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Abstract The concept of the clique, originally introduced as a model of a cohesive
subgroup in the context of social network analysis, is a classical model of a cluster
in networks. However, the ideal cohesiveness properties guaranteed by the clique
definition put limitations on its applicability to situations where enforcing such
properties is unnecessary or even prohibitive. Motivated by practical applications
of diverse origins, numerous clique relaxation models, which are obtained by relax-
ing certain properties of a clique, have been introduced and studied by researchers
representing different fields. Distance-based clique relaxations, which replace the
requirement on pairwise distances to be equal to 1 in a clique with less restrictive
distance bounds, are among the most important such models. This chapter surveys
the up-to-date progress made in studying two common distance-based clique relax-
ation models called s-clique and s-club, as well as the corresponding optimization
problems.
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1 Introduction

In 1949, Luce and Perry [42] introduced the clique concept to model the notion
of a cohesive subgroup in social network analysis. Since then, cliques and the as-
sociated maximum clique problem have become ubiquitous and have been studied
extensively in graph theory [13, 14, 28], theoretical computer science [32, 39] and
operations research [9, 15, 20] from different perspectives. In graph-theoretic terms,
a clique is a subset of vertices that are pairwise adjacent. The clique definition en-
sures the perfect reachability between the group’s entities, as they are directly linked
to each other. Moreover, it also ensures that a clique has the highest possible degree
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of each vertex, the highest possible connectivity, and the largest possible number
of edges in the induced subgraph among all subsets of vertices of the same cardi-
nality. However, the ideal cohesiveness properties of a clique put limitations on its
applicability to situations where enforcing such properties is unnecessary or even
prohibitive. For example, in transportation and telecommunication networks easy
reachability between the members of a group (or a cluster) is of utmost importance,
whereas a large number of edges is either costly to construct and maintain or results
in operating inefficiencies, such as excessive interference.

To address particular practical aspects that cannot be suitably modeled by cliques,
numerous clique relaxation models have been introduced in the literature that en-
force certain elementary properties of cliques to be present, in a relaxed form, in
the model of a cluster. The long list of the proposed models includes the distance-
based clique relaxations called s-clique [41] and s-club [49], degree-based relax-
ations called s-plex [62] and k-core [61], and an edge density-based model known
as quasi-clique [1] among many others. The focus of this chapter is on distance-
based clique relaxations, s-clique and s-club.

Originally proposed by Luce [41] in 1950, s-clique was the historically first
clique relaxation concept. This structure relaxes the requirement of having an edge
(distance 1) between any pair of vertices from the group by allowing them to be at
most distance s apart, thus ensuring that they can communicate via a path of at most
s − 1 intermediate vertices. Note that these intermediate vertices, while guarantee-
ing the reachability in at most s hops between vertices from an s-clique, do not have
to be a part of the s-clique themselves, which may be considered a drawback from
the cohesiveness standpoint. This was first pointed out by Alba [3], who proposed a
definition of the so-called sociometric clique of diameter s, which was later refined
by Mokken [49] under the name of s-club. Any two members of an s-club are re-
quired to be connected by a path of length at most s, where all intermediate vertices
belong to the s-club.

The objective of this chapter is to provide an up-to-date survey of known results
concerning s-clique, s-club, and the corresponding optimization problems, as well
as to identify related open questions for future work. The remainder of the chapter
is organized as follows. We start by introducing the formal definitions and notations
used throughout the chapter in Sect. 2. In Sect. 3, we discuss some basic structural
properties of s-cliques and s-clubs and the complexity results for the optimization
problems associated with these models in order to have a better understanding of
the computational challenges one has to overcome in order to solve the problems of
interest. Section 4 provides integer programming formulations proposed for the op-
timization problems. Known polyhedral combinatorics results associated with these
formulations are reviewed in Sect. 5. An overview on the solution methods that have
been proposed for these problems, along with a brief review of the computational
results, is presented in Sect. 6. Selected applications of the problems of interest
are discussed in Sect. 7. Finally, the article concludes by discussing some possible
research directions for future work in Sect. 8.
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2 Definitions and Notations

We consider a simple undirected graph G = (V ,E) with the set of vertices V and the
set of edges E corresponding to pairs of vertices. Two vertices v and v′ in G are said
to be adjacent or neighbors if (v, v′) ∈ E, in which case the edge (v, v′) is said to
be incident to v and v′. Let NG(v) = {v′ ∈ V : (v, v′) ∈ E} denote the neighborhood
of a vertex v in G, and let NG[v] = {v} ∪ NG(v) be the closed neighborhood of v.
The cardinality of the neighborhood, |NG(v)|, is called the degree of v in G and is
denoted by degG(v). Let δ(G) and Δ(G) denote the minimum and the maximum
degree of a vertex in G, respectively. We call a graph G′ = (V ′,E′) a subgraph of
G = (V ,E) if V ′ ⊆ V and E′ ⊆ E. For a subset of vertices S ⊆ V , the subgraph
induced by S, G[S], is given by G[S] = (S,E ∩ (S × S)), where “×” denotes the
Cartesian product.

A path of length r between vertices v and v′ in G is a subgraph of G given by an
alternating sequence of distinct vertices and edges v ≡ v0, e0, v1, e1, . . . , vr−1, er−1,

vr ≡ v′ such that ei = (vi, vi+1) ∈ E for all 1 ≤ i ≤ r − 1. A cycle of length r is
defined similarly, by assuming that v ≡ v′ in the definition of a path. If there is at
least one path between two vertices v and v′ in G, then we say that v and v′ are
connected in G. A graph is called connected if any pair of its vertices is connected.
Otherwise, a graph is called disconnected. The length of a shortest path between
two connected vertices v and v′ in G is called the distance between v and v′ in G

and is denoted by dG(v, v′). If v and v′ are not connected in G, then dG(v, v′) = ∞.
The diameter diam(G) of a graph G is given by the maximum distance between any
pair of vertices in G, that is, diam(G) = maxv,v′∈V dG(v, v′).

The vertex connectivity κ(G) of G is the minimum number of vertices that need
to be deleted from G in order to obtain a disconnected or a trivial graph. The density
ρ(G) of G is given by ρ(G) = |E|/(|V |

2

)
. A complete graph Kn on n vertices is

a graph that contains all possible edges, that is, ρ(Kn) = 1. The complement Ḡ of
G is Ḡ = (V , Ē), where Ē is the complement of E, that is, E ∩ Ē = ∅ and K|V | =
(V ,E∪Ē). A clique C is a subset of vertices such that G[C] is a complete graph. An
independent set I is a subset of vertices such that G[I ] has no edges. Clearly, S ⊆ V

is a clique in G if and only if S is an independent set in Ḡ. A clique (independent set)
is called maximal if it is not a subset of a larger clique (independent set). A maximum
clique (independent set) of G is a clique (independent set) of the largest size in G,
and the problem of finding a maximum clique (independent set) in a graph is called
the maximum clique (independent set) problem. The size of a maximum clique in G

is called the clique number of G and is denoted by ω(G). The size of a maximum
independent set in G is called the independence number of G and is denoted by
α(G). We have ω(G) = α(Ḡ).

