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1            Introduction 

 World population is increasing at an alarming rate and is expected to reach 8.3 billion 
by 2030 (FAO  2010 ). In many densely populated developing countries of the world, 
expansion of arable land has become more diffi cult as a result of rapid urbanization, 
industrialization, and water scarcity (Rengasamy  2010 ). In future, food grain 
production has to be increased by 57 % so as to ensure suffi cient food for the grow-
ing population (Wild  2003 ). In past few years, no doubt, an increase in productivity 
of certain major crops has been reported but repeating the same success in future for 
increased food production seems to be diffi cult. 

 Among various abiotic stresses, drought is one of the major environmental con-
straints limiting crop productivity worldwide (Masoumi et al.  2010 ; Khamssi et al. 
 2011 ; Batlang et al.  2013 ). About 25 % of the world’s agricultural land is affected by 
drought stress (Jajarmi  2009 ). Changes in global climate have made this situation 
even more serious (Anand et al.  2003 ). Water shortage and soil water losses due to 
changes in environment and excessive land use are challenges to crop production 
(Xia et al.  2005 ). Maintaining higher plant productivity under environmental 
stresses is the main challenge which modern agriculture is facing (Gill and Tuteja 
 2010 ). Drought stress affects both source and sink, thereby causing reduction in 
yield in a time-dependent manner with respect to the severity of stress and plant 
developmental stage (Blum  1996 ). Drought stress imposes osmotic stress leading to 
loss of turgor and oxidative    stress through production of reactive oxygen species 
(ROS) that results in loss of membrane integrity, protein denaturation, and oxidative 
damage to other biomolecules. As a consequence of such changes, inhibition of 
photosynthesis, metabolic dysfunction, and damage to cellular structures occurs 
causing growth perturbances, reducing fertility, and premature senescence (Munns 
and Tester  2008 ). Plants respond differently to water defi ciency in different periods of 
their growth. The generative phase and the beginning of fl owering are most fre-
quently the period of the greatest sensitivity to water defi cit.  

2     Adaptations to Drought Stress 

 Distribution of plant species depend upon the prevailing environmental conditions. 
Tolerant plants can survive the extreme harsh environmental conditions at which the 
growth of sensitive ones is negatively infl uenced (Munns and Tester  2008 ). Higher 
tolerance to adverse environmental conditions is because of different stress response 
mechanisms. Plants adopt different strategies to cope with drought stress. The strat-
egies adopted include escape, avoidance, and tolerance strategy (Levitt  1980 ; 
Chaves et al.  2002 ; Blum  2005 ; Ahmad and Sharma  2008 ; Rasool et al.  2013 ). 
Ephemeral plants have rapid phenological development, completing their life cycle 
during a period of adequate moisture and forming dormant seeds before the onset of 
dry seasons. Ephemerals never really experience the drought stress. In avoidance 
strategy, plants somehow reduce the impact of stress factor, even though the stress 
is present in the environment. Avoidance strategy, generally results in maintaining 
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the favorable internal water content either by conserving water which is brought 
about by closing the stomata, leaf rolling, and heavy pubescence or by increasing 
the water uptake through development of deep root system and water spenders 
(Ruiz- Sanchez et al.  2007 ). On the other hand, in tolerance strategy, plant endures 
drought without undergoing injury, retaining the capacity of normal growth and 
development when rehydrated. In tolerance, plants mitigate the stress by maintain-
ing high water potential through accumulation of compatible osmotic solutes. The 
accumulation of compatible solutes is well regarded as a basic strategy for the pro-
tection and survival of plants under abiotic stress conditions (Chen et al.  2007 ). 

 Responses of plant species to drought stress depend on several factors including 
duration and severity of the drought period as well as its inherent tolerance mecha-
nisms. Severe and prolonged periods of drought stress result in oxidative damage 
due to the overproduction of ROS (Smirnoff  1993 ). Among various physiological 
and developmental mechanisms that a plant species adopts to tolerate periods of 
water defi cit, accumulation of osmotically active solutes is the most commonly 
reported mechanism. By the accumulation of solutes, turgor and turgor-dependent 
processes are maintained, thereby allowing cell enlargement and plant growth during 
water stress and stomata to remain partially open and CO 2  assimilation to continue 
at low water potentials that are otherwise inhibitory (Pugnaire et al.  1994 ). 

 Drought is a multidimensional stress, affecting plants at various levels of their 
organization (Yordanov et al.  2000 ). Stress-imposed effects are often manifested at 
phenological, morpho-physiological, biochemical, and molecular levels (Bahrani 
et al.  2010 ). Accumulation of compatible organic solutes (Da Costa and Huang 
 2009 ), changes in endogenous levels of certain phytohormones (Seki et al.  2007 ; 
Dobra et al.  2010 ), and overexpression of stress-responsive genes (Xiong and Yang 
 2003 ; Jaleel et al.  2006 ) do occur in response to stress. Most of these responses are 
directly triggered by the changes in water status of the cell (Chaves et al.  2003 ). 
In connection to this, plant hormones such as abscisic acid (ABA), jasmonic acid 
(JA), and salicylic acid (SA) are involved in a complex signal transduction network, 
thereby coordinating growth and development with plant responses to the changing 
environment (Jiang and Zhang  2002 ; Fujita et al.  2006 ; Szalai et al.  2010 ). In order 
to improve plant tolerance to stress, understanding of complete physio-biochemical 
responses of plant is pivotal (Jaleel et al.  2006 ; Ahmad and Sharma  2008 ; Ahmad 
et al.  2008a ,  b ,  2010a ).  

3     Osmoregulation and Osmolytes 

 Osmoregulation/osmotic adjustment is the general response of plants to water stress 
so that solute content of the cell is increased. In order to maintain turgor and water 
uptake for normal growth, plants under stress need to maintain internal water poten-
tial well below that of soil which is usually acquired by increasing concentration of 
cell osmotica, either through uptake of solutes from soil solution or by increased 
synthesis of compatible solutes (Tester and Davenport  2003 ; Ahmad and Sharma 
 2008 ). Cytoplasm accumulates low molecular mass compounds in order to 
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accommodate the ionic balance in the vacuoles (Zhifang and Loescher  2003 ). These 
compatible osmotic solutes do not interfere with normal metabolic reactions but 
rather, they replace water in these reactions (Ahmad and Sharma  2008 ; Koyro et al. 
 2012 ). Accumulation of these osmolytes is proportional to change in external osmo-
larity (within species-specifi c limits), thereby protecting cellular structures and 
maintaining osmotic balance to support continued water infl ux (Hasegawa et al. 
 2000 ). Majority of these compatible osmolytes are organic solutes, while some are 
essential ions such as K +  (Yokoi et al.  2002 ; Ahmad and Sharma  2008 ). However, 
the accumulation varies within the genus as well as plant species. Majority of the 
organic solutes accumulated are sugars (fructose, glucose, trehalose, and raffi nose), 
sugar alcohols (glycerol and methylated inositols) (Bohnert and Jensen  1996 ), qua-
ternary amino compounds (proline, glycine betaine, proline betaine, tertiary 
amines), and sulfonium compounds (choline  O -sulfate, dimethyl sulfonium propiro-
nate) (Yokoi et al.  2002 ). Osmolyte accumulation is mandatory in plants for osmotic 
adjustment under water limiting conditions, but osmolyte accumulation mainly 
depends upon water status, crop growth stage, and cultivar (Shao et al.  2006 ). Due 
to accumulation of osmolytes, water status of cell and subcellular structures is 
maintained and membranes as well as proteins are protected from denaturing effects 
of osmotic stress (Ashraf and Foolad  2007 ). 

