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Abstract

Among gynecological malignancies, ovarian cancer is the most frequent cause of death. 
Image mining algorithms have been predominantly used to give the physicians a more 
objective, fast, and accurate second opinion on the initial diagnosis made from medical 
images. The objective of this work is to develop an adjunct Computer-Aided Diagnostic 
(CAD) technique that uses 3D ultrasound images of the ovary to accurately characterize and 
classify benign and malignant ovarian tumors. In this algorithm, we first extract features 
based on the textural changes and higher-order spectra (HOS) information. The significant 
features are then selected and used to train and evaluate the decision tree (DT) classifier. 
The proposed technique was validated using 1,000 benign and 1,000 malignant images, 
obtained from ten patients with benign and ten with malignant disease, respectively. On 
evaluating the classifier with tenfold stratified cross validation, the DT classifier presented 
a high accuracy of 97 %, sensitivity of 94.3 %, and specificity of 99.7 %. This high accuracy 
was achieved because of the use of the novel combination of the four features which ade-
quately quantify the subtle changes and the nonlinearities in the pixel intensity variations. 
The rules output by the DT classifier are comprehensible to the end user and, hence, allow 
the physicians to more confidently accept the results. The preliminary results show that the 
features are discriminative enough to yield good accuracy. Moreover, the proposed tech-
nique is completely automated and accurate and can be easily written as a software applica-
tion for use in any computer.
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�Introduction

In 2011, in the United States, it is estimated that 21,990 new 
cases will be diagnosed with and 15,460 women would die 
of ovarian cancer [1]. Ultrasonography and the determina-
tion of the levels of a tumor marker called cancer antigen 125 
(CA-125) are currently the most commonly used techniques 
for detecting ovarian cancer. In the case of ultrasonography, 
the ultrasonographers and radiologists visually inspect the 
acquired ultrasound images for any subtle changes that dif-
ferentiate the benign and malignant tumors. Even though this 
is currently the most common practice, the accuracy and 
reproducibility of the visual interpretations are most often 
dependent on the skill of the observer. In the case of evalua-
tion based on serum CA-125, this marker has been found to 
be elevated only in 50 % of stage 1 cancers [2]. Furthermore, 
CA-125 can also be raised in other malignancies such as 
uterine and pancreatic and sometimes in many benign condi-
tions such as fibroids, endometriosis, pelvic inflammatory 
disease, and benign ovarian cysts [3]. Menon et al. [4] exam-
ined women with elevated CA-125 levels and observed that 
the ultrasound parameters result in varying sensitivity rang-
ing from 84 to l00 %, with a specificity of 97 %, but only a 
positive predictive value (PPV) of 37.2 %. Other modalities 
such as computerized tomography, magnetic resonance 
imaging, and radioimmunoscintigraphy are limited by one or 
more of these factors: cost, device availability, and radiation 
exposure. Moreover, preoperative determination of whether 
an ovarian tumor is malignant or benign, especially when the 
tumor has both solid and cystic components, has been found 
to be difficult [5]. Because ultrasound findings of ovarian 
masses may be inconclusive, on occasion, subsequent surgi-
cal removal of the ovary may show that the mass is benign. 
Such unnecessary procedures not only increase healthcare 
cost and time but also increase patient anxiety. Owing to the 
indicated limitations, it is evident that either one of the fol-
lowing solutions is warranted: (a) a stand-alone accurate 
tumor diagnostic modality, (b) a multimodality-based stan-
dardized diagnostic protocol that reliably differentiates 
benign and malignant tumors, and (c) an adjunct diagnostic 
modality/technique that accurately classifies the tumors and 
therefore gives a valuable second opinion to doctors in order 
to decide further diagnostic protocol for the patient.

The key objective of our work is to develop one such 
adjunct technique for ovarian tumor classification. Medical 
data mining has become an increasingly popular field of sci-
ence over the past few decades. Computer-Aided Diagnostic 
(CAD) techniques developed using data mining framework 
generally follow these steps: (1) image preprocessing to 
remove noise, (2) extraction of representative features that 
quantify the changes in the images (also called the feature 
extraction phase), (3) selection of significant features (also 
called the feature selection phase), and (4) classification 

phase wherein classifiers are built and evaluated using the 
selected features. Thus, CAD-based techniques can prove to 
be excellent adjunct techniques, especially for real-time 
mass screening, because of their ease of use, speed, noninva-
siveness, cost-effectiveness, and reliability. Therefore, we 
have developed a CAD technique that can help the doctors in 
deciding if the primary diagnosis of whether the tumor is 
benign or malignant is correct and thus can allow the physi-
cians to make a more confident call with respect to the sub-
sequent treatment protocol.

