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Introduction

Providing quantitative support for climate change policy is a challenging problem
because doing so involves representing linked social and technological systems over
long time spans. Such systems, which are complex and adaptive, are difficult to
model with reasonable scientific accuracy because they contain both irreducible
(also known as aleatoric or statistical) and reducible (also known as epistemic or
knowledge) uncertainties. For example, the likelihood that research and development
(R&D) programs will reduce renewable energy costs to be competitive with energy
produced from fossil fuels is considerably uncertain and fundamentally unknowable.
Past results of R&D can be used to provide a guide of what is possible, but ultimately
the uncertainty surrounding cost reductions is irreducible. Other uncertainties, such
as how households or firms make decisions, are, in theory, reducible, but the state
of our knowledge often still requires considering multiple hypotheses of real-world
behavior.

Historically, construction of scenarios has proven valuable as a means for orga-
nizing and communicating the many uncertainties associated with climate policy
support. A scenario can be thought of as a ‘coherent, internally consistent, and plau-
sible description of a possible future state of the world’ (McCarthy et al. 2001). By
illuminating the span of possible futures, consideration of diverse scenarios has the
potential to highlight the interaction of complex uncertainties that would otherwise
be difficult to analyze (Groves and Lempert 2007).

Climate policy scenarios have mostly been produced by a sequential, piecewise
process. Subject-matter experts are convened to create storylines that qualitatively de-
scribe plausible, internally consistent outcomes for irreducibly uncertain processes,
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such as future population change, economic growth, and technological progress.
These storylines are then translated into quantitative projections that are thought
to be representative of the storyline themes. Finally, the exogenous projections are
used as inputs to formal models that produce key outputs such as energy technology
market shares, greenhouse gas emissions, and atmospheric CO2 concentration.

The most well-known application of the sequential scenario process to climate
policy has been the Special Report on Emissions Scenarios (SRES; Nakicenovic and
Swart 2000). It adopted the scenario axis method adopted by Schwartz (1991), which
uses quadrants of a two-dimensional space to define four scenarios. In SRES, the axes
are defined by degree of globalization and degree of sustainable development. Fol-
lowing the sequential process, the quadrants were used to sketch four storylines and
quantify four sets of projected exogenous variables, which were used as model inputs
for many climate policy studies. However, after more than a decade of utilization, the
modeling community began to indicate that the scenario axis and sequential meth-
ods often hindered effective use of scenarios (Moss et al. 2010; Parson et al. 2007).
Because storylines were drafted separately from model construction, it was often
difficult for the models to completely engage with scenario themes. Furthermore,
how to interpret the scenarios in a decision-making context was often unclear, as
disagreement among modelers and practitioners surrounded the issue of assigning
probabilities to scenario outcomes.

A recent effort to overcome these issues has been the Representative Concentration
Pathway framework (RCP; Moss et al. 2010). In contrast to SRES, RCP scenarios are
first defined by outcomes instead of driving forces: four radiative forcing stabilization
pathways, ranging from ambitious climate stabilization at 2.6 W/m2 forcing to a
more baseline scenario of 8.5 W/m2 forcing, which correspond, respectively, to
atmospheric greenhouse gas concentrations of about 430 and 1,230 ppm CO2-eq. in
the year 2100. Then, pathways are used in one of the two ways: (i) as forcing inputs
into complex climate system models or (ii) as targets for climate policy models.

Beginning scenario planning with policy targets defined by physical variables
introduces new challenges and opportunities. On the positive side, modeling teams
have more freedom to define social, economic, and technological scenario attributes.
However, this new flexibility adds an additional layer of uncertainty to the compari-
son of model results because storyline and model assumptions are now likely to be
different. As a result, the scientific community has begun the task of defining a set
of Shared Socioeconomic Pathways (SSPs) to serve as a baseline for comparison
(Kriegler et al. 2012). The first step in that direction has been to compare existing
scenarios, looking for consistent patterns of socioeconomic drivers across differ-
ing emissions scenarios. Using scenarios from EMF-22 (energy modeling forum;
Clarke et al. 2009), AR4 (fourth assessment report; Fisher et al. 2007; Nakicenovic
et al. 2006), and the RCPs (Moss et al. 2010), van Vuuren et al. (2012) found that
much overlap existed in the range of socioeconomic drivers for any given emis-
sion trajectory. This indicates that RCPs, or emissions trajectories, alone may not
sufficiently identify individual socioeconomic scenarios. Resultantly, van Vurren
et al. (2012) have proposed a matrix framework whereby RCP forcing targets define
four matrix rows, and SSP drivers, such as mitigative and adaptive capacity, define
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columns. How to fill in the matrix elements remains an open question. Among the
many issues are how to ensure consistency among rows and columns and how to
address co-variance among SSP drivers.

