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10.1 Introduction

Transcriptomics (gene expression profiling) refers to the quantitative and qualitative
characterization of the collection of ribose nucleic acid (RNA) elements expressed
in a biological system and represents one of the first truly genome-wide hypothesis-
free investigative approaches in molecular biology. The advent of synthetic oligo-
nucleotide microarray technologies has enabled large-scale application of gene
expression profiling in the study of human disease, particularly malignant and
hematological processes. Due to favorable characteristics of these processes, includ-
ing their involvement of one cellular compartment (and often a specific, monoclonal
cell type), the severity of the underlying cellular perturbation under study (malig-
nant vs. benign cells), and the accessibility to large numbers of available banked
samples obtained during clinically indicated medical procedures, the study of tran-
scriptomics in oncology has been quite fruitful, with notable translation of these
techniques to novel clinical applications with diagnostic, prognostic, and therapeu-
tic implications. Furthermore, the discovery of large populations of noncoding RNA
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elements, including microRNA and long-intergenic noncoding RNA (LINCC-
RNA) has expanded the scope of transciptomic profiling beyond the protein-coding
messenger RNAs (mRNA).

In this chapter, we provide a brief survey of prior applications of this approach to
the study of asthma, followed by an overview of the primary technical and analyti-
cal considerations that should be addressed when conducting such studies. For more
detailed review of study protocols and specific analytical platforms, readers are
referred to several recent publications (Matson 2009; Yakovlev et al. 2013; Dehmer
and Basak 2012; Rodriguez-Ezpelete et al. 2012).

10.2 Applications of Transcriptomics in Asthma Research

Asthma is a complex syndrome arising from the interplay of genetic and environ-
mental perturbations of two multicellular organ systems (the respiratory and
immune systems) operating in a developmental context. Thus, in contrast to malig-
nancies that arise from radical molecular alterations in one population of cells, the
genomic study of asthma presents a more complicated model with inherent chal-
lenges, relating to selection of disease model and tissue sampling, and analytical
interpretation. Nonetheless, transcriptomic profiling has been applied widely in the
study of asthma and will likely continue to play an important role in biological and
translational asthma research. Broad goals of such studies include discovery of
novel pathways underlying asthma pathogenesis, reclassification of asthma sub-
types on the basis of distinct genetic signatures, and understanding the cellular
response of asthma-relevant environmental exposures, pharmaceuticals, and other
perturbations, all with the hope of identifying new therapeutic targets.

Tables 10.1 and 10.2 summarize many of the published asthma genomic studies
performed in patient populations, in the peripheral immune (Table 10.1) and pulmo-
nary (Table 10.2) compartments. Thus far, virtually all published studies have
employed chip-based expression platforms in conjunction with traditional analyti-
cal methods of differential gene expression analysis, cluster analysis, or a combina-
tion of both. The majority of these studies have focused on contrasts between asthma
case and unaffected control status, or across strata of asthma severity. With notable
exception, sample size has been small, most studying fewer than 100 patients. Given
the complexity of asthma, the heterogeneity in asthma phenotype, and wide spec-
trum of severity, small-sized studies are of limited value, particularly with regard to
broad generalization. Complicated by differences in tissue of study, patient inclu-
sion criteria, expression microarray employed, and analytical methods, the results
of these studies are largely nonoverlapping, and few discernable common insights
are apparent. Moreover, few of these studies presented rigorous evidence of either
intrinsic (technical and computational) or extrinsic (replication) validation, making
uncertain the generalizability of their findings. Nonetheless, several of these early
efforts have provided important insights worthy of discussion here.



159

10  Gene Expression Profiling in Asthma

(ponunuoo)

uone[ngar sisoydode

pue Krmow [[00 Juneordur ‘opyoid

uorssardxe aua3 [rydonnau Jounsip
UM pajeIdosse euryise o1frgdoursosuoN

souog uonerejrjoxd

[199-1, pue s1sojdode jo uorssardxo
renuarayIp moys sadAjouayd Jurzooypp

asrjo

uone[ndar ogroads-xas 1se33ns skemyjed

Qua3 pajeordwr jo wisiydiowrp [enxas
‘g3 WnIds 810} YPIM PARIOOSSe gy /111

Kemyred @ urweya

Jo uonen3axdn yIm ‘S[[0 I, +7AD

ur uorssaxdxa [enuaIIp ssof ‘skemyped

A1018[n321 Z-1 uonem3aidn yym
‘BUIYISE QIQADS UI S[[AD I, +8(D JO UONBATOY

SISQUJUAS UBIA[3-N
£3101X0)0349 [[99 N :SSuIpuy 10y)Q
s1LooydwA] pooiq ur
uorssardxo 1soySTy ‘BwWy)Se QIS UT
passaidxo A[[enuarolyip (JZSV.L)
uononpsuen 2)se) 1Nig :Surpuy Jofejy

1"TA 8-Jo eurunyp

veen xumewiyy

CA 839y eullIn([]

07 snid
€E1N XUPWARY

0T LS XHowAgy

(Tonuod 10 eruyse oyd
-ourso9 ‘sA) ewyjse orrydourso
-quou ur parpmnys arom sofyoid

s100[qns 87 uorssardxe ouaS orrydonnaN

S[onuod ‘sa (Juaysisiod

JUIISURI}) 9ZOOUM JURJUT UT

s302[qns g1 uorssaxdxo oua3 [enuaIPIq
uoneindod euyyse ormerpad ur
3] wnias [8)0} pue

s3102(qns ¢z uo1ssaIdxa auas jo sisA[euy

S[OIIUOD "SA
sdnoi3 oneuyjse pjiw pue
219A9s ur pareduiod

s100[qns §7 S[9AQ] uoIssaIdxa ouan

$9)K00)N9] pareuOTORI} UT
uorssardxe -sonewyise Jnpy g
UQIP[IYO Ul SNJe)S
UONOQJJe BUWIYISE/AILIOAdS BWUYISY “|
:suostredwod Arewtig

s302lqns 17 suone[ndod jnpe pue omeIpaq

(0102) 'Te 10 soureqg
spydongnanN

(8007) 'Te 10 urandey]

(1102) 3
ayeySuruuny

S1122 L +#dD

(T100) 'Te 32 noIsNs |,
$1122 L +8dD/++dD

(€102)