3.1     Proline 

 Proline is an amino acid that plays multifunctional role in stress defense. It is actively 
involved in osmoregulation, scavenging of free radicals, and as a molecular chaperone 
for stabilizing protein structure, thus protects plant cells from damaging effects of 
various environmental stresses (Verbruggen and Hermans  2008 ; Ahmad and Sharma 
 2008 ; Szabados and Savoure  2010 ; Koyro et al.  2012 ; de Carvalho et al.  2013 ). 
Accumulation of proline in response to various environmental stresses is well docu-
mented (Ahmad  2010 ; Ahmad et al.  2010b ,  2011 ,  2013 ; Azooz et al.  2011 ; Katare 
et al.  2012 ; Kim and Nam  2013 )   . Water stress-induced increase in proline has been 
reported in rice (Pandey and Agarwal  1998 ),  Medicago sativa  (Slama et al.  2011 ), 
wheat (Jatav et al.  2012 ), and  Arabidopsis  (Ju et al.  2013 ). Besides its role in stress 
tolerance, accumulation of proline is possibly a useful drought injury sensor in plants 
(Zlatev and Stotanov  2005 ). Tolerant plant genotypes show large accumulation of pro-
line which is often correlated with increased stress tolerance (Katare et al.  2012 ; Ahmad 
et al.  2012a ,  b ). As a consequence of drought stress, the concentration of proline in 
plant leaves increases tenfold in leaves of  Lotus japonicus  (Signorelli et al.  2013 ). 

 Biosynthetic and catabolic pathways of proline determine its level (Szabados and 
Savoure  2010 ). Proline is biosynthesized from glutamate by sequential action of 
γ-glutamyl kinase (γ-GK), pyrroline-5-carboxylate synthetase (P5CS), pyrroline-5- 
carboxylate (P5C), and P5C reductase (P5CR) (Hong et al.  2000 ; Yamada et al. 
 2005 ). In most plant species, P5CS is encoded by two genes and P5CR is encoded 
by one (Armengaud  2004 ). Proline can also be synthesized by alternative 
pathway from ornithine, employing ornithine-delta-aminotransferase (d-OAT) 
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(Miller et al.  2009 ). Proline synthesized in cytoplasm or chloroplasts is transported 
to mitochondria    where it is catabolized to P5C through the sequential action of 
proline dehydrogenase (PDH) or proline oxidase (PROX) and P5C is then converted 
to glutamate by enzyme P5C dehydrogenase (P5CDH). 

 Proline level in plants is controlled by two important enzymes, PROX and γ-GK 
(Girija et al.  2002 ; Ahmad and Sharma  2008 ; Koyro et al.  2012 ). Increased proline 
accumulation during stress may be due to the activation of proline synthesis through 
glutamate pathway involving γ-GK, glutamyl phosphate reductases, and P5CR 
enzymes. During stress, increase in activity of γ-GK and decrease in activity of 
PROX has been reported by Jaleel et al. ( 2007 ) in  Catharanthus roseus  and Ahmad 
et al. ( 2010b )    in  Morus alba , thereby helping plants to maintain suffi cient levels of 
proline to combat/ameliorate detrimental effects of stress. 

 Under stress conditions, proline synthesis is enhanced in plants and on recovery 
from stress, its catabolism is enhanced. It has been reported that overexpression of 
P5CS in  Nicotiana  and  Petunia  resulted in increased proline accumulation and 
enhanced salt and drought tolerance (Hong et al.  2000 ; Yamada et al.  2005 ). Rice 
and tobacco plants overexpressing  Arabidopsis  d-OAT has increased proline levels 
and greater tolerance to stress (Roosens et al.  2002 ; Qu et al.  2005 ). 

 Proline accumulation is a highly regulated process involving    a set of protein 
kinases that is ubiquitous for stress tolerance including drought. These proteins 
include SNF-related protein kinases 2 (SnRK2s, i.e., SnRK 2.2, SnRK 2.3, and 
SnRK 2.6) which are activated on exposure to stress (Boudsocq et al.  2004 ). It has 
been reported in  Arabidopsis  mutants that ABA-responsive SNF-related protein 
kinases 2 (SnRK2)-induced ABA-dependent proline accumulation, therefore 
imparts more tolerance to osmotic stress (Fujii et al.  2011 ). Another family of SNF- 
related protein kinases, that enhance proline levels, is SnRK3s. These are calcineurin 
B-like (CBL) calcium binding proteins also known as CBL-interacting kinases 
(CIPKs) and overexpression of OsCIPK03 and OsCIPK12 has been reported to 
increase tolerance of rice to cold and drought by causing signifi cant increase in 
proline (Xiang et al.  2007 ). In addition to the abovementioned protein kinases, 
 Arabidopsis  calcium-dependent protein kinase 6 (CDPK6) (Xu et al.  2010 ) and 
soybean calmodulin GmCAM4 (Yoo et al.  2005 ) have been reported to contribute 
positively so as to enhance proline content and stress tolerance in  Arabidopsis , 
thereby indicating a key role for intracellular calcium signals in proline metabolism. 
Variety of abiotic stress responses in plants are regulated through MAPK (mitogen- 
activated protein kinase) cascades and it has been reported that several MAPKs 
are activated on exposure to various environmental stresses resulting in increased 
proline accumulation and tolerance as well (Kong et al.  2011 ; Zhang et al.  2011 ). 
Moreover, genetic manipulation of MAPK signaling pathway results in altered 
plant stress tolerance (Xiong and Yang  2003 ; Shou et al.  2004a ,  b ). Proline accumu-
lation can be induced by ABA as well as by other stress-related protein kinases. 
In addition to the abovementioned positive regulation of proline accumulation by 
several protein kinases, it shall be pointed out that it may also be regulated nega-
tively, e.g., maize protein phosphatases type 2C (PP2C) regulate various processes 
of development and responses to environmental stress but have been reported to 
regulate proline accumulation negatively (Liu et al.  2009 ; Umezawa et al.  2010 ).  
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3.2     Glycine Betaine 

 Glycine betaine (GB) plays an important role in plant tolerance to stress, enzyme 
activity, membrane integrity, ROS detoxifi cation, and osmotic adjustment. Glycine 
betaine ( N , N , N -trimethylglycine), one among the quaternary ammonium compounds 
(glycine betaine, β-alanine betaine, choline- O -sulfate, and 3- dimethylsulfoniopropionate 
and proline betaine), is dipolar and exists as neutral molecule at physiological pH 
(Le Rudulier et al.  1984 ) which is known to play protective role in plants under stress 
(Yang et al.  2003 ) and its accumulation has positive associations with stress tolerance 
(Ashraf and Foolad  2007 ; Kathuria et al.  2009 ). GB is mainly found in chloroplasts 
and plays a pivotal role in protection of thylakoid membranes and other key compo-
nents of photosynthetic machinery such as ribulose 1,5-bisphosphate carboxylase/
oxygenase (Rubisco) and oxygen evolving complex from stress-induced inactiva-
tion and dissociation, thereby maintaining the photosynthetic effi ciency (Yokoi 
et al.  2002 ). Moreover, it stabilizes the association of the extrinsic PS II complex 
proteins and maintains the highly ordered state of membranes at nonphysiological 
temperatures and salt concentrations (Papageorgiou and Murata  1995 ). 

