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10.1         Introduction 

 Transcriptomics (gene expression profi ling) refers to the quantitative and qualitative 
characterization of the collection of ribose nucleic acid (RNA) elements expressed 
in a biological system and represents one of the fi rst truly genome-wide hypothesis- 
free investigative approaches in molecular biology. The advent of synthetic oligo-
nucleotide microarray technologies has enabled large-scale application of gene 
expression profi ling in the study of human disease, particularly malignant and 
hematological processes. Due to favorable characteristics of these processes, includ-
ing their involvement of one cellular compartment (and often a specifi c, monoclonal 
cell type), the severity of the underlying cellular perturbation under study (malig-
nant vs. benign cells), and the accessibility to large numbers of available banked 
samples obtained during clinically indicated medical procedures, the study of tran-
scriptomics in oncology has been quite fruitful, with notable translation of these 
techniques to novel clinical applications with diagnostic, prognostic, and therapeu-
tic implications. Furthermore, the discovery of large populations of noncoding RNA 
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elements, including microRNA and long-intergenic noncoding RNA (LINCC- 
RNA) has expanded the scope of transciptomic profi ling beyond the protein-coding 
messenger RNAs (mRNA). 

 In this chapter, we provide a brief survey of prior applications of this approach to 
the study of asthma, followed by an overview of the primary technical and analyti-
cal considerations that should be addressed when conducting such studies. For more 
detailed review of study protocols and specifi c analytical platforms, readers are 
referred to several recent publications (Matson  2009 ; Yakovlev et al.  2013 ; Dehmer 
and Basak  2012 ; Rodriguez-Ezpelete et al.  2012 ).  

10.2     Applications of Transcriptomics in Asthma Research 

 Asthma is a complex syndrome arising from the interplay of genetic and environ-
mental perturbations of two multicellular organ systems (the respiratory and 
immune systems) operating in a developmental context. Thus, in contrast to malig-
nancies that arise from radical molecular alterations in one population of cells, the 
genomic study of asthma presents a more complicated model with inherent chal-
lenges, relating to selection of disease model and tissue sampling, and analytical 
interpretation. Nonetheless, transcriptomic profi ling has been applied widely in the 
study of asthma and will likely continue to play an important role in biological and 
translational asthma research. Broad goals of such studies include discovery of 
novel pathways underlying asthma pathogenesis, reclassifi cation of asthma sub-
types on the basis of distinct genetic signatures, and understanding the cellular 
response of asthma-relevant environmental exposures, pharmaceuticals, and other 
perturbations, all with the hope of identifying new therapeutic targets. 

 Tables  10.1  and  10.2  summarize many of the published asthma genomic studies 
performed in patient populations, in the peripheral immune (Table  10.1 ) and pulmo-
nary (Table  10.2 ) compartments. Thus far, virtually all published studies have 
employed chip-based expression platforms in conjunction with traditional analyti-
cal methods of differential gene expression analysis, cluster analysis, or a combina-
tion of both. The majority of these studies have focused on contrasts between asthma 
case and unaffected control status, or across strata of asthma severity. With notable 
exception, sample size has been small, most studying fewer than 100 patients. Given 
the complexity of asthma, the heterogeneity in asthma phenotype, and wide spec-
trum of severity, small-sized studies are of limited value, particularly with regard to 
broad generalization. Complicated by differences in tissue of study, patient inclu-
sion criteria, expression microarray employed, and analytical methods, the results 
of these studies are largely nonoverlapping, and few discernable common insights 
are apparent. Moreover, few of these studies presented rigorous evidence of either 
intrinsic (technical and computational) or extrinsic (replication) validation, making 
uncertain the generalizability of their fi ndings. Nonetheless, several of these early 
efforts have provided important insights worthy of discussion here.
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10.2.1        Immune System Genomic Profi ling Studies 

