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Abstract A multiple decision statistical problem for the elements of inverse
covariance matrix is considered. Associated optimal unbiased multiple decision
statistical procedure is given. This procedure is constructed using the Lehmann
theory of multiple decision statistical procedures and the conditional tests of the
Neyman structure. The equations for thresholds calculation for the tests of the
Neyman structure are analyzed.

Keywords Inverse covariance matrix • Tests of the Neyman structure • Multiple
decision statistical procedure • Generating hypothesis

1 Introduction

A market network is constructed by means of some similarity measure between
every pairs of stocks . The most popular measure of similarity between stocks of a
market is the correlation between them [1–4]. The analysis of methods of market
graph construction [2] from the statistical point of view was started in [5]. In [5]
multiple decision statistical procedure for market graph construction based on the
Pearson test is suggested. The authors of [5] note that a procedure of this type can
be made optimal in the class of unbiased multiple decision statistical procedures if
one uses the tests of the Neyman structure for generating hypothesis. In the present
paper we use the partial correlations as a measure of similarity between stocks. In
this case the elements of inverse covariance matrix are the weights of links between
stocks in the market network [6].
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The main goal of the paper is investigation of the problem of identification of
inverse covariance matrix as a multiple decision statistical problem. As a result an
optimal unbiased multiple decision statistical procedure for identification of inverse
covariance matrix is given. This procedure is constructed using the Lehmann theory
of multiple decision statistical procedures and the conditional tests of the Neyman
structure. In addition the equations for thresholds calculation for the tests of the
Neyman structure are analyzed.

The paper is organized as follows. In Sect. 2 we briefly recall the Lehmann
theory of multiple decision statistical procedures. In Sect. 3 we describe the tests
of the Neyman structure. In Sect. 4 we formulate the multiple decision problem
for identification of inverse covariance matrix. In Sect. 5 we construct and study
the optimal tests for testing of generating hypothesis for the elements of an inverse
covariance matrix. In Sect. 6 we construct the multiple statistical procedure and
consider some particular cases. In Sect. 7 we summarize the main results of the
paper.

2 Lehmann Multiple Decision Theory

In this section we recall for the sake of completeness the basic idea of the Lehmann
theory following the paper [5].

Suppose that the distribution of a random vector R is taken from the family
f (r,θ) : θ ∈ Ω , where θ is a parameter, Ω is the parametric space, r is an
observation of R. We need to construct a statistical procedure for the selection of
one from the set of L hypotheses, which in the general case can be stated as:

Hi : θ ∈ Ωi, i = 1, . . . ,L,
Ωi ∩Ω j = /0, i �= j,

⋃L
i=1 Ωi = Ω .

(1)

The most general theory of a multiple decision procedure is the Lehmann theory [7].
The Lehmann theory is based on three concepts: generating hypothesis, generating
hypothesis testing and compatibility conditions, and additivity condition for the loss
function.

The multiple decision problem (1) of selecting one from the set of L
hypothesesHi : θ ∈ Ωi; i = 1, . . . ,L is equivalent to a family of M two decision
problems:

H ′
j : θ ∈ ω j vs K′

j : θ ∈ ω−1
j , j = 1, . . . ,M, (2)

with

L⋃

i=1

Ωi = ω j ∪ω−1
j = Ω .
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This equivalence is given by the relations:

Ωi =
M⋂

j=1

ωχi, j
j , ω j =

⋃

{i:χi, j=1}
Ωi,

where

χi, j =

{
1, Ωi ∩ω j �= /0,
−1, Ωi ∩ω j = /0.

(3)

Hypotheses H ′
j : ( j = 1, . . . ,M) are called generating hypotheses for the prob-

lem (1).
The equivalence between problem (1) and the family of problems (2) reduces the

multiple decision problem to the testing of generating hypothesis. Any statistical
procedure δ j for hypothesis testing of H ′

j can be written in the following form

δ j(r) =

{
∂ j, r ∈ Xj,

∂−1
j , r ∈ X−1

j ,
(4)

where ∂ j is the decision of acceptance of H ′
j and ∂−1

j is the decision of acceptance

of K′
j, Xj is the acceptance region of H ′

j and X−1
j is the acceptance region of K′

j

(rejection region of H ′
j) in the sample space. One has Xj ∩X−1

j = /0, Xj ∪X−1
j = X ,

X being the sample space.
Define the acceptance region for Hi by

Di =
M⋂

j=1

X
χi, j
j , (5)

where χi, j are defined by (3), and put X1
j = Xj. Note that

⋃L
i=1 Di ⊂ X , but it is

possible that
⋃L

i=1 Di �= X .
Therefore, if D1,D2, . . . ,DL is a partition of the sample space X , then one can

define the statistical procedure δ (r) by

δ (r) =

⎧
⎪⎪⎨

⎪⎪⎩

d1, r ∈ D1,

d2, r ∈ D2,

. . . . . . . . .

dL, r ∈ DL.

