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    Abstract     While asthma is a heterogeneous disease, a strong genetic basis has been 
fi rmly established. Rather than being a single disease entity, asthma consists of 
related, overlapping syndromes [Barnes (Proc Am Thor Soc 8:143–148, 2011)] 
including three general domains: variable airway obstruction, airway hyper- 
responsiveness, and airway infl ammation with a considerable proportion, but not 
all, of asthma being IgE-mediated further adding to its heterogeneity. This chapter 
reviews the approaches to the elucidation of genetics of asthma from the early evi-
dence of familial clustering to the current state of knowledge with genome-wide 
approaches. The conclusion is that research efforts have led to a tremendous reposi-
tory of genetic determinants of asthma, most of which fall into the above phenotypic 
domains of the syndrome. We now look to future integrative approaches of genetics, 
genomics (Chap. 10), and epigenetics (Chap. 11) to better understand the  causal  
mechanism through which, these genetic loci act in manifesting asthma.  
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9.1         Evidence for a Genetic Basis to Asthma 

9.1.1     Familial Aggregation of Asthma 

  Heritability  is the proportion of variation in a quantitative trait or risk of disease for 
a dichotomous trait that can be attributed to genetic variation. Familial aggregation 
or clustering of asthma was recognized early in the twentieth century (Wiener, et al. 
 1938 ; Sakula  1988 ). The earliest familial studies performed by Cooke (Cooke and 
Vander Veer  1916 ; Spain and Cooke  1924 ) in 1916 and 1924 established an 
increased occurrence of asthma in relatives of subjects having the disease as com-
pared to relatives of normal controls. Numerous family studies performed in the 
1920s and 1930s (Wiener, et al.  1938 ; Schwartz  1952 ) and more recently (Gerrard 
et al.  1976 ; Dold, et al.  1992 ; Aberg  1993 ) found similar results of familial aggrega-
tion of the disease. Twin studies which have a greater advantage over the above- 
mentioned family-based studies: easier detection of nonadditive genetic effects 
(dominant or epistatic effects) and matching for environmental effects have consis-
tently shown higher concordance between monozygotic twins in contrast to dizy-
gotic twins. A tremendous range in the heritability of asthma is seen from these 
studies range from 36 to 95 % (Edfors-Lubs  1971 ; Duffy et al.  1990 ; Laitinen, 
et al.  1998 ; Skadhauge et al.  1999 ; Koeppen-Schomerus, et al.  2001 ; Hallstrand et al. 
 2005 ; Nystad et al.  2005 ; van Beijsterveldt and Boomsma  2007 ; Fagnani, et al.  2008 ; 
Willemsen et al.  2008 ; Thomsen, et al.  2010 ), with higher estimates generally 
observed in studies implementing more objective diagnostic criteria. 

 This wide spectrum of heritability estimates for asthma is not unexpected as heri-
tability is a feature of the sample at hand particularly with respect to the relative 
contribution of genetic and environmental variability representing the complex inter-
play of genes and environment. It is useful to summarize these observations in the 
context of the relative risk to sibs ( λ  s ), which for monogenic diseases or largely genetic 
disorders, tends to be high (e.g.  λ  s  ~ 500 for Cystic Fibrosis). In contrast the  λ  s  is only 
about 2.0 for asthma (Cookson and Palmer  1998 ) which along with the complex 
genetic background implicated above makes the search for genetic loci that cumula-
tively contribute to this risk incredibly diffi cult. Despite this, there has been tremen-
dous success in identifying genetic determinants of this disease as illustrated below.  

9.1.2     Inheritance Models for Asthma 

 Further illustration of the complex nature of asthma comes from segregation analysis 
where evidence in support of a wide range of inheritance models has been noted. 
Segregation analysis fi nds its roots in Mendel’s Law of Segregation: every individual 
inherits  factors  from his/her parents, and in the formation of gametes, these factors 
 segregate  into separate gametes, manifested themselves as specifi c genotypic, and 
consequently phenotypic distributions in the offspring generation. The evaluation of 
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complex models of genetic transmission to explain the observed distribution of asthma 
in a sample of families (Khoury and Beaty  1993 ) has provided evidence for codomi-
nant models with a correlation between age of onset and number of disease alleles 
(Wiener et al.  1938 ), dominant models (Schwartz  1952 ), and even polygenic and 
recessive models (Wang et al.  2000 ; Holberg et al.  1996 ; Martinez and Holberg  1995 ). 
From these studies, it is apparent that asthma should be considered as a paradigmatic 
complex genetic disease, manifesting through the interaction of multiple susceptibility 
genes with environmental.   

