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Abstract We consider lexicographic vector equilibrium problems in metric spaces.
Sufficient conditions for a family of such problems to be (uniquely) well posed at
the reference point are established. As an application, we derive several results on
well-posedness for a class of variational inequalities.
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1 Introduction

Equilibrium problems first considered by Blum and Oettli [20] have been playing
an important role in optimization theory with many striking applications particularly
in transportation, mechanics, economics, etc. Equilibrium models incorporate many
other important problems such as optimization problems, variational inequalities,
complementarity problems, saddle point/minimax problems, and fixed points.
Equilibrium problems with scalar and vector objective functions have been widely
studied. The crucial issue of solvability (the existence of solutions) has attracted the
most considerable attention of researchers; see, e.g., [17,24,27,29,42]. A relatively
new but rapidly growing topic is the stability of solutions, including semicontinuity
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properties in the sense of Berge and Hausdorff (see, e.g., [2, 4, 5, 7, 16]) and the
Hölder/Lipschitz continuity of solution mappings (see, e.g., [1,3,6,10,12,15,34,35])
and the (unique) well-posedness of approximate solutions in the sense of Hadamard
and Tikhonov (see, e.g., [8,9,11,12,26,39,41]). The ultimate issue of computational
methods for solving equilibrium problems has also been considered in the literature;
see, e.g., [21, 30, 40].

With regard to vector equilibrium problems, most of existing results correspond
to the case when the order is induced by a closed convex cone in a vector space.
Thus, they cannot be applied to lexicographic cones, which are neither closed nor
open. These cones have been extensively investigated in the framework of vector
optimization; see, e.g., [18, 19, 22, 25, 28, 32, 33, 37]. However, for equilibrium
problems, the main emphasis has been on the issue of solvability/existence. To
the best of our knowledge, there have not been any works on well-posedness for
lexicographic vector equilibrium problems.

In this article, we establish necessary and/or sufficient conditions for such
problems to be (uniquely) well posed. As an application, we consider the special
case of variational inequalities.

2 Preliminaries

We first recall the concept of lexicographic cone in finite-dimensional spaces and
models of equilibrium problems with the order induced by such a cone.

The lexicographic cone of Rn, denoted Cl , is the collection of zero and all vectors
in Rn with the first nonzero coordinate being positive, i.e.,

Cl := {0}∪{x ∈ Rn | ∃i ∈ {1,2, . . . ,n} : xi > 0 and x j = 0 ∀ j < i}.

This cone is convex and pointed and induces the total order as follows:

x ≥l y ⇐⇒ x− y ∈Cl .

We also observe that it is neither closed nor open. Indeed, when comparing with the
cone C1 := {x ∈ Rn | x1 ≥ 0}, we see that intC1 �Cl �C1, while

intCl = intC1 and clCl =C1.

In what follows, K : Λ ⇒ X is a set-valued mapping between metric spaces and
f = ( f1, f2, . . . , fn) : K(Λ)×K(Λ)×Λ → Rn is a vector-valued function. For each
λ ∈ Λ , the lexicographic vector equilibrium problem is

(LEPλ ) find x̄ ∈ K(λ ) such that

f (x̄,y,λ )≥l 0 ∀y ∈ K(λ ).
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Remark 1. This model covers parameterized bilevel optimization problems: mini-
mize g2(·,λ ) over the solution set of the problem of minimizing g1(·,λ ) over K(λ ),
where g1 and g2 are real-valued functions on gphK. Recall that the graph of a (set-
valued) mapping Q : X ⇒ Y is defined by gphQ := {(x,y) ∈ X ×Y | y ∈ Q(x)}.

We denote (LEP) := {(LEPλ ) | λ ∈ Λ} with the solution mapping S : Λ ⇒ X
and assume that at the considered point λ̄ , the solution set S(λ̄ ) is nonempty.

Following the lines of investigating ε-solutions to vector optimization problems
initiated by Loridan [36], we consider, for each ε ∈ [0;∞), the following approxi-
mate problem:

(LEPλ ,ε) find x̄ ∈ K(λ ) such that

f (x̄,y,λ )+ εe ≥l 0 ∀y ∈ K(λ ),

where e = (0, . . . ,0,1) ∈ Rn. The solution set of (LEPλ ,ε) is denoted by S̃(λ ,ε).

We next define the notion of well-posedness for (LEP) and recall continuity-like
properties crucial for our analysis in this study.

Definition 1. A sequence {xn} with xn ∈ K(λn) is an approximating sequence
of (LEPλ̄ ) corresponding to a sequence {λn} ⊂ Λ converging to λ̄ if there is a
sequence {εn} ⊂ (0;∞) converging to 0 such that xn ∈ S̃(λn,εn) for all n.

