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Abstract In this paper we present the regularization method in nondifferentiable
optimization in a unified way using the smoothing approximation of the plus
function. We show how this method can be applied to hemivariational inequalities.
To illustrate our results we consider bilateral contact between elastic bodies with
a nonmonotone friction law on the contact boundary and present some numerical
results.
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1 Introduction

The motivation of this paper comes from the numerical treatment of nonlinear
nonsmooth variational problems of continuum mechanics involving nonmonotone
contact of elastic bodies. These contact problems lead to nonmonotone and mul-
tivalued laws which can be expressed by means of the Clarke subdifferential of a
nonconvex, nonsmooth but locally Lipschitz function, the so-called superpotential.
The variational formulation of these problems involving such laws gives rise to
hemivariational inequalities introduced for the first time by Panagiotopoulos in the
1980s; see [14,15]. For the mathematical background of hemivariational inequalities
we refer to Naniewicz and Panagiotopoulos [12]. For more recent works on the
mathematical analysis of nonsmooth variational problems and contact problems,
see also the monographs [3,8,11,18]. Numerical methods for such problems can be
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found in the classical book of Haslinger et al. [9] as well as in the recent papers of
Baniotopoulos et al. [2], Hintermüller et al. [10], etc.

Since in most applications the nonconvex superpotential can be modelled
by means of maximum or minimum functions, we turn our attention to their
regularizations. The idea of regularization goes back to Sobolev and is based more
or less on convolution. However, regularizations via convolution are not easily
applicable in practice, since it generally involves a calculation of a multivariate
integral. But for the special class of maximum and minimum functions considered
here, using regularization by a specified, e.g., piecewisely defined kernel, we
can compute the smoothing function explicitly; see, e.g., [16, 20] and the recent
survey in [13]. Moreover, since all nonsmooth functions under consideration can be
reformulated by using the plus function, we can present the regularization method on
nondifferentiable optimization (NDO) in a unified way. A large class of smoothing
functions for the plus function can be found, e.g., in [4, 5, 7, 16, 19, 20].

In Sect. 2 we present a smoothing approximation of the maximum function
based on the approximation of the plus function via convolution. We analyze
some approximability property of the gradients of the smoothing function and
show that the Clarke subdifferential of the nonsmooth but locally Lipschitz max-
imum function coincides with the subdifferential associated with the smoothing
function.

Finally, in Sect. 3 we sketch how the regularization procedure from Sect. 2 can be
used to solve nonmonotone contact problems. Here we focus on an elastic structure
supported by a rigid foundation with a nonmonotone friction law. For further details
concerning the regularization methods for hemivariational inequalities and their
numerical realization by finite element methods, we refer to [13].

2 A Unified Approach to Regularization in NDO

Consider

f (x) = max{g1(x),g2(x)}, (1)

where gi : IRn �� IR, i= 1,2. Obviously, the maximum function (1) can be expressed
by means of the plus function p(x) = x+ = max(x,0) as

f (x) = max{g1(x),g2(x)}= g1(x)+p[g2(x)−g1(x)]. (2)

Replacing now the plus function by its approximation via convolution, we present
the following smoothing function S : IRn × IR++

�� IR for the maximum function
(see also [6]):

S(x,ε) := g1(x)+P(ε ,g2(x)−g1(x)) . (3)
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Here, P : IR++ × IR �� IR is the smoothing function via convolution for the plus
function p defined by

P(ε , t) =
∫ t

ε

−∞
(t − εs)ρ(s)ds. (4)

Remark 1. The representation formula (2) can be extended to the maximum of finite
number of arbitrary functions due to Bertsekas [1]:

f (x) = g1(x)+p [g2(x)−g1(x)+ · · ·+p [gm(x)−gm−1(x)]] . (5)

Therefore the smoothing of the plus function gives a unified approach to regulariza-
tion in NDO.

We restrict ρ : IR �� IR+ to be a density function of finite absolute mean; that is,

k :=
∫
IR
|s|ρ(s)ds < ∞.

From [16] we know that P is continuously differentiable on IR++× IR with

Pt(ε , t) =
∫ t

ε

−∞
ρ(s)ds (6)

and satisfies

|P(ε , t)−p(t)| ≤ k ε ∀ε > 0, ∀t ∈ IR. (7)

The inequalities in (7) imply

lim
tk

�� t,ε ��0+
P(ε , tk) = p(t) ∀t ∈ IR.