9.2     Linkage Studies for Asthma 

 The promise of genetic mapping for disease-gene identifi cation is that it requires no 
prior assumptions on the candidacy of a gene or locus in the biology of asthma—a 
so-called hypothesis-free approach. The fi rst such application as a genome-wide 
approach was linkage analysis, a family-based mapping strategy designed to detect 
susceptibility loci (i.e., disease-susceptibility genetic regions) with large effect sizes 
that co-segregate with disease in either large pedigrees or nuc   lear families (Box 9.1). 
Families are ascertained by design; typically contain multiple affected and unaf-
fected individuals (e.g., multiplex families with affected and unaffected individuals) 
identifi ed on the basis of an index case (proband) and require genotype and pheno-
type information on affected and unaffected individuals. The affected-only ascer-
tainment is an alternative whereby allele sharing between affected relative pairs 
(e.g., affected sibling pairs) is compared against the expected allele sharing given the 
relative-pair kinship. By relying solely on genetic co-segregation, linkage enables 
the discovery of novel genes and pathways without preconceived biases regarding 
the underlying biology. Parametric models that explicitly specify the mode of inheri-
tance (i.e., dominant vs. recessive vs. co-dominant) have proven particularly effec-
tive for mapping variants underlying rare Mendelian diseases like cystic fi brosis. 
However, for complex diseases like asthma, where the correlation between individ-
ual mutations and disease risk (that is, genetic penetrance) is relatively low, less 
powerful nonparametric approaches are commonly used. These latter methods that 
compare allele sharing given the phenotype of the relative pair against the expected 
sharing for the relative-pair kinship are limited in power to detect smaller effect sizes 
(evidenced by the observation that linkage signals discovered thus far typically fail 
to meet strict genome-wide linkage thresholds of LOD > 3.7 and  p  < 2 × 10 −5  (Lander 
and Kruglyak  1995 ). Furthermore, identifi ed regions of linkage are typically wide 
(often more than 10 million bases) and encompass numerous genes that may cumu-
latively explain the overall linkage signal. Nonetheless, since the fi rst genome-wide 
linkage screen for asthma susceptibility loci was published in 1996 (Daniels et al. 
 1996 ), >20 independent chromosomal regions have been identifi ed though linkage 
approaches, many of which are widely replicated (chromsomes 2p, 4q, 5q21-33, 
6p24-21, 11q13-21, 12q21-24, 13q12-14, 16q21-23, and 19q, Fig.  9.1 ) (Wills-Karp 
and Ewart  2004 ). Large scale meta- analyses of individual linkage scans (Bouzigon 
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et al.  2010 ; Denham et al.  2008 ) have revealed the value of a combined approach 
leading to the identifi cation of a novel 2p21-p14 locus not noted in any single study. 
Meta-analyses have also revealed high between-study heterogeneity, which may be 
refl ective of study design and family ascertainment differences, but probably also 
refl ects the intrinsic complexity of the disease. While an analysis of 11 studies of 

  Fig. 9.1    Genetic loci discovered for the phenotype of asthma to date. Genes identifi ed through the 
candidate gene approach are identifi ed in  purple arrows     to the left of each chromosome. GWAS- 
identifi ed genes with  p -values <10 −5  are identifi ed in  green arrows  to the right of each chromosome 
genes involved in gene*environment interactions are identifi ed in  horizontal red bars  and genes 
identifi ed through positional cloning are identifi ed by  horizontal red bars . Regions of peak linkage 
evidences are represented by the  orange lasso  on chromosomes 5, 6, 11, 12, 13, and 16       
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Caucasian asthma populations (1,267 pedigrees,  n  = 5,832) did not identify any 
region showing genome-wide signifi cance with asthma, signifi cant linkage with 
bronchial hyper-responsiveness (BHR) was observed with 2p12-q22.1, 6p22.3-
p21.1 and 11q24.1-qter (Denham et al.  2008 ). A separate linkage-based meta-anal-
ysis of 20 different populations of differing ethnicities (3,024 pedigrees,  n  = 10,027) 
found genome-wide evidence for linkage with asthma on 2p21-p14 and 6p21 in the 
subset of European families.

   Once linkage is observed, identifi cation of the causal genes and variants fi rst 
requires further narrowing of the candidate region through the process of positional 
cloning. Positional cloning typically consists of association testing of dense panels 
of single nucleotide polymorphisms (SNPs) across the linked regions to defi ne 
those variants and their corresponding haplotype blocks that show strong genetic 
association with disease.  ADAM33  was the fi rst report of a positionally cloned 
asthma gene (Van Eerdewegh, et al.  2002 ). A multistep approach of (1) linkage 
analysis in families yielding evidence for a novel locus on chromosome 20p13; (2) 
determination of a homologous region on mouse chromosome 2 previously linked 
to BHR; (3) subsequent case–control association approaches; (4) validation of asso-
ciation in family-based approaches; and (5) demonstration of  ADAM33  expression 
in lung cell types yielded the strongest evidence for associations to variants within 
the  ADAM33  gene identifying it as the most likely gene from a set of ~40 within the 
linkage peak. Additional successes using similar positional cloning approaches for 
asthma include  DPP10  (Allen et al.  2003 ) on 2q14,  PHF11  (Zhang et al.  2003 ) on 
13q14,  NPSR1  (Laitinen et al.  2004 ) on 7p14,  HLA-G  (Nicolae et al.  2005 ) on 6p21, 
 CYFIP2  (Noguchi et al.  2005 ) on 5q33,  IRAK2  (Balaci et al.  2007 ) on 12q14, and 
 OPN3/CHML  (White et al.  2008 ) on 1qter .  

