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   Foreword   

 Plant breeding as a science began at the advent of nineteenth century with the 
discoveries on inheritance of plant traits. Travelling through natural transfer and 
reassortment of chromatin within heterogeneous cultivated populations and later 
through deliberate gene transfers within the species, it has reached to the stage of 
current day precise, accelerated and target-oriented vertical and horizontal alien 
gene transfers. The quest of researchers for newer sources of genetic variation led 
the crop development programmes to look for genes of interest not only in the sec-
ondary and tertiary gene pools but also even beyond the genome boundaries. 
Nevertheless, the evolution of alien gene transfer technology to its present form has 
taken considerable time owing to several factors, primarily the scepticism of plant 
breeders toward use of wild and exotic plant genetic resources due to associated 
linkage drag, variable expression of alien genes in cultivated backgrounds, pre- and 
post-fertilization barriers, recalcitrancy of some of the crop species for in vitro tech-
niques and non-availability of genes of interest within the gene pool. Manipulations 
in hybridization procedures and in vitro techniques and support by modern tools 
including molecular marker technology, molecular cytogenetics, genetic transfor-
mation and bioinformatics have, however, provided solutions to many of the above 
problems and developed confi dence among plant breeders to take up alien gene 
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transfer into crop plants as a routine practice. Consequently, the gains from such 
transfers have been many and examples of successful alien gene transfers are scat-
tered across a wide range of crop plants and large number of traits  viz ., resistance to 
biotic and abiotic stresses, improved nutrition, increased keeping quality, non- 
shattering and sometimes easy-shattering habit, and an overall enhanced economic 
recovery as compared to the earlier types. Albeit, the alien gene transfers, particu-
larly horizontal gene transfer, have also raised some concerns as to the long-term 
ecological and social impacts which require to be addressed with more scientifi c 
reasoning to convince the end users about their safety and economic viability. 

 This book, “Alien gene transfer in crop plants: Innovations, methods and risk 
assessment” compiled by two young scientists of this institute provides an insight 
into various spheres of this important aspect. The editors have meticulously covered 
the methods, newer innovations, detection, challenges and risks associated with 
alien gene transfer. Voluminous literature is available on development and use of 
alien introgressions in crop plants, and it would have been defi nitely an uphill task 
for the editors to consolidate the most signifi cant aspects on alien gene transfer in a 
single book. For their sincere efforts, they deserve appreciations. All the chapters in 
this book are contributed by renowned scientists whose contributions are well rec-
ognized. I am sure that the information contained herein will motivate plant scien-
tists to use wild and distant plant genetic resources in improving the crop plants 
further and take alien gene transfer as a routine practice wherever obligatory, and 
also that it will be a useful knowledge base for those involved in teaching and 
research of agriculture and allied subjects.  

     Kanpur ,  India       N.     Nadarajan       

Foreword
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  Pref ace   

 Transfer of alien genes into crop plants from wild and exotic plant genetic resources 
has invoked tremendous interest of crop scientists globally. Wild species are a rich 
reservoir of useful alien genes hitherto not available in the cultivated gene pool. 
These include resistance to diseases and insect-pests, tolerance to drought, salinity, 
temperature extremities and other abiotic stresses as well as genes for several qual-
ity traits. While most of the alien gene introgressions of practical importance in crop 
plants have been achieved through vertical gene transfer, horizontal gene transfer 
through transgenesis (for cross incompatible species), somatic hybridization and 
most recently, intragenesis and cisgenesis, has offered great promise in broadening 
the genetic base of cultivated crop species. These techniques, lately aided by molec-
ular markers and in situ hybridization have led to introgression of hundreds of genes 
of interest in cultivated background, thereby improving their genetic potential. The 
gains through alien gene transfer are signifi cant, nevertheless also raising some 
issues regarding their possible impacts on human and animal health as well as on 
environment. Even though, such gene transfers have been successfully accom-
plished across many crop species and technologies required for these transfers have 
been refi ned, which signifi cantly improved the success rate of alien introgression 
events. Consequently, besides development of several plant products, ample litera-
ture has been generated over the years on different aspects of alien gene transfer 
which needed to be brought under a single book cover so as to provide the readers a 
comprehensive exposition on this important aspect. Realizing it, we developed this 
theme with an objective to provide an overview about the importance of alien gene 
transfer, how it is accomplished, detection of introgressions, the associated advan-
tages and risks, and the signifi cant achievements made from alien gene transfers. 
Keeping in view the scope of the subject, we have covered this topic in two vol-
umes; the fi rst volume deals with the innovations, methods and risk assessment 
while the second volume deals more with the practical aspects and covers achieve-
ments and impacts of alien gene transfer. 

 The fi rst volume is already in your hands and covers more of the theoretical 
aspects of alien gene transfer in crop plants. The fi rst chapter introduces the topic 
and discusses various techniques of alien introgression followed by a chapter on 
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distant hybridization, which is a prerequisite for vertical gene transfer. The subsequent 
two chapters deal with the important aspects of tissue culture and embryo rescue 
followed by a chapter on techniques of horizontal gene transfer through genetic 
transformation. Distant hybridization has also led to the discovery of newer tech-
niques immensely useful to plants breeders, and Chap.   6     explains one such tech-
nique—doubled haploidy breeding. The following two chapters cover the modern 
aspects of molecular techniques helping in introgression as well as detection of 
alien chromatin in cultivated background. Chapter   9     elaborates some of the signifi -
cant agronomically relevant traits transferred into crop plants. Of late, bioinformat-
ics has witnessed tremendous developments and fi nds great uses in many spheres of 
agricultural research, including the detection of alien genes, and this aspect has 
been covered in Chap.   10    . The subsequent two chapters summarize the theme spe-
cially focussing on the possible human and ecological impacts of alien gene trans-
fers as well the challenges and risks involved. 

 The authors of various chapters of this book are all renowned experts in their fi elds 
and deserve heartfelt thanks for writing their chapters meticulously and with great 
responsibility. We are extremely thankful to Dr. S. Ayyappan, Secretary, Department 
Agricultural Research and Education, Government of India and Director General, 
Indian Council of Agricultural Research (ICAR), New Delhi, for providing overall 
support and guidance in furthering our research and academic pursuits. Prof. Swapan 
Kumar Datta, Deputy Director General (Crop Science), ICAR and Dr. B.B. Singh, 
Additional Director General (Oilseeds and Pulses), ICAR deserve special mention for 
their constant encouragement for taking up this endeavour. With profound gratitude 
we also wish to mention the name of Dr. N. Nadarajan, himself an accomplished plant 
breeder and Director, Indian Institute of Pulses Research Kanpur, who has a special 
interest in the subject of distant hybridization and alien gene transfer in crop plants. 
He was a key force in motivating us to undertake this endeavour and deserves our 
appreciations. We are also grateful to our colleague Debjyoti Sen Gupta and research 
scholars working with us: Nupur Malviya, Rakhi Tomar, Ekta Srivastava and 
Mrityunjaya Singh for compilation of references and searching voluminous literature 
related to the topic. At Springer, Hannah Smith, Mellissa Higgs and Kenneth Teng, 
the commissioning editors; Daniel Dominguez the developmental editor and the 
entire production team have been instrumental in developing our idea of a book on 
such an important subject to its present form and deserve our appreciations. Our 
lovely kids Puranjay, Neha and Gun always helped to keep the atmosphere lively 
while Dr. Rakhi Gupta and Mrs. Renu Rani, our better halves, allowed us to work 
overtime and gave us all emotional support for which they deserve our genuine 
appreciation. 

 We hope that this book will be successful in achieving what we actually desired 
from it—providing the readers an updated and comprehensive reference on alien 
gene transfer in crop plants and a ready reckoner for the researchers and scholars 
who have an interest in this fi eld.  

     Kanpur ,  UP ,  India       Aditya     Pratap   
   Jitendra     Kumar       

Preface
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    Abstract     Alien gene transfer in crop plants has led to tremendous improvement in 
various crop species. Wild species are rich resources of useful alien genes which are 
not available in the cultivated gene pool. These include genes for resistance to 
 diseases and insect pests; for tolerance to drought, salinity, temperature extremities 
and other abiotic stresses as well as for quality traits. While most of the alien gene 
introgressions in crop plants have been achieved through vertical gene transfer, 
horizontal gene transfer through transgenesis, somatic hybridization and, most 
recently, intragenesis and cisgenesis has invoked tremendous interest of the scien-
tifi c community globally. These techniques, lately aided by molecular markers and 
in situ hybridization, together have led to introgression of hundreds of genes of 
 interest in cultivated background of crop species, thereby improving their genetic 
potential. This chapter provides an insight into importance and need of alien gene 
transfer, various methods to achieve it, alien gene detection and role of alien 
gene transfer in creating variability.  

  Keywords     Distant hybridization   •   Cisgenesis   •   Crop evolution   •   Gene fl ow   •   Genetic 
transformation   •   Intragenesis   •   Introgression   •   Reproductive barriers   •   Somatic 
hybridization  
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1.1         Introduction 

 The twentieth century has witnessed tremendous improvement in global crop 
 production. Besides several factors such as increase in cultivated area, improved 
agronomic practices, increased use of plant protection measures and better crop 
management, improved varieties of crop plants have played a dramatic role in 
improving the productivity of different crops. The genetically improved crop culti-
vars have been developed through modern plant breeding by introducing improved 
alleles at existing loci through conventional hybridization, of late, aided by molecu-
lar marker technology and genetic transformation. The aim of all these techniques 
has been either exchange of genes between sympatric or neighbouring populations 
of crops and related taxa or transfer of genes from related taxa into the cultivated 
gene pool of a crop. This led to the development of numerous improved cultivars 
with high yield, stress resistance and superior agronomic performance. In nature, 
gene transfer from one population to another is slow as compared to man-made 
systems, whereas it is faster and often mediated by hybridization followed by a 
number of backcrossings and rigorous phenotypic selections. 