Some of the well known clique relaxation models are defined next. We assume
that s and k are positive integer constants and λ,γ ∈ (0,1] are real constants. Let
S ⊆ V . S is an s-plex if δ(G[S]) ≥ |S| − s. S is an s-defective clique if G[S]
contains at least

(|S|
2

) − s edges. S is a k-core if δ(G[S]) ≥ k. S is a k-block if
κ(G[S]) ≥ k. S is a γ -quasi-clique if ρ(G[S]) ≥ γ . S is a (λ, γ )-quasi-clique if
δ(G[S]) ≥ λ(|S| − 1) and ρ(G[S]) ≥ γ . D ⊆ V is called a distance s-dominating
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set if for any v ∈ V \ D there exists v′ ∈ D such that dG(v, v′) ≤ s. Distance
1-dominating set is called simply a dominating set.

In [54], the motivation behind some of the most popular clique relaxation models
was analyzed in a systematic fashion, and a set of simple rules for defining mean-
ingful clique relaxation structures was identified, yielding a methodical taxonomic
framework for clique relaxations. The framework is based on the observation that
the clique can be defined using alternative equivalent descriptions via other basic
graph concepts, such as distance, diameter, domination, degree, density, and connec-
tivity. The corresponding equivalent definitions are referred to as elementary clique
defining properties. Then, by applying some simple modifications to the elementary
clique defining properties, one can reproduce the known clique relaxation models,
as well as define new structures of potential practical interest. We will adhere to this
framework in defining the distance-based clique relaxations formally as follows.

First, note that a subset of vertices C is a clique in G if and only if dG(v, v′) = 1,
for any v, v′ ∈ C or, equivalently, diam(G[C]) = 1. These equivalent clique defi-
nitions constitute the elementary clique defining properties based on distance and
diameter, respectively. In both cases, we have an equivalent characterization of a
clique by setting a certain parameter (pairwise distance or diameter) to its minimum
possible value. We can define the corresponding clique relaxations by restricting the
violation of the respective elementary clique defining property, that is, by allowing
the pairwise distance or diameter to be greater than 1, but no greater than a constant
positive integer s > 1. As a result, we obtain the following definitions.

Definition 1 (s-clique) Given a simple undirected graph G = (V ,E) and a positive
integer constant s, a subset of vertices S ⊆ V is called an s-clique if dG(v, v′) ≤ s,
for any v, v′ ∈ S.

Definition 2 (s-club) Given a simple undirected graph G = (V ,E) and a positive
integer constant s, a subset of vertices S ⊆ V is called an s-club if diam(G[S]) ≤ s.

An s-clique (s-club) is called maximal in G if it is not a subset of a larger s-clique
(s-club) in G, and maximum in G if there is no larger s-clique (s-club) in G. The
maximum s-clique (s-club) problem asks to find a maximum s-clique (s-club) in G.
The size of the largest s-clique in G is called the s-clique number and is denoted
by ω̃s(G). The size of the largest s-club in G is called the s-club number and is
denoted by ωs(G).

According to the taxonomy in [54], clique relaxations based on restricting the
violation of an elementary clique defining property can be standard or weak; ab-
solute or relative; and structural or statistical. For a standard relaxation, we require
the relaxed clique-defining property to hold in the induced subgraph, whereas the
corresponding weak relaxation requires the same property to be satisfied within the
original graph instead of the induced subgraph. Since s-clique is defined by re-
stricting pairwise distances for its members in G, it is a weak relaxation, whereas
s-club, which restricts distances in the induced subgraph, is a standard relaxation.
Both s-clique and s-club are absolute relaxations, since the value of the constant s
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refers to the absolute bound on the distance in G or G[S] and does not depend on
the size of S. However, their relative version could easily be introduced by replacing
the constant s in the definitions of s-clique and s-club with γ |S|, where γ ∈ (0,1)

is a constant. Finally, both s-clique and s-club are structural clique relaxations and
their statistical counterparts could be defined by requiring that the average pairwise
distance between vertices for S in G or G[S] is at most s. It should be noted that, in
contrast to the structural relaxations, statistical relaxations generally impose little in
terms of the group structure.

Higher-order clique relaxation models, which relax more than one elementary
clique defining properties simultaneously, could also be defined using distance or
diameter restrictions in addition to other requirements. Since the graph-theoretic
notion of distance relies on paths, in addition to the simple higher order relaxations
that combine multiple properties in a straightforward fashion, s-clique and s-club
could also be involved in the so-called k-hereditary higher-order relaxations, with
k-connectivity embedded within their structure. Namely, k-hereditary s-club and s-
clique can be defined as follows. Given G = (V ,E) and positive integers s and k,
S ⊆ V is called a k-hereditary s-club if diam(G[S \S′]) ≤ s for any S′ ⊂ S such that
|S′| ≤ k. Similarly, S is a k-hereditary s-clique if dG(v, v′) ≤ s for all v, v′ ∈ S \ S′
for any S′ ⊂ S such that |S′| ≤ k.

While the variations of distance-based relaxations just defined may potentially
find interesting applications, in the remainder of this chapter, we focus on the s-
clique and s-club models, which were referred to as canonical clique relaxation
models for distance and diameter, respectively, in [54].

Next, we introduce some graph classes for which the problems of interest have
been explored in the literature. Consider a graph G = (V ,E). Given a cycle in G,
its chord is an edge between two vertices of the cycle that is not a part of the cycle.
A graph is called chordal if any cycle on at least 4 vertices has a chord. G is called
a k-partite graph if V can be partitioned into k non-overlapping independent sets. If
k = 2, a k-partite graph is bipartite. G is a split graph, if V = V1 ∪V2, where V1 is a
clique and V2 is an independent set such that V1 ∩ V2 = ∅. G is an interval graph if
there exists a set of intervals I = {Iv : v ∈ V } on the real line such that Iv ∩ Iv′ = ∅
iff (v, v′) ∈ E.

3 Structural Properties and Computational Complexity

From the definitions, it is clear that an s-club is also an s-clique, however, the con-
verse is not true in general. Even though the s-clique and s-club models appear to
be very similar, there are some fundamental differences in their structural properties
that have important implications for the associated optimization problems. To high-
light these differences, consider a simple example in Fig. 1 that originally appeared
in [3]. In the graph in this figure, a subset of vertices {1,2,3,4,5} is a 2-clique,
but not a 2-club, since the distance between vertices 1 and 5 is 3 in the induced sub-
graph. Moreover, {1,2,4} is a 2-clique and a 2-club, {1,2,4}∪{5} and {1,2,4}∪{6}
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Fig. 1 A graph illustrating
structural differences of
2-cliques and 2-clubs

are both 2-cliques but not 2-clubs, whereas {1,2,4} ∪ {5,6} is again a 2-clique and
a 2-club. This shows the lack of any type of heredity for s-clubs, which is formally
defined as follows [54]. A graph property Π is called hereditary on induced sub-
graphs, if for any graph G with property Π deleting any subset of vertices does not
produce a graph violating Π . A graph property Π is called weakly hereditary, if
for any graph G = (V ,E) with property Π all subsets of V posses the property Π

in G.
Unlike s-clubs, s-cliques posses weak heredity, which allows to reduce the prob-

