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    Abstract     Genome-wide association studies (GWAS) have accelerated the discovery 
of genetic variants associated with susceptibility to common complex diseases, such 
as obesity. Following the fi rst robust GWAS of BMI and risk of obesity identifi ed in 
2007, GWAS have delivered 70 additional common loci associated with a wide 
range of obesity-related traits. These loci highlight a variety of molecular and physi-
ological mechanisms involved in shaping these traits. However, even in combination, 
these loci explain only a small proportion of overall phenotypic heritability indicating 
that much of the genetic variation in obesity traits remains unexplained. Here, we 
discuss how the GWAS approach has been applied to the study of anthropometric 
phenotypes related to overall obesity and fat distribution and describe some of the 
clues to trait biology that are emerging. We also highlight some of the limitations of 
this work and future directions for research in this fi eld.  
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  Abbreviations 

   BMI    Body mass index   
  CNV    Copy number variation   
  GIANT    Genetic Investigation of ANthropometric Traits   
  GWAS    Genome-wide association studies   
  LD    Linkage disequilibrium   
  MAF    Minor allele frequency   
  SNP    Single nucleotide polymorphism   
  T2D    Type 2 Diabetes   
  WC    Waist circumference   
  WHR    Waist–hip ratio   

       The rise in the prevalence of obesity in recent decades has been spectacular: recent 
estimates indicate that over 500 million adults worldwide are now classed as obese 
[ 1 ]. While the increased prevalence of obesity is almost certainly a refl ection of secu-
lar changes in environmental and lifestyle factors, including an increased intake of 
nutrient-dense foods coupled with reduced physical activity [ 2 ], the familial aggrega-
tion of obesity is consistent with some degree of genetic infl uence on body mass index 
(BMI) and individual predisposition to obesity. More conclusive evidence for a 
genetic component comes from studies that have examined the correlation of BMI 
between identical twins raised apart and the relationship between the BMI of adop-
tees and both their biological and adoptive parents [ 3 – 5 ]. These consistently highlight 
the importance of genetic factors in modulating individual susceptibility to obesity 
in contemporary environments. Furthermore, in controlled experiments of excessive 
calorie intake, consequent changes in weight and body composition were highly 
correlated in monozygotic twins, once again consistent with a powerful role of genetic 
variation in the regulation of weight [ 6 ]. Estimates for the heritability of BMI vary 
widely between studies, but typical fi gures range between 0.47 and 0.90 in twin 
studies and between 0.24 and 0.81 in family-based studies [ 7 ]. 

 Other obesity related traits, including measures of fat distribution are also heri-
table (even after adjusting for BMI). Estimates for the heritability of waist–hip ratio 
(WHR), a proxy of fat distribution, range between  h  2  ~ 0.31–0.70; and ~0.22–0.61 
after accounting for BMI [ 8 – 11 ]. The heritability of WHR is higher in women and 
estimates of genetic correlation of WHR between men and women indicate a sex 
specifi c genetic infl uence on the trait [ 11 ]. 

    The Genetics of BMI and Obesity Pre-GWAS 

 Genetic studies aim to fi nd DNA sequence variants that are causally associated 
with the trait of interest, in the expectation that such discoveries will help to reveal 
fundamental mechanisms responsible for human disease. The earliest studies in this 
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fi eld focused on the application of family-based linkage studies to individuals and 
families with rare monogenic forms of obesity. The rare variants of large effects 
revealed by these efforts, such as those in  LEP  (encoding the hormone leptin, a 
crucial component of energy balance mechanisms) [ 12 – 14 ],  LEPR  (encoding the 
leptin receptor) [ 15 ], and  POMC  (encoding the proopiomelanocortin protein which 
is cleaved to form a number of key neuroendocrine messengers) [ 16 ], helped to 
defi ne components of hypothalamic circuitry involved in body weight regulation 
in man. However, the application of linkage approaches to population-level variation 
in BMI and risk of common forms of obesity met with little success in terms of 
robust, replicated signals even in relatively well-powered meta-analysis [ 17 ]. This 
indicates that the genetic contribution to these traits is not dominated by the kinds of 
highly penetrant variants which linkage methods are best suited to detect [ 18 ]. 

 The shift from linkage to association approaches was initially focused on the 
analysis of candidate genes [ 19 ], a strategy reliant on the quality of the prior bio-
logical hypotheses used to select them. One of relatively few successes from this 
approach was the demonstration that low frequency variants in the gene encoding 
the melanocortin 4 receptor ( MC4R ) were associated with severe, early-onset obe-
sity [ 20 ]. These variants remain the commonest known genetic cause of morbid 
obesity contributing to a few percent of these cases [ 21 ]. These fi ndings provided 
confi rmation of the role of signalling through the hypothalamic leptin–melanocortin 
pathway for the maintenance of body mass in man [ 22 ]. However, the major impe-
tus to the discovery of BMI- and obesity-associated variants has been provided by 
the ability to perform genome-wide scans for association.  

