
Chapter 3
Theories of Phonon Transport in Bulk
and Nanostructed Solids

G.P. Srivastava

Abstract In this chapter we outline the theories that are usually employed for
phonon transport in solids. In particular, we provide a detailed description of
the essential steps in deriving the lattice thermal conductivity expressions within
the single-mode relaxation-time approximation. Explicit expression for various
phonon scattering rates, in bulk and low-dimensional solids, have been provided.
Numerical evaluation of scattering rates and the conductivity expressions is detailed
using both Debye’s isotropic continuum scheme and a realistic Brillouin zone
summation technique based upon the application of special phonon wavevectors
scheme. Results of the conductivity are presented for selected bulk, superlattice,
and nanostructed systems. Based on such results, we briefly discuss the concept of
phonon engineering of high-efficiency thermoelectric materials.

3.1 Introduction

Techniques for experimental measurement and theoretical modelling of thermal
conductivity in naturally grown bulk soilds have been established since the early
1950s. In this millenium, nanostructures, or meta materials in general, have attracted
a great deal of attention. Such materials do not exist in nature but can be fabricated
in laboratory using modern growth techniques. However, in general, methods of
experimental measurements and theoretical modelling of some properties, including
thermal conductivity, of such materials have not yet been well established.

Thermal conduction in insulating and semiconducting solid structures (bulk or
low-dimensional forms) is almost exclusively contributed by phonons. A phonon,
using the second-quantised notation, is a quantum of atomic vibrational waves in
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crystalline solids and is represented both as a quasi-particle and an elementary
excitation of energy „!.qs/ corresponding to wavevector q and polarisation s.
Phonon transport in a given solid is governed by details of dispersion relations (i.e.
! vs. q for all polarisation branches s) and processes that control lifetimes of these
quasi-particles. An ideally perfect and purely harmonic solid would exhibit perfect
heat conduction, i.e. infinite thermal conductivity, as its atoms can be viewed as
executing purely harmonic vibrations, leading to the concept of independent, or
non-interacting, phonons of infinitely long lifetime. Real solids are characterised by
anharmonic inter-atomic forces and presence of defects. These features limit phonon
lifetimes and thus thermal conductivity. In order to estimate phonon lifetimes
and thermal conductivity it is important to have a detailed knowledge of phonon
dispersion relations for the relevant crystal structure.

Ab initio methods for phonon dispersion calculations have been described in the
chapter by Tütüncü and Srivastava, and for phonon lifetimes in bulk semiconductors
in the chapters by Garg et al. and Mingo et al. In this chapter we will briefly discuss
phonon dispersion relations and their usage in deriving expressions for phonon
lifetime contributions from various scattering sources in bulk and nanostructured
semiconductors. We will then discuss how these two ingredients can be utilised in
numerical calculations of the phonon conductivity in such systems. Finally, we will
briefly discuss how changes in the thermal conductivity due to nanostructuring can
be engineered for increasing the efficiency (i.e. the figure-of-merit) of thermoelec-
tric materials.

3.2 Phonon Transport Theories

The rate of heat energy flow Q per unit area normal to a finite (but small)
temperature gradient rT across a solid is given by Fourier’s law

Qi D �
X

j

�ijrTj ; (3.1)

with the coefficient f�ij g known as the thermal conductivity tensor. Accepting this
observation, conductivity expressions have been derived by following approaches at
two different levels of sophistication. At one level, a statistical mechanical approach,
known as the Green–Kubo linear-response approach [1], is used to express � in
terms of the time integral of the heat current autocorrelation function (i.e. canonical-
ensemble average with respect to the Hamiltonian of the system) < Q.t/ � Q.0/ >.
This approach has been followed both at classical and quantum levels. At another
level, � is expressed by obtaining a solution of a linearised Boltzmann equation
satisfied by the phonon distribution function nqs.r ; t/ in the steady state of heat
flow through the solid (see, e.g., [2, 3]). As in general, the phonon Boltzmann
equation cannot be solved exactly, several formulations for expressing � have been
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presented [3]. In this section we will provide a brief overview of the theories for the
phonon conductivity based on the Green–Kubo’s linear-response approach and the
Boltzmann equation formulation.

3.2.1 Theories Based on Green–Kubo’s Linear-Response
Approach

3.2.1.1 Classical Level

At the classical level of the Green–Kubo approach a molecular dynamical simula-
tion is performed in real space (see, e.g., [4, 5]). In this approach, Newton’s second
law and the kinematic equations of motion are used, based on (semi)classically
derived interatomic potential(s), to determine the classical position and momentum
space trajectories of a system of particles.

The heat current is written as

Q D
X

i

Ei�i C 1

2

X

i;j

.F ij � �i /r ij ; (3.2)

where Ei , ri , and vi are, respectively, the energy, position vector, and velocity of
particle i , r ij is the interparticle separation vector, and F ij is the force between
particles i and j . For a monatomic bulk crystal, the heat current autocorrelation
function is fitted into a functional form

hQ.t/ � Q.0/i D A exp.�t=�/; (3.3)

where A is a constant and � is a time constant. The isotropic thermal conductivity
expression for a bulk material is then obtained as

� D kBT
2N0˝

3
A�; (3.4)

where kB is Boltzmann’s constant, N0˝ represents crystal volume (with N0 unit
cells, each of volume ˝). The energy E and force F terms are usually obtained
from the use of empirically derived inter-atomic potential. Details on the application
of the approach can be found in McGaughey and Kaviany [4], and Huang and
Kaviany [6].

3.2.1.2 Quantum Level

At quantum level the heat current is expressed as an operator in the Heisenberg
representation
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OQ.t/ D 1

N0˝

X

qs

„!.qs/ Onqs.t/cs.q/; (3.5)

where cs.q/ is the velocity of phonon mode qs with frequency !.qs/ and Onqs is the
phonon number operator

Onqs D Oa�qs Oaqs (3.6)

with Oa�qs and Oaqs as phonon creation and annihilation operatores, respectively. The
conductivity tensor expression, therefore, reads

�ij D „2
N0˝kBT 2

<
Z 1

0

dt
X

qsq0s0

!.qs/!.q 0s0/cis .q/c
j

s0.q
0/Cqsq0s0.t/; (3.7)

where cis .q/ is the i th component of the velocity of a phonon mode qs and

Cqsq0s0.t/ D hOa�qs.t/ Oaq0s0.0/i (3.8)

is a correlation function.
The correlation function Cqsq0s0.t/ represents the canonical-ensemble average of

the operator Oa�qs.t/ Oaq0s0.0/ with respect to the total phonon Hamiltonian H of the
system:

Cqsq0s0.t/ D Tr.e�ˇH Oa�qs.t/ Oaq0s0.0//

Tr.e�ˇH/
; ˇ D 1=kBT: (3.9)

Several techniques have been employed to evaluate the correlation function, includ-
ing Zwangis–Mori’s projection operator method, double-time Green’s function
method, and imaginary-time Green’s function method. Details of the first two
methods can be found in Srivastava [3] and of the third method in Ziman [7]. The
final solution can be expressed as

Cqsq0s0.t/ D ıqq0ıss0 Nnqs. Nnqs C 1/e�t=�qs ; (3.10)

where Nnqs is the Bose–Einstein distribution function and �qs is the relaxation time
for a phonon in mode qs. The Hamiltonian required for the simulation is usually
adopted from empirically chosen inter-atomic potential, but it can be made from
first-principles treatments.