In the area of ovarian disease management, CAD tech-
niques have been used for automatic follicle segmentation in 
order to better understand ovarian follicle dynamics [6, 7], 
for polycystic ovary syndrome detection [8], ovarian cyst 
classification [9], and ovarian ultrasound image retrieval 
[10]. There are very few studies in the application of CAD 
for ovarian cancer detection. Most of these studies use fea-
tures based on (a) blood test results [11], (b) mass 
spectrometry (MS) data [12–16], and (c) ultrasound images 
[17–21]. Such MS-based classification studies are affected 
by the curse of dimensionality [22] as they have to process a 
high-dimensional feature set obtained from a small sample 
size. Moreover, the MS equipment is expensive and not 
available in most developing and underdeveloped countries. 
Therefore, in our work, we have proposed the use of images 
acquired using the commonly available and low-cost ultra-
sound modality.

Compared to 2D ultrasonography, a 3D ultrasonography 
approach allows for more objective and quantitative docu-
mentation of the morphological characteristics of benign and 
malignant tumors [23]. Studies have shown that the selective 
use of 3D ultrasonography and power Doppler ultrasound 
can improve the diagnostic accuracy of ovarian tumors [24, 
25]. Therefore, we have used 3D transvaginal ultrasonogra-
phy for acquisition of the 2D images used in this work.

�Materials and Methods

Figure 1 depicts the block diagram of the proposed real-time 
image mining CAD technique. It consists of an online clas-
sification system (shown on the right side of Fig. 1) which 
processes an incoming patient’s test image. This online sys-
tem predicts the class label (benign or malignant) based on 
the transformation of the online grayscale feature vector by 
the training parameters determined by an off-line learning 
system (shown on the left side of Fig. 1). The off-line clas-
sification system is composed of a classification phase 
which produces the training parameters using the combina-
tion of grayscale off-line training features and the respective 
off-line ground truth training class labels (0/1 for benign/
malignant). The grayscale features for online or off-line 
training are obtained using the same protocol for feature 
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extraction: texture features and the higher-order spectra 
(HOS) features. Significant features among the extracted 
ones are selected using the t-test. We evaluated the decision 
tree (DT) classifier. The above CAD system was developed 
using an image database that is split into a training set and a 
test set. The training set images were used to develop the DT 
classifier. The built classifier was evaluated using the test 
set. For evaluation, we used a k-fold cross validation proto-
col. The predicted class labels of the test images and the 
corresponding ground truth labels (0/1) are compared to 
determine the performance measures of the system such as 
sensitivity, specificity, accuracy, and PPV.

In this section, we describe, in detail, the image acquisi-
tion procedure and the various techniques used for feature 
extraction and selection and classification.

�Patients and Image Acquisition

Twenty women (age: 29–74 years; mean ± SD = 49.5 ± 13.48) 
were recruited for this study. The study was approved by the 
Institutional Review Board. The procedure was explained to 
each subject and informed consent was obtained. Among 
these 20 women, 11 were premenopausal and 9 were post-
menopausal. All these patients were consecutively selected 
during presurgical evaluation by one of the authors of this 
paper (blinded for peer review). Patients with no anatomo-
pathological evaluation were excluded from the study. 
Biopsies indicated that among the 20 patients, 10 had malig-
nancy in their ovaries and 10 had benign conditions. 
Postoperative histology results indicated that the benign 