 The easy access of peripheral blood cells, together with the central role of the 
immune system, in asthma pathogenesis has motivated multiple genomic studies of 
cell populations collected by phlebotomy. In theory, studies of specifi c, homoge-
neous cell populations (for example, CD4+ lymphocytes, eosinophils, or neutro-
phils) should provide more readily reproducible biological insights regarding 
specifi c pathogenic mechanisms than studies of heterogeneous cell populations (for 
example, peripheral blood mononuclear cells; PBMCs). However, the latter may be 
more powerful for genomic classifi cation in clinically motivated studies, for exam-
ple, when the primary goal is to reclassify patients into molecularly similar sub-
groups. While this has largely borne true, notable exceptions are evident. For 
example, Hakonarson and colleagues examined the genomic profi les of 106 
glucocorticoid- sensitive and resistant asthmatics using PBMC-derived RNA 
extracted in a resting state and following in vitro treatment with IL-1 (Hakonarson 
et al.  2005 ). A total of 11,812 genes were examined with high-density oligonucle-
otide microarrays in both resting PBMC (106 patients) and IL-1β/TNF-α stimulated 
cells treated with or without dexamethasone. More than 5,011 differential expressed 
genes were detected, of which 923 were reversed by dexamethasone in glucocorti-
coid responsive patients. A smaller subset of 15 genes classifi ed responders from 
nonresponders with 84 % accuracy. Technical validation for 11 of these genes was 
confi rmed, with one gene—NFKB—demonstrating predictive accuracy of 81.2 %. 
Studies in other individual peripheral blood cell types have provided other insights. 
Tsitsiou and colleagues compared CD4+ and CD8+ T-lymphocyte expression pro-
fi les of severe asthmatics vs. controls. They found that compared to CD8+ cells, 
CD4+ profi les yielded relatively few differentially expressed genes, with the excep-
tion of upregulation of the Vitamin D signaling pathway. CD8+ derived profi les 
showed multiple upregluated genes in severe asthmatics, with enrichment for T-cell 
activation and infl ammation pathways (Tsitsiou et al.  2012 ). In a transcriptomic 
study of CD4+ T lymphocytes from mild-to-moderate childhood asthmatics, 
Hunnighake and colleagues found striking differences between boys and girls in 
those genes and gene pathways associated with total serum IgE levels (Hunninghake 
et al.  2011 ). For example, the gene most strongly correlated with IgE levels—the 
Interleukin 17 Receptor B (IL17RB)—was only correlated with IgE in boys, with 
no single gene demonstrating strong correlation in girls. The sets of gene pathways 
correlated with IgE levels in boys and girls were also nonoverlapping, suggesting 
distinct molecular mechanisms underlying the noted sexual dimorphism of serum 
IgE—a critical allergic intermediary phenotype in asthma. 

 While transcriptional phenotyping efforts aim to describe underlying heteroge-
neity in asthma cases (which is presumed to be relatively constant), other studies 
attempt to capture transient changes in gene expression that occur during asthma 
exacerbations. Asthmatic subjects’ gene expression profi les from PBMCs collected 
during an exacerbation show increased expression in innate immune pathways 
(TLRs, interferon response genes), adaptive immunity (B-cell and T-cell lympho-
cyte activation genes), and upregulation of arachidonic acid/prostaglandin pathway 
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genes as compared to PBMC samples drawn during a quiescent time period 
(Bjornsdottir et al.  2011 ; Subrata et al.  2009 ). PBMC expression profi les during 
acute asthma exacerbation also show considerable overlap with expression levels 
from nonasthmatics experiencing upper respiratory infection (Aoki et al.  2009 ), 
suggesting that immune pathways activated in response to infection may amplify 
Th2-mediated responses during asthma exacerbations. An in vitro stimulation 
experiment of infection-related infl ammation (atopic monocytes exposed to IFN-α) 
demonstrated upregulation of the same atopic pathway genes observed in PBMCs 
from asthmatic children during exacerbation (Subrata et al.  2009 ).  

10.2.2     The Pulmonary Compartment 

 Gene expression studies of pulmonary tissues in asthma are equally heterogeneous, 
ranging from studies of whole lung tissue (from surgical specimens) to studies of 
bronchial epithelium (derived by endobronchial brushing) to studies of alveolar 
macrophages from induced sputum. Expectedly, the results from these studies are 
similarly disparate to those observed in the peripheral compartment. They are also 
no less revealing. Much attention has focused on a transcriptomic profi ling study of 
bronchial epithelium collected during a clinical trial of inhaled corticosteroid thera-
pies, resulting in the identifi cation of a potential pharmacogenetic biomarker—
Periostin (Woodruff et al.  2007 ). Profi ling of airway epithelial brushings obtained 
from nonsmoking asthmatics ( n  = 42) and healthy controls ( n  = 28), identifi ed 22 
differentially expressed genes, including three genes whose expression reverted to 
levels similar to those observed in healthy controls following treatment with inhaled 
corticosteroids: chloride channel, calcium-activated, family member 1 (CLCA1), 
periostin, and serine peptidase inhibitor, clade B (ovalbumin), and member 2 (ser-
pinB2). In vitro studies confi rmed increased expression of these three genes upon 
cell culture with interleukin-13, a phenomenon also reversed with corticosteroid 
treatment. A fourth gene, FK506-binding protein 51 (FKBP51), was markedly 
upregulated in vivo following inhaled corticosteroid treatment, and the expression 
of all four genes was predictive of clinical corticosteroid response. An independent 
RNA sequencing study (RNA-Seq) of endobronchial biopsies revealed differential 
expression of both novel and confi rmative asthma-related genes and included 
upregulation of pendrin, periostin, and downregulation of BCL2 (Yick et al.  2013 ). 

 A common observation of many lung compartment studies (of varying cell types) 
is the induction of oxidative stress response genes in response to relevant exposures, 
such as mechanical and oxidative stress, among asthmatics compared with healthy 
subjects. For instance, primary airway smooth muscle cells from asthmatics show a 
higher burden of oxidative stress (including oxidative stress-induced DNA damage 
and increased production of reactive oxygen species) and also demonstrate increased 
expression of NADPH oxidase (NOX) subtype 4, an enzyme which may be involved 
in airway hypercontractility (Sutcliffe et al.  2012 ). A systems biology analysis 
based on the integration of publically available datasets (two mice and two human) 
revealed 18 oxidative stress genes common to both cigarette-exposed and asthmatic 

10 Gene Expression Profi ling in Asthma



166

lung cells, including TIMP1 (tissue inhibitor of metalloproteinase 1) and THBS1 
(thrombospondin 1), which were both central to the molecular network constructed 
using the overlapping transcripts (Freishtat et al.  2009 ).   