    Genome-Wide Association Studies 

 Genome-wide association studies (GWAS) (reviewed in [ 23 ,  24 ]) use dense geno-
typing arrays to determine how variation in genomic sequence (predominantly that 
due to single nucleotide polymorphisms, SNPs) associates with phenotypic traits of 
interest. Those traits may be categorical (e.g., obese cases and non-obese controls) 
or continuous (e.g., BMI or WHR). Array content and the correlation structure of 
variation across the genome (i.e., linkage disequilibrium) mean that GWAS to date 
have favored the interrogation of common variants (minor allele frequency 
[MAF] > 5 %). Since GWAS assay such variants across the genome, suitably pow-
ered studies enable the discovery of associated loci in an agnostic fashion, without 
the need for prespecifi ed hypotheses concerning the genomic location of the asso-
ciation and the transcripts through which they may operate. 

 In the remainder of this chapter, we focus on the loci which have been shown by 
GWAS to be associated with overall obesity or fat distribution. We distinguish 
between studies of traits of overall obesity (including BMI, fat percentage, and 
dichotomized indices of extreme obesity) and those of fat distribution (including 
WHR, waist circumference (WC), and measures of visceral and subcutaneous fat). 
In total 70 genome-wide signifi cant loci have been associated with these traits and 
most of these (50 in number) are common variant loci infl uencing continuous 
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obesity- related traits found in European samples. Others derive from equivalent 
studies in non-European samples (4 loci), and some have emerged exclusively from 
case–control studies in individuals selected from the extremes of the BMI distribution 
(9 loci) or by clinical classifi cations of overweight and obesity (7 loci).  

    Overall Obesity 

    Genome-Wide Association Studies of BMI 

 The fi rst report from a GWA study claiming to have identifi ed variants associated 
with common forms of overall obesity came in 2006 [ 25 ]. The researchers used a 
two-stage family-based design to identify a signal mapping close to the  INSIG2  
encoding insulin induced gene 2 [ 25 ]. However, this association has not been proven 
robust to replication in the much larger samples that have been examined in subse-
quent studies (see below). In fact, the association p-value observed in this study fell 
short of the now-widely accepted threshold ( p  < 5 × 10 −8 : based on  p  < 0.05 corrected 
for a million independent tests [ 26 ]), highlighting the value of such stringent criteria 
as a means of avoiding infl ation of the type 1 error, and the attribution of biological 
signifi cance to loci which, like  INSIG2 , are likely to have been false positives. 

 The fi rst report of a robust genome-wide signifi cant locus infl uencing BMI and risk 
of obesity locus came from Frayling et al. [ 27 ] in 2007, and concerned a cluster of 
common variants close to the  FTO  (“Fat mass and obesity-associated”) gene. These 
variants account for ~0.35 % of the phenotypic variance in BMI in Europeans [ 28 ] 
such that the two groups of homozygotes differ in weight by around 2.5 kg. The BMI 
association has now been widely replicated [ 28 – 33 ] and it is also clear that the same 
 FTO  variants are associated with risk of obesity at all grades of severity [ 27 ,  34 ]. 

 Given that the only locus emerging from this fi rst round of GWA studies [ 25 ,  27 ] 
had a relatively modest effect size, it was clear that larger sample sizes would be 
needed to extend these discoveries, both to common alleles of lesser effect, and to 
less frequent risk alleles. This provided the motivation for ever-larger meta-analyses 
efforts, which have dominated discovery efforts over the past few years. The largest 
of the studies published to date assembled data from almost 250,000 individuals 
[ 28 ]. The current count of BMI-associated loci detected in Europeans by these 
studies, most of them conducted under the aegis of the Genetic Investigation of 
ANthropometric Traits (GIANT) consortium [ 28 – 30 ], is 32 (Fig.  3.1 ).

   The fi rst such meta-analyses uncovered common regulatory variants infl uencing 
BMI near  MC4R  (encoding melanocortin receptor 4) [ 29 ]: low-frequency coding 
variants in this same gene had previously been implicated in severe obesity [ 20 ]. 
Subsequently, the parallel publications from GIANT [ 30 ] and the deCODE group 
[ 31 ] added nine BMI loci (mapping near  GNPDA2 ,  KCTD15 ,  MTCH2 ,  NEGR1 , 
 SH2B1 ,  TMEM18 ,  BDNF ,  ETV5 , and  SEC16B ) to the list. It is of note that  BDNF , 
encoding a brain derived neurotrophic factor involved in regulation of development 
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of neuronal circuits [ 35 ], is also involved in monogenic forms of obesity [ 36 ]. 
The largest meta-analysis of BMI associations added 18 further loci to the tally [ 28 ] 
including regions near known obesity genes such as  POMC  (proopiomelanocortin) 
[ 16 ], known to be involved in neuroendocrine regulation of weight, as well as asso-
ciations in or near novel genes such as  GPRC5B  (G protein-coupled receptor, fam-
ily C, group 5, member B), implicated in regulation of adipose infl ammatory 
processes and progression to insulin resistance in obesity in mice [ 37 ]. 