In an initial attempt at addressing these questions, Rozenberg et al. (Rozenberg
et al. 2012) use 286 simulations of the IMACLIM-R model (Rozenberg et al. 2010)
and Bryant and Lempert’s (2010) scenario discovery method to generate self-
consistent scenarios to populate the matrix. Scenario discovery operates in the
opposite direction of sequential approach. First, probabilistic simulations from a
quantitative model are generated. Then, using nonparametric statistical methods,
model outputs are grouped according to chosen metrics and determinant driving
forces for each group are identified. As discussed in Gerst et al. (2013a), Bryant
and Lempert’s method, while clearly a step forward, requires selecting a pri-
ori performance thresholds in order to group model outputs. This introduces the
possibility that interesting dynamics might be overlooked, as it is difficult to deter-
mine whether selected thresholds appropriately delineate multidimensional model
output.

Our previous work (Gerst et al. 2013a) demonstrated a more generalized ver-
sion of scenario discovery that allows for multiple performance dimensions without
the need for a priori threshold selection. In the current contribution, we further
demonstrate the utility of this approach by using an enhanced version of the agent-
based ENGAGE model (Gerst et al. 2013b) to identify socioeconomic pathways
for the 4.5 W/m2 RCP. While ENGAGE remains a relatively simple model, we
believe the results demonstrate how the combination of agent-based modeling and
scenario discovery might be used to ‘fill in’ the matrix framework relating to RCPs
and SSPs.

Method

ENGAGE is an agent-based, energy–economy model that is patterned after the family
of evolutionary economic models recently developed by Dosi et al. (2010), (Fig. 1).
This model consists of four types of agents—households, consumption goods firms,
capital goods firms, and government—and one resource, labor. It is particularly well
suited as a starting point for investigating the technological and economic aspects
of climate policy because technological change is modeled as the driving force of
economic growth and is represented as being both stochastic and endogenous. In
our previous work (Gerst et al. 2013b), we expanded the original model to include
energy as a resource, which involved adding firms that produce energy technologies
and a single form of energy used by households and firms. In this section, we provide
a brief description of the model and detail a new functionality added for the current
study, including: (i) probabilistic population growth, (ii) probabilistic fuel costs, and
(iii) endogenous climate policy. We encourage readers to refer to Gerst et al. (2013b)
for details on the structure, parameterization, and motivation for ENGAGE.
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Fig. 1 Model schematic with boxes showing the various classes of agents and arrows indicating
their interactions

Households

In our simplified economy, households supply labor to firms and spend all earned
income on purchasing new generic consumption goods, which we call ‘thneeds,’
and energy to use existing thneeds. We do not explicitly model the labor market:
wages (w) earned by households track closely with economy-wide changes in labor
productivity and unemployed households receive an income subsidy provided by the
government.

In the model version described by Gerst et al. (2013b), which represented the
US economy, it was assumed that the number of households remained constant over
time—a major simplifying assumption. In the current study, we relax this assumption
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Fig. 2 Summary of probabilistic population projections used in the model. Lines indicate minimum
(blue), median (green), and maximum (red) trajectories of 500 simulations

through a representation of the US population change that is fit to the probabilistic
projections of Raftery et al. (2012). Specifically, population (P) is represented by a
quadratic function

P [t] = a1(t − 2000)2 + a2(t − 2000) + P2000, (1)

where population at t = 2000 (P2000) is 282.5 million and the coefficients a1 and a2

are linked to the uncertain population in 2100 (P2100) by

a1 = 1.10 · 10−7
(
P 2

2100

) − 1.21 · 10−5(P2100) − 2.82 · 10−2, (2)

a2 = −1.10 · 10−5
(
P 2

2100

) + 1.12 · 10−2 (P2100) − 3.88 · 10−3. (3)

We represent P2100 by a log-normally distributed variable with arithmetic mean =
481.2 million and s.d. = 56.8 million (Fig. 2).