10.3     Methods 

10.3.1     Tissue Sampling and RNA Isolation 

 The most important determinants of the quality and reproducibility of genomic data 
relate to the quality of the input RNA sample, including its purity, integrity, and 
quantity (Table  10.3 ); careful consideration of these features is critical during study 
design and execution. Due the inherent instability of RNA and the ubiquity of 
RNase enzymes, minimizing RNA degradation is a priority. While many technical 
issues can be addressed by normalization in the later stages of study (particularly 
those related to RNA extraction), the choice of tissue type, methods of tissue pro-
curement, and methods of cell isolation must be designed specifi cally with refer-
ence to their impact on RNA quality, as inferiorities introduced in these earliest 
stages are often not addressable later on. Moreover, the sensitivity of the transcrip-
tome to changes of the cellular environment (including the induction of hypoxia or 
temperature-related stress responses) mandates that any technical defi ciencies that 

   Table 10.3    Determinants of RNA quality   

 Feature  Sources of inferiority  Solutions 

 Purity  Multicellular tissue 
 DNA contamination 
 Organic or inorganic contamination 
 Formaldehyde-fi xed paraffi n-embedded 

(FFPE) samples 

 Tissue microdissection 
 Cell sorting 
 Cell culture 
 Analytical considerations 
 DNase treatment 
 Rigorous protocol adherence/

repeat extraction protocol 
 FFPE-specifi c extraction 

procedures and platforms 
 Integrity  Sampling-related gene expression induction 

(hypoxia- or temperature-induced stress 
response, autophagy, and apoptosis) 

 RNA degradation (during extraction) 
 RNA degradation (from multiple freeze–thaw 

cycles) 

 Rapid sample preservation, 
including fl ash freezing. 

 Modest sample cooling 
 Immediate RNA extraction 
 RNA preservatives 
 Sample storage in multiple 

aliquots 
 Quantity  Low cellular yield (small sample size, low 

percentage of target cell) 
 Low intracellular RNA content (granulocytes) 
 High RNase content (eosinophilic infl ammation) 

 Sample pooling 
 Cell culture and expansion 
 RNA amplifi cation procedures 
 Low yield protocols 
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arise during sampling and RNA extraction are introduced nondifferentially between 
study groups (i.e., between cases and controls and treated vs. untreated samples), so 
as to avoid technical biases that irreversibly confounds data analysis and interpreta-
tion. Thus, study design should ensure that all samples are obtained and processed 
uniformly (Kerr  2003 ).

   Guanidinium thiocyanate–phenol–chloroform extraction (Chomczynski and 
Sacchi  1987 ), a phase separation protocol, is the most commonly used method of 
RNA extraction. Several extraction kits from Invitrogen (TRIzol), Bioline (Trisure), 
and Tel-Test (Stat-60) are commercially available that offer high-throughput scal-
ability for large-scale studies and small amounts of starting substrate. Recent mod-
ifi cations include chemistries for isolation of a wider range of RNA moieties, 
including shorter length microRNAs, without sacrifi cing yield of larger mRNA 
populations. Regardless of methods used, the resultant products should undergo 
rigorous quality assessment. RNA integrity, sizing, and concentration are esti-
mated by either agarose gel (with ethidium bromide) or using microfl uidic instru-
mentation (BioAnalyzer 2100, Agilent Inc.), estimating the ratios of the two 
ubiquitously expressed 28S and 18S ribosomal protein subunits (see Fig.  10.1 ). 
Traditional spectrophotometric analysis (optical density measurement) provides 
additional information regarding sample purity, with A260:A280 ratios of ~2.0 
refl ecting an absence of organic contamination. Concentration measurement by 
fl uorescent dye analysis on agarose gel (with ethidium bromide) or by photometer 
is advised, particularly for low yield samples, though such samples can also be 
accommodated with the BioAnalyzer using modifi ed (Pico) protocols. Extracted 
samples should be stored in liquid nitrogen in RNase-free tubing, with division of 
samples into multiple aliquots to avoid sample degradation from repetitive freeze–
thaw cycles.

