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1            Introduction 

 Environmental conditions determine plant growth and development. Optimal growth 
of plants is adversely affected by abiotic stresses such as drought and salt stress 
(Kintisch  2009 ). Soil salinity and drought stress result in crop loss affecting about 
40 % of the arable lands across the globe (Wang et al.  2003 ). During last decade, 
increase in environmental stresses and global warming result in the necessity of devel-
oping new crop cultivars that are stress tolerant. Developing tolerant lines for salt and 
drought stress was more important and convenient owing to their already elaborated 
tolerance mechanisms reported in various plants (Gregory et al.  2005 ). Physiological 
responses to drought, cold, and salt stress are similar resulting in impaired plant 
growth, altered photosynthetic activity via reduction in the dark reaction of photosyn-
thesis, accumulation of reactive oxygen species (ROS), alterations in ion transport and 
compartmentalization, faults in the osmotic responses of the cell (Schulze et al.  2002 ) 
and changes in metabolite profi les (Shulaev et al.  2008 ). Low-molecular-weight 
organic compounds are considered to have protective functions and are accumulated 
as a consequence of osmotic stress without any metabolic alterations (Bartels and 
Sunkar  2005 ). Compatible solutes include organic compounds that serve as tools for 
osmotic adjustment and protect membranes and proteins from denaturation which 
reduce impacts of drought stress on plants. They also alleviate ion toxicity resulting 
from salt stress and maintain ion imbalance. This chapter will focus on importance of 
osmoprotective compounds for the acclimation to extreme environmental conditions 
and their role in impeding deleterious effects of environmental stresses.  
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2     Osmolytes 

 Osmolytes are considered as compatible solutes which contribute to cell turgor, 
protect cellular structures, and alleviate ion toxicity. These solutes mediate osmotic 
adjustment under drought stress by stabilizing internal potential and maintain 
osmotic balance (Parida and Das  2005 ). These protective compounds comprise 
mainly of amino acids (Pro), quaternary amino acid compounds (alanine betaine   , 
glycine betaine, and proline betaine), amines (polyamines), sugars (glucose, fruc-
tose, sucrose, trehalose, raffi nose, and fructans), sugar alcohols (mannitol, glycerol, 
and sorbitol), and sulfonium compounds (choline- O -sulfate, dimethylsulfoniopro-
pionate) (Parida and Das  2005 ; Shulaev et al.  2008 ; Ahmad and Sharma  2008 ; 
Koyro et al.  2012 ; Dedemo et al.  2013 ). However, there are contradictory reports 
suggesting that osmolytes may have alternative protective functions. However, 
lower concentrations of organic osmolytes in several halophytes indicate that these 
compounds might not be important for osmotic adjustment (Gagneul et al.  2007 ). 
This statement is supported by transgenic tobacco which produces proline at high 
rates but does not make any osmotic adjustment compared to control tobacco plants, 
under salt and drought stress (Kishor et al.  1995 ). In addition, osmoprotectants may 
also serve in stabilization of redox balance, maintenance of proper protein folding 
and signaling (Rosgen  2007 ). 

 High salinity or dehydration can alter structure of proteins and modify the 
proteins followed by their denaturation and fi nally accelerated degradation. 
However, osmolytes can protect proteins from aggregation or degradation by pre-
serving their native conformations, folding of proteins, and improve their thermody-
namic stability so that they can function under stress conditions (Bolen and 
Baskakov  2001 ; Street et al.  2006 ). In addition, osmoprotective compounds have 
roles in the adaptation process to extreme environmental conditions (Rontein et al. 
 2002 ). For instance, high levels of sugars or polyols, quaternary amino acid com-
pounds such as GB, alanine betaine, and proline are produced by halophyte species 
(Arbona et al.  2010 ; Lugan et al.  2010 ). Salt tolerance of halophytic  Limonium  spe-
cies are related to accumulation of high level of quaternary ammonium compounds 
such as choline-O   - sulfate, GB, and alanine betaine (Hanson et al.  1991 ). Composition 
and concentration of these solutes in plants can vary considerably, depending on 
species and type of the environmental stress (Yancey  2005 ; Sanchez et al.  2008 ; 
Dedemo et al.  2013 ). For instance, GB is dominant in  Plumbaginaceae  species 
adapted to dry environments, alanine betaine is apparently more typical in species 
growing on saline soils, and proline betaine has been detected in plants adapted to 
arid environments (Hanson et al.  1994 ; Majumder et al.  2010 ). 