Capital Goods Sector

In our model, innovation activity is centered in the capital goods sector. Capital
goods firms hire labor and use energy to produce machines, which are purchased
by consumer goods firms for the purpose of producing consumer goods. Machines
have five properties related to labor and energy use: (i) thneed production labor
productivity (thneeds produced per worker), (ii) thneed production energy intensity
(MWh per good), (iii) machine production labor productivity (machines produced
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per worker), (iv) machine production energy intensity (MWh per machine), and
(v) thneed use energy intensity (kWh per good).

Capital goods firms reinvest a fraction of their past sales in innovation and im-
itation activities, which have uncertain outcomes with regard to labor and energy
intensity improvements. If a firm successfully innovates or imitates, it then compares
the new machine to its currently produced machine and chooses the one having the
lowest lifecycle cost. Lifecycle cost is composed of the sum of three terms: (i) the
machine price and production capacity annualized by the annual interest on debt and
expected machine lifetime; (ii) the cost of using the machine to produce goods; and
(iii) the discounted cost of using the good. Machines are priced according a mark-up
over operating costs that is homogenous across firms.

Importantly, the market for machines is defined by imperfect information. We
model this by limiting the number of consumer goods firms to which capital goods
firms may advertise. If a capital goods firm cannot find customers, then we assume
it is subsequently replaced by a new firm.

Consumer Goods Sector

Consumer goods firms use their stock of purchased machines to produce thneeds.
Each firm plans its desired level of thneed production according to expected de-
mand, desired inventory, and the actual inventory. To meet increasing demand or
to replace end-of-life machines, firms use lifecycle cost to compare the desirability
of advertised machines. Firms may also replace machines before their end-of-life,
but must consider the sunk cost of replacing a machine with a remaining useful
life.

Like capital goods firms, consumer goods firms set prices using a mark-up over
operating costs. However, the mark-up varies from firm to firm and is dependent
on the firm’s market share. Market shares evolve as a function of firm competitive-
ness relative to average sector competitiveness weighted by market share, where
individual firm competitiveness is a function of price and cost of use.

Machine purchases and thneed production may be funded internally or through
borrowing. Firms, however, have a limit to their debt to sales ratio. A consumer
goods firm with a near-zero market share and negative liquid assets or an unfilled
demand ceases operations and is replaced by a new firm.

Energy Sector

In our model, energy is represented by a generic form and is produced by a single-
energy production firm. The firm meets overall energy demand by maintaining a stock
of three ‘stylized’ energy technologies: carbon-heavy, carbon-light, and carbon-free.
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New additions are made to the stock to replace end-of-life technologies or to meet in-
creasing demand. The choice of which technology to purchase is made by a levelized,
cost-decision rule:

cE,dis[k, t] = pT [k, t]

8760 · uT [k]
+ w[t]

AET [k, t] · 106 ·
η
T [k]∑

t ′=1

(1 + rE )−t ′

+ EFP[k, t]

106 ·
ηT [k]∑

t ′=1

c∗
F
[t + t ′] · (1 + rE )−t ′

+ σ [k]

103 ·
ηT [k]∑

t ′=1

taxC [t] · (1 + r
E

)−t ′ .