10.3.2        Sample Profi ling (Table  10.4 ) 

       Platform Considerations 

   Oligonucleotide Microarrays 

 Until very recently, most genome-wide expression profi ling was performed using 
single-channel, hybridization-based oligonucleotide microarray technology (Schena 
et al.  1995 ). In this method, RNA samples are converted to fl uorescently labeled 
cDNA by in vitro reverse transcription (IVT) (Rajeevan et al.  2003 ), generating a 
pool of targets. This complex pool is subsequently hybridized against a microarray 
surface densely studded with populations of oligonucleotide DNA sequences, 
20–50 bases in length, each of which is complementary to a specifi c target RNA 
sequence. These oligonucleotide probes, situated at fi xed positions on the microar-
ray slide, bind their complementary targets. Quantitative measures of the fl uores-
cent intensities at each fi xed probe site, captured by confocal microscopic 
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  Fig. 10.1    RNA quality assessment: Illustrative examples of BioAnalyzer 2100 RNA assessment 
analysis from four total RNA samples derived from CD4+ T lymphocytes with plots of fl uorescent 
units (FU) as a function of RNA size (in base pairs). Size standard from ladder (L) correctly situ-
ated at 25 bp. Samples A and B represent good quality samples with no degradation and adequate 
RNA concentrations. Samples C and D are both of poor quality, with evidence of degradation, 
including accumulation of short RNA products at ~100 bp ( arrows ). Neither sample C nor D is 
suitable for transcriptome profi ling. Note that peaks between 25 and 100 bases are desired in 
preparations derived from small RNA extraction protocols. Small peaks at 100 bp are often 
observed following TRIzol or phenol extraction, denoting small ribosome proteins 5S and 5.8S, as 
well as tRNAs, and do not represent poor quality sample       

fl uorometry, correspond to the relative abundance of the target RNA in the biologi-
cal sample. Improvements in chip manufacturing, probe density, and imaging reso-
lution have facilitated development of arrays with more than one million unique 
features at relatively low cost (<$150 per sample), enabling simultaneous character-
ization of virtually all known RNA sequences, including numerous splicing iso-
forms, using relatively small amounts (~100 ng) of starting RNA. Manufacturers 
have developed a wide range of arrays that assay human and nonhuman model 
organismal genomes and typically offer a range of chip designs that differ with 
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respect to array content (number of genes, isoforms, and RNA type), as well as the 
number of samples (arrays) that can be assayed per chip. As a consequence, this 
technology has been the most widely adopted, resulting in a well-developed under-
standing among the scientifi c community of array performance (including each 
platform’s strengths and liabilities) and a comprehensive set of statistical approaches 
for image processing, sample normalization and quality control, and data analysis 
(see below). Using standardized approaches, implementing stringent adherence to 
quality assessment and uniform analysis methodologies, data reproducibility has 
been demonstrated to be high, both within and across laboratories (Irizarry et al. 
 2005 ; Shi et al.  2010 ). 

 The earliest oligonucleotide microarray protocols implemented a two-channel 
competitive hybridization approach, whereby the relative expression of two biologi-
cal samples are contrasted directly by separate labeling of each with fl uorophores of 
differing fl uorescent spectra, hybridizing both to the same array in equimolar con-
centrations, and measuring their relative intensities by image capture of each fl uo-
rescent spectrum (i.e., two channel). There are several limitations of the two-channel 
approach, most notably the needs for stringent equimolar mixing of two target pools 

   Table 10.4    High-throughput gene expression profi ling platforms   

 Oligonucleotide microarrays 

 RNA-Seq  Two channel  Single channel 

 Advantages  Low RNA 
requirement 

 Low array costs 
 More direct compari-

son of paired 
samples via 
competitive 
hybridization 

 Analytic methods 
well established 

 Low RNA 
requirement 

 Low array costs 
 Wide availability 
 Wide selection 

of array types/
content 

 Analytic methods 
well established 

 Sequence-independent 
measurement 

 Novel isoform, sequence 
identifi cation 

 Accommodates both long 
and short-length RNA 
species. 

 Detects sequence 
polymorphism and 
allelic expression 

 Read-depth measurement 
of transcript abundance 

 Disadvantages  More limited 
availability 

 Lower target content 
 Fixed content 
 Labor intensive 

(equimolar 
sample mix) 

 Sequence-dependent 
hybridization 

 Intensity-based 
relative measure of 
transcript 
abundance 

 Fixed content 
 Labor intensive 

(equimolar 
sample mix) 

 Sequence-dependent 
hybridization 

 Intensity-based 
indirect measure 
of transcript 
abundance 

 High RNA requirement 
 High array cost 
 Sensitive, labor-intensive 

library preparation 
 Intensive bioinformatics 

support for sequence 
alignment required 

 Analytic methods less well 
established 

 Considerable data storage 
challenges 
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and for performing technical replicates with dye-swap to avoid dye-dependent bias, 
as well as a reduced feature (probe) content per array. Though these disadvantages 
have led to preferential adoption of single-channel protocols for most studies, a 
natural application of two-channel arrays is in studies of matched, paired samples 
(for example, within subject comparisons of samples obtained pre- and posttreat-
ment), where the contrast of interest can be assessed directly using individual 
assays, reducing the potential for cross-array technical bias. 