Definition 2. (LEP) is well posed at λ̄ if for any sequence {λn} in Λ converging
to λ̄ , every corresponding approximating sequence of (LEPλ̄ ) has a subsequence
converging to some point of S(λ̄ ).

Definition 3. (LEP) is uniquely well posed at λ̄ if:

(i) (LEPλ̄ ) has the unique solution x̄.
(ii) For any sequence {λn} in Λ converging to λ̄ , every corresponding approximat-

ing sequence of (LEPλ̄ ) converges to x̄.

Remark 2. Unfortunately there is no consistency in the literature in the usage of the
term “well-posedness.” Defining well-posedness here as a kind of “good behavior”
of a family of parametric problems, we follow the lines of, e.g., [9, 11, 26]. Other
authors, e.g., Bednarczuk [14], use this term as a characterization of a single
reference problem. If f in the above setting does not depend on λ , then the two
versions of well-posedness coincide.

Definition 4 ([13]). Let Q : X ⇒ Y be a set-valued mapping between metric
spaces:

(i) Q is upper semicontinuous (usc) at x̄ if for any open set U ⊇ Q(x̄), there is a
neighborhood N of x̄ such that Q(N)⊆U .

(ii) Q is lower semicontinuous (lsc) at x̄ if for any open subset U of Y with Q(x̄)∩
U �= /0, there is a neighborhood N of x̄ such that Q(x)∩U �= /0 for all x ∈ N.

(iii) Q is closed at x̄ if for any sequences {xk} �� x̄ and {yk} �� ȳ with yk ∈ Q(xk),
it holds ȳ ∈ Q(x̄).
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Lemma 1 ([13, 31]).

(i) If Q is usc at x̄ and Q(x̄) is compact, then for any sequence {xn} �� x̄, every
sequence {yn} with yn ∈ Q(xn) has a subsequence converging to some point in
Q(x̄). If, in addition, Q(x̄) = {ȳ} is a singleton, then such a sequence {yn} must
converge to ȳ.

(ii) Q is lsc at x̄ if and only if for any sequence {xn} → x̄ and any point y ∈ Q(x̄),
there is a sequence {yn} with yn ∈ Q(xn) converging to y.

Definition 5. Let g be an extended real-valued function on a metric space X and ε
be a real number.

(i) g is upper ε-level closed at x̄ ∈ X if for any sequence {xn} �� x̄,

[g(xn)≥ ε ∀n]⇒ [g(x̄)≥ ε ] .

(ii) g is strongly upper ε-level closed at x̄ ∈ X if for any sequences {xn} �� x̄ and
{νn} ⊂ [0;∞) converging to 0,

[g(xn)+νn ≥ ε ∀n]⇒ [g(x̄)≥ ε ] .

Remark 3. If g is usc at x̄, then it satisfies property (ii) in the last definition, which is
obviously stronger than property (i) therein for any real number ε . Property (i) was
introduced and investigated in [9, 11]. Property (ii) is a particular case of a more
general property also introduced in [9, 11].

We say that a mapping/function satisfies a certain property on a subset of its
domain if it is satisfied at every point of this subset.

3 Well-Posedness Properties of (LEP)

We are going to establish necessary and/or sufficient conditions for (LEP) to be
(uniquely) well posed at the reference point λ̄ ∈ Λ . To simplify the presentation, in
the sequel, the results will be formulated for the case n = 2.

Given λ ∈ Λ and x ∈ K(Λ), denote

S1(λ ) := {x ∈ K(λ ) | f1(x,y,λ )≥ 0 ∀y ∈ K(λ )},

Z(λ ,x) :=

{
{z ∈ K(λ ) | f1(x,z,λ ) = 0} if (λ ,x) ∈ gphS1,

X otherwise.
(1)

S1 : Λ ⇒ X is the solution mapping of the scalar equilibrium problem determined
by the real-valued function f1. The set-valued mapping Z : Λ ×K(Λ)⇒ X is going
to play an important role in our analysis.
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Problem (LEPλ ,ε) can be equivalently stated as follows:

(LEPλ ,ε) find x̄ ∈ K(λ ) such that

{
f1(x̄,y,λ )≥ 0 ∀y ∈ K(λ ),
f2(x̄,z,λ )+ ε ≥ 0 ∀z ∈ Z(λ , x̄).

This is equivalent to finding x̄ ∈ S1(λ ) such that

f2(x̄,z,λ )+ ε ≥ 0 ∀z ∈ Z(λ , x̄).

The next lemma is frequently used in the sequel.