(4)

The levelized cost comprises the sum of four terms: (i) the price of the energy
technology (pT ) accounting for the capacity factor (uT ); (ii) discounted labor costs
calculated from the prevailing annual wage (w, $ per worker), labor productivity of
energy production (AET, GWh per worker); (iii) discounted fuel costs calculated from
the heat rate (EFP, BTU per kWh) and forecasted fuel cost (c∗

F ; $ per 106 BTU),
and (iv) discounted carbon emissions costs calculated from an emission factor
(σ , tonnes CO2 per MWh) and carbon tax rate (taxC , $ per tonne CO2). All dis-
counting calculations are based on an annual discount rate (rE), Energy technologies
are manufactured by three separate firms. We assume that carbon-heavy is a mature
technology, and thus its costs remain constant. Carbon-light and carbon-free tech-
nologies undergo uncertain learning-by-searching and learning-by-doing, which act
to reduce technology capital costs. Learning-by-searching is a function of cumulative
research and development effort and learning-by-doing is dependent on cumulative
built capacity.

We repeat the simplifying assumption in Gerst et al. (2013b) that the carbon-heavy
and carbon-light technologies use the same global fossil-fuel resource stock with a
cost–supply curve based on the aggregation of coal, oil, and natural gas resources.
Here, however, we adopt probabilistic cost–supply curves based on the method of
Mercure and Salas (2012). In this setup, the supply of a particular energy resource
available at a given cost is represented by the cumulative distribution function

N (c) = A · e

(
− B

C−C0

)

, (5)

where A represents the total energy supply potential for that resource, B represents
the scaling of costs (e.g., due to inflation), and C0 represents fuel extraction cost
changes (e.g., due to learning-by-doing).

Parameters B and C0 can be calculated using values for A and any two points on
the cost–supply curve (C1, Q1) and (C2, Q2) from the following expressions:

C0 = C2ln
Q2
A

− C1ln
Q1
A

lnQ2
A

− lnQ1
A

, (6)
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Table 1 Fuel cost–supply curve parameters

Resource Total technical
potential, A (1000 EJ)

Cost at 1 % of
technical potential,
C0.01 (USD/GJ)

Cost at 95 % of
technical potential,
C0.95 (USD/GJ)

Crude oil Tri(7, 11, 11) 1.7 Tri(5.5, 6.8, 8.2)
Oil shale Tri(0, 27, 56) 6.8 Tri(6.8, 8.5, 10.2)
Oil sands Tri(1, 29, 31) 8.5 Tri(13.7, 17.1, 20.5)
Conventional gas Tri(7, 12, 16) 0.5 Tri(4.56, 5.7, 6.8)
Shale gas Tri(0, 29, 47) 3.8 Tri(6.9, 8.6, 10.3)
Tight gas Tri(0, 6, 12) 2.6 Tri(6.1, 7.6, 9.1)
Methane gas Tri(0, 32, 32) 4.4 Tri(6.9, 8.6, 10.3)
Hard coal Tri(24, 220, 419) 1.7 Tri(2.7, 3.3, 4)
Soft coal Tri(5, 37, 75) 2.7 Tri(5.3, 6.7, 8)

B = −(C1 − C0) ln
Q1

A
. (7)

We adopt the values for A and costs at the 1st and 95th percentiles of A (C0.01, Q0.01)
and (C0.95, Q0.95) provided by Mercure and Salas (2012). To represent uncertainty,
for each model simulation we draw a value for A from a triangle distribution with
mode, lower value, and upper value equal to the most probable, lower bound, and
upper bound values on technical potential given by Mercure and Salas (2012). We
also draw a value for C0.95 representing the uncertainty in cost reduction due to
technological innovation in extraction from a triangular distribution with mode at
the value given by Mercure and Salas, lower bound at 80 % of the modal value, and
upper bound at 120 % of the modal value. These randomly selected values are then
used together with the given values of C0.01, Q0.01, and Q0.95 to calculate values for
C0 and B from Eqs. (6) and (7) and all parameters are held constant over time for
each simulation.

Distributions for the nine primary fossil-based energy resources are summarized
in Table 1. For any given simulation, the nine cost–supply curves are assumed to be
independent and are therefore aggregated by summing across all resources for each
cost value (Fig. 3).