 While linkage analysis in asthma has suffered from lack of replication between 
studies, meta-analysis has emphasized select regions that may be robust to study- 
specifi c heterogeneity. In general, the identifi cation of a single gene as the source of 
the highly replicated linkage signals has been limited. However, as summarized by 
Ober and Hoffjan ( 2006 ) and as illustrated in Fig.  9.1 , many in the set of  most associ-
ated  genes map to regions of  most replicated linkage . A striking illustration of this is 
the widely replicated linkage to chromosome 5q31-33 (Ober et al.  1998 ; Ober and 
Hoffjan  2006 ; CGSA  1997 ; Yokouchi et al.  2000 ; Yokouchi et al.  2002 ; Haagerup 
et al.  2002 ); at least 14 genes in this region have been shown to be associated with 
asthma and its related atopy phenotypes including some of the most replicated asso-
ciations ( IL4 ,  IL13 ,  CD14 ,  ADRB2 ,  SPINK5 ,  LTC4S ) (Ober and Hoffjan  2006 ; Ober 
and Yao  2011 ). This region also includes a positionally cloned gene (CYFIP2) 
(Noguchi et al.  2005 ), genes with documented environment interactions (Baldini 
et al.  2002 ; Zambelli-Weiner et al.  2005 ), and genes that infl uence drug response 
(Martinez et al.  1997 ). Given the complex nature of the genetic architecture of 
asthma, including the polygenic model established by multiple gene–gene and 
gene–environment interactions, the cumulative relative risk ( λ  s ) conferred by each 
locus is small. Families most probably segregate multiple loci that determine family-
specifi c risks, with strong heterogeneity between families. It is likely that the next 
frontier of asthma genetics, which includes sequencing of entire genomes and there-
fore regions of prior linkage, will allow the direct evaluation of this hypothesis.    
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9.3      Association Studies for Asthma 

 Association testing explicitly tests for the nonrandom correlation between the observed 
phenotype of asthma and genotyped markers (most often SNPs) in a population and 
this is typically performed in a case–control design setting wherein allele frequencies 
at a measured SNP are compared between case and control samples from the popula-
tion (Box  9.1 ). It is based on the concept of linkage disequilibrium; the nonrandom 
association of alleles at two or more loci (Box  9.1 ). While in linkage two or more loci 
on a chromosome have reduced recombination between them simply because of their 
physical proximity to each other, in LD combinations of specifi c alleles at genetic 
markers occur more or less frequently in a population than would be expected. If the 
allele under consideration is at higher frequency in cases in the population, then it is 
referred to as a  susceptibility  or  risk  allele. One of the major drawbacks of the case–
control design is the potential for spurious associations due to population stratifi ca-
tion: the presence of a systematic difference in allele and disease frequencies between 
subpopulations in a population give rise to confounding effects and false associations 
when cases and controls are not matched on subpopulation membership. Family-
based designs such as the case-parent trio design where an affected individual and his/
her parents are included rely on the transmission disequilibrium test (TDT) and are 
free from confounding due to population stratifi cation. In principle the case-parent trio 
design tests for excess transmission of a specifi c allele from parents to affected off-
spring in a comparison of transmitted vs. untransmitted alleles. 

9.3.1     The Candidate Gene Approach 

 This approach is founded on prior knowledge; genes are selected to be tested as 
determinants of asthma using principles of association illustrated in Box 9.1 because 
they are either (1) believed to be biological candidates given their known function; 
(2) physically located within a region of linkage evidence; or (3) physically located 
within a region of prior association evidence. The main advantage to this approach 
is that it is narrow in hypothesis and thereby not limited by the stringent thresholds 
set in place with signifi cance testing in the more unbiased (by prior knowledge) 
genome-wide approaches. On the other hand, the approach is limited in that it does 
not include novel loci that may add to the understanding of biology, each candidate 
gene study is generally insular only considering a gene in contrast to the pathway 
from which the biological candidacy is determined and often there is lack of replica-
tion between studies because of the lack of consideration of environmental effects 
further discussed below. 

 Despite these limitations, the candidate gene approach has had many successes 
in asthma, and these successes are elegantly summarized by a number of excellent 
review articles (Ober and Hoffjan  2006 ; Ober and Yao  2011 ; Vercelli  2008 ). Most 
of the >100 loci found to be harboring genetic determinants of asthma and its asso-
ciated allergic phenotypes have evidence based in this approach, of which the most 
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frequently replicated are listed in Fig.  9.1 . Asthma susceptibility genes have been 
argued to fall into four main categories, and candidate genes with identifi ed associa-
tions fall into each of these categories as has been reviewed in-depth by Vercelli 
( 2008 ). Briefl y the asthma susceptibility loci fall into the following categories: (1) a 
class of genes associated with innate immunity and immunoregulation (examples 
include CD14, Toll-like receptors TLR2, TLR4, TLR6, and TLR10, cytokines such 
as IL10, TGFβ1, and HLA class II molecules); (2) genes associated with Th2-cell 
differentiation and effector function (including IL13 the central effector of allergic 
infl ammation where genetic determinants of asthma are perhaps some of the best 
understood to date in their functional consequence) (Vladich et al.  2005 ; Cameron 
et al.  2006 ); (3) genes expressed in epithelial cells and involved in mucosal immu-
nity (genes in the CC-chemokine cluster for example); and (4) the fi nal class of 
genes that appear to determine lung function, airway remodeling, and asthma sever-
ity (two of the most consistent asthma loci  ADRB2  and  TNF ).  