Lemma 2. Let {xn} converging to x̄ ∈ S1(λ̄ ) be an approximating sequence of
(LEPλ̄ ) corresponding to some sequence {λn} �� λ̄ and assume that Z is lsc at
(λ̄ , x̄) and f2 is strongly upper 0-level closed on {x̄}×Z(λ̄ , x̄)×{λ̄}. Then x̄∈ S(λ̄ ).

Proof. Suppose to the contrary that x̄ /∈ S(λ̄ ). Then, there exists z̄ ∈ Z(λ̄ , x̄) such
that f2(x̄, z̄, λ̄ ) < 0. The lower semicontinuity of Z at (λ̄ , x̄) ensures the existence,
for each n, of zn ∈ Z(λn,xn) such that {zn} → z̄. Due to xn ∈ S̃(λn,εn), it holds
f2(xn,zn,λn)+ εn ≥ 0 for all n. Since f2 is strongly upper 0-level closed at (x̄, z̄, λ̄ ),
we get f2(x̄, z̄, λ̄ )≥ 0. This yields a contradiction, and, hence, we are done. ��
Theorem 1. Suppose that

(i) X is compact,
(ii) K is lsc and closed at λ̄ ,

(iii) Z is lsc on {λ̄}×S1(λ̄ ),
(iv) f1 is upper 0-level closed on K(λ̄ )×K(λ̄ )×{λ̄},
(v) f2 is strongly upper 0-level closed on K(λ̄ )×K(λ̄ )×{λ̄}.

Then (LEP) is well posed at λ̄ . Moreover, it is uniquely well posed at this point if
S(λ̄ ) is a singleton.

Proof. We first prove that S1 is closed at λ̄ . Suppose to the contrary that there are
sequences {λn} �� λ̄ and {xn} �� x̄ with xn ∈ S1(λn) and x̄ /∈ S1(λ̄ ). Note that x̄ ∈
K(λ̄ ) because K is closed at λ̄ and xn ∈ K(λn) for all n. Then, there exists ȳ ∈ K(λ̄ )
satisfying f1(x̄, ȳ, λ̄ )< 0. The lower semicontinuity of K at λ̄ ensures that, for each
n, there is yn ∈ K(λn) such that {yn} �� ȳ. Since xn ∈ S1(λn), f1(xn,yn,λn) ≥ 0.
This implies by assumption (iv) that f1(x̄, ȳ, λ̄ ) ≥ 0, which yields a contradiction,
and hence, S1 is closed at λ̄ .

We next show that S̃ is usc at (λ̄ ,0). Indeed, if otherwise, then there is an open set
U ⊃ S̃(λ̄ ,0) along with sequences {λn} �� λ̄ , {εn} ↓ 0 such that, for each n, there is
xn ∈ S̃(λn,εn)\U . By the compactness of X , we can assume that (xn) converges to
some x̄. Since S1 is closed at λ̄ , x̄ ∈ S1(λ̄ ). Thanks to Lemma 2, it holds x̄ ∈ S(λ̄ ) =
S̃(λ̄ ,0). This yields a contradiction because xn /∈ U (open) for all n. Thus, S̃ is usc
at (λ̄ ,0).
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We finally prove that S(λ̄ ) is compact by checking its closedness. Take an
arbitrary sequence {xn} in S(λ̄ ) converging to x̄. It is clear that x̄ ∈ S1(λ̄ ) due to
the closedness of S1 at λ̄ . Note that {xn} is, of course, an approximating sequence
of (LEPλ̄ ). Then, Lemma 2 again implies that x̄∈ S(λ̄ ) and, hence, S(λ̄ ) is compact.
Thanks to Lemma 1 (i), we are done. ��
Remark 4. All assumptions in Theorem 1, except (iii), are formulated in terms
of the problem data and normally are not difficult to check. Assumption (iii)
involves set-valued mapping Z defined by (1) and can be not so easy to check.
Additional research is required to establish verifiable sufficient conditions for lower
semicontinuity of Z.

The following examples show that none of the assumptions in Theorem 1 can be
dropped.

Example 1 (Compactness of X). Let X = Λ = R (not compact), K(λ ) ≡ R (con-
tinuous and closed), and f (x,y,λ ) = (0,λ ). One can check that S(λ ) = S1(λ ) =
Z(λ ,x) = R for all λ ,x ∈ R. Thus, assumptions (ii)–(v) hold true. However, (LEP)
is not well posed at λ̄ = 0 because the approximating sequence {xn = n} of (LEPλ̄ )

corresponding to {λn =
1
n} has no convergent subsequence.

Example 2 (Lower semicontinuity of K). Let X = Λ = [0;2] (compact) and K and
f be defined by

K(λ ) :=

{
[0;1] if λ �= 0,

[0;2] if λ = 0,

f (x,y,λ ) := (x− y,λ ).