lem of finding an s-clique to the problem of finding a clique in an auxiliary power
graph defined as follows. Given a graph G = (V ,E) , the sth power of G, denoted
by Gs , is given by Gs = (V ,Es), where Es = {(v, v′) : 0 < dG(v, v′) ≤ s}. Then
S ⊆ V is an s-clique in G if and only if S is a clique in Gs . Heredity on induced
subgraphs is the core property implicitly exploited by some of the most successful
combinatorial algorithms for the maximum clique problem [21, 51], which can also
be applied to Gs in order to solve the maximum s-clique problem in G. Because
of the presence of weak heredity, s-clique has advantage over s-club in terms of
applicability of the variety of existing techniques available for the maximum clique
problem to solving the maximum s-clique problem. However, this comes at a price.
The fact that the s-clique is defined by restricting the distances in the original graph
rather than the induced subgraph leads to the possibility of absence of any cohe-
siveness in the subgraph induced by an s-clique. For example, the subset of vertices
{1,3,5} in the graph on Fig. 1 is a 2-clique that induces an independent set, a struc-
ture that can hardly be considered cohesive by any standards. In terms of cohesive-
ness, the worst-case example of an s-club is a star graph, where one “central” vertex
is adjacent to all other vertices, which have no neighbors other than the central ver-
tex. While this structure appears to be quite fragile, as removing the central vertex
makes it an independent set, it is still more cohesive than the worst-case example of
an s-clique, which is an independent set to begin with. Since s-clique does not have
to be connected in general, it makes sense to consider a connected s-clique, which
is an s-clique that induces a connected subgraph.

Since s-clubs do not have any form of heredity defined above, the maximum
clique algorithms cannot be easily adapted for the maximum s-club problem. In
fact, the problem of finding a maximal s-club, which is very easy for clique and
s-clique, becomes challenging. Indeed, the problem of checking whether a given
clique (s-clique) is maximal reduces to checking whether there is a vertex from out-
side that can be added to the clique (s-clique). However, the example above clearly
shows that this strategy will not work for s-clubs. In fact, Mahdavi and Balasun-
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daram [44] have recently shown that testing whether an s-club is maximal is NP-
hard for any fixed integer s ≥ 2. They have also identified sufficient conditions for
every connected 2-clique to be a 2-club based on the concept of a partitionable cy-
cle, which can be defined as follows. Consider two nonadjacent vertices v and v′ in a
cycle C in G. Removing these two vertices breaks the cycle into two paths, P1(v, v′)
and P2(v, v′) with the vertex sets V1(v, v′) and V2(v, v′), respectively. If there ex-
ist v, v′ such that G[V1(v, v′)] = P1(v, v′) and G[V2(v, v′)] = P2(v, v′) then C is
called a partitionable cycle. If, in addition, |V1(v, v′)| = |V2(v, v′)| then the parti-
tionable cycle C is called asymmetric. Mahdavi and Balasundaram [44] have proved
that if no subset of 5 ≤ c ≤ 2s+1 vertices induces an asymmetric partitionable cycle
in G, where s ≥ 2, then every connected s-clique is an s-club. This implies, in par-
ticular, that in a bipartite graph every connected 2-clique is a 2-club, which induces
a complete bipartite subgraph. In cases where every connected s-clique is an s-club,
checking maximality of an s-club reduces to checking maximality of a connected
s-clique and hence is easy. Thus, discovering more of such cases is an interesting
future research direction, which will provide further insights towards understanding
the complexity of the problem.

The maximum clique problem is a classical NP-hard problem [32, 39], which
is also hard to approximate. Recall that for a maximization problem with an op-
timal objective value given by opt(G) on an input graph G, an algorithm A is
called σ -approximation algorithm (or algorithm with approximation ratio σ ) if
opt(G)/A (G) ≤ σ for every input graph G, where A (G) is the objective value
output by A when applied to G. It is known that the maximum clique size cannot
be approximated in polynomial time within a factor of n1−ε for any ε > 0 unless
P = NP [5, 6, 67]. Since clique is a special case of s-clique and s-club, where s = 1,
all these results apply to the versions of the maximum s-clique and maximum s-club
problems that allow for arbitrary (non-fixed, instance-dependent) s. However, these
results do not directly extend to the maximum s-clique and maximum s-club prob-
lems for the fixed constant parameter s > 1, which is given as a part of the prob-
lem definition rather than as an instance-dependent parameter. Therefore, in recent
years there has been a considerable amount of research towards characterizing these
problems in terms of their computational complexity in general and restricted graph
classes.

Bourjolly et al. [17] use a reduction from CLIQUE to show that the maximum
s-club problem is NP-hard for any fixed s. Balasundaram et al. [10] use an alterna-
tive reduction from CLIQUE to prove that both the maximum s-clique and maximum
s-club problem are NP-hard, even if restricted to graphs of fixed diameter s + 1.
Note that both problems are trivial when the graph’s diameter is bounded above
by s, therefore the transition in complexity is sudden.

Asahiro et al. [7] proved that for any ε > 0 and a fixed s ≥ 2 the maximum s-club
problem is NP-hard to approximate within a factor of n1/2−ε in general graphs,
improving on the hardness of n1/3−ε-approximation result of Marinček and Mo-
har [45]. They also designed a simple polynomial-time algorithm that approximates
the maximum s-club within a factor of n1/2 for an even s, and within a factor of
n2/3 for an odd s. Given a graph G = (V ,E), the algorithm finds a maximum de-
gree vertex in the power-�s/2� graph G�s/2� = (V ,E�s/2�) and outputs its closed
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neighborhood in G�s/2�, which forms an s-club Cs of size Δ(G�s/2�) + 1 in G.
To establish the approximation ratio, they consider two cases, Δ(G) ≥ n1/s and
Δ(G) < n1/s . Then in the first case we have:

ωs(G)

|Cs | = ωs(G)

Δ(G�s/2�) + 1
≤ ωs(G)

Δ(G) + 1
< n1−1/s .

In the second case, noting that ωs(G) ≤ 1 + Δ(G) + Δ(G)2 + · · · + Δ(G)s , the
following holds:

ωs(G)

|Cs | ≤ Δ(G)s + O(Δ(G)s−1)

Δ(G) + 1
= O

(
Δ(G)s−1) = O

(
n1−1/s

)
.

Thus, in both cases the approximation ratio of the algorithm is O(n1−1/s), which
becomes O(n1/2) for s = 2 and O(n2/3) for s = 3. To show that the algorithm is, in
fact O(n1/2)-approximate for any even s ≥ 4, observe that

ωs(G) ≤ ω2
(
Gs/2), (1)

while the output of the approximation algorithm applied to the maximum s-club
problem on G and to the maximum 2-club problem on Gs/2 is the same. Thus, the
approximation ratio of O(n1/2) holds for any even s.

It should be noted that [7] uses a stronger claim, ωs(G) = ω2(G
s/2) instead of (1)

in the proof of the approximation ratio. However, the equality does not hold in gen-
eral, that is, we may have ωs(G) < ω2(G

s/2) as in the graph in Fig. 2. The proof
still holds using the inequality (1) instead.

In addition to the above results, Asahiro et al. [7] proved that for any ε > 0
the maximum s-club problem is NP-hard to approximate within a factor of n1/3−ε

for chordal and split graphs with even s, for bipartite graphs with s ≥ 3, and for
k-partite graphs (k ≥ 3) with s ≥ 2. On the other hand, the problem can be solved
in polynomial time for chordal and split graphs with odd s, as well as for trees and
interval graphs [7, 58]. Unlike the maximum s-club problem with s ≥ 3, the maxi-
mum 2-club problem can be solved in O(n5) on bipartite graphs [58]. In addition,
the maximum 2-club can be approximated within a factor of n1/3 for split graphs.