 The studies above mostly focused on the analysis of SNPs but there is some evi-
dence that copy number variations (CNVs) may be causal at some loci. For example, 
in the study by Willer et al. the BMI-associated SNP at the  NEGR1  (neuronal growth 
regulator 1) locus detected by GWAS was shown to tag a 45 kb deletion that might 
have stronger functional grounds for being causal [ 30 ]. More detailed studies pub-
lished recently locate the causal allele at this locus to a second 8 kb deletion near 
 NEGR1  [ 38 ]. Rare CNVs have also been implicated in syndromic forms of obesity. 
For example, a rare deletion in the 16p11.2 region is associated with the combina-
tion of severe obesity and mental retardation [ 39 ,  40 ], and duplication of the same 
region is associated with underweight [ 41 ]. 

 To date, most GWAS studies have been performed in populations of European 
origin but studies in other ethnic groups can help to identify novel loci, to character-
ize the extent of aetiological overlap, and to fi ne-map causal variants (such as in 
the  FTO  locus [ 42 ,  43 ]). Two large GWAS meta-analyses of BMI in East Asian 
populations were recently published [ 32 ,  33 ]. Between them, seven of the known 
loci in Europeans could be replicated to genome-wide levels of signifi cance. 

  Fig. 3.1    Overlap of genome-wide signifi cant loci of overall obesity (BMI), fat distribution (BMI- 
adjusted WHR) and BMI extremes (or clinical obesity classes) in European populations. Diagram 
depicts the overlap of reported GWAS loci ( p  < 5 × 10 −8 ) of BMI [ 27 – 31 ], BMI-adjusted WHR [ 98 ], 
and BMI extremes or clinical obesity classes II–III [ 34 ,  38 ,  51 – 53 ,  55 ,  120 ]       
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Furthermore, evaluating the associations in East Asians of previously reported BMI 
loci, an additional 11 loci, besides those genome-wide signifi cant, were associated 
with BMI at lesser levels of signifi cance (Okada et al. [ 32 ],  p  < 0.02; Wen et al. [ 33 ], 
 p  < 0.05), indicating considerable overlap in signals between East Asian and 
European populations. As in populations of European origin, the association at  FTO  
locus explained the largest proportion of phenotypic variance (~0.2 %). 

 In addition, these studies identifi ed four novel loci, mapping near  CDKAL1 , 
 KLF9 ,  PCSK1  and  GP2  [ 32 ,  33 ]. Mutations in  PCSK1  cause monogenic obesity 
[ 44 ] and, while a candidate study previously associated nonsynonymous variants in 
 PCSK1  with common obesity risk in a European population [ 45 ], the  PCSK1  signal 
in East Asians (also nominally associated with BMI in Europeans in GIANT [ 28 ]) 
likely represents an independent signal. Genetic variants in  CDKAL1  (a CDK5 reg-
ulatory associated protein 1-like 1 with methythiotransferase function [ 46 ]), in strong 
LD ( r  2  ~ 0.8) with the BMI GWAS SNPs in East Asians, have previously been associ-
ated with increased risk of Type 2 Diabetes (T2D) [ 47 ,  48 ]. The T2D risk allele(s) is 
associated with decreased glucose-stimulated insulin secretion [ 47 ,  49 ,  50 ]. 
Furthermore, the BMI-lowering allele of rs2206734 (also nominally associated with 
BMI in Europeans) was associated with increased risk of T2D in the same study popu-
lation [ 32 ], indicating that variation near  CDKAL1  may play a complex role with 
respect to variation in both BMI and T2D-risk.  

    Case–Control Studies of Dichotomized BMI 

 In addition to studies of the variance in BMI in population-based studies, a comple-
mentary approach treats obesity in terms of a dichotomous “case–control” analysis. 
A variety of different schemes for this dichotomization are possible (Table  3.1 ). 
In the largest study of this type [ 51 ], featuring case–control analyses restricted to 
the “tails” of the BMI distribution using data from studies previously included in 
GIANT meta-analyses [ 28 ], Berndt et al. found considerable overlap in the pattern 
of association signals seen as compared to those observed in population- or cohort- 
wide analyses. However, where such studies focus on cases of more extreme defi ni-
tions of obesity and/or leanness (that is, individuals several standard deviations 
away from the population mean), there may be the opportunity to detect additional, 
novel, signals that may have limited impact on overall population-level variance 
and which are therefore diffi cult or impossible to detect using GWAS approaches. 
The rare, penetrant variants causal for monogenic and syndromic forms of obesity 
provide the most obvious example of this phenomenon.

   Indeed, whilst several of the loci reaching genome-wide signifi cance in dichoto-
mous analyses focused on extreme obesity in adults overlap with those previously 
reported (e.g.,  BDNF ,  FTO ), there are several signals that appear unique to dichoto-
mous analyses including  KCNMA1 ,  NPC1 ,  PTER , and  HS6ST3  (Table  3.1 , Fig.  3.1 ) 
[ 51 – 53 ]. However, most of these have appeared in a single study and have not, as 
yet, been replicated, even in other extreme case–control analyses. In equivalent 
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case–control analyses in children, the more relaxed criteria adopted by Bradfi eld 
et al [ 54 ] detected many of the known adult BMI association signals but also high-
lighted novel signals near  OLFM4  and  HOXB5 . In contrast, studies of children 
selected from the extremes of the distribution have detected signals at (or approaching) 
genome-wide signifi cance near  LEPR ,  PACS1 ,  PRKCH ,  RMST ,  SDCCAG8 , and 
 TNKS/MSRA  (Table  3.1 , Fig.  3.1 ) [ 38 ,  55 ], the latter locus also detected in some 
studies of fat distribution [ 56 ].  