3.2.1.3 Extraction of Relaxation Time

An effective relaxation time �qs can be obtained for different situations of the change
in the Hamiltonian from that for a perfect crystal within harmonic approximation,
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e.g. due to the presence of impurities and defects, and crystal anharmonicity.
However, there are genuine difficulties in dealing with two situations in particular.
Firstly, the contribution towards �qs from the presence of isotopic impuries requires
the molecular dynamics simulation to be carried out over an excessively large unit
cell containing atoms of appropriate atomic masses. Such contributions, therefore,
have not yet been included satisfactorily. Secondly, it is not easy to unscramble the
anharmonic contribution in the form of separate phonon contributions involved in
three-phonon or four-phonon processes. Neither is it easy to establish separate roles
of the anharmonic Normal (momentum conserving) and Umklapp (momentum non-
conserving) processes.

3.2.2 Theories Based on Phonon Boltzmann Transport
Equation

Theories of lattice thermal conductivity based on the Boltzmann transport equation
make the basic assumption that the occupation number of a phonon in mode qs is
governed by a distribution function nqs.r ; t/ in the neighbourhood of space position
r at time t . In the general form of Boltzmann equation, for a dielectric subjected to
a (small) temperature gradient rT , the distribution function satisfies the equation

�cs.q/ � rT @nqs

@T
C @nqs

@t

ˇ̌
ˇ
scatt

D 0; (3.11)

with the second term on the left-hand side representing the rate of change due to
phonon scattering mechanisms. The linearised Boltzmann equation

�cs.q/ � rT @ Nnqs

@T
C @nqs

@t

ˇ̌
ˇ
scatt

D 0; (3.12)

represents a physically appealing simplification of Eq. (3.11), where

Nnqs D Œexp.„!.qs/=kBT / � 1��1 (3.13)

is the Bose–Einstein (or equilibrium) distribution function. Expressions for the
term @nqs=@t

ˇ̌
scatt corresponding to relevant phonon scattering mechanisms must

be derived before Eq. (3.12) is solved for nqs.t/ and eventually an expression for
thermal conductivity is established. In general, phonon scattering mechanisms can
be described as elastic (in which the participating phonon qs retains its identity) and
inelastic (in which the participating phonon qs loses its identity). In general, only
approximate forms of inelastic scattering rates can be derived. This is particularly
the case for phonon scattering due to crystal anharmonic effects. This difficulty has
led to two main routes for the derivation of thermal conductivity expression. These
will be briefly described here.
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3.2.2.1 Variational Principles

The scattering term in Eq. (3.12) can, in general, be expressed as

�@nqs

@t

ˇ̌
ˇ
scatt

D
X

q0s0

P ss0

qq0 
s0

q0 ; (3.14)

where  qs.�  sq/ provides a measure of deviation of the phonon distribution
function from its equilibrium value

nqs D Œexp.„!.qs/=kBT �  qs/� 1��1

' Nnqs �  qs

@ Nnqs

@.„!.qs//
D Nnqs C  qs Nnqs. Nnqs C 1/; (3.15)

and P ss0

qq0 are the elements of the phonon collision operator, providing a measure of
phonon transition probabilities.

Expressions for the phonon collision operator elements P ss0

qq0 can be derived
by applying time-dependent perturbation theory. The deviation function  qs can
then be obtained from Eq. (3.12) provided that the inverse of the matrix operator
fP ss0

qq0g exists. Unfortunately, only partial information is available about the nature
of the anharmonic part of the collision operator (for detail, see [3, 8]). This leaves
 qs unknown in the temperature range where the role of crystal anharmonicity
plays an important role. The essence of the variational method for lattice thermal
conductivity is to treat  qs as a trial function. The simplest approximation for the
anharmonic contribution to  qs is [3, 8]

 qs D q � u; (3.16)

where u is some constant vector parallel to the applied temperature gradient.
Using the trial function in Eq. (3.16) Ziman [2] derived a lower bound for the

conductivity. By noting and employing the positive semi-definite property of the
phonon collision operator P , Benin [9] developed a sequence of monotonically
convergent lower bounds for the conductivity. The first term in this sequence
is the Ziman limit. It was later shown by Srivastava [10] that a sequence of
monotonically convergent upper bounds for the conductivity can also be developed.
In theory, an estimate for the exact conductivity can then be confined to a small
difference between an upper bound and a lower bound. An improved estimate of
any conductivity bound can be made by adopting scaling and Ritz procedures [11].
The concept of obtaining both a lower bound and an upper bound for estimating
a desired (but inherently unknown) quantity is called complementary variational
principles, details of which can be found in the book by Arthurs [12].
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3.2.2.2 Relaxation-Time Theories

The difficulty in expressing the scattering rate in Eq. (3.12) in terms of a possible
solution for the deviation function  qs requiring consideration of the phonon
collision operator P in its full form is usually dealt with the introduction of the
concept of phonon relaxation time. This is achieved by expressing

� @nqs

@t

ˇ̌
ˇ
scatt

D nqs � Nnqs

�qs

; (3.17)

where �qs is the relaxation time for a phonon in mode qs. It should, however,
be made clear that this expression is based upon a big simplifying assumption,
is subject to a fundamental criticism, and is valid under certain conditions. The
criticism is that the concept of relation time of a phonon mode becomes invalid
in describing its participation in multi-phonon scattering events involving phonon
creation and annihilation. Notwithstanding this criticism, the expression above
assumes the concept of a single-mode relaxation time. To explain this point let
us consider three phonons qs; q 0s0 and q00s00 involved in a three-phonon scattering
event. In its simple form Eq. (3.17) assumes that only the phonon mode qs is
described by a displaced distribution and the other two modes obey the equilibrium
distribution. Such a description is referred to as the single-mode relaxation time
(smrt) approximation and can be justified to some extent [13]. Essentially, �smrt can
be derived from the diagonal part of the phonon collision operator P . Modifications
of the smrt has been proposed by Callaway [14] and Srivastava [15]. The validity of
the relaxation-time approach is limited by the Landau–Peirls–Ziman condition [2]

!� > 1I or � > �; (3.18)

where � and � are phonon mean-free path and wavelength, respectively. Thus the
Boltzmann-equation-based relaxation time approach is unsuitable for applications
to samples thinner than average phonon wavelength.

Representing �� as the relaxation time for a chosen model (e.g. �� D �smrt D �

within the smrt approximation, or �� D �C within the Callaway model), we can
express the thermal conductivity tensor as

�ij D „2
N0˝kBT 2

X

qs

!2.qs/cis .q/c
j
s .q/�

�.qs/ Nn.qs/. Nn.qs/C 1/: (3.19)

This expression will be discussed later using the smrt and Callaway models for the
relaxation time.
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3.3 Ingredients for Calculation of Thermal Conductivity

We will now consider calculation of lattice thermal conductivity using the
relaxation-time-based expression in Eq. (3.19). It requires knowledge of (i) lattice
dynamics, i.e. phonon dispersion curves (! D !.qs/) and phonon density of states
(g.!/), (ii) relaxation time �qs for relevant phonon scattering processes, and (iii) an
adequate procedure for carrying out summations over q-vectors inside the Brillouin
zone for the crystal structure under consideration.

3.3.1 Phonon Dispersion Curves and Density of States

The topic of lattice dynamics, fundamental to calculations of all properties related
to atomic vibrations in solids, has been pursed for many decades. Both phe-
nomenological and ab initio approaches have been employed. One of the most
physically appealing phenomenological approaches for tetrahedrally bonded bulk
semiconductors is the adiabatic bond charge model developed by Weber [16]. This
method has been extended for application to surfaces [17] and nanostructured
materials [18]. With the development of parameter-free total-energy calculations,
ab initio methods of lattice dynamical calculations are now affordable (see, e.g.,
[19]). Details of such a method, based on the applications of the plane-wave
pseudopotential technique, have been presented in the chapter by Tütüncü and
Srivastava.