9.3.2     The Genome-Wide Association Approach 

 The advent of dense oligonucleotide microarrays that enable multiplex genotyping 
of large numbers of variants at low cost has made feasible the extension of genetic 
association beyond the study of candidate genes or regional positional cloning to a 
truly genome-wide survey. A variety of commercially available arrays enable typing 
of hundreds of thousands to several millions of variants simultaneously (Distefano 
and Taverna  2011 ) and rigorous statistical methods, including SNP genotype impu-
tation methodologies have been developed to facilitate comprehensive testing of vir-
tually all common genetic variation, including more than 35 million sequenced 
variants cataloged in the Thousand Genomes Project (Abecasis et al.  2012 ). Taking 
advantage of these advancements, the genome-wide association (GWA) era com-
bines the strength of the unbiased nature of the query for genetic determinants of 
disease risk (similar in spirit to genome-wide linkage) along with the ability to 
recover most common human variation using a relatively small set of tagging genetic 
variants (similar in spirit to candidate gene association) (Risch and Merikangas 
 1996 ). The premise of the tagging approach is that given genetic architecture wherein 
SNPs are often found within blocks of LD where all SNPs within a block are highly 
correlated to each other, it is not necessary to genotype all variants in a single block 
to capture association between the disease locus within the block and phenotype; a 
reduced set of SNPs is suffi cient to represent most of the variation contained within 
a block and can be used as a proxy for all remaining  variants within the block. 

 The foundation for the GWA approach is the “common disease, common vari-
ant” hypothesis, wherein common diseases are argued to be attributable (in part) to 
common genetic variants (Reich and Lander  2001 ; Collins et al.  1997 ) and the 
leverage of the case–control design in place of the traditional family-based 
approaches necessary for genome-wide linkage. There are two obvious ramifi ca-
tions of this hypothesis: common genetic variants infl uencing disease are not 
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expected to have a large effect size (highly deleterious variants are generally recent 
and therefore uncommon in human populations (Tennessen et al.  2012 ); and, for 
common alleles with small effects to explain common disorders multiple loci each 
with small effect must cumulatively infl uence disease susceptibility. 

 The precise number of asthma GWA studies (GWAS) is hard to identify as many 
of the individual studies are folded into larger meta-analyses; several recent reviews 
are now available (Ober and Yao  2011 ; Akhabir and Sandford  2011 ). Table  9.1  is a 
comprehensive list of all GWAS publications relevant to asthma and highlights 
three points: (1) GWAS-identifi ed loci are generally common in frequency; (2) 
GWAS-identifi ed loci have modest effect sizes; and (3) although most loci are not 
replicated across the studies, there are several that are novel, highly replicated, and 
perhaps most importantly, robust to ethnicity.

   The fi rst asthma-susceptibility locus to be identifi ed by GWAS is that on chro-
mosome 17q21 (Moffatt et al.  2007 ). The associated variants reside on a common, 
cosmopolitan (i.e., observed in populations of diverse ancestry) haplotype that 
spans more than 100 kb and includes four genes:  ORMDL3 ,  GSDMB ,  ZPBP2 , and 
IKZF3. This association with asthma has been among the most highly reproduced 
(Sleiman et al.  2008 ; Tavendale et al.  2008 ; Bouzigon et al.  2008 ; Galanter, et al. 
 2008 ; Hirota et al.  2008 ;    Bisgaard et al.  2009 ; Wu et al.  2009 ; Leung et al.  2009 ; 
Halapi et al.  2010 ; Flory et al.  2009 ; Madore et al.  2008 ), observed in both children 
and adults, and across diverse ethnic groups (Galanter et al.  2008 ). The haplotype 
has regulatory potential, as it is associated with the expression of ORMDL3, 
GSDMB and ZPBP2 and functional fi ne-mapping studies suggest the causative 
variant regulates the differential binding of the insulator protein CTCF (Verlaan 
et al.  2009 ). However, due to the extensive linkage disequilibrium at this locus and 
it’s impact on the expression on multiple genes, it remains unclear which of these 
genes is the culprit target. It is interesting that this locus overlaps with meta- analyses 
linkage regions for atopy and not asthma (Bouzigon et al.  2010 ; Denham et al. 
 2008 ), but it should be pointed out that these genes have never been studied under 
the candidate gene approach, supporting the importance of the unbiased GWAS 
approach in identifying novel loci for asthma. The ORMDL3 gene encodes 
ER-resident transmembrane protein and has high expression in cells involved in the 
infl ammatory response (Moffatt et al.  2007 ). Alterations of protein folding or 
Ca(2+) levels within the endoplasmic reticulum (ER) result in the unfolded-protein 
response (UPR) which is an endogenous inducer of infl ammation. ORMDL3 has 
been shown to alter ER-mediated Ca(2+) homeostasis and thereby facilitate the 
UPR (Cantero-Recasens et al.  2010 ). It has been shown that heterologous expres-
sion of ORMDL3 protein increased resting cytosolic Ca(2+) levels and reduced 
ER-mediated Ca(2+) signaling, an effect reverted by coexpression with the sarco-
endoplasmic reticulum Ca(2+) pump (SERCA). Increased expression also pro-
moted stronger activation of UPR transducing molecules and target genes. In 
contrast siRNA-mediated knockdown of ORMDL3 potentiated ER Ca(2+) release 
and attenuated the UPR adding further support for a likely biological explanation to 
the associations seen at this locus with asthma risk. 