‘e 39 SeXRI-YIewsIO

$24M

skemyped/souad pajeoryduy

uoje[d

az1s odueg uondurosap [eyuswrradxyg

Apmg

(s1109 aunuwui/poojq exoydriad) sarpnys uorssardxa auod ewiy)sy [0 dqBL



J. Sordillo and B.A. Raby

160

s[epowr uonorpaid ur pasn g doy

(Kyogroads 9, 0] “AiAnIsuas ‘soua3 passardxa A[[enuaIyyIp

% 86) LEWIYL Pue ‘[ALSTN ‘AdAN drydpeag OL1 JO :S[ONUOD "SA SOLRWY)ISE
PaureIuod [opow ewyIse I0j 2AnIpaId 1sog 8]y uewny eurwN{[] s302[qns g ur uorssardxa auas [enuateyIq (1102) ‘Te 3 uIlys

sO(/sAkoouowt ur Afurewr uonengaidn suone[ndod (120 oyroads uo

oyroads ouad ¢Ayrunwrur oandepe ‘ejeuur MDd-1Yb ¢eouadsareauos sa

‘uoneI3rw 94K203Nn3 ‘pIoe dIUOPIYIEIE sdiyp ouen o'z snid SuONeqIodEX? BWYISE SuLInp
:uoneqIadexe Suump sAemyjed jo uorssardxyg €CTN XMOWARY s309lqns /9 SOINGdJ jo Surgoad uorssaxdxg (6007) 'Te 1° BIRIQNS

(395 1593 Juepuadopur 0-INLL ‘g-T1 pim

ue ur asuodsar Do) pajorpard souad JUQUIIBAT) J3YJ PUR ‘QuUIfaseq Je

952U} JO GT) JUdUWIBAL DO YIIM S[[D ‘s100lqns oneuIySe JULISISAI-DO)

SIopuodsal )0 UT PISIOAI 1M 0-INL 198 66N "SA QATJISUDS-(PIOOTI0000N]D))
‘d-11 191Je soua3 ¢7@ ur safueyd uorssardxg sAelIR Y XINQWAY sy00lqns 901 DD ur sureped uorssaxdxg  (G00T) ‘T8 19 uosIeuoyeH

sAemyped sunurwr

JAndepe Weansumop pue ‘UOIBAIOR 9140 ewIyIse Juadsamb ‘sa

-oydwA] ‘Ayrunwwit 9JeuuT Ul paynuIpt veein UoneqIAdeXd BWIISE JuLInp
SoImeuSIS PAIRIOOSSE-UONBQIIORXD JoUnsIg XINQWAYY s300[qns 8 | sopyoid uorssardxa [eroydued  (1107) ‘e 10 Jmopsulolg

(JoIIU09 “SA) UONIAJUI
Krojendsar yym
SoneWISLUOU 0}

uonoayur A1ojendsar Suunp paredwoo {(ewyise
Ul POAIISQO OS[B SUONEGIdJBX BUIYISE UT JIqeIS "SA) UOIBQIIOBXD
soua3 passardxa A[fenualofjip ¢G1 jo Auejy 8Joy urWINY euUTWN([| s109[qns ¢ ur sa[yoid uorssaidxg (6002) 'Te 10 Doy
SOWdd
S[OJIUOD *SA SOTRWI)SE
. SIosea[aIuOU,, ur  SI9SeI[aIuOU,,
‘sA  s1ose9fal,, [rydoseq ur (103dodar ‘SA (SUDJUI[-SSOID T30 YIm
 ouIue)ISIy yrunqns ¢ ‘0 1Y39,) soua3 s1oyerpaw 9onpoid) spiydoseq
Jounsip o[dnnu saonpur JULuI-sso1d Y39 VEETN XINRWARY sy02lqns g7 Josearal,, woly so[yoid uorssardxg (L00T) ‘Te 12 Jossnox
spydosvg
skemyped/souad pajeoriduy uLojie[d 9z1s ojdwreg uondrosap [ejuowradxyg Apms

(Ponunuod) T°01 AIqEL



161

10  Gene Expression Profiling in Asthma

(panunuoo)

s100[qns . MO[-ZYL,, Uy} uoIssaidxao
uronw pue g3 wnias ‘asuodsax
SOI ‘erydoutsoa v pue
rexoyduad 1938213 pamoys  Y3iy-gy L,
(s[onuod woij 9[qeysm3unsipur)
«MO[-TUL,, PUe YSTH Z-YL,,
sdnoi3qns om) ojur sonRWYISE
payisse[o sisA[eue uoissaldxo quon
sonewyIse ut
1Sd 93 Jo uonen3axdn ‘gqg urdiog
‘unsonrad ‘1D Jo uorssardxa
PISELIOIP YIIM PAIBIOOSSE
SPI0IQ)SOINI0D (S[ONU0D Jurjouws
*sA euayse ur pajendaidn ‘gqurdios
pue ‘unsouad [y Jo uorssaxdxyg

sasuodsar [yJ, pue

oriydonnau paseardap ‘spiydoursod
V4 pue poojq ‘g3] pasearoul
)M PIJRIOOSSE pue ‘UOoTssaIdxa
d49ad ‘g-4DL WM ‘G-I ‘€ 1-T1

0T snid
€E1N XUPWARY

0T snid
€E1N XUPWARY

Kelre My

syoalqns

sy300(qns 98

sosuodsal (P10IaISOO1I0d

pareyur) SOI pue Alojeurweyur

‘QuIy03£5 SuIsSn pAJepI[eA ‘UOIIBOYISSE]D

adKjouayd gy, ;e[nOS[OW 10§ pasn
soua3 o[qronput ¢[-7[ Jo uorssaidxyg (6007) ‘Te 12 JJNIPOOA

SPI0I)SOIILI0D JO SIOAYJO ‘SIN[IeW
uonounysAp rereyiide 10§ S[ONUOD
Sunjows-uou ‘s[onuod Jurjows
‘sonewuypse jo Surjyold uorssardxg (LO0T) ‘Te 12 JPnIpoop
§1120 (oyaynda Komary

SIoyIeW AloJeWWRUl
UM UONB[ALIOD pue
‘sonjeuwIyISe ur uorjewejur

‘977 IDD WM PAB[ALIOD AINjRUSIS 7Y L 10[02-0M1 JURISY  $309[qng O YL Jo uondirosap aanenueng) (1102) 'Te 32 KAoyD
juowdofaaap
pue ‘quawasowr ‘A3ofoydiow
[[99 Ul syIom)au ua3 ud} (7109
PUE ‘UNSOLIdd ‘ULIPUR]) sauad +XT1d SO/bas BWIISE UT ApNIs uorssardxo
[enPIAIPUI JO UOTSSAIAXD [eNUIHI -VNY uoneaQ sy00[qns ¢ ouoag TenuareIp 10y bog-yNY (£107) ‘Te 10 YOIX
sa15do1q [pryouoiqopuyy
sSuipuy wiopield  9zis o[dweg uonduosop [ejuswnradxyg Apms