(6)

According to [8,9] we define the conditional risk for multiple decision statistical
procedure by

risk(θ ,δ ) = Eθ w(θ ,δ (R)) =
L

∑
k=1

w(θ ,dk)Pθ (δ (R) = dk), (7)
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where Eθ is the expectation according to the density function f (x,θ) and w(θ ,dk)
is the loss from decision dk under the condition that θ is true, θ ∈ Ω . Under the
additivity condition of the loss function (see [5] for more details) the conditional
risk can be written as

risk(θ ,δ ) =
M

∑
j=1

risk(θ ,δ j), θ ∈ Ω . (8)

We call statistical procedure optimal in a class of statistical procedures if it has
minimal conditional risk for all θ ∈ Ω in this class. The main result of the Lehmann
theory (see [7]) states that if Eq. (8) is satisfied and statistical procedures (4)
are optimal in the class of unbiased statistical tests, then the associated multiple
decision statistical procedure (6) is optimal in the class of unbiased multiple decision
procedures.

3 Unbiasedness and Tests of the Neyman Structure

The class of unbiased multiple decision statistical procedures according to Lehmann
[9, 10] is defined by:

Eθ w(θ ,δ (R))≤ Eθ w(θ ′,δ (R)) f or any θ ,θ ′ ∈ Ω .

Let f (r;θ) be the density of the exponential family:

f (r;θ) = c(θ)exp(
M

∑
j=1

θ jTj(r))h(r), (9)

where c(θ) is a function defined in the parameters space, h(r), Tj(r) are functions
defined in the sample space, and Tj(R) are the sufficient statistics for θ j, j =
1, . . . ,M.

Suppose that generating hypotheses (2) has the form:

H ′
j : θ j = θ 0

j vs K′
j : θ j �= θ 0

j , j = 1,2, . . . ,M, (10)

where θ 0
j are fixed. For a fixed j the parameter θ j is called information or structural

parameter and θk, k �= j are called nuisance parameters. According to [9] the optimal
unbiased tests for generating hypotheses (10) are:

δ j =

{
∂ j, c1

j(t1, . . . , t j−1, t j+1, . . . , tM)< t j < c2
j(t1, . . . , t j−1, t j+1, . . . , tM),

∂−1
j , otherwise ,

(11)
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where ti = Ti(r), i = 1, . . . ,M and constants c1
j(t1, . . . , t j−1, t j+1, . . . , tM), c2

j(t1, . . . ,
t j−1, t j+1, . . . , tM) are defined from the equations

∫ c2
j

c1
j

f (t j,θ 0
j |Ti = ti, i = 1, . . . ,M; i �= j)dt j = 1−α j, (12)

and

∫ c1
j

−∞
t j f (t j,θ 0

j |Ti = ti, i = 1, . . . ,M; i �= j)dt j

+
∫ +∞

c2
j

t j f (t j,θ 0
j |Ti = ti, i = 1, . . . ,M; i �= j)dt j

= α j

∫ +∞

−∞
t j f (t j,θ 0

j |Ti = ti, i = 1, . . . ,M; i �= j)dt j,

(13)

where f (t j,θ 0
j |Ti = ti, i = 1, . . . ,M; i �= j) is the density of conditional distribution

of statistics Tj and α j is the level of significance of the test.
A test satisfying (12) is said to have Neyman structure. This test is characterized

by the fact that the conditional probability of rejection of H ′
j (under the assumption

that H ′
j is true) is equal to α j on each of the surfaces

⋂

k �= j

(Tk(x) = tk). Therefore

the multiple decision statistical procedure associated with the tests of the Neyman
structure (11), (12), and (13) is optimal in the class of unbiased multiple decision
procedures.

4 Problem of Identification of Inverse Covariance Matrix

In this section we formulate the multiple decision problem for elements of inverse
covariance matrix.