 Hybridization has been known to occur at least since the times of Linnaeus and 
discussed by several evolutionists (Mayr  1963 ; Coyne and Orr  2004 ). The introduc-
tion of foreign genes into the gene pool of a crop species by human intervention has 
been used by plant breeders and applied geneticists for almost 100 years. Natural 
selection and, of late, human selection have helped in maintaining new combina-
tions of genes, and these gene combinations have been transferred through hybrid-
ization between cultivated and wild taxa leading to the development of populations 
with new characteristics (i.e. increased genetic diversity of modern crops) (Anderson 
 1949 ; Arnold  1992 ) and evolution of domestic crop species (Stebbins  1959 ; Slatkin 
 1987 ; Jarvis and Hodgkin  1999 ). Breeders and geneticists have increasingly sought 
new sources of resistance in diverse germplasm, often involving distant and wild 
relatives (Gill et al.  2011 ). While there are several instances of deliberate introgres-
sion of desirable traits into crop cultivars as a part of regular plant breeding 
 programmes, the extent and impact of farmer-aided or natural introgression are 
uncertain (Jarvis and Hodgkin  1998 ;  1999 ). 

 During the crop domestication, few species of crops were selected for cultiva-
tion. As a result narrow germplasm forms the basis of modern monoculture in many 
areas of the world (Gill et al.  2011 ). Therefore, use of vertical transfer for alien 
gene(s) could be restricted mainly to crossable wild species. Nevertheless, horizon-
tal transfer (HGT) of alien genes from non-crossable wild species or even across the 
genera is now increasingly being recognized as a signifi cant and potent force in the 
evolution of eukaryotic genomes (Bock  2009 ). While somatic hybridization after 
the initial leaps slowed down in yielding practical outputs, the ability to transform 
crop plants has developed remarkably since the fi rst genetically transformed plants 
were reported in 1983. Transgenics have a potential to signifi cantly increase 
the genetic component of integrated pest management through the development 
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of insect-resistant cultivars with very strong in-built insecticidal properties, compa-
rable to those of chemical pesticides (Pratap and Gupta  2009a ). The use of transgen-
ics for crop protection from insects, disease and weeds is further expected to increase 
tremendously, while ethical and environmental concerns regarding the development 
and use of transgenic crop varieties may be addressed by latest introduction of tech-
nologies like intragenesis and cisgenesis. This chapter provides an overview on 
alien gene transfer in crop plants and its implications in creating variability and 
evolution of crop species.  

1.2     Need for Alien Gene Transfer 

 Genetic variation is essential for developing new plant varieties, and this can be cre-
ated by introducing genes from a related species, sometimes from a relatively dis-
tant species or even an unrelated species. The need for gene transfer in a crop species 
depends upon the extant genetic variability in that crop as well as availability of a 
trait of interest in the donor in intense form. However, the valuable genes available 
within a crop species are easier to manipulate as compared to the alien genes, espe-
cially in the case of quantitative traits. Gene transfer within a species is not usually 
associated with undesirable effects which is one of the major limitations in alien 
gene transfer from distant species due to linkage of desirable genes with undesirable 
ones (linkage drag). In most of the cultivated crop species, limited popular and high-
yielding varieties are grown over wide areas and these are often derived from a rela-
tively narrow representation of gene pool, mostly from the primary gene pool, and 
therefore these have a narrow genetic base and limited genetic buffer. In this way, 
modern plant breeding although increased crop productivity worldwide, it also 
eroded the genetic variability of the crops (Hoisington et al.  1999 ). Consequently, 
our major crop species represent the relatively few species that were selected by our 
ancestors from a multitude of extant species, and the resulting narrow germplasm 
forms the basis of modern monoculture in many areas of the world (Gill et al.  2011 ). 
This makes them fragile to global climate change and vulnerable to new races of 
pathogens and insect pests. Due to narrow genetic variability, options to execute 
selection for desirable plant types also become limited. Since plant breeding in 
practice offers an option for crop improvement, efforts have been made to search for 
genes imparting resistance to stresses within the cultivated species and to a limited 
extent among their wild relatives, but success has been limited to a few diseases and 
insect pests that are confi ned to major gene(s) from the primary gene pool in most 
of the crop plants (Knott and Dvorak  1976 ; Stalker  1980 ; Ladizinsky et al.  1988 ; 
Prescott-Allen and Prescott-Allen  1986 ,  1988 ; Hajjar and Hodgkin  2007 ; Kumar 
et al.  2011a ,  b ). To diversify and broaden the genetic base of cultivated germplasm, 
introgression of alien genes from wild species offers a viable option not only to 
minimize the risk of stress epidemics but also to make discernible yield advances in 
crop species. 

1 Alien Gene Transfer in Crop Plants: An Introduction
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 Wild species are a rich reservoir of useful alien genes which are no longer avail-
able within the cultivated gene pool (Tanksley and McCouch  1997 ; Pratap and 
Gupta  2009b ). Since these species have had much longer time and increased oppor-
tunities to evolve and adapt to natural environments, therefore, these often have 
genes for resistance to diseases and insect pests and for tolerance to drought, tem-
perature stress, salinity and other extreme environmental conditions. Further, they 
have wide genetic buffers to withstand unexpected adversities. Therefore, gene 
transfer from distant and wild genetic resources provides an opportunity for devel-
opment of additional variability as well as incorporation of desirable genes hitherto 
not available in cultivated germplasm. Natural introgressions between wild rela-
tives and their crop cultivars continue to be a factor in increasing the genetic diver-
sity of modern crops today (Anderson  1949 ,  1961 ; Arnold  1992 ; Altieri and 
Montecinos  1993 ).  

1.3     Methods of Alien Gene Transfer 

 There are two ways to transfer the alien gene(s) into cultivated species: transferring 
alien gene from cross-compatible wild species through hybridization (vertical gene 
transfer) and transfer of gene(s) from other sources as well as cross-incompatible 
wild species through genetic transformation and somatic hybridization (horizontal 
gene transfer) (Fig.  1.1 ). These methods of gene transfer have been discussed briefl y 
below and elsewhere in this book.

  Fig. 1.1    Methods of alien gene transfer in crop plants       
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1.3.1       Vertical Gene Transfer 

 Gene transfer in nature occurs by the movement of genes across different popula-
tions, conferring new traits to the individuals in the recipient population. Thus dur-
ing this process the genetic information is transferred from parents to offspring, 
which is known as vertical gene transfer (VGT). Therefore, it is only possible in 
those cases where the individuals can mate with each other naturally or by artifi cial 
means and consequently are able to produce the offspring. VGT is usually involved 
in plant breeding where plants with desired traits are selected after the sexual trans-
fer of genes by cross-fertilization between two parents (Goodman et al.  1987 ). In 
case of one of the parents being a cultivated variety and the other being a wild rela-
tive, gene transfer is usually accomplished by several rounds of backcrossing with 
the cultivated parent and stringent selection for the desirable recombinant. 

 VGT occurs most frequently and successfully within the primary gene pool of a 
crop species as classifi ed by Harlan and de Wet ( 1971 ). Gene transfer can occur 
spontaneously only when the crop cultivation and the distribution of its relatives are 
more or less sympatric or at least overlapping locally, and they are cross compatible 
and produce somewhat fertile offspring (Hanelt  1997 ). Crops which have been sep-
arated through true speciation or reproductive isolation cannot have gene transfer 
between them through hybridization. 

 Plant breeding is selection of plants with desired traits after the sexual transfer 
of genes by cross-fertilization between two parents (Goodman et al.  1987 ). 
Systematic plant breeding began in the nineteenth century with the studies that 
how plant traits are inherited. The early years witnessed transfer and reassortment 
of a large number of genes in heterogeneous cultivated populations which was fol-
lowed by breeders expanding their search for new genetic variation to the entire 
crop species, including non-cultivated populations (Goodman et al.  1987 ). 
However, the earlier gene transfer events focused mainly within the species. This 
was followed by the search of plant breeders for newer variability which led to 
exploration of interspecifi c and intergeneric gene transfer methods later on and 
their use in improving cultivated crops. Gene transfer from related species into 
cultivated wheat began in 1930 when McFadden (1930) transferred resistance to 
stem rust and loose smut diseases from tetraploid  Triticum tauschii  to hexaploid 
 T .  aestivum . This led to the development of rust-resistant variety “Hope” which 
was cultivated in the United States for a very long time. Later in 1936, Tucker and 
Bohn transferred a gene conferring resistance to race 1 of  Fusarium  wilt fungus 
from a weedy plant,  Lycopersicon pimpinellifolium , to cultivated tomato, 
 L .  esculentum . 

 In the twentieth century, plant breeders had increasingly used interspecifi c 
hybridization for the transfer of genes from a non-cultivated plant species to a 
 variety in a related crop species. One of the classical examples of such gene transfer 
is that of transfer of leaf rust resistance from  Aegilops umbellulata  and yellow rust 
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resistance from  A .  comosa  into cultivated wheat ( Triticum aestivum ) (Sears  1956 ; 
Riley et al.  1968 ). This was accomplished through hybridizations and chromosome 
manipulations. Another classical example is that of breeding new tomato cultivars 
with increased dry matter content using small wild Peruvian tomato,  Lycopersicon 
chmielewskii , which has high soluble solid contents (Rick  1974 ; Iltis  1988 ). This 
was also accomplished by hybridization, backcrossing and pedigree selection. 
Similarly, genes for resistance to races of stem rust and powdery mildew and also 
Hessian fl y have been incorporated from  T .  tomopheevi ,  T .  monococcum  and 
 T .   turgidum  in many bread wheat varieties (Goodman et al.  1987 ). Later some more 
useful genes from wild relatives of crop plants have been incorporated into culti-
vated background of cereals (Jauhar  1993 ; Jiang et al.  1994 ; Jauhar and Chibbar 
 1999 ), oilseeds, food legumes (Kumar et al.  2011b ) and other crops. There are now 
hundreds of reports of alien gene transfer over several agricultural crops which will 
be discussed in subsequent chapters of this volume as well as in different crop-
specifi c chapters in Volume II.  

1.3.2     Factors Affecting Alien Gene Transfer 
Through Hybridization 

 Hybridization is a frequent and important component of plant evolution and specia-
tion (Riesberg and Ellstrnd  1993 ). The value of hybridization in transfer of alien 
genes into cultivated background has been known for a long time. Chromosome 
pairing between chromosomes of the alien donor and those of the cultivated crops 
is the key to such gene transfers. 