In several recent papers, the maximum s-club problem was approached from
the parameterized complexity perspective [23, 36, 37, 59]. In this framework, one
considers a parameter k (such as the size of a structure sought) in addition to the tra-
ditional input size n [31]. A parameterized problem is fixed-parameter tractable if
there exists an algorithm (referred to as an fpt-algorithm) that solves the parameter-
ized problem in time f (k) · nO(1), where f is a computable (typically exponential)
function that depends only on the parameter k.

It is known that deciding if a given graph contains a clique of size k is W[1]-
complete [24], meaning that an fpt-algorithm is unlikely to exist. In contrast, Chang
et al. [23] have shown that the problem of deciding if a given graph contains an
s-club of size k is fixed-parameter tractable for s > 1. The proof is as follows. Let
G = (V ,E) be the given graph. If G�s� has a vertex v such that |NG�s/2� [v]| ≥ k then
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Fig. 2 A graph with ωs(G) = 14 (a maximum 2-club is given by, e.g., C = {5,6,7,8,9,

12,13,14,16,17,18,19,20,21}) and ω2(G
s/2) = 16 (all vertices excluding 2,4,6,8,10 form the

maximum 2-club in G2), where s = 4

NG�s/2� [v] is an s-club of size at least k in G. Otherwise, |NG�s/2� [v]| < k for any
v ∈ V , and it can be shown that |NGs [v]| < k2 when s is even and |NGs [v]| < k3

when s is odd [23]. Since any s-club C is a subset of NGs [v] for any v ∈ C, in order
to check whether G has an s-club of size k it suffices to check all k-element sub-
sets of NGs [v] for each v ∈ V . There are at most

(
k3

k

)
n such subsets, and checking

whether a k-element vertex set forms an s-club can be done in k3 time. Thus, the
overall run time is O(k3(k+1)n).

Schäfer et al. [59] have shown that the maximum s-club problem is fixed-
parameter tractable not only with the solution size k used as the parameter, but also
when parameterized by the so-called dual parameter d = |V | − k. The algorithm
they propose for this case runs in O(2dnm), where m is the number of edges in the
graph. These ideas are extended to develop a practical algorithm for 2-club in [36],
as will be discussed in more detail in Sect. 6. In addition, Hartung et al. [36] ana-
lyzed parameterized complexity of s-club with other parameters, such as the size of
a vertex cover, feedback edge set size, size of a cluster editing set, and treewidth of
the graph.

4 Mathematical Programming Formulations

In this section, mathematical programming formulations for the maximum s-clique
and maximum s-club problems are presented. The maximum clique problem is one
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of the well studied problems in discrete optimization, with a number of known inte-
ger, as well as continuous non-convex formulations [15]. Similar formulations can
be applied to the maximum s-clique problem on a graph G by reducing it to the
maximum clique problem on the sth power of G, Gs = (V ,Es), constructed from
the original graph as mentioned above. Let Es denote the complement set of edges
in Gs , that is, Es = {(i, j) : i, j ∈ V, i < j, dG(i, j) > s}. Then the following for-
mulation of the maximum clique problem written for the power-s graph Gs can be
used for the maximum s-clique problem on G:

Maximize (max)
∑

i∈V

xi (2)

subject to (s.t.): xi + xj ≤ 1 ∀(i, j) ∈ Es, (3)

xi ∈ {0,1} ∀i ∈ V. (4)

The first mathematical program for computing the s-club number of a graph was
proposed in [17]; see also [10]. In the following, we explain this general integer pro-
gramming model first and then describe special cases for s = 2,3 that are of highest
practical interest and have received more attention in the literature. For S ⊆ V the
vector x ∈ {0,1}n such that xi = 1 if and only if i ∈ S is called the characteris-
tic vector of S. In the general model (5)–(8) below, which is often referred to as
chain formulation, the vector of decision variables x is the characteristic vector of
the s-club sought. For every pair of vertices i, j ∈ V , let P s

ij be the set of all paths
of length at most s between i and j in G. We will denote by P the set of all such
paths in G, i.e., P = ⋃

i,j∈V P s
ij . Let VP be the set of vertices included in a path P .

Also let yP be the auxiliary binary variable associated with every path P ∈ P. If
this variable is equal to 1 in a feasible solution, this implies that all the vertices in
the path P are included in the corresponding s-club. Then the following finds the
maximum cardinality s-club in G:

max
∑

i∈V

xi (5)

s.t.: xi + xj ≤ 1 +
∑

P∈P s
ij

yP ∀(i, j) /∈ E, (6)

yP ≤ xi ∀P ∈ P, ∀i ∈ VP , (7)

xi, yP ∈ {0,1} ∀i ∈ V, ∀P ∈ P. (8)

In this formulation, constraint (6) ensures that two vertices i and j such that
dG(i, j) > s cannot both belong to the same s-club (in this case P s

ij = ∅ and the

constraint becomes xi + xj ≤ 1). It also guarantees that if two nonadjacent vertices
are included in the s-club sought, then there must be at least one path of length at
most s such that all the vertices from this path are also included in the s-club. In
addition, constraint (7) forces yP to be 0 whenever a vertex from P is not included
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in the s-club. For s = 2 the above chain formulation becomes:

max
∑

i∈V

xi (9)

s.t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk ∀(i, j) /∈ E, (10)

xi ∈ {0,1} ∀i ∈ V. (11)

This model ensures that any two nonadjacent vertices that are in the same 2-club
must have at least one common neighbor inside the 2-club.

Considering the number of possible distinct paths of length at most s between
every pair of vertices, the chain formulation may have an excessive number of
variables when s >2. In general, we may have |P s

ij | = O(ns−1) for every pair of

vertices, so |P| = O(ns+1). Therefore, this model does not scale well when s in-
creases, and even solving small instances using this formulation is challenging when
s ≥ 3 [65].

To formulate the maximum 3-club problem using a smaller number of variables,
the neighborhood formulation (13)–(16) was proposed in [4] that has |V | + |E|
variables. Note that a pair of nonadjacent vertices i and j in G can be a part of
the same 3-club S only if they have a common neighbor k in S or there are two
adjacent vertices {p,q} ∈ S such that p ∈ NG(i) and q ∈ NG(j). The first condition
holds if and only if dG[S](i, j) = 2. If the first condition does not hold and the second
condition holds, then p ∈ {NG(i)\NG(j)} and q ∈ {NG(j)\NG(i)}. Let Eij denote
the set of edges that connect such intermediate nodes for i and j :

Eij = {
(p, q) ∈ E : p ∈ {

NG(i) \ NG(j)
}
, q ∈ {

NG(j) \ NG(i)
}}

∀i, j : dG(i, j) = 3. (12)

Now associate a binary variable xi with each vertex i ∈ V and a binary variable zij

with each edge (i, j) ∈ E. Then the maximum 3-club problem in G = (V ,E) can
be formulated using the following binary program:

max
∑

i∈V

xi (13)

s.t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk +
∑

(p,q)∈Eij

zpq ∀(i, j) /∈ E, (14)

zij ≤ xi, zij ≤ xj , zij ≥ xi + xj − 1 ∀(i, j) ∈ E, (15)

xi, zij ∈ {0,1} ∀i ∈ V, ∀(i, j) ∈ E. (16)