Let N be the number of stocks on a financial market, and let n be the number
of observations. Denote by ri(t) the daily return of the stock i for the day t (i =
1, . . . ,N; t = 1, . . . ,n). We suppose ri(t) to be an observation of the random variable
Ri(t). We use the standard assumptions: the random variables Ri(t), t = 1, . . . ,n are
independent and have all the same distribution as a random variable Ri(i= 1, . . . ,N).
The random vector (R1,R2, . . . ,RN) describes the joint behavior of the stocks.
We assume that the vector (R1,R2, . . . ,RN) has a multivariate normal distribution
with covariance matrix ‖σi j‖ where σi j = cov(Ri,R j) = E(Ri − E(Ri))(R j −
E(R j)),ρi j =(σi j)/(

√σiiσ j j), i, j = 1, . . . ,N, E(Ri) is the expectation of the random
variable Ri. We define a sample space as RN×n with the elements (ri(t)). Statistical
estimation of σi j is si j = Σ n

t=1(ri(t)−ri)(r j(t)−r j) where ri = (1/n)∑n
t=1 ri(t). The

sample correlation between the stocks i and j is defined by ri j = (si j)/(
√

siis j j).
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It is known [11] that for a multivariate normal vector the statistics (r1,r2, . . . ,rN)
and ‖si j‖ (matrix of sample covariances) are sufficient.

Let σ i j be the elements of inverse covariance matrix ‖σ i j‖. Then the problem of
identification of inverse covariance matrix can be formulated as a multiple decision
problem of the selection of one from the set of hypotheses:

H1 : σ i j = σ i j
0 , i, j = 1, . . . ,N, i < j,

H2 : σ12 �= σ12
0 ,σ i j = σ i j

0 , i, j = 1, . . . ,N,(i, j) �= (1,2), i < j,

H3 : σ13 �= σ13
0 ,σ i j = σ i j

0 , i, j = 1, . . . ,N,(i, j) �= (1,3), i < j,

H4 : σ12 �= σ12
0 ,σ13 �= σ13

0 ,σ i j = σ i j
0 , i, j = 1, . . . ,N,(i, j) �= (1,2), (i, j) �= (1,3),

. . .

HL : σ i j �= σ i j
0 , i, j = 1, . . . ,N, i < j,

(14)
where L = 2Mwith M = N(N −1)/2.

Multiple decision problem (14) is a particular case of the problem (1). The
parameter space Ω is the space of positive semi-definite matrices ||σ i j||, Ωk is a
domain in the parameters space associated with the hypothesis Hk from the set (14)
k = 1, . . . ,L. For the multiple decision problem (14) we introduce the following set
of generating hypotheses:

hi, j : σ i j = σ i j
0 vs ki, j : σ i j �= σ i j

0 , i, j = 1,2, . . . ,N, i < j, (15)

We use the following notations: ∂i, j is the decision of acceptance of the hypothesis
hi, j and ∂−1

i, j is the decision of rejection of hi, j.

5 Tests of the Neyman Structure for Testing of Generating
Hypothesis

Now we construct the optimal test in the class of unbiased tests for generating
hypothesis (15). To construct these tests we use the sufficient statistics si j with the
following Wishart density function [11]:

f ({sk,l}) = [det(σ kl)]n/2 × [det(skl)]
(n−N−2)/2 × exp[−(1/2)∑k ∑l sk,lσ kl ]

2(Nn/2)×πN(N−1)/4 ×Γ (n/2)Γ ((n−1)/2) · · ·Γ ((n−N +1)/2)

if the matrix (skl) is positive definite, and f ({skl}) = 0 otherwise. One has for a
fixed i < j:

f ({skl}) =C({σ kl})× exp[−σ i jsi j − 1
2 ∑
(k,l) �=(i, j);(k,l) �=( j,i)

sklσ kl ]×h({skl}),
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where

C({σ kl}) = 1
q

det(σ kl)]n/2,

q = 2(Nn/2)×πN(N−1)/4 ×Γ (n/2)Γ ((n−1)/2) · · ·Γ ((n−N +1)/2),

h({skl}) = [det(skl)]
(n−N−2)/2.

Therefore, this distribution belongs to the class of exponential distributions with
parameters σ kl .