 Osmoprotectants are signifi cant for salt and drought stress tolerance in cereals 
(Garcia et al.  1997 ; Reguera et al.  2012 ). High levels of proline and sugar in drought 
and salt tolerant rice varieties suggest that these protective compounds can contribute 
to stress tolerance of rice (Roychoudhury et al.  2008 ). Similarly, glucose, fructose, 
sucrose, fructan, proline and quaternary ammonium compounds are accumulated in 
wheat under drought conditions (Bowne et al.  2012 ; Maevskaya and Nikolaeva  2013 ). 
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It has been shown that the accumulation is well correlated with drought tolerance of 
wheat (Kerepesi et al.  1998 ; Bajji et al.  2001 ). Increase in both proline and GB lev-
els of sorghum have been recorded upon water defi cit and high salt concentration 
(Wood et al.  1996 ; Chen and Murata  2011 ). However, an accumulation of proline in 
tolerant sorghum does not contribute to its drought tolerance (Premachandra et al. 
 1995 ). Like other extremophile plants, halophytic wild rice  Porteresia coarctata  
Roxb. is known to synthesize and accumulate myo-inositol and pinitol for combat-
ing saline stress (Sengupta and Majumder  2009 ; Krasensky and Jonak  2012 ). Strong 
correlation between pinitol accumulation and drought tolerance in response to low 
water potential has been addressed in several tropical legume species (Ford  1984 ). 
Several classes of osmolytes such as amines, amino acids, and carbohydrates having 
roles in salt and drought tolerance of plants will be covenanted individually in the 
following part. 

2.1     Amines 

2.1.1     Polyamines 

 Polyamines (PAs) are low-molecular-weight polycations found in all living organ-
isms and known to be essential for their growth and development. PA levels can be 
changed by abiotic stresses, such as drought, salinity, and cold (Ahmad et al.  2012a ). 
In addition, a positive correlation between high PA levels and stress tolerance has 
been recorded (Kovacs et al.  2010 ; Quinet et al.  2010 ; Alcazar et al.  2011 ). 

 Putrescine (Put), spermidine (Spd), and spermine (Spm) are the most common PAs 
in higher plants (Ahmad et al.  2012a ). PAs are synthesized from arginine and ornithine 
by arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Putrescine is 
formed by conversion of agmatine, synthesized from arginine. Spermidine and sperm-
ine are synthesized from putrescine by the transfer of aminoporply groups from decar-
boxylated  S -adenosylmethionine (dSAM) via Spd and Spm synthases. dSAM is 
formed by conversion of SAM via a reaction catalyzed by SAM decarboxylase. On the 
other hand, diamine oxidases (DAO) and polyamine oxidases (PAO) are main PA cata-
bolic enzymes. DOA catalyzes the oxidation of Put to 4-aminobutanal, NH 3 , and H 2 O 2 , 
while PAO oxidize only higher PAs, such as Spd and Spm. 

 Protection of membranes and alleviation in oxidative stress are the two functions 
of PAs (Alcazar et al.  2011 ; Hussain et al.  2011 ; Ahmad et al.  2012a ) but their func-
tions in stress tolerance are not well understood. Positive role of PAs in stress toler-
ance has been shown by studies in transgenic plants and various mutant varieties. 
Putrescine levels of  ADC1  or  ADC2 -defi cit mutants which are hypersensitive to 
stress are lower than wild type (Urano et al.  2004 ; Cuevas et al.  2008 ), whereas 
putrescine levels under drought and freezing tolerance enhance by ADC overex-
pression (Capell et al.  2004 ; Alcazar et al.  2010 ; Alet et al.  2011 ). Similarly, drought, 
salt, and cold tolerance of  Arabidopsis  plants increase due to enhanced spermidine 
content resulting from Spd synthase overexpression (Kasukabe et al.  2004 ). 
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Furthermore, tolerance of tobacco plants to salt stress and polyamine levels has 
been increased by introduction of ODC gene from mouse (Kumriaa and Rajam 
 2002 ). In addition, plants turn out to be very sensitive to salinity stress because of 
Spm synthase defi ciency (Yamaguchi et al.  2006 ). 