Neighborhood constraints (14) ensure that two nonadjacent vertices i and j cannot
be both in the solution unless their common neighbor is in the solution or a pair
of their neighbors p and q , linked by an edge, are in the solution. The constraints
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Fig. 3 Subgraph Gij

illustrating the node cut set
formulation

in (15) guarantee that an edge (i, j) is used if and only if both its endpoints belong to

the solution. The neighborhood formulation has |V | + |E| variables and |V |2−|V |
2 +

2|E| constraints.
Almeida and Carvalho [4] also proposed another formulation for the maxi-

mum 3-club problem that is based on identifying minimal node cut sets for ev-
ery pair of vertices with dG(i, j) = 3. Consider a pair of nonadjacent vertices
i, j ∈ G and let Eij be defined as in (12). Recall that Eij is the set of in-
ner edges of chains with length 3 connecting i and j with no common neigh-
bors. Let Vij represent the set of vertices incident to edges from Eij . We as-
sociate with i and j a subgraph Gij = (V ′

ij ,E
′
ij ) where V ′

ij = Vij ∪ {i, j} and
E′

ij = Eij ∪ {(i, v) ∈ E : v ∈ Vij } ∪ {(j, v) ∈ E : v ∈ Vij }. Figure 3 is an exam-
ple of a subgraph Gij in which Eij = {(1,2), (1,5), (3,4)}, Vij = {1,2,3,4,5}
and E′

ij = {(1,2), (1,5), (3,4), (i,1), (i,3), (2, j), (4, j), (5, j)}. Let Sij be an i–j

node cut set and define S M
ij to be the set of all minimal Sij . For our example in the

figure, S M
ij = {{1,3}, {1,4}, {2,3,5}, {2,4,5}}. These sets separate i and j in Gij ,

therefore, to include nodes i and j with dG(i, j) = 3 in the same 3-club S, it is
necessary to include a node of each set Sij ∈ S M

ij . Thus, the node cut set formula-
tion (17)–(19) for the maximum 3-club problem can be stated as follows:

max
∑

i∈V

xi (17)

s.t.: xi + xj ≤ 1 +
∑

k∈NG(i)∩NG(j)

xk +
∑

s∈Sij

xs ∀(i, j) /∈ E,Sij ∈ S M
ij , (18)

xi ∈ {0,1} ∀i ∈ V. (19)

In this formulation, inequalities (18) are the node cut set constraints described
above. The formulation has |V | variables, but potentially exponential number of
constraints. Note that constraints associated with non-minimal cut sets are domi-
nated by constraints (18) and are not necessary.

Next, we present an integer programming formulation for the maximum s-club
problem recently proposed by Veremyev and Boginski [65]. We first discuss the for-
mulation for s = 2 and then extend it to the higher s values. Let V = {1, . . . , n} and
let A = [aij ]ni,j=1 be the adjacency matrix of G = (V ,E). Then the characteristic
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vector x of a 2-club S must satisfy the following nonlinear constraint:

aij +
∑

k∈V

aikakj xk ≥ xixj ∀i, j ∈ V. (20)

Linearizing this constraint, we formulate the maximum 2-club problem as follows:

max
∑

i∈V

xi (21)

s.t.: aij +
n∑

k=1

aikakj xk ≥ xi + xj − 1 ∀i, j ∈ V, (22)

xi ∈ {0,1} ∀i ∈ V. (23)

The above formulation can be simplified as follows:

max
∑

i∈V

xi (24)

s.t.:
∑

k∈NG(i)∩NG(j)

xk ≥ xi + xj − 1 ∀(i, j) /∈ E (25)

xi ∈ {0,1} ∀i ∈ V. (26)

Similarly, the characteristic vector x of a 3-club must satisfy the following non-
linear constraints:

n∑

k=1

aikakj xk +
n∑

k=1

n∑

m=1

aikakmamjxkxm ≥ xixj ∀(i, j) /∈ E. (27)

Letting wij = xixj for all i, j ∈ V and linearizing the constraints, we obtain the
following formulation for the maximum 3-club problem:

max
n∑

i=1

xi (28)

s.t.:
n∑

k=1

aikakj xk +
n∑

k=1

n∑

m=1

aikakmamjwkm ≥ xi + xj − 1 ∀(i, j) /∈ E, (29)

wij ≤ xi,wij ≤ xj ,wij ≥ xi + xj − 1 ∀i, j ∈ V, (30)

xi,wij ∈ {0,1} ∀i, j ∈ V. (31)

This formulation contains O(n2) binary variables and O(n2) constraints. Similarly,
one can develop the model and linearize it using the standard approaches for the gen-
eral case of the maximum s-club problem. However, the resulting formulation will
have O(ns−1) variables. Veremyev and Boginski [65] exploit the special structure
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of s-club and propose an efficient linearization technique that reduces the number
of variables substantially. We discuss their compact binary formulation next.

Consider a subset of vertices S and its characteristic vector x. Let v
(l)
ij (i, j =

1, . . . , n; l = 2, . . . , s) be a binary variable taking the value 1 if there exists at least
one path of length l from i to j in G[S] and 0 otherwise. Note that for l = 2 we have
v

(2)
ij = min{xixj

∑n
k=1 aikakj xk,1}, which can be linearized using the following set

of constraints:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v
(2)
ij ≤ xi, v

(2)
ij ≤ xj

v
(2)
ij ≤

n∑

k=1

aikakj xk, v
(2)
ij ≥ 1

n

(
n∑

k=1

aikakj xk

)

+ (xi + xj − 2).

Other variables for higher values of l = 3, . . . , s can be found recursively using
v

(l)
ij = min{xi

∑n
k=1 v

(l−1)
kj aik,1} and linearized by applying the following set of

inequalities:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v
(l)
ij ≤ xi, v

(l)
ij ≤

n∑

k=1

aikv
(l−1)
kj

v
(l)
ij ≥ 1

n

(
n∑

k=1

aikv
(l−1)
kj

)

+ (xi − 1).

Therefore the maximum s-club problem can be formulated as the following binary
linear program:

max
n∑

i=1

xi (32)

s.t.:

k∑

l=2

v
(l)
ij ≥ xi + xj − 1 ∀(i, j) /∈ E, (33)

v
(2)
ij ≤ xi, v

(2)
ij ≤ xj , v

(2)
ij ≤

n∑

k=1

aikakj xk ∀i, j ∈ V, i < j, (34)

v
(2)
ij ≥ 1

n

(
n∑

k=1

aikakj xk

)

+ (xi + xj − 2) ∀i, j ∈ V, i < j, (35)

v
(l)
ij ≤ xi, v

(l)
ij ≤

n∑

k=1

aikv
(l−1)
kj ∀i, j ∈ V, i < j, l = 3, . . . , s, (36)
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v
(l)
ij ≥ 1

n

(
n∑

k=1

aikv
(l−1)
kj

)

+ (xi − 1) ∀i, j ∈ V, i < j, l = 3, . . . , s, (37)

xi, v
(l)
ij ∈ {0,1} ∀i, j ∈ V, i < j, l = 2, . . . , s. (38)

The above model is the most compact known formulation for the maximum s-club
problem with O(sn2) variables and constraints. For more information about com-
pact formulation and its properties, we refer the reader to [65].

5 Polyhedral Results

Due to the structure of the problem and its dependence on the value of parameter
s, most of the research in this area has been focused on the 2-club polytope and,
partially, 3-club polytope and not on the s-club polytope in general. In this section,
we review the polyhedral results available for the 2-club polytope.