/pagnuapt skemyjed sauag Jofejy

(3uny) sarpnis uoissardxo uasd ewWSy 7°0T dAqEL



J. Sordillo and B.A. Raby

162

NSV onewiyse ur £t

-[1oBNUOD PIjeS0Iqe PAJenSUOWp

UMOP-YOoouy YNYIS UI uorssaidxe

#XON 3Un{o0[q ¢S[ONUOD “SA

uorssaxdxa $XON Ioy31y pey os[e

PuE S[[20 JASV UI UapIng dAIBPIXO
PaseaIdul pamoys s3109[qns onewyIsy

BUIY)SE Ul poje[nSarumop
uolssaidxo unosuoiqy sonewyise
ur 3urfopourai/iredar 105 s39s ouad
Jo uorssaIdxa [enUAIIIP {(S[ONUO0D
Ayyreay 1o o1doje sA) sonewyise
ur aredar 1700 Tereyide 1omo[S
(j{10M)aU QU3 0)
[enuad [JINLL ¢ urpuodsoquiory])
skemiped ssans aATjepIXO
3uny ur souad g ‘ansodxa ayjowrs
anaIe3o pue ewylse ut sapyod
uorssaxdxa 10§ sauad SurdderroaQ 9g
uonovJuI
AY 01 Joud uaas uorssardxa
Ul SOOUIRJJIP PJe[I-BUIISE
JO Jsow ‘SonjewyIse ul passardx
A[[enUQIoJJIp SQUA3 paje[al
-QUNUWIWI QWOS ‘UONIJUI-AY 1YY

veeIN xmowkyy

VeECTN Xmowiyy

YVOErdOIN
VEETN XMWy

0°C snid
€€1N XIWARY

s300[qns g/

s100[qns 11

asnow
¢ ‘uewny|
7:S19seIRD §

s109[qns g1

S[OTIUOD PUE SONEWISE UT
BIEp UOISSaIdXd opIm-owouad
0 PaJe[aI UDY) SJUSWAINSBIW

‘SOY Tern[reoenur ‘asewrep YN £q

PAJEN[BAd USPING SSAMS JANEPIXO

(sjonuod

ordoje-uou Ayyreay pue s3oalqns

o1doje 03 paredwood) soneWYISE Ul
swstueyoow Iredar Aemire jJo Apmg

amsodxa ayows 913218310 ‘BUIy)Se

ur uorssardxa ouag Jurdderrono Apnis 03

pasn sjaseyep d1iqnd asnow ‘uewnH

sonewyiseuou

*SA sonewry)se ur paredwod uorssardxa

QUAS paonpul-( AY)SNIIAOUTYY

(2102) T& 30 2g1OINg
212snUt YJoOoULs kDMLY

(0107) Te 19 o101y

(6007) "T& 10 1EIYSTaL]

(0102) "¢ 10 Aoyyoog

s3urpuy
/pagnuapt sKemyjed sauag Jofej

uLope[d

az1s o[dweg

uondrosap ejuowLradxyg

Apms

(panunuod) Z'01 dqEL



163

10  Gene Expression Profiling in Asthma

(voradd pue ‘gq¢1l ‘190d-VIH

‘VIOY ‘T090Y) uswdo[osap
Sun[ SuLmp passardxa A[fenuaroygip

sauad YA D euyse Suawdoaasp
3un| SuLmp soua3 eprpued
BUWIYISE JO UONEBIUSAIdIIIdA0 ON

(ONad

pue [ AH:]) SewooIno [edrurd
YIIM pjeIdosse s1a)snjd adAjouayd

uonewwR Ul

[ydoursos 10 Trydomnau

0) popuodsariod g ‘skemiyped

g3-AN 0-INL T-TI £q pouyap
sadKjouayd ewyyse reuondrosuel], ¢

Arurey urejoxd Yooys Jeay oy

ur ¢ Surpnpour ‘skemyjed osuodsar

QUNWII/SSANS UL G| ‘SOUT
passa1dxa A[[enuaIdyIp OS 9y JO

0 snid €e1nN

XLIPWAY s109[qns g¢

TAS-JoIuRWIngy

eurwny[y s100[qns G

VECTNXmAWAY  s1alqns o

juowdoroaap Juny

[e19] Sunmp uorssardxe aud3 [enuAIPIq

sjnpe ur ewyise jo JurdKjousyd
Ie[noa[ow Joj eyep uoissaidxo

Jo Sur)snyo [edryorerdny pasiarodnsun)

$100[qns [0NUOD "SA SOEWIY)ISE

o1319[1e ut s9[yoid uorssardxa ouan

(1102) 'Te 19 WP
anss1y Sunj p1ag

(1102) T8 10 soureg
winnds paonpuy

(0102) ‘I8 10 S10pRN
sa3pydotdovut avj0dA]y



164 J. Sordillo and B.A. Raby
10.2.1 Immune System Genomic Profiling Studies

The easy access of peripheral blood cells, together with the central role of the
immune system, in asthma pathogenesis has motivated multiple genomic studies of
cell populations collected by phlebotomy. In theory, studies of specific, homoge-
neous cell populations (for example, CD4+ lymphocytes, eosinophils, or neutro-
phils) should provide more readily reproducible biological insights regarding
specific pathogenic mechanisms than studies of heterogeneous cell populations (for
example, peripheral blood mononuclear cells; PBMCs). However, the latter may be
more powerful for genomic classification in clinically motivated studies, for exam-
ple, when the primary goal is to reclassify patients into molecularly similar sub-
groups. While this has largely borne true, notable exceptions are evident. For
example, Hakonarson and colleagues examined the genomic profiles of 106
glucocorticoid-sensitive and resistant asthmatics using PBMC-derived RNA
extracted in a resting state and following in vitro treatment with IL-1 (Hakonarson
et al. 2005). A total of 11,812 genes were examined with high-density oligonucle-
otide microarrays in both resting PBMC (106 patients) and IL-1p/TNF-a stimulated
cells treated with or without dexamethasone. More than 5,011 differential expressed
genes were detected, of which 923 were reversed by dexamethasone in glucocorti-
coid responsive patients. A smaller subset of 15 genes classified responders from
nonresponders with 84 % accuracy. Technical validation for 11 of these genes was
confirmed, with one gene—NFKB—demonstrating predictive accuracy of 81.2 %.
Studies in other individual peripheral blood cell types have provided other insights.
Tsitsiou and colleagues compared CD4+ and CD8+ T-lymphocyte expression pro-
files of severe asthmatics vs. controls. They found that compared to CD8+ cells,
CD4+ profiles yielded relatively few differentially expressed genes, with the excep-
tion of upregulation of the Vitamin D signaling pathway. CD8+ derived profiles
showed multiple upregluated genes in severe asthmatics, with enrichment for T-cell
activation and inflammation pathways (Tsitsiou et al. 2012). In a transcriptomic
study of CD4+ T lymphocytes from mild-to-moderate childhood asthmatics,
Hunnighake and colleagues found striking differences between boys and girls in
those genes and gene pathways associated with total serum IgE levels (Hunninghake
et al. 2011). For example, the gene most strongly correlated with IgE levels—the
Interleukin 17 Receptor B (IL17RB)—was only correlated with IgE in boys, with
no single gene demonstrating strong correlation in girls. The sets of gene pathways
correlated with IgE levels in boys and girls were also nonoverlapping, suggesting
distinct molecular mechanisms underlying the noted sexual dimorphism of serum
IgE—a critical allergic intermediary phenotype in asthma.