 For successful gene transfer through hybridization, cross-pollination must occur 
and there should not be any pre-mating and post-mating barriers. Prerequisites for 
hybridization include sympatric parents that occupy similar habitats, overlapping 
fl owering times, similar pollinators and intertaxa compatibility (Darwin  1859 ; Sarr 
et al.  1988 ). Hybridization and subsequent gene transfer depend upon several bio-
logical and environmental conditions. These include the following: sexually com-
patible species must be growing within a pollen or a seed dispersal range of the 
crop, the phenology (fl owering and fertilization) of the donor and recipient popula-
tion must overlap, fertile and viable offspring must be produced as a result of 
hybridization between two species and the offspring of the hybrid plant must be 
fertile and viable. The above conditions are tremendously affected by the biology of 
donor and recipient plants as well as prevailing ecological conditions. Even when 
these conditions are fulfi lled and gene transfer is likely, the advantages of gene 
transfer may reverse or reduce over time while in some cases they may even lead to 
improved vigour (Hauser et al.  1998 ). Nevertheless, there must be a minimum level 
of fertility in the offspring of the recipient population so that the transgene is main-
tained and passed on to next generation. In such cases if the resulting embryos 
develop into viable seeds and germinate, the F 1  plants typically have some reduced 
fertility but are rarely fully sterile. 
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 The low frequency of hybrids between most species, on a per individual basis, is 
largely explained by pre- and post-zygotic barriers (Mallet  2005 ). Further, incom-
patibilities between populations are strongly affected by selection and so are not 
expected to evolve in a regular or a time-bound manner. The taxon-specifi c differ-
ences may also account for increased hybridization rates within some taxa while 
less or rare hybridization and consequently negligible gene transfer in the other. 
Gene transfer can occur at different taxonomic levels. Accordingly, gene transfer 
can be classifi ed as intraspecifi c, interspecifi c and intergeneric. However, the extent 
of gene transfer is infl uenced by the objective of transfer, trait under transfer, breed-
ing system of the partners involved, availability of pollinating agents, layout of the 
trial (under experimental conditions) and population size. 

 For the success of gene transfers between cultivated and wild species, chromo-
some pairing between chromosomes of the alien donor and cultivated species is 
most important as the success of gene transfer from donor to the recipient species 
depends upon the degree of chromosome homology that exists between these two 
species. Relatively easier gene transfers occur between diploid species such as 
maize and barley where only one genome needs to be constructed. For example, 
 Hordeum bulbosum  and  H .  spontaneum  are useful sources for improvement of bar-
ley (Repellin et al.  2001 ).  

1.3.3     Reproductive Barriers 

 Reproductive barriers limit alien gene transfer through interspecifi c and interge-
neric hybridization. The sexual barriers hampering distant hybridization have been 
distinguished into pre- and post-fertilization barriers (Stebbins  1958 ). These include 
those barriers that reduce the chances of formation of a viable zygote (pre-zygotic 
barriers) and those which are due to lower survival or reproductive fi tness of the 
hybrids (post-zygotic barriers). The pre-zygotic barriers include ecological or habi-
tat isolation, temporal differences in fl owering phenology or pollinator service, tem-
poral separation in fl owering and/or pollination time between a pair of closely 
related species and gametophytic isolation. Gametophytic isolation is a pre-zygotic 
post-pollination mechanism which prevents fertilization by the pollen of foreign 
species. 

 Post-zygotic barriers may occur at various developmental stages of the hybrid 
progeny. The seeds may sometimes fail to develop due to degeneration of endo-
sperm of the hybrid seed leading to scarcity of nutrition to the developing seed. 
Even the plants may develop from the hybrid seeds but they may die before they are 
able to reproduce. Sometimes mature hybrid individuals may be sterile, the sterility 
being manifested in various stages of the reproductive cycle, for example failure 
to produce viable pollens or ovules, abortion of the embryo or unviable seeds 
(Futuyma  1998 ). 

 The use of mixed pollen, i.e. mixture of compatible and incompatible pollen 
(Brown and Adiwilaga  1991 ) and mentor pollen, i.e. compatible pollen genetically 
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inactivated by irradiation but still capable of germination, is reported to overcome 
inhibition in the style in many plant species. As it was fi rst demonstrated more than 
60 years ago in  Datura  (Blakeslee  1945 ), pollen tube growth inhibition in the style 
can be overcome using different pollination techniques in which style and ovary are 
manipulated. One of these manipulations involves removing the stigma and a part 
or whole of the style and pollinating the cut end. Application of growth regulators, 
such as auxins, cytokinins and gibberellins, to the pedicel or the ovary at the time of 
or soon after pollination may improve fruit and seed set after interspecifi c pollina-
tion. In many crosses, application of growth substances promotes post- pollination 
development up to a stage when hybrid embryos can be excised and cultured. 
Immunosuppressors such as amino-n-caproic acid, salicylic acid and acrifl avin have 
also been used to produce wide hybrids in many cereals. 

 A number of in vitro methods have also been developed to overcome post- 
fertilization barriers in crop plants. When abortion occurs in a very young stage and 
maternal tissue has no negative infl uence on the development of seeds, ovary cul-
ture can be applied. When the mismatch between embryo and endosperm develop-
ment starts very early and ovary culture and/or ovary slice culture fails, ovules can 
be dissected out of the ovaries and cultured in vitro. In wide crosses where few 
embryos are produced, the effi ciency to recover viable hybrid plants may be 
enhanced by callus induction from the embryo and subsequent regeneration of 
plantlets (Pratap et al.  2010 ). Embryo culture can be applied successfully in crosses 
in which pollinated fl owers can stay on the plant for a notable time, before natural 
abscission occurs.   

1.4     Horizontal Gene Transfer 

 Horizontal gene transfer (HGT), also referred to as lateral gene transfer (LGT), is a 
process in which a recipient organism acquires genetic material from a donor 
organism by asexual means (Bock  2009 ). Therefore, it is the transfer of genes 
between the non-mating species and is not restricted by genome or gene pool 
boundaries. HGT is an adaptive force in avolution, contributing to metabolic, physi-
ological and ecological innovation in most prokaryotes and some eukaryotes (Ragan 
and Beiko  2009 ). HGT is primarily associated with prokaryotic species (Johnsborg 
et al.  2007 ; Scudellari  2011 ) and it is expected to contribute up to 10–20 % of the 
genes in them (Nakamura et al.  2004 ) modifying important traits such as photosyn-
thesis, nitrogen fi xation, virulence and antibiotic resistance. However, this phenom-
enon has also been reported to occur in plant species on a large scale (Richardson 
and Palmer  2007 ; Bock  2009 ). The most classical example of HGT in plants is the 
infection of plant cells with  Agrobacterium . During infection, a region of the Ti 
plasmid (tumour-inducing plasmid) of the bacterium is incorporated in the nuclear 
genome of the plant cell (for review see Gelvin  2000 ). This phenomenon leads to 
development of modifi ed Ti plasmids which are used as vehicles for introducing 
foreign genes into plants via  Agrobacterium -mediated genetic transformation. 
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Considerable effi ciency and skill have now been achieved in transferring 
 exogenous DNA into plants and achieving their expression. 

 Horizontal transfer of transposable elements in vascular plants was fi rst reported 
in  Setaria  where a Mu-like element (MULE) has a striking similarity to a MULE in 
the rice ( O .  sativa ) genome (Diao et al.  2006 ). Since  Setaria  and rice or their rela-
tives do not engage in epiphytotic or parasitic relationship and natural grafting does 
not occur in monocotyledonous plants, it was suggested that the horizontal transfer 
of the MULE transposon was mediated by some vector, perhaps a pathogen or an 
insect pest which was common to both  Setaria  and rice. Another example of HGT 
has been reported in the grass  Festuca ovina  where a gene encoding the enzyme 
phosphoglucose isomerase is most closely related to phosphoglucose isomerase 
genes in the reproductively separated grass genus Poa (Vallenback et al.  2008 ). 
Based on synonymous substitutions it has been estimated that the HGT from 
 P .  palustris  or a closely related Poa species to  F .  ovina  occurred >600,000 years ago 
(Vallenback et al.  2008 ). 

 HGT has also been reported to occur between plants’ mitochondrial genes 
(Richardson and Palmer  2007 ). Mitochondria have a unique feature in that they 
have an active homologous recombination system and they readily undergo fusion 
(Arimura et al.  2004 ; Carlsson et al.  2007 ). This makes them particularly receptive 
to the horizontal exchange of DNA (Bock  2009 ). Several studies have documented 
frequent HGT of mitochondrial DNA sequences between distantly related vascular 
plant species (Bergthorsson et al.  2003 ; Won and Renner  2003 ; Davis and Wurdack 
 2004 ; Davis et al.  2005 ). There is also an evidence of gene transfer from plastid 
genome of an unidentifi ed plant to the mitochondrial genome of a Phaseolus species 
(Woloszynska et al.  2005 ). It was also reported that the genome of a eudicot para-
site,  Striga hermonthica , contains a nuclear gene that is widely conserved among 
grass species but is not found in other eudicots. Phylogenetically these cluster with 
Sorghum, the monocot host of the parasite, suggesting that the nuclear genes can be 
captured by parasitic weeds in the nature (Yoshida et al.  2010 ). 

1.4.1     Transgene Introgression 

 The infection of plant cells with  Agrobacterium  is a classic example of plants as 
recipients of HGT between kingdoms (Bock  2009 ). In case of transgenics the trans-
ferred gene usually derives from an alien species that is neither the recipient species 
nor a close, sexually compatible relative (Schouten et al.  2006a ). The ability to 
transform crop plants has developed tremendously since the fi rst transformed plants 
were reported in 1983. 