 The inherent disadvantage of oligonucleotide microarray expression measure-
ment is the dependency on effi cient, unbiased hybridization of target sequence to a 
predefi ned, fi xed probe set. Due to differences in GC-content and sequence com-
plexity across probe types, hybridization kinetics is not uniform across probe types. 
Limitations in microarray probe capacity restrict the number of discrete targets that 
can be assayed (for example, splice isoforms) and also limit the dynamic range of 
intensity measurement (the upper-limit of which is bound by complete probe satura-
tion). The dependence of effi cient hybridization on sequence alignment with fea-
tures prespecifi ed on the chip precludes novel transcript identifi cation. In addition, 
DNA polymorphism can differentially impact hybridization between subjects, spu-
riously generating differences in measured gene expression, even for variants that 
themselves have no functional impact on RNA transcript abundance (Alberts et al. 
 2007 ). Until recently, these limitations were largely not addressable and considered 
recognized trade-offs for comprehensive, inexpensive genome-wide surveys of 
expression. However, the development of hybridization-independent, highly paral-
lelized (so-called next-generation) sequencing platforms have largely solved these 
issues (Schuster  2008 ).  

   Next-Generation Sequencing 

 Over the past half-decade, several platforms have been developed to enable sequenc-
ing of oligonucleotide sequence (DNA or RNA) in a highly paralleled fashion, with-
out the need for predefi ned sequence-dependent hybridization. These include 
platforms developed by Roche, Illumina, Pacifi c Biosciences, and Helicos 
BioSciences, among others. Detailed reviews of these technologies are available 
elsewhere (Metzker  2010 ). These methods generate sequence reads of between 30 
and 135 bases in length (depending on platform), sampled (fairly) randomly from 
the target sample. With suffi cient sequencing, adequate coverage can be attained to 
accurately call bases from complete genomes. In addition to quantitative sequence 
analysis for the detection of genetic variation, sequence data can be analyzed quan-
titatively, as read-count—the number of times a given base is represented in a ran-
dom read—correlates with the amount of target sequence starting concentration 
(Wold and Myers  2008 ). Unlikely microarrays, where transcript abundance is indi-
rectly quantifi ed by measuring hybridization events, sequencing-based measures 
represent more direct observations, namely individual transcript reads. As such, 
next-generation sequencing of RNA (RNA-Seq) represents a powerful tool for com-
prehensive characterization of transcript abundance at a genome-wide level (Wang 
et al.  2009 ), with excellent technical reproducibility (Marioni et al.  2008 ; Mortazavi 
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et al.  2008 ). Freed from the constraints of prespecifi ed probes, RNA-Seq also 
enables complete enumeration of alternative splicing events and use of alternative 
transcription start sites, including novel isoform identifi cation. These features make 
RNA-Seq quite attractive over microarray methods. However, limiting its introduc-
tion in most laboratories is the considerable cost, which is currently four to fi ve 
times that of traditional microarray expression profi ling, though it is expected that 
this will continue to drop to a more competitive price point in the near future. The 
other critical limitation of RNA-Seq is that regarding sequence preprocessing and 
downstream analysis, which are considerably more involved, and comparatively 
less well developed, compared to microarray analysis. Unlike microarrays, where 
gene identities of each probe are known by their coordinates on the array, the 
sequences generated from RNA-Seq must fi rst be aligned to a reference genome, 
then annotated and assigned gene identity. This requires experienced bioinformatics 
analysis, also adding to the total costs of transcriptome characterization by RNA- 
Seq. The ability to accurately align sequence is dependent on sequence length (plat-
form dependent), read-depth (which is contingent on the capacity of the platform, 
the size of the targeted genome, and the number of genomes analyzed per sequence 
run), and genome complexity. Moreover, the amount of data generated per sequence 
run (terabytes) is considerably larger than that for microarrays (megabytes), neces-
sitating access to large-scale computing and storage capacity. 

 RNA-Seq, though powerful, is not without its challenges. Paramount are several 
recognized sampling biases, and the need for novel analytical strategies to accom-
modate these issues and perform statistically robust experimental analysis. With 
regard to sequence bias, the most well understood relate to local sequence complex-
ity, inadequate library preparation, and sampling dependency on gene length. 
Though a random process, larger genes have greater likelihood of being sequenced 
than smaller transcripts, introducing gene-specifi c biases. In addition, the more 
complex (unique) a particular sequence, the more likely it will be accurately aligned. 
Similar to microarray-based assessments, target GC content induces systematic dif-
ferences in read depth (Pickrell et al.  2010 ). As an additional complication, 
sequences (genomic regions) are sampled insuffi ciently if library preparation is 
inadequate. The process of library preparation demonstrates inter- and intratechni-
cian variability. Thus, like with traditional microarray analysis, it is likely that 
RNA-Seq is similarly susceptible to technical batch effects, which should be 
accounted for during study design and analysis (Hansen et al.  2012 ).   

    Sample Processing Considerations 

 Despite substantial advancement in sample processing, labeling chemistries, array 
synthesis and hybridization protocols, microarray profi ling remains highly sensitive 
to technical artifact, introducing the potential for biased measurement and erroneous 
data interpretation (Benito et al.  2004 ; Fare et al.  2003 ). These biases can be intro-
duced at various stages, during chip manufacturing, sample labeling, hybridization, 
or image capture. Technician-dependent variance is also frequently observed. 
Though such issues can be largely overlooked in small studies of a handful of 
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samples, processed by one technician over several days, the asthma studies typically 
conducted in larger patient populations are highly susceptible to these concerns. 