Moreover, P(ε , ·) is twice continuously differentiable on IR and we compute

Ptt(ε , t) = ε−1ρ
( t

ε

)
. (8)

Due to this formula we can also get the smoothing function (4) by twice integrating
the density function; see [5].

In what follows, we suppose that all the functions gi are continuously differen-
tiable. The major properties of S (see [16]) inherit the properties of the function P
(see, e.g., [5, 7, 16]) and are collected in the following lemma:

Lemma 1.

(i) For any ε > 0 and for all x ∈ IRn,

|S(x,ε)− f (x)| ≤ k ε . (9)
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(ii) The function S is continuously differentiable on IRn × IR++ and for any x ∈ IRn

and ε > 0 there exist Λi ≥ 0 such that
2

∑
i=1

Λi = 1 and

∇xS(x,ε) =
2

∑
i=1

Λi∇gi(x). (10)

Moreover,

co{ξ ∈ IRn : ξ = lim
k ��∞

∇xS(xk,εk), xk
�� x, εk

��0+} ⊆ ∂ f (x), (11)

where “co” denotes the convex hull and ∂ f (x) is the Clarke subdifferential.

We recall that the Clarke subdifferential of a locally Lipschitz function f at a point
x ∈ IRn can be expressed by

∂ f (x) = co{ξ ∈ IRn : ξ = lim
k ��∞

∇ f (xk), xk
�� x, f is differentiable at xk},

since in finite-dimensional case, according to Rademacher’s theorem, f is differen-
tiable almost everywhere.

The maximum function given by (1) is clearly locally Lipschitz continuous and
the Clarke subdifferential can be written as

∂ f (x) = co{∇gi(x) : i ∈ I(x)}

with

I(x) := {i : f (x) = gi(x)}.

In particular, if x ∈ IRn is a point such that f (x) = gi(x) then ∂ f (x) = {∇gi(x)}. For
such a point x ∈ IRn we show later on that

lim
z �� x,ε ��0+

∇xS(z,ε) = ∇gi(x).

Note that the set on the left-hand side in (11) goes back to Rockafellar [17]. In
[4], this set is denoted by GS(x) and is called there the subdifferential associated
with the smoothing function. The inclusion (11) shows in fact that GS(x) ⊆ ∂ f (x).
Moreover, according to the part (b) of Corollary 8.47 in [17], ∂ f (x)⊆ GS(x). Thus,
∂ f (x) = GS(x).
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Remark 2. Note that S is a smoothing approximation of f in the sense that

lim
z �� x,ε ��0+

S(z,ε) = f (x) ∀x ∈ IRn.

This is immediate from (9).

Remark 3. The regularization procedure (3) can be also applied to a minimum
function by

min{g1(x),g2(x)} = −max{−g1(x),−g2(x)}=−{−g1(x)+p[−g2(x)+g1(x)]}

≈ g1(x)−P(ε ,g1(x)−g2(x)) =: S̃(x,ε) (12)

Since all the nonsmooth functions considered in this paper can be reformulated
by using the plus function, all our regularizations are based in fact on a class of
smoothing approximations for the plus function. Some examples from [7] and the
references therein are in order.

Example 1.

P(ε , t) =
∫ t

ε

−∞
(t − εs)ρ1(s)ds = t + ε ln(1+ e−

t
ε ) = ε ln(1+ e

t
ε ) (13)

where ρ1(s) = e−s

(1+e−s)2 . Due to (8) the smoothing function (13) is obtained by

integrating twice the function ε−1ρ1(
s
ε ).

Example 2.

P(ε , t) =
∫ t

ε

−∞
(t − εs)ρ2(s)ds =

√
t2 +4ε2 + t

2
, (14)

where ρ2(s) = 2
(s2+4)3/2 . The formula (14) is similarly obtained as formula (13)

via (8).

Example 3.

P(ε , t) =
∫ t

ε

−∞
(t − εs)ρ3(s)ds =

⎧⎪⎨
⎪⎩

0 if t <− ε
2

1
2ε (t +

ε
2 )

2 if − ε
2 ≤ t ≤ ε

2

t if t > ε
2 ,

(15)

where ρ3(s) =

{
1 if − 1

2 ≤ s ≤ 1
2

0 otherwise.
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Example 4.

P(ε , t) =
∫ t

ε

−∞
(t − εs)ρ4(s)ds =

⎧⎪⎨
⎪⎩

0 if t < 0
t2

2ε if 0 ≤ t ≤ ε
t − ε

2 if t > ε ,

(16)

where ρ4(s) =

{
1 if 0 ≤ s ≤ 1

0 otherwise.