 The application of polyamines (PAs) is also an effective approach for enhancing 
stress tolerance in plants (Shi et al.  2010 ). Exogenous application of 0.4 M Spm to 
soybean plants ameliorates osmotic stress effects by increasing catalase, superoxide 
dismutase, peroxidase, and polyphenol oxidase activities and modulating levels of 
plant hormones, ABA and jasmonic acid (Radhakrishnan and Lee  2013 ). Shu et al. 
( 2013 ) have examined effects of Spm on chlorophyll fl uorescence, antioxidant sys-
tem, and ultrastructure of chloroplasts in  Cucumis sativus  L. under salt stress. They 
have found that Spm has reversed effects of salt stress on photosynthetic apparatus. 
In addition, application of Spm signifi cantly increases superoxide dismutase, per-
oxidase, and ascorbate peroxidase activities in the chloroplasts thriving under saline 
conditions. Hence, salt stress in  C .  sativus  plants has been mitigated by Spm 
application. 

 Exogenous spermidine (Spd) applied to tomato ( Solanum lycopersicum ) culti-
vars decreases growth and induces increase in free amino acids, ammonium (NH 4  + ) 
contents, and NADH-dependent glutamate dehydrogenase (NADH-GDH) activi-
ties. They have suggested that exogenous Spd treatment alleviates disturbances in 
nitrogen metabolism resulted from salinity-alkalinity stress (Zhang et al.  2013 ).  

2.1.2     Glycine Betaine 

 Glycine betaine (GB) is the quaternary ammonium compound and methylated 
derivative of glycine. Along with other quaternary ammonium compounds like 
-alanine betaine, proline betaine, choline- O -sulfate, hydroxyproline betaine, and 
pipecolate betaine they function as effective compatible osmolytes in halophytes 
(Ashraf and Harris  2004 ; Chen and Murata  2008 ,  2011 ). Different stress conditions 
such as osmotic stress (Hanson and Nelsen  1978 ), salinity (Hanson et al.  1991 ), and 
drought (Guo et al.  2009 ) can induce GB accumulation in plants. The benefi cial 
effects of GB accumulation regarding salt and osmotic stress tolerance have been 
demonstrated in a number of engineered GB-accumulating plants, including tobacco 
(Zhang et al.  2008 ), tomato (Park et al.  2004 ,  2007 ), and rice (Chen and Murata  2008 ). 
These compounds confer resistance mainly by protecting photosynthetic activity 
through the maintenance of Rubisco activity and PSII activity (Yang et al.  2008 ). 

 Plants are usually very sensitive to environmental stress during reproduction. GB 
was shown to have a particularly important protective effect on reproductive organs, 
such as infl orescence apices and fl owers during drought and cold stress (Chen and 
Murata  2008 ; Sakamoto and Murata  2000 ). Engineering of GB accumulation has 
reduced chilling damage on tomato fl owers, leading to a 10–30 % increase in fruit 
production (Park et al.  2004 ). He et al. ( 2013 ) have introduced two genes, glycine 
sarcosine methyltransferase gene ( ApGSMT2 ) and dimethylglycine methyltransfer-
ase gene ( ApDMT2 ), from the bacterium  Aphanothece halophytica  to maize so that 
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the engineered plants synthesize more GB than control plants. Thus transgenic 
maize could be drought tolerant by co-expression of  ApGSMT2  and  ApDMT2 . 
These data confi rm that GB is an osmoprotective compound, which can therefore be 
explored to improve tolerance to salinity and probably to drought and cold stress. 

 Activation and protection of the ROS detoxifi cation system is another key com-
ponent of stress tolerance (Moradi and Ismail  2007 ). Osmoprotective compounds 
can scavenge ROS directly, or contribute to the protection of the enzymes involved 
in the antioxidant system. Increase in antioxidant enzymes activities and alleviation of 
oxidative damages due to abiotic stresses have been reported in different plant species 
subjected to exogenous applications of GB (Nawaz and Ashraf  2010 ; Ahmad et al. 
 2013 ). For instance, after exogenous GB applications to  Carapa guianensis  plants, 
ascorbate peroxidase and catalase activities increase whereas lipid peroxidation has 
been prevented under water stress (Cruz et al.  2013 ). Foliar application of 50 mM GB 
to maize plants reduces adverse effects of salt stress by improving proline, Ca 2+ , and 
K +  levels and maintaining membrane permeability (Kaya et al.  2013 ).   

