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Abstract The problem of comparison of several branches efficiency is formulated
as a multiple decision problem. The main difficulty to handle this problem lies in the
compatibility condition. Solution of this difficulty, based on a method of combina-
tion of testing compatible generating hypotheses is given. The additivity condition
of the loss function is investigated. This condition is used to construct the optimal
multiple decision statistical procedures for comparison of network branches effi-
ciency. Some examples are given.
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1 Introduction

Consider the activity of an organization having branch network. Let these branches
operate in different regional centers, under control of one common center and follow
common strategy. One of the problems of control consists in comparison of several
branches activity efficiency. This information is necessary, in particular, to select
a rational method of resources distribution, namely, into which branches resources
should be allocated.

Solution of this problem can be based on comparison of numerical indicators of
these branches efficiency. In the present paper, such indicator is the quantity of sales
(or consumer demand) on corresponding product in different branches. We assume,
that the quantities of sales are random variables, distribution of which depends on
some unknown parameters. Let the comparison between parameters define the pref-
erences of branches in efficiency. The main problem now is to construct a rule of
ranking of branches on the base of set of samples of a small volume.

We consider such problem from mathematical statistic point of view. Our so-
lution is based on the Lehmann’s theory of multiple decision statistical procedure
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Table 1 The numbers of
sales and total number of
customers

Branch 1 2 3 4 5 6 7 8

2000 254 199 187 182

2001 238 381 305 148 193 99 235

2002 386 447 612 205 233 396 444 101

2003 328 445 700 247 223 563 400 129

2004 393 388 706 261 223 570 465 119

2005 447 376 685 284 235 479 364 102

2006 568 390 726 374 205 404 348 111

2007 432 302 651 391 260 532 438 54

NUM 6390 7090 28900 6320 6320 11130 4660 2530

[1] and tests of the Neyman structure [2]. Lehmann’s theory of multiple decision
statistical procedures is based on three points: choice of the generating hypothesis,
compatibility of the family of tests for the generating hypothesis with decision space
for the original hypothesis, and additivity of the loss function.

In the present paper, we formulate the problem of comparison of branch activity
efficiency as a multiple decision problem. Then we discuss the choice of generating
hypothesis and compatibility condition, and investigate the condition of additivity
of the loss function and condition of unbiasedness.

The paper is organized as follow. In Sect. 2, we give an example of real trading
(distributive) network that we will use in the paper to illustrate the theoretical find-
ings. In Sect. 3, mathematical formulation of the problem is presented. In Sect. 4,
multiple decision procedure for the solution of the stated problem is described. In
Sect. 5, the condition of additivity of the loss function and condition of unbiasedness
are analyzed. In the last Sect. 6, we summarize the main results of the paper.

2 Example of Real Distribution Network

Let’s consider activity of a trading network with the main office in the center of re-
gion and with branches in different regional cities. We suppose this trading network
merchandises same expensive product, for example, cars. In this case, the ratio be-
tween number of sales and total number of customers will be an efficiency indicator.
Let’s assume that such network has worked for some years (as a whole structure)
and the management team of the network has a problem of choice of rational strat-
egy of the network development. Comparison of results of branches efficiency is
necessary to choose such strategy.

The numbers of sales and total number of customers are presented in Table 1.
Some of branches started to work later, namely the branches 5, 6, 7 started to work
in 2001 and the branch 8 started to work in 2002. String NUM corresponds to the
total number of customers.

Suppose that the numbers of sales are random variables Xi (i = 1, . . . ,8). In
this case, the data in the table xi

j (i = 1, . . . ,N; j = 1, . . . ,mj ) are observations of
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these random variables. As indicator of branch efficiency we will consider the ratio
between number of those who make a purchase to potentially possible number of
buyers in corresponding city.