In the following, we denote

A1 = {x ∈ IRn : g1(x)> g2(x)} and A2 = {x ∈ IRn : g2(x)> g1(x)}.

Lemma 2. The following properties hold:

(a) If x ∈ A1 then lim
z �� x,ε ��0+

Pt(ε ,g2(z)−g1(z)) = 0 .

(b) if x ∈ A2 then lim
z �� x,ε ��0+

Pt(ε ,g2(z)−g1(z)) = 1 .

Proof. The proof is straightforward and is based on formula (6). We provide only
the proof of (a). The proof of (b) is analogous.

Let x ∈ A1, i.e., g1(x)> g2(x). Using (6), it follows that

Pt(ε ,g2(z)−g1(z)) =
∫ g2(z)−g1(z)

ε

−∞
ρ(s)ds ��0 as z �� x,ε ��0+

and (a) is verified. 	

Now we show that the gradient of the given function gi on Ai can be approximated
by the gradients of the smoothing function.

Theorem 1. For any x ∈ Ai, i = 1,2,

lim
z �� x,ε ��0+

∇xS(z,ε) = ∇gi(x).

Proof. From (3), by direct differentiation with respect to x [see also (10)], it follows
that

∇xS(z,ε) =
(
1−Pt

(
ε ,g2(z)−g1(z)

))
∇g1(z)+Pt

(
ε ,g2(z)−g1(z)

)
∇g2(z).

First, we take x ∈ A1. From Lemma 2(a) we have

lim
z �� x,ε ��0+

Pt
(
ε ,g2(z)−g1(z)

)
= 0
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and therefore lim
z �� x,ε ��0+

∇xS(z,ε) = ∇g1(x). Let now x ∈ A2. Then, from

Lemma 2(b), it follows that

lim
z �� x,ε ��0+

Pt
(
ε ,g2(z)−g1(z)

)
= 1

and consequently, lim
z �� x,ε ��0+

∇xS(z,ε) ��∇g2(x). The proof of the theorem is

complete. 	

Remark 4. Note that if x ∈ IRn is a point such that g1(x) = g2(x) then for any
sequences {xk} ⊂ IRn, {εk} ⊂ IR++ such that xk

�� x and εk
��0+ we have

lim
k ��∞

∇xS(xk,εk) ∈ ∂ f (x).

3 Bilateral Contact with Nonmonotone Friction: A 2D
Benchmark Problem

3.1 Statement of the Problem

In this section we sketch how our regularization method presented in Sect. 2 can
be applied to numerical solution of nonmonotone contact problems that can be for-
mulated as hemivariational inequality with maximum or minimum superpotential.
As a model example we consider the bilateral contact of an elastic body with a
rigid foundation under given forces and a nonmonotone friction law on the contact
boundary. Here the linear elastic body Ω is the unit square 1m×1m (see Fig. 1) with
modulus of elasticity E = 2.15× 1011 N/m2 and Poisson’s ration ν = 0.29 (steel).
Then the linear Hooke’s law is given by

σi j(u) =
Eν

1−ν2 δi j tr
(
ε(u)

)
+

E
1+ν

εi j(u), i, j = 1,2, (17)

where δi j is the Kronecker symbol and

tr
(
ε(u)

)
:= ε11(u)+ ε22(u).

The boundary ∂Ω of Ω consists of four disjoint parts Γu, Γc, Γ 1
F , and Γ 2

F . On Γu the
body is fixed, i.e., we have

ui = 0 on Γu, i = 1,2.
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Fig. 1 A 2D benchmark with
force distribution and
boundary decomposition

Fig. 2 A nonmonotone
friction law

The body is loaded with horizontal forces, i.e., F = (P,0) on Γ 1
F , where P = 1.2×

106 N/m2, F = (0,0) on Γ 2
F . Further, we assume that

{
u2(s) = 0 s ∈ Γc

−ST (s) ∈ ∂ j(u1(s)) for a.a. s ∈ Γc .