 There are mainly two approaches of plant transformation: (i) the use of 
 Agrobacterium  as a biological vector for foreign gene transfer and (ii) direct gene 
transfer techniques wherein the DNA is introduced into cells by the use of physical, 
chemical and electrical methods.  Agrobacterium -based methods are simple and 
more effi cient but have the disadvantage that these are not applicable in all plant 
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species (Pratap et al.  2009b ). However, the host-specifi c limitations have been 
largely overcome in many plant species by developing specifi c cell culture proce-
dures and refi ning inoculation and co-cultivation. On the other hand, direct gene 
transfer methods are species and genotype independent in terms of DNA delivery, 
though their effi ciency is affected by the target cell as well as the ease of regenera-
tion from the target cells. Chapter   5     describes the different approaches of alien gene 
transfer through transgenesis in detail. 

 Since the introduction of transgenic crops, the area under these crops has 
increased tremendously. The fi rst-generation transgenics concentrated mainly on 
tolerance to herbicide and insect-pest larvae in the crops, mainly soybean, maize, 
cotton and canola. The second-generation transgenics are now focusing on transfer 
of genes for quality traits as well as drought tolerance and higher nitrogen use effi -
ciency. While the genetically modifi ed crops have been highly successfull through-
out the globe, the GM technology has also encountered substantial scepticism 
among the general public and consequently among the farmers. This is mainly due 
to the apprehension that transgenes may persist in the environment in wild and 
weedy unintended hosts and have negative ecological consequences. Studies have 
shown that one of the major concerns of the public about the transgenic crops is 
artifi cial combination of genetic elements derived from different organisms that 
cannot be crossed by natural means (Lassen et al.  2002 ; Bauer and Gaskell  2002 ). 
Transgene dispersal from the genetically modifi ed crop into the wild relative is as 
simple as pollen from one plant to another plant or one crop to another crop. 
However, transgene fl ow does not necessarily mean introgression and it may require 
several generations of hybridizations and backcrossings for the introgression of 
transgene to occur. Furthermore, several other issues are still there which remain to 
be addressed, particularly, improving the frequency of transformation, increasing 
the number of genes that can be transferred, better control of expression of the trans-
ferred genes and enabling the genes to be inserted at defi nite positions.   

1.5     Somatic Hybridization 

 Somatic hybridization has been applied for improvement of cultivated plant species 
as genes can be transferred by protoplast fusion against bacterial, fungal and virus 
diseases or even nematodes and abiotic stresses such as drought, cold and soil salin-
ity (Göntér et al.  2002 ). Somatic hybridization provides the breeders the possibility 
of accessing sexually incompatible germplasm between the crop species and dis-
tant relatives, merging genomes of sexually dysfunctional cultivars or breeding 
lines and substituting one cytoplasm for another with a little effect on nuclear 
genome (Johnsson and Veilleux  2001 ). For protoplast fusion technology to be suc-
cessful two criteria must be fulfi lled: protoplast must be isolated in large quantities, 
and the isolated protoplasts must be totipotent (Waara and Glimelius  1995 ). Initially 
successful somatic hybridization was reported through the use of polyethylene 
 glycol (PEG)-mediated fusion (Kao and Michayulk  1974 ; Wallin et al.  1974 ). 
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This was followed by electrofusion techniques (Bates and Hasenkampf  1985 ; Puite 
et al.  1985 ; Fish et al.  1988 ). 

 The greatest potential for the use of protoplasm fusion or somatic hybridization 
lies in creating new crop varieties containing the nuclear genome of one species in 
the background of the cytoplasmic background of another or in a mixed cytoplasm 
with organelles from both the species (cybrids). If the complete genomes of two 
different species are combined parasexually, the resultant hybrid is known as amphi-
diploid somatic hybrid. Protoplasts from different species can be induced to fuse by 
exposure to certain chemicals or electric current (Goodman et al.  1987 ). The result-
ing somatic hybrid may be grown in vitro to produce callus tissue from which a 
whole plant can be regenerated, depending upon the species. 

 Interspecifi c somatic hybrids are mostly polyploid and often contain many 
unwanted traits derived from the wild or the unadapted species (Waara and Glimelius 
 1995 ). This necessitates several rounds of backcrossing of the somatic hybrid with 
the cultivated species to remove the undesirable characteristics as well as to estab-
lish the optimum ploidy level for crop production. Therefore, unless both the fusion 
partners are adapted species, the resultant hybrid may not be expected to carry all 
the desirable alleles. 

 In an effort to limit the genetic contribution of an unadapted parent to the product 
of protoplast fusion, some geneticists have promoted asymmetric somatic hybrid-
ization (Johnsson and Veilleux  2001 ). Here the genome of the donor species is frac-
tioned by irradiation prior to fusion which leads to retention of complete genome of 
the recipient species and only fragments of the genome of donor species. However, 
since damage to the genome as a result of irradiation is random, transmission of the 
trait of interest is not always certain. In many instances where two completely dis-
tant genomes have been combined, the resulting hybrids have been found to be 
sterile. 

 Since the major objective of somatic hybridization is to transcend mating barri-
ers, the majority of somatic hybridization research has been conducted to obtain 
interspecifi c somatic hybrids. Consequently a large number of somatic hybrids have 
been generated in the families Rutaceae, Solanaceae, Brassicaceae, Fabaceae, 
Asteraceae, Liliaceae and Cucurbitaceae (for review, see Waara and Glimelius 
 1995 ; Johnsson and Veilleux  2001 ). Similarly intergeneric somatic hybrids have 
also been produced through somatic hybridization. Intergeneric somatic hybrids 
generally bridge a much wider gap between the two fusion partners than intra- or 
interspecfi c fusion. The most noticeable cases of intergeneric hybrids have been 
those of  Lycopersicon esculentum  +  S .  tuberosum  (Wolters et al.  1994 ,  1995 ), 
 L .  esculentum  +  Nicotiana tabacum  (Hossain  et al .  1994 ),  Brassica oleracea  +
  Camelina sativa  (Hansen  1998 ; Sigareva and Earle  1999 ),  B .  oleracea  +  Sinapis 
alba  (Hansen and Earle  1997 ),  B .  juncea  +  Diplotaxis catholica  (Kirti et al.  1995 ), 
 Hordeum vulgare  +  Daucus carota  (Kisaka et al.  1997 ),  Oryza sativa  +  H .  vulgare  
(Kisaka et al.  1998 ) and  O .  sativa  +  Lotus corniculatus  (Nakajo et al.  1994 ). 

 Apart from intra- and interspecifi c and intergeneric hybrids, asymmetric somatic 
hybrids have also been developed by the fusion of protoplasts with unequal genetic 
contributions from two fusion partners. This has been mostly tried in cases where 
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one of the fusion partners is a wild or an unadapted species. Although  combining 
distantly related or unadapted species results in asymmetric hybrids which have 
reduced fertility, these can be employed as bridge species for transfer of alien genes 
through sexual methods. 

 Asymmetric somatic hybrids have been sought in attempts to introduce only a 
part of the genome of a wild (donor) species into the cultivated species (recipient) 
to limit the amount of alien germplasm to smaller genomic sectors that may control 
a trait of interest (Johnsson and Veilleux  2001 ). Since chromosomal rearrangements 
and eliminations seem to be random, selection for the specifi c desirable genes would 
be a more practical approach for better utilization of asymmetric hybrids. The asym-
metric hybrids may be induced by irradiation of the donor genome prior to fusion. 
Most of the examples of utilization of asymmetric hybridization come from 
Solanaceae, Brassicaceae, Poaceae and Fabaceae. In another method known as 
cybridization, the plastome and/or chondriome of one crop species is combined 
with the nuclear genome of another species. This technique has been used to trans-
fer genes for economically important traits such as cytoplasmic male sterility 
between species (Matibiri and Mantell  1994 ; Zubko et al.  1996 ; Sigareva and Earle 
 1997 ). The cytoplasm of a species can be replaced in a single step through this tech-
nique thereby saving time and resources for transfer of alien cytoplasms through 
repeated backcrossings. 

 Somatic hybridization has exhibited great potential in transfer of alien genes, 
particularly in these species which have sexual incompatibility. In most of the cases, 
however, traditional breeding was required to intervene between the actual proto-
plast fusion event and development of a product. Problems with regeneration and 
differentiation of plants from the protoplasts are still problem in many species. 
From practical point of view however, gene transfer through somatic hybridization 
has been much of academic interest.  

1.6     Intragenesis and Cisgenesis 

 With the aim of meeting reservations of general public associated with the develop-
ment and use of transgenic crop varieties and at the same time ensuring an environ-
mentally sound and effi cient plant production, the two transformation concepts, 
intragenesis and cisgenesis, were developed as alternatives to transgenic crop devel-
opment (Holme et al.  2013 ). This grouping of genetically modifi ed plants operates 
on the basis of phylogenetic distances between the DNA donor source and the recip-
ient species. 

 The different categories of genetically modifi ed crops were fi rst described by 
Nielsen ( 2003 ) on the basis of such phylogenetic distances. The category with the 
shortest distances comprised only the plants modifi ed with DNA from the same 
sexual compatibility group and was termed intragenic (Holme et al.  2013 ). The 
cisgenesis concept introduced by Jochemsen and schouten in 2000 (Jochemsen 
 2000 ) was initially limited to the derivation of genes to be transferred from the 
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species itself; subsequently, it was extended to the entire gene pool of the sexually 
compatible species (Schouten et al.  2006a ,  b ). In cisgenesis, the gene of interest 
(i.e. cisgene), containing its native introns, promoters and terminator in sense orien-
tation, is taken from the species itself or a sexually compatible relative for genetic 
transformation. Hence, the gene pool exploited in cisgenesis is identical to the gene 
pool available for traditional breeding. However, since foreign genes such as the 
selection marker genes are absent or eliminated from the primary intragenic/ cisgenic 
transformant or their progeny, the crops become far more acceptable by the general 
public. Cisgenic plants have no extra risks as compared to plants from conventional 
breeding or mutation breeding (Schouten et al.  2006b ). Cisgenesis may be particu-
larly useful in introgression of targeted desirable gene(s) of wild plants into the 
recipient genome in a single step. Therefore there are no chances of linkage drag 
(i.e. transfer of other undesirable gene), which is usually a problem in case of tradi-
tional breeding. Therefore, it is evident that intragenesis and cisgenesis do not alter 
the gene pool of the recipient species and practically do not offer any changes in 
fi tness that could not occur through artifi cial or natural hybridization in the crop 
species. The advantage these techniques offer is the speed by which a gene can be 
transferred into the crop plant which can save considerable time of a breeder in 
developing a superior cultivar.  