3 Mathematical Model and Formulation of the Problem

Let N be the number of branches, ni
j be the potential number of buyers in the city

i for the year j , mi be the number of observations for the city i, i = 1,2, . . . ,N .
Define the random variables with Bernoulli distributions

ξ i
kj =

{
0, P (ξ i

kj = 0) = qi
kj

1, P (ξ i
kj = 1) = pi

kj

(1)

pi
kj +qi

kj = 1; k = 1, . . . , ni; i = 1, . . . ,N; j = 1, . . . ,mi . In our setting, the random

variable ξ i
kj describes behavior of buyer number k of the city i for the year j , pi

kj is
the probability of the fact that the buyer k from the city i make a purchase in year j .
Therefore, the random variable

Xi
j =

ni∑
k=1

ξ i
kj

describes number of sales in the city i for the year j . We use the following no-
tations ai

j = E(Xi
j ) = ∑n

i=1 pi
kj , Xi = (Xi

1,X
i
2, . . . ,X

i
mi

), xi = (xi
1, x

i
2, . . . , x

i
mi

).
The problem is investigated in the paper under the following assumptions:

• ni
j = ni, ∀j = 1, . . . ,mi , where mi—number of years of observations for the

branch i. Let ni be known (it can be a fixed percent of the city population).
• ai

j = ai (j = 1, . . . ,mi).

• The random variables Xi
j are independent for j = 1, . . . ,mi; i = 1, . . . ,N .

• The random variable Xi
j has a normal distribution from the class N(ai, σ i2

) ∀j =
1, . . . ,mi .

• Indicator of efficiency (consumer demand) for the city i is calculated by:

pi = ai

ni
=

ni∑
k=1

pi
k

ni

• Relation between parameters is:

σ i2

σ j 2
= ni

nj

Discussion of this assumption is given in [3].
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The problem of ranking of the branches efficiency can be formulated as multiple
decision problem of choice from L hypothesis:

H1: p1 = p2 = · · · = pN

H2: p1 > p2 = · · · = pN

H3: p1 < p2 = · · · = pN

H4: p1 = p2 > p3 = · · · = pN

...

HL: p1 < p2 < · · · < pN

(2)

Hypothesis H1 means that efficiencies for all branches are equal. Hypothesis H2
means that the branch 1 is the most efficient and all other branches have equal effi-
ciencies and so on. Hypothesis HL means that the branches are ranked in efficiency
by their ordinal number.

Note, that the total number of hypothesis is:

L =
N∑

r=1

∑
k1+k2+...+kr=N

N !
k1!k2! · · ·kr ! (3)

This number is increasing very fast. If N = 2 then L = 3, if N = 3 then L = 13, if
N = 4 then L = 75, if N = 5 then L = 541 and so on.

4 Compatibility Conditions and Multiple Decision Statistical
Procedure

The problem of choice of one of L hypotheses can be studied in the framework of
the theory of statistical decision functions [4, 5]. In [1], a constructive way for the
solution is given. Research in this and similar directions is proceeded till now. The
detailed bibliography is presented in [6, 7]. An application of the multiple decision
theory to the market graph construction is given in [8].

Main objective of the present paper is application of the method from [1] for
the solution of the problem of branch ranking and illustration of adequacy of this
method to this type of problems.

To construct the test with L decisions for the problem (2) we can apply the
method described in [1], where the test with L decisions is constructed from the
tests with K < L decisions. One can use a natural tests with K = 3, therefore the
problem with L decisions is reduced to set of problems with three decisions. The
last problem can be reduced to two usual testing hypothesis problems [2].

Consider the following sets of three decisions problems (three-decisions gener-
ating problems for (2)):

H
ij

1 : pi < pj , H
ij

2 : pi = pj , H
ij

3 : pi > pj (4)
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where pi , pj are indicators of efficiency for the pair of branches (i, j). According to
[1], the following test for the problem (4) can be applied (see [3] for more details):

δij

(
xi, xj

) =

⎧⎪⎨
⎪⎩

d
ij

1 , if tij (x
i, xj ) < c1

d
ij

2 , if c1 ≤ tij (x
i, xj ) ≤ c2

d
ij

3 , if tij (x
i, xj ) > c2

(5)

where the statistic of test tij has the form:

tij
(
xi, xj

) =
( xi

ni − xj

nj )/
√

1
min

i + 1
mj nj√

(
∑N

i=1
1
ni

∑mi

l=1(x
i
l − xi)2)/(

∑N
i=1 mi − N)

(6)

Here d
ij
k is the decision of acceptance of H

ij
k , k = 1,2,3; xi = 1

mi

∑mi

j=1 xi
j . The

constants c1, c2 are defined from the equations:

P
(
tij

(
Xi,Xj

)
< c1|pi = pj

) = αij

P
(
tij

(
Xi,Xj

)
> c2|pi = pj

) = αji

(7)