neoplasms were as follows: 5 endometriomas, 2 mucinous 
cystadenoma, 1 cystic teratoma, 1 pyosalpinx, and 1 serous 
cyst. The malignant neoplasms were as follows: 3 primary 
ovarian cancers (undifferentiated carcinomas), 3 borderline 
malignant tumors, 1 krukenberg cancer, 1 serous cystadeno-
carcinoma, 1 serous carcinoma, and 1 carcinosarcoma. All 
patients were evaluated by 3D transvaginal ultrasonography 
using a Voluson-I (GE Medical Systems) according to a pre-
defined scanning protocol using 6.5 MHz probe frequency 
(Thermal Index: 0.6 and Mechanical Index: 0.8). A 3D vol-
ume of the whole ovary was obtained. The acquired 3D vol-
umes were stored on a hard disk (Sonoview™, GE Medical 
Systems). Volume acquisition time ranged from 2 to 6 s 
depending on the size of the volume box. In cases where a 
given adnexal mass contained more than one solid area and, 
hence, had more than one volume stored, only the volume 
best visualizing the mass was chosen for further analysis. 
Figure  2 shows typical ultrasound images of benign and 
malignant classes. We chose the middle 100 images from 
each volume from each subject. Thus, the evaluated database 
consisted of 1,000 benign images and 1,000 malignant 
images.

�Feature Extraction

Feature extraction is one of the most important steps in an 
automated CAD system. It was observed that the type of 
tumor (tumor-like lesions, benign, tumors of low malignant 
potential, and malignant) was correlated with lesion diame-
ter, with larger tumors more likely to be malignant [26]. 

Fig. 1  Block diagram of the 
proposed system for tumor 
characterization and classification; 
the blocks outside the dotted 
shaded rectangular box represent 
the flow of off-line training 
system, and the blocks within the 
dotted box represent the online 
real-time system
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Moreover, there are several morphological changes in the 
benign and malignant ultrasound images [27, 28]. Usually 
the histopathologic cytoarchitecture of malignant tumors is 
different from benign neoplasm with several areas having 
intra-tumoral necrosis [29]. These changes in lesion diame-
ter and cytoarchitecture variations manifest as nonlinear 
changes in the texture of the acquired ultrasound images. 
Therefore, in this work, we have extracted features based on 
the textural changes in the image and also nonlinear features 

based on the higher-order spectra information. In this sec-
tion, we describe these features in detail.

�Texture Features

Texture features measure the smoothness, coarseness, and 
regularity of pixels in an image. The extracted texture 
descriptors quantify the mutual relationship among intensity 

Fig. 2  Ultrasound images of the ovary: (B1–B2) benign conditions, (M1–M2) malignant tumor
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values of neighboring pixels repeated over an area larger 
than the size of the relationship [30, 31]. There are several 
texture descriptors available in the literature [31]. We have 
chosen the following features:

�Deviation

Let f(i) where (i = 1, 2, …, n) be the number of points whose 
intensity is i in the image and Ax be the area of the image. The 
occurrence probability of intensity i in the image is given by 
h i = f i / Ax( ) ( ) .  The standard deviation is given by

	
Deviation

=1

2
: s = ( ) ( )∑

i

n

i - h im
	

(1)

where μ = mean of intensities.

�Fractal Dimension (FD)

Theoretically, shapes of fractal objects remain invariant 
under successive magnification or shrinking of objects. Since 
texture is usually a scale-dependent measure [32], using 
fractal descriptors can alleviate this dependency. A basic 
parameter of a fractal set is called the fractal dimension 
(FD). FD indicates the roughness or irregularity in the pixel 
intensities of the image. Visual inspection of the benign and 
malignant images in Fig. 2 shows that there are differences in 
the regularity of pixel intensities in both classes. We have 
hence used FD as a measure to quantify this irregularity. The 
larger the FD value, the rougher the appearance of the image. 
Consider a surface S in Euclidean n-space. This surface is 
self-similar if it is the union of Nr nonoverlapping copies of 
itself scaled up or down by a factor of r. Mathematically, FD 
is computed [33, 34] using the following formula:

	

FD
N

r

r=
log

log
1



 	

(2)

In this work, we used the modified differential box count-
ing with sequential algorithm to calculate FD [34]. The input 
of the algorithm is the grayscale image where the grid size is 
in the power of 2 for efficient computation. Maximum and 
minimum intensities for each (2 × 2) box are obtained to sum 
their difference, which gives the M and r by

	
r =

s

M 	 (3)

where M = min(R, C), s is the scale factor, and R and C are 
the number of rows and columns, respectively. When the 
grid size gets doubled, R and C reduce to half of their origi-
nal value and above procedure is repeated iteratively until 

max(R, C) is greater than 2. Linear regression model is used 
to fit the line from plot log(Nr) vs. log(1/r) and the slope 
gives the FD as

	
log = log

1
N FD

rr





 	

(4)

�Gray-Level Co-occurrence Matrix (GLCM)