Consider a nontrivial simple undirected connected graph G = (V ,E). A subset
of vertices I ⊆ V is a 2-independent set in G if dG(i, j) > 2 ∀i, j ∈ I . Let M1
be the edge-vertex incidence matrix of the complement graph Ḡ. The rows of M1
correspond to edges (i, j) ∈ Ē and the columns correspond to vertices i ∈ V . The
entries in the row corresponding to an edge (i, j) are 1 in columns i and j and are 0
otherwise. Let M2 be the matrix representing the common neighborhood of i, j for
every (i, j) ∈ Ē. The rows of M2 correspond to edges (i, j) ∈ Ē and the columns
correspond to vertices i ∈ V . The entries in the row corresponding to an edge (i, j)

are 1 in columns k ∈ NG(i) ∩ NG(j) and are 0 otherwise. Let A = M1 − M2, then
the maximum 2-club problem formulation (9)–(11) can be written as [10]:

ω̄2(G) = max
{
1T x : Ax ≤ 1, x ∈ {0,1}|V |},

where 1 is the vector of all ones of appropriate dimension and ω̄2(G) is the
2-club number of G. Let Q be the set of feasible binary vectors defined as Q =
{x ∈ {0,1}|V | : Ax ≤ 1}, then the 2-club polytope P2C is given by the convex hull
of Q: P2C = conv(Q). The following results were established in [10].

1. dim(P2C) = |V |.
2. xi ≥ 0 induces a facet of P2C for every i ∈ V .
3. For any i ∈ V , xi ≤ 1 induces a facet of P2C if and only if dG(i, j) ≤ 2 ∀j ∈ V .
4. Let I be a maximal 2-independent set in G. Then

∑
i∈I xi ≤ 1 induces a facet of

P2C .

Note that each neighborhood constraint is associated with two vertices v and v′
such that dG(v, v′) = 2. For any node i ∈ V \{v, v′} such that min{dG(i, v), dG(i, v′)}
> 2, the inequality xv +xv′ +xi −∑

j∈{NG(v)∩NG(v′)} xj ≤ 1 is valid for P2C because
neither v nor v′ can be included in a 2-club that includes node i, and to include nodes
v and v′, at least one of their common neighbors must also be included in the 2-club.
This inequality is a lifted version of the neighborhood constraint (10). Carvalho and
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Almeida [22] used this observation to establish the following valid inequality for
P2C :

∑

i∈I∪{v,v′}
xi −

∑

j∈NG(v)∩NG(v′)
xj ≤ 1, (39)

where I ⊆ V \ {v, v′} is such that I ∪ {v} and I ∪ {v′} are 2-independent sets in G.
They also extended this result to triples of vertices as follows. Let v, v′, v′′ be given.
For a vertex j denote by aj = (|NG(j) ∩ {v, v′, v′′}| − 1)+, where a+ = max{a,0},
i.e., aj = 2 if j neighbors all three vertices; aj = 1 if j neighbors two of the three
vertices; and aj = 0, otherwise. Let R = {v, v′, v′′} be an independent set in G. Let
I ⊆ V \ {v, v′, v′′} be such that I ∪ {v}, I ∪ {v′} and I ∪ {v′′} are 2-independent sets
in G. Then the inequality

∑

i∈I∪{v,v′,v′′}
xi −

∑

j∈V

(∣∣NG(j) ∩ {
v, v′, v′′}∣∣ − 1

)+
xj ≤ 1 (40)

is valid for P2C .
More recently, Mahdavi [43] developed a family of valid inequalities that sub-

sume both (39) and (40).

Theorem 1 ([43]) Let I be an independent set in G. Then the inequality

∑

i∈I

xi −
∑

j∈V \I

(∣∣NG(j) ∩ I
∣∣ − 1

)+
xj ≤ 1 (41)

is valid for P2C . If, in addition, I is a distance 2-dominating set, i.e., I is an in-
dependent distance 2-dominating set (I2DS), then this inequality defines a facet for
P2C referred to as I2DS facet.

Mahdavi [43] also proved that given a noninteger feasible point x̃ in P2C decid-
ing whether this point violates an I2DS inequality is NP-complete, that is, the I2DS
inequalities separation problem is NP-complete. On a positive note, I2DS inequali-
ties are sufficient to derive the complete description of the 2-club polytope of trees.
See [43] for a more detailed discussion on the 2-club polytope.

As for the maximum 3-club problem, Almeida and Carvalho [4] developed some
non-trivial valid inequalities based on ideas similar to those used to develop (39)
and (40) above. An interesting future research question is whether the valid inequal-
ities they developed for 3-club can be generalized to develop a class of facets similar
to I2DS above.

6 Exact and Heuristic Algorithms

The correspondence between the maximum clique and maximum s-clique problems
implies that the heuristic and exact algorithms for maximum clique problem can be
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applied to the sth power of the graph to solve the maximum s-clique problem. In
such cases, the performance of these algorithms may be poor as the edge density is
higher in Gs . Unlike the maximum clique problem, the maximum s-clique problem
has not been the subject of extensive research and we are not aware of any compu-
tational results for this problem to date. This may be due to the above-mentioned
correspondence between the two problems which facilitates the use of proposed al-
gorithms for clique detection to solve the later case. Therefore, in this section our
focus will primarily be on the existing algorithms for the maximum s-club problem.

Due to the NP-hardness of checking whether an s-club is maximal, developing
sufficient conditions for an s-club to be maximal is of importance for designing
effective algorithmic procedures for the maximum s-club problem. One such con-
dition, which was proposed in [63], is outlined next.

For a positive integer k, the k-neighborhood Nk
G(v) of v ∈ V is given by

Nk
G(v) = {v′ : dG(v, v′) ≤ k}. Note that v ∈ Nk

G(v) for any k ≥ 1, thus N1
G(v) =

NG[v]. The k-neighborhood Nk
G(S) of a given subset of vertices S is defined as

follows: Nk
G(S) = ⋂

v∈S Nk
G(v). Given an s-club S and a positive integer p, we

recursively define Ns(G,S,p) as the s-neighborhood of S in G[Ns(G,S,p − 1)]:

Ns(G,S,p) =
{

Ns
G(S), if p = 1,

Ns(G[Ns(G,S,p − 1)], S,1), if p ≥ 2.

Then the following properties hold [63]:

1. If S ⊆ S∗ ⊆ V , then we have Ns(G[S], S,p) ⊆ Ns(G[S∗], S,p) ⊆ Ns(G,S,p)

for any p ≥ 1.
2. If S is an s-club, then we have S = Ns(G[S], S,p) ⊆ Ns(G,S,p + 1) ⊆

Ns(G,S,p) for any p ≥ 1.
3. Let S be an s-club that is not maximal. Then for any maximal s-club S∗ contain-

ing S we have: S∗ ⊆ Ns(G,S,p) for any p ≥ 1.

Theorem 2 ([63]) Let S be an s-club. If there exists a positive integer p such that
Ns(G,S,p) = S, then S is a maximal s-club.

The sufficient condition in Theorem 2 is not necessarily satisfied by a maximal
s-club, as illustrated by the example in Fig. 4. In the graph G = (V ,E) in this figure,
the subset of vertices S = {1,2,3,4,5,6,7} is a maximal 2-club, however, for any
p > 1, N2(G,S,p) = N2(G,S,1) = V ⊃ S. Since the distance between vertices 8
and 11 is 3, V is not a 2-club.