The problem (4) is a three-decision problem. To construct the test (5), we use the
following generating hypotheses (see details in [3]):

hij : pi ≥ pj vs. kij : pi < pj

hji : pj ≥ pi vs. kji : pj < pi
(8)

and combine two well known unbiased tests for them.
The test (5) is valid under the additional condition of compatibility of the tests

for generating hypotheses which reads in our case as

Pθ

(
δij (x) = d1

) + Pθ

(
δij (x) = d2

) + Pθ

(
δij (x) = d3

) = 1, θ = pi − pj

This is equivalent to c1 < c2 i.e. αij + αji < 1 (see [1], [8] where the compatibility
condition is discussed). For the case αij = αji we have c2 = −c1. Now we consider
the compatibility conditions for the problem (2) with generating hypotheses (4).
According to Wald decision theory [4], a nonrandomized multiple decision statisti-
cal procedure for the problem (2) is a partition of the sample space into L regions.
The construction of the test for the L-decision problem (2) from the tests (5) faces
the problem of compatibility which does not have a solution in our case. Indeed
consider the problem (2) for the case N = 3 and αij = α, ∀i, j . Then we have 13
regions in parametric space (13 hypothesis):

H1: p1 = p2 = p3, H2: p1 > p2 = p3, H3: p1 < p2 = p3

H4: p1 = p2 > p3, H5: p1 = p2 < p3, H6: p1 = p3 < p2

H7: p1 = p3 > p2, H8: p1 < p2 < p3, H9: p1 < p3 < p2

H10: p2 < p1 < p3, H11: p2 < p3 < p1, H12: p3 < p1 < p2

H13: p3 < p2 < p1

(9)
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If we combine the tests (5), then the sample space is divided onto 33 = 27 regions,
which are (we put c = c2 = −c1):