One can check that K is closed but not lsc at λ̄ = 0 and

S(λ ) = S1(λ ) =

{
{1} if λ �= 0,

{2} if λ = 0,

Z(λ ,x) = {x} ∀(λ ,x) ∈ gphS1.

Thus, assumptions (iii)–(v) hold true. However, (LEP) is not well posed at λ̄
because the approximating sequence {xn = 1} of (LEPλ̄ ) (corresponding to any
sequence {λn}) converges to 1 /∈ S(λ̄ ).

Example 3 (Closedness of K). Let X = Λ = [0;1] (compact), K(λ ) ≡ (0;1] (con-
tinuous), and f (x,y,λ ) = (0,λ ). It is clear that

S(λ ) = S1(λ ) = K(λ ) ∀λ ∈ Λ ,

Z(λ ,x) = (0;1] ∀(λ ,x) ∈ gphS1.
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One can also check that (LEP) is not well posed at λ̄ = 0, while all the assumptions
of Theorem 1 except the closedness of K at λ̄ are satisfied.

Example 4 (Lower semicontinuity of Z). Let X = Λ = [0;1] (compact), K(λ ) ≡
[0;1] (continuous and closed), λ̄ = 0, and f (x,y,λ ) = (λx(x− y),y− x). One can
check that

S1(λ ) =

{
[0;1] if λ = 0,

{0,1} if λ �= 0,

and, for each (λ ,x) ∈ gphS1,

Z(λ ,x) =

{
[0;1] if λ = 0 or x = 0,

{x} if λ �= 0 and x �= 0.

Z is not lsc at (0,1) because by taking {(xn = 1,λn = 1
n )} �� (1,0), we have

Z(λn,xn) = {1} for all n, while Z(0,1) = [0;1]. Assumptions (iv) and (v) are
obviously satisfied. Finally, we observe that (LEP) is not well posed at λ̄ by
calculating the solution mapping S explicitly as follows:

S(λ ) =

{
{0} if λ = 0,

{0,1} if λ �= 0.

Example 5 (Upper 0-level closedness of f1). Let X =Λ = [0;1] (compact), K(λ )≡
[0;1] (continuous and closed), λ̄ = 0, and

f (x,y,λ ) =

{
(x− y,λ ) if λ = 0,

(y− x,λ ) if λ �= 0.

One can check that

S(λ ) = S1(λ ) =

{
{1} if λ = 0,

{0} if λ �= 0,

Z(λ ,x) = {x} ∀(λ ,x) ∈ gphS1.

Hence, all the assumptions except (iv) hold true. However, (LEP) is not well posed
at λ̄ . Indeed, take sequences {λn =

1
n} and {xn = 0} (xn ∈ S(λn)). Then, {xn} is an

approximating sequence of (LEPλ̄ ) corresponding to {λn}, while {xn} ��0 /∈ S(0).
Finally, we show that assumption (iv) is not satisfied. Indeed, taking {xn} and

{λn} as above and {yn = 1}, we have {(xn,yn,λn)} �� (0,1,0) and f1(xn,yn,λn) =
1 > 0 for all n, while f1(0,1,0) =−1 < 0.
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Example 6 (Strong upper 0-level closedness of f2). Let X ,Λ ,K, λ̄ be as in
Example 5 and

f (x,y,λ ) =

{
(0,x− y) if λ = 0,

(0,x(x− y)) if λ �= 0.

One can check that

S1(λ ) = Z(λ ,x) = [0;1] ∀x,λ ∈ [0;1],

S(λ ) =

{
{1} if λ = 0,

{0,1} if λ �= 0.

Thus, all the assumptions of Theorem 1 except (v) are satisfied. However, it follows
from the explicit form of S that (LEP) is not well posed at λ̄ . Finally, we show that
assumption (v) is not satisfied. Indeed, taking sequences {xn = 0}, {yn = 1}, {λn =
1
n}, and {εn =

1
n}, we have {(xn,yn,λn,εn)} ��(0,1,0,0) and f2(xn,yn,λn)+εn > 0

for all n, while f2(0,1,0) =−1 < 0.

In what follows,

P(λ̄ ,δ ,ε) :=
⋃

λ∈Bδ (λ̄ )

S̃(λ ,ε),

where Bδ (λ̄ ) denotes the closed ball centered at λ̄ with radius δ . We also use the
concept of diameter of a set A in a metric space:

diamA := sup
a,b∈A

d(a,b).

Theorem 2.