While transcriptional phenotyping efforts aim to describe underlying heteroge-
neity in asthma cases (which is presumed to be relatively constant), other studies
attempt to capture transient changes in gene expression that occur during asthma
exacerbations. Asthmatic subjects’ gene expression profiles from PBMCs collected
during an exacerbation show increased expression in innate immune pathways
(TLRs, interferon response genes), adaptive immunity (B-cell and T-cell lympho-
cyte activation genes), and upregulation of arachidonic acid/prostaglandin pathway
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genes as compared to PBMC samples drawn during a quiescent time period
(Bjornsdottir et al. 2011; Subrata et al. 2009). PBMC expression profiles during
acute asthma exacerbation also show considerable overlap with expression levels
from nonasthmatics experiencing upper respiratory infection (Aoki et al. 2009),
suggesting that immune pathways activated in response to infection may amplify
Th2-mediated responses during asthma exacerbations. An in vitro stimulation
experiment of infection-related inflammation (atopic monocytes exposed to IFN-o)
demonstrated upregulation of the same atopic pathway genes observed in PBMCs
from asthmatic children during exacerbation (Subrata et al. 2009).

10.2.2 The Pulmonary Compartment

Gene expression studies of pulmonary tissues in asthma are equally heterogeneous,
ranging from studies of whole lung tissue (from surgical specimens) to studies of
bronchial epithelium (derived by endobronchial brushing) to studies of alveolar
macrophages from induced sputum. Expectedly, the results from these studies are
similarly disparate to those observed in the peripheral compartment. They are also
no less revealing. Much attention has focused on a transcriptomic profiling study of
bronchial epithelium collected during a clinical trial of inhaled corticosteroid thera-
pies, resulting in the identification of a potential pharmacogenetic biomarker—
Periostin (Woodruff et al. 2007). Profiling of airway epithelial brushings obtained
from nonsmoking asthmatics (n=42) and healthy controls (n=28), identified 22
differentially expressed genes, including three genes whose expression reverted to
levels similar to those observed in healthy controls following treatment with inhaled
corticosteroids: chloride channel, calcium-activated, family member 1 (CLCAI),
periostin, and serine peptidase inhibitor, clade B (ovalbumin), and member 2 (ser-
pinB2). In vitro studies confirmed increased expression of these three genes upon
cell culture with interleukin-13, a phenomenon also reversed with corticosteroid
treatment. A fourth gene, FK506-binding protein 51 (FKBP51), was markedly
upregulated in vivo following inhaled corticosteroid treatment, and the expression
of all four genes was predictive of clinical corticosteroid response. An independent
RNA sequencing study (RNA-Seq) of endobronchial biopsies revealed differential
expression of both novel and confirmative asthma-related genes and included
upregulation of pendrin, periostin, and downregulation of BCL2 (Yick et al. 2013).

A common observation of many lung compartment studies (of varying cell types)
is the induction of oxidative stress response genes in response to relevant exposures,
such as mechanical and oxidative stress, among asthmatics compared with healthy
subjects. For instance, primary airway smooth muscle cells from asthmatics show a
higher burden of oxidative stress (including oxidative stress-induced DNA damage
and increased production of reactive oxygen species) and also demonstrate increased
expression of NADPH oxidase (NOX) subtype 4, an enzyme which may be involved
in airway hypercontractility (Sutcliffe et al. 2012). A systems biology analysis
based on the integration of publically available datasets (two mice and two human)
revealed 18 oxidative stress genes common to both cigarette-exposed and asthmatic
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lung cells, including TIMP1 (tissue inhibitor of metalloproteinase 1) and THBSI
(thrombospondin 1), which were both central to the molecular network constructed
using the overlapping transcripts (Freishtat et al. 2009).

10.3 Methods

10.3.1 Tissue Sampling and RNA Isolation

The most important determinants of the quality and reproducibility of genomic data
relate to the quality of the input RNA sample, including its purity, integrity, and
quantity (Table 10.3); careful consideration of these features is critical during study
design and execution. Due the inherent instability of RNA and the ubiquity of
RNase enzymes, minimizing RNA degradation is a priority. While many technical
issues can be addressed by normalization in the later stages of study (particularly
those related to RNA extraction), the choice of tissue type, methods of tissue pro-
curement, and methods of cell isolation must be designed specifically with refer-
ence to their impact on RNA quality, as inferiorities introduced in these earliest
stages are often not addressable later on. Moreover, the sensitivity of the transcrip-
tome to changes of the cellular environment (including the induction of hypoxia or
temperature-related stress responses) mandates that any technical deficiencies that

Table 10.3 Determinants of RNA quality

Feature Sources of inferiority Solutions
Purity Multicellular tissue Tissue microdissection
DNA contamination Cell sorting
Organic or inorganic contamination Cell culture
Formaldehyde-fixed paraffin-embedded Analytical considerations
(FFPE) samples DNase treatment

Rigorous protocol adherence/
repeat extraction protocol

FFPE-specific extraction
procedures and platforms

Integrity Sampling-related gene expression induction Rapid sample preservation,
(hypoxia- or temperature-induced stress including flash freezing.
response, autophagy, and apoptosis) Modest sample cooling

RNA degradation (during extraction) Immediate RNA extraction
RNA degradation (from multiple freeze—thaw RNA preservatives
cycles) Sample storage in multiple
aliquots

Quantity Low cellular yield (small sample size, low Sample pooling

percentage of target cell) Cell culture and expansion
Low intracellular RNA content (granulocytes) RNA amplification procedures

High RNase content (eosinophilic inflammation) Low yield protocols
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arise during sampling and RNA extraction are introduced nondifferentially between
study groups (i.e., between cases and controls and treated vs. untreated samples), so
as to avoid technical biases that irreversibly confounds data analysis and interpreta-
tion. Thus, study design should ensure that all samples are obtained and processed
uniformly (Kerr 2003).