    Genome-Wide Association Studies of Fat Percentage 

 BMI, although a widely used proxy of overall obesity, represents an aggregate 
measure of the lean and the fat mass of the individual. In an effort to better defi ne 
the genetic determinants of obesity, Kilpeläinen et al. focused on body fat 

     Table 3.1    Novel GWAS loci identifi ed in case–control analyses of dichotomized BMI   

 Study type 
 Selection criteria 
for cases 

 Sample size in 
stage 1, cases/
controls 

 Loci not described 
in BMI GWAS  Reference 

 Extreme obesity 
in children 
and adults 

 Early onset obesity 
(≤6 years) and 
extreme adult 
obese (BMI ≥ 40) 

 1,380/1,416   MAF  (rs1424233),  NPC1  a  
(rs1805081),  PTER  a  
(rs10508503) 

 [ 52 ] 

 Extreme obesity 
in children 
and 
adolescents 

 BMI >97 % 
percentile 

 1,138/1,120   TNKS / MSRA  (rs17150703), 
 SDCCAG8  a  
(rs12145833) 

 [ 55 ] 

 Extreme obesity 
in adults 

 BMI ≥ 40  164/163   KCNMA1  (rs2116830)  [ 53 ] 

 Distributional 
tails in 
children 

 BMI ≥95 % 
percentiles 

 5,530/8,313   BC041448  (rs4864201), 
 HOXB5  (rs9299), 
 OLFM4  (rs9568856) 

 [ 54 ] 

 Extreme obesity 
in children 

 BMI standard 
deviation score 
(SDS) ≥3, and 
onset at 10 years 

 1,509/5,380   LEPR  (rs11208659), 
 PACS1  (rs564343), 
 PRKCH  (rs1957894) 
 RMST  (rs11109072) 

 [ 38 ] 

 Clinical class: 
obesity II 

 BMI ≥ 35  9,889/62,657   HS6ST3  (rs7989336),  ZZZ3  
(rs17381664) 

 [ 51 ] 

 Clinical class: 
obesity I 

 BMI ≥ 30  32,858/65,839   GNAT2  (rs17024258), 
 HNF4G  (rs4735692), 
 MRPS33P4  
(rs13041126),  ADCY9  
(rs2531995) 

 [ 51 ] 

 Clinical class: 
overweight 

 BMI ≥ 25  93,015/65,840   HNF4G  (rs4735692), 
 RPTOR  (rs7503807) 

 [ 51 ] 

   a Not genome-wide signifi cant ( p  < 5 × 10 −8 )  
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percentage, as a more direct measure of adiposity, generating a GWAS meta-analysis 
of 36,626 individuals [ 57 ]. As well as detecting  FTO , these analyses recovered two 
loci ( IRS1  and  SPRY2 ) not previously associated with BMI. The body fat-increasing 
alleles at the  IRS1  (insulin receptor substrate 1 signalling protein) signal are, intrigu-
ingly, associated with a healthy metabolic profi le (including reduced risk of T2D 
[ 58 ] and unhealthy lipid profi le [ 59 ]). The  IRS1  locus is associated with measures 
of subcutaneous, but not visceral fat, indicating that the effect on fat mass at the 
 IRS1  locus is through regulation of subcutaneous fat deposition [ 57 ,  60 ]. The  SPRY2  
locus has also been implicated in T2D risk [ 61 ,  62 ], though the body fat-associated 
SNP is not coincident with this previously reported T2D SNP. Contrary to the obser-
vations at  IRS1 , the body-fat increasing allele at the  SPRY2  locus is associated with 
an adverse metabolic profi le [ 57 ].  

    Genetic Architecture of Overall Obesity (BMI) 

 Despite the success in identifying a growing numbers of loci to genome-wide sig-
nifi cance, in European populations these signals, in combination, explain no more 
than 1.5 % of phenotypic variance in BMI. Of the established loci, the  FTO  locus 
has the largest effect accounting for ~0.35 % of population variance [ 28 ]. These 
numbers fall well short of estimates of the heritability of this trait (see above). The 
basis for this “missing” genetic variance remains unclear, though there is no lack of 
possible explanations [ 63 ,  64 ]. At least part of the “missing” genetic variance can be 
attributed to the effects of additional common variants that lie below the genome- 
wide signifi cance threshold. Using full GWAS data sets (not just the “proven” hits), 
Yang and colleagues could recover approximately 17 % of the phenotypic variance 
in BMI that was tagged by common variants [ 65 ]. Part of the remaining shortfall 
likely refl ects incomplete linkage disequilibrium between the variants genotyped on 
GWAS arrays and those which are causally responsible for the BMI associations 
[ 66 ], but other mechanisms are almost certainly involved [ 63 ,  67 ]. 