(i) If (LEP) is uniquely well posed at λ̄ , then diamP(λ̄ ,δ ,ε) ↓ 0 as δ ↓ 0 and ε ↓ 0.
(ii) Suppose that X is complete and assumptions (ii)–(v) in Theorem 1 hold true. If

diamP(λ̄ ,δ ,ε) ↓ 0 as δ ↓ 0 and ε ↓ 0, then (LEP) is uniquely well posed at λ̄ .

Proof.

(i) Let (LEP) be uniquely well posed at λ̄ and {δn} ↓ 0, {εn} ↓ 0. If
diamP(λ̄ ,δn,εn) does not converge to 0 as n ��∞, then there exists a number
r > 0 such that for any n0 ∈ N,∃n ≥ n0 with diamP(λ̄ ,δn,εn) > r. By taking
a subsequence if necessary, we can suppose that diamP(λ̄ ,δn,εn) > r for all n.
This implies that, for each n, there exist x1

n,x
2
n ∈ P(λ̄ ,δn,εn) such that

d(x1
n,x

2
n)>

r
2
. (2)
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Thus, there are λ 1
n ,λ 2

n ∈ B(λ̄ ,δn) such that xi
n ∈ S̃(λ i

n,εn), i=1,2. Observe that both
{λ 1

n } and {λ 2
n } converge to λ̄ as n ��∞, and so {x1

n} and {x2
n} are corresponding

approximating sequences of (LEPλ̄ ), respectively. Due to the unique well-posedness
of (LEP) at λ̄ , both {x1

n} and {x2
n} must converge to the only solution x̄ to (LEPλ̄ ).

Hence, lim
n ��∞

d(x1
n,x

2
n) = 0. This contradicts (2) and, thus, we are done.

(ii) Suppose that {xn} is an approximating sequence of (LEPλ̄ ) corresponding
to some sequence {λn} �� λ̄ , i.e., there is a sequence {εn} ↓ 0 such that
xn ∈ S̃(λn,εn) for all n. By setting δn := d(λn, λ̄ ), it holds that {δn} �� 0
as n �� ∞ and xn ∈ P(λ̄ ,δn,εn) for all n. By choosing subsequences if
necessary, we can assume that both sequences {δn} and {εn} are nonincreasing.
Thus, P(λ̄ ,δn,εn) ⊇ P(λ̄ ,δm,εm) whenever n ≤ m. From this observation and
diamP(λ̄ ,δn,εn) ↓ 0 as n ��∞, one can directly check that {xn} is a Cauchy
sequence and, hence, converges to some point x̄ due to the completeness of X .
Note that assumptions on K and f1 imply the closedness of S1 at λ̄ ; see the
first reasoning in the proof of Theorem 1. In particular, we have x̄ ∈ S1(λ̄ ), and
Lemma 2 then yields x̄ ∈ S(λ̄ ).

Finally, we show that x̄ is the only solution to (LEPλ̄ ). Suppose to the contrary
that S(λ̄ ) contains also another point x̄′ (x̄′ �= x̄). It is clear that they both belong to
P(λ̄ ,δ ,ε) for any δ ,ε > 0. Then, it follows that

0 < d(x̄, x̄′)≤ diamP(λ̄ ,δ ,ε) ↓ 0 as δ ↓ 0 and ε ↓ 0.

This is impossible and, therefore, we are done. ��
To weaken the assumption of unique well-posedness in Theorem 2, we are going

to use the Kuratowski measure of noncompactness of a nonempty set M in a metric
space X :

μ(M) := inf

{
ε > 0 | M ⊆

n⋃
k=1

Mk, Mk ⊂ X , diamMk ≤ ε ∀k, n ∈ N

}
.

Lemma 3 ([38]). The following assertions hold true:

(i) μ(M) = 0 if M is compact.
(ii) μ(M)≤ μ(N) whenever M ⊆ N.

(iii) If μ(M) = 0, then M is totally bounded, i.e., there are a point xM ∈ X along
with a constant κM > 0 such that

d(x,xM)≤ κM ∀x ∈ M.

(iv) If {An} is a sequence of closed subsets in a complete metric space X satisfying
An+1 ⊆ An for every n ∈ N and lim

n ��∞
μ(An) = 0, then K :=

⋂
n∈N An is a
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nonempty compact set and lim
n ��∞

H(An,K) = 0, where H is the Hausdorff

distance.

Recall that the Hausdorff distance between two sets A and B in a metric space is
defined by

H(A,B) := max{e(A,B),e(B,A)} ,

where e(A,B) := supa∈A d(a,B) with d(a,B) := infb∈B d(a,b).

Theorem 3.