The elements of a Gray-Level Co-occurrence Matrix 
(GLCM) are made up of the relative number of times the 
gray-level pair (a, b) occurs when pixels are separated by the 
distance (a, b) = (1, 0). The GLCM of an m × n image can be 
defined by [35]

	

C i, j =
a,b , a+ x,b+ y I a,b = i,

I a+ x,b+ y = jd ( ) ( ) ( ) ( )
( )









∆ ∆
∆ ∆

:

	 (5)

where (a,b), (a + Δx, b + Δy) ∈ M × N, d = (Δx, Δy). | ⋅ | denotes 
the cardinality of a set. The probability of a pixel with a gray-
level value i having a pixel with a gray-level value j at a 
(Δx, Δy) distance away in an image is

	

P i, j =
C i, j

C i, jd
d

i j
d

( ) ( )
( )∑∑ 	

(6)

We calculated the following features:

	
Entropy E = ln( ) − ( )× ( ) ∑∑

i j
d dP i, j P i, j

	
(7)

	
Fourth moment =4

4
m i - j P i, j

i j
d( ) ( ) ( )∑∑ 	

(8)

�Run Length Matrix

The run length matrix Pθ(i,j) contains the number of elements 
where gray level “i” has the run length “j” continuous in direc-
tion θ [36]. In this work, run length matrices of θ = 0°, 45°, 90°, 
and 135° were calculated to get the following feature: [37]

	

Run length non-uniformity RLNU

=
2

( )

( )






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j i i j

P i, j P i, jq q ))
	

(9)

�Higher-Order Spectra (HOS)

Second-order statistics can adequately describe minimum-
phase systems only. Therefore, in many practical cases, 
higher-order correlations of a signal have to be studied to 
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extract information on the phase and nonlinearities present 
in the signal [38–41]. Higher-order statistics denote higher-
order moments (order greater than two) and nonlinear com-
binations of higher-order moments, called the higher-order 
cumulants. In the case of a Gaussian process, all cumulant 
moments of order greater than two are zero. Therefore, such 
cumulants can be used to evaluate how much a process devi-
ates from Gaussian behavior. Prior to the extraction of HOS-
based features, the preprocessed images are first subjected to 
Radon transform [42]. This transform determines the line 
integrals along many parallel paths in the image from differ-
ent angles θ by rotating the image around its center. Hence, 
the intensities of the pixels along these lines are projected 
into points in the resultant transformed signal. Thus, the 
Radon transform converts a 2D image into a 1D signal at 
various angles in order to enable calculation of HOS fea-
tures. This 1D signal is then used to determine the bispec-
trum, B(f1, f2), which is a complex valued product of three 
Fourier coefficients given by

	
B f , f = E A f A f A f + f1 2 1 2

*
1 2( ) ( ) ( ) ( )  	 (10)

where A(f) is the Fourier transform of a segment (or win-
dowed portion) of a single realization of the random signal 
a(nT), n is an integer index, T is the sampling interval, and 
E[·] stands for the expectation operation. A*(f1 + f2) is the con-
jugate at frequency (f1 + f2). The function exhibits symmetry 
and is computed in the nonredundant/principal domain 
region Ω as shown in Fig. 3. We calculated the H parameters 
that are related to the moments of bispectrum. The sum of 
logarithmic amplitudes of bispectrum H1 is

	
H = B(f , f1 21

W
∑ ( )log

	
(11)

The weighted center of bispectrum (WCOB) is given by

	

WCOB
iB i, j

B i, j
WCOB

jB i, j

B i, jx y=
( )

( )

( )

( )
∑
∑

∑
∑

W

W

W

W

,

	

(12)

where i and j are frequency bin index in the nonredundant 
region.

We extracted H1 and two weighted center of bispectrum 
features for every one degree of Radon transform between 0° 
and 180°. Thus, the total number of extracted features would 
be 724 (181 × 3). To summarize, the following are the steps 
to calculate the HOS features from the ultrasound image 
[36]: (1) The original image is first converted to 1D signal at 
every 1° angle using Radon transform. (2) The 256 point 
FFT is performed with 128 point overlapping to maintain the 
continuity. (3) The bispectrum of each Fourier spectrum is 
computed using the Eq. (9). Similarly, the bispectrum is 
determined for every 256 samples. (4) The average of all 

these bispectra gives one bispectrum for every ultrasound 
image. (5) From this average bispectrum, the moments of 
bispectrum and weighted center of bispectrum features given 
in Eqs. (11) and (12) are calculated.