2.2     Amino Acids 

2.2.1     Proline 

 The imino acid proline, a common denominator of many stress responses, is accu-
mulated during diverse abiotic and biotic stresses (Kavi Kishor et al.  2005 ; Koca 
et al.  2007 ; Ahmad and Sharma  2008 ; Ahmad et al.  2012b ) such as high salinity 
(Ben Hassine et al.  2008 ), drought (Choudhary et al.  2005 ), oxidative stress (Yang 
et al.  2009 ), and intense irradiation (Jan et al.  2012a ,  b ). In plants, proline is synthe-
sized from glutamate in the cytosol and probably also in the chloroplast by delta-1- 
pyrroline-5-carboxylate synthetase (P5CS) and P5C reductase (P5CR). P5CS 
produces glutamate semialdehyde, which is unstable and is immediately converted 
to pyrroline-5-carboxylate (P5C). P5CR reduces P5C to proline, a reaction that 
takes place in the cytosol and according to biochemical data also in the chloroplast 
(Szabados and Savoure  2010 ; Koyro et al.  2012 ). 

 Proline catabolism occurs in the inner-mitochondrial membrane of all eukaryotes. 
Proline degradation provides electrons and glutamate for mitochondrial usage. 
Proline dehydrogenase (ProDH), an FAD enzyme localized to the inner- 
mitochondrial membrane, catalyzes the fi rst oxidizing step of proline to P5C and 
meanwhile delivers electrons to the mitochondrial electron transport chain (Kiyosue 
et al.  1996 ). P5C is further oxidized to glutamate or transported back to the cytosol 
for proline re-synthesis by the proline cycle (Deuschle et al.  2004 ; Miller et al. 
 2009 ). Proline accumulation during stress protects cellular structures and stabilizes 
enzymes owing to its antioxidant potential (Kavi Kishor et al.  2005 ; Mishra and 
Dubey  2006 ; Sharma and Dubey  2005 ). Proline also maintains redox balance, pre-
serve energy source for the stress recovery and functions as protein precursor 
(Hoque et al.  2008 ; Islam et al.  2009 ; Szekely et al.  2008 ). In addition, proline 
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synthesis in the chloroplast may allow an effi cient oxidation of photosynthetically 
produced NADPH, which is required for quenching free electrons and nascent oxygen 
that could otherwise lead to ROS generation (Hare and Cress  1997 ; Szabados and 
Savoure  2010 ). 

 Studies about mutants and transgenic plants have showed the protective function 
of proline. Hypersensitive mutant of  Arabidopsis thaliana  with  p5cs1  insertion has 
confi rmed importance of proline in stress tolerance. Proline content of  Arabidopsis  
mutant is 90 % lower than the wild type and produces more ROS and lipid peroxida-
tion products (Szekely et al.  2008 ). However, proline accumulation increases salt 
and drought tolerance in  P5CS -overexpressed tobacco, rice, and soybean (Kishor 
et al.  1995 ; De Ronde et al.  2004 ; Kumar et al.  2010 ). Similarly,  Swingle citrumelo  
plants have been transformed with  Vigna aconitifolia P5CS  gene ( VaP5CSF129A ) 
that improved proline levels and lead to differential expression levels of antioxidant 
enzymes (de Carvalho et al.  2013 ). Transgenic plants exhibit improved mRNA lev-
els of ascorbate peroxidase, superoxide dismutase, and glutathione reductase isoen-
zymes that produce high proline level than non-transgenic plants. de Carvalho et al. 
( 2013 ) have claimed that high proline level might have a regulatory role on antioxi-
dant enzymes. 

 Exogenous proline is also effective in stress liberation of plants. Leaves of wild 
almond ( Prunus  spp.) species exposed to H 2 O 2 -mediated oxidative stress dis-
played high levels of proline (Sorkheh et al.  2012 ). Improved proline levels have 
decreased lipid peroxidation, membrane electrolyte leakage, and endogenous 
H 2 O 2  content by modulating antioxidant enzymes such as peroxidase, ascorbate 
peroxidase, and non-enzymatic antioxidant like ascorbic acid that prevented 
almond species from oxidative stress injury. Similarly, exogenous proline treatment 
has alleviated salt stress effects by inducing catalase and ascorbate peroxide activi-
ties and decreasing endogenous H 2 O 2  content in salt-stressed rice plants (Nounjan 
and Theerakulpisut  2012 ).  