D1 =
⎧⎨
⎩

t12 < −c

t13 < −c

t23 < −c

⎫⎬
⎭ ; D2 =

⎧⎨
⎩

t12 < −c

t13 < −c

|t23| ≤ c

⎫⎬
⎭ ; D3 =

⎧⎨
⎩

t12 < −c

t13 < −c

t23 > c

⎫⎬
⎭

D4 =
⎧⎨
⎩

t12 < −c

|t13| ≤ c

t23 < −c

⎫⎬
⎭ ; D5 =

⎧⎨
⎩

t12 < −c

|t13| ≤ c

|t23| ≤ c

⎫⎬
⎭ ; D6 =

⎧⎨
⎩

t12 < −c

|t13| ≤ c

t23 > c

⎫⎬
⎭

D7 =
⎧⎨
⎩

t12 < −c

t13 > c

t23 < −c

⎫⎬
⎭ ; D8 =

⎧⎨
⎩

t12 < −c

t13 > c

|t23| ≤ c

⎫⎬
⎭ ; D9 =

⎧⎨
⎩

t12 < −c

t13 > c

t23 > c

⎫⎬
⎭

D10 =
⎧⎨
⎩

|t12| ≤ c

t13 < −c

t23 < −c

⎫⎬
⎭ ; D11 =

⎧⎨
⎩

|t12| ≤ c

t13 < −c

|t23| ≤ c

⎫⎬
⎭ ; D12 =

⎧⎨
⎩

|t12| ≤ c

t13 < −c

t23 > c

⎫⎬
⎭

D13 =
⎧⎨
⎩

|t12| ≤ c

|t13| ≤ c

t23 < −c

⎫⎬
⎭ ; D14 =

⎧⎨
⎩

|t12| ≤ c

|t13| ≤ c

|t23| ≤ c

⎫⎬
⎭ ; D15 =

⎧⎨
⎩

|t12| ≤ c

|t13| ≤ c

t23 > c

⎫⎬
⎭

D16 =
⎧⎨
⎩

|t12| ≤ c

t13 > c

t23 < −c

⎫⎬
⎭ ; D17 =

⎧⎨
⎩

|t12| ≤ c

t13 > c

|t23| ≤ c

⎫⎬
⎭ ; D18 =

⎧⎨
⎩

|t12| ≤ c

t13 > c

t23 > c

⎫⎬
⎭

D19 =
⎧⎨
⎩

t12 > c

t13 < −c

t23 < −c

⎫⎬
⎭ ; D20 =

⎧⎨
⎩

t12 > c

t13 < −c

|t23| ≤ c

⎫⎬
⎭ ; D21 =

⎧⎨
⎩

t12 > c

t13 < −c

t23 > c

⎫⎬
⎭

D22 =
⎧⎨
⎩

t12 > c

|t13| ≤ c

t23 < −c

⎫⎬
⎭ ; D23 =

⎧⎨
⎩

t12 > c

|t13| ≤ c

|t23| ≤ c

⎫⎬
⎭ ; D24 =

⎧⎨
⎩

t12 > c

|t13| ≤ c

t23 > c

⎫⎬
⎭

D25 =
⎧⎨
⎩

t12 > c

t13 > c

t23 < −c

⎫⎬
⎭ ; D26 =

⎧⎨
⎩

t12 > c

t13 > c

|t23| ≤ c

⎫⎬
⎭ ; D27 =

⎧⎨
⎩

t12 > c

t13 > c

t23 > c

⎫⎬
⎭

One has from (6) under additional assumption that mi = m, ni = n, i =
1,2, . . . ,N :

t13 = t12 + t23

t12 = t13 + t32

t23 = t21 + t13

(10)

Therefore, the sample regions D4,D7,D8,D12,D16,D20,D21,D24 are empty. This
means that decision function induced by (5) consists of 27 − 8 = 19 decisions. On
the other side, decision function for the problem (9) has to have 13 decisions only.
Note, that the regions D5,D11,D13,D15,D17,D23 in the sample space does not
have a corresponding nonempty regions in the parametric space. For example, the
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region D5 in the sample space corresponds to the empty region p1 < p2;p1 =
p3;p2 = p3 in the parametric space. At the same time, one has (it is true in general
case too)

P
(|tij | ≤ c, |tjk| ≤ c, |tik| > c

)
> 0

which means that the probability to accept the decision pi = pj ;pj = pk but pi �=
pk is not equal to zero.

To handle the problem of incompatibility, we reformulate the initial ranking prob-
lem (2) in the following way. First, we introduce the notations

pi Δ= pj ⇐⇒ ∣∣pi − pj
∣∣ ≤ Δ

pi Δ
< pj ⇐⇒ pi + Δ < pj

pi Δ
> pj ⇐⇒ pi > pj + Δ

where Δ is fixed positive number. Next, we formulate new multiple decision prob-
lem of the choice from M hypotheses:

H ′
1: pi Δ= pj , ∀i, j = 1, . . . ,N

H ′
2: p1 Δ

> pi, i = 2, . . . ,N; pi Δ= pj , ∀i, j = 2, . . . ,N

H ′
3: p1 Δ

> p2;p2 Δ
> pi, i = 3, . . . ,N; pi Δ= pj , ∀i, j = 3, . . . ,N

...

H ′
M : p1 Δ

< p2; p2 Δ
< p3; . . . , pN−1 Δ

< pN

(11)

To solve the problem (11), we introduce the following set of three-decisions gener-
ating problems

H
′(ij)

1 : pi Δ
< pj

H
′(ij)

2 : pi Δ= pj

H
′(ij)

3 : pi Δ
> pj

(12)

The test (5) can be applied for the problem (12) with the constants c1, c2 defined
from the equations:

P
(
Tij

(
Xi,Xj

)
< c1|pi + Δ = pj

) = αij

P
(
Tij

(
Xi,Xj

)
> c2|pi = pj + Δ

) = αji
(13)
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Table 2 The results of testing the three-decisions generating problems (12)

1 2 3 4 5 6

2 |p1 − p2| < Δ

3 p1 > p3 + Δ p2 > p3 + Δ

4 p1 > p4 + Δ |p2 − p4| < Δ p4 > p3 + Δ

5 p1 > p5 + Δ p2 > p5 + Δ |p3 − p5| < Δ |p4 − p5| < Δ

6 p1 > p6 + Δ p2 > p6 + Δ p6 > p3 + Δ |p4 − p6| < Δ |p5 − p6| < Δ

7 p7 > p1 + Δ p7 > p2 + Δ p7 > p3 + Δ p7 > p4 + Δ p7 > p5 + Δ p7 > p6 + Δ

8 |p1 − p8| < Δ |p2 − p8| < Δ p8 > p3 + Δ |p4 − p8| < Δ |p5 − p8| < Δ |p6 − p8| < Δ