6.1 Heuristic Algorithms

Due to computational intractability of the maximum s-club problem, heuristics be-
come the method of choice for solving the maximum s-club problem in practice.
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Fig. 4 A graph with a
maximal s-club
S = {1,2,3,4,5,6,7} that
does not satisfy the condition
of Theorem 2

Several construction heuristics have been proposed in the literature. In 2000, Bour-
jolly et al. [16] proposed three simple heuristic algorithms for the maximum s-club
problem called DROP, CONSTELLATION and s-CLIQUE-DROP. Among these,
DROP, which runs in O(|V |3|E|) time, was reported to produce the best result in
terms of solution quality specially in graphs with higher density. DROP works as
follows: we start with the whole graph G and at each iteration the vertex i with
most infeasibility is deleted where infeasibility is defined as the number qi of ver-
tices of G whose shortest distance to i has a length of at least s + 1. If there is a
tie, a vertex of minimum degree is then selected for elimination and the graph is
updated. The procedure continues until no infeasible vertex can be found. CON-
STELLATION is based on identifying the largest star graph in the first step. In the
next iteration, the vertex having the largest number of neighbors in the remaining
graph is selected and added to the s-club provided that the total number of iterations
does not exceed s−1. CONSTELLATION runs in O(s(|V |+|E|)) time and was re-
ported to perform well solving the maximum 2-club problem on low density graphs.
The third algorithm, s-CLIQUE-DROP, proceeds by identifying the largest s-clique
in G and removing all vertices not belonging to s-clique from G along with their
incident edges. Then DROP is called to find a feasible solution. To obtain the largest
s-clique, the maximum clique problem is solved on Gs using one of the existing al-
gorithms. The recently proposed EXPAND algorithm [63] proceeds by taking the
closed neighborhood of each vertex i in G, computing its s-neighborhood and ap-
plying DROP procedure on the subgraph induced by s-neighborhood of a vertex to
obtain a feasible solution. Recall that the closed neighborhood of a vertex provides a
2-club, which is used to obtain the s-neighborhood for s ≥ 2. To increase the chance
of obtaining larger s-clubs in the initial steps of EXPAND, vertices are sorted based
on a non-increasing order of their degrees in the initialization step. Therefore at
each iteration i, DROP is called only if the size of the s-neighborhood of vertex i

is larger than the best s-club found so far. A similar version of EXPAND, named
IDROP, was independently used in [23].
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Recently, a variable neighborhood search (VNS) meta-heuristic has been pro-
posed for the maximum s-club problem [63]. VNS is based on the idea that a local
optimum for one neighborhood structure is not necessarily a local optimum for an-
other neighborhood structure [48]. Hence, to avoid being trapped in a poor-quality
local optimum, the VNS explores, in a systematic fashion, multiple neighborhood
structures. As a part of the procedure, the sufficient condition described in Theo-
rem 2, has been used to test the maximality of a given solution to search the solution
space more effectively. Computational experiments for s = 2,3 using VNS algo-
rithm were conducted on two sets of instances. The first testbed included the same
set of random instances used in [44] to facilitate the comparison between the two
methods. The second set included some of the large-scale instances from the tenth
DIMACS implementation challenge [30]. For more detail on the proposed algo-
rithm, neighborhood structures and computational results see [63].

6.2 Exact Algorithms

The first exact algorithm for the maximum s-club problem was proposed by Bour-
jolly et al. [17]. The proposed branch-and-bound (B&B) algorithm employs DROP
heuristic to direct its branching process. For the bounding process, algorithm relies
on the solutions to the maximum stable set problem solved on an auxiliary graph.
Two branches are generated at the root node of the search tree that correspond to re-
moving or keeping the vertex selected by a single iteration of DROP. The algorithm
first explores the branch that removes the vertex. The process is then recursively
applied until a terminal node is reached, yielding a depth first search. Note that de-
ciding to remove or keep a vertex during the branching process may increase the
shortest chains length and this affects the whole subtree rooted at the node in which
this decision has been made. As a result, a pair of vertices in the current solution at
some node of the subtree may appear too far away from each other. This leads to
an infeasible solution and thus the corresponding branch is pruned. For the upper
bounding procedure, let G′ = (V ′,E′) be the graph induced by the current solution
at a given node of the B&B tree and let H = (V ′,F ) be an auxiliary graph asso-
ciated with G′, where there is an edge between any two vertices in H only if the
shortest path connecting these two vertices in G′ has length greater than s. Obvi-
ously, if there is an edge between two vertices in H , they cannot both belong to the
same s-club in G′. Therefore, the largest independent set in H provides an upper
bound on the size of the largest s-club in G′. In their computational results, authors
report the average solution size and CPU time for s = 2,3,4 on randomly generated
instances with different edge densities. Instances were generated using the method
proposed in [33].

Recently, Chang et al. [23] have shown that the B&B algorithm of Bourjolly et
al. [17] runs in O(1.62n) time and proposed a variation of this algorithm that uses
IDROP procedure to find the initial feasible solution and computes the s-coloring
number of the graph associated with each node of the B&B tree to obtain an upper
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bound on the size of the s-club for that node. Observe that the chromatic num-
ber χ(G) of G is the minimum number of colors required to color the vertices of
G properly, that is, so that no two neighbors are assigned the same color and the
s-coloring number of G is the minimum number of colors required to color all ver-
tices such that no two vertices of distance at most s are assigned the same color.
Note that the s-coloring number of G provides an upper bound on the s-club num-
ber of G and one can compute the chromatic number χ(Gs) of the sth power graph
Gs to obtain the s-coloring number of G. The authors report the results of computa-
tional experiments with a set of randomly generated instances, Erdös collaboration
networks [11, 35], and some benchmark graphs from the second DIMACS imple-
mentation challenge [29].

More recently, Mahdavi and Balasundaram [44] proposed another B&B algo-
rithm to compute the s-club number of a graph. Their algorithm employs two meth-
ods for computing a lower bound. The first method selects the larger of the two solu-
tions found using DROP and CONSTELLATION heuristics, and the second method
is a bounded enumeration-based technique. This lower-bounding scheme proceeds
by finding an initial s-club S followed by a bounded search that enumerates s-clubs
containing S. The idea behind this bounded search is to improve the initial solu-
tion in a reasonable amount of time. The best solution found by these two methods
initializes the incumbent. Two methods are used to derive an upper bound for the
B&B algorithm. The first one, proposed independently of [23], is based on obtain-
ing the s-coloring number of graph associated with every node in the B&B tree.
To obtain this upper bound a combination of greedy heuristic and DSATUR heuris-
tic, proposed in [18], is used. The second method computes the maximum s-clique
to serve as an upper bound for the s-club number of a given graph G. To obtain
this upper bound, the algorithm proposed by [51] is employed to find the maximum
clique on sth power graph Gs . For branching, a vertex dichotomy is used, where a
vertex is selected and fixed to be included or deleted from the solution. To traverse
the search tree, best bound search (BBS) strategy has been considered. Authors re-
port extensive computational results, for s = 2,3, using four different combinations
of lower-bounding and upper-bounding techniques on a set of randomly generated
instances of order n = 50, 100, 150 and 200 with seven different densities ranging
from 0.0125 up to 0.25. They report on the effectiveness of the bounding tech-
niques used in the B&B algorithm and their relation with the topological structure
of the randomly generated instances. The general B&B framework for solving the
maximum s-club problem outlined in [44] can be easily adapted to include alterna-
tive lower- and upper-bounding schemes. One such enhancement has been proposed
in [63], where the B&B framework was used in conjunction with the VNS heuristic
mentioned above.