The optimal tests of the Neyman structure (11), (12), and (13) for generating
hypothesis (15) take the form:

δi, j({skl}) =
{

∂i, j, c1
i, j({skl})< si j < c2

i, j({skl}), (k, l) �= (i, j),

∂−1
i, j , si j ≤ c1

i, j({skl}) or si j ≥ c2
i, j({skl}), (k, l) �= (i, j),

(16)

where the critical values are defined from the equations

∫
I∩[c1

i, j ;c
2
i, j ]

exp[−σ i j
0 si j][det(skl)]

(n−N−2)/2dsi j

∫
I exp[−σ i j

0 si j][det(skl)](n−N−2)/2dsi j

= 1−αi, j, (17)

∫

I∩[−∞;c1
i, j]

si j exp[−σ i j
0 si j][det(skl)]

(n−N−2)/2dsi j

+

∫

I∩[c2
i, j ;+∞]

si j exp[−σ i j
0 si j][det(skl)]

(n−N−2)/2dsi j

= αi, j

∫

I
si j exp[−σ i j

0 si j][det(skl)]
(n−N−2)/2dsi j,

(18)

where I is the interval of values of si j such that the matrix (skl) is positive definite
and αi j is the level of significance of the tests.

Consider Eqs. (17) and (18). Note that det(skl) is a quadratic polynomial of si j.
Let det(sk,l) =−C1s2

i, j +C2si, j +C3 =C1(−s2
i, j +Asi, j +B), C1 > 0 then the positive

definiteness of the matrix (sk,l) for a fixed sk,l , (k, l) �= (i, j) gives the following
interval for the value of si, j:

I = {x :
A
2
−
√

A2

4
+B < x <

A
2
+

√
A2

4
+B}. (19)

Now we define the functions

Ψ1(x) =
∫ x

0
(−t2 +At +B)K exp(−σ i j

0 t)dt, (20)

Ψ2(x) =
∫ x

0
t(−t2 +At +B)K exp(−σ i j

0 t)dt, (21)
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where K = (n−N −2)/2. One can calculate the critical values of c1
i, j,c

2
i, j from the

equations:

Ψ1(c
2
i j)−Ψ1(c

1
i j) = (1−αi j)(Ψ1(

A
2
+

√
A2

4
+B)−Ψ1(

A
2
−
√

A2

4
+B)), (22)

Ψ2(c
2
i j)−Ψ2(c

1
i j) = (1−αi j)(Ψ2(

A
2
+

√
A2

4
+B)−Ψ2(

A
2
−
√

A2

4
+B)). (23)

The test (16) can be written in terms of sample correlations. First note that
det(skl) = det(rkl)s11s22 . . .sNN where rkl are the sample correlations. One has

∫
J∩[e1

i, j ;e
2
i, j ]

exp[−σ i j
0 ri j

√
siis j j][det(rkl)]

(n−N−2)/2dri j

∫
J exp[−σ i j

0 ri j
√

siis j j][det(rkl)](n−N−2)/2dri j

= 1−αi, j, (24)

∫

J∩[−∞;e1
i, j]

ri j exp[−σ i j
0 ri j

√
siis j j][det(rkl)]

(n−N−2)/2dri j

+
∫

J∩[e2
i, j ;+∞]

ri j exp[−σ i j
0 ri j

√
siis j j][det(rkl)]

(n−N−2)/2dri j

= αi, j

∫

J
ri j exp[−σ i j

0 ri j
√

siis j j][det(rkl)]
(n−N−2)/2dri j,

(25)

where I = J
√

siis j j, ck
i, j = ek

i, j
√

siis j j;k = 1,2. Therefore, the tests (16) take the form

δi, j({rkl}) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂i, j, e1
i, j(sii,s j j,{rkl})< ri j < e2

i, j(sii,s j j,{rkl}),
(k, l) �= (i, j),

∂−1
i, j , ri j ≤ e1

i, j(sii,s j j{rkl}) or ri j ≥ e2
i, j(sii,s j j{rkl}),

(k, l) �= (i, j).

(26)

It means that the tests of the Neyman structure for generating hypothesis (15) do not
depend on sk,k, k �= i, k �= j. In particular for N = 3, (i, j) = (1,2) one has

δ1,2({rk,l}) =
{

∂1,2, e1
12(s11,s22,r13,r23)< r12 < e2

12(s11,s22,r13,r23),

∂−1
1,2 , r12 ≤ e1

12(s11,s22,r13,r23) or r12 ≥ e2
12(s11,s22,r13,r23).