Government Agent

In the original DFR model, the government has the ability to collect a tax on other
agents and use the revenue for a variety of purposes (e.g., to subsidize R&D by firms).
Gerst et al. (2013b) use this modeling capability to assess the impact of a carbon tax
on energy technology, energy use, carbon emissions, and economic growth. They
use an exogenously-specified, increasing carbon tax and compare the impacts of
three different revenue recycling schemes: (a) returning revenues to households in
the form of a tax rebate, (b) using revenues to subsidize innovation by capital goods
firms, and (c) investing revenues in renewable technology R&D.
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Fig. 3 Summary of
probabilistic fossil-based
energy cost–supply curves
used in the model. Lines
indicate minimum (blue),
median (green), and
maximum (red) cost curves
based on 500 simulations

Gerst et al. (2013b) found that, on its own, the carbon tax does not provide enough
of a price signal to markedly alter the energy technology mix in the model: the
carbon-light energy technology achieves significant market share only about 5 years
earlier in schemes (a) and (b) than in a no-tax reference specification. Only when the
carbon tax revenue is used to subsidize renewable energy technology R&D (scheme c)
does the energy system transition away from carbon-emitting technologies within
the next century. As mentioned earlier, however, the model of Gerst et al. (2013b)
assumes a stable population, fixed fuel cost curve, and exogenous carbon tax sched-
ule. All of these limitations can be expected to have a significant effect on results,
both in terms of most likely outcomes and estimates of uncertainty.

Endogenous Policy Experiment

To simulate endogenous policy formation, we assume that in the year 2000, nations
agree to emissions pathways that will lead to a stabilization of climate forcing of 4.5
W/m2 by 2100. The necessary annual emissions commitments are given in Table 2
and are consistent with RCP4.5, as calculated by GCAM (global change assessment
model; Thomson et al. 2011).

We assume that to meet its commitments the US government adopts a carbon tax
with initial value of US$ 25 per tonne CO2, increasing at a nominal rate of 5 % per
year. The effectiveness of the tax is monitored every 10 years by comparing actual
cumulative carbon emissions against cumulative emissions commitments resulting
from Table 2. If actual cumulative emissions are at or below the target, then the carbon
tax growth rate remains the same. If cumulative emissions are above the target, then
the annual carbon tax growth rate is adjusted upward by 0.5 %. All carbon tax revenue
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Table 2 Annual emissions commitments in PgC (petagrams of carbon) per year for the USA and
the rest of the world (ROW)

Regions Year

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
USA 1.55 1.62 1.59 1.58 1.47 1.26 1.06 0.81 0.50 0.47 0.44
ROW 7.26 8.50 9.77 10.88 11.30 11.03 9.40 7.12 4.18 4.19 4.20

is used to subsidize renewable technology R&D, consistent with the most effective
policy considered by Gerst et al. (2013b).

Our interest in the policy experiment, as described, is to determine the extent to
which we can identify the socioeconomic and technological factors (the columns of
the vanVuuren matrix) that lead to a specific RCP (the rows of the matrix framework).
We accomplish this by generating a large number of stochastic model simulations
to which we apply the multidimensional scenario discovery method described by
Gerst et al. (2013a).

Model Simulation

Our model was calibrated to the U.S. historical rates of growth for GDP (gross
domestic product) per household (1.7 % per year) and residential energy use per
household (0.7 % per year) by adjusting the distributions representing stochasticity
of labor productivity and energy efficiency improvement by the capital goods sector.
For the purposes of calibration, we simulated the period 1820–2000, assuming a
historical energy price increase of 1.0 % per year and constant average economy-
wide labor and energy unit costs. This assumption was necessary to ensure that
modeled technological improvements kept pace with increases in wages and energy
price. Other model parameters mostly adopted the values of Dosi et al. (2010), as
reported by Gerst et al. (2013b).

For our policy simulation, starting conditions were specified by selecting the sim-
ulated year 2000 state from the final calibration that most closely matched the actual
investment fraction of GDP and household fraction of total energy use observed in
2000. Wages, energy price, and other parameters were then scaled to match the ob-
served year 2000 values. This procedure preserved the agent heterogeneity generated
in the calibration exercise, while allowing initial conditions to accord with overall
macro variables observed for the year 2000.