 While subtle technical variability is both expected and tolerable, it cannot be 
overstated that, if introduced in a nondifferential way, technical bias is not easily 
amenable to downstream statistical correction. For example, if samples from asth-
matic cases and healthy controls are labeled and hybridized in separate batches, 
resulting in systematic (technical) differences in global gene expression measure-
ments, no analytical trick can reliably disentangle the true biological expression 
differences from these so-called technical “batch effects” (Scherer  2009 ). To avoid 
this, it is imperative that design strategies aimed at bias prevention and detection be 
implemented at the outset. Most useful is adherence to a strategy of consistent, 
repeated sample randomization. At each major processing step (sample extraction, 
labeling, hybridization, and imaging), samples should be assigned to random 
batches, irrespective of disease status or other distinguishing clinical characteristics 

10
0

-1
00

-100 100 200

-1
50

6
8

10
12

14
16

-150 150

50
-5
0

-50 50

0

0

  Fig. 10.2    Sample processing strategies: ( a ) Sample randomization for the avoidance of technical 
bias: dot plot of fi rst two principle components (PC) analysis of whole blood gene expression 
profi les of 285 samples collected from asthmatic subjects at nine centers across the USA over a 
4-year periods. Samples were hybridized and imaged over 6 months on 32 Illumina HumanHT12-v3 
BeadChips. The homogenous distribution of samples from disparate sites over the two- dimensional 
PC space supports an absence of confounding between technical batch and study site, as confi rmed 
by formal statistical testing, illustrating successful sample randomization during processing. 
( b ) Longitudinal internal quality control analysis: line plot of global gene expression intensity pat-
terns of a replicate HeLa-cell derived RNA sample hybridized to unique array positions for 32 
Illumina HumanHT12-v3 BeadChips over a 6-month period.  Lines  denote 0, 5th, 25th, 50th, 75th, 
95th, and 100th percentiles of expression for each sample. Arrays processed together in batches 
denoted by color coding along abscissa. Note a  purple cluster  of four arrays ( long arrow ) with 
deviant intensities, suggesting improper processing of one batch of samples that should be consid-
ered suspect and candidates for repeat profi ling. In contrast, a  yellow cluster  of three arrays pro-
cessed simultaneously revealed one of three ( short arrow ) with deviant intensities. The 11 
experimental samples corresponding to the same chip revealed similar deviations, resulting in 
removal of these data from consideration and repeat profi ling of the samples       
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(treatment group, severity, and gender), so as to minimize the possibility that any 
relevant covariate is confounded with latent technical artifact. This strategy is par-
ticularly useful for studies carried out over many months, where variations in 
reagent manufacturing, laboratory staffi ng, or ambient environmental conditions are 
almost certain (Fig.  10.2a ). For such large studies, we also recommend introduction 
of routine surveillance for reproducibility by randomly selecting samples for repeat 
testing (to screen for within sample technical variability) and inclusion of standard 
control samples (for example, a pool of equimolar concentrations of total RNA from 
all available study sample) that is run with each batch of samples over the course of 
the study (Fig.  10.2b ). Such data can identify outlier batches and potentially be used 
during preprocessing procedures.

10.3.3         Analytical Considerations 

 A comprehensive discussion of the many analytical considerations surrounding tra-
niscriptomic analysis is beyond the scope of this chapter, and many detailed, acces-
sible references elegantly explore these issues. Here, we provide a general overview 
of the basic principles of microarray analysis to orient the inexperienced reader. 

 Following image processing and data capture, there are four main components of 
transcriptomic analysis (1) quality control analysis; (2) data preprocessing; (3) fea-
ture selection; and (4) experimental analysis. While the last component is of great-
est scientifi c interest, it is entirely dependent on careful execution of the fi rst three. 

    Quality Control Assessment 

 Quality control assessment is performed both study wide to screen for systematic 
bias and for individual samples. Individual arrays with mean intensities >1 SD from 
the mean should be evaluated as potential outliers and considered for removal. 
Cluster analysis of genes mapping to the sex chromosomes can be used to identify 
gender mismatches, suggesting potential sample mixup. Replicate samples should 
be compared to estimate technical variance.  

    Preprocessing 

 Multiple methods have been proposed for sample preprocessing, the most accepted 
of which include regression based methods, probabilistic models, and multivariate 
models (including principle components adjustment and surrogate variable analysis 
modeling). The underlying premise of many regression and probabilistic normaliza-
tion methods is that, under most circumstances, the majority of genes show either 
no, or relatively similar, expression across samples. Batch effects can also be mod-
eled using Bayesian (Johnson et al.  2007 ) or other (Luo et al.  2010 ) approaches. 
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Nonparametric procedures, like quantile normalization, scale measures across 
arrays uniformly, while preserving the rank order of genes (Irizarry et al.  2003 ). In 
contrast, multivariate models like PCA and SVA (Leek and Storey  2007 ) character-
ize the bulk structure of the data, defi ning latent variables from the expression data 
itself that often refl ect the effects of either known (for example, differences in 
genetic ancestry) or unknown technical factors that impact global gene expression 
patterns. These variables can then be adjusted out during downstream data analysis, 
provided none are strongly associated with the contrast (i.e., phenotype) of interest. 
Though described as distinct from the experimental analysis phase, these later nor-
malization methods are often scripted and executed together with statistical infer-
ence. Often, these methods can be applied in series, so as to reduce computation 
time during iterative experimental analyses steps.  