3.3.1.1 Bulk Materials

Figure 3.1 shows the phonon dispersion curves for bulk Si along the principal
symmetry directions in the central primitive unit cell in momentum space (the
Brillouin zone). Clearly, both the acoustic branches (characterised with ! D 0 for
q D 0) and optical branches (characterised with ! D constant for q D 0) are
highly dispersive as well as anisotropic in the momentum space. In a vast majority of
theoretical developments and numerical calculations of lattice thermal conductivity
two major approximations are employed: (i) isotropic dispersion relations (!.qs/ D
!.jqjs/) and (ii) the continuum model (!.qs/ D csq). Clearly, the continuum
model is more suitable for low-frequency acoustic branches. In practice the isotropic
continuum scheme is carried out inside a sphere (known as Debye sphere of radius
qD) as a replacement for the actual shape of the BZ. The volume of the Debye
sphere should in principle be taken as the volume of the appropriate BZ. However,
usually it is chosen to ensure that the integral of the density of states (DOS) equals
the total number of acoustic modes. A comparison of the DOS, g.!/, results for Si
obtained within the continuum approximation for an average acoustic branch (with
average phase speed of 5,691 m/s) and the lattice dynamical dispersion relations is
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Fig. 3.1 Phonon dispersion curves for bulk Si. Theoretical results (solid curves) obtained from
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Fig. 3.2 Phonon density of states for bulk Si. The solid curve shows the results obtained from a
full lattice dynamical calculation using the adiabatic bond charge model and the dashed curve is
obtained from the consideration of the isotropic continuum model for an average acoustic branch

made in Fig. 3.2. The smooth quadratic rise of the continuum result, g.!/ / !2, is
consistent with the realistic picture only in the low frequency range of 0–3.5 THz.
Beyond this frequency range the realistic picture shows significant departure from
the continuum results. In particular, the continuum model does not cover the optical
frequency range and predicts a much larger DOS (a single van Hove singularity)
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Fig. 3.3 Phonon dispersion curves for the Si(4 nm)/Si0:4Ge0:6(8 nm)[001] superlattice. The inset
shows the full range of the spectrum. Highlighted are the lowest three LA gap regions. The central
gap region is common to both LA and TA branches, indicating that the system is a true one-
dimensional phononic along the grown direction. Taken from [18]

at the highest frequency (9.4 THz) modelled with the linear dispersion relation. In
contrast, the realistic DOS shows several peaks (van Hove singularities), notably at
frequencies 4, 7.6, 8.4, 9.7, and 12.5 THz.

3.3.1.2 Nanostructured Materials

Phonon dispersion curves of low-dimensional systems generally exhibit significant
differences compared to bulk materials. There are at least three new features that
can be expected to develop due to reduction in dimensionality: reduction in group
velocity of phonons modes in all branches, creation of gaps in acoustic as well as
optical branches both at zone edges and at zone centre, and confinement of higher
lying acoustic and optical branches. We will explain these features by considering
two examples: a thin Si/SiGe superlattice and ultrathin Si nanostructures.

Figure 3.3 shows the phonon dispersion curves, obtained from the application
of an enhanced adiabatic bond charge model [18], for the Si(4 nm)/Si0:4Ge0:6(8 nm)
superlattice along the growth direction [001]. This system exhibits several gaps in
the phonon dispersion curves for the entire frequency range. Higher optical branches
(with frequencies greater than 4 THz) show very flat dispersion curves (i.e. have
low group velocities), indicating confinement effects within different superlattice
layers. Several frequency gaps, for both longitudinal acoustic (LA) and transverse
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acoustic (TA) branches, are obtained. The lowest three sub-terahertz LA gaps occur
as follows: zone edge gap of 48 GHz centred 252 GHz, zone centre gap of 40 GHz
centred 495 GHz, and zone edge gap of 30 GHz centred 805 GHz. These results
are in good agreement with the sub-picosecond spectroscopic measurements made
by Ezzahri et al. [22]. The lowest three TA gaps are: zone edge gap of 30 GHz
centred 175 GHz, zone centre gap of 35 GHz centred 350 GHz, and zone edge gap
of 33 GHz centred 523 GHz. The phonon speeds for the lowest TA and LA branches
are 4.18 km/s and 6.00 km/s, respectively. These values are smaller than the average
of the corresponding speeds in bulk Si and Ge. The theoretical work also shows
that there is a clear overall gap along the superlattice growth direction between 515
and 539 GHz, meaning that this superlattice is a true one-dimensional phononic and
would not allow propagation of phonons in this frequency range.

Figure 3.4 shows the phonon dispersion curves, obtained from the application of
the adiabatic bond charge model, for ultrathin Si nanostructures such as a nanoslab,
a wire, and a dot. Looking at the results for the nanoslab we note the existence
of gap opening and flatness of branches along the slab normal (i.e. along 	 � X )
compared to an in-plane direction. These features become even more prominent
as the dimensionality decreases from two-dimensional (slab) to one-dimensional
(wire) and zero-dimensional (dot). The confinement effect produces new peaks (van
Hove singularities) in the phonon density of states (DOS). A clear example of this
can be seen in the right-hand panel of Fig. 3.4b, which shows a comparison of the
DOS of the Si nanowire of cross-section 0.543� 0.543 nm (solid curves) with that
of bulk Si (dashed curves). In general, the nanowire DOS shows several sharp delta-
like peaks, particularly at approximately 220 cm�1 where the bulk DOS shows a dip.

3.3.2 Brillouin Zone Summation

In order to obtain numerical values of any physical property of a crystalline material
it is important to develop a method of Brillouin zone summation. Several methods
exist for such an exercise, at different levels of sophistication. Let us consider the
summation of a general periodic function f .q/

I D
X

q

f .!.q//: (3.20)

If the function f .!.q// is isotropic with a linear dispersion relation, i.e. !.q/ D cq,
then the summation can be performed by using the Debye scheme. In this scheme
the Brillouin zone summation is expressed as an integral over the Debye sphere of
radius qD

I D
Z !D

0

gD.!/f .!/d!; (3.21)
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where

gD.!/ D N0˝

2
2
!2

c3
; (3.22)

is the Debye density of states function and !D D cqD is the Debye frequency. The
simple isotropic continuum Debye method must be improved adequately to deal
with non-cubic crystal structures, and dispersive phonon modes in acoustic as well
as optical branches.

A general-purpose scheme for numerical evaluation of an integral of the type in
Eq. (3.20) is based on the concept of “special q-points” [24,25] inside the Brillouin
zone for the crystal under consideration. Considering an appropriate selection of
N special fqi g points and weight factors fW.qi /g associated with them, we can
estimate the integral I as

I ' N0

NX

i

f .!.q i //W.qi /: (3.23)

For a given shape of Brillouin zone, different sets of special fqi g points can be
generated. A set is considered more “efficient” if it provides an acceptable result for
the integral with the least number of fqig points [24].

3.3.3 Phonon Scattering Processes

Expressions for phonon scattering rates from various sources in bulk semiconduc-
tors can be derived by applying Fermi’s Golden rule formula based on first-order
time-dependent perturbation theory, and do exist in the literature (see, e.g. [3] and
references therein). Here we simply reproduce some of the commonly used results.

3.3.3.1 Boundary Scattering

Purely diffusive phonon scattering rate from crystal boundaries can be expressed as

��1
bs .qs/ D cs=L0: (3.24)

Here L0 denotes an effective boundary length, which depends on the geometrical
shape of crystal. L0 D D for a crystal of cylindrical shape with circular cross-
section of diameter D, and L0 D 1:12 d for a square cross-section of side d . For
polycrystalline solids L0 is a measure of an effective grain size.

In reality, consideration of the polish quality of crystal surface must be made
and an effective boundary length determined. This can be quite a difficult task,
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knowing especially that the precise nature of surface roughness and structure of
grown samples is usually ill-defined. A phenomenological model [2] allows us to
define an effectively longer boundary length L by incorporating the surface polish
quality in terms of the specularity factor p,

L D .1C p/

.1 � p/L0: (3.25)

The limiting cases p D 0 and p D 1 are purely diffusive (or Casimir) scattering
and purely specular boundary scattering (or reflection), respectively. For a given p
factor, each phonon is reflected 1=.1� p/ times before being diffusively scattered.