1.7     Detection of Alien Gene Transfer 

 In any alien gene transfer process where sexual hybridization is involved, it becomes 
very important to keep track of the validity of the wide hybrids and also the actual 
retention of the alien chromatin during generation advancement (Chaudhary et al. 
 2011 ). The extent and amount of gene transfer from wild relative into a crop species 
are determined by the breeding system of the plants (Hancock et al.  1996 ) as well 
as fulfi llment of the prerequisites for hybrid formation and its survival in the envi-
ronment. Gene fl ow between species resulting in permanent exchange of genes 
from one set of differentiated population to another, i.e. incorporation of alleles into 
a new, reproductively integrated population system, is known as introgression. 
Nevertheless, the events of convergence, independent mutation and sharing of genes 
from a common ancestor cannot be rejected in estimating the role and consequences 
of gene introgression (Rieseberg and Brunsfeld  1992 ). For successful detection of 
an alien gene a prior knowledge of the phenotypic effects of a gene is essential. 
Further, the gene sequence or the protein being targeted must express in the hybrid 
population. Hybridization and introgression are often diffi cult to detect and are not 
necessarily indicated by the occurrence of characters of one taxon in another 
(Donald and Hamblin  1983 ). Detection of gene transfer is still more diffi cult in 
high-frequency outcrossing crops where a few detectable traits separate the crop 
from its wild relative. Sometimes the efforts of detecting successful hybridization 
on the basis of morphological characters of hybrids may be misleading as the crops 
and wild relatives may possess similar characters due to common ancestor or as a 
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result of symplesiomorphy or convergent evolution (Nason et al.  1992 ; Wilson 
 1992 ). Most of the introgressions generally appear to be localized and dispersed. 
Therefore, it is also likely that many cases of low-level introgression are not detected 
(Rieseberg and Brunsfeld  1992 ). However, if an allele that is characteristic of one 
species is found in another species, with its highest frequencies near the hybrid 
zone, introgression is likely to have occurred (Harrison  1990 ). 

 The use of molecular markers has tremendously increased our ability to detect 
and quantify alien gene transfer. DNA markers have undoubtedly provided the most 
robust methods of alien gene detection in crop plants. In the advanced backcross 
QTL (AB-QTL) approach, parallel discovery and transfer of desired QTL from an 
unadapted germplasm into selected breeding lines take place (Tanksley and Nelson 
 1996 ). In this approach, repeated backcrossing is done with the elite parent in wild 
× cultivated species cross, and selection is imposed in advanced backcrossed (BC 2 F 2  
or BC 2 F 3 ) populations (Pratap et al.  2013 ). This approach besides reducing linkage 
drag also generates phenotyping and genotyping data. The advanced backcross 
populations are simultaneously used to identify desirable genes/QTL through QTL 
analysis. Once favourable QTL alleles are identifi ed, a few marker-assisted selec-
tion generations (3–4) can lead to development of near-isogenic lines (NILs) which 
can be used for development of a variety. This approach has been successfully used 
in soybean and commonbean (Blair et al.  2003 ; Chaky et al.  2003 ). In pigeonpea, a 
set of 17 amphiploid and autotetraploid groundnuts has been developed (Mallikarjuna 
et al.  2011 ). 

 In another approach, introgression libraries are constructed made up of several 
introgression lines (ILs) which are developed by repeated backcrossing of F 1 s 
between wild and cultivated lines (see Pratap et al.  2013 ). This leads to the distribu-
tion of donor (wild species) genome into the entire genome of ILs and consequently 
their expression in the phenotype. Such libraries have been reported in soybean 
using wild soybean species ( G .  soja ) (Concibido et al.  2003 ) and peanut from syn-
thetic tetraploids (Foncéka et al.  2009 ). 

 In situ hybridization is now recognized as another important technique to locate 
the physical position of a known DNA sequence on a chromosome. Methods of 
 in -situ  hybridization have made it feasible to link the molecular data about DNA 
sequence with chromosomal and expression information at the tissue, cellular and 
sub-cellular level and hence changed the way we apply cytogenetics to agriculture 
(Schwarzacher and Heslop-Harrison  2000 ). Since the fi rst application to identify 
chromosomes (Schwarzacher et al.  1989 ) and visualize DNA sequences on plant 
chromosomes (Yamamoto and Mukai  1989 ), genomic in situ hybridization (GISH) 
and fl uorescence in situ hybridization (FISH) are now the preferred techniques to 
physically visualize genome and chromosomes and the order of chromosome seg-
ments, genes and DNA sequences. In the past two decades, many applications and 
refi nements have been made in the technology which opened new vistas for micro-
scopic visualization of DNA manifestation in situ, previously confi ned to gel blot 
hybridization. Simultaneous detection of multiple targets has become quite easy 
through multicolour FISH and has been exercised in various cereal plants, viz., rye 
(Leitch et al.  1991 ), wheat (Mukai et al.  1993 ; Komeda et al.  2007 ; Chaudhary 
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 2008 ,  2009 ; Chaudhary et al.  2009 ), barley (Leitch and Heslop-Harrison  1993 ), 
 Aegilops  (Yamamoto and Mukai  1995 ), triticale (Cuadrado and Jouve  1994 ), chickpea 
(Staginnus et al.  2001 ), lentil (Galasso  2003 ),  Phaseolus  (Moscone et al.  1999 ) and 
 Vigna  spp. (Khattak et al.  2007 ). Therefore, the innovative techniques of molecular 
cytogenetics can be reliably utilized in various crop plants to physically map the 
whole genomes and the targeted alien introgressions to resolve various issues related 
to the origin of the species, assessment of variability and physical mapping at chro-
mosomal level. 

 At certain instances combination of more than one approach may be discernible 
to detect alien gene transfer. Direct observation of characteristics that appear to 
derive from another taxa can be combined with other analytical studies that provide 
evidence of introgression (Jarvis and Hodgkin  1999 ). For example, molecular, cyto-
genetic and agro-morphological studies can be combined with fi eld studies by 
agronomists, ecologists, anthropologists and other social scientists to provide a data 
supporting the likelihood of alien gene introgression (Jarvis and Hodgkin  1999 ).  

1.8     Gene Transfer from Domesticated Plants 
to Their Wild Relatives 

 Over the last two decades, studies on the effects of crop-to-wild plant hybridization 
and transfer of genes have been receiving much attention. Most domesticated plants 
hybridize naturally with their cross-compatible wild relatives, when they come into 
contact (Ellstrand et al.  1999 ). Several instances of introgression between wild and 
domesticated populations have demonstrated that gene transfer occurs in both the 
directions: from domesticated to wild and wild to domesticated (Ellstrand et al. 
 1999 ; Jarvis and Hodgkin  1999 ). While the gene fl ow from wild to domesticated 
crop plants can be achieved through several modern crop breeding and genetic tools 
such as distant hybridization aided by embryo rescue and in vivo hormone applica-
tions, in farmers’ fi elds it can occur only when farmers use part of their crop pro-
duce as seed for the next generation of sowing without replacing the seed with that 
of the commercial varieties. However since this is becoming a rare phenomenon in 
modern agriculture the gene fl ow mostly occurs from domesticated to wild plants. 
Papa and Gepts ( 2003 ) demonstrated from admixture population in commonbean 
that gene fl ow between wild and domesticated population leads to asymmetric 
introgression, with a higher rate from domesticated to wild populations. In several 
other studies also, it was demonstrated that gene fl ow was higher from domesticated 
to wild populations (Wolfe et al.  2001 ; Matsuoka et al.  2002 ). 

 Gene fl ow can occur from crop to crop, crop to a wild relative and even vice 
versa. However, in all cases it is not the gene fl ow per se, rather the type of genes and 
their utilization in creation of variability, thereby providing avenues for selection, 
introgression of new traits and its effects on the recipient population which have 
been important for the breeders and the mankind. Landraces are an important source 
of genetic diversity. Many of the landraces are still being cultivated within their 
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centres of origin. Local farmers play an important role in the  maintenance of in situ 
diversity and conservation (Gepts and Papa  2003 ). Since the inception of systematic 
plant breeding efforts, there has been use of limited genetic resources that has led to 
inadvertent narrowing down of genetic base of most of the crop plants. 

 There are several instances where transgene fl ow cases have been reported in 
centres of origin and diversity of crops. One of the most notable examples is of trans-
gene introgression of maize in Mexico (Quist and Chapela  2001 ,  2002 ). Even while 
the paper was retracted by Nature since introgression per se was not shown, this has 
led to concerns for similar transgene introgressions in other important crop plants 
such as rice and soybean in China (Huang et al.  2003 ). However, transgene dispersal 
from GM crops to wild relatives is often simply seen as pollen fl ow from the crop to 
wild relative. Nevertheless, the process of introgression is not so simple and actually 
occurs in may steps that involve several hybrid generations, all of which can exchange 
genes and coexist simultaneously for many years (Neal Stewart et al.  2003 ). 

 The processes and outcomes of hybridization have been well explained, and his-
torically the fundamentals can be traced back to Linnaeus who proposed a model of 
speciation by hybridization (Arnold  1997 ). It is now well acknowledged that hybrid-
ization has played an important role in the evolution of crop plants (Abbott  1992 ; 
Riesberg and Ellstrnd  1993 ; Ellstrand et al.  1996 ).  