 Plants synthesize GB in chloroplast from either glycine or choline via two 
distinct pathways: (1) dehydrogenation of choline or (2) N-methylation of glycine 
and enzymes involved in choline monooxygenase (CMO) and betaine aldehyde 
dehydrogenase (BADH) (Nye et al.  1997 ). Increase in glycine betaine content under 
stress conditions has been reported in many plants but the increase may be more 
pronounced in leaves than in roots, e.g.,  Haloxylon recurvum  (Wang and Nil  2000 ). 
In most of the crop plants, concentration of naturally accumulated GB may not be 
suffi cient enough to mitigate the deleterious effects of various environmental 
stresses (Subbarao et al.  2001 ). Accumulation of GB in response to stress has been 
reported in many crops, e.g., bean (Gadallah  1999 ), peanut (Girija et al.  2002 ), 
sorghum (Yang et al.  2003 ), and mustard (Ahmad  2010 ). But the concentrations 
accumulated vary with plant species, for example, sorghum accumulates manifold 
more GB than maize (Murata et al.  1992 ). Stress-tolerant species accumulate GB in 
high concentrations than sensitive ones (Agastian et al.  2000 ). Plants that accumu-
late low concentration of GB, exogenous application can be a useful tool to reduce    
the adverse effects of environmental stresses (Makela et al.  1998 ; Yang and Lu 
 2005 ). It has been reported that exogenous application of glycine betaine increased 
tolerance of tomato (Makela et al.  1998 ) and rice plants to salt stress (Lutts  2000 ). 
In maize, exogenous supply of glycine betaine caused considerable increase in 
yield, RWC, proline, and antioxidant enzyme activity but reduced lipid peroxidation 
under normal as well as drought conditions (Lv et al.  2007 ; Anjum et al.  2012 ). 
In addition, water-limited conditions increased the yield and yield components have 
been reported in several other crops such as rice (Rahman et al.  2002 ), sunfl ower 
(Iqbal et al.  2005 )   , maize (Ali and Ashraf  2011 ), bean (Abou El-Yazied  2011 ), and 
 Triticum aestivum  (Aldesuquy et al.  2012 ). 

 However, many important crop plants like maize, potato, tomato, and eggplant 
lack the capability to synthesize GB in adequate amounts (Zwart et al.  2003 ). In such 
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cases, both the exogenous application of GB and the introduction, via transgenes, of 
the GB biosynthetic pathway have become imperative to increase their tolerance to 
different abiotic stresses. This increased tolerance to abiotic stresses will be useful 
for understanding the mechanisms through which GB protects plants against abiotic 
stresses. So far, genetically modifi ed plants containing transgenes for production of 
GB have faced the limitation of being unable to produce suffi cient amounts of gly-
cine betaine required to mitigate the stress, but applying glycine betaine exogenously 
to plants under stress conditions has gained more attention (Ashraf and Foolad  2007 ). 
Introduction and overexpression of choline oxidase (Cod A) gene from  Arthrobacter 
globiformis  and BADH genes from Spinach/ Atriplex  have been widely used for GB 
production in transgenic plants. Introduction of Cod A gene in  Arabidopsis thaliana  
(Hayashi et al.  1997 ),  Oryza sativa  (Alia and Murata  1998 ), and  Lycopersicum 
esculentum  (Kathuria et al.  2009 ) and BADH gene in  Triticum aestivum  (Wang 
et al.  2010 ) have been reported to increase the tolerance to drought, salinity, and cold 
stresses by increasing the membrane integrity, enzyme activity, photosynthesis 
 regulating ROS detoxifi cation and also yield.  

3.3     Polyamines 

 Polyamines are group of naturally occurring nitrogenous compounds with aliphatic 
structure that are implicated in several processes such as growth, development as 
well as responses to various environmental stresses (Ahmad et al.  2012c ). Moreover, 
polyamines due to their hydrophilic properties are involved in the maintenance of 
pH and in scavenging of active oxygen compounds, therefore are considered as 
mediators in protective reactions against different stresses (Kovacs et al.  2010 ). 
Polyamines protect membrane from disintegration and alleviate oxidative stress 
(Groppa and Benavides  2008 ; Alcazar et al.  2011 ; Hussain et al.  2011 ; Ahmad et al. 
 2012c ). Putrescine (PUT), spermidine (SPD), and spermine (SPM) are commonly 
occurring polyamines in higher plants and may exist free or covalently bound to 
small molecules such as phenolic compounds as well as to macromolecules such as 
nucleic acids and proteins in soluble-conjugated or insoluble bound forms (Kusano 
et al.  2007 ; Duan et al.  2008 ). In addition to these, uncommon polyamines like 
homospermidine, cadaverine, and canavalmine have also been reported in several 
biological systems including plants. At the physiological pH, polyamines usually 
exist as cations. This polycationic nature of polyamines is one of their important 
properties affecting their biological activities (Valero et al.  2002 ). Polyamine levels 
vary depending on plant species and the stress duration (Liu et al.  2008 ). It has been 
suggested that stress-tolerant plants have increased polyamine levels as compared to 
sensitive ones and polyamines with higher number of amino groups (SPM and SPD) 
are more effective in scavenging of ROS than the ones with less number of amino 
groups (PUT) (Kubis  2008 ). 

 Polyamines serve as messengers of stress signals (Liu et al.  2007 ). As a result 
of acid neutralizing and antioxidant capability, polyamines show antisenescence, 

2 Drought Tolerance: Role of Organic Osmolytes, Growth Regulators…



32

anti- stress effects, and membrane and cell wall stabilizing abilities (Zhao and Yang 
 2008 ). Role of polyamines in modulating the defensive responses of plants to vari-
ous environmental stresses is well documented (Alcazar et al.  2011 ). 

 Exogenous application of polyamines has been suggested as an effective approach 
for enhancing stress tolerance of crops and crop productivity as well. Exogenous 
application of PUT have been successfully utilized in enhancing plant tolerance to 
high temperature (Murkowski  2001 ), cold (Nayyar and Chander  2004 ), osmotic 
stress (Liu et al.  2004 ), salinity (Verma and Mishra  2005 ), drought (Zeid and Shedeed 
 2006 ), heavy metals (Wang et al.  2007 ), water logging (Arbona et al.  2008 ), and 
fl ooding (Yiu et al.  2009 )   . Furthermore, it has been reported that genetic transforma-
tion of plants with genes that code for the enzymes involved in polyamine biosynthe-
sis resulted in increased stress tolerance in various plant species (Liu et al.  2007 ). 
Transgenic plants overexpressing these genes show increased    tolerance to multiple 
environmental stresses including salinity, drought, and low and high temperatures. 
This tolerance to multiple abiotic stresses is of practical importance as plants are 
often encountered by several concurrent forms of environmental stresses during their 
life cycle (Wi et al.  2006 ; Prabhavathi and Rajam  2007    ; Wen et al.  2008 ). 