3.3.3.2 Isotopic Mass-Defect Scattering

Consider a crystal with an average mass per unit cell as NM and let fi be the fraction
of the unit cell containing the isotopic mass Mi . The scattering rate of a phonon
mode qs due to isotopic mass defects is [3, 13]

��1
md .qs/ D 	md


6N0
!2.qs/g.!.qs//; (3.26)

where g.!/ is the density of states and 	md is the isotopic mass parameter. Within
the isotropic continuum approximation, the expression in Eq. (3.26) reads

��1
md .qs/ D 	md˝

4
 Nc3 !
4.qs/;

D Amd!
4.qs/; (3.27)

with Nc as the average acoustic phonon speed. For a single-species crystal the isotopic
mass parameter is evaluated as

	md D
X

i

fi .�Mi= NM/2; (3.28)

with �Mi D Mi � NM , and M as the mass of atoms in the unit cell of volume
˝ . Clearly, for a monatomic crystal, with one atom per unit cell, M is the mass of
a single atom and ˝ represents the atomic volume. For a composite material with
molecular formula AxByCz : : : we can express 	md as [26]

	md D x

.x C y C z C : : :/

�MA

NM
�2
	 .A/

C y

.x C y C z C : : :/

�MB

NM
�2
	 .B/
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C z

.x C y C z C : : :/

�MC

NM
�2
	 .C /

C : : : ; (3.29)

with

	 .A/ D
X

i

fi

��Mi.A/

NMA

�2
; (3.30)

etc. and

NM D xMA C yMB C zMC C : : :

x C y C z C : : :
: (3.31)

The above expression can be used for a superlattice structure (AB)n(CD)m by
considering it as a compound with formula AnBnCmDm.

3.3.3.3 Interface Scatterings

Low-dimensional solids, such as superlattices, and nanowires or nanodots embed-
ded in a host matrix, can provide additional defect-related phonon scattering
mechanisms: interface mass-mixing scattering (IMS) due to diffusion or mixing
of atoms across interfaces, and interface dislocation scattering (IDS) which results
from dislocations or missing bonds present at interfaces. The IMS scattering rate
from a periodic distribution of nanodots in a host matrix has been studied by treating
the embedded material as a small perturbation to the host material [27,28]. Here we
briefly discuss the IMS for superlattice structures with planar (two-dimensional)
interfaces [29].

(i) Mass-mixing scattering:

Let us consider a periodic un-reconstructed superlattice Am/Bn withN0 unit cells,
and each unit cell containingm atomic layers of material A and n layers of material
B. Assuming that interface mass mixing takes place within J layers on either side
of an interface, for dealing with the theory of IMS the perturbed crystal Hamiltonian
can be expressed as

H 0.IMS/ D 1

2

mX

iDm�J
.Mi jvij2�MAjvAj2/C 1

2

mCJX

iDmC1
.Mi jvij2�MB jvBj2/: (3.32)

where Mi is the mass of the i th atom, and vi D dui=dt with ui being the relative
displacement of the i th with respect to its neighbours. Application of Fermi’s
golden rule and utilisation of some simplifying assumptions lead to the following
expression for the relaxation of a phonon mode qs [29]
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��1
IMS.qs/ D ˛


2N0.nCm/2

Z
d!.q0s0/g.!.q 0s0//!.qs/!.q 0s0/

� Nn.q0s0/C 1

Nn.qs/C 1
ı.!.qs/ � !.q0s0/

"�
1 � eAe

0
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eBe
0
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�2
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�
1 � eBe

0
B

eAe
0
A

�2#
;

(3.33)

where ˛ is regarded as a parameter related to the amount of mixing at the interface,
g.!.qs// is the density of states, and eB=eA is the ratio of the amplitudes of
eigenvectors in materials B and A along the superlattice growth direction.

(ii) Interface dislocation scattering:

Superlattices composed of lattice-mismatched layers are known to be charac-
terised by the presence of dislocations at interfaces. Phonon scattering rate by
such dislocations cannot adequately be described by the traditional theory for bulk
solids. While the phonon scattering rate by dislocations in bulk has traditionally
been derived by treating solids as elastic continuum (see, e.g., [2]), an atomic-scale
theory is required when dealing with scattering from interface dislocations. Let us
consider an interface dislocation as a series of randomly missing bonds located near
the interface within a unit cell. With such a consideration we can write the perturbed
crystal Hamiltonian as

H 0.IDS/D1

2

mX

iDm�I
.K0jui j2�KAjuAj2/C1

2

mCIX

iDmC1
.K0jui j2�KB juB j2/; (3.34)

where ui as the relative displacement between two neighbouring atoms and I is
number of atomic layers with broken bonds on either side of an interface, KA(KB )
represents the inter-atomic spring constant in the layer A(B), and K0 represents a
spring constant in the dislocation region, i.e. has a value equal or close to zero, for
broken or missing bonds. From the application of Fermi’s golden rule the following
expression can be derived for phonon-IDS relaxation rate [29]

��1
IDS.qs/ D 
!40

4N0

˛0

.nCm/2

Z
d!.q0s0/

g.!.q 0s0//
!.qs/!.q 0s0/

Nn.q0s0/C 1
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�ı.!.qs/� !.q0s0//
"
1C

�
eAe

0
A

eBe
0
B

�2
C 1C

�
eBe

0
B

eAe
0
A

�2#
;(3.35)

where ˛0 is a measure of dislocation concentration and !0 can be approximated as
the highest zone-centre frequency.
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The following simplified expression for the amplitude ratio eB=eA, required for
both IMS and IDS, can be derived by treating a superlattice as a diatomic linear
chain along the growth direction

eB

eA
D

h
1
M0

�� �
1
M

�i
cos.lzqz/

��
1
M0

�2
cos2.lzqz/C �

�
�
1
M

��2
sin2.lzqz/

	 1
2

��
�
1
M

�
; (3.36)

where 2M0 D 1=MA C 1=MB , and �.1=M/ D .1=MA � 1=MB/=2, and lz is the
superlattice period.

3.3.3.4 Anharmonic Scattering

Anharmonic interatomic potential is present in all crystals at finite temperatures.
Obtaining an expression for crystal anharmonic potential, with its temperature
dependence, from first principles is an enormous task and has not yet been achieved
satisfactorily. A workable form of cubic anharmonic crystal potential can be
expressed, by treating a crystal as an isotropic anharmonic elastic continuum, as
[2, 3]

V3 D 1

3Š

s
„3

2�N0˝

.T /

Nc
X

qsq0s0q00s00

p
!.qs/ !.q 0s0/ !.q 00s00/

�.a�qs � a�qs/.a
�

q0s0 � a�q0s0/.a
�

q00s00 � a�q00s00/ ıqCq0Cq00;G; (3.37)

where .T / as a mode-average but temperature-dependent Grüneisen’s constant, G
is a reciprocal lattice vector, and a�qs , aqs , etc. are the phonon creation and anni-
hilation operators, respectively, and other symbols have previously been defined. It
should be remarked that the above form of the anharmonic potential assumes that the
phonon spectrum consists of only acoustic branches. Recently, a form of isotropic
elastic anharmonic potential has been modelled [30] that considers acoustic as well
as optical phonon branches. Here we will, however, neither present that form of the
Hamiltonian nor any results obtained from its applications.