2.2.2    GABA 

 Adverse environmental conditions cause rapid accumulation of the non-protein 
amino acid like γ-aminobutyric acid (GABA) to high levels (Kaplan and Guy  2004 ; 
Kempa et al.  2008 ; Renault et al.  2010 ). Glutamate decarboxylase (GAD) convert 
glutamate to GABA in the cytosol, then GABA is transported to the mitochondria. 
Succinate is formed by GABA transaminase (GABA-T) and succinic semialdehyde 
dehydrogenase (SSADH) and involved in the TCA cycle (Shelp et al.  1999 ; Fait 
et al.  2008 ). GABA is closely related with ROS scavenging and carbon–nitrogen 
balance (Bouche and Fromm  2004 ; Song et al.  2010 ; Liu et al.  2011 ). Enzymes hav-
ing role in GABA metabolism are induced by salt stress (Renault et al.  2010 ). 
Adverse effects of ionic stress increase in GABA-T-defi cient  Arabidopsis  mutants. 
Levels of amino acids (including GABA) increased, while carbohydrate levels have 
been decreased in these mutants (Renault et al.  2010 ). Expression levels of genes, 
which are related to sucrose and starch catabolism increase under salt stress 
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conditions with simultaneous loss of GABA-T function. Furthermore, compared 
with wild type, sugar concentration is twofold reduced in  gaba-t/pop2-1  mutant 
roots. Based on this information, Renault et al. ( 2013 ) provide evidence for the 
implication of GABA in central carbon metabolism regulation in roots under salt 
stress conditions.   

2.3     Carbohydrates 

2.3.1    Fructans 

 When energy demands increase and energy supplies are reduced, plants accumulate 
carbohydrates as storage substances. These substances are preferred to be rapidly 
mobilized sugars such as starch and fructans. Main storage carbohydrate of the most 
plant species is starch, while fructans can be accumulated by several angiosperms 
grown in the areas with dry periods and seasonal cold (Hendry  1993 ; Valluru and 
Van den Ende  2008 ). High water solubility, resistance to crystallization under freez-
ing temperatures, and fructan synthesis at low temperatures add compensation in 
accumulation of fructans (Vijn and Smeekens  1999 ; Livingston et al.  2009 ). In addi-
tion, during freezing and dehydration, fructans can contribute to osmotic adjustment 
(Spollen and Nelson  1994 ; Olien and Clark  1995 ) and stabilize membranes (Valluru 
and Van den Ende  2008 ). 

 Transferring fructose from sucrose to growing fructan chain, fructosyltransfer-
ases, 1-SST, and 6-SFT synthesize fructans in vacuole (Vijn and Smeekens  1999 ; 
Livingston et al.  2009 ). Increased fructosyltransferases in transgenic tobacco and 
rice plants improve levels of fructans that enhance tolerance to drought and low- 
temperature stress (Pilonsmits et al.  1995 ; Li et al.  2007 ; Kawakami et al.  2008 ). In 
addition, increases in 1-fructosyltransferase (1-FFT) and fructan 1-exohydrolase 
(1-FEH) activity in water-stressed  Vernonia herbacea  (Vell.) Rusby plants accumu-
late about 80 % of fructans in the underground reserve organs, depicting the poten-
tial of fructans in maintenance of water content and drought tolerance by osmotic 
adjustment (Garcia et al.  2011 ).  

2.3.2    Starch, Mono and Disaccharides 

 Starch, a glucose polymer, serves as a source of soluble sugars and main carbohy-
drate storage for most of the plants. Environmental changes easily affect starch 
metabolism. Starch levels are very sensitive to salt and drought stress generally. 
These stresses cause decrease in starch content and lead to enhancement in soluble 
sugars in leaves (Todaka et al.  2000 ; Kaplan and Guy  2004 ; Basu et al.  2007 ; Kempa 
et al.  2008 ). Under stress conditions, sugars accumulate and function as osmolytes 
to maintain cell turgour, protect membranes and proteins from stress injury (Madden 
et al.  1985 ; Kaplan and Guy  2004 ). Starch degradation is included by glucan-water 
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dikinase (GWD) and phosphoglucan-water dikinase (PWD), which catalyze 
phosphorylation of starch granules. Maltose synthesized from glucans by β-amylases 
is converted to glucose followed by formation of fructose and sucrose in cytosol 
(Tetlow et al.  2004 ; Kotting et al.  2010 ). 