 Plants defi cient in arginine decarboxylase (ADC) and spermidine synthase 
(SPDS) are unable to synthesize suffi cient PUT and SPM, respectively, therefore are 
sensitive to stress (Yamaguchi et al.  2007 ; Cuevas et al.  2008 ), whereas overexpres-
sion of ADC leads to greater synthesis of PUT and enhanced tolerance to drought 
(Alcazar et al.  2010 ; Alet et al.  2011 ). Tobacco plants overexpressing ornithine 
decarboxylase (ODC) showed increased tolerance to salt stress (Kumriaa and Rajam 
 2002 ). Moreover, it has been reported that  Arabidopsis  plants overexpressing SPDS 
showed greater tolerance to drought, salinity, and cold stress (Kasukabe et al.  2004 ). 
Scaramagli et al. ( 2000 ) reported that increase in insoluble-conjugated PUT levels 
was closely associated with polyethylene glycol-induced stress acclimation in potato. 
Liu et al. ( 2004 ) reported an increase in the polyamine levels in leaves of drought-
tolerant wheat seedlings under osmotic stress, indicating the role of polyamines in 
facilitating osmotic stress tolerance of wheat seedlings.   

4     Growth Regulators 

4.1     Abscisic Acid 

 Growth hormones help plants to adapt to changing environments by mediating growth, 
development, nutrient allocation, and source/sink transitions (Peleg and Blumwald 
 2011 ). ABA, a 15-carbon sesquiterpenoid compound resemblin   g terminal portion of 
some carotenoid molecules, is synthesized in chloroplast and other plastids by meva-
lonic acid pathway from 40-carbon precursor, zeaxanthin. Zeaxanthin epoxidase 
(ZEP), 9-cis-epoxycarotenoid deoxygenase (NCED), alcohol dehydrogenase 
(ABA2), and abscisic aldehyde oxidase (AAO3) are the main enzymes mediating its 
biosynthesis. 
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 ABA is involved in many cellular processes like germination, gravitropism, and 
guard cell-mediated stomatal opening (Levitt  1980 ). ABA plays an important role 
in the adaptation of plants to environmental stress. Regulation of water balance and 
osmotic stress tolerance is a well-established function of ABA (Takahashi et al. 
 2000 ; Zhu  2002 ). Under stress conditions, in addition to its well-established role 
in closing of stomata, ABA increases the ion infl ux across root cell membrane and 
also mediates the greater synthesis and accumulation of active osmotic solutes 
(e.g., proline, trehalose), thereby helping in bringing osmotic adjustment (Nayyar 
et al.  2005 ). ABA accumulates under drought stress and degrades gradually upon 
removal of stress. Since ABA mediates so many stress responses, starting from the 
perception of stress signal    upto changes in gene expression, which ultimately leads to 
increased ABA in plants (Zhang et al.  2006 ). Pospisilova et al. ( 2005 ) reported that 
ABA pretreatment further increased the endogenous ABA level in maize seedling. 
Presoaking seeds with ABA was reported to signifi cantly enhance the activities of 
antioxidant enzymes in maize seedlings subjected to water stress (Jiang and Zhang 
 2002 ). Similarly, Boominathan et al. ( 2004 ) found that relative water content of 
ABA-treated plants was higher under drought stress. Moreover, exogenous application 
of ABA under water stress increased the grain weight in susceptible wheat cultivars 
(Nayyar and Walia  2004 ). 

 The role of ABA in plants exposed to drought stress has been well studied. ABA 
has a potential role in regulating the plant water status and growth. Increased expres-
sion of genes encoding enzymes and proteins involved in enhancing drought toler-
ance has also been attributed to increased ABA (Luan  2002 ; Zhu  2002 ). During 
stress, ABA produced in root is transported to shoot for regulating stomatal move-
ments and leaf growth (Zhang et al.  1987 ; Zhang and Davies  1990a ,  b ). The pH and 
ionic conditions in the xylem play an important role in this transport (Wilkinson 
et al.  1998 ; Bacon et al.  1998 ; Hartung et al.  2002 ). Source of ABA appearing in the 
xylem during drought has been debated. Some are of the opinion that it comes only 
from the root (Zhang et al.  1987 ), while some have reported that ABA comes from 
both root and leaves. Root-sourced ABA is usually involved in the initial sensing of 
drought to regulate the stomatal conductance so that the excess water loss may be 
reduced, but under severe and prolonged stress, leaf water defi cit becomes unavoid-
able and older leaves may wilt because of weak hydraulic link or less control over 
stomatal conductance, increasing ABA concentration in the xylem (Zhang and 
Davies  1989a ,  b ). Concentration of ABA in xylem has direct infl uence on leaf con-
ductance and it has been reported that leaf conductance also responds to the fl ux of 
ABA into leaves per unit time, indicating its role in regulation of stomatal move-
ments and due to stress-induced changes in transpiration rate, this role may be mar-
ginalized (Jarvis and Davies  1997 ). However, there are certain reports indicating 
that stomata responds to xylem ABA concentration rather than its fl ux, e.g., when 
leaf conductance has decreased considerably as a result of water stress (Jackson 
et al.  1995 ). By following the amount of ABA entering the leaves during the process 
of ABA-induced stomatal closure, it has been reported that changes in leaf conduc-
tance are due to xylem ABA and the rapid metabolism of this xylem-derived ABA 
in the leaves is very essential in order to prevent its accumulation and stomatal 
movements to be sensitively regulated (Jia and Zhang  1999 ). 
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 ABA is important for growth and development of plants under water stress 
(Zhang and Davies  1990b ). But increment in the concentration of xylem ABA, 
beyond certain limits, can restrict shoot growth (Gowing et al.  1990 ). However, it 
should be noted that shoot and root respond differently to ABA levels. Sharp et al. 
( 2000 ) and Spollen et al. ( 2000 ) have reported that better growth of roots under 
water stress is attributed to higher amounts of ABA accumulated in the roots. 
Maintenance of better root growth under water defi cit has positive association with 
drought tolerance. ABA has dual role in regulating physiology of plant, i.e., inhibi-
tory as well as stimulatory (Finkelstein et al.  2002 ). Under stress conditions, when 
it is accumulated beyond certain limits to help plant survival, it may inhibit pro-
cesses such as stomatal opening and plant size expansion for quite large time, but 
under normal conditions, when accumulated concentration is normal, it promotes 
vegetative growth (Sharp et al.  2000 ; Spollen et al.  2000 ) and post-germination 
development (Cheng et al.  2002 ). He and Cramer ( 1996 ) have reported that accumu-
lation of ABA in lower concentrations increased salt tolerance of  Brassica napus . 
Excess accumulation of ABA as a result of salinity has often been reported to induce 
inhibition of leaf expansion in different species (He and Cramer  1996 ; Montero 
et al.  1998 ). 