Application of Fermi’s golden rule leads to the following single-mode relaxation
time for a phonon mode qs due to the anharmonic three-phonon interactions in a
bulk single crystal (see [3] for details):

��1.qs/ jbulkD 
„�22
N0˝ Nc2

X

q0s0;q00s00;G

B.qs; q0s0; q 00s00/; (3.38)
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with

B.qs; q 0s0; q00s00/ D !.qs/!.q 0s0/!.q00s00/ Nn.q0s0/

�
( �
. Nn.q00s00/C1/

Nn.qs/C1 ı.!.qs/C!.q0s0/ � !.q 00s00//ıqCq0;q00CG

	

C
�
1

2

Nn.q00s00/
Nn.qs/ ı.!.qs/ � !.q0s0/ � !.q 00s00//ıqCG ;q0Cq00

	 )
(3.39)

The processes described by the first and second terms in Eq. (3.39) may be
referred to as Class 1 and Class 2 events, governed by the momentum and energy
conservation conditions:

Class 1 events W q C q0 D q00 C G I ! C !0 D !00; (3.40)

Class 2 events W q C G D q0 C q00I ! D !0 C !00: (3.41)

For each class, an event is called Normal (N) if it involves wavevectors of all
participating phonons within the central Brillouin zone. If a reciprocal lattice vector
G is required to meet the momentum conservation condition, the event is called
Umklapp (U). These processes are schematically illustrated for a class 1 event in
panels (a) and (b) of Fig. 3.5.

Callaway [14] took into account the momentum conserving condition of
N-processes to derive an effective phonon relaxation time �C , which can be
considered as a modification of the single-mode relaxation time �smrt. Within the
isotropic continuum approximation, the following expression can be derived [31]

�C D �smrt.1C ˇ=�N /; (3.42)

with �N as the relaxation time due to N processes, and

ˇ D q

!.qs/cs.q/

h!cq��N�1i
hq2�N�1.1 � ��N�1/i ; (3.43)

where the following notation has been used

< f >D
X

qs

f .qs/ Nn.qs/. Nn.qs/C 1/: (3.44)

The above theory can be adopted for low-dimensional systems, but with modifi-
cations. Let us consider a superlattice structure as an example. Apart from making
the obvious changes in the material density (�sl), Grüneisen’s constant (sl) and
average acoustic phonon speed ( Ncsl), two further considerations must be made. (i)
The shortest reciprocal lattice vector in the superlattice growth direction will in
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b

Fig. 3.5 Schematic illustration of a Class 1 three-phonon scattering process in a single-crystal
solid: (a) an N process and (b) an U process. (c) shows how the bulk N process shown in (a)
becomes a “mini-U” process in a superlattice structure corresponding to a superlattice reciprocal
lattice vector G (SL). For clarity, in (c) the bulk Brillouin zone is drawn by dashed lines, and the
bulk q00 is shown by the short-dashed vector

general be much shorter than the shortest reciprocal lattice vector in the constituent
materials. A simple illustration is provided in panel (c) of Fig. 3.5. This means that
some of the bulk N-processes will turn into the superlattice mini-U processes. (ii)
The presence of two materials in an A/B superlattice structure has to be incorporated
in deriving an appropriate form of the anharmonic crystal potential V3. An attempt
in this regard was made by Ren and Dow [32]. Using a scheme similar to Ren and
Dow, a suitable modification of the expression in Eq. (3.38) for an A/B superlattice
structure can be presented as

��1.qs/ jsuperlatticeD 
„�2sl
2
sl

N0˝ Nc2sl

X

q0s0;q00s00;G sl

B.qs; q 0s0; q00s00/Fsl.qs; q
0s0; q00s00/;

(3.45)
where �sl is superlattice density (i.e. the weighted average density of the two
materials), Ncsl is the average acoustic velocity in the superlattice, sl is the Grüneisen



100 G.P. Srivastava

constant for the joint system, G sl represents a reciprocal lattice vector for the
superlattice structure, and the term Fsl arises due to the presence of two materials
in the system. Within the diatomic linear chain approximation, the term Fsl can be
expressed as

Fsl.qs; q
0s0; q00s00/D 1
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where e0
A � eA.q

0s0/, e00
A � e00

A.q
00s00/, etc., �A and �B are the densities of materials

A and B, respectively, and the expression for amplitude ratio eB=eA is given in
Eq. (3.36).

3.3.3.5 Scattering from Donor Electrons

We will consider the scattering of phonons with donor electrons in doped semicon-
ductors. In a doped semiconductor we may consider a local displacement field u.r/
produced by longitudinal acoustic phonons, causing an energy change of the form
Ed D C�.r/ D C1r � u.r/ D C2 Oq � eqs , with C1 and C2 as some parameters. The
matrix element of the deformation potential Ed can be evaluated by expressing the
donor electron wave function as a Bloch function. Application of Fermi’s golden
rule results in the following expression for the relaxation rate of a phonon mode qs

(see [33, 34] for details)

��1.qs/ D m?2E2
dkBT

2
�cL„4
�

z � ln

�
1C exp.� � �0 C z2=16� C z=2/

1C exp.� � �0 C z2=16� � z=2/

�	
; (3.47)

with cL is the speed of longitudinal acoustic phonons, z D „!=kBT , � D
m?c2L=2kBT and �0 D �=kBT . This expression can be reduced to the following
form in the case of a heavily doped, degenerate, semiconductor with � > E0 and
� � E0 >> kBT , where E0 D „2!2=8m?c2L C 1

2
m?c2L � „!=2,

��1.qs/ D m?2E2
d

2
�„3cL!: (3.48)
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For moderately doped semiconductors, Eq. (3.47) can be reduced to the following
form [35]

��1.qs/ D ncE
2
d!

�c2LkBT

s

m�c2L
2kBT

exp
��m�c2L
2kBT

�
; (3.49)

where nc is the carrier concentration.

3.4 Thermal Conductivity Results

Numerical calculations of thermal properties, such as lattice specific heat and
lattice thermal conductivity (�), require summation, or integration, of functions of
phonon wave vectors over the entire Brillouin zone (BZ). In Sect. 3.3.2 we have
mentioned two approaches for carrying out BZ summation. In this section we
will present results of numerical calculations of � for bulk and low-dimensional
semiconductors. Some of the results have been obtained by using Debye’s isotropic
continuum method. Some other results have been carried out by using full lattice
dynamical results for phonon dispersion curves, phonon velocities, and a realistic
BZ summation technique.

Traditionally calculations of thermal properties have been carried out within
Debye’s isotropic continuum scheme. Within this scheme Callaway’s expression
for the lattice thermal conductivity can be written as follows:

�C D „2q5D
6
2kBT 2

�
h X

s

c4s

Z 1

0

dxx4� Nn. NnC 1/C fPs c
2
s

R 1
0

dxx4���1
N Nn. NnC 1/g2

P
s

R 1
0

dxx4��1
N .1 � ���1

N / Nn. NnC 1/

i
;

D �D C �N�drift; (3.50)

where x D q=qD with qD representing the Debye radius. The first and second
terms in the above equation represent the single-mode relaxation time result �smrt

(the Debye term �D) and the N-drift term �N�drift, respectively. The total phonon
relaxation time is the sum of contributions to ��1, obtained within the isotropic
continuum scheme, from all scattering processes relevant to the system under
study. Expressions for commonly required processes are given in Sect. 3.3.3. Using
the anharmonic crystal potential presented in Sect. 3.3.3.4 and employing Debye’s
isotropic continuum scheme, the anharmonic phonon relaxation time contributed by
three-phonon processes can be expressed as follows (see [3] for details):
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��1
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i
:

Here x0 D q0=qD, x00̇ D Cx ˙ Dx0 and Nn00̇ D Nn.x00̇ /, C D cs=cs00 , D D cs0=cs00 ,
� D 1 for momentum conserving (normal, or N) processes, and � D �1 for
momentum non-conserving (Umklapp, or U) processes. The first and second terms
in the above equation are contributed by class 1 events qs C q0s0 ! q00s00 and class
2 events qs ! q0s0 C q00s00, respectively. The integration limits on the variable
x0, imposed by the energy and momentum conservation conditions in Eqs. (3.40)
and (3.41), can be derived straightforwardly and are given below.