Guanidinium thiocyanate—phenol-chloroform extraction (Chomczynski and
Sacchi 1987), a phase separation protocol, is the most commonly used method of
RNA extraction. Several extraction kits from Invitrogen (TRIzol), Bioline (Trisure),
and Tel-Test (Stat-60) are commercially available that offer high-throughput scal-
ability for large-scale studies and small amounts of starting substrate. Recent mod-
ifications include chemistries for isolation of a wider range of RNA moieties,
including shorter length microRNAs, without sacrificing yield of larger mRNA
populations. Regardless of methods used, the resultant products should undergo
rigorous quality assessment. RNA integrity, sizing, and concentration are esti-
mated by either agarose gel (with ethidium bromide) or using microfluidic instru-
mentation (BioAnalyzer 2100, Agilent Inc.), estimating the ratios of the two
ubiquitously expressed 28S and 18S ribosomal protein subunits (see Fig. 10.1).
Traditional spectrophotometric analysis (optical density measurement) provides
additional information regarding sample purity, with A260:A280 ratios of ~2.0
reflecting an absence of organic contamination. Concentration measurement by
fluorescent dye analysis on agarose gel (with ethidium bromide) or by photometer
is advised, particularly for low yield samples, though such samples can also be
accommodated with the BioAnalyzer using modified (Pico) protocols. Extracted
samples should be stored in liquid nitrogen in RNase-free tubing, with division of
samples into multiple aliquots to avoid sample degradation from repetitive freeze—
thaw cycles.

10.3.2 Sample Profiling (Table 10.4)

Platform Considerations
Oligonucleotide Microarrays

Until very recently, most genome-wide expression profiling was performed using
single-channel, hybridization-based oligonucleotide microarray technology (Schena
et al. 1995). In this method, RNA samples are converted to fluorescently labeled
cDNA by in vitro reverse transcription (IVT) (Rajeevan et al. 2003), generating a
pool of targets. This complex pool is subsequently hybridized against a microarray
surface densely studded with populations of oligonucleotide DNA sequences,
20-50 bases in length, each of which is complementary to a specific target RNA
sequence. These oligonucleotide probes, situated at fixed positions on the microar-
ray slide, bind their complementary targets. Quantitative measures of the fluores-
cent intensities at each fixed probe site, captured by confocal microscopic
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Fig. 10.1 RNA quality assessment: Illustrative examples of BioAnalyzer 2100 RNA assessment
analysis from four total RNA samples derived from CD4+ T lymphocytes with plots of fluorescent
units (FU) as a function of RNA size (in base pairs). Size standard from ladder (L) correctly situ-
ated at 25 bp. Samples A and B represent good quality samples with no degradation and adequate
RNA concentrations. Samples C and D are both of poor quality, with evidence of degradation,
including accumulation of short RNA products at ~100 bp (arrows). Neither sample C nor D is
suitable for transcriptome profiling. Note that peaks between 25 and 100 bases are desired in
preparations derived from small RNA extraction protocols. Small peaks at 100 bp are often
observed following TRIzol or phenol extraction, denoting small ribosome proteins 5S and 5.8S, as
well as tRNAs, and do not represent poor quality sample

fluorometry, correspond to the relative abundance of the target RNA in the biologi-
cal sample. Improvements in chip manufacturing, probe density, and imaging reso-
Iution have facilitated development of arrays with more than one million unique
features at relatively low cost (<$150 per sample), enabling simultaneous character-
ization of virtually all known RNA sequences, including numerous splicing iso-
forms, using relatively small amounts (~100 ng) of starting RNA. Manufacturers
have developed a wide range of arrays that assay human and nonhuman model
organismal genomes and typically offer a range of chip designs that differ with
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Table 10.4 High-throughput gene expression profiling platforms
Oligonucleotide microarrays
Two channel Single channel RNA-Seq
Advantages Low RNA Low RNA Sequence-independent
requirement requirement measurement
Low array costs Low array costs Novel isoform, sequence
More direct compari- ~ Wide availability identification
son of paired Wide selection Accommodates both long
samples via of array types/ and short-length RNA
competitive content species.
hybridization Analytic methods Detects sequence
Analytic methods well established polymorphism and
well established allelic expression
Read-depth measurement
of transcript abundance
Disadvantages More limited Fixed content High RNA requirement

availability
Lower target content
Fixed content
Labor intensive
(equimolar
sample mix)
Sequence-dependent
hybridization

Labor intensive
(equimolar
sample mix)

Sequence-dependent
hybridization

Intensity-based
indirect measure
of transcript

High array cost

Sensitive, labor-intensive
library preparation

Intensive bioinformatics
support for sequence
alignment required

Analytic methods less well
established

Intensity-based abundance
relative measure of
transcript

abundance

Considerable data storage
challenges

respect to array content (number of genes, isoforms, and RNA type), as well as the
number of samples (arrays) that can be assayed per chip. As a consequence, this
technology has been the most widely adopted, resulting in a well-developed under-
standing among the scientific community of array performance (including each
platform’s strengths and liabilities) and a comprehensive set of statistical approaches
for image processing, sample normalization and quality control, and data analysis
(see below). Using standardized approaches, implementing stringent adherence to
quality assessment and uniform analysis methodologies, data reproducibility has
been demonstrated to be high, both within and across laboratories (Irizarry et al.
2005; Shi et al. 2010).

The earliest oligonucleotide microarray protocols implemented a two-channel
competitive hybridization approach, whereby the relative expression of two biologi-
cal samples are contrasted directly by separate labeling of each with fluorophores of
differing fluorescent spectra, hybridizing both to the same array in equimolar con-
centrations, and measuring their relative intensities by image capture of each fluo-
rescent spectrum (i.e., two channel). There are several limitations of the two-channel
approach, most notably the needs for stringent equimolar mixing of two target pools
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and for performing technical replicates with dye-swap to avoid dye-dependent bias,
as well as a reduced feature (probe) content per array. Though these disadvantages
have led to preferential adoption of single-channel protocols for most studies, a
natural application of two-channel arrays is in studies of matched, paired samples
(for example, within subject comparisons of samples obtained pre- and posttreat-
ment), where the contrast of interest can be assessed directly using individual
assays, reducing the potential for cross-array technical bias.