7–8 p7 > p8 + Δ

In this setting, there is a one to one correspondence between associated partition
regions in the parameters and sample spaces. For example for the case N = 3, the
problem (11) can be written as:

H ′
1: p1 Δ

< p2 Δ
< p3 H ′

2: p1 Δ
< p2 Δ= p3 H ′

3: p1 Δ
< p3 Δ

< p2

H ′
5: p1 Δ≤ p3 Δ≤ p2 H ′

6: p1 Δ= p3 Δ
< p2 H ′

9: p3 Δ
< p1 Δ

< p2

H ′
10: p1 Δ= p2 Δ

< p3 H ′
11: p1 Δ≤ p2 Δ≤ p3 H ′

13: p2 Δ≤ p1 Δ≤ p3

H ′
14: p1 Δ= p3 Δ= p2 H ′

15: p3 Δ≤ p1 Δ≤ p2 H ′
17: p3 Δ≤ p2 Δ≤ p1

H ′
18: p3 Δ

< p1 Δ= p2 H ′
19: p2 Δ

< p1 Δ
< p3 H ′

22: p2 Δ
< p1 Δ= p3

H ′
23: p2 Δ≤ p3 Δ≤ p1 H ′

25: p2 Δ
< p3 Δ

< p1 H ′
26: p2 Δ= p3 Δ

< p1

H ′
27: p3 Δ

< p2 Δ
< p1

(14)

where pi
Δ≤ pj

Δ≤ pk means |pi − pk| < Δ, |pj − pk| < Δ and pi + Δ < pj .
It is easy to see that there exists one-to-one correspondence Di ←→ H ′

i , be-
tween partition of the sample space (see above) and partition of the parametric
space (14).

Note that number M of hypothesis in (11) is larger than the number of hypothesis
in (2).

We illustrate our findings by the practical example.

Example Results of application of the multiple decision problem (11) for the data
from Table 1, Δ = 10−6 are given in Table 2.
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According to (11), accepted decisions are:

p1 > pi + Δ, i = 3,4,5,6;
p2 > pi + Δ, i = 3,5,6;
p4 > p3 + Δ;
p6 > p3 + Δ;
p7 > pi + Δ, i = 1,2,3,4,5,6,8;∣∣pi − pj

∣∣ < Δ, (i, j) = (1,2), (1,8), (2,4), (2,8), (3,5), (4,5),

(4,6), (4,8), (5,6), (5,8), (6,8)

(15)

The general conclusion about indicators of branches efficiency can be written as
follows:

p3 Δ≤ p5 Δ≤ p6 Δ≤ p4 Δ≤ p8 Δ≤ p2 Δ≤ p1 Δ
< p7 (16)

5 Statistical Optimality of Ranking

In this section, we discuss some properties of the constructed multiple decision sta-
tistical procedure. In particular, we show that this procedure is optimal in the class
of unbiased multiple decision statistical procedures. To prove this fact, we follow
the method proposed in [1].

First, we show that the test (5) with constant defined by (13) is optimal in the
class of unbiased statistical procedure for the problem (12).

Generating hypothesis for the problem (12) are:

h′
ij : pi ≤ pj + Δ vs. k′

ij : pi > pj + Δ

h′
ji : pj ≤ pi + Δ vs. k′

ji : pj > pi + Δ
(17)

Uniformly most powerful unbiased tests for problems (17) are [2]:

δ′
ij

(
xi, xj

) =
{

d ′
ij , if tij (x

i, xj ) > c2

dij , if tij (x
i, xj ) < c2

(18)

δ′
ji

(
xi, xj

) =
{

d ′
ji , if tj i(x

i, xj ) > c1

dji, if tj i(x
i, xj ) < c1

(19)

where d ′
ij (dij )—decision of rejection (acceptance) of hypothesis h′

ij and constant
c1, c2 are defined by (13). If αij + αji ≤ 1, then the compatibility condition is satis-
fied (see Sect. 4). Note that power functions of tests (18)–(19) are continuous.