 There is also the possibility that the estimates of heritability against which these 
measures of explained variance are evaluated, are themselves inaccurate. For example, 
intrauterine events that lead to epigenetic modifi cations with long-term phenotypic 
impacts can lead to increased sibling resemblance, infl ating heritability estimates 
under some designs. Similarly, estimates derived from the comparison of the pheno-
typic correlations observed between monozygotic and dizygotic twin pairs are 
based on the assumption that both types of twin are exposed to a similar degree of 
shared environment [ 68 ], an assumption that may not be appropriate for intrauterine 
exposures. 

 Notwithstanding the above, it seems likely that an appreciable component of the 
genetic variance remains unexplained, and that at least part of this will be attributable 
to low frequency and rare variants not well captured by GWAS studies to date. 
The current wave of sequencing studies should shed some light on the extent to 
which these variants are contributing to inherited risk.  
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    From GWAS Associations to Potential Functional 
Roles in Overall Obesity 

 As we have seen, GWAS have powered the identifi cation of many genetic regions 
associated with BMI and obesity. However, this information is of limited value 
unless it can be translated into improved understanding of the pathophysiology of 
disease, and thereby into novel clinical approaches. However, in BMI, as with most 
other complex traits, the regions revealed by GWAS do not lend themselves to easy 
biological inference. The effect sizes are modest, and most signals map to non- coding 
sequence, frustrating efforts to identify the “causal” transcript (that is, the specifi c 
gene that is mediating the association signal). At the same time, the extensive local 
correlations between common variants (that is, linkage disequilibrium) can make 
fi ne-mapping of the causal variants challenging. 

 The  FTO  locus provides an excellent example of the diffi culties inherent in 
moving from an association signal—in this case, a comparatively strong one—to a 
clear mechanism of action. We have now known for more than 6 years that a cluster 
of highly correlated common variants in the fi rst intron of the  FTO  gene is associ-
ated with BMI and obesity [ 27 ]. Epigenetic analyses have suggested that the BMI- 
associated haplotype may infl uence local methylation status [ 69 ] but fi ne-mapping 
efforts have yet to provide compelling localization of the causal variant. When it 
comes to defi ning downstream effects, we still have no convincing evidence from 
man that the  FTO  transcript itself is in any way involved. There is for example, no 
instance of the co-occurrence of loss of function alleles in  FTO  and severe obesity 
in humans [ 70 ,  71 ]. On the other hand, the adjacent gene  RPGRIP1L  (or  FTM ), 
which is known to be coordinately regulated with  FTO  via a common promoter 
[ 72 ], and to display a similar pattern of hypothalamic expression, has an intriguing 
connection to obesity through its known causal role with respect to monogenic cil-
iopathies [ 73 ] some of which result in marked early obesity. 

 In fact, the most compelling evidence implicating  FTO  comes from mouse mod-
els: transgenic knockdown of the murine homologue  Fto  results in reduced weight, 
and overexpression to weight gain compared to control mice [ 74 ,  75 ]. One possible 
explanation consistent with these data is that the common intronic variants within 
 FTO  identifi ed by GWAS, exert their effects on energy balance in man through 
coordinate dysregulation of both  FTO  and  RPGRIP1L . 

 The identifi cation of the signal at  FTO  naturally prompted interest in the normal 
function of this transcript. In humans,  FTO  encodes a 2-oxoglutarate-dependent 
nucleic acid demethylase [ 76 ] thought to be involved in nucleic acid repair. In vitro 
studies have suggested a role for  FTO  demethylation in cellular sensing of amino 
acids [ 77 ], which could be relevant to regulation of appetite control in the hypo-
thalamus. Nonetheless, it is clear that we remain some way from a complete descrip-
tion of how these variants infl uence BMI and obesity risk. 

 At certain other BMI GWAS loci, the situation is better understood. At four 
GWAS loci (near  BDNF ,  PCSK1 ,  POMC  and  MC4R ) the common variant associa-
tions overlap genes in which coding mutations have been shown to be causal for 
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monogenic or syndromic forms of obesity [ 20 ,  36 ,  78 ,  79 ]. In the case of three of 
these— PCSK1  (proprotein convertase 1),  POMC  (proopiomelanocortin), and  MC4R  
(melanocortin receptor 4)—there are strong mechanistic ties to the hypothalamic 
leptin–melanocortin signalling pathways that regulate energy balance [ 80 ].  BDNF  
encodes a brain derived neurotrophic factor involved in neurogenesis and thought to 
be involved in food intake [ 81 ]. These GWAS signals therefore demonstrate that the 
neuroendocrine mechanisms documented in monogenic forms of obesity extend to 
population level variance in BMI and to more common forms of obesity. 