 Starch hydrolysis in the leaves under stressed conditions may be related to 
β-amolytic pathway of starch hydrolysis under normal growth conditions. Decrease 
in the freeze tolerance of  Arabidopsis sex1  (starch excess 1) mutants, disable to 
show GWD activity, is an evidence for the relation between β-amolytic pathway of 
starch hydrolysis and stress conditions (Yano et al.  2005 ). In addition, during 
osmotic stress total β-amylase activity has increased, while it has reduced in light- 
stimulated starch accumulation in wild-type  Arabidopsis . On the other hand, 
 Arabidopsis  β-amylase mutant  bam1  ( bmy7 ) is hypersensitive to osmotic stress 
(Valerio et al.  2011 ). Similarly, a reduction in low stress tolerance of photosystem II 
has been shown in BMY8 (BAM3) antisense plants, which accumulate high starch 
levels, have not induced maltose, glucose, fructose, and sucrose accumulation (Kaplan 
and Guy  2005 ). Zeeman et al. ( 2004 ) have suggested a role of the phosphorolytic 
starch degradation pathway during stress. After salt and low air humidity exposures 
to  Arabidopsis  plants defi cient in plastidial α-glucan phosphorylase, lesions formation 
increase in the regions surrounded by cells with high starch levels.  

2.3.3    Trehalose 

 Some desiccation tolerant plants, for example,  Myrothamnus fl abellifolius  can accu-
mulate trehalose, the non-reducing disaccharide to high amounts (Bianchi et al. 
 1993 ; Drennan et al.  1993 ). Later, trehalose accumulation has been detected in 
numerous other plants under different stress conditions such as drought, cold, and 
high salinity (Pramanik and Imai  2005 ; Lopez et al.  2008 ). Stabilization of proteins 
and membranes can be done by trehalose, which can function as an osmoprotective 
compound at suffi cient levels (Paul et al.  2008 ). However, trehalose levels of most 
angiosperms can be increased by abiotic stresses but to moderate level only (Rizhsky 
et al.  2004 ; Guy et al.  2008 ; Kempa et al.  2008 ). 

 Trehalose biosynthesis is a two-step pathway in which trehalose-6-phosphate is 
produced from UDP glucose and glucose-6-phosphate by trehalose phosphate 
synthase, which is converted to trehalose by the enzyme trehalose phosphate phos-
phatase (Vogel et al.  1998 ,  2001 ). Trehalose is catabolized by trehalase, which con-
verts it to glucose (Goddijn et al.  1997 ; Brodmann et al.  2002 ). The importance of 
trehalose in stress responses has been demonstrated by engineering the trehalose 
biosynthetic pathway in transgenic plants. Trehalose level has been enhanced by 
overexpression of bacterial trehalose biosynthetic genes like  otsA  and  otsB  in rice 
which improve its salt and drought tolerance (Garg et al.  2002 ). Several other trans-
genic plants that accumulate trehalose at high levels have been produced. The idea 
about regulation of stress tolerance can be done by inducing trehalose metabolism 
and has been proven via studies on genetically modifi ed plants (Ge et al.  2008 ; 
Stiller et al.  2008 ). On the other hand, in another study, modifi cation of trehalase 
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which is responsible for conversion of trehalose to glucose has showed that trehalase 
plays a role in the regulation of stomatal closure in plants under drought stress. 
During water-defi cit stress,  AtTRE1  overexpression in  A .  thaliana  plants that have 
low level of trehalose exhibits better resistance to water defi cit than  Attre1  mutants 
that has elevated trehalose contents. High sensitivity of  AtTRE1  stomata to ABA 
maintains leaf water content by closing more stomata than the mutants (Van Houtte 
et al.  2013 ). Exogenous applications of trehalose provide plants with improved tol-
erance to drought and salt stresses. Trehalose treatments cause increases in transcrip-
tion of antioxidant enzyme genes such as superoxide dismutase, ascorbate peroxidase, 
peroxidase, and catalase in salt-stressed rice plants. Trehalose-treated plants recover 
immediately compared to non-treated plants (Nounjan et al.  2012 ). 

 Trehalose is suggested to function as chemical chaperon and has been shown to 
stabilize membranes and protect proteins in tissues under drought stress (Crowe 
et al.  1984 ; Crowe  2007 ). Trehalose can act as a signal molecule below 1 mg/g fresh 
weight instead of being a compatible solute (Garg et al.  2002 ). Therefore, the 
signaling function of trehalose and trehalose-6P could be more important than the 
previously suggested chaperone or osmolyte function, although in some tissues 
such a protective role cannot be excluded (Fernandez et al.  2010 ).  