For computational tractability, our model of the US economy is scaled to be
represented by 50 capital goods firms, 200 consumer goods firms, and 250,000
households in the year 2000. The number of households then scales proportionally
with population change, as represented by Eqs. (1–3). In the current version of the
model, the number of firms remains constant, although production and labor demands
can change with population.
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Fig. 4 Modeled
inflation-adjusted carbon tax.
Lines indicate minimum
(blue), median (green), and
maximum (red) values of 500
simulations

To represent the range of possible model outcomes, 500 simulations were used
to generate all figures and statistics. These simulations represent stochastic real-
izations of the model’s dynamics emerging from the same set of initial conditions
and model parameter values. Stochasticity arises from the uncertain technological
development process. Random draws are taken each year from the distributions
characterizing innovation and imitation success of firms seeking to improve labor
productivity and energy efficiency. Similarly, energy technology firms reduce the
cost of manufacturing low-carbon and carbon-free energy technologies through a
two-factor learning curve characterized by stochastic rates of learning-by-searching
and learning-by-doing effects.

Results

The price signal introduced by a growing carbon tax (Fig. 4) potentially acts
through two channels to influence technological change and carbon emissions: (i) the
machine purchasing decisions of consumer good firms (and therefore the incentive
structure of capital goods firms) and (ii) the capital budgeting decisions of energy
producers. As already revealed by Gerst et al. (2013b), the carbon tax on its own does
not lead to substantial improvements in energy efficiency of produced machines or
consumer goods beyond what would otherwise be achieved under a no-carbon tax
scenario. Thus, even with an inflation-adjusted tax level of over US$ 100 per tonne
CO2, model results indicate that the USA is unlikely to achieve the annual emissions
commitments of Table 2 by mid-century (Fig. 5).

On the energy supply side, however, the effects of the carbon tax can be
substantial—not necessarily because of the price signal, which is small compared
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Fig. 5 Predicted annual and cumulative carbon emission. Lines indicate minimum (blue), median
(green), and maximum (red) predicted trajectory from 500 simulations. Bold lines represent target
emissions
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Fig. 6 Predicted market share for each energy technology. Lines indicate minimum (blue), median
(green), and maximum (red) of 500 simulations

to the possible rise in future fuel costs (Fig. 3), but because of the dramatic in-
fluence of the subsidization of energy technology R&D that a carbon tax enables.
By mid-century, carbon-free renewable energy begins to achieve significant market
penetration in most simulations (Fig. 6). There is substantial uncertainty in the break-
through year, due to the inherent stochasticity of technology improvement, giving
rise to large uncertainty in predicted emissions in mid-century (see Fig. 5). This un-
certainty is exacerbated by uncertainty in the fuel cost and population growth curves.
However, once carbon-free sources take hold as a major contributor to the national
energy mix, the economy becomes essentially uncoupled from fuel costs, resulting
in the potential for dramatic economic growth by the end of the twenty-first century
(Fig. 7a).

Due to technological improvement of energy technology, capital goods, and con-
sumer goods, the economy-wide energy use per dollar GDP is predicted to decrease
substantially over time (Fig. 7). Our model predicted decrease in energy intensity,
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Fig. 7 Predicted trajectories for real GDP and energy intensity. Thin lines indicate minimum (blue),
median (green), and maximum (red) trajectories of 500 simulations. Bold line indicates the projected
change in energy intensity at the historical average rate of 1.39 % per year

however, is less than the average historical annual decline of 1.39 % from 1949–2009
(projected as the bold line in Fig. 7). The high historical decline in energy intensity is
known to be due, at least in part, to broad structural changes that have occurred over
the past 60 years, such as shifts from a manufacturing to a service-oriented economy,
and changes in the international trade balance (Sue Wing 2008). These trends may
or may not continue over the next century, but in any case, they are not currently
represented in the model.

Scenario Discovery

Description of Method

We employ the method for multidimensional scenario discovery described by Gerst
et al. (2013a). Each simulation is first represented by the values of two or more
selected outcome variables. The full set of simulations is then subject to a hierar-
chical clustering algorithm to identify statistically similar groups according to these
selected outcomes. Finally, these clusters, or ‘candidate scenarios,’ are subject to
a classification analysis to identify the stochastic model inputs that serve as key
scenario drivers. The results of this classification are then taken to represent the
final ‘discovered’ scenarios. The notion of multidimensional similarity is what dis-
tinguishes our cluster-based technique from threshold-based methods (Bryant and
Lempert 2010) or full-factorial “quadrant-based” scenario definitions.