�Feature Selection

After the feature extraction process, there were a total of 729 
features (5 texture based and 724 HOS based). Most of these 
features would be redundant in information they retain, and 
using them to build classifiers would result in the curse of 
dimensionality problem [22] and over fitting of classifiers. 
Therefore, feature selection is done to ensure that only 
unique and informative features are retained. In this work, 
we have used Student’s t-test [43] to select significant fea-
tures. Here, a t-statistic, which is the ratio of difference 
between the means of the feature for two classes to the stan-
dard error between class means, is first calculated, and then 
the corresponding p-value is calculated. A p-value that is less 
than 0.01 or 0.05 indicates that the means of the feature are 
statistically significantly different for the two classes, and 
hence, the feature is very discriminating. On applying the 
t-test, we found that many features had a p-value less than 
0.01. However, on evaluating several combinations of these 
significant features in the classifier, we found that only the 
four features listed in Table 1 presented the highest accuracy. 
Therefore, the entire dataset is now represented by a set of 
these four features for every patient.

�Classifier Used

In the case of decision trees (DT), the input features are 
used to construct a tree, and then a set of rules for the 

Fig. 3  Principal domain region (Ω) used for the computation of the 
bispectrum for real signals
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different classes are derived from the tree [44]. These rules 
are used for determining the class of an incoming new 
image.

�Classification Process

Usually in classification, the holdout technique is a tech-
nique wherein a part (mostly 70 %) of the acquired dataset is 
used for training the classifier and the remaining samples are 
used for evaluating the performance of the classifier. 
However, the performance measures obtained using this 
technique may depend on which samples are in the training 
set and which are in the test set, and hence, the final resultant 
performance measures may be significantly different depend-
ing on how the split is made. In order to get robust results, we 
have adopted stratified k-fold cross validation technique as 
the preferred data resampling technique in this work. In this 
technique, the dataset is randomly split into k equal folds, 
each fold containing the same ratio of non-repetitive samples 
from both the classes. In iteration one, (k − 1) folds of data 
are used to train the classifier, and the remaining one fold is 
used to test the classifiers and to obtain the performance 
measures. This procedure is repeated for (k − 1) more times 
by using a different test set each time. The averages of the 
performance metrics obtained in all the iterations are reported 
as the overall performance metrics. In this work, k was taken 
as 10. Due to this iterative technique, the trained classifier 
will be more robust. In Jackknifing, similar to onefold cross 
validation method, instead of estimating the performance 
metrics over all the folds like in k-fold cross validation, we 
compute and study the bias of some statistic of interest in 
each fold of the data. In this work, we are interested in the 
generalization capability of the classifier, and hence, we used 
k-fold cross validation method.

�Performance Measures

Sensitivity, specificity, positive predictive value, and accu-
racy were calculated to evaluate the performance of the clas-
sifiers. TN (true negative) is the number of benign samples 
identified as benign. TP (true positive) is the number of 
malignant images identified as malignant. The number of 

malignant samples detected as benign is quantified by the FN 
(false negative) measure. FP (false positive) is the number of 
benign samples identified as malignant. Sensitivity, which is 
the proportion of actual positives (malignant cases) which 
are correctly identified, is calculated as TP/(TP + FN), and 
specificity, which is the proportion of actual negatives 
(benign cases) which are correctly identified, is determined 
as TN/(TN + FP). Positive predictive value (PPV), which is 
the ratio of true positives to combined true and false posi-
tives, is calculated as TP/(TP + FP), and accuracy, which is 
the ratio of the number of correctly classified samples to the 
total number of samples, is calculated as (TP + TN)/
(TP + FP + TN + FN).

�Results

�Selected Features

Table 1 presents the mean ± standard deviation (SD) values 
of the selected features for both the benign and malignant 
classes. The low p-value indicates that the listed features are 
significant. Even though the means of the features between 
the two classes appear to be close valued in Table 1, the t-test 
does not determine the significance based on the overall 
mean values. As previously indicated, the t-test judges the 
difference between their means relative to the spread or vari-
ability of their data. In this perspective, the listed features 
were found to be significant.