The inherent disadvantage of oligonucleotide microarray expression measure-
ment is the dependency on efficient, unbiased hybridization of target sequence to a
predefined, fixed probe set. Due to differences in GC-content and sequence com-
plexity across probe types, hybridization kinetics is not uniform across probe types.
Limitations in microarray probe capacity restrict the number of discrete targets that
can be assayed (for example, splice isoforms) and also limit the dynamic range of
intensity measurement (the upper-limit of which is bound by complete probe satura-
tion). The dependence of efficient hybridization on sequence alignment with fea-
tures prespecified on the chip precludes novel transcript identification. In addition,
DNA polymorphism can differentially impact hybridization between subjects, spu-
riously generating differences in measured gene expression, even for variants that
themselves have no functional impact on RNA transcript abundance (Alberts et al.
2007). Until recently, these limitations were largely not addressable and considered
recognized trade-offs for comprehensive, inexpensive genome-wide surveys of
expression. However, the development of hybridization-independent, highly paral-
lelized (so-called next-generation) sequencing platforms have largely solved these
issues (Schuster 2008).

Next-Generation Sequencing

Over the past half-decade, several platforms have been developed to enable sequenc-
ing of oligonucleotide sequence (DNA or RNA) in a highly paralleled fashion, with-
out the need for predefined sequence-dependent hybridization. These include
platforms developed by Roche, Illumina, Pacific Biosciences, and Helicos
BioSciences, among others. Detailed reviews of these technologies are available
elsewhere (Metzker 2010). These methods generate sequence reads of between 30
and 135 bases in length (depending on platform), sampled (fairly) randomly from
the target sample. With sufficient sequencing, adequate coverage can be attained to
accurately call bases from complete genomes. In addition to quantitative sequence
analysis for the detection of genetic variation, sequence data can be analyzed quan-
titatively, as read-count—the number of times a given base is represented in a ran-
dom read—correlates with the amount of target sequence starting concentration
(Wold and Myers 2008). Unlikely microarrays, where transcript abundance is indi-
rectly quantified by measuring hybridization events, sequencing-based measures
represent more direct observations, namely individual transcript reads. As such,
next-generation sequencing of RNA (RNA-Seq) represents a powerful tool for com-
prehensive characterization of transcript abundance at a genome-wide level (Wang
et al. 2009), with excellent technical reproducibility (Marioni et al. 2008; Mortazavi
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et al. 2008). Freed from the constraints of prespecified probes, RNA-Seq also
enables complete enumeration of alternative splicing events and use of alternative
transcription start sites, including novel isoform identification. These features make
RNA-Seq quite attractive over microarray methods. However, limiting its introduc-
tion in most laboratories is the considerable cost, which is currently four to five
times that of traditional microarray expression profiling, though it is expected that
this will continue to drop to a more competitive price point in the near future. The
other critical limitation of RNA-Seq is that regarding sequence preprocessing and
downstream analysis, which are considerably more involved, and comparatively
less well developed, compared to microarray analysis. Unlike microarrays, where
gene identities of each probe are known by their coordinates on the array, the
sequences generated from RNA-Seq must first be aligned to a reference genome,
then annotated and assigned gene identity. This requires experienced bioinformatics
analysis, also adding to the total costs of transcriptome characterization by RNA-
Seq. The ability to accurately align sequence is dependent on sequence length (plat-
form dependent), read-depth (which is contingent on the capacity of the platform,
the size of the targeted genome, and the number of genomes analyzed per sequence
run), and genome complexity. Moreover, the amount of data generated per sequence
run (terabytes) is considerably larger than that for microarrays (megabytes), neces-
sitating access to large-scale computing and storage capacity.

RNA-Seq, though powerful, is not without its challenges. Paramount are several
recognized sampling biases, and the need for novel analytical strategies to accom-
modate these issues and perform statistically robust experimental analysis. With
regard to sequence bias, the most well understood relate to local sequence complex-
ity, inadequate library preparation, and sampling dependency on gene length.
Though a random process, larger genes have greater likelihood of being sequenced
than smaller transcripts, introducing gene-specific biases. In addition, the more
complex (unique) a particular sequence, the more likely it will be accurately aligned.
Similar to microarray-based assessments, target GC content induces systematic dif-
ferences in read depth (Pickrell et al. 2010). As an additional complication,
sequences (genomic regions) are sampled insufficiently if library preparation is
inadequate. The process of library preparation demonstrates inter- and intratechni-
cian variability. Thus, like with traditional microarray analysis, it is likely that
RNA-Seq is similarly susceptible to technical batch effects, which should be
accounted for during study design and analysis (Hansen et al. 2012).

Sample Processing Considerations

Despite substantial advancement in sample processing, labeling chemistries, array
synthesis and hybridization protocols, microarray profiling remains highly sensitive
to technical artifact, introducing the potential for biased measurement and erroneous
data interpretation (Benito et al. 2004; Fare et al. 2003). These biases can be intro-
duced at various stages, during chip manufacturing, sample labeling, hybridization,
or image capture. Technician-dependent variance is also frequently observed.
Though such issues can be largely overlooked in small studies of a handful of
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Fig. 10.2 Sample processing strategies: (a) Sample randomization for the avoidance of technical
bias: dot plot of first two principle components (PC) analysis of whole blood gene expression
profiles of 285 samples collected from asthmatic subjects at nine centers across the USA over a
4-year periods. Samples were hybridized and imaged over 6 months on 32 [llumina HumanHT12-v3
BeadChips. The homogenous distribution of samples from disparate sites over the two-dimensional
PC space supports an absence of confounding between technical batch and study site, as confirmed
by formal statistical testing, illustrating successful sample randomization during processing.
(b) Longitudinal internal quality control analysis: line plot of global gene expression intensity pat-
terns of a replicate HeLa-cell derived RNA sample hybridized to unique array positions for 32
Illumina HumanHT12-v3 BeadChips over a 6-month period. Lines denote 0, 5th, 25th, 50th, 75th,
95th, and 100th percentiles of expression for each sample. Arrays processed together in batches
denoted by color coding along abscissa. Note a purple cluster of four arrays (long arrow) with
deviant intensities, suggesting improper processing of one batch of samples that should be consid-
ered suspect and candidates for repeat profiling. In contrast, a yellow cluster of three arrays pro-
cessed simultaneously revealed one of three (short arrow) with deviant intensities. The 11
experimental samples corresponding to the same chip revealed similar deviations, resulting in
removal of these data from consideration and repeat profiling of the samples