We implemented our hierarchical cluster analysis using available functions in
MATLAB. Distances between points were calculated using Euclidean distance and
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clustering-employed Ward’s method. For our application, we chose to cluster ac-
cording to two dimensions: average GDP per capita growth rate (excluding climate
damages) and cumulative carbon emissions, both for the period 2000–2100. These
two outcome variables capture the key tradeoff of the climate policy: weighing the
potential economic impacts of abatement versus the potential for climate impacts.

For classification analysis, we used the ClassificationTree.fit function of MAT-
LAB. Classification trees represent dichotomous splits of independent variables that
yield the strongest associations with a categorical dependent variable. In our con-
text, independent predictors consisted of the nine constructed variables characterizing
stochastic technological development used by Gerst et al. (2013b), as well as two
additional probabilistic parameters used in the model extensions described in the
present contribution: the US population in 2100 (P2100) and the total energy supply
potential across all fuel types (Atot). The groups of model simulations (i.e., candi-
date scenarios) identified by the cluster analysis served as the dependent variable.
The independent variables that best predict candidate scenario membership are then
interpreted as the key driving forces, and the combination of conditions on these
variables is then taken to define the final ‘discovered’ scenarios. To maintain an eas-
ily interpretable tree, we set the minimum number of simulations for splitting each
node to 160 and the minimum number of simulations for each final branch to 45.

Scenario Results

As already shown in Figs. 5 and 7, there is large variation in carbon emissions and
GDP growth under our simulated policy setting. This makes the results especially
conducive to scenario discovery. Hierarchical cluster results (not shown) indicate
that the model simulations, as represented by the two selected outcome variables,
naturally divide into four clusters. A bivariate scatterplot of the cumulative carbon
emissions and average GDP per capita growth rate for the four clusters (Fig. 8) indi-
cates that this number represents a range of reasonably distinct groupings. The fact
that these groupings do not conform neatly to quadrants of the two-dimensional
space suggests that the use of empirical cluster analysis holds some value over
threshold-based methods.

As the next step to scenario discovery, the classification tree (Fig. 9) indicates that
the four clusters defined in the two-dimensional space of carbon emissions and GDP
growth can also be reasonably distinguished by four partitions over three stochastic
model variables. The three variables selected empirically as strong predictors are: (i)
the population size in 2100 (P2100), (ii) the relative efficacy of R&D with respect to
labor productivity to produce consumer goods (EFFA), and (iii) the relative efficacy
of carbon free energy technology experience (EXPERcf ). The other eight variables in
the candidate set of predictors appear not to be strong drivers of policy performance.

We take the partitioning defined by the classification tree in Fig. 9 to be our final set
of four ‘discovered’ scenarios. Although defined with respect to only three variables,
these scenarios represent a complete partitioning of the 500 model simulations in the
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Fig. 8 Scatterplots of cumulative carbon emissions and average GDP per capita growth rate. Points
represent the 500 stochastic simulation results. Symbols represent groupings identified by the cluster
analysis and serve as candidate scenarios. The horizontal line indicates the cumulative emissions
target for 2100

multidimensional space of all stochastic model variables and outcomes. The defining
characteristics of these scenarios can be best viewed as a set of boxplots comparing
the range of conditions experienced under each scenario (Fig. 10).