�Classification Results

Since tenfold cross validation was employed, during each of 
the 10 iterations, 900 images from each class (a total of 1,800 
images) were used for building the classifier and the remain-
ing 100 images from each class (a total of 200 images) were 
used for testing and for determining the performance met-
rics. The averages of the performance measures obtained in 
the tenfolds are reported in Table 2. It is evident that the 
simple decision tree classifier presented the high accuracy of 
97 %, sensitivity of 94.3 %, and specificity of 99.7 %. The 
advantage of the DT classifier over the other classifiers is 
that this classifier uses rules to classify a new image. These 

Table 1  Classifier performance measures

SVM kernel TP TN FP FN Accuracy (%) Sensitivity (%) Specificity (%) PPV (%)

Linear 100 99 0 1 99.8 99.61 100 100
Polynomial (order 1) 100 100 0 0 99.8 99.6 100 100
Polynomial (order 2) 100 100 0 0 99.5 100 99.9 99.9
Polynomial (order 3) 100 100 0 0 99.85 99.9 99.8 99.8
RBF 100 100 0 0 99.9 100 99.8 99.8

TN true negative, FN false negative, TP true positive, FP false positive

Ovarian Tumor Characterization and Classification Using Ultrasound: A New Online Paradigm
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rules are comprehensible to the end user and, hence, allow 
the physicians to more confidently accept the result from the 
classifier. This is not the case with classifiers such as the arti-
ficial neural networks which, in most cases, behave like 
black boxes by not being transparent in the way in which 
they determine the class label.

�Discussion

There are very few CAD-based studies in the field of ovarian 
tumor classification. Age and results of 30 blood tests were 
used as features in a multilayer perceptron classifier in order 
to classify the patient into one of the three classes, namely, 
benign, early-stage, and late-stage cancers. On testing 55 
cases, an accuracy of 92.9  % was recorded [11]. Assareh 
et  al. [12] selected three significant biomarkers among the 
high-dimensional input data from protein mass spectra and 
used them in two fuzzy linguistic rules. On using these rules 
for classification, they have reported a classification accu-
racy of 100 % for one dataset (91 controls, 162 cancers) and 
86.36  % for another dataset (100 normal, 16 benign, 100 
cancers). The limitation of this study was the use of holdout 
technique for data resampling. As indicated earlier, holdout 
technique generally results in less robust results due to the 
dependence of the dataset split made for selecting training 
and test sets. On using a complementary fuzzy neural net-
work on a DNA microarray gene expression dataset (24 nor-
mal, 30 cancers), Tan et  al. [13] reported an accuracy of 
84.72 % using nine features. In another mass spectra-based 
study, binary images were first modeled based on the pro-
teomic mass spectrum data from 100 normal and 100 can-
cers. On evaluation using these models, an accuracy of 
96.5 % was obtained [14]. Tang et al. [15] proposed a novel 
approach for dimensionality reduction in mass spectrometry 
data and tested it using high-resolution SELDI-TOF data for 

ovarian cancer (95 normal, 121 cancers). Four statistical 
moments were used in a kernel partial least squares classi-
fier, and sensitivity of 99.5 %, specificity of 99.16 %, and 
accuracy of 99.35 % were achieved. Petricoin et al. [16] used 
a genetic algorithm with self-organizing cluster analysis for 
detecting ovarian cancer. They used spectra derived from 
analysis of serum from 50 normal women and 50 patients 
with ovarian cancer to identify a proteomic pattern that com-
pletely discriminated cancer from normal conditions. They 
identified pattern was used to evaluate 50 malignant and 66 
benign conditions. A sensitivity of 100 % and specificity of 
95 % were observed. Even though the accuracies obtained 
using MS data are high, the use of these techniques is limited 
by the availability and cost of the necessary equipment for 
data analysis.