Class 1 events:

0 � x � 1

0;
.1 � C/x
.1CD/

� x0 � .1C C/x

.1 �D/
;
.1� Cx/

D
; 1 N processes;

0;
.2 � .1C C/x/

.1CD/
� x0 � .1 � Cx/

D
; 1 U processes: (3.51)

Class 2 events:
N processes:

0 � x � 1

0;
.C � 1/x

D C 1
;
.Cx � 1/

D
� x0 � .C C 1/x

D C 1
;
.C � 1/x

D � 1 ; 1 (3.52)

U processes:

2

1C C
� x � 1

0;
2�.1CC/x
1�D ;

Cx�1
D

;
.CC1/x�2
DC1 � x0 � .CC1/x�2

D�1 ; 1: (3.53)

3.4.1 Bulk Semiconductors

Figure 3.6 shows the temperature variation of the lattice thermal conductivity of bulk
Si, Ge, and GaAs. The theory employed for numerical calculations was based on the
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Fig. 3.6 Thermal
conductivity results for bulk
semiconductors: (a) Si, (b)
natural Ge, and (c) GaAs.
Solid curves are obtained
from theoretical calculations.
Symbols represent
experimentally measured
values: Si [36]; Ge (natural
sample of Geballe and Hull
[37]); GaAs [26]. Reproduced
from Srivastava [38]

Srivastava’s model [15] for an effective phonon relaxation time, viz. a modified form
of Callaway’s model [14]. The numerical results, obtained by employing Debye’s
isotropic continuum method and using reasonable values of fitting parameters,
agree well with experimentally measured results. In general, with increase in
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temperature, � increases as T 3 at low temperatures when the phonon-boundary
scattering dominates, reaches a maximum in the temperature range 10–30 K due to
the combined effect of defect and anharmonic scatterings of phonons, and decreases
as 1=T at high temperatures when three-phonon scattering processes dominate. The
maximum value of � is generally determined by the average atomic mass and the
level of sample purity. The maximum value of � is approximately 5,000, 1,300,
and 2,500 W/m-K and occurs at approximately 20, 20, and 15 K for Si, natural
Ge, and GaAs, respectively. The room temperature values of � are 130, 58, and
55 W/m-K for Si, Ge, and GaAs, respectively. Of these three semiconductors, Si
is categorised as a “high thermal conductivity material” (a material with room-
temperature conductivity larger than 100 W/m-K).

3.4.2 GaAs Suspended Nanobeams

Fon et al. [39] fabricated suspended GaAs nanobeams and made the first direct
measurement of the thermal conductance in such structures. They considered a total
of four samples: undoped nanobeam, doped nanobeam, a 6-beam device (4 doped
nanobeams and 2 undoped nanobeams), and a 4-beam device (4 doped nanobeams).
The nanobeams were of rectangular shape with cross-sectional dimensions d1 D
100 nm and d2 D 250 nm. Results for bulk and the four nanobeams of GaAs,
obtained from numerical evaluation of the conductivity expression in Eq. (3.50)
and the phonon anharmonic relaxation time expression in Eq. (3.51), are presented
in Fig. 3.7. The parameters used in the calculations for bulk, undoped nanobeam,
doped nanobeam, 6-beam device, and 4-beam device, respectively, were: 0.73 cm,
0.227 �m, 0.21 �m, 0.50 �m, and 0.37 �m for the effective boundary length; 0.0,
0.5, 0.4, 0.5, and 0.4 for the surface specularity parameter p; 0.0, 0.0, 5:0 � 1024

m�3, 0.0, and 5:0� 1024 m�3 for the donor electron concentration; 4:36� 10�42 s3,
46:76 � 10�42 s3, 436:27 � 10�42 s3, 31:2 � 10�42 s3, and 311:7 � 10�42 s3 for the
mass defect parameter Amd in Eq. (3.27). The Grüneisen constant was set to 1.8 for
all the samples. We will describe the role of various phonon scattering processes in
explaining the experimental results for bulk GaAs [26] and the nanobeam structures
[39] in the following paragraphs.

In bulk GaAs, phonon boundary scattering is only important below 10 K. In
contrast, boundary scattering has a very strong influence on the thermal conductivity
of the undoped nanobeam up to about 100 K, and it also controls the shape of
the thermal conductivity curve up to about 300 K. In order to explain the low-
temperature conductivity results of the nanobeams it was necessary to include
specular phonon boundary scattering events. Our fitted value of the effective
boundary length of 0.68 �m is consistent with the specularity factor p D 0:5. This
suggests that each phonon is specularly reflected on an average of 1=.1 � p/ � 2

times before being diffusely scattered in these nanobeams. Our work also suggests
that, compared to bulk, phonon scattering by point defects is much stronger
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Fig. 3.7 Thermal conductivity of bulk GaAs (theory: solid curve; experiment [26]: triangles).
Also shown are the thermal conductivity results for suspended GaAs nanobeams (theory: dotted
curves; experiment [39]: squares and circles). Reproduced from [40]

in the nanobeams. The fitted values of the effective boundary length are much
larger than the effective physical width L0 D 1:12

p
d1d2 D 0:177 �m of the

nanobeams fabricated by Fon et al. A similar conclusion was reached by Fon et
al. in their attempt to theoretically explain the low-temperature conductivity results.
Surprisingly, in our theoretical work we had to use a big range of effective boundary
length (from 0.49 �m for doped beam to 1.5 �m for the six-beam device).

The doped beams fabricated by Fong et al. contain donor dopants with concentra-
tion 5�1018 cm�3 in the topmost 50 nm layers. We used Eq. (3.49) to account for the
electron–phonon scattering in this sample. However, in order to successfully explain
the conductivity results of the doped nanobeams, we had to consider the point defect
scattering rate approximately 10 times stronger than that for the undoped beam.
This suggests that doping of the mesoscopic beams was accompanied by structural
disorder. The peak at around 10 K in the conductivity-temperature curve for the bulk
sample has shifted to a much higher value of around 60 K for the nanobeams. The
conductivity of the undoped nanobeam merges with the conductivity of bulk above
the Debye temperature (345 K) of GaAs. However, the conductivity of the doped
nanobeams continues to remain lower than that of the undoped nanobeam for all
temperatures up to at least 1,000 K.
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3.4.3 Si Nanowires

In the previous subsection we showed that the Debye–Callaway model of lattice
thermal conductivity, developed for bulk solids, can be successfully applied to
explain the conductivity results for GaAs beams of cross-sectional dimensions
in the range of 100–250 nm. Phonon transport in thin quasi-one-dimensional
structures, such as thin nanowires with cross-sectional dimensions smaller than
50 nm, is likely to be sensitive to both surface roughness and quantum confinement
effects. There have been several theoretical attempts for explaining experimentally
measured thermal conductivity results of Si nanowires, including the semi-classical
Boltzmann-type approach [41], a semi-empirical molecular dynamics approach
[42], and the quantum Landauer formalism [43]. All these models are capable of
explaining the measured thermal conductivity [44] of Si nanowires of thicknesses
(diameters) 115, 56, and 37 nm. However, it has been argued [43] that in order to
explain the conductivity of the nanowire of diameter 22 nm it is important to employ
a theoretical model that combines incoherent surface scattering for short-wavelength
phonons with nearly ballistic long-wavelength phonons. However, in a recent work
[45] we have argued that Callaway’s relaxation-time model for thermal transport in
bulk materials, described at the start of this section, can be successfully applied to
explain the measurements for Si nanowires with cross-sectional dimensions down
to 22 nm.