2.3.4    Polyols 

 One other class of osmoprotective compounds is polyols or sugar alcohols, which 
are chemically, reduced forms of aldose or ketose sugars. Water-like hydroxyl 
groups of polyols forming a sphere of hydration around macromolecules allow them 
to act as osmoprotectants under low osmotic potential. Polyols have functions as 
molecular chaperons stabilizing macromolecules. They also prevent membranes 
and enzymes from oxidative damage by scavenging ROS (Smirnoff and Cumbes 
 1989 ; Shen et al.  1997 ). Compared to sorbitol and galactitol, mannitol is the most 
common sugar alcohol and is an important photosynthetic product in a number of 
plant species (Loescher et al.  1992 ; Rumpho et al.  1983 ). In some plant species, 
there has been a correlation between stress tolerance and accumulation of mannitol 
and sorbitol (Stoop et al.  1996 ). Increase in tolerance to salinity or water defi cit has 
been observed in  Arabidopsis , tobacco, poplar, and wheat, which have been intro-
duced mannitol-1-phosphate dehydrogenase ( mtlD ) from  E .  coli , that converts 
fructose- 6-phosphate to mannitol-1-phosphate (Abebe et al.  2003 ; Chen et al.  2005 ; 
Sengupta et al.  2008 ). Similarly, targeted expression of  mt1D  in tobacco chloro-
plasts causes an increase in cytoplasmic mannitol concentration in transgenic 
tobacco plants, this increase, in turn, results in resistance to methyl viologen- 
induced oxidative stress (Shen et al.  1997 ). Overexpression of celery M6PR is an 
alternative way to enhance mannitol biosynthesis and has been shown to be an effi -
cient way to improve salt tolerance of  Arabidopsis  (Zhifang and Loescher  2003 ). 
In a halophyte  Prosopis strombulifera , leaf mannitol content increases during NaCl 
stress whereas sorbitol content increases after Na 2 SO 4  treatment. According to 
increase in mannitol content during NaCl stress, it has been concluded that 
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 P .  strombulifera  prefer mannitol for osmotic adjustment, however, sorbitol synthesis 
during Na 2 SO 4  might be related to problems in carbon metabolism due to toxicity of 
sulfate (Llanes et al.  2013 ). 

 Myo-inositol is an essential polyalcohol in plants and eukaryotes for being an 
important precursor of some lipid signaling molecules and it has potential role in 
signaling during stress, cell wall biosynthesis, cell death, and plant hormone synthe-
sis. Biosynthesis of myo-inositol starts from  d -glucose-6P, which is converted to 
myo-inositol-1P by myo-inositol-1P synthase (MIPS) (Johnson and Sussex  1995 ; 
Majumder et al.  1997 ). Myo-inositol is produced from myo-inositol-1P by dephos-
phorylation and is used for the subsequent biosynthesis of all inositol-containing 
compounds, including phospholipids. MIPS genes were shown to be salt-induced, 
leading to accumulation of myo-inositol in the halophyte ice plant, but not in the 
glycophyte  Arabidopsis  (Ishitani et al.  1996 ). MIPS genes can be regulated by sev-
eral environmental stress factors such as drought, heat and cold stress, high light and 
controlled by ABA signals (Yoshida et al.  1999 ,  2002 ; Abreu and Aragao  2007 ; Wei 
et al.  2010a ,  b ). Phosphorylated derivatives of myo-inositol are important signaling 
compounds in responses to biotic and abiotic stresses which are involved in numer-
ous regulatory pathway and control diverse aspects of plant development (Nelson 
et al.  1999 ). Improved tolerance to salt stress during germination, seedling growth 
and development has been observed in  Arabidopsis thaliana  that overexpress myo- 
inositol 1-phosphate synthase gene ( SaINO1 ) in halophytic grass,  Spartina alterni-
fl ora  (Joshi et al.  2013 ). 

 As an important osmoprotectant, a six-carbon alcohol sorbitol is the most prefer-
able accumulated carbon source in some fruit trees of  Rosaceae  family (Tari et al. 
 2010 ; Feng et al.  2011 ; Li et al.  2012 ). Sorbitol confers tolerance against abiotic and 
biotic stresses by participating in osmotic adjustment during stress. Sorbitol is syn-
thetized from hexose phosphates like sucrose. Sorbitol-6-phosphate dehydrogenase 
(S6PDH) is a regulatory enzyme in sorbitol biosynthesis, which catalyzes conver-
sion of glucose-6-phophate to sorbitol-6-phosphate then in turn, sorbitol-6- 
phosphate is dephosphorylated to form sorbitol by sorbitol-6-phosphate phosphatase 
(Kanamaru et al.  2004 ; Liang et al.  2012 ). 