Consider the loss function for the three decision test (5). To simplify our ar-
guments, we drop the index (i, j) in the notations. Let wlk be the loss from the
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acceptance of decision dk when H ′
l is true, l, k = 1,2,3, wll = 0, a1, a2 be the loss

from the rejection of h′
ij and h′

ji when they are true, b1, b2 be the loss from the
acceptance of h′

ij and h′
ji when k′

ij and k′
ji are true. We can evaluate the losses as

follows. Suppose the company has a fund s to be invested in the development of
branches. The investment strategy is to invest in the most efficient branch and di-
vide the investment if they are equal in efficiency. In this case, if the hypothesis H ′

1
is true then the losses from decisions d1, d2, d3 are w11 = 0, w1,2 = s/2, w13 = s.
If the hypothesis H ′

2 is true, then the losses from decisions d1, d2, d3 are w21 = s/2,
w2,2 = 0, w23 = s/2. If the hypothesis H ′

3 is true, then the losses from decisions
d1, d2, d3 are w31 = s, w3,2 = s/2, w33 = 0. Therefore, the following relations take
place:

w12 = b2; w13 = a1 +b2; w23 = a1; w21 = a2; w31 = a2 +b1; w32 = b1
(20)

This is exactly the additivity conditions for the loss function in [1]. The additivity
conditions imply

w13 = w12 + w23; w31 = w32 + w21 (21)

Now we state that compatibility condition for generating hypotheses testing is sat-
isfied and additivity of the loss function takes place and power functions of tests
(18)–(19) are continuous. Therefore, combining most powerful unbiased tests with
two decisions we get a optimal statistical procedure in the class of unbiased statisti-
cal procedures with three decisions.

Next step is to consider the general problem (11)–(12). It was shown that tests
(5) for the problem (11) are compatible and are optimal statistical procedure in the
class of unbiased statistical procedures with three decisions. Condition of additivity
of the loss function is:

w(Θ,δ) =
∑
i<j

w(Θ, δij ) (22)

where δij is the statistical procedure (5) for the problem (12) with constants defined
by (13), Θ = (p1, . . . , pN). This condition means that the total loss is a sum of
losses from statistical procedures for generating three decision problems.

To illustrate the relations (22), we consider the case N = 3; the general case can
be treated in the same way. The multiple decision problem (11) for the case N = 3
is (14) where M = 19.

Case 1. True decision and taken decision are different in one pair of branches. One
adjacent hypotheses error. For example, suppose the hypothesis H ′

14 is true, but
the decision d ′

11 is accepted. In this case one has w14,11 = w13
21. This is the loss

from the acceptance of wrong decision p1 Δ
< p3 when p1 Δ= p3 is true. The

intersection of closures of parametric domains for this two hypotheses is not
empty. We call this type of error as adjacent hypotheses error. This type of error
can be coded by 1–2 (hypotheses H1 and H2), 2–1 (hypotheses H2 and H1), 2–3
(hypotheses H2 and H3), 3–2 (hypotheses H3 and H2).



Efficiency Analysis of Branch Network 81

Case 2. True decision and taken decision are different in one pair of branches. One
separated hypotheses error. For example, suppose the hypothesis H ′

1 is true, but
the decision d ′

3 is accepted. In this case, one has w1,3 = w23
13. This is the loss

from the acceptance of wrong decision p3 Δ
< p2 when p2 Δ

< p3 is true. The
intersection of closures of parametric domains for this two hypotheses is empty.
We call this type of error as separated hypotheses error. This type of error can
be coded by 3–1 (hypotheses H3 and H1), 1–3 (hypotheses H1 and H3). Note
that this type of error is more serious than adjacent hypotheses error.

Case 3. True decision and taken decision are different in two pairs of branches.
Two adjacent hypotheses errors. For example, suppose the hypothesis H ′

1 is true,
but the decision d ′

11 is taken. In this case, one has from additivity condition
w1,11 = w12

12 + w23
12. This means that we have the errors of the type 1–2 in the

comparison of branches 1 and 2 and the error of the type 1–2 in the comparison
of branches 2 and 3.

Case 4. True decision and taken decision are different in two pairs of branches. Two
separated hypotheses errors. For example, suppose the hypothesis H ′

2 is true, but
the decision d ′

26 is taken. In this case, one has w2,26 = w13
13 + w21

13. This means
that we have the errors of the type 1–3 in the comparison of branches 1 and 3
and the error of the type 1–3 in the comparison of branches 2 and 1.