 ABA has an important role in signaling plant responses to drought and salt 
stresses, thereby triggering the expression of drought-responsive genes. As revealed 
from sequencing studies, among the various stress-responsive genes that are regu-
lated by ABA, only few have been identifi ed for having any probable physiological 
functions. In ABA-dependent pathway, synthesis of new proteins may or may not be 
required (Bray  2002 ). In such pathways, when the synthesis of new proteins is not 
required, the presence of ABA-responsive element (ABRE) at the promoter domain 
of ABA-responsive gene is ubiquitous which upon binding to transcription factor 
(TF) leads to ABA-induced gene expression, e.g., in  Arabidopsis , ABA-induced 
expression of dehydration-responsive gene (rd29B) has two ABREs essential and 
two transcription factors (bZIP) (Uno et al.  2000 ). However, when synthesis of pro-
teins is required for the ABA-dependent gene expression, de novo synthesis of new 
proteins is the prerequisite. These genes do not have any ABREs (Leung and 
Giraudat  1998 ; Bray  2002 ). Expression of some genes may be dependent as well as 
independent of ABA (Shinozaki and Yamaguchi-Shinozaki  1997 ), e.g., gene rd29A, 
which is important for water stress, has two types of regulatory  cis -elements at its 
promoter, one ABA-dependent and the other is ABA-independent (Ingram and 
Bartels  1996 ; Leung and Giraudat  1998 ). 

 Under osmotic stress conditions, transcription levels of ABA biosynthetic genes 
are upregulated. Increased expression of the ZEP gene, under drought stress, has 
been reported in roots of  Nicotiana plumbaginifolia  (Audran et al.  2001 ) and leaves 
of  Arabidopsis  (Xiong et al.  2002 ). Moreover, stress-induced overexpression of 
NCED gene is well documented (Thompson et al.  2000 ; Tan et al.  2003 ). Under 
water stress conditions, accumulation of ABA is accompanied by transient increase 
in NCED transcript and proteins (Qin and Zeevaart  1999 ). Overexpression of 
AtNCED3 is highly induced by dehydration, although other NCED genes also con-
tribute positively but their role is minor (Tan et al.  2003 ). In addition, transgenic 
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 Arabidopsis  plants overexpressing NCED show greater ABA levels and increased 
desiccation tolerance. Similar results have been reported in transgenic tomato and 
 Nicotiana plumbaginifolia  (Thompson et al.  2000 ). Exogenous application of ABA 
has been reported to induce the expression of NCED gene in ABA-defi cient mutants 
(Xiong et al.  2002 ).  

4.2     Salicylic Acid 

 Salicylic acid (SA) is an endogenous growth regulator of phenolic nature, actively 
involved in plant growth, development, and several other physiological processes 
including germination, fruit ripening, fl owering, photosynthesis, stomatal conduc-
tance, ion uptake and transport (Shakirova  2007 ), biogenesis of chloroplast, interac-
tion with other organisms, and protection of plants against multiple environmental 
stresses such as ozone and ultraviolet radiation (Sharma et al.  1996 ), salinity 
(Borsani et al.  2001 ), freezing (Janda et al.  1999 ), herbicides (Ananieva et al.  2004 ), 
heavy metals (Ahmad et al.  2011 ), osmotic stress (Shi and Zhu  2008 ), and drought 
(Sadeghipour and Aghaei  2012 ). Salicylic acid (SA) acts as a signal involved in the 
expression of specifi c responses in plants to biotic and abiotic stresses. 

 SA induces systemic acquired resistance (SAR) in plants to different pathogens 
(Metraux  2001 ). SA has been reported to induce accumulation of lectins in wheat 
(Shakirova and Bezrukova  1997 ), synthesis of heat shock proteins, and activation of 
protein kinase in tobacco exposed to osmotic stress (Burkhanova et al.  1999 ; 
Mikolajczyk et al.  2000 ), suggesting the role of SA in anti-stress mechanisms. 
Salicylic acid (SA) has long been considered as signal molecule and is known to 
reduce the oxidative damage caused by salinity stress (Azooz et al.  2011 ; Sajid and 
Aftab  2012 ) and this ability of SA to produce a protective effect in plants under 
different abiotic stresses has increased the interest of researchers. 

 Exogenously applied salicylic acid in plants has been reported to enhance the 
effi ciency of several developmental, physiological, and biochemical processes. It has 
been reported that exogenous application of SA enhances transpiration rate (Rai et al. 
 1986 ), seed germination and yield (Raskin  1992 ), membrane permeability (Barkosky 
and Einhellig  1993 ), growth, and photosynthesis (El-Tayeb  2005 ). Moreover, exog-
enously applied SA is involved in the defense against pathogen attack and more 
recently its role has been widely investigated in both biotic and abiotic stresses 
(Shi et al.  2006 ). The role of SA in inducing stress tolerance in plants is well docu-
mented, e.g., it enhances the resistance of plants against drought and salt stress (Tari 
et al.  2002 ) besides metal stress (Ahmad et al.  2011 ). SA has been found to induce 
heat stress tolerance in mustard (Dat et al.  1998 ), chilling tolerance in maize (Janda 
et al.  1999 ), drought tolerance in wheat (Singh and Usha  2003 ), heavy metal stress 
tolerance in barley (Metwally et al.  2003 ), and salinity tolerance in barley (El-Tayeb 
 2005 ). Singh and Usha ( 2003 ) have reported that under drought, application of sali-
cylic acid to wheat increased the moisture content, total chlorophyll content, nitrate 
reductase activity, carboxylase activity of Rubisco, superoxide dismutase activity, 
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and dry matter accumulation. Moreover, exogenous application of salicylic acid has 
been reported to maintain the stability of membranes, enhance photosynthetic rate 
and K + /Na +  ratio (Kaydan et al.  2007 ), and increases proline content and activities of 
antioxidant enzymes, thereby mitigating the deleterious effects of stress (Shakirova 
et al.  2003 ). Agarwal et al. ( 2005 ) have reported that under water stress conditions, 
application of SA to wheat enhanced the chlorophyll and relative water content 
while caused considerable reduction in hydrogen peroxide and lipid peroxidation. 

 There are certain reports indicating that exogenous application of SA does not 
help in mitigation of drought-induced negative effects (Waseem et al.  2006 ). 
Nevertheless, it should be noted that before applying SA, one should have a thor-
ough knowledge about the effective means and methods of application so as to 
increase the effi ciency of exogenously applied SA which is believed to depend on 
several factors including the species, developmental stage, the manner of applica-
tion, and the concentration of SA as well (Borsani et al.  2001 ; Horvath et al.  2007 ; 
Joseph et al.  2010 ). Few other methods which have been reported to protect differ-
ent plant species against abiotic and biotic stresses include presoaking of the seeds, 
addition of SA to the hydroponic solutions, tissue culture media and spraying with 
SA solution (Horvath et al.  2007 ; Sakhanokho and Kelley  2009 ). In recent years, 
tissue culture technique has been extensively utilized for screening and developing 
stress- tolerant plants. Under in vitro conditions, impact of varying SA concentra-
tions on growth and induction of salt tolerance in  Hibiscus  plants have also been 
reported (Sakhanokho and Kelley  2009 ). Moreover, salicylic acid has an affi nity to 
bind with the enzymes like catalase, ascorbate peroxidase, and carbonic anhydrase 
that are involved in metabolism of free radicals and redox homeostasis (Slaymaker 
et al.  2002 )   . Any kind of imbalance in this homeostasis triggers the induction of 
defense responses in plants (Torres et al.  2002 ; Durrant and Dong  2004 ). Application 
of salicylic acid has been reported to increase the activities of the antioxidant 
enzymes in wheat (Agarwal et al.  2005 ),  Brassica juncea  (Yusuf et al.  2008 ), and 
broad bean (Azooz et al.  2011 ). Under water stress, salicylic acid-induced activity 
of antioxidant enzymes has also been reported in  Ctenanthe setosa  (Kadioglu et al. 
 2010 ). Moreover, exogenously applied salicylic acid to wheat (Shakirova et al. 
 2003 ) and  Brassica juncea  (Yusuf et al.  2008 ) under salinity and water stress, 
respectively, alleviated the synthesis and accumulation of proline—a good indica-
tion of increased stress tolerance.  