Veremyev and Boginski [65] solved the maximum s-club problem for s =
2, . . . ,7, using the compact formulation (32)–(38) on a set of randomly generated
instances of order n = 100,200,300 with different edge densities. For every com-
bination, 10 instances are generated and the average maximum s-club size, average
CPU time and the average tightness for each group of problem instances have been
reported. The advantage of the compact formulation is that it contains a reasonable
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number of entities that grows linearly as s increases, thus providing an opportunity
to solve the problem for higher values of s. Computational results show that the
compact formulation is rather tight and the relative gap between the exact and the
LP relaxation objective values decreases for larger values of s. The results of exper-
iments with IP-based approaches for s = 2,3 have also been reported in [4, 22].

Hartung et al. [36] used their theoretical findings concerning parameterized al-
gorithms for 2-clubs based on the dual parameter d = |V | − k to develop a B&B
strategy in conjunction with a kernelization proposed in [59]. The results of experi-
ments with the proposed algorithm for the maximum 2-club problem that they report
are very encouraging. In particular, their implementation significantly outperforms
other known exact approaches on small to medium-size random graphs and large-
scale real-life networks from the tenth DIMACS implementation challenge [30].

7 Applications and Extensions

The introduction of the concepts of s-clique and s-club was originally motivated
by applications in social networks analysis, where these distance-based clique re-
laxations are used to model cohesive subgroups [3, 49]. A social network can be
formalized by a simple undirected graph G = (V ,E). The vertex set V can rep-
resent people, or actors, in a social network and the mutual relationships between
pairs of actors can be naturally modeled using edges. For example, in a collabo-
ration network the edges could represent collaborations between researchers. For
mathematicians and computational geometers [11, 35], such collaboration networks
are used to determine the collaborative distance between researchers which was first
popularized by the concept of Erdös numbers [34].

Studying cohesive or “tightly knit” subgroups, which describe groups of actors
that tend to share certain features of interest [60, 66], finds applications in dif-
ferent branches of sociology, including epidemiology of sexually transmitted dis-
eases [55], organizational management [27], and crime detection/prevention and
terrorist network analysis [12, 56, 57] among many others. For example, in [46],
s-cliques and s-clubs are used to analyze 9/11 terrorist network.

Even though the distance-based clique relaxation structures may not be charac-
terized by a very high overall degree of interaction between their members that is
typical for some other models, the low distances between all group members make
them appropriate models of cohesive subgroups in situations where easy reachabil-
ity is most crucial. This is the case, in particular, when one deals with various types
of flows in the network, such as flows of information, spread of diseases, or trans-
portation of commodities. It is therefore not surprising that s-cliques and s-clubs
appear naturally in many real-life complex systems, including biological and so-
cial systems, as well as telecommunication, transportation, and energy infrastructure
systems.

In social networks, the proliferation of low-diameter structures manifests itself in
catch-phrases “small world phenomenon” and “six degrees of separation” that made
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their way to the mainstream popular culture. A low diameter is a key characteristic
of many other massive-scale complex networks that tend to have power-law de-
gree distribution, or the so-called scale-free property [50]. Such networks typically
have a small number of high-degree nodes, which are most likely to be “central ver-
tices” in the largest s-clubs. In biology, it has been observed that groups of proteins
where interactions occur via a central protein often represent similar biological pro-
cesses [8]. This phenomenon makes computing 2-clubs, especially those that induce
star graphs, particularly interesting [10, 52].

In transportation, hub-and-spoke model is the most popular network architecture
used by major airlines [2, 38]. One of the main advantages of this model is that it
is optimal in the sense that it ensures a 2-hop reachability while using the minimum
possible total number of direct connections. Under this model, most of the flights are
routed through several hub airports. This provides passengers a convenient access
(via hubs) to numerous destinations that would not be able to support many direct
connections, as well as allows to facilitate a wide variety of services, thus attracting
more customers.

Another application is in computer and communication networks security [26].
A bot is a malicious program carrying out tasks for other programs or users and a
botnet is a network of bots. Botnets are usually controlled by members of organized
crime groups, called botmasters, for many different purposes. Almost all comput-
ers can host malicious programs that belong to a particular botnet and only a few
of them might be immune to becoming a host. Distribution of spam and Distributed
Denial-of-Service Attacks (DDoS) are among the malicious tasks performed by bot-
nets. Naturally, the botmaster would like to maximize the effect of attack, damage,
to the network and is therefore interested in selecting the densest subnetwork to ini-
tiate the attack. Identifying the densest subnetwork would help the botmaster to pick
the minimum number of nodes to attack. This strategy leads to the greatest possible
damage to the network and, at the same time, minimizes the chance of detection and
regulation. Therefore to protect the network and minimize the damage and, at the
same time, reduce the cost of taking defensive steps, it is essential to locate cohesive
subgraphs and nodes through which such malicious programs can propagate all over
the network very quickly.

In internet research, 2-clubs have been used for clustering web sites to facil-
itate text mining in hyper-linked documents [47], as well as search and retrieval
of topically related information [64]. In wireless networks, small-diameter dom-
inating sets, or the so-called dominating s-clubs offer an attractive alternative to
usual connected dominating sets as a tool to model virtual backbones used for rout-
ing [19, 40]. Since wireless networks are often modeled using geometric graphs
known as unit disk and unit ball graphs, studying the distance-based relaxations
restricted to such graphs is of special interest. It is well known that a maximum
clique in unit disk graphs can be found in polynomial time [9, 25]. However, the
complexity of maximum 2-clique and 2-club problems restricted to unit disk graphs
remains open. A 0.5-approximation algorithm for the maximum 2-clique problem
in unit-disk graphs that is based on geometric arguments is given in [53].
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8 Concluding Remarks

Applications in large-scale social, telecommunication, biological, and transporta-
tion networks, where easy accessibility between the system’s entities is of utmost
importance, stimulated a significant activity in studying distance-based clique re-
laxation models, s-clique and s-club. This chapter presented an up-to-date survey
of the literature of these models and the corresponding optimization problems. Due
to its stronger cohesiveness properties and non-hereditary nature, which results in
interesting research challenges, the maximum s-club problem has attracted much
more attention. The lack of results for the maximum s-clique problem can also be
explained by the fact that this problem is equivalent to the maximum clique prob-
lem in the corresponding power-s graph, and the maximum clique problem has been
studied extensively in the last several decades. While solving the maximum s-clique
problem by reducing it to the maximum clique problem is, perhaps, most natural and
straightforward approach, it is not clear whether it is most effective. The power-s
graph Gs typically has a much higher edge density than the original graph G, and
the maximum clique problem is known to be particularly difficult to solve on dense
graphs in practice. Moreover, clique is W[1]-hard, and, given that s-club is fixed-
parameter tractable for s > 1, reducing s-clique to clique does not appear to be
appealing from the parameterized complexity viewpoint. Therefore, investigating
the maximum s-clique problem from alternative perspectives may be of interest.
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