1.9     Conclusions and Future Prospects 

 Gene transfer in crop plants, mostly through traditional plant breeding and more 
recently aided by transgenesis and molecular marker technology, has proved to be 
one of the most powerful tools for crop improvement and has increased the yield 
levels of crop plants to the present level which is well supporting the ever-increas-
ing population of the world. The plants have evolved in the nature along with the 
evolution of human civilization. While natural evolution has been governed by the 
environmental forces, the human interference has hastened the process of evolution 
of crop species, particularly those which are of use to him either directly or indi-
rectly. The transition of human race from a collector of seeds to a producer of grains 
led to more and more interaction between him and the plants which have been use-
ful to him. This transition has travelled a very long way from unknowing attempts 
of domestication to crop breeding to genetic transformation culminating into pres-
ent-day super domestication. Genetic diversity of crop plants, either natural or man-
made, played signifi cant role in this evolution. Useful traits such as resistance to 
diseases and insect pests, tolerance to abiotic stresses, improvement of quality traits 
and improved plant types have been transferred to crop varieties from cultivated 
and non-cultivated backgrounds. For this purpose, intraspecifi c, interspecifi c and 
even intergeneric gene transfers are not new, while technologies like somatic 
hybridization and protoplast fusion have also been helpful in combining desirable 
genes from two different sexually incompatible partners. The advent of recombi-
nant DNA technology however drew greater attention of the scientifi c community 
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as well as general public which has recently been supplemented by intragenesis and 
 cisgenesis. The broad potential of recombinant DNA technology has provided the 
possibility of both molecular analysis of crop productivity as well as ways in which 
it may be possible to increase the productivity. 

 While at present we may be complacent about food production, thanks to the 
genomic revolution, the predicted growth in the world population, eroding genetic 
diversity, decreasing water availability and the effects associated with predicted cli-
mate change pose challenges to modern agriculture. Nevertheless, these challenges 
encourage us to utilize the vast amount of knowledge generated and the available 
gene transfer technologies towards development of “super plant types” which fi t 
well in our imagination of a perfect plant species. Improved genetic maps as well as 
molecular cytogenetic tools may allow for gene isolation from microdissected chro-
mosomes and their easy detection in the recipient species. These technologies need 
to be vigorously taken up for isolation and transfer of poorly characterized genes 
such as those governing resistance to abiotic stresses, disease resistance, quality 
traits, etc. Advances in mapping technologies and molecular markers can speed up 
the discovery and characterization of genes for complex traits. Sequencing of mito-
chondrial genomes of those plants where HGT is known to have occurred will 
uncover transfers that are too short or are from such evolutionary distant donors that 
they fail to amplify by PCR (Richardson and Palmer  2007 ). It also needs to be estab-
lished whether multigenes can be transferred simultaneously or at least from the 
same donor lineage through HGT. Transgenic approach while having great utility in 
overcoming genome barriers for gene transfer is also associated with general public 
scepticism. Techniques like cisgenesis and transgenesis both have wider acceptabil-
ity and a great potential to overcome some of the limitations of classical breeding 
including linkage drag as well as genetic transformation. Such techniques may have 
an increased utility in less studied and highly environment-sensitive crops such as 
food legumes where gene transfer through repeated backcrossing is diffi cult. Crop 
breeding has now reached a stage where development of super-domesticates with 
traits such as dramatically increased crop yield, resistance to multiple diseases and 
insect-pests, bio-fortifi ed grains and even radically changed crops such as conver-
sion of C3 crops into C4 crops are not unrealistic. A greater interdisciplinary contri-
bution from breeders, biotechnologists, plant physiologists, pathologists, 
nutritionists and ecologists together will be able to achieve the true potential of alien 
gene transfer in realizing a food revolution to make this world a hunger-free planet.     
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    Abstract     Wide or distant hybridization has been widely used as an important tool of 
chromosome manipulation for crop improvement. The chromosome behaviors in F 1  
hybrids provide us with the essential genetic basis for chromosome manipulation. The 
induction of homoeologous pairing in F 1  hybrid plants followed by the incorporation 
of a single-chromosome fragment from an alien or a wild species into an existing crop 
species by translocating chromosomes has been used in the production of transloca-
tion lines. Most efforts to transfer a benefi cial trait from wild plants into crops so far 
have bridged the species gap via alien chromosome translocation lines. Chromosome 
doubling in somatic cells or gametes of F 1  hybrids followed by the incorporation of all 
alien chromosomes has been used in the production of amphidiploids. Amphidiploidy 
can be used for a bridge to move a single chromosome from one species to another or 
for the development of new crops. Chromosome elimination of a uniparental genome 
during the development of F 1  hybrid embryos has been used in the production of hap-
loids. Haploids are very useful in double-haploid breeding of a true-breeding crop 
such as wheat and rice since this method can quickly replace genetic recombination 
while enhancing breeding effi ciency or facilitating genetic analysis.  
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2.1         Introduction 

 Wide or distant hybridization, a mating between individuals of different species or 
genera, provides a way to combine diverged genomes into one nucleus. Wide 
hybridization breaks what is known as the species barrier for gene transfer and thus 
makes it possible to transfer the genome of one species to another, which results in 
changes in genotypes and phenotypes of the progenies. It is very important for spe-
cies evolution and speciation since chromosome doubling of wide hybrids is respon-
sible for the origin of many allopolyploid species. Repeated backcrossing of wide 
hybrids to their parental species has also contributed to the evolution and speciation 
of some species by gene introgression, i.e., the infi ltration of chromosomes or chro-
mosome fragments from one species into another through repeated backcrossing of 
wide hybrids to their parental species (Anderson  1953 ; Stebbins  1971 ; Arnold  1997 ; 
Mallet  2007 ). Besides its role in evolution and speciation of species, gene introgres-
sion from crops, especially genetically modifi ed crops, into the wild species, may 
increase the capability of the wild species to adapt to agricultural environments and 
compete with the cultivated forms, which is viewed as a possible threat to the envi-
ronment and to agriculture (Ellstrand  2003 ; Weissmann et al.  2005 ). In application, 
distant hybridization and resulting wide hybrids have been widely used as an 
important tool of chromosome manipulation (also referred to as chromosome engi-
neering) for crop improvement. Based on the chromosome behaviors of wide 
hybrids and the resulting chromosome constitutions in their progenies, chromosome 
manipulation of wide hybrids for crop improvement is classifi ed into three main 
categories:

    1.    Incorporation of singe-chromosome or chromosome fragment from a wild 
 species (also referred to as alien) into an existing crop in order to enhance crop 
genetic diversity: The resulting alien chromosome substitution, addition, or 
translocation lines help breeders to transfer benefi cial characteristics from wild 
and weedy plants to the cultivated crop species. Most efforts to transfer a benefi -
cial trait from wild plants into crops so far have been bridged via alien chromo-
some translocation lines (Qi et al.  2007 ).   

   2.    Incorporation of all the alien chromosomes by chromosome doubling in order to 
produce amphidiploid: Sometimes, the incorporation of partial alien chromo-
somes will lead to partial amphidiploid. Amphidiploid can be used for the devel-
opment of a new crop. The man-made crop Triticale ( X Triticosecale  Wittmack) 
is an amphidiploid between wheat ( Triticum turgidum  L. or  Triticum aestivum  L.) 
and rye ( Secale cereale  L.) (Gupta and Priyadarshan  1982 ). Amphidiploid can be 
further used as a bridge for the development of alien gene introgression or alien 
chromosome substitution, addition, and translocation lines (Jiang et al.  1994 ).   

   3.    Elimination of all alien chromosomes in order to induce crop haploid: Haploid is 
very useful in double-haploid breeding of a true-breeding crop like wheat and 
rice since it can quickly fi x genetic recombination and thus enhance breeding 
effi ciency or facilitate genetic analysis (Pratap et al.  2010 ).    
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  Type 1 is the manipulation for single chromosome, while type 2 and 3 are the 
genome manipulation by the loss and the addition of alien genome, respectively. 
Chromosome manipulation of wide hybrids for crop improvement is involved in 
some key steps that may vary according to different wide hybrids. Anyway, a F 1  
hybrid between a crop and an alien species is the fi rst step (Fig.  2.1 ). Crossability of 
different species is an important genetic character to strongly affect the wide cross. 
Some genes or QTL for crossability have been found in plants, for example in tribe 
Triticeae species tetraploid wheat ( T. turgidum  L.) and common wheat (Riley and 
Chapman  1967 ; Krowlow  1970 ; Zheng et al.  1992 ; Tixier et al.  1998 ; Liu et al.  1998a ,  b , 
 1999 ,  2002 ; Alfares et al.  2009 ; Bertin et al.  2009 ; Mishina et al.  2009 ; Zhang et al. 
 2008a ,  2011a ). With combined crossable genes/QTL with the application of 
techniques like embryo rescue and hormone treatment on post-pollination, successful 
production of F 1  hybrid can be achieved (Jiang et al.  1994 ; Sharma  1995 ). In most 
cases, the production of F 1  hybrid is not a barrier for chromosome manipulation.

2.2        Chromosome Manipulation for Crop Improvement 

 The chromosome behavior in F 1  hybrid provides us the essential genetic basis of 
chromosome manipulation. In this review, we focus on the chromosome manipula-
tions based on the chromosome behaviors of wide F 1  hybrids: (1) alien chromosome 
elimination during the development of F 1  hybrid embryos to produce haploids, 

  Fig. 2.1    Chromosome manipulation based on chromosome behaviors in F 1  hybrids. Alien 
 chromosome elimination during the development of F 1  hybrid embryos to produce haploid; 
 chromosome doubling in F 1  hybrid plants to produce amphidiploid; homoeologous chromosome 
pairing or chromosome misdividing in hybrid plants to produce translocation line       
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(2) chromosome doubling in somatic cells or gametes in F 1  hybrid plants to produce 
amphidiploid, and (3) induction of homoeologous pairing in F 1  hybrid plants and 
then the fi xation of translocated chromosomes in their progenies to produce translo-
cation lines (Fig.  2.1 ). 