4.3     Ethylene 

 In addition to its usual role in plants, ethylene is also involved in defense against a 
wide variety of environmental stresses (Bleecker and Kende  2000 ). Increased ethyl-
ene biosynthesis is triggered in plants under various environmental stresses includ-
ing water stress, thereby suggesting its pivotal role in plant acclimation to stress 
(Gomez-Cadena et al.  1996 ). The effects of ethylene, whether transitory or long 
term, vary considerably among species (Hall and Smith  1995 ). Although examples 
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of abscission of leaves in response to water defi cit stress are compelling, exogenous 
application of ethylene or the ethylene precursor (1-aminocyclopropane-1- 
carboxylate) enhances leaf abscission, whereas inhibitors of ethylene synthesis 
(e.g., aminoethoxyvinylglycine and Ag + ) reduce leaf senescence (Taiz and Zeiger 
 1998 ). Ethylene is believed to be involved in stomatal closure but seems rather con-
tradictory. In  Arabidopsis , ethylene has been reported to inhibit ABA-induced sto-
matal closure (Tanaka et al.  2005 ) because H 2 O 2 -induced stomatal closure results in 
loss of function in  Arabidopsis  mutants, therefore suggesting an important role of 
ethylene in guard cell ROS signaling and stomatal closure (Desikan et al.  2005 ). 

 Ethylene is biosynthesized from methionine. Two main enzymes involved in the 
biosynthesis of ethylene are 1-aminocyclopropane-1-carboxylic acid (ACC) syn-
thase and ACC oxidase (ACO) that catalyze the conversion of  S -adenosyl- l - 
methionine  to ACC and the oxidative cleavage of ACC to ethylene, respectively 
(Zarembinski and Theologis  1994 ). Normally the activity of ACC synthase (ACS) 
is very low in tissues that produce less amounts of ethylene, but upon stimulation, 
its activity is induced rapidly so the reaction catalyzed by this enzyme is considered 
as rate limiting and regulatory step in induction of ethylene biosynthesis (Kende 
 1993 ). Moreover, the activity of this enzyme is also regulated by phosphorylation 
and dephosphorylation of proteins at the posttranslational level, thereby altering its 
turnover rate (Chae et al.  2003 ). In addition to this, induction of genes coding ACS 
and ACO under changing environmental conditions or endogenous cues, also 
enhance the ethylene biosynthesis in plants (Wang et al.  2002 ). 

 Under stress, plants produce ethylene in greater concentrations and the stress 
signal perceived triggers cellular responses further downstream. Protein kinases 
involved in regulation of ethylene synthesis under stress conditions covert these sig-
nals into cellular responses, thereby acting as important mediators of signal transduc-
tion cascade in cells (Chang and Karin  2001 ). Studies carried on transgenic tobacco 
using protein kinase and phosphatase inhibitors reveal that overexpression of NtMEK2 
DD causes activation of SIPK, a tobacco MAPK, thereby resulting in increased 
ethylene production which coincides with the increase in ACS activity, followed by 
the activation of a subgroup of ACS and ACO genes, suggesting the role of MAPK 
in activation of ACS and posttranscriptional regulation (Kim et al.  2003 ). 

 Stress signaling cascade largely depends on transcription factors and their 
expression levels have direct bearing with plant adaptation to adverse environment 
(Schenk et al.  2000 ). Among several transcription factors that have been identifi ed, 
ethylene response factors (ERFs) are known to be important (Zhang et al.  2009 ). 
ERFs are implicated in biotic and abiotic stress-induced transcription (Riechmann 
and Meyerowitz  1998 ; Hu et al.  2008 ) but among the various ERF genes, only a few 
are known to mediate responses to abiotic stress (El-Sharkawy et al.  2009 ). ERFs 
are DNA binding proteins that are specifi c to plants (Hao et al.  1998 ). It has been 
reported that ERF family genes are implicated in several stress responses like high 
salinity (Dubouzet et al.  2003 ), freezing (Yang et al.  2005 ), and drought (Yamaguchi- 
Shinozaki and Shinozaki  2006 ). Overexpression of the tobacco transcription factor 
NtERF1 leads to increased salt tolerance (Huang et al.  2004 ).  Arabidopsis thaliana  
overexpressing  Helianthus annus  transcription factor Hahb-4 exhibits a 
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characteristic phenotype essential for tolerance to water stress. Moreover this tran-
scription factor is involved in ethylene-mediated signaling pathways and its expres-
sion is regulated by water availability (Manavella et al.  2006 ). 

 Particular type of ethylene-responsive transcription factor induces/enhances tol-
erance to stress in particular plant species. For example, expression of tomato ERF5 
has been reported to impart regulation of stress responses in  Arabidopsis thaliana  at 
transcriptional level (Chuang et al.  2010 ). In transgenic tomato plants, overexpres-
sion of SlERF5 resulted in high tolerance to drought and salt stress which was 
accompanied by increased relative water content (Pan et al.  2012 ). Zhang et al. 
( 2010 ) showed that transgenic rice overexpressing JERF3 exhibited better drought 
and osmotic stress tolerance which is refl ected in increase in the contents of soluble 
sugars and proline. In addition, overexpression of JERF3 led to the upregulated 
expression of two OsP5CS genes in response to drought stress and also activated the 
expression of stress-responsive genes, including WCOR413, OsEnol, and OsSPDS2 
under normal conditions.   

5     Mineral Nutrients 

5.1     Calcium 

 Calcium is one of the macronutrients required for normal growth and development 
of plants. It is implicated in regulating a number of fundamental cellular processes 
involving cytoplasmic streaming, thigmotropism, gravitropism, cell division, cell 
elongation, cell differentiation, cell polarity, photomorphogenesis, plant defense, 
and stress responses. As a divalent cation (Ca 2+ ), it acts as an intracellular messenger 
in the cytosol    (Marschner  1995 ; Nobuhiro and Mittler  2006 ), has structural role in the 
cell wall and cell membranes and as a counter cation for anions in the vacuoles 
(White and Broadley  2003 ). Calcium provides strong structural rigidity to cells by 
forming cross-links within the pectin polysaccharides (Easterwood  2002 ). In plants, 
Ca 2+  is usually stored as calcium oxalate crystals in plastids. Better plant growth, the 
structural integrity of stems, and the quality of fruit produced are strongly coupled to 
Ca 2+  availability. Calcium is also known to act as an activator of many enzymes like 
ATPase, phospholipases, amylase, and succinate dehydrogenase. Studies carried on 
 Phaseolus vulgaris  L. suggested that Ca 2+  is associated with stomatal closure, 
decrease of hydraulic conductivity, sap fl ow, leaf dry weight, leaf K +  and Mg 2+  con-
centrations, and inhibition of CO 2  assimilation (Cabot et al.  2009 ). 