Note that ST denotes the tangential component of the stress vector on the boundary.
The assumed nonmonotone multivalued law ∂ j holding in the tangential direction
is depicted in Fig. 2 with parameters δ = 9.0× 10−6 m, γ1 = 1.0× 103 N/m2 and
γ2 = 0.5×103 N/m2. Notice that here j is a minimum of a convex quadratic and a
linear function, for instance, j(ξ ) = min{ 1

2 αξ 2,βξ} for some α,β > 0. Let

V = {v ∈ H1(Ω ; IR2) : vi = 0 on Γu, i = 1,2, v2 = 0 on Γc}

be the linear subspace of all admissible displacements. The weak formulation of
this bilateral contact problem leads to the following hemivariational inequality: find
u ∈V such that

a(u,v−u)+
∫

Γc

j0(u1(s);v1(s)−u1(s))ds ≥ 〈g,v−u〉 (18)

for all v ∈V . Here, a(u,v) is the energy bilinear form of linear elasticity

a(u,v) =
∫

Ω
σi j(u)εi j(v)dx u,v ∈V (19)
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with σ , ε related by means of (17) and the linear form 〈g, ·〉 defined by

〈g,v〉= P
∫

ΓF1

v1 ds. (20)

3.2 Numerical Solution

We solve this problem numerically by first regularizing the hemivariational inequal-
ity (18) and then discretizing by the Finite Element Method. More precisely, we
regularize j(ξ ) by S̃(ξ ,ε) defined by (12) and using (15) from Example 3 as a
smoothing approximation of the plus function. Then, we introduce the functional
Jε : V �� IR

Jε(v) =
∫

Γc

S̃(v1(s),ε)ds.

Since S̃(·,ε) is continuously differentiable for all ε > 0 the functional Jε is every-
where Gâteaux differentiable with continuous Gâteaux derivative DJε : V ��V ∗
given by

〈DJε(u),v〉=
∫

Γc

S̃′ξ (u1(s),ε)v1(s)ds.

Notice that for v ∈V the trace on Γc is well defined, so Jε and DJε make sense.
The regularized problem of (18) now reads as follows: find uε ∈V such that

a(uε ,v−uε)+ 〈DJε(uε),v−uε〉 ≥ 〈g,v−uε〉 ∀v ∈V. (21)

Further, we consider a triangulation {Th} of Ω . Let Σh be the set {xi} of all vertices
of the triangles of {Th} and Pc

h the set of all nodes on Γ c, i.e.,

Pc
h = {xi ∈ Σh : xi ∈ Γ c}.

Using continuous piecewise linear functions we approximate the subspace of all
admissible displacements V by

Vh = {vh ∈C(Ω ; IR2) : vh|T ∈ (IP1)
2, ∀T ∈ Th, vhi = 0 on ΓU , i = 1,2,

vh2(xi) = 0 ∀xi ∈ Pc
h}.

The discretization of the regularized problem (21) is defined now as follows: find
uh ∈Vh such that

a(uh,vh −uh)+ 〈DJh(uh),vh −uh〉 ≥ P
∫

Γ 1
F

(vh1 −uh1)dx2 ∀vh ∈Vh,
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Fig. 3 The tangential component of the displacement vector on Γc
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Fig. 4 The distribution of the tangential stresses along Γc

where

〈DJh(uh),vh〉 = 1
2 ∑ |PiPi+1|

[
∂ S̃
∂ξ

(uh1(Pi),ε)vh1(Pi)

+
∂ S̃
∂ξ

(uh1(Pi+1),ε)vh1(Pi+1)

]
.

Further, using the condensation technique, we pass to a reduced finite-dimensional
variational inequality problem formulated only in terms of the contact displace-
ments. To solve this problem numerically we use the equivalent KKT system, which
is further reformulated as a smooth, unconstrained minimization problem by using
an appropriate merit function. Finally, the merit function is minimized by applying
an algorithm based on trust region methods. We did numerical experiments for
different mesh sizes h = 1/8,1/16, 1/32, and 1/64 m. The number of the contact
nodes is q = 9,17,33, and 65, respectively. The obtained results are collected in the
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pictures below. Figures 3 and 4 show the behavior of the tangential displacements u1

and the distribution of −ST along the contact boundary Γc for the different number
of the contact nodes (q= 9,17,33,65) and for the constant load P= 1.2×106 N/m2.
From Fig. 4 we can see that the computed stresses indeed follow the law depicted
in Fig. 2. It is easy to see that with a finer discretization (e.g., q = 17,33,65)
some of the computed displacements are larger than δ = 9.0 × 10−6 m and the
computed tangential stresses jump down to the parallel branch −ST = 500N/m2

as described by a nonmonotone friction law in Fig. 2. All computations are made
with regularization parameter ε fixed to 0.1.
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