Case 5. True decision and taken decision are different in two pairs of branches. One
adjacent hypotheses and one separated hypotheses errors. For example, suppose
the hypothesis H ′

2 is true, but the decision d ′
23 is taken. In this case, one has

w2,23 = w12
13 + w13

12. This means that we have the errors of the type 1–3 in the
comparison of branches 1 and 2 and the error of the type 1–2 in the comparison
of branches 1 and 3.

Case 6. True decision and taken decision are different in three pairs of branches.
Two adjacent hypotheses and one separated hypotheses errors. For example,
suppose the hypothesis H ′

1 is true, but the decision d ′
23 is taken. In this case

one has w1,23 = w12
13 + w13

12 + w23
12. This means that we have the errors of the

type 1–3 in the comparison of branches 1 and 2, the error of the type 1–2 in the
comparison of branches 1 and 3 and the error of the type 1–2 in the comparison
of branches 2 and 3.

Case 7. True decision and taken decision are different in three pairs of branches.
Three separated hypotheses errors. For example, suppose the hypothesis H ′

1 is
true, but the decision d ′

27 is taken. In this case, one has w1,27 = w12
13 +w13

13 +w23
13.

This means that we have the errors of the type 1–3 in the comparison of branches
1 and 2, the error of the type 1–3 in the comparison of branches 1 and 3 and the
error of the type 1–3 in the comparison of branches 2 and 3.

Condition of additivity of the loss function in our problem means that the larger
weight is attached to the losses resulting from taken decision being far from the
true decision. Now we state that compatibility condition for generating hypotheses
testing for the problem (11) is satisfied and additivity of the loss function takes place.
Therefore, combining optimal unbiased statistical procedures with three decisions
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we get a optimal statistical procedure in the class of unbiased statistical procedures
with M decisions.

We end this section by some discussion on the unbiasedness in three decision
case. Following [2], we call the statistical procedure δ(x) unbiased, if for any
θ, θ ′ ∈ Ω

Eθw
(
θ ′, δ(x)

) ≥ Eθw
(
θ, δ(x)

)
(23)

In our case θ = pi − pj . For the statistical procedure (5), conditional risk is:

Eθ

(
θ, δ(x)

) =

⎧⎪⎪⎨
⎪⎪⎩

w12Pθ(δ(x) = d2) + w13Pθ(δ(x) = d3), if pi Δ
< pj

w21Pθ(δ(x) = d1) + w23Pθ(δ(x) = d3), if pi Δ= pj

w31Pθ(δ(x) = d1) + w32Pθ(δ(x) = d2), if pi Δ
> pj

(24)

Therefore, from (21) and the relation

Pθ

(
δ(x) = d1

) + Pθ

(
δ(x) = d2

) + Pθδ
(
(x) = d3

) = 1

the statistical procedure δ(x) for the problem (12) is unbiased if and only if:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pθ(δ(x) = d1) ≥ w12
w12+w21

= αi,j , if pi Δ
< pj

Pθ (δ(x) = d3) ≥ w32
w23+w32

= αj,i , if pi Δ
> pj

Pθ (δ(x) = d1) ≤ w12
w12+w21

= αi,j , if pi Δ= pj

Pθ (δ(x) = d3) ≤ w32
w23+w32

= αj,i , if pi Δ= pj

Pθ (δ(x) = d2) + w31+w13
w21+w12

Pθ(δ(x) = d3) ≤ w31
w12+w21

if pi Δ
< pj

Pθ (δ(x) = d2) + w31+w13
w23+w32

Pθ(δ(x) = d1) ≤ w13
w32+w23

if pi Δ
> pj

(25)

First four conditions (25) are usual restrictions on probability of wrong decisions.
Last two conditions (25) are restrictions for linear combinations of probabilities of
wrong decisions if hypothesis H

′(ij)

1 or H
′(ij)

3 are true.

6 Conclusions

Problem of ranking of the branch efficiency is considered as a multiple decision
problem. Solution of this problem is given on the base of multiple decision theory.
As a result, a corresponding multiple decision statistical procedure is constructed.
This multiple decision statistical procedure is taken as combination of three-decision
statistical procedures. It is shown that this three-decision statistical procedures are
optimal in the class of unbiased statistical procedures and as consequence the mul-
tiple decision statistical procedure is optimal in the class of unbiased multiple deci-
sion statistical procedures.
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