Calculations were made with the following parameters for Si nanowires of
diameters 115, 56, 37, and 22 nm, respectively: effective boundary length values of
0.115, 0.056, 0.037, 0.010 �m; effective mass-defect scattering parameter Amd (see
Eq. (3.27)) values of 45:0�10�46 s3, 45:0�10�46 s3, 250:0�10�46 s3, 500:0�10�46
s3; Grüneisen’s constant values of 1.4, 1.7, 1.7, 1.7. Figure 3.8 clearly shows that
there is reasonably good agreement between the presently calculated results and
the experimental measurements for Si nanowires of all the four thicknesses studied
by Li et al. [44]. For reproducing the experimental results for the nanowires of
diameters 115 nm and 56 nm we had to use several times stronger mass-defect
scattering parameter than what is needed for bulk Si. For the thinner nanowire of
diameter 37 nm, the mass-defect parameter had to be increased five-fold compared
to that for the thicker nanowires. For the thinnest nanowire (diameter 22 nm) we
had to consider a very strong diffused surface (boundary) scattering, and a mass
defect scattering parameter twice that for the 37 nm wire. The choice of significantly
smaller effective boundary length for the 22 nm wire clearly indicates that surface of
this wire is quite rough. We also note that for nanowires of all thickness, we had to
use a stronger anharmonicity factor (Grünisen’s constant  ) than is needed for bulk
Si (usually  D 0:8 is adequate). Following the discussion in the theory section,
we re-iterate that the level of successful agreement between theory and experiment
for the conductivity achieved for the 22 nm nanowire is not expected to continue to
much thinner nanowires.

Three clear trends can be noticed. Firstly, the maximum of the conductivity
generally shifts to higher temperatures with decrease in the nanowire thickness.
This is due to the joint effect of strong boundary and strong mass defect scatterings
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Fig. 3.8 Thermal conductivity of (a) Si bulk and (b) Si nanowires: theory (lines); experiment [44]
(symbols). Taken from [45] (NWs)

of phonons. Secondly, for temperatures up to well over the room temperature the
conductivity of nanowires has been reduced by 2–3 orders of magnitude with respect
to the bulk values. A similar conclusion has been reached from another theoretical
investigation [42]. Thirdly, at a given (low) temperature, the conductivity decreases
with the decrease in nanowire thickness. A definite relationship for the decrease in
the conductivity with nanowire thickness is difficult to establish, as the surface and
interior qualities are not guaranteed to be maintained during nanowire fabrication.

3.4.4 Si/Ge Superlattices

The lattice thermal conductivity of superlattices has been reported to be at least
two orders of magnitude lower than that of constituent bulk materials [46, 47].
What mechanisms govern the low thermal conductivity of superlattices is not
generally well understood. Let us consider a superlattice of repeat period thickness
d D d1 C d2, containing two components of thicknesses d1 and d2. Let us further
consider that the Landau–Peirls–Ziman condition in Eq. (3.18) is satisfied. This
can be interpreted as the superlattice sample size L being larger than the phonon
mean free path �. We note that the sample size L contains several multiples of the
superlattice unit cell size d , so that L D Nd with N ranging from about 10–1,000
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for typically grown samples. With this understanding, one can distinguish three
regimes of phonon transport along the superlattice growth direction [48]:

(i) For superlattices with d � �, the thermal conductivity � can be fairly well
expressed as

1=� D .d1=�1 C d2=�2/=.d1 C d2/; (3.54)

where �i is the conductivity of the i th bulk material;
(ii) For superlattices with d 	 �,

1=� D .d1=�1 C d2=�2 C 2WK/=.d1 C d2/; (3.55)

where WK is the Kapitza resistance of the superlattice interface;
(iii) For d 
 �, it will be important to consider the superlattice as a single

new material and a detailed consideration of phonon group velocities, phonon
density of states, and phonon lifetime will be required for thermal conductivity
calculations.

Here we will discuss the phonon conductivity of thin Si/Ge superlattices (i.e. for
case (iii): d 
 �). As discussed in Sect. 3.3.1.2, the phonon dispersion relations
in thin Si/Ge superlattices are significantly different from those in bulk Si or Ge.
These changes lead to reduction in the speeds of acoustic phonons and changes in
the density of states. Although such changes can be manipulated to some extent by
altering the superlattice period and layer thicknesses, the resulting changes would
not be enough to explain the reduced thermal conductivity of the superlattices. With
the help of the numerically obtained results for phonon group velocities, density
of states and phonon relaxation times, we provide a plausible explanation for this
by considering numerical results for two specific choices of Si/Ge superlattices,
Si(19)/Ge(5)[001] and Si(72)/Ge(30)[001], as fabricated and studied by Lee et al.
[46].

Equation (3.19) was used to express the components of the conductivity tensor,
with axes along [N110], [110], and [001]. Numerical results for phonon dispersion
curves and density of states were obtained by employing an enhanced adiabatic
bond charge model [18]. Phonon scattering rates due to point mass defects, interface
mass-mixing (IMS), interface dislocations (IDS), and anharmonic interactions were
calculated using Eqs. (3.26), (3.33), (3.35), and (3.45), respectively. The amplitude
ratio eB=eA was calculated using Eq. (3.36). The required BZ summations were
carried out using the special q-points scheme as described in Sect. 3.3.2. However,
the IMS and IDS parameters ˛ and ˛0 had to be treated as adjustable parameters.
This became necessary due to the fact that no information is available for the amount
of mass mixing and the nature and concentration of interface dislocations, except
that these features are always present during the growth of Si/Ge systems [49].

The numerically calculated results for the lattice thermal conductivity of the two
superlattices, along the growth direction, are presented in Fig. 3.9. Also presented
are the experimentally measured results, obtained by Lee et al. [46]. In order to fit
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Fig. 3.9 Thermal conductivity of Si/Ge superlattices along [001], the growth direction: theory
[29] (lines), experiment [46] (symbols). Reproduced from [29]

the experimentally measured numerical results and the temperature variation of the
conductivity up to 150 K, the role of phonon anharmonic interactions was found
to be unimportant. While in the boundary scattering region there is essentially no
difference in the conductivity of the two samples, at higher temperatures the lower
conductivity in the (72,30) superlattice is due to the dominant IDS mechanism.
Indeed, it was found that for the thinner superlattice IMS is the dominant scattering
mechanism (with ˛ D 550) and the contribution from IDS is negligible (˛0 D 0).
For the thicker superlattice both IMS and IDS mechanisms are significant, but IDS
dominates (˛ ' 107 and ˛0 ' 10�4).

The thermal conductivity of both the Si/Ge superlattices studied here is much
lower compared to the conductivities of bulk Si or Ge. This is generally true of
both the peak value of the conductivity and of the value at any temperature. This
can be ascertained from an examination of the bulk results presented in Fig. 3.6
and the superlattice results presented in Fig. 3.9. At 100 K, the conductivity of the
superlattices is three orders of magnitude smaller than the average of the conduc-
tivities of the bulk materials. It is interesting to note that at 100 K, the conductivity
of the Si nanowires (cf. Fig. 3.8) is also three orders of magnitude smaller than
the bulk conductivity in Si. However, the physical reasons for the reduction in the
conductivity values in the superlattice and nanowire structures are different. The
reduction in the conductivity of the Si nanowires is due to the phonon boundary
scattering mechanism. In contrast, the reduction in the conductivity of the Si/Ge
superlattices is due to a combined effects of reduced phonon velocity, stronger
anharmonic interactions (consistent with larger periodicity), and phonon interface
scattering mechanisms.
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temperature

While the conductivity in the bulk materials is essentially isotropic, it shows
a clear anisotropic behaviour in the superlattice structure. Figure 3.10 shows the
numerically obtained values of the conductivity in the superlattice plane (�xx)
and along the superlattice growth direction (�zz). At low temperatures, the ratio
�xx=�zz tends to unity for the thicker superlattice, but remains larger than unity
for the thinner superlattice. This difference in the low-temperature ratio �xx=�zz

arises due to different behaviours of the IMS and IDS mechanisms in thinner and
thicker superlattices. Only low-lying phonon modes are appreciably populated at
low temperatures. Also, as discussed earlier, zone-edge modes are more strongly
scattered than zone-centre modes. For the thinner superlattice, with less zone-
folding, the zone edge modes are not populated until higher temperatures. In
contrast, in the thicker superlattice, there is a larger amount of zone folding, lending
to population of a larger number of phonon modes both at the zone centre and at the
zone edge. Thus, both the IMS and IDS mechanisms become more anisotropic for
the thinner superlattice than for the thicker superlattice.