samples, processed by one technician over several days, the asthma studies typically
conducted in larger patient populations are highly susceptible to these concerns.
While subtle technical variability is both expected and tolerable, it cannot be
overstated that, if introduced in a nondifferential way, technical bias is not easily
amenable to downstream statistical correction. For example, if samples from asth-
matic cases and healthy controls are labeled and hybridized in separate batches,
resulting in systematic (technical) differences in global gene expression measure-
ments, no analytical trick can reliably disentangle the true biological expression
differences from these so-called technical “batch effects” (Scherer 2009). To avoid
this, it is imperative that design strategies aimed at bias prevention and detection be
implemented at the outset. Most useful is adherence to a strategy of consistent,
repeated sample randomization. At each major processing step (sample extraction,
labeling, hybridization, and imaging), samples should be assigned to random
batches, irrespective of disease status or other distinguishing clinical characteristics
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(treatment group, severity, and gender), so as to minimize the possibility that any
relevant covariate is confounded with latent technical artifact. This strategy is par-
ticularly useful for studies carried out over many months, where variations in
reagent manufacturing, laboratory staffing, or ambient environmental conditions are
almost certain (Fig. 10.2a). For such large studies, we also recommend introduction
of routine surveillance for reproducibility by randomly selecting samples for repeat
testing (to screen for within sample technical variability) and inclusion of standard
control samples (for example, a pool of equimolar concentrations of total RNA from
all available study sample) that is run with each batch of samples over the course of
the study (Fig. 10.2b). Such data can identify outlier batches and potentially be used
during preprocessing procedures.

10.3.3 Analytical Considerations

A comprehensive discussion of the many analytical considerations surrounding tra-
niscriptomic analysis is beyond the scope of this chapter, and many detailed, acces-
sible references elegantly explore these issues. Here, we provide a general overview
of the basic principles of microarray analysis to orient the inexperienced reader.
Following image processing and data capture, there are four main components of
transcriptomic analysis (1) quality control analysis; (2) data preprocessing; (3) fea-
ture selection; and (4) experimental analysis. While the last component is of great-
est scientific interest, it is entirely dependent on careful execution of the first three.

Quality Control Assessment

Quality control assessment is performed both study wide to screen for systematic
bias and for individual samples. Individual arrays with mean intensities >1 SD from
the mean should be evaluated as potential outliers and considered for removal.
Cluster analysis of genes mapping to the sex chromosomes can be used to identify
gender mismatches, suggesting potential sample mixup. Replicate samples should
be compared to estimate technical variance.

Preprocessing

Multiple methods have been proposed for sample preprocessing, the most accepted
of which include regression based methods, probabilistic models, and multivariate
models (including principle components adjustment and surrogate variable analysis
modeling). The underlying premise of many regression and probabilistic normaliza-
tion methods is that, under most circumstances, the majority of genes show either
no, or relatively similar, expression across samples. Batch effects can also be mod-
eled using Bayesian (Johnson et al. 2007) or other (Luo et al. 2010) approaches.
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Nonparametric procedures, like quantile normalization, scale measures across
arrays uniformly, while preserving the rank order of genes (Irizarry et al. 2003). In
contrast, multivariate models like PCA and SVA (Leek and Storey 2007) character-
ize the bulk structure of the data, defining latent variables from the expression data
itself that often reflect the effects of either known (for example, differences in
genetic ancestry) or unknown technical factors that impact global gene expression
patterns. These variables can then be adjusted out during downstream data analysis,
provided none are strongly associated with the contrast (i.e., phenotype) of interest.
Though described as distinct from the experimental analysis phase, these later nor-
malization methods are often scripted and executed together with statistical infer-
ence. Often, these methods can be applied in series, so as to reduce computation
time during iterative experimental analyses steps.

Feature Selection

Feature selection refers to the removal from consideration during analysis of subsets
of probes with undesirable characteristics, with the goal of reducing the potential
for spurious gene detection while preserving experimental sensitivity. Examples of
feature selection include filtering of probes that show either no expression, or mini-
mal variance in expression, across the population (there is little utility in formally
testing genes whose expression is static), or probes whose sequence aligns to more
than one potential gene target. Additional filtering could include those probes that
target RNA sequence known to harbor common genetic polymorphism (i.e., SNPs),
which would interfere with hybridization and generate spurious association, par-
ticularly in integrative genomic studies that consider both expression and genetic
variation simultaneously (Murphy et al. 2010). All of these aforementioned filters
are nonspecific, in that they are not imposed with reference to the biological ques-
tion of interest, and thus do not bias statistical inference.

Experimental Analysis
Differential Gene Expression Analysis

The procedures used for experimental data analysis are dictated primarily by the
biological question of interest (Table 10.5). Most analyses begin by defining the
subset of genes that demonstrate statistically significant fold-differences in expres-
sion between cellular states (i.e., asthma vs. no asthma). For studies of dichotomous
conditions, standardized t-tests, such as those implemented in the RMA procedure
(Bolstad et al. 2003), are applied with significance determined using genome-wide
thresholds that account for the large number of statistical tests performed. Numerous
software packages, including MASS (Lim et al. 2007) and limma (Smyth 2005), are
available for efficient implementation of these methods. Appropriate statistical
models have been developed to accommodate other phenotypes, including continu-
ous or censored phenotypes. The gene lists generated from these analyses is then
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Table 10.5 Experimental data analysis procedures

Test procedures Question of interest Commonly used methods
Differential expression: ~Which genes are differentially expressed limma, RMA
t-tests, ANOVA, in condition X compared to condition Y?
regression
Gene set enrichment Are specific pathways/subsets of genes GSEA, GOstats
analysis differentially expressed in condition X?
Network modeling How are the genes in this condition Coexpression networks,
related to each other? Graphical Gaussian
Models
Supervised machine Can I differentiate two or more known Support vector machine,
learning cellular states (i.e., cases vs. Self-organizing maps

controls; good vs. poor prognosis)
based on gene expression profiling?
Unsupervised machine  Are there subgroups of my disease K-means clustering
learning of which I am not aware?

examined for biological insight. Though informal gene list interpretation, based on
investigators’ knowledge, is invariably performed, numerous bioinformatics
approaches are available to evaluate the biological significance of observed profiles
in a rigorous, statistically motivated framework (Alonzi et al. 2001; Subramanian
et al. 2005). These pathway, or gene set enrichment analyses, evaluate whether the
observed set of differentially expressed genes are members of specific, predefined
gene groups with common biology. Examples of such groupings include member-
ship within specific metabolic pathways, chromosomal locations, similar sequence
features, or having similar patterns of expression in response to cellular perturba-
tion. For example, Pietras and colleagues demonstrated enrichment of several previ-
ously unrecognized signaling pathways, including the downregulation of N-glycan
biosynthesis and the upregulation of the bitter taste transduction signaling pathways
in severe asthma (Orsmark-Pietras et al. 2013).