2.2.1     Chromosome Elimination and Haploid Crop 

 Chromosome elimination of one parental or uniparental genome after fertilization of 
the egg by the sperm of another species can occur in intraspecifi c, interspecifi c, 
 intergeneric, or more distant hybrids (Dunwell  2010 ). This phenomenon results in 
haploid embryo formation of only one of the parents. It is, therefore, a barrier for 
breeding new crop cultivars by gene introgression from alien species into crop. 
However, it offers a shortcut for plant breeding by the production of doubled haploids 
(DH). Plant breeding needs to obtain high levels of homozygous lines with consistent 
phenotypes. However, the production of such a homozygous line usually requires 
several generations of selfi ng or backcrossing even if under the help of molecular 
markers (Chan  2010 ). A DH is a homozygous line that can be immediately achieved 
by artifi cial (chemical treatment) or spontaneous chromosome doubling of a haploid 
plant. In fact, doubled-haploid technology can accelerate the breeding of new culti-
vars, and the time to develop new cultivars may be reduced by 50 % in winter-grown 
crops compared to classical pedigree breeding (Forster et al.  2007 ). 

 Chromosome elimination was observed in interspecifi c hybridization within a 
genus like  Nicotiana  (Kostoff  1934 ; Burk et al.  1979 ),  Portulaca grandifl ora  (Okura 
 1933 ),  Hordeum  (Kasha and Kao  1970 ; Houben et al.  2011 ),  Solanum  (Uijtewaal 
et al.  1987 ; Peloquin et al.  1996 ; Maine  2003 ), and  Elymus  (Lu  1992 ). In genus 
 Hordeum , during early development stages of a hybrid embryo of between culti-
vated barley ( H. vulgare ) as the female and wild species  H. bulbosum , chromo-
somes of  H. bulbosum  are eliminated and then lead to the formation of a haploid 
embryo only containing barley chromosomes. After grown in vitro, a haploid barley 
plant will be produced. The “ bulbosum ” method was the fi rst haploid induction 
method to produce large numbers of barley haploids used in crop breeding pro-
grams (Choo et al.  1985 ; Devaux and Pickering  2005 ). Haploid formation has also 
been observed in hybrid combination between  H. vulgare  and other species in genus 
 Hordeum  (Jorgensen and von Bothmer  1988 ; Houben et al.  2011 ). 

 Chromosome elimination has also been shown to exist in many instances of 
 intergeneric or more distant hybridization, such as  Cichorium intybus  ×  Cicerbita 
alpina  (Doré et al.  1996 ), pear × apple (Inoue et al.  2004 ),  Brassica napus  × 
 Orychophragmus violaceus  (Cheng et al.  2002 ),  B. rapa  ×  Isatis indigotica  (Tu et al. 
 2009 ),  Avena sativa  ×  Zea mays  (Rines and Dahleen  1990 ; Kynast et al.  2012 ), 
 A. sativa  ×  Pennisetum americanum  (Matzk  1996 ),  A. sativa  × Triticeae species (Ishii 
et al.  2010 ),  Triticum ventricosum  ×  H. bulbosum  (Fedak  1983 ),  T. turgidum  ×  Zea 
mays  (Almouslem et al.  1998 ),  T. aestivum  × Triticeae species ( H. vulgare and 
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H. bulbosum ), and  T. aestivum  × its more distantly related species ( Zea mays , 
 Pennisetum glaucum ,  Sorghum bicolor ,  Coix lacryma-jobi ,  Imperata cylindrica , etc.) 
(Barclay  1975 ; Fedak  1980 ; Laurie and Bennett  1986 ,  1988 ; Laurie  1989 ; Matzk and 
Mahn  1994 ; Inagaki and Mujeeb-Kazi  1995 ; Mochida and Tsujimoto  2001 ; Gernand 
et al.  2005 ; Komeda et al.  2007 ; Pratap et al.  2005 ,  2006 ; Pratap and Chaudhary  2012 ; 
Chaudhary et al .   2013 ). Of them, effi cient induction of haploids by hybridization with 
maize ( Zea mays  L. ssp.  mays ) has been widely reported in wheat ( T. turgidum  and 
 T. aestivum ), and wheat–maize hybridization is currently a preferred method for 
 producing haploid wheat (Jauhar et al.  2009 ; Tayeng et al.  2012 ). 

 Uniparental chromosome elimination in wide hybrids should be a result of differ-
ent chromosome behaviors of two parents. There are some assumptions that have 
been proposed to account for uniparental chromosome elimination in wide hybrid-
ization (see review by Houben et al.  2011 ). One hypothesis is that centromeres from 
two parents interact unequally with the mitotic spindle, leading to selective chromo-
some loss (Bennett et al.  1976 ; Finch  1983 ; Laurie and Bennett  1989 ; Kim et al. 
 2002 ; Jin et al.  2004 ; Mochida et al.  2004 ). Centromeres are the chromosomal loci 
that attach to spindle microtubules to mediate faithful inheritance of the genome dur-
ing cell division. They are epigenetically specifi ed by incorporation of the essential 
kinetochore protein CENH3 (CENP-A in humans or HTR12 in  Arabidopsis thali-
ana ) (Earnshaw and Rothfi eld  1985 ; Talbert et al.  2002 ), a histone H3 variant that 
replaces conventional H3 in centromeric nucleosomes (Henikoff and Dalal  2005 ). 
The chromosomal location of CENH3 is the assembly site for the kinetochore com-
plex of active centromeres. The loss of CENH3 results in the failure of centromere 
formation and chromosome segregation (Allshire and Karpen  2008 ). Recent works 
on intraspecifi c (Ravi and Chan  2010 ) and interspecifi c hybrids (Sanei et al.  2011 ) 
provided the experimental link evidences between the loss of CENH3 and the occur-
rence of uniparental chromosome elimination. Sanei et al. ( 2011 ) studied the mecha-
nism underlying selective elimination of the paternal chromosomes during the early 
development of  Hordeum vulgare  ×  H. bulbosum  embryos and gave the conclusions 
regarding the role of the centromere-specifi c histone CENH3 in the process of chro-
mosome elimination: (1) centromere inactivity of  H. bulbosum  chromosomes trig-
gers the mitosis-dependent process of uniparental chromosome elimination in 
 H. vulgare  ×  H. bulbosum  hybrids; (2) centromeric loss of CENH3 protein rather 
than uniparental silencing of CENH3 genes causes centromere inactivity. They also 
proposed a possible model of how the mitosis-dependent process of uniparental 
chromosome elimination works in  H. vulgare  ×  H. bulbosum  hybrid embryos. After 
fertilization, two parental CENH3 genes are transcriptionally active. CENH3 is then 
loaded into the centromeres of  H. vulgare  but not of  H. bulbosum , which may be due 
to cell cycle asynchrony of the two parental genomes during mitotic G2 phase. This 
leads to  H. bulbosum  chromosome lagging because of centromere inactivity during 
anaphase, subsequently forming micronuclei. Finally, micronucleated  H. bulbosum  
chromatin will degrade, and a haploid  H. vulgare  embryo will develop. 
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 In another experiment, Ravi and Chan ( 2010 ) found that haploid  Arabidopsis 
thaliana  plants can be easily generated through seeds by manipulating the single-
centromere protein CENH3. When  cenh3  null mutants expressing altered CENH3 
proteins are crossed to wild type, chromosomes from the mutant are eliminated, 
producing haploid progeny. This process seems a mimic of genome elimination 
seen in wide hybridization. It is unclear, however, whether a comparable haploidiza-
tion process takes place between the intraspecifi c hybrids of  A. thaliana  cenh3-1 
null mutants with its wild type (Ravi and Chan  2010 ) and the interspecifi c hybrids 
of  H. vulgare  ×  H. bulbosum  (Sanei et al.  2011 ). From the viewpoints of crop 
improvement, the production of double haploids has been greatly advanced by the 
manipulation of CENH3 since the frequency of genome elimination by this kind of 
centromere-mediated method is higher than any previously reported wide hybrid-
ization and thus might improve the effi ciency of haploid production in crops (Chan 
 2010 ). In addition, crossing a mutant with altered CENH3 proteins (as female) with 
a wild-type male can shift paternal chromosomes into maternal cytoplasm. This 
character can be used to develop cytoplasmic male sterility that is very useful for the 
production of hybrid seeds.  

2.2.2     Unreduced Gametes and Amphidiploid 

 Wide F 1  hybrids from interspecifi c and intergeneric hybridization usually are amphi-
haploid with two parental genomes if chromosome elimination does not occur. Due 
to the absence of only one set of homologous chromosomes, meiosis in F 1  amphi-
haploid plants (analogous to haploid plant as described above) may result in sterile 
gametes with incomplete chromosome by meiosis, so there is no seed set. To con-
vert sterile amphihaploids into fertile, duplication of the chromosome complement 
and then the production of amphidiploids are therefore necessary. Besides restoring 
fertility, amphidiploids are valuable for alien gene transfer as mentioned in intro-
duction. Chromosome doubling can be carried out through the treatment with anti- 
microtubule drugs. Colchicine (originally extracted from autumn crocus ( Colchicum 
autumnale )) is the most widely used doubling agent although it is highly toxic. This 
anti-microtubule drug inhibits microtubule polymerization by binding to tubulin. 
Other doubling agents, such as oryzalin, amiprophosmethyl (APM), trifl uralin, and 
pronamide, all of which are used as herbicides, are also used in the doubling induc-
tion with variable degree of success in diploidization. 

 Some interspecifi c or intergeneric F 1  amphihaploids can also set grains by selfi ng 
and give rise to amphidiploids by spontaneous chromosome doubling. Spontaneous 
chromosome doubling usually results from unreduced gametogenesis and a union 
of unreduced female and male gametes leads to the formation of a spontaneous 
amphidiploid from a wide hybrid. It is believed that unreduced gametes (with 
somatic chromosome number) played a predominant role in polyploidization 
(Harlan and De Wet  1975 ; Ramsey and Schemske  1998 ,  2002 ; Cai and Xu  2007 ; 
Jauhar  2007 ; Matsuoka  2011 ; Silkova et al.  2011 ), leading to the origination of both 
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autopolyploids, such as potato (Peloquin et al.  1999 ), and allopolyploids, such as 
wheat (Kihara and Lilienfeld  1949 ). Besides the origin of polyploid species, unre-
duced gametes can help in crop genetics and breeding, not only in production of 
amphidiploids in a large scale (Zhang et al.  2010 ), which is the bridge of alien gene 
introgression into crop (Yang et al.  2009 ), but also in the production of doubled 
haploids (Ramana and Jacobsen  2003 ; Zhang et al.  2007 ). Recently, Zhang et al. 
( 2011b ) described a simple method for synthesizing DHs (SynDH) especially for 
allopolyploid species by utilizing unreduced gametes. The method involves three 
steps: hybridization to induce recombination, interspecifi c hybridization to extract 
haploids, and spontaneous chromosome doubling by selfi ng the interspecifi c F 1 s. 
SynDHs produced in this way can only contain recombinant chromosomes in the 
partial genome(s) of interest in a homogeneous background (Zhang et al.  2012 ; Hao 
et al.  2013 ). No special equipment or treatments are involved in the SynDH produc-
tion and it can be easily applied in any breeding and/or genetic program. Unreduced 
gametes provide a strategy to fi x translocated chromosomes, derived from homoeol-
ogous pairing of F 1  hybrids, into their progenies. 