(27)

To emphasize the peculiarity of the constructed test we consider some interesting
particular cases.

n−N −2 = 0, σ i j
0 �= 0. In this case expressions (20) and (21) can be simplified.

Indeed one has in this case

Ψ1(x) =
∫ x

0
exp(−σ i j

0 t)dt =
1

σ i j
0

(1− exp(−σ i j
0 x)),
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Ψ2(x) =
∫ x

0
t exp(−σ i j

0 t)dt =− x

σ i j
0

exp(−σ i j
0 x)− 1

(σ i j
0 )2

exp(−σ i j
0 x)+

1

(σ i j
0 )2

.

Finally one has the system of two equations for defining constants c1
i j,c

2
i j:

exp(−σ i j
0 c1

i j)− exp(−σ i j
0 c2

i j)

= (1−αi j){exp(−σ i j
0 (

A
2
−
√

A2

4
+B))− exp(−σ i j

0 (
A
2
+

√
A2

4
+B))},

(28)

c1
i j exp(−σ i j

0 c1
i j)− c2

i j exp(−σ i j
0 c2

i j)

= (1−αi j){(A
2
−
√

A2

4
+B)exp(−σ i j

0 (
A
2
−
√

A2

4
+B))

−(
A
2
+

√
A2

4
+B)exp(−σ i j

0 (
A
2
+

√
A2

4
+B))}.

(29)

σ0 = 0. In this case the critical values are defined by the system of algebraic
equations (22) and (23) where the functions Ψ1, Ψ2 are defined by

Ψ1(x) =
∫ x

0
(−t2 +At +B)Kdt,

Ψ2(x) =
∫ x

0
t(−t2 +At +B)Kdt,

In this case the tests of the Neyman structure have the form

δi, j({rk,l}) =
{

∂i, j, e1
i, j({rkl}< ri j < e2

i, j({rkl}, (k, l) �= (i, j),

∂−1
i, j , ri j ≤ e1

i, j({rkl} or ri j ≥ e1
i, j({rkl}, (k, l) �= (i, j).

(30)

n−N −2 = 0, σ0 = 0. In this case one has

c1
i, j =

A
2 − (1−αi j)

√
A2

4 +B,

c2
i, j =

A
2 +(1−αi j)

√
A2

4 +B.
(31)

6 Multiple Statistical Procedure Based on the Tests
of the Neyman Structure

Now it is possible to construct the multiple decision statistical procedure for
problem (14) based on the tests of Neyman structure. Then the multiple decision
statistical procedure (6) takes the form:
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δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1, c1
i j({skl})< ri j < c2

i j({skl}),
i < j, i, j,k, l = 1, . . . ,N,(k, l) �= (i, j),

d2, r12 ≤ c1
12({skl}) or r12 ≥ c2

12({skl}),c1
i j({skl})< ri j < c2

i j({skl}),
i < j, i, j,k, l = 1, . . . ,N,(k, l) �= (i, j),

. . . . . . . . . . . .

dL, ri j ≤ c1
i j({skl}) or ri j ≥ c2

i j({skl}),
i < j, i, j,k, l = 1, . . . ,N,(k, l) �= (i, j),

(32)

where ci j({skl}) are defined from the Eqs. (17) and (18).
One has Dk = {r ∈ RN×n : δ (r) = dk}, k = 1,2, . . . ,L. It is clear that

L⋃

k=1

Dk = RN×n.

Then D1,D2, . . . ,DL is a partition of the sample space RN×n. The tests of the Neyman
structure for generating hypothesis (15) are optimal in the class of unbiased tests.
Therefore if the condition of the additivity (8) of the loss function is satisfied, then
the associated multiple decision statistical procedure is optimal. For discussion of
additivity of the loss function see [5].

We illustrate statistical procedure (32) with an example.
Let N = 3. In this case problem (14) is the problem of the selection of one from

eight hypotheses:

H1 : σ12 = σ12
0 , σ13 = σ13

0 , σ23 = σ23
0 ,

H2 : σ12 �= σ12
0 , σ13 = σ13

0 , σ23 = σ23
0 ,

H3 : σ12 = σ12
0 , σ13 �= σ13

0 , σ23 = σ23
0 ,

H4 : σ12 = σ12
0 , σ13 = σ13

0 , σ23 �= σ23
0 ,

H5 : σ12 �= σ12
0 , σ13 �= σ13

0 , σ23 = σ23
0 ,

H6 : σ12 = σ12
0 , σ13 �= σ13

0 , σ23 �= σ23
0 ,

H7 : σ12 �= σ12
0 , σ13 = σ13

0 , σ23 �= σ23
0 ,

H8 : σ12 �= σ12
0 , σ13 �= σ13

0 , σ23 �= σ23
0 .