(i) If (LEP) is well posed at λ̄ , then μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and ε ↓ 0.
(ii) Suppose that X is complete, Λ is compact or a finite-dimensional normed space

and

(a) K is lsc and closed on some neighborhood V of λ̄ ,
(b) Z is lsc on [V ×X ]∩gphS1,
(c) f1 is upper 0-level closed on K(V )×K(V )×V ,
(d) f2 is upper a-level closed on K(V )×K(V )×V for every negative a close to

zero.

If μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and ε ↓ 0, then (LEP) is well posed at λ̄ .

Proof.

(i) Suppose that (LEP) is well posed at λ̄ . Let {xn} be an arbitrary sequence in
S(λ̄ ) [and, of course, an approximating sequence of (LEPλ̄ )]. Then, it has a
subsequence converging to some point in S(λ̄ ). Thus, S(λ̄ ) is compact, and
so μ(S(λ̄ )) = 0 due to Lemma 3(i). Let any ε > 0 and S(λ̄ ) ⊆ ⋃n

k=1 Mk with
diamMk ≤ ε for all k = 1,n. We set

Nk = {y ∈ X | d(y,Mk)≤ H(P(λ̄ ,δ ,ε),S(λ̄ ))}

and show that P(λ̄ ,δ ,ε) ⊆ ⋃n
k=1 Nk. Pick arbitrary x ∈ P(λ̄ ,δ ,ε). Then

d(x,S(λ̄ ))≤ H(P(λ̄ ,δ ,ε),S(λ̄ )). Due to S(λ̄ )⊆⋃n
k=1 Mk, one has

d(x,
n⋃

k=1

Mk)≤ H(P(λ̄ ,δ ,ε),S(λ̄ )).

Then, there exists k̄ ∈ {1,2, . . . ,n} such that d(x,Mk̄) ≤ H(P(λ̄ ,δ ,ε),S(λ̄ )), i.e.,
x ∈ Nk̄. Thus, P(λ̄ ,δ ,ε)⊆⋃n

k=1 Nk.
Because μ(S(λ̄ )) = 0 and

diamNk = diamMk +2H(P(λ̄ ,δ ,ε),S(λ̄ ))≤ ε +2H(P(λ̄ ,δ ,ε),S(λ̄ )),
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it holds

μ(P(λ̄ ,δ ,ε))≤ 2H(P(λ̄ ,δ ,ε),S(λ̄ )).

Note that H(P(λ̄ ,δ ,ε),S(λ̄ )) = e(P(λ̄ ,δ ,ε),S(λ̄ )) since S(λ̄ ) ⊆ P(λ̄ ,δ ,ε) for all
δ ,ε > 0.

Now, we claim that H(P(λ̄ ,δ ,ε),S(λ̄ )) ↓ 0 as δ ↓ 0 and ε ↓ 0. Indeed, if
otherwise, we can assume that there exist r > 0 and sequences {δn} ↓ 0, {εn} ↓ 0,
and {xn} with xn ∈ P(λ̄ ,δn,εn) such that

d(xn,S(λ̄ ))≥ r ∀n. (3)

Since {xn} is an approximating sequence of (LEPλ̄ ) corresponding to some {λn}
with λn ∈ Bδn(λ̄ ), it has a subsequence {xnk} converging to some x ∈ S(λ̄ ). Then,
d(xnk ,x)< r when nk is sufficiently large. This contradicts (3) and, hence,

μ(P(λ̄ ,δ ,ε)) ��0 as δ ↓ 0 and ε ↓ 0.

(ii) Suppose that μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and ε ↓ 0. We firstly show that P(λ̄ ,δ ,ε)
is closed for any δ ,ε > 0. Let {xn} ∈ P(λ̄ ,δ ,ε), {xn} �� x̄. Then, for each n ∈
N, there exists λn ∈Bδ (λ̄ ) such that xn ∈ S̃(λn,ε). Assumption on Λ implies that
Bδ (λ̄ ) is compact. So, we can assume {λn} converges to some λ ∈ Bδ (λ̄ )∩V .
Thus, x̄ ∈ K(λ ) due to the closedness of K at λ . Assumptions on K and f1 imply
that x̄ ∈ S1(λ ); see the first reasoning in the proof of Theorem 1. Now, we check
that x̄ also belongs to S̃(λ ,ε). Indeed, suppose to the contrary that there exists
z̄ ∈ Z(λ , x̄) such that f2(x̄, z̄,λ )+ ε < 0. Then, the lower semicontinuity of Z
at (λ , x̄) ensures that, for each n, there is zn ∈ Z(λn,xn) such that {zn} �� z̄.
Due to the upper (−ε)-level closedness of f2 at (x̄, z̄,λ ), f2(xn,zn,λn) < −ε
when n is sufficiently large. This is a contradiction since xn ∈ S̃(λn,ε) for all n.
Hence, x̄ ∈ S̃(λ ,ε), and so x̄ ∈P(λ̄ ,δ ,ε). Therefore, P(λ̄ ,δ ,ε) is closed for any
δ ,ε > 0.