    Feature Selection 

 Feature selection refers to the removal from consideration during analysis of subsets 
of probes with undesirable characteristics, with the goal of reducing the potential 
for spurious gene detection while preserving experimental sensitivity. Examples of 
feature selection include fi ltering of probes that show either no expression, or mini-
mal variance in expression, across the population (there is little utility in formally 
testing genes whose expression is static), or probes whose sequence aligns to more 
than one potential gene target. Additional fi ltering could include those probes that 
target RNA sequence known to harbor common genetic polymorphism (i.e., SNPs), 
which would interfere with hybridization and generate spurious association, par-
ticularly in integrative genomic studies that consider both expression and genetic 
variation simultaneously (Murphy et al.  2010 ). All of these aforementioned fi lters 
are nonspecifi c, in that they are not imposed with reference to the biological ques-
tion of interest, and thus do not bias statistical inference.  

   Experimental Analysis 

   Differential Gene Expression Analysis 

 The procedures used for experimental data analysis are dictated primarily by the 
biological question of interest (Table  10.5 ). Most analyses begin by defi ning the 
subset of genes that demonstrate statistically signifi cant fold-differences in expres-
sion between cellular states (i.e., asthma vs. no asthma). For studies of dichotomous 
conditions, standardized  t -tests, such as those implemented in the RMA procedure 
(Bolstad et al.  2003 ), are applied with signifi cance determined using genome-wide 
thresholds that account for the large number of statistical tests performed. Numerous 
software packages, including MAS5 (Lim et al.  2007 ) and limma (Smyth  2005 ), are 
available for effi cient implementation of these methods. Appropriate statistical 
models have been developed to accommodate other phenotypes, including continu-
ous or censored phenotypes. The gene lists generated from these analyses is then 
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examined for biological insight. Though informal gene list interpretation, based on 
investigators’ knowledge, is invariably performed, numerous bioinformatics 
approaches are available to evaluate the biological signifi cance of observed profi les 
in a rigorous, statistically motivated framework (Alonzi et al.  2001 ; Subramanian 
et al.  2005 ). These pathway, or gene set enrichment analyses, evaluate whether the 
observed set of differentially expressed genes are members of specifi c, predefi ned 
gene groups with common biology. Examples of such groupings include member-
ship within specifi c metabolic pathways, chromosomal locations, similar sequence 
features, or having similar patterns of expression in response to cellular perturba-
tion. For example, Pietras and colleagues demonstrated enrichment of several previ-
ously unrecognized signaling pathways, including the downregulation of N-glycan 
biosynthesis and the upregulation of the bitter taste transduction signaling pathways 
in severe asthma (Orsmark- Pietras et al.  2013 ).

      Network Modeling 

 Though powerful data mining approaches, the ultimate utility of pathway-based 
analytical approaches are dependent on the quality of the databases queried. Though 
some gene collections are in near complete form (for example, detailed physical 
genetic maps), others, including many poorly characterized metabolic pathways, are 
sparser. Network modeling represents an alternative analytic strategy that attempts 
to model the biological process under study by developing gene networks using the 
experimental data itself (Hyduke and Palsson  2010 ; Vidal et al.  2011 ). These meth-
ods are motivated by the notion that most biological states are determined by the 
interaction of numerous genes and by the observation that biological systems oper-
ate as scale-free networks, displaying a so-called small world property, where any 
two genes in a network are connected by a small number of links (Barabasi  2009 ). 
Using network-modeling approaches, one can defi ne the interrelationship of genes 

   Table 10.5    Experimental data analysis procedures   

 Test procedures  Question of interest  Commonly used methods 

 Differential expression: 
 t -tests, ANOVA, 
regression 

 Which genes are differentially expressed 
in condition X compared to condition Y? 

 limma, RMA 

 Gene set enrichment 
analysis 

 Are specifi c pathways/subsets of genes 
differentially expressed in condition X? 

 GSEA, GOstats 

 Network modeling  How are the genes in this condition 
related to each other? 

 Coexpression networks, 
Graphical Gaussian 
Models 

 Supervised machine 
learning 

 Can I differentiate two or more known 
cellular states (i.e., cases vs. 
controls; good vs. poor prognosis) 
based on gene expression profi ling? 

 Support vector machine, 
Self-organizing maps 

 Unsupervised machine 
learning 

 Are there subgroups of my disease 
of which I am not aware? 

 K-means clustering 
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within the transcriptome and then defi ne the subnetwork of genes that demonstrate 
greatest change with by experimental state (Chu et al.  2009 ,  2011 ; Schafer and 
Strimmer  2005 ). Coexpression models defi ne network structure by identifying gene 
sets with similar expression patterns across disease states, experimental conditions, 
or temporally. Models that consider additional genomic factors that infl uence tran-
scriptional regulation, including promoter sequences, chromatin modifi cations, reg-
ulatory genetic polymorphism, and microRNA binding, offer more complete 
modeling, though are reliant on external data sources. While widely applied in the 
study of oncology, use of such strategies in asthma to date has been largely restricted 
to modeling of protein–protein interaction data (Hwang et al.  2008 ).  