 At other BMI-associated GWAS, efforts to defi ne the causal transcript are sup-
ported by additional sources of genomic data (regulatory annotations [ 82 ] or mRNA 
expression [ 83 ]). For example, it can be very useful through integration with mRNA 
and/or miRNA transcriptomic data [ 83 – 88 ] to demonstrate that the set of BMI- 
associated variants at a given locus also drives  cis -expression of one of the regional 
transcripts. In the most recent GIANT meta-analysis [ 28 ], this approach led to posi-
tional candidates being identifi ed at almost half the 32 BMI-associated loci. 

 These candidacy assignments can often be bolstered by other sources of data. 
Consider for example the association signal mapping close to the  SH2B1  gene, 
encoding SH2B adapter protein 1.  Cis -expression data point to  SH2B1  [ 28 ], as does 
the high expression of this transcript in the hypothalamus [ 30 ]. The neuronal iso-
form of  SH2B1  is involved in regulation of energy balance via effects on leptin and 
insulin signalling, and systemic deletion of the gene in mice results in severe leptin 
resistance [ 89 ]. 

 For some loci, the data seem to point towards peripheral rather than central 
mechanisms of action. The BMI association on chromosome 19 lies close to the 
 GIPR  gene, encoding the gastric inhibitory polypeptide receptor, and the lead SNP 
is in strong LD with a missense SNP in that transcript (though the functional conse-
quences of that mutation are not yet established). GIPR plays an important role in 
mediating the incretin response, which augments insulin release in response to the 
ingestion of food. The same locus has also been shown to associate with glucose 
response and insulin secretion in response to a glucose challenge [ 90 ]. Another 
example, mentioned earlier, is the mechanistic relationship between insulin signal-
ling and obesity implicated by the association between  IRS1  variants and fat per-
centage [ 57 ]. Though both central and peripheral mechanisms may be involved at 
 IRS1 , the fact that the fat percentage-associated allele is associated with improved 
insulin sensitivity and a healthy metabolic profi le [ 58 ,  59 ] is consistent with 
enhanced insulin-mediated adipogenesis as the driver of the adiposity. 

 For several other BMI-associated loci such as  TMEM160 - ZC3H4  [ 28 ], there are 
few clues on the biological relevance in obesity, and any one of several transcripts 
could be responsible. One way of leveraging the combination of genetic and prior 
biological data to make provisional mechanistic inference in such situations is to 
perform pathway-based analyses (reviewed in Wang et al. [ 91 ]), which test for 
enrichment of GWAS loci for transcripts that have been mapped to defi ned biological 
processes or pathways. Applied to BMI GWAS data, these analyses have tended to 
support the evidence for broad neuroendocrine involvement, whilst also highlight-
ing processes that are more diffi cult to assimilate within the current knowledge base 
(e.g., platelet-derived growth factor signalling) [ 28 ].   
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    Fat Distribution 

 The clinical consequences of adipose tissue excess depend not only on its quantity 
but also its distribution, with the accumulation of visceral (abdominal) fat leading to 
particularly adverse metabolic and cardiovascular effects [ 92 ,  93 ]. After accounting 
for overall obesity (as measured by BMI), fat distribution (commonly measured by 
WHR) shows substantial residual heritability ( h  2  ~ 0.22–0.61) consistent with mecha-
nisms of genetic control distinct from those infl uencing overall energy balance and 
BMI [ 9 ,  10 ]. The distinct genetic regulation of patterns of fat distribution is also sup-
ported by rare monogenic syndromes of selective adipose tissue loss (collectively, 
the lipodystrophies) [ 94 ]. Given the checkered history of efforts to target neuronal 
pathways related to overall obesity in the search for effective, safe treatments for 
obesity, there is considerable interest in defi ning the mechanisms responsible for 
individual variation in patterns of fat distribution, and in particular, in identifying 
peripheral (rather than central) targets for therapeutic intervention. 

    Genome-Wide Association Studies of WHR and WC 

 Initial efforts to map variants infl uencing fat distribution focused on the standard 
clinical traits, WHR and WC. In the fi rst GWAS for WHR, Lindgren et al. discov-
ered an association to a genetic variant on chromosome 1 (close to the  LYPLAL1  
gene encoding lysophospholipase-like 1) associated with WHR in women exclu-
sively: this effect was independent of BMI [ 56 ]. Studies of WC generated their 
strongest signals at previously reported BMI loci such as  FTO  and  MC4R , refl ecting 
the strong correlation between these traits [ 27 ,  56 ,  95 ,  96 ]. With the possible excep-
tion of the association near  TFAP2B , at which adjustment with BMI seems to 
increase the magnitude of the effect on central obesity [ 97 ], other WC-associated 
loci identifi ed by GWAS ( MSRA ,  NRXN3 ) are likely to refl ect a primary association 
with BMI [ 28 ]. 