Network Modeling

Though powerful data mining approaches, the ultimate utility of pathway-based
analytical approaches are dependent on the quality of the databases queried. Though
some gene collections are in near complete form (for example, detailed physical
genetic maps), others, including many poorly characterized metabolic pathways, are
sparser. Network modeling represents an alternative analytic strategy that attempts
to model the biological process under study by developing gene networks using the
experimental data itself (Hyduke and Palsson 2010; Vidal et al. 2011). These meth-
ods are motivated by the notion that most biological states are determined by the
interaction of numerous genes and by the observation that biological systems oper-
ate as scale-free networks, displaying a so-called small world property, where any
two genes in a network are connected by a small number of links (Barabasi 2009).
Using network-modeling approaches, one can define the interrelationship of genes
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within the transcriptome and then define the subnetwork of genes that demonstrate
greatest change with by experimental state (Chu et al. 2009, 2011; Schafer and
Strimmer 2005). Coexpression models define network structure by identifying gene
sets with similar expression patterns across disease states, experimental conditions,
or temporally. Models that consider additional genomic factors that influence tran-
scriptional regulation, including promoter sequences, chromatin modifications, reg-
ulatory genetic polymorphism, and microRNA binding, offer more complete
modeling, though are reliant on external data sources. While widely applied in the
study of oncology, use of such strategies in asthma to date has been largely restricted
to modeling of protein—protein interaction data (Hwang et al. 2008).

Clustering Algorithms and Machine Learning Approaches

Machine learning algorithms represent a broad class of methods that mine multi-
variate datasets for underlying patterns, with the goal of developing predictive func-
tions (classifiers) that can reliably differentiate samples into specific subgroups
(Inza et al. 2010; Larranaga et al. 2006). In gene expression analyses, the premise is
that the predictive functions elucidate subgroups that correspond to inherent bio-
logical differences between samples. In supervised machine learning approaches,
the predictive function learns using analyst-predefined labels (for example, case—
control status), with the goal of defining gene subsets that can accurately classify
samples into their respective subgroups. Similarly, supervised methods can be
applied for the classification of expression patterns across samples, to define subsets
of genes that follow known patterns of expression (as applied in support vector
machine learning). Conversely, in unsupervised machine learning approaches,
functions are applied with few predetermined notions regarding the underlying data
structure, enabling unbiased data mining, with the goal of defining previously
unknown sample subgroups with unique biological properties. Numerous clustering
algorithms have been developed for these purposes, including both hierarchical and
nonhierarchical methods, each with inherent advantages and disadvantages related
to underlying assumptions of the data structures, the questions being addressed, and
their computational burden. These issues are discussed in detail elsewhere (Kerr
et al. 2008). Regardless of method employed, it must be stressed that due to the
inherent p>n problem inherent in genomic analysis (where the number of features
being tested far exceeds the number of subjects), machine learning approaches are
highlight susceptible to model over fitting, resulting in partitioning of data into bio-
logically meaningless, yet statistically robust, subgroups. As such, it is recom-
mended that procedures be implemented at the outset that address this concern,
including a priori creation of test and validation datasets and use of both internal and
external cross-validation procedures. Only those models that survive stringent vali-
dation assessments should be considered viable for further interpretation.
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Fig. 10.3 RNA-Seq analysis pipeline: Raw sequence reads are converted to summary measures of
transcript abundance through a series of analytic and quality control steps that include filtering of
poor quality reads, alignment of reads to reference sequence, gene-based read count normalization,
and summarization. Transcript abundance is expressed as either reads or fragments per kilobase
exon mapped per megabase sequence (RPKM or FPKM, respectively), metrics normalized by
gene length. These counts serve as input for downstream biological inference and interpretation,
including traditional differential gene expression analysis, exon-specific (isoform) analysis, or
allelic expression analysis, where polymorphic transcript sequence variants are assessed for pref-
erential expression of one allele over the other in heterozygous subjects. Results systems based
analyses, including network building, gene set enrichment, or pathways analyses. Exemplars of
available RNA-Seq software at each analytic step are indicated in red

RNA-Seq Analysis

In broad terms, the analysis of RNA-Seq data is conceptually similar to that of
microarray analysis, with a similar framework that includes quality control assess-
ment and preprocessing, with screening for technical covariation, feature selection,
and experimental analysis. However, due to the inherent differences in data struc-
tures, entirely distinct suites of software are required for RNA-Seq analysis
(Fig. 10.3). Data preprocessing includes mapping of reads and alignment to refer-
ence genomes, followed by data normalization and summarization, where by
aligned reads are translated into more biologically meaningful transcript counts.
The number of reads generated for a given transcript is proportional to both the
abundance of the transcript and transcript length, as larger transcripts will be
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represented by a larger number of random sequence fragments. As such, to avoid
systematic biases, normalization techniques must account for differences in gene
length. Counts are thus expressed as reads (or fragments) per kilobase exon mapped
per megabase sequence. Differential expression testing employs models that con-
sider binomial or Poisson data distributions (in contrast to normal distributions
assumed by most microarray-dedicated procedures). Analysis workflows have been
packaged for several analytic environments, including the open-source Bioconductor
programming environment (Gentleman et al. 2004), Galaxy (Giardine et al. 2005),
and MeV (Howe et al. 2011), in addition to several commercial packages.

Postanalysis Considerations

Like all high-throughput, hypothesis-free studies, transcriptomic studies must be
considered as hypothesis generating exercises, requiring confirmation, validation,
and replication through a variety of means. Individual gene findings deemed of
particular relevance should be confirmed by direct technical validation using single-
gene based methods, like quantitative reverse transcription PCR. As described
above, expression profiles or sample subgrouping derived by machine learning
should be validated using both internal and external procedures. External validation
of predictive signatures in independently ascertained populations remains the gold
standard. However, to date, few studies have successfully met this mark.
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