Tailor et al. [17] used variables such as age, menopausal 
status, maximum tumor diameter, tumor volume, locularity, 
the presence of papillary projections, the presence of random 
echogenicity, the presence of analyzable blood flow velocity 
waveforms, the peak systolic velocity, time-averaged maxi-
mum velocity, the pulsatility index, and resistance index 
obtained from 52 benign and 15 malignant transvaginal 
B-mode ultrasonography images. Using a variant of the 
back-propagation method, they obtained a sensitivity and 
specificity of 100 and 98.1 %. Bruning et al. [18] developed 
a knowledge-based system called ADNEXPERT that used 
histopathologic and sonographic data for computer-assisted 
ultrasound diagnosis of adnexal tumors. On evaluation using 
69 new adnexal tumor cases, ADNEXPERT achieved an 
accuracy of 71 %. Biagiotti et al. [19] used variables such as 
age, papillary projections, random echogenicity, peak sys-
tolic velocity, and resistance index obtained from 175 benign 
and 51 malignant transvaginal B-mode ultrasonography 
images. Using a three-layer back-propagation network, they 
obtained 96  % sensitivity. All these three studies [17–19] 
used features based on evaluations made by the operator, and 

Table 2  Significant features that had a p-value <0.0001 and their ranges (mean ± standard deviation) for benign and malignant classes

Feature Benign Malignant p-value

LBP(R = 1, P = 8) entropy (LBP18 Ent) 1.58E + 08 ±0.53E + 08 2.17E + 08 ± 0.73E + 08 0.0000
LBP(R = 1, P = 8) energy (LBP18 Ene) 0.89E + 08 ±0.27E + 08 1.33E + 08 ± 0.50E + 08 0.0000
LBP(R = 2, P = 16) entropy (LBP216 Ent) 3.82E + 08 ±0.69E + 08 4.68E + 08 ± 1.32E + 08 0.0000
LBP(R = 2, P = 16) energy (LBP216 Ene) 0.27E + 08 ±0.09E + 08 0.31E + 08 ± 0.11E + 08 0.0000
LBP(R = 3, P = 24) entropy (LBP324 Ent) 0.22E + 08 ±0.07E + 08 0.24E + 08 ± 1.11E + 08 6.9744e-08
LBP(R = 3, P = 24) energy (LBP324 Ene) 4.19E + 08 ± 1.09E + 08 3.78E + 08 ± 1.19E + 08 2.3315e-15
Laws texture energy 1(LTE1Ene) 0.31E + 08 ± 0.10E + 08 0.36E + 0 ± 0.13E + 08 0.0000
Laws texture energy 2(LTE2Ene) 0.29E + 08 ± 0.09E + 08 0.31E + 08 ± 0.15E + 08 1.2659e-05
Laws texture energy 3(LTE3Ene) 2.8019 ± 0.1963 3.0604 ± 0.1363 0.0000
Laws texture energy 4(LTE4Ene) 0.2065 ± 0.0495 0.1444 ± 0.0315 0.0000
Laws texture energy 5(LTE5Ene) 2.5528 ± 0.1203 2.8239 ± 0.1192 0.0000
Laws texture energy 6(LTE6Ene) 0.2877 ± 0.019 0.2577 ± 0.0139 0.0000
Laws texture energy 7(LTE7Ene) 2.404 ± 0.0884 2.6327 ± 0.1133 0.0000
Laws texture energy 8(LTE8Ene) 0.3319 ± 0.0154 0.3232 ± 0.0189 0.0000
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hence, these features may be subjective in nature. Zimmer 
et  al. [20] proposed an automatic analysis of the B-mode 
ultrasound images by quantification of gray-level intensity 
variations (mean, standard deviation, etc.). Using a 
segmented region of interest, their algorithm classified the 
tumor into three main categories (cyst, solid, and semi-solid) 
and obtained a low accuracy of 70 % for tumors containing 
solid portions. Lucidarme et  al. [21] used the Ovarian 
HistoScanning (OVHS, Advanced Medical Diagnostics, 
Waterloo, Belgium) technique for tumor classification. This 
technique registered 98 % sensitivity, 88 % specificity, and 
91.73  % accuracy. HistoScanning is an automatic scoring 
system based on the quantification of tissue disorganization 
induced by malignant processes in backscattered ultrasound 
waves before image processing. Recently, we extracted tex-
ture features based on Local Binary Patterns (LBP) and Laws 
Texture Energy (LTE) and used them to build and train a 
Support Vector Machine (SVM) classifier. On evaluating 
1,000 benign and 1,000 malignant images using the devel-
oped system, we obtained a high accuracy of 99.9 % [45]. 
We tested only texture features in [45] whereas we evaluated 
a novel combination of HOS and texture features in this 
present study.