 Another consistently replicated GWAS locus is that mapping to a region upstream 
of  IL33 , the gene encoding interleukin 33 (IL-33) located on chromosome 9q24. 
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   Table 9.1    Summary of GWAS studies on asthma as the primary phenotype summarized from the 
Catalog of Published Genome-Wide Association Studies highlighting three regions with replication 
across multiple studies and ethnicities. Studies include those with a panel of >100,000 SNPs and 
reported  p -values on the discovery data of  p  < 10 −5       

      

(continued)
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Table 9.1 (continued)
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A GWAS in one Asian and nine European population demonstrated association for 
asthma of a variant situated ~6 kb upstream of  IL33  (Gudbjartsson et al.  2009 ). 
Subsequently, another variant situated ~27 kb upstream of  IL33  was associated with 
asthma in the European-based GABRIEL Consortium—the largest GWAS meta- 
analysis to date (>26,000 subjects) (Moffatt et al.  2010 ). A second meta-analysis of 
nine North American asthma GWAS—the EVE Consortium—also replicated this 
association with variants ~22 kb upstream of  IL33  (Torgerson et al.  2011 ), demon-
strating consistency across populations of diverse ethnicity (European American, 
African American, and Hispanic American). In contrast to the 17q21 locus,  IL33  
along with its receptor  IL1RL1/ST2 , also implicated in GWAS (Gudbjartsson et al. 
 2009 ; Moffatt et al.  2010 ; Torgerson et al.  2011 ) represent extremely strong well- 
understood biological candidates for asthma (Wjst et al.  2013 ). Produced by mast 
cells following IgE-mediated activation (Hsu et al.  2010 ), IL-33, a member of the 
interleukin-1 (IL-1) cytokine family is directly involved in eosinophil- and basophil- 
mediated infl ammation and IL-5 production, hallmark features of allergic disease 
(Schmitz et al.  2005 ; Cherry et al.  2008 ; Suzukawa et al.  2008 ; Smithgall et al. 
 2008 ; Pecaric-Petkovic et al.  2009 ; Smith  2010 ). Greater  IL33  expression in airway 
smooth muscle cells (Prefontaine et al.  2009 ) has been observed in airway epithe-
lium of patients with asthma compared to healthy individuals (Prefontaine et al. 
 2010 ). Its receptor, ST2 in its soluble form (sST2) on chromosome 2q12.1, neutral-
izes IL-33 by acting as a decoy receptor (Sanada et al.  2007 ) and is another repli-
cated GWAS signal robust to ethnicity. Serum ST2 has been associated with atopic 
asthma (Oshikawa et al.  2001 ). It is indeed striking that two genes in the interleuin-
 1/Toll-like receptor (TIR) superfamily pathway, what has emerged as a central 
pathway in asthma, have both independently been implicated as asthma determi-
nants in GWAS approaches and points to the merits of the unbiased GWAS 
approach. It is notable that several additional TLRs have also been implicated as 
determinants of asthma in the candidate gene approach noted in Fig.  9.1 . 

Table 9.1 (continued)
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 The GWA approach is not without limitations as follows. The SNPs identifi ed from 
the GWAS are not the true causal variant themselves but generally a proxy for some 
unmeasured disease-causing variant that needs additional follow-up for discovery. 
Given the vast number of statistical tests performed, stringent thresholds are set in 
place to control the family-wise error rate; the most commonly used approach being 
the Bonferroni correction given by 0.05/ n , where  n  is the number of tests being per-
formed, and 0.05 is the Type I error rate typically selected. This often leads to the 
failure to address association signal from loci with less striking effects, now being 
discussed as a part of the missing/residual heritability from GWA studies of complex 
phenotypes. The comparison across studies can be diffi cult when differing set of SNPs 
are analyzed due to differences in GWA genotyping arrays; this, however, can be over-
come using in-silico genotyping approaches such as imputations to a standard refer-
ence panel of SNPs such as the HapMap or Thousand Genomes panels. The standard 
for replication in a GWAS is the SNP-to-SNP replication with a consistent direction 
of risk effect. This last concern is an important one to consider given the tagging strat-
egy upon which the GWA relies; especially in the comparison between ethnic groups 
where the same causal variant may lie on different haplotype backgrounds and thereby 
manifest as association to an alternate SNP in the GWA panel of SNPs or the same 
SNP with a different direction of risk (i.e., the risk allele in one group is the protective 
allele in another). Finally, GWA analysis generally ignores the presence of multiple 
loci, gene–gene and gene–environment interactions. Nonetheless, despite these limi-
tations, GWASs have led to numerous successes in asthma and at least three different 
loci that appear to be robust to ethnicity (17q12, 9q24, 2q12.1 and 6p21.32).   