 Given these strong trait correlations, more recent fat distribution GWAS efforts 
have adopted the approach of adjusting WHR (or WC) for BMI before performing 
the association analyses, thereby seeking to emphasize those signals that infl uence 
patterns of relative fat deposition independent of the overall obesity component. 
In the largest analysis to date, involving data from around 190,000 subjects, Heid 
et al. [ 98 ] used this approach to identify 13 novel loci for BMI-adjusted WHR as 
well as to replicate the signal near  LYPLAL1 . As might have been expected given 
the adjustment for BMI, the loci identifi ed by this endeavor were completely dis-
tinct from those previously reported to infl uence overall obesity (Figs.  3.1  and  3.2 ). 
In line with the metabolic consequences of visceral fat accumulation, these fat 
distribution associated variants are also enriched for association with related 
metabolic traits including fasting insulin, lipids and indices of insulin resistance 
[ 98 ]. The obvious gender dimorphism of WHR prompted efforts to evaluate 
these signals in terms of their potential for different effects in males and females. 
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Half of the 14 loci showed evidence of gender-specifi c effects: in each case, the 
effect was stronger in women [ 98 ].

   In a complementary approach to studies of WHR in population-wide analysis, 
Berndt et al. restricted analysis to the “tails” of the WHR distribution (upper and 
lower 5th percentiles) and analyzed WHR in terms of dichotomous “case–control” 
analyses [ 51 ]. This analysis demonstrated a similar pattern of association signals as 
that of previous population-wide analysis [ 98 ], indicating that WHR at the “tails” of 
the distribution has a similar genetic architecture as that of the full distribution.  

    Genome-Wide Association Studies of Abdominal Fat 
Distribution 

 The use of imprecise, but widely available, clinical measures such as WHR facili-
tates large meta-analysis, but there is much to be gained by complementary analyses 
in smaller numbers of more carefully phenotyped subjects. In a recent study, more 
direct measurements of the extent of abdominal subcutaneous and visceral adiposity 
were obtained by computed tomography (CT) [ 60 ]. This analysis was able to dem-
onstrate that the fat distribution association signal near  LYPLAL1  [ 51 ,  56 ,  98 ] could 
also be detected using CT (as the ratio between subcutaneous and visceral fat area). 
It also highlighted a signal near  THNSL2  that was associated with visceral adiposity 
in women: this survived adjustment for BMI, and has not previously been associated 
to obesity traits [ 60 ].  

  Fig. 3.2    Effect sizes for BMI in GIANT meta-analyses vs. BMI-adjusted WHR in GIANT meta- 
analyses for genome-wide signifi cant BMI and BMI-adjusted WHR loci. In the  scatterplot , data 
for BMI in GIANT meta-analyses [ 28 ] are shown on the  X -axis and data for BMI-adjusted WHR 
in GIANT meta-analyses [ 98 ] on the  Y -axis. The points are colored according to if they represent 
loci associated with BMI ( red ) or BMI-adjusted WHR ( blue )       
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    Genetic Architecture of Fat Distribution 

 Combined, the 14 loci for BMI-adjusted WHR uncovered by GWAS account for 
approximately 1 % of variance in this trait (1.34 % in women; 0.46 % in men) [ 98 ]. 
Using methods analogous to those for BMI described above [ 65 ], Vattikuti et al. 
showed that ~13 % of the overall variance in WHR could be explained by common 
GWAS SNPs, and thus estimated that 46 % of heritability in WHR may be captured 
by common variants [ 99 ]. A similar range of explanation for the missing genetic 
variance is possible as for overall obesity [ 63 ,  64 ,  67 ], and ongoing sequence-based 
efforts will help to defi ne the extent to which this defi cit can be plugged by the con-
tribution of low frequency and rare variants.  

    From GWAS Associations to Potential Functional 
Roles in Fat Distribution 

 As with BMI, progress towards characterization of the mechanisms operating at 
each of these loci has been patchy. Expression-QTL mapping in adipose tissue, 
blood, and other tissues has identifi ed promising candidate transcripts at six of the 
loci ( AA553656 ,  GRB14 ,  PIGC ,  STAB1 ,  TBX15 , and  ZNRF3 ) [ 98 ]. 

 For several of these transcripts, the genetic data integrates well with the corpus of 
existing biological data. For example,  GRB14 , encoding a growth factor receptor-
binding protein, is known to acts as a negative regulator of insulin receptor signalling 
[ 100 ,  101 ]. The WHR-associated variant shows directionally consistent associa-
tions with triglyceride and insulin levels [ 98 ] and other (statistically independent) 
variants at the same locus infl uence BMI-adjusted insulin and HDL- cholesterol 
levels [ 102 ,  103 ].  TBX15  encodes a mesodermal developmental transcription factor 
and has been indicated in adipocyte differentiation and triglyceride accumulation 
[ 104 ]. This transcript is also differentially expressed between visceral and subcuta-
neous adipose tissue, and there is evidence that visceral adipose tissue expression is 
negatively correlated with BMI [ 105 ]. 

 The most consistent signal for fat distribution maps to the  LYPLAL1  locus [ 51 , 
 56 ,  60 ,  98 ]. As might be expected variants at this locus are associated with a range 
of related metabolic and anthropometric traits including adiponectin [ 106 ], fasting 
insulin adjusted for BMI [ 103 ] and height [ 107 ]. So far, there is limited evidence to 
demonstrate that the signal is mediated through the  LYPLAL1  transcript and the 
region contains several other potential candidates. However, expression of this gene 
is induced in subcutaneous fat following obesity [ 108 ] and its presumed function as 
a lysophospholipase is consistent with a causal role. 