 In the absence of a stimulus, the plant cells maintain low cytosolic Ca 2+  concen-
tration (100 nM), but in response to an external stimuli including light, touch, wind, 
hormones, and biotic and abiotic stresses, the cytosolic concentration of calcium is 
rapidly elevated via an increased Ca 2+  infl ux due to the release of Ca 2+  by Ca 2+  chan-
nels from endoplasmic reticulum, plasma membrane, and other cell organelles and 
then quickly returns to the normal level by Ca 2+  effl ux through Ca 2+ /H +  antiporter 
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and Ca 2+  pumps (Bush  1995 ). One of the most common signaling pathways causing 
increase in concentration of calcium in cytosol in response to external stimulus is the 
phospholipase C enzyme-mediated pathway. Enzyme phospholipase C is activated 
after the signal perception by cell surface receptors including G protein- coupled 
receptors and receptor tyrosine kinases. Activated phospholipase C hydrolyzes the 
membrane phospholipid PIP2 to form 1,4,5-trisphosphate (IP3) and diacylglycerol 
(DAG) that act as secondary messengers. DAG is also involved in the activation of 
protein kinase C enzyme, while IP3 after diffusing into the endoplasmic reticulum 
binds to receptor (IP3 receptor), a Ca 2+  channel, thus releasing Ca 2+  from the endo-
plasmic reticulum. This stimulus-specifi c increase in cytoplasmic calcium is called 
as calcium signature (Evans et al.  2001 ). Current evidences indicate that apart from 
IP3, cyclic ADP ribose (cADPR) also infl uences the activity of Ca 2+  channels and 
plays an important role in elevating calcium levels in cytosol. The transduction of 
Ca 2+  signals into various biochemical and morphological responses is a very com-
plex and specifi c phenomena that is controlled by several factors. Specifi c signal 
induces a specifi c Ca 2+  signature in different cell types (Kiegle et al.  2000 ). 
Furthermore, in plant cells, Ca 2+  acts as a secondary messenger, thereby coupling a 
range of extracellular stimuli with intracellular responses (Sarwat et al.  2013 ). 
The specifi city of eliciting appropriate physiological response is due to the temporal 
and spatial changes of Ca 2+  and the extent of its amplitude as well (McAnish and 
Hetherington  1998 ; Allen et al.  1999 ), while the nature and intensity of stimulus is 
specifi ed by amplitude and duration of Ca 2+  transients. Ca 2+  binding proteins (sensors) 
help in decoding and transducing the calcium signatures by activating specifi c targets 
and pathways (Shao et al.  2008b ; Ahmad et al.  2012d ). 

 Increase in the concentration of cytosolic calcium leads to the activation of various 
Ca 2+  sensor proteins that convert these signals into a wide variety of biochemical 
changes. Different Ca 2+  sensors that exist in higher plants include calmodulin 
(CaM), calcium-dependent prote   in kinases (CDPK), and CBL protein which play a 
crucial role in abiotic stress signaling in plants (Das and Pandey  2010 ; Ahmad et al. 
 2012d ). Binding of Ca 2+  to the sensor molecule induces conformational change in 
the sensor molecule and exposes the hydrophobic pockets, thereby facilitating inter-
actions of the sensor protein with a variety of target proteins. These kinases are 
reported to play an important role in inhibition of autophosphorylation and enhanc-
ing substrate phosphorylation (Patil et al.  1995 ). Calcium and Ca 2+  sensor calmodulin 
(CaM) regulate the expression of structural and regulatory genes by acting on tran-
scription factors (TFs), thereby modulating their activity or Ca 2+ -loaded CaM may 
directly bind to promoter sequences to regulate gene expression, thus, indicating the 
role of CaM as a transcription factor. Ca 2+ /CaM complex may bind directly with 
transcription factors so as to regulate their DNA binding affi nities or indirectly by 
associating with complex transcriptional machinery that consists of Ca 2+ /CaM com-
plex, transcription factor binding protein (TFBP), and transcription factors. TFBP 
serves as a bridge between Ca 2+ /CaM and TFs, while Ca 2+ /CaM complex regulates 
gene expression by modulating the phosphorylation status of TFs through the activ-
ity of CaM binding protein kinase and protein phosphatase (Kim et al.  2009 ). 
Moreover, plant species overexpressing these protein kinases are more tolerant to 
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drought, salinity, and cold stresses. In transgenic rice, overexpression of OsCDPK7 
enhanced the induction of stress-responsive genes, resulting in increased tolerance 
to stress (Saijo et al.  2000 ). In  Arabidopsis , it has been reported that under drought 
and salt stress conditions, expression of AtCPK10 and AtCPK11 is induced indicat-
ing their possible role in osmotic stress signaling (Urao et al.  1994 ).  Arabidopsis  
plants overexpressing the CBL5 protein showed enhanced tolerance to high salt or 
drought stress (Cheong et al.  2010 ). 

 Ca 2+  supplementation under drought stress have been reported to enhance water 
conservation and improve the hydrophobicity of cellular membranes while lower-
ing its permeability through its interaction with the phosphates and proteins in cel-
lular membranes, thus strengthening their stability (Shao et al.  2008a ). Ca 2+  protects 
membranes from hydration, improves the cohesion of cell walls, maintains proto-
plasm viscosity, and enhances cellular dehydration resistance. Thus, Ca 2+  can sta-
bilize plant cells and enhance drought tolerance through its direct effects on 
structural basis of the plant (Shao et al.  2008b ; Ma et al.  2009 ). Schaberg et al. 
( 2011 ) reported that addition of calcium increased the concentrations of amino 
acids, alanine and γ-aminobutyric acid (GABA) and the polyamines, putrescine 
(PUT) and spermidine (SPD) as well as chlorophyll content in red spruce ( Picea 
rubens ) under low temperature stress. Abdel-Basset ( 1998 ) reported that under 
drought stress, calcium supplementation caused signifi cant increase in fresh weight, 
dry weight, chlorophyll, and relative water content, while reduced the membrane 
leakage in  Vicia faba .  

5.2     Potassium 

 Potassium (K) is an important macronutrient required for growth and development 
of plants both under normal and stress conditions (Agarwal et al.  2009 ). Potassium 
is actively involved in many basic biochemical and physiological functions suc   h as 
osmoregulation, enzyme activation, and stomatal movements reducing excess 
uptake of ions such as Na and Fe in saline soils (Epstein and Bloom  2005 ; Amtmann 
et al.  2008 ; Ahmad et al.  2012c ; Wang et al.  2013 ). Potassium is implicated in trans-
port of inorganic anions and metabolites. Moreover, it maintains the transmembrane 
voltage gradients for cytoplasmic pH homeostasis (White and Karley  2010 ). 