Our study is along the lines of Zimmer et al. [20] wherein 
we have quantified the gray-level intensity variations in the 
ultrasound images using texture and HOS-based features. 
Zimmer et  al. [20] employed segmentation algorithms to 
determine the region of interest (ROI) of the ovarian mass in 
B-mode ultrasound images. In our technique, we use the 
whole 2D image and not any segmented portions. We have 
taken the Radon transform for every 1° circularly around the 
image to acquire all the possible information within the 
image. Our results show that all the four selected nonlinear 
features have unique ranges (with low p-values). The struc-
tural features outside the lesion like noise or other changes 
do not contribute to our results because nonlinear features 
like HOS are robust to noise and capture the nonlinear inter-
action of the pixels in the frequency domain and also capture 
phase coupling. Therefore, the changes outside the lesion do 
not influence our features or classification results. Using the 
DT classifier, we have achieved a high accuracy of 97 % due 
to the use of the novel combination of the four features in the 
classifier. The time taken to obtain the diagnosis prediction 
was less than 1 min. Our proposed algorithm has the follow-
ing features:
	(a)	  The proposed system uses the whole ultrasound image 

(not any specific ROI), automatically extracts features, 
and uses them in the DT classifier to predict the class 
(benign/malignant) of the patient. Since no user interac-
tion is necessary, the end results are more objective and 
reproducible compared to manual interpretations of 
ultrasound images which can at times result in interob-
server variations.

	(b)	  Because of the use of the stratified cross validation data 
resampling technique, the system is generalized to accu-
rately predict the class of new ultrasound images, and 
hence, the proposed technique is robust.

	(c)	  Only four simple and easily determinable powerful fea-
tures have to be calculated from the images for use in the 
classifiers. This significantly reduces the computational 
load and time. Unlike MS data, there is no need for com-
plex techniques for dimensionality reduction.

	(d)	  Since we use images acquired using commonly avail-
able and affordable ultrasound modality, there is no 
additional cost for image acquisition. Moreover, the 
algorithm can be easily written as a software application 
that can be installed and used in any radiologists’ or phy-
sicians’ office at no extra cost.

	(e)	  The physician has to just run the software on the 
acquired B-mode ultrasound images. The software does 
all the processing and outputs classified image after 
characterization of the tissue. Hence, there is no need for 
trained experts for running the software.

On the limitations side, the robustness of such CAD tech-
niques depends on the determination of good features that 
well discriminate the classes, in this case, benign and malig-
nant tumors. Moreover, for medical-legal concerns, the radi-
ologists have to store all CAD findings and images which 
increase digital storage requirements. When we use such 
CAD tools, we tend to rely on the CAD results, leading to a 
lower performance in detecting cancers than when we do not 
use CAD. Thus, using CAD may degrade human decision 
making. Hence, clinical success of such CAD tools depends 
on these tools having a high sensitivity and a reasonable spec-
ificity and also good reproducibility of the results [46]. In this 
study, we have obtained a high sensitivity of 94.3 % and spec-
ificity of 99.7 %. However, we believe that there is more room 
for improvement in accuracy. Therefore, as part of our future 
studies, we intend to analyze other texture features to deter-
mine more discriminating features. Moreover, the clinical 
applicability of our proposed technique has to be established 
with more studies containing larger image databases from 
multiethnic groups. We also intend to extend the study proto-
col to 3D, wherein we would include the spatial information 
of the 3D slices taken from a single patient for analysis.

�Conclusion

We have presented a CAD technique for ovarian tumor 
classification in this paper. A novel combination of four 
texture and HOS-based features that adequately quan-
tify the nonlinear changes in both benign and malignant 
ovarian ultrasound images was used to develop classi-
fiers. Our study shows that the decision tree classifier is 
capable of classifying benign and malignant conditions 
with a high accuracy of 97 %, sensitivity of 94.3 %, and 
specificity of 99.7 %. The developed classifier is robust 
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as it was evaluated with 1,000 benign and 1,000 malig-
nant samples using tenfold stratified cross validation. 
The preliminary results obtained using the system show 
that the features are discriminative enough to yield good 
classification accuracy of 97 %. Moreover, the CAD 
tool would be a more objective alternative to manual 
analysis of ultrasound images which might result in 
interobserver variations. The system can be installed as 
a stand-alone software application in the physician’s 
office at no extra cost. However, the system has been 
tested only on 20 cases and further clinical validation 
will be required to assess the diagnostic accuracy of 
proposed method.
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