9.4     Gene–Environment Interactions in Asthma 

 The role of environmental factors as key determinants of allergic infl ammation and 
asthma risk has been well established (Strachan  1989 ; von Mutius  2004 ), and the 
potential for gene–environment interactions in asthma has been well recognized 
(Kauffmann and Demenais  2012 ). However, despite the importance of the environ-
ment in asthma, and the need to consider gene–environment (G x E) interaction in a 
systematic fashion, few such studies have been conducted to date. This is largely 
because of the complexity involved in conducting such studies, including the requisite 
large sample sizes, the large number of interaction models under consideration, and 
the diffi culties in accurately measuring env   ironmental exposures (Box 9.2A, B, C) 
(Kraft and Hunter  2005 ; Khoury et al.  1988 ). The design of a study that takes into 
account G x E interactions requires accurate assessment of both phenotype and 
environment, and depending on the magnitude of the G x E effect, considerably 
larger samples sizes than those required to detect main effects of just genetic loci. 
The availability of suitable replication populations is important as well, i.e., 
 additional studies where both gene and environment are measured and the environ-
mental exposures are similar in effect. 

 Despite these limitations, early (largely candidate-gene) GxE studies have reported 
numerous examples of gene–environment interaction in asthma (Fig.  9.1 , Box 9.2C). 
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  Box 9.2A Ignoring gene–environment interactions can mask genetic 
effects and thereby lead to the genetic heterogeneity between populations 
in the evaluation of a single genetic locus  
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  Box 9.2B Complexity in models of gene–environment interaction 
(adapted from Khoury et al.  1988 )     
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  Box 9.2C Established gene–environment interactions in asthma 
(reviewed in Ober and Yao  2011 ) 
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Of these, the most extensively studied are those focused on  CD14 , a component of 
the toll-like receptor (TLR) signaling complex that facilitates endotoxin responsive-
ness. A series of association studies on a functional promoter polymorphism ( CD14 -
260CT) has revealed protection against asthma (Leynaert et al.  2006 ), increased 
asthma risk (   Ober et al.  2000 ), and a plethora of studies with no signifi cant associa-
tions (Vercelli  2008 ). In subjects of African descent, the effect of  CD14 -260CT on 
asthma is dependent on levels of domestic endotoxin exposure; the TT genotype 
appears to protect against asthma in low domestic endotoxin exposure, but is a risk 
factor in high exposure (Zambelli-Weiner et al.  2005 ). These gene–environmental 
effects for  CD14 -260CT carry forth to a wide variety of asthma- associated pheno-
types as well, including IgE (Eder et al.  2005 ), atopic dermatitis (Gern et al.  2004 ), 
allergic sensitization, eczema, and wheezing (Simpson et al.  2006 ). In all these exam-
ples, the effect of the variant differs based on environmental exposure, and in fact 
CD14 offers an excellent illustration of how ignoring environment can lead to the 
appearance of genetic heterogeneity in genetic determinants of asthma risk.    

9.5            The Next Frontier of Association Studies: 
DNA Sequencing 

 Despite the early successes of GWAS in identifying novel asthma loci, there has been 
criticism that, for complex diseases broadly, and asthma specifi cally, the GWAS 
approach has not provided suffi cient insight into the genetic contribution to disease 
risk. Though more than 30 asthma GWAS have been published, describing 51 genes 
having  p -values <1.0 × 10 −5  specifi cally for asthma (Hindorff et al.  2013 ), the cumula-
tive genetic risk explained by the associated variants is relatively low (<15 %), pre-
cluding their use as predictive or diagnostic clinical models. This so- called missing 
heritability problem (Eichler et al.  2010 ) is a frequent occurrence in GWAS (Frazer 
et al.  2009 ), which are based on the premise of common disease/common variant 
hypothesis (Lander  1996 ; Cargill et al.  1999 ; Chakravarti  1999 ). “Missing heritabil-
ity” is simply  residual  heritability or the leftover disease risk that is unaccounted for 
by the GWAS-identifi ed genetic loci. The source of the “missing heritability”(Eichler 
et al.  2010 ) could include (1) common variants of smaller effects that fall far below 
the stringent signifi cance thresholds applied in the GWAS approach; (2) rare variants 
with large effects or structural variants that are poorly tagged by commercial GWAS 
genotyping arrays; (3) limited power to detect interactions (Manolio et al.  2009 ); and 
(4) unmeasured epigenetic phenomena in the GWAS approach. It has even been 
argued that what appears to be association signal from a common variant in a GWAS 
approach could in fact be representative of multiple underlying rare variant associa-
tion signals (Dickson et al.  2010 ) due to linkage disequilibrium. 