3.5 Concept of Phonon Engineering of Thermoelectric
Materials

Thermoelectricity (TE) is the process of generating either electricity from heat
engines or heating devices from electricity. Examples of modern TE applications
include portable refrigerators, beverage coolers, electronic component coolers,
infrared sensing, etc. Possible future applications of TE devices include efficient



3 Theories of Phonon Transport in Bulk and Nanostructed Solids 111

conversion of waste heat (e.g. from waste and during powering of vehicles)
into usable energy, improving efficiency of photovoltaic cells, etc. Thermoelectric
materials have been investigated for several decades due to their energy efficiency.
The efficiency of thermoelectric materials is defined by the figure of merit quantity
ZT given byZT D S2�T=�, where S is the Seebeck coefficient (a measure of con-
version of temperature difference into electricity), � is the electrical conductivity,
and � is the thermal conductivity. Larger values of ZT require high S , high � , and
low �. After decades of research it has been established that alloyed semiconductors
with high carrier concentration are the most efficient TE bulk materials.

The thermal conductivity � of semiconducting materials can be contributed by
carriers (donor electrons or acceptor holes in doped samples), lattice (or phonons),
and electron–hole pairs (bipolar contribution in intrinsic semiconductors): � D
�el C�ph C�bp. An increase in S normally implies a decrease in � because of carrier
density considerations, and an increase in � normally implies an increase in �el (as
given by the Wiedemann–Franz law). The bipolar contribution �bp increases rapidly
above temperatures corresponding to thermal energy larger than the semiconductor
band gap. Thus, it is very difficult to increase ZT in typical bulk semiconductor
TE materials. Clearly, for high values of ZT , we require materials which are
characterised by less efficient scattering of carriers (to increase �) and efficient
scattering of phonons (to reduce �). From research over the past several decades
it has been found that semiconductor bulk alloys such as SiGe and BeTeSe, and
PbTeS are amongst the most promising TE materials. In fact, SiGe are good high-
temperature TE materials [50] and bismuth chalcogenides (e.g. BiTeSe) are good
low-temperature TE materials [51]. Good reviews of the current status can be found
in [52–54]. For most bulk materials the room-temperature ZT has been found
to be less than 1. However, there is a report of ZT D 2 at T D 800 K for
AgPbmSbTe2Cm [55].

Several theoretical and computational attempts have been made to obtain numer-
ically accurate estimates of the TE coefficients � , S , �el, �bp, and �ph. In order to
compute � , S , and �el at different temperatures it is important first to compute Fermi
level both in extrinsic (carrier controlled) and intrinsic (host controlled) temperature
ranges [56]. With that information being available, the nearly free electron theory
can reasonably well be applied to compute � , S , and �el. Useful expressions can
be found in [57, 58]. The coefficient �bp is usually computed using the Price theory
[59]. The theory discussed in this chapter can be used to compute �ph. Interested
readers are referred to [30, 60–62] for details.

In recent years efforts have started to overcome the challenge of developing mate-
rials with ZT > 3. Such efforts have concentrated on creating new semiconducting
materials. Two primary approaches are being considered: formation of complex
crystal structures or fabrication of reduced-dimensional (especially nanostructured)
materials. Reduced-dimensional systems can be categorised as 2D structures (i.e.
thin films), 1D structures (i.e. nanowires), or 0D structures (i.e. quantum dots).
Nanostructures can also be fabricated using two or more materials (known generally
as nanocomposites), such as superlattices of alternating layers of two materials,
an array of nanowires of one material embedded in another host, and an array of
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nanodots of one material embedded in the host of another material. Theoretical
modelling suggests [58] that a Bi2Te3 quantum-well structure has the potential to
increase ZT by an order of magnitude over the bulk value. Although Si is a poor
thermoelectric material, arrays of rough Si nanowires of diameter in the range 20–
300 nm are found to exhibit ZT D 0:6 at room temperature [63]. Recently, it
has been found that stacks of thin films of Bi2Te3 exhibit enhanced ZT [64]. In
particular, it has been theoretically suggested that quintuple atomic layers of Bi2Te3
can exhibitZT D 7:15 [65].

It is exciting to think that in general fabrication of reduced-dimensional struc-
tures, in particular nanocomposite structures, can be tailored to exhibit much
reduced lattice (phonon) conductivity, thus leading to an enhancement in ZT:

However, a detailed and accurate investigation of an enhancement in ZT of
nanocomposites will require knowledge of phonon dispersion relations and phonon
scattering processes and their relative strengths. In particular, for nanowires and
nanodots phonon scattering at rough boundaries is likely to play a dominant role. For
superlattices, as discussed earlier in this chapter, interface scattering and enhanced
anharmonic interaction due to the onset of mini-Umklapp processes and the dual
mass term will play a dominant role in reducing the phonon lifetime and thus the
thermal conductivity. The theoretical developments in Sect. 3.3.3.3 have indicated
how to deal with phonon interface scatterings. Due to our poor understanding of
temperature-dependent crystal anharmonic forces and the resultant phonon–phonon
scattering strength, accurate calculations of phonon conductivity is, at least at
present, essentially a very difficult problem even for single crystal semiconductors.
In Sect. 3.3.3.4 in this chapter we have indicated how the concept of phonon
anharmonic interactions in bulk can be extended to the case of a superlattice.
These ideas can be modified and extended to deal with phonon scattering rates
in nanocomposites in general. With the help of accurate determination of phonon
lifetimes and phonon conductivity �ph for various types and sizes of nanocomposites
it would be possible to develop the concept of phonon engineering for efficient TE
materials.

3.6 Summary

In this chapter we have reviewed some of the existing theories of phonon transport
in bulk and nanostructured solids. Particular attention has been paid to a detailed
description of the essential steps required in the derivation and numerical evaluation
of the thermal conductivity within the single-mode and an effective-mode phonon
relaxation time approximations. Lattice thermal conductivity results have been
presented for bulk Si, Ge, and GaAs, for suspended nanobeams of GaAs, for Si
nanowires, and for Si/Ge superlattices.

It has been shown that the effect of reduction in dimensionality of a material
results in significant reduction in its lattice thermal conductivity. Reduction of
up to three orders of magnitude has been noted for thin Si nanowires (quasi
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one-dimensional structures) and thin Si/Ge superlattices (quasi two-dimensional
structures). It has been explained that the physical reasons behind the same amount
of reduction in the conductivity due to the Si/Ge superlattice and Si nanowire
formations are different. Another significant effect of reduction in dimensionality
is to change the isotropic nature of the conductivity into a tensor quantity. This
has been illustrated from numerical calculations for Si/Ge superlattices. It has been
explained that the anisotropic nature of the conductivity is more pronounced in
thinner superlattices.

Finally, it has been pointed out that a huge reduction in the lattice thermal
conductivity can be achieved by the formation of nanostructured semiconductors,
resulting into the possibility of significant enhancement in thermoelectric figure of
merit. Such an enhancement can be achieved, within reasons, by employing the
concept of phonon engineering of nanocomposite semiconductors: i.e. by reducing
the velocities and lifetimes of thermally active phonon modes by fabricating
nanostructures of different shapes and sizes.
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