and hippocampus

with improved functional recovery in rats, and enhances in vitro capillary-like tube

formation after oxygen glucose deprivation (OGD), indicating that simvastatin-

enhanced angiogenesis may be related to activation of the VEGFR-2/Akt/eNOS

signaling pathway [16]. A recent study shows that increasing circulating EPCs with

atorvastatin treatment may contribute to the observed increase in brain angiogenesis

and improved functional outcome after TBI [99].
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8.5.3 Thymosin Beta 4

Tβ4 is a multifunctional regenerative small peptide comprising 43 amino acids and

its major function is G-actin-sequestering [100]. Tβ4 is involved in many cellular

procedures including cell proliferation, mobility, antiapoptosis, anti-inflammation,

and promotion of wound healing [101–104]. Tβ4 is a novel therapeutic choice for

CNS trauma, which promotes endogenous neurorestorative processes in animal

models of TBI [52, 57]. Tβ4 is evaluated to be safe in clinical treatment of acute

myocardial infarction [105]. Early treatment (6 h after TBI) shows that Tβ4
significantly improves spatial learning and sensorimotor functional recovery, and

promotes neurogenesis in the DG [52]. Late treatment (24 h after TBI) indicates that

Tβ4 significantly increases the vascular density in the injured cortex, CA3, and DG
of the ipsilateral hemisphere, and enhances neurogenesis in the injured cortex and

hippocampus, along with increased generation of mature OLGs in the CA3 region,

which are associated with improved sensorimotor and cognitive functional recovery

after TBI [57]. The mechanisms underlying the beneficial effects of Tβ4 remain

unknown. However, a recent study shows that Tβ4 is able to induce endothelial

progenitor cell migration via the phosphatidylinositol 3 kinase/Akt/endothelial

nitric oxide synthase (eNOS) signal transduction pathway, which may mediate

angiogenesis [106]. Tβ4 treatment induces OLG differentiation by inducing

p38MAPK with parallel inactivation of ERK1 and JNK1, thus preventing the

accumulation of phosphorylated c-Jun [107]. Therefore, Tβ4 treatment-induced

angiogenesis, neurogenesis, and oligodendrogenesis, in concert, may contribute to

functional recovery in rats after brain injury.

8.6 Other Growth Factors

VEGF is an important regulator of angiogenesis. VEGF is neuroprotective in

several models of experimental brain injury [108–112]. The expression of VEGF

and VEGFR2 is increased in rodents subjected to TBI [20, 113], and inhibition of

VEGF expression after injury decreases newborn neurons and newly generated

vessels with aggravated function outcome [21], suggesting that VEGF-induced

angiogenesis and neurogenesis promote neurological and cognitive function recov-

ery [21]. Hepatocyte growth factor (HGF) is an important molecule for tissue repair

[114]. Enhancement of vascular pixel intensity and GAP-43-positive cells (a crucial

component of the axon and presynaptic terminal) is detected at the ischemic

boundary zone with HGF treatment [115], indicating that HGF is involved in

angiogenesis and synaptogenesis after injury. HGF is also known to induce angio-

genesis in cooperation with VEGF [116]. Basic fibroblast growth factor (FGF2) is a

potent angiogenic agent present in neurons and glia, vascular basement membrane

of blood vessels, and in the ependymal cells of the ventricles [117]. After TBI,

FGF2 treatment significantly decreases lesion size, increases the number of blood
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vessels in the cortex around the lesion, and improves sensorimotor function recov-

ery [110]. Granulocyte-colony stimulating factor (G-CSF), a hematopoietic growth

factor, significantly increases 3 h after TBI and peaks at 8 h [118]. In the ischemic

hemisphere post-stroke, G-CSF treatment increases endothelial proliferation, vas-

cular density, expression of eNOS and angiopoietin-2, and decreases BBB disrup-

tion and function deficits [119]. Most of these growth factors, with large molecular-

weighted and hydrophilic proteins, have a limited access to the CNS after systemic

administration, principally due to poor BBB permeability. Cerebrolysin is a mixture

of low-molecular-weight neuropeptides derived from purified brain proteins by

standardized enzymatic proteolysis, with proposed neuroprotective and

neurotrophic properties similar to naturally occurring growth and neurotrophic

factors [120]. Direct and indirect evidences indicate that low-molecular-weight

Cerebrolysin, which contains many neurotrophic factor-like peptides, is able to

cross the BBB [121]. Early intervention with Cerebrolysin reduces BBB perme-

ability changes, attenuates brain pathology and brain edema, and mitigates func-

tional deficits [120]. Recent data show that Cerebrolysin enhances neurogenesis in

the ischemic brain and improves functional outcome after stroke [122]. Taken

together, these data suggest that Cerebrolysin has potential therapeutic value

in TBI.

8.7 Perspectives

There is evidence for a prominent role of angiogenesis in the recovery of neuro-

logical function post-TBI. It is well known that TBI induces angiogenesis, partic-

ularly in the injury boundary zone. An angiogenic environment is essential for

tissue repair and functional recovery after injury. The contribution of endogenous

angiogenesis, however, may not be sufficient to support the degree of

neuroplasticity required for functional recovery after TBI. The therapeutic

approaches that enhance brain remodeling via angiogenesis are promising. In

addition to cell-based therapy including MSCs and NSCs, many promising drugs

such as EPO, CEPO, Tβ4, statins, and growth and neurotrophic factors, all of which
amplify endogenous angiogenesis, have been evaluated in TBI. Enhanced angio-

genesis, coupled with neurogenesis, oligodendrogenesis, and white matter

remodeling, contributes to improvement of functional recovery induced by these

treatments. The therapeutic window for stimulation of angiogenesis, neurogenesis,

and white matter remodeling after TBI has not been ascertained. Further investi-

gation of angiogenesis and its correlation between neurogenesis and white matter

remodeling is also warranted to better understand mechanisms underlying func-

tional recovery after TBI and to develop effective therapeutic treatment for improv-

ing outcomes in patients with the CNS injury.
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