Next, we prove S(λ̄ ) =
⋂

δ ,ε>0P(λ̄ ,δ ,ε). We first check that
⋂

δ>0P(λ̄ ,δ ,ε) =
S̃(λ̄ ,ε) for any ε > 0. It is clear that S̃(λ̄ ,ε) ⊆ ⋂

δ>0P(λ̄ ,δ ,ε). Now, take any x ∈⋂
δ>0P(λ̄ ,δ ,ε). Then, for each sequence {δn} ↓ 0, there exists a sequence {λn}

with λn ∈ Bδn(λ̄ ) such that x ∈ S̃(λn,ε) for all n. Assumptions on K and f1 again
imply x ∈ S1(λ̄ ). For any z ∈ Z(λ̄ ,x), there exists zn ∈ Z(λn,x), {zn} �� z, thanks
to the lower semicontinuity of Z at (λ̄ ,x). As x ∈ S̃(λn,ε), it holds f2(x,zn,λn)+
ε ≥ 0 for every n. From the upper (−ε)-level closedness of f2 at (x,z, λ̄ ), we have
f2(x,z, λ̄ )+ ε ≥ 0, i.e., x ∈ S̃(λ̄ ,ε). It follows that

⋂
δ>0P(λ̄ ,δ ,ε) ⊆ S̃(λ̄ ,ε) and,

thus,
⋂

δ>0P(λ̄ ,δ ,ε) = S̃(λ̄ ,ε). Now, we need to check that S(λ̄ ) =
⋂

ε>0 S̃(λ̄ ,ε).
It is clear that S(λ̄ ) ⊆ ⋂

ε>0 S̃(λ̄ ,ε). On the other hand, for any x ∈ ⋂
ε>0 S̃(λ̄ ,ε),

we have f2(x,z, λ̄ ) + ε ≥ 0 for all z ∈ Z(λ̄ ,x) and ε > 0. By letting ε tend to 0,
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this implies f2(x,z, λ̄ ) ≥ 0 for all z ∈ Z(λ̄ ,x), i.e., x ∈ S(λ̄ ), and, hence, S(λ̄ ) =⋂
δ ,ε>0P(λ̄ ,δ ,ε).
Finally, since μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and ε ↓ 0, Lemma 3(iv) implies the

compactness of S(λ̄ ) and H(P(λ̄ ,δ ,ε),S(λ̄ )) ��0 as δ ↓ 0 and ε ↓ 0. Let {xn} be
an approximating sequence of (LEPλ̄ ) corresponding to some {λn} �� λ̄ . Then,
there exists {εn} converging to 0 such that xn ∈ S̃(λn,εn) for all n. This means that
xn ∈ P(λ̄ ,δn,εn), where δn = d(λ̄ ,λn). Note that

d(xn,S(λ̄ ))≤ H(P(λ̄ ,δn,εn),S(λ̄ )) ↓ 0 as n ��∞.

Thus, there is {x̄n} ⊂ S(λ̄ ) such that d(xn, x̄n) ↓ 0 as n ��∞. Since S(λ̄ ) is compact,
{x̄n} has a subsequence {x̄nk} converging to some x̄ ∈ S(λ̄ ) and, hence, {xn} has the
corresponding subsequence {xnk} converging to x̄. Therefore, (LEP) is well posed
at λ̄ , and we are done. ��
Remark 5. Theorem 3 remains valid if the Kuratowski measure is replaced by either
Hausdorff or Istrǎtescu measure. We refer the reader to [23] for further information
about these noncompact measures including their equivalence.

Note that when K(Λ) is contained in a compact set (in particular, X is compact),
the assumption on the measure μ in Theorem 3 (ii) holds true trivially. Hence,
Examples 2–5 again show that assumptions (a)–(c) imposed in Theorem 3(ii) are
essential. The following example shows that the upper negative-level closedness of
f2 therein is also essential.

Example 7. Let X = R (complete), Λ = [0;1] (compact), K(λ ) ≡ [−1;1] (continu-
ous and closed), λ̄ = 0 and

f (x,y,λ ) :=

{
((x− y)2,x−1) if λ = 0,

((x− y)2,(x+ y)2) if λ �= 0.

One can check that

S1(λ ) = [−1;1] ∀λ ,

Z(λ ,x) = {x} ∀(λ ,x) ∈ gphS1,

S(λ ) =

{
{1} if λ = 0,

[−1;1] if λ �= 0.