 As with the GWAS loci associated with BMI, pathway enrichment approaches 
have been applied across the 14 WHR-associated loci. Though the enrichment 
signals were relatively weak, they highlighted developmental processes and mRNA 
transcript regulation [ 98 ]. The known functions of some of the stronger positional 
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candidates—such as angiogenesis ( VEGFA ), adipocyte differentiation ( GRB14 ) and 
developmental function ( TBX15 ,  HOXC13 )—seem to point towards peripheral 
mechanisms. 

 These enrichment patterns, when compared with those seen for BMI, seem con-
sistent with the hypothesis that overall obesity is primarily defi ned by variation at 
genes involved in central neuroendocrine regulation, whereas fat distribution is 
largely infl uenced by variation at genes, which control peripheral aspects of adipose 
function and development.   

    Challenges for the Present and for the Future 

 Whilst there is no doubt that GWAS studies have accelerated our understanding of 
the genetics and biology of obesity, there remains much to do. At most of the loci 
discovered, we have yet to identify the causal variant (or variants) or to defi ne with 
certainty which regional transcript is responsible for mediating the association 
effect. The accumulation of transethnic association data [ 109 – 111 ] combined with the 
growing use of next-generation sequencing to generate reference sets for imputation 
[ 112 ] and to interrogate phenotypically selected individuals (e.g., the morbidly 
obese) should help to address the former. The latter depends in part on the genera-
tion of improved annotations (particularly those from relevant tissues) that connect 
non-coding variation to transcript regulation, and on the development of appropriate 
functional assays. As always, the ability to refi ne the phenotypic consequences of 
allelic differences at variants of interest in human subjects (for example through 
imaging of fat tissues) will play a crucial role in defi ning a mechanistic understanding 
of these traits. 

    Missing Genetic Variance 

 As we have seen the loci identifi ed by GWAS loci explain a surprisingly small 
proportion of phenotypic variance, far less than appears to be the case for other 
“similar” quantitative traits, such as height and lipids. Approaches that combine 
effects across the entire GWAS dataset, rather than considering only those signals 
reaching genome-wide signifi cance, do a better job of recovering variation (indicat-
ing a long “polygenic” tail of common variant susceptibility) but still leave a sub-
stantial component of estimated heritability unexplained [ 65 ]. To discover further 
genome-wide signifi cant associations to common genetic variants with increasingly 
smaller effects would require even larger studies than to date. The latest wave of 
grand meta-analyses of BMI and BMI-adjusted WHR (involving over 320,000 and 
210,000 European samples respectively), currently underway, promise to reveal 
some of these common variant signals, as do the studies emerging from analyses in 
a variety of non-European samples. 
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 It has been suggested that rare (MAF < 1 %) or low frequency (MAF 1–5 %) 
variants beyond the range of the historical GWAS approach, may contribute to this 
missing genetic variance [ 24 ,  64 ,  113 ,  114 ]. The rapidly decreasing cost and increas-
ing accuracy of next-generation sequencing are bringing variants in this class under 
the microscope for the fi rst time [ 115 ]. 

 It is clear that individual risk of obesity refl ects the integration of genetic and 
non-genetic factors including variation in food availability and extent of physical 
exercise [ 116 ]. Indeed, these may directly interact such that variant effects are mod-
ulated by these lifestyle factors: under some circumstances these interactions may 
contribute to the missing “genetic” variance [ 67 ]. The detection of such interactions 
at the genome scale requires massive sample sizes, unless the interaction terms are 
substantial. Nevertheless, there are several examples now emerging of interaction 
effects at obesity loci: these include an interaction between  FTO  and exercise [ 117 ] as 
well as sex-specifi c effects reported for WHR [ 56 ,  98 ] and visceral adiposity [ 60 ].  

    Risk Prediction, Intervention and Medication 

 One might hope that improved knowledge about the genetics of obesity would help 
to generate predictive models. These might be used to identify individuals at highest 
future risk of obesity who could be targeted for early intervention, and/or defi ne 
genetic markers related to treatment outcome that can be used to guide therapeutic 
choices. However, the common variants so far identifi ed by GWAS have too weak 
an effect, even in combination, to have value in this respect. Indeed, genetic risk 
factors are currently outperformed by traditional risk factors [ 118 ] including present 
BMI (a good predictor of future obesity risk [ 119 ]). 

 Instead, the most valuable translational benefi ts are likely to accrue from the 
biological knowledge, which grows from the genetics. Currently, there are few 
effective pharmaceutical treatments for obesity, and the most successful clinical 
intervention requires radical (bariatric) surgery. The clinical burden of obesity 
urgently requires the identifi cation of novel validated therapeutic targets based 
around a better understanding of underlying mechanisms. The wider behavioral 
effects of drugs acting on central processes such as appetite may continue to prove 
problematic in this respect and efforts to target peripheral mechanisms of fat distri-
bution, and thereby ameliorate the adverse metabolic consequences of obesity may 
prove more productive.      
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