   Clustering Algorithms and Machine Learning Approaches 

 Machine learning algorithms represent a broad class of methods that mine multi-
variate datasets for underlying patterns, with the goal of developing predictive func-
tions (classifi ers) that can reliably differentiate samples into specifi c subgroups 
(Inza et al.  2010 ; Larranaga et al.  2006 ). In gene expression analyses, the premise is 
that the predictive functions elucidate subgroups that correspond to inherent bio-
logical differences between samples. In  supervised machine learning approaches , 
the predictive function learns using analyst-predefi ned labels (for example, case–
control status), with the goal of defi ning gene subsets that can accurately classify 
samples into their respective subgroups. Similarly, supervised methods can be 
applied for the classifi cation of expression patterns across samples, to defi ne subsets 
of genes that follow known patterns of expression (as applied in support vector 
machine learning). Conversely, in  unsupervised machine learning  approaches, 
functions are applied with few predetermined notions regarding the underlying data 
structure, enabling unbiased data mining, with the goal of defi ning previously 
unknown sample subgroups with unique biological properties. Numerous clustering 
algorithms have been developed for these purposes, including both hierarchical and 
nonhierarchical methods, each with inherent advantages and disadvantages related 
to underlying assumptions of the data structures, the questions being addressed, and 
their computational burden. These issues are discussed in detail elsewhere (Kerr 
et al.  2008 ). Regardless of method employed, it must be stressed that due to the 
inherent  p  >  n  problem inherent in genomic analysis (where the number of features 
being tested far exceeds the number of subjects), machine learning approaches are 
highlight susceptible to model over fi tting, resulting in partitioning of data into bio-
logically meaningless, yet statistically robust, subgroups. As such, it is recom-
mended that procedures be implemented at the outset that address this concern, 
including a priori creation of test and validation datasets and use of both internal and 
external cross-validation procedures. Only those models that survive stringent vali-
dation assessments should be considered viable for further interpretation.  
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   RNA-Seq Analysis 

 In broad terms, the analysis of RNA-Seq data is conceptually similar to that of 
microarray analysis, with a similar framework that includes quality control assess-
ment and preprocessing, with screening for technical covariation, feature selection, 
and experimental analysis. However, due to the inherent differences in data struc-
tures, entirely distinct suites of software are required for RNA-Seq analysis 
(Fig.  10.3 ). Data preprocessing includes mapping of reads and alignment to refer-
ence genomes, followed by data normalization and summarization, where by 
aligned reads are translated into more biologically meaningful transcript counts. 
The number of reads generated for a given transcript is proportional to both the 
abundance of the transcript and transcript length, as larger transcripts will be 

  Fig. 10.3    RNA-Seq analysis pipeline: Raw sequence reads are converted to summary measures of 
transcript abundance through a series of analytic and quality control steps that include fi ltering of 
poor quality reads, alignment of reads to reference sequence, gene-based read count normalization, 
and summarization. Transcript abundance is expressed as either reads or fragments per kilobase 
exon mapped per megabase sequence (RPKM or FPKM, respectively), metrics normalized by 
gene length. These counts serve as input for downstream biological inference and interpretation, 
including traditional differential gene expression analysis, exon-specifi c (isoform) analysis, or 
allelic expression analysis, where polymorphic transcript sequence variants are assessed for pref-
erential expression of one allele over the other in heterozygous subjects. Results systems based 
analyses, including network building, gene set enrichment, or pathways analyses. Exemplars of 
available RNA-Seq software at each analytic step are indicated in  red        
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represented by a larger number of random sequence fragments. As such, to avoid 
systematic biases, normalization techniques must account for differences in gene 
length. Counts are thus expressed as reads (or fragments) per kilobase exon mapped 
per megabase sequence. Differential expression testing employs models that con-
sider binomial or Poisson data distributions (in contrast to normal distributions 
assumed by most microarray-dedicated procedures). Analysis workfl ows have been 
 packaged for several analytic environments, including the open-source Bioconductor 
programming environment (Gentleman et al.  2004 ), Galaxy (Giardine et al.  2005 ), 
and MeV (Howe et al.  2011 ), in addition to several commercial packages.

      Postanalysis Considerations 

 Like all high-throughput, hypothesis-free studies, transcriptomic studies must be 
considered as hypothesis generating exercises, requiring confi rmation, validation, 
and replication through a variety of means. Individual gene fi ndings deemed of 
particular relevance should be confi rmed by direct technical validation using single- 
gene based methods, like quantitative reverse transcription PCR. As described 
above, expression profi les or sample subgrouping derived by machine learning 
should be validated using both internal and external procedures. External validation 
of predictive signatures in independently ascertained populations remains the gold 
standard. However, to date, few studies have successfully met this mark.        
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