 Since the late 1970s Sanger termination sequencing (Sanger et al.  1977 ) has been 
the sole method of choice for sequencing studies. Key pieces of technology develop-
ment in 2005 (Margulies et al.  2005 ; Shendure et al.  2005 ) heralded the current era of 
Next Generation Sequencing (NGS) techniques that have entailed arraying thousands 
of sequencing templates enabling sequences that can be analyzed in parallel, a 
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dramatic increase to the 96 sequencing templates on a contemporary Sanger capillary 
sequencer. Today, NGS systems include SOLiD/Ion Torrent PGM from Life Sciences, 
Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS 
Junior from Roche (Metzker  2010 ) among others and enable the rapid sequencing of 
either predefi ned genomic regions (such as all the protein coding regions of the 
genome, i.e., the exome (Teer and Mullikin  2010 ; Fu et al.  2013 ) or entire human 
genomes (Abecasis et al.  2010 ). Despite the increasing computational complexities 
(Hoffmann  2011 ) inherent to these methods, the dramatic decreases in sequencing 
costs (Wolinsky  2007 ) make association studies using this approach highly attractive. 
Genome-wide sequencing studies in asthma are in their early stages, and it remains 
unclear what impact they will have on addressing the missing heritability problem. 

 With respect to asthma, an observation from Fig.  9.1  is the lack of overlap in 
genes identifi ed through earlier approaches of positional cloning and candidate 
genes studies and the fi nding that most of the >100 genes established as asthma loci 
through these earlier approaches are not rediscovered through GWAS. An elegant 
argument that many of associated variants in these genes are simply not adequately 
captured by commercially available GWAS arrays has been demonstrated for 
asthma (Rogers et al.  2009 ). In addition to the arguments provided above, this pro-
vides compelling reason to extend asthma genetics to the new frontier of sequencing 
designs which ensures complete coverage of common variants, adequate coverage 
of rare variants (provided adequate sequencing depth), and importantly, the discov-
ery of novel variants in sequenced cases. Using a theoretical framework that genes 
with molecular signatures of weak purifying selection are more likely to harbor an 
excess or rare/low frequency variants, resequencing has revealed that rare variants 
(in  AGT ,  DPP10 ,  IKBKAP ) contribute to asthma susceptibility (Torgerson et al. 
 2012 ). Interestingly, the contribution of rare variants to asthma susceptibility was 
predominantly due to noncoding variants, and these early results of resequencing 
approaches offer the fi rst promise of the value in a transition from tagging-SNP 
common-variant GWAS approaches over the past decade to resequencing approaches 
in the near future. It also provides an argument for consideration of the extensive 
human variation that exists outside the coding regions of the genome; exciting work 
by the Encyclopedia of DNA Elements (ENCODE) project (Dunham et al.  2012 ) 
has demonstrated that the vast majority of the human genome participates in at least 
one biochemical RNA and/or chromatin associated event in at least one cell type!  

9.6     Heterogeneity in Asthma Genetics 

 Although a genetic basis for asthma is undeniable and >100 genes have been impli-
cated, the elucidation of causal variants to explain this basis has been fraught with 
issues of between-study replication that stem from a variety of arguments including 
(1) heterogeneity in the asthma phenotype wherein “asthma” constitutes multiple 
overlapping syndromes rather than a single disease entity (Barnes  2011 ); (2) strong 
interactions with environment (Vercelli  2008 ); and (3) the high likelihood of true 
genetic heterogeneity (different sets of genes determine risk for asthma in different 
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populations). Large-scale sequencing of the human genome has revealed the 
 dramatic potential for the latter (Abecasis et al.  2010 ): common human variation 
(allele frequencies ≥10 %) are almost all found in all of the populations studied, 
however, 17 % of low-frequency variants in the range 0.5–5 % were observed in a 
single ancestry group, and 53 % of rare variants at 0.5 % were observed in a single 
population. Genetic heterogeneity has been noted in asthma linkage signals (CSGA 
 1997 ), candidate gene studies (Ober and Hoffjan  2006 ; Ober and Yao  2011 ), and 
GWAS (PYH1N1 is a novel asthma susceptibility locus found only in populations of 
African descent (Torgerson et al.  2011 ). Importantly, sequencing approaches reveal 
rare variant determinants of asthma in four genes ( AGT ,  DPP10 ,  IKBKAP , and 
 IL12RB1 ) among African Americans, but only rare variant determinants of asthma 
in  IL12RB1  among European Americans, further confi rming the potential role of 
population heterogeneity in genetic determinants of asthma (Torgerson et al.  2012 ). 
To date, replication is typically evaluated in the strict sense—a SNP-for-SNP repli-
cation with the same direction of effect (Barnes  2011 ; Vercelli  2008 ); a transition to 
NGS approaches opens the window to “burden tests” is to assess association between 
“clusters” of rare variants within windows (e.g., a gene) and disease status (Li and 
Leal  2008 ; Morris and Zeggini  2009 ; Schaid and Sinnwell  2010 ; Zhu et al.  2010 ; 
Price et al.  2010 ; Cohen et al.  2004 ). Briefl y, computationally fast tests include (1) 
cohort allelic sums test (CAST), where the number of individuals with one or more 
mutations in a window is compared between affected and unaffected individuals 
(Cohen et al.  2004 ) and (2) Combined Multivariate and Collapsing (CMC) method 
(Li and Leal  2008 ), where all rare variants (e.g., <1 %) are collapsed and treated as 
a single common variant analyzed along with all common variants in the region 
using multivariate analysis. More sophisticated approaches include those where 
variants are weighted according to their frequency (Madsen and Browning  2009 ) 
giving more weight to rarer alleles, tests that optimally select an allele frequency 
cut-off (Price et al.  2010 ), tests where rare variants in a gene are allowed to have 
both protective and risk effects (Wu et al.  2010 ), and tests allowing for misclassifi ca-
tion of variant function (Liu and Leal  2010 ). The general spirit of these approaches 
is to specifi cally move beyond any single variant to collapsing information across 
multiple variants within a window of interest, thereby overcoming some of the limi-
tations of strict replication rules that have plagued asthma genetics thus far. 