 Potassium defi ciency causes considerable reduction in leaf area, photosynthesis, 
and nitrogen metabolism, which ultimately result in reduced plant growth (Ebelhar 
and Varsa  2000 ). As a result of reduction in production of photoassimilates due to 
potassium defi ciency, the sink tissues also get restricted supply of photoassimilates. 
Due to this reduction in partitioning of photoassimilates, the quantity as well as 
quality of the yield gets affected (Pettigrew and Meredith  1997 ; Meille and Pellerin 
 2004 ). The very fi rst response of plants to potassium defi ciency is the reduction in 
growth rate, and later beginning of chlorosis and necrosis in older leaves (Mengel 
and Kirkby  2001 ). Potassium defi ciency induces disturbances in turgor, stomatal 
opening, water relations, and photosynthesis (Marschner  1995 ; Mengel and Kirkby 
 2001 ). Stomatal regulation largely depends upon the distribution of potassium in 
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epidermal cells, guard cells, and leaf apoplast (Shabala et al.  2002 ). Supplying 
suffi cient potassium levels has been reported to help plants to maintain higher leaf 
water potential, turgor potential, relative water content, and lower osmotic potential 
in several crop plants like wheat (Sen Gupta et al.  1989 ), maize (Premachandra et al. 
 1991 ), and  Vigna radiata  (Nandwal et al.  1998 ) grown under water stress. 

 Plants suffering from environmental stresses like drought have a larger internal 
requirement for K and defi ciency of potassium results in overproduction of ROS 
(Cakmak  2005 ). Potassium has been reported to reduce the detrimental effects of 
ROS by enhancing photosynthetic electron transport while inhibiting the activity 
of membrane bound NAD(P)H oxidases. 

 Potassium promotes root growth under water stress conditions (Sangakkara et al. 
 1996 ) because potassium and magnesium enhances transport of sucrose to develop-
ing root for their normal growth and development. Moreover, it also enhances the 
ion uptake, as potassium itself is one among the main constituents of the phloem 
sap, thus maintaining the osmotica and, thereby mitigating the adverse effects of 
moisture stress in plants by increasing the translocation and maintaining the water 
balance within the plants (Jeschke et al.  1997 ; Walker et al.  1998 ). In addition to 
this, activity of several enzymes which are involved in drought resistance is enhanced 
by the supplementation of appropriate potassium and its adequate concentration in 
cytoplasm as well (Kant and Kafkafi   2002 ). Plants with appropriate K levels have 
enhanced membrane fl uidity because potassium maintains the higher ratio of unsat-
urated to saturated fatty acids in membranes (Wilkinson et al.  2001 ). Moreover, 
potassium supplementation has been reported to increase the synthesis of many 
organi   c solutes like proline, free sugars, and free amino acids, under normal and 
water stress conditions, which contribute to osmotic adjustment. Under normal and 
water stress conditions, potassium-induced increase in proline has been reported in 
rice (Pandey et al.  2004 ) and wheat (Jatav et al.  2012 ). Potassium-induced increase 
in free sugars under water stress has been reported in rice by Pandey et al. ( 2004 ). 
In sorghum, potassium has been reported to overcome the ill effects of water stress 
and maintains the higher tissue water content (Umar et al.  1993 ). Plants accumulate 
osmolytes under stress conditions, thereby reducing osmotic potential and main-
taining RWC (Gupta et al.  2000 ). Drought-induced proline accumulation and 
hydrolysis of macromolecules into simpler mono, disaccharides, and amino acids 
may lead to accumulation of osmotica. 

 Evidences are emerging from the molecular studies that potassium might be 
involved in regulating the plant stress responses (Ashley et al.  2006 ; Wang and Wu 
 2010 ). Low potassium status triggers several signaling cascades such as up regula-
tion of K transporters, synthesis of ROS, and phytohormones including jasmonic 
acid (JA) and ethylene. In addition to up regulation of transport proteins, potassium 
defi ciency also triggers several other responses in roots. All these strategies enable 
plant species to adapt with the changing environmental conditions. It has been 
reported that increase in ROS and phytohormone levels is accompanied by transient 
increase in transcripts coding potassium transporters and channels, suggesting possible 
regulatory role of potassium in plant stress responses (Cheong et al.  2007 ; Jung 
et al.  2009 ). Cheong et al. ( 2007 ) suggested that in K-defi cient plants and drought-
induced ABA may trigger Ca fl ow which acts as secondary messenger and initiates 
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the uptake of K by roots and the regulation of stomatal guard cells. Ca signaling, 
which regulates leaf transpiration and root K uptake, involves membrane localized 
Ca sensor-interacting proteins. Jung et al. ( 2009 ) reported the increased ethylene 
and ROS production in K-defi cient plants. This phytohormone signal is important 
for changes in root morphology and plant tolerance to low K supply.   

6     Conclusion and Future Perspectives 

 Abiotic stresses cause considerable reduction in yield especially in arid and semi-
arid regions of the globe. Around 40–45 % of the agricultural land affected by 
drought stress and global climate change has made the problem even graver by 
causing reduction in arable land. Drought stress causes alterations in normal plant 
metabolism. Exposure to environmental stresses triggers the generation of ROS in 
different cellular organelles, especially chloroplasts and mitochondria. ROS cause 
disturbances in normal functioning of the cell by affecting several cellular macro-
molecules including DNA, lipids, proteins, carbohydrates, and their overproduction 
which ultimately can lead to cell death. In order to mitigate the stress, plants have 
evolved many adaptive mechanisms. Greater synthesis of various organic osmolytes 
such as proline, glycine betaine, free sugars, and polyols is considered as good indica-
tion of greater tolerance to stress. To ameliorate the damaging effects of ROS, plants 
are well equipped with enzymatic as well as nonenzymatic antioxidants. Positive 
effects of organic osmoprotectants and antioxidative defense system in combating 
stress-induced damage are well established. Osmolytes are known to play a role in 
osmotic adjustment, thereby maintaining the internal water content of cell, besides 
protecting subcellular structures. Moreover, synthesis of certain growth regulators is 
upregulated in plants under stress. Growth regulators act as signal molecules and play 
pivotal role in sensing and combating with the incoming stress. Proper mineral nutri-
tion can enhance the performance of plants, both under normal and stressed conditions 
by preventing the oxidation of polyunsaturated fatty acids (PUFA), thereby preventing 
membrane leakage and excessive formation of free radicals. 

 The biggest challenge to plant scientists is to develop stress-tolerant plant varieties. 
In order to enhance the stress tolerance, researchers have to look for defi ned sets of 
markers. In connection to this, genetic manipulations in important crops are gaining 
pace, but it should be kept in mind that the genes incorporated should not only 
enhance the tolerance at certain plant growth stages but at the whole plant level as 
well. Genomics, proteomics, and ionomics have been contributory towards the 
understanding of various plant responses to abiotic stresses. These techniques will 
help to identify unknown links, cross talk across different stress signaling pathways 
that could be exploited to enhance the plant tolerance to particular abiotic stress. 
Keeping global climate change in mind, model plants should be developed for 
increasing the understanding of tolerance mechanisms and interactions with increas-
ing concentration of CO 2  so as to assess them as suitable future crop plants. At the 
same time, lack of thorough understanding of drought tolerance mechanisms at 
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genetic and physiological levels and their contributions towards the stress tolerance 
have been a major limitation to develop drought-tolerant plants. 

 Our present knowledge about causes and consequences of water stress has still 
many dark areas and we should enhance our efforts towards these issues. Plant 
biotechnologists have so far been successful to some extent in developing stress- 
tolerant varieties but there is much more which still remains to be done.     
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