We observe that f2 is not 0-level closed at (−1,1,0). Indeed, taking {xn = −1},
{yn = 1}, and {λn =

1
n}, we have {(xn,yn,λn)} �� (−1,1,0) and f2(xn,yn,λn) = 0,

while f2(−1,1,0)=−2< 0. Moreover, all the other assumptions are satisfied, while
(LEP) is not well posed at λ̄ .
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4 Applications to Variational Inequalities

In this section, let Λ and K be as in the preceding sections, X be a normed space
with its dual denoted by X∗ and hi : X ×Λ ��X∗, i = 1,2. For each λ ∈ Λ , we
consider the following lexicographic variational inequality:

(LVIλ ) find x̄ ∈ K(λ ) such that

(〈h1(x̄,λ ),y− x̄〉 ,〈h2(x̄,λ ),y− x̄〉)≥l 0 ∀y ∈ K(λ ).

This is equivalent to finding x̄ ∈ K(λ ) such that

{
〈h1(x̄,λ ),y− x̄〉 ≥ 0 ∀y ∈ K(λ ),
〈h2(x̄,λ ),z− x̄〉 ≥ 0 ∀z ∈ Z(λ , x̄).

Here, the set-valued mapping Z : Λ ×K(Λ)⇒ X is defined by

Z(λ ,x) :=

{
{z ∈ K(λ ) | 〈h1(x,λ ),z− x〉= 0} if (λ ,x) ∈ gphS1,

X otherwise,

where S1 : Λ ⇒ X denotes the solution mapping of the scalar variational inequality
determined by h1:

S1(λ ) := {x ∈ K(λ ) | 〈h1(x,λ ),y− x〉 ≥ 0 ∀y ∈ K(λ )}.

We denote (LVI) := {(LVIλ ) | λ ∈ Λ} with the solution mapping S : Λ ⇒ X and
assume that at the considered point λ̄ , the solution set S(λ̄ ) is nonempty.

Now, for a number ε > 0, we consider the following approximate problem:

(LVIλ ,ε) find x̄ ∈ K(λ ) such that

{
〈h1(x̄,λ ),y− x̄〉 ≥ 0 ∀y ∈ K(λ ),
〈h2(x̄,λ ),z− x̄〉+ ε ≥ 0 ∀z ∈ Z(λ , x̄).

We also use denotation S̃ for the approximate solution mapping, i.e.,

S̃(λ ,ε) := {x ∈ S1(λ ) | 〈h2(x,λ ),z− x〉+ ε ≥ 0 ∀z ∈ Z(λ ,x)} .

In the following, we use the concepts defined in Definitions 1–3 with the term
“LEP” replaced by “LVI.” The next theorems follow from the corresponding results
established in Sect. 3 by setting fi(x,y,λ ) := 〈hi(x,λ ),y− x〉, i = 1,2, therein.
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Theorem 4. Suppose that assumptions (i)–(iii) in Theorem 1 are satisfied. Assume,
additionally, that

(i) {(x,y,λ ) ∈ K(Λ)×K(Λ)×Λ | 〈h1(x,λ ),y− x〉 ≥ 0} is a closed subset of
K(Λ)×K(Λ)×Λ ,

(ii) the function (x,y,λ ) �→ 〈h2(x,λ ),y− x〉 is strongly upper 0-level closed on
K(λ̄ )×K(λ̄ )×{λ̄}.

Then (LVI) is well posed at λ̄ . Moreover, it is uniquely well posed at this point if
S(λ̄ ) is a singleton.

Remark 6. Assumptions (i) and (ii) in Theorem 4 are straightforwardly fulfilled
when h1 and h2, respectively, are continuous.

Theorem 5.

(i) If (LVI) is uniquely well posed at λ̄ , then diamP(λ̄ ,δ ,ε) ↓ 0 as δ ↓ 0 and ε ↓ 0.
(ii) Suppose that X is complete and assumptions (ii)–(iii) in Theorem 1 and (i)–(ii)

in Theorem 4 hold true. If diamP(λ̄ ,δ ,ε) ↓ 0 as δ ↓ 0 and ε ↓ 0, then (LVI) is
uniquely well posed at λ̄ .

Theorem 6.

(i) If (LVI) is well posed at λ̄ , then μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and ε ↓ 0.
(ii) Suppose that X is complete, Λ is compact or a finite-dimensional normed space,

assumptions (a)–(b) in Theorem 3 and assumption (i) in Theorem 4 hold true,
and the function (x,y,λ ) �→ 〈h2(x,λ ),y− x〉 is upper a-level closed on K(V )×
K(V )×V for every negative a close to zero. If μ(P(λ̄ ,δ ,ε)) ↓ 0 as δ ↓ 0 and
ε ↓ 0, then (LVI) is well posed at λ̄ .
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