 Sorbitol transporter genes are induced by subjecting plants to stress so that plants 
can accumulate sorbitol. Sour berry, apple, and  Arabidopsis  plants have been 
scanned for the transporter genes and the genes have been identifi ed in these plants 
(Gao et al.  2005 ; Fan et al.  2009 ). Differential regulation of sugar regulators is 
maintained through sugar transporters induced in response to varied abiotic and 
biotic stress (Wormit et al.  2006 ). Sorbitol accumulation in salt-stressed  Plantago 
major  has been detected by Pommerrenig et al. ( 2007 ). In addition, up-regulation of 
three sorbitol transporters in apple plants has improved drought tolerance in vegeta-
tive tissues with subsequent increment in sorbitol concentration as confi rmed by 
HPLC analysis of leaves, roots, and phloem tissues (Li et al.  2012 ). 

 Pinitol is a methylated inositol, which is synthetized from myo-inositol by 
inositol- o   -methyltransferase (IMT1) and ononitolepimerase (OEP1) (Bohnert et al. 
 1995 ; Rammesmayer et al.  1995 ; Sengupta et al.  2008 ). Pinitol increase has been 
correlated with improved tolerance of some plants subjected to drought or heat stress. 
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Increase in the drought resistance of pine seedlings that accumulate pinitol has been 
determined. The cultivars that acquire higher pinitol content are resistant to drought 
stress than the low pinitol-producing cultivars (N’Guyen and Lamant  1988 ). 
Many studies confi rm sucrose as the well-known low-molecular-weight carbohy-
drate that is accumulated in soybean plants under stress (Yamada and Fukutoku 
 1985 ; Fellows et al.  1987 ). Ford ( 1984 ) has reported inadequate increase in sucrose 
contents and signifi cant accumulation of pinitol in soybean plants under water- 
stressed conditions. Pinitol accumulation is a characteristic feature of a number of 
halophytic plants in saline environment and occurs in several glycophytic plants 
grown under osmotic stress conditions (N’Guyen and Lamant  1988 ; Gorham et al. 
 1981 ; Popp  1984 ; Paul and Cockburn  1989 ; Sengupta et al.  2008 ). Unlike native 
rice cultivars, pinitol hyperaccumulation has been found in  Porteresia coarctata , a 
halophytic wild relative of rice. This pinitol accumulation is controlled by inositol 
methyl transferase 1 ( PcIMT1 ) gene, an essential metabolic response for salt stress 
(Sengupta et al.  2008 ). Increased salt tolerance was shown in transgenic tobacco 
displaying  P .  coarctata ,  MIPS  overexpression, and  M .  crystallinum  IMT1 gene 
insertion. These transgenic tobacco plants accumulate more inositol and pinitol that 
confer improved growth, higher photosynthetic activity, and lower oxidative dam-
age during salt stress (Patra et al.  2010 ).    

3     Conclusions and Future Perspective 

 Plants being sessile are subjected to diverse environmental stresses that impede 
their growth and development. Therefore, metabolic adjustment to cope with envi-
ronmental stress conditions is important considerably for plants. However, this 
adjustment is brought at different levels in diverse ways making tolerance mecha-
nism even more complex. As each organism, even its varieties exhibit assorted 
response to array of external stimuli. For instance, changes in cellular metabolism 
during development and acclimation under adverse conditions are closely related to 
the developmental stage of a plant. Therefore, there is great necessity to study state 
of vulnerability at particular developmental stage and metabolic adjustment in stress 
conditions. 

 Osmoprotective compounds like sugars and proline could function as metabolic 
signals and therefore have broader infl uence on physiological responses and meta-
bolic adjustment to stress conditions. Despite there are many studies about signaling 
networks, however there is paucity regarding reports about how a metabolic response 
is induced by an environmental change and what are the roles of osmolytes in stress 
signaling. Engineering of crop plants via genetic transformation is a promising tool 
to study the signifi cance of osmoprotective compounds in stress responses and to 
improve the performance of crop plants under suboptimal conditions. Enhanced 
accumulation of a metabolite can be achieved via activation of the biosynthetic 
pathway or inhibition of the catabolic pathway. Furthermore, novel pathways can be 
established in plants, by introducing genes from other species. Combining advanced 
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approaches like genomics, proteomics, and metabolomics could increase our 
understanding of plant stress responses on a global scale and will put forth metabolic 
bases of adaptation to drought, salinity, or extreme temperatures.     
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