Scenario 1 is characterized by low levels of carbon emissions and moderate GDP
per capita growth, associated with low to moderate levels of population growth
and labor productivity improvement, but high efficiency in converting experience
with carbon-free technology into emissions reductions (i.e., learning-by-doing).
Scenario 2 on the other hand, has moderate emissions and very low GDP growth,
associated with poor efficiency of learning-by-doing. Scenario 3 has the highest
emissions levels and moderate-to-high levels of GDP per capita growth, associated
primarily with very high population growth (greater than about 546 million by 2100).
Finally, scenario 4 might be considered the most successful overall for achieving the
lowest emissions and highest GDP growth. These results from low population growth
are combined with high efficiency in converting R&D funding into improvements in
labor productivity.
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Fig. 9 Classification tree indicating the optimal partitioning of stochastic model variables for pre-
dicting candidate scenarios resulting from the cluster analysis. At each split, observations less than
the indicated value proceed to the left branch and observations greater proceed to the right. Each
split is conditional on the result of the splits above it in the tree. The bottom branches are labeled
with the predicted cluster membership. Boxes indicate the total number of simulations that meet all
the specified conditions leading to the corresponding branch, as well as the actual categorical
membership frequencies among these simulations

Discussion

We demonstrate how the process of scenario discovery as applied to results of
ENGAGE, a stochastic, dynamic agent-based model, might be used to generate
socioeconomic scenarios relevant to a given emissions target, or RCP. For a carbon
tax policy designed to meet the 4.5 W/m2 RCP, population growth, improvement in
labor productivity, and efficiency of learning-by-doing regarding carbon-free energy
technology are revealed to be the key factors driving policy success. In particular, a
low population growth and a high ability to convert experience in carbon-free energy
technology into further cost reductions seem to be jointly, a key to meeting emis-
sions targets with minimal negative economic impact. This implies that these features
should form the key elements of the storylines underlying socioeconomic scenarios
associated with the 4.5 W/m2 RCP if they are to provide a meaningful exploration of
policy efficacy. Such scenarios, which pair varying levels of population and economic
growth with differing degrees of innovation in the energy sector, are consistent with
those generated using more conceptual methods in the climate scenario literature
(Moss et al. 2010; Parson et al. 2007; van Vuuren et al. 2012). However, by being
derived from the results of a quantitative model, our specification is intrinsically
consistent with practicable modeling assumptions and parameterizations.
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Fig. 10 Boxplots summarizing conditions associated with the four final discovered scenarios. Boxes
indicate the middle 50 % of the simulation values (interquartile range, IQR) for each scenario,
central lines indicate median values, vertical whiskers extend out to the furthest simulation value
within 1.5*IQR of the boxes, and crosses indicate further outlying values. Scenario numbering
corresponds to Figs. 8 and 9 and variables are defined as described in text. All variables are reported
on an annual basis, except for P2100 which is the population in the year 2100 and emissions which
is cumulative from 2000 to 2100

While in the current contribution, we have overcome some of the key limitations
of earlier versions of ENGAGE by allowing for a growing population and uncertain
fuel price, there are still a number of simplifying assumptions that we believe are too
great to allow direct application of our current results to real-world policy questions.
For example, the current simplicity of the energy sector may overlook opportunities
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for technology innovation and adoption. In particular, we only represent one energy
production firm, and it is assumed to utilize the full lifetime of its energy technologies.
Thus, it will not prematurely scrap any of its existing stock when improved carbon-
light or carbon-free technology becomes available. Also, cost is currently the only
factor in the model determining new technology adoption, precluding early adoption
to meet moral obligation or public relations objectives. These factors add a significant
lag to the achievement of carbon emissions reductions in the model.

Finally, the decision rules of households and firms in our current model are cur-
rently homogenous and simplified. For example, firms cannot focus R&D effort
toward specific machine attributes or make decisions to hedge against anticipated en-
ergy price increases. Similarly, households have homogenous preferences for thneeds
that do not represent the true diversity of personal values and beliefs. We are cur-
rently working to alleviate these limitations by defining a suite of decision rules that
households use to select goods that meet both their individual and social needs.

We recognize that further progress is necessary for ENGAGE to provide useful
support for climate policy evaluation and formulation. Nevertheless, we believe that
our proposed combination of stochastic, agent-based modeling and multidimensional
scenario discovery can contribute to the ongoing climate scenario development effort
by complementing traditional approaches. Furthermore, multidimensional scenario
discovery may be used with any model that has the capability to generate prob-
abilistic output. Other areas of energy and climate policy that exhibit considerable
uncertainty and disagreement over metrics such as impacts, adaptation, vulnerability
assessments, and regional infrastructure planning, could benefit from this approach.
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