(33)

Generating hypotheses are:

h1,2 : σ12 = σ12
0 vs k1,2 : σ12 �= σ12

0 , σ13,σ23 are the nuisance parameters.

h1,3 : σ13 = σ13
0 vs k1,3 : σ13 �= σ13

0 , σ12,σ23 are the nuisance parameters.

h2,3 : σ23 = σ23
0 vs k2,3 : σ23 �= σ23

0 , σ12,σ13 are the nuisance parameters.
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In this case multiple statistical procedure for problem (33) (if σ0 �= 0) is:

δ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1, c1
12 < r12 < c2

12, c1
13 < r13 < c2

13, c1
23 < r23 < c2

23,

d2, r12 ≤ c1
12 or r12 ≥ c2

12, c1
13 < r13 < c2

13, c1
23 < r23 < c2

23,

d3, c1
12 < r12 < c2

12, r13 ≤ c1
13 or r13 ≥ c2

13, c1
23 < r23 < c2

23,

d4, c1
12 < r12 < c2

12, c1
13 < r13 < c2

13, r23 ≤ c1
23 or r23 ≥ c2

23,

d5, r12 ≤ c1
12 or r12 ≥ c2

12, r13 ≤ c1
13 or r13 ≥ c2

13, c1
23 < r23 < c2

23,

d6, c1
12 < r12 < c2

12, r13 ≤ c1
13 or r13 ≥ c2

13, r23 ≤ c1
23 or r23 ≥ c2

23,

d7, r12 ≤ c1
12 or r12 ≥ c2

12, c1
13 < r13 < c2

13, r23 ≤ c1
23 or r23 ≥ c2

23,

d8, r12 ≤ c1
12 or r12 ≥ c2

12, r13 ≤ c1
13 or r13 ≥ c2

13, r23 ≤ c1
23 or r23 ≥ c2

23.

(34)

The critical values ck
12 = ck

12(r13,r23,s11s22), ck
13 = ck

13(r12,r23,s11s33), ck
23 =

ck
23(r12,r13,s22s33); k = 1,2 are defined from Eqs. (24) and (25). If n = 5; σ i j

0 �=
0; i, j = 1,2,3, then the critical values ck

i j; k = 1,2 are defined from (28) and (29).

If σ i j
0 = 0,∀i, j and n = 5, then tests (30) for generating hypothesis depend on the

sample correlation only. Therefore the corresponding multiple statistical procedure
with L decisions depends only on the sample correlation too. This procedure is (34)
where constants ck

12 = ck
12(r13,r23),ck

13 = ck
13(r12,r23),ck

23 = ck
23(r12,r13);k = 1,2.

In this case

I1,2 = (r13r23 −G1,2;r13r23 +G1,2),

I1,3 = (r12r23 −G1,3;r12r23 +G1,3),

I2,3 = (r12r13 −G2,3;r12r13 +G2,3),

where

G1,2 =
√

(1− r2
13)(1− r2

23),

G1,3 =
√

(1− r2
12)(1− r2

23),

G2,3 =
√

(1− r2
12)(1− r2

13),

and the critical values are

c1
12 = r13r23 − (1−α12)G1,2,

c2
12 = r13r23 +(1−α12)G1,2,

c1
13 = r12r23 − (1−α13)G1,3,

c2
13 = r12r23 +(1−α13)G1,3,
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c1
23 = r12r13 − (1−α23)G2,3,

c2
23 = r12r13 +(1−α23)G2,3.

Note that in this case test (34) has a very simple form.

7 Concluding Remarks

Statistical problem of identification of elements of inverse covariance matrix is
investigated as multiple decision problem. Solution of this problem is developed
on the base of the Lehmann theory of multiple decision procedures and theory of
tests of the Neyman structure. It is shown that this solution is optimal in the class of
unbiased multiple decision statistical procedures. Obtained results can be applied to
market network analysis with partial correlations as a measure of similarity between
stocks returns.
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