 In conclusion, the road to the discovery of genetic determinants of asthma has had 
numerous successes as study designs and technology have morphed from small link-
age and family-based studies to extensive meta-analyses of GWAS data (Moffatt et al. 
 2010 ; Torgerson et al.  2012 ). One of the biggest successes of the GWAS approach has 
been the identifi cation of a novel locus on 17q21 that is robust to population ancestry 
and has been highly replicated since the initial discovery. With the extensive LD and 
likely coregulation of multiple genes within this association peak, it is yet unclear 
which gene(s) in this chromosomal region are responsible for the association with 
asthma ( ORMDL3 ,  GSDMB ,  ZPBP2 , or  IKZF3 ). Integrative applications of genomic 
and epigenetic approaches are necessary in further elucidating causal variants behind 
the genetic association signals described in this chapter, and such applications spe-
cifi c to this 17q21 are further described in Chaps.   10     and   11    .    
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  Box 9.3 The genomewide association (GWA) approach 

 The GWA approach leverages the technological advancements in high- 
throughput genotyping along with the tagging approach to interrogate the 
entire genome for common variants that may be determinants of common 
disease. The completion of the International HapMap project provided the 
backbone for the design of genotyping arrays containing the smallest set of 
SNPs that captured the largest amount of common genetic variation given LD 
block structure and inter-SNP correlation, i.e., a set of tag SNPs to be geno-
typed as representatives of common human variation. In the design of a GWA 
study (GWAS), it is important consider to the wide choice of genotyping 
arrays available and select the array ideal for the population to be studied; for 
populations with high levels of African ancestry, African Americans, for 
example, an array that considers the smaller LD blocks that are results of the 
African representation in the admixed populations are important. GWAS are 
traditionally done by comparing allele frequencies at genotyped variants 
between well-phenotyped affected cases and unaffected controls, and clinical 
characterization is an important consideration for the study design. In asthma, 
the relevance of age of onset in GWA analyses has been shown to have an 
impact of strength of association signals observed at the chromosome 17q12 
locus, wherein variation in this locus is an important determinant of childhood 
onset asthma. Careful consideration of population structure differences 
between the cases and controls is necessary as this can lead to spurious asso-
ciations. Given the unbiased nature of the ~10 6  SNPs typically on an array 
(i.e., the vast majority of the SNPs do not in fact correlate with the disease 
under consideration), the genotype distributions can be used to detect cryptic 
population structure typically using principal components analysis/multidi-
mensional scaling. An overall difference between cases and controls across 
the genome measured by the principal components (PCs) is usually indicative 
of population structure and the PCs can be used to correct for this structure in 
the single-SNP association tests. 

 Two commonly used tools in the interpretation of the GWA results are the 
Manhattan Plot ( 3.A ) and the Q–Q Plot ( 3.B ). In these illustrations from the 
publicly available GABRIEL data, one sees the overall GWA p-values plotted 
as –log10(P-value) against chromosomal position ( 3.A ) and quantile–quantile 
distributions of observed versus expected p-value to show deviation of observed 
from the expected distribution ( 3.B ). In the Manhattan plot, regions of the 
genome that cross the stringent Bonferroni threshold of signifi cance (red line) 
required for the multiple testing of SNPs are easily evident. The Q–Q plot sup-
ports (i) the lack of population stratifi cation (the vast majority of p-values fall 
along the red line; they would be expected to be above the red line in the case 
of population stratifi cation) and (ii) the presence of true association signal 
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denoted by the upper set of strong p-values that are considerably stronger than 
expected for the range. One fi nal tool is the zoom plot ( 3.C ) of the peak asso-
ciation signal showing LD between SNPs in the region to the peak SNP, recom-
bination fractions, and known genes in the region. Often the peak SNPs in a 
GWAS is a region of LD that includes multiple SNPs; the commonly used 
LocusZoom plot is a useful tool to identify genes that are potentially impli-
cated by the peak GWAS SNP. 

 The GWAS has led to numerous discoveries and between 2005 and 2012 
there have been over 1,350 publications relying on this approach. However, 
there are some pitfalls to the approach that must also be highlighted. A nar-
row and well-defi ned case/control defi nition is critical to maximize power, a 
well- selected GWA array suitable for the population under consideration, a 
robust control of false positives due to multiple testing, and an effi cient way 
to detect and correct for population stratifi cation are all relevant issues. A 
more fundamental issue at hand, given the higher degree of unexplained 
heritability even for some of the most successfully GWA studied pheno-
types, is the robustness of the common disease common variant hypothesis. 
With the advent of high- throughput sequencing that has been dramatically 
decreasing in cost, it is anticipated that sequencing, targeted and whole 
genome, will be the next frontier in the tool box of asthma geneticists 
enabling a query of all variation, common and rare, as determinants of 
asthma risk.  
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