 Unreduced gametes can be generated by a variety of cytological mechanisms. 
They are generally formed by anomalies of meiotic cell division in plants. These 
defects include abnormal spindle orientation, defected synapsis, and omission of 
chromosome segregation at one of the two meiotic divisions (Veilleux  1985 ; 
Bretagnolle and Thompson  1995 ; Peloquin et al.  1999 ; Ramana and Jacobsen  2003 ; 
Cai et al.  2010 ; Kynast et al.  2012 ). The production of unreduced gametes has been 
largely observed in amphihaploid hybrids of the big tribe Triticeae, including the 
important polyploid crops like common wheat, durum wheat, barley, rye, triticale 
(× Triticosecale), and many forage species (for examples, Aase  1930 ; Kihara and 
Lilienfeld  1949 ; Maan and Sasakuma  1977 ; Islam and Shepherd  1980 ; Blanco et al. 
 1983 ; Fukuda and Sakamoto  1992 ; Xu and Dong  1992 ; Li and Liu  1993 ; Xu and 
Joppa  1995 ,  2000 ; David et al.  2004 ; Matsuoka and Nasuda  2004 ; Zhang et al. 
 2007 ,  2008b ,  2008c ,  2010 ,     2011b , Tiwari et al.  2008 ; Loureiro et al.  2009 ; Yang 
et al.  2010 ; Matsuoka  2011 ; Silkova et al.  2011 ). This haploidy-dependent unreduc-
tional meiotic cell division (UMCD), resulting in unreduced gametes, has been con-
sidered the mechanism for chromosome doubling in the origins of allopolyploid 
species in Triticeae and other allopolyploid plant species (Cai and Xu  2007 ; Jauhar 
 2007 ; Matsuoka  2011 ; Silkova et al.  2011 ). Two main cytological processes leading 
to unreductional meiosis were described in  Triticeae  genotypes. First division resti-
tution (FDR) was used to describe the lack of chromosome segregation at anaphase 
I followed by nuclear restitution and second meiotic division in hybrids between 
 T. turgidum  L. and  Ae. tauschii  Coss. (Xu and Joppa  2000 ). On the other hand, also 
in hybrids of  T. turgidum  with  Ae. tauschii , other authors described a single-division 
meiosis (SDM) characterized by a mitosis-like equational division with sister chro-
matid segregation at anaphase I (Zhang et al.  2007 ). Both types of divisions, FDR 
and SDM, may coexist in a same hybrid (Xu and Joppa  2000 ; Zhang et al.  2007 ; 
Silkova et al.  2011 ; Ressurreição et al.  2012 ). The divergence in terminology refl ects 
the lack of knowledge regarding the mechanisms for the production of unreduced 
gametes in amphihaploid genotypes. It should be mentioned that both FDR and 
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SDM have exactly the same genetic outcome, i.e., formation of two genetically 
identical unreduced gametes since cell division only involves sister chromatid seg-
regation. That means that no matter which division failed, sister chromatids of a 
chromosome separated at metaphase of the normal division, like they do in mitosis, 
leading to formation of unreduced gametes possessing the two non-sister chroma-
tids and consequently retained equivalent levels of parental heterozygosity and 
 epistasis. Zhang et al. ( 2007 ), therefore, proposed to call the two mechanism as 
“mitotic-like meiosis” since it resembles a mitosis by having only one equational 
division. 

 Cai et al. ( 2010 ) further studied the cytological mechanism of UMCD by using 
the polyhaploids of wheat cv. Langdon (LDN) and its amphidiploid hybrids with 
 Aegilops tauschii . LDN has normal meiosis, but its polyhaploid and amphidiploid 
have UMCD. They found that sister kinetochores oriented syntelically at meiosis I 
in LDN but amphitelically in LDN polyhaploid and amphidiploid hybrid. Moreover, 
sister centromere cohesion persisted until anaphase II in LDN, LDN polyhaploid, 
and amphidiploid hybrid. Meiocytes with all chromosomes oriented amphitelically 
underwent UMCD in LDN polyhaploid and amphidiploid, suggesting the tension 
created by the amphitelic orientation of sister kinetochores, and persistence of cen-
tromeric cohesion between sister chromatids at meiosis I contributed to the onset of 
UMCD. They suggested that some ploidy-regulated genes were responsible for 
kinetochore orientation at meiosis I in LDN and LDN-derived polyhaploids. In 
addition, since sister kinetochores of synapsed chromosomes oriented syntelically 
and asynapsed chromosomes oriented either amphitelically or syntelically, synapsis 
probably is also a factor for the coordination of kinetochore orientation in LDN. 
This is agreed with that a high level of chromosome pairing will prevent meiotic 
restitution and formation of unreduced gametes (Wang et al.  2010 ), while a low 
pairing is apparently not suffi cient to prevent restitution in interspecifi c hybrids (Xu 
and Joppa  2000 ; Zhang et al.  2008c ) or even common wheat itself (Ressurreição 
et al.  2012 ). Additionally, in fact, this is also the case observed here for the N5DT5B 
line under asynaptic conditions. This suggests that processes leading to the previ-
ously described haploid-dependent formation of unreduced gametes in F1 hybrids 
or polyhaploids also occur when two homologous chromosomes are present if 
 synapsis is inhibited. 

 Second division restitution (SDR): It can also result in unreduced gametes in 
some diloploid or hybrids involving autoployploids. SDR was used to describe the 
normal fi rst meiotic division followed by sister chromatid separation but failed to 
migrate to opposite poles at meiosis II. Two nuclei with unreduced chromosome 
number form at the end of meiosis II. Because sister chromatids are kept together in 
SDR-type gametes, the genetic makeup of these gametes is characterized by high 
levels of homozygosity, leading to the loss of the majority of parental heterozygos-
ity, and epistatic interaction is lost (Cai and Xu  2007 ). SDR could occur after the 
fi rst meiotic division, which should be completely normal, as is the case with meio-
sis in autopolyploid potato. However, since reductional division and segregation of 
univalents in anaphase I in wide haploid or amphiploid hybrids do not ensure a 
balanced chromosome set, SDR is hardly to occur. Therefore, SDR may be not the 
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pathway for the production of unreduced gametes in wide amphihaploid hybrids as 
in Trtiticeae. 

 Production of unreduced gametes in wide hybrids can be stimulated by both 
genetic (Xu and Joppa  2000 ; Zhang et al.  2010 ; Brownfi eld and Kohler  2011  and the 
references therein) and environmental (Bretagnolle and Thompson  1995 ; Ramsey 
and Schemske  1998 ; Mable  2004 ; Pécrix et al.  2011 ; Mason et al.  2011 ) factors as 
well as the interaction between these two (Bretagnolle and Thompson  1995 ; Zhang 
et al.  2010 ; Mason et al.  2011 ). Genetic studies on mutant alleles responsible for the 
formation of unreduced gametes in a number of crop species have shown that this 
phenotype is usually monogenic (Bretagnolle and Thompson  1995 ; Ramsey and 
Schemske  1998 ; Xu and Joppa  2000 ; Storme and Geelen  2011 ). Recently, several 
genes, such as DYAD/SWITCH1 (SWI1), OSD (omission of the second division), 
CYCA1; 2 (TAM, tardy asynchronous meiosis), AtPSI (Arabidopsis thaliana 
Parallel Spindles 1), and JASON for unreduced gametes, have been recently identi-
fi ed from the model diploid plant  Arabidopsis thaliana  (Andreuzza and Siddiqi 
 2008 ; Ravi et al.  2008 ; d’Erfurth et al.  2008 ,  2009 ; Storme and Geelen  2011 ). 
However, the molecular characterization of gene for haploidy-dependent UMCD in 
wide hybrids has not been reported although this kind of gene is very important for 
the origin of allopolyploids.  

2.2.3     Homoeologous Chromosome Pairing 
and Translocation Lines 

 Wild species provides a vast gene pool for crop improvement. Most pioneering 
efforts in chromosome engineering have involved the  Triticum  species in Triticeae, 
with the greatest emphasis being placed on improving common wheat ( T. aestivum  
L., 2n = 6x = 42, AABBDD) (Qi et al.  2007 ; Crouch et al.  2009 ; Reynolds et al. 
 2009 ; Wang  2009 ). Common wheat has more than 300 relative species in the fairly 
big tribe  Triticeae  (Clayton and Renvoize  1986 ; Watson and Dallwitz  1994 ). These 
species are important resources for broadening the genetic diversity of wheat. Wide 
hybrids of wheat have been studied since 1876 when Wilson ( 1876 ) made the fi rst 
hybrid between common wheat ( Triticum aestivum  L., 2n = 6x = 42, AABBDD) and 
rye ( Secale cereale  L., 2n = 2x = 14, RR). 

 Translocation lines have been recognized as means for providing the most prom-
ising pathway for the utilization of alien germplasm (Qi et al.  2007 ). Translocations 
can occur in terminal, intercalary, or centric positions. Centric translocations can be 
produced by the misdivision of univalents at meiosis and subsequent random fusion 
of telocentric chromosomes, i.e., centric break-fusion (Lukaszewski and Gustafson 
 1983 ). In wide hybrids, unpaired chromosomes are present as univalents and thus 
give a chance to misdivide and then re-fuse. Centric translocation is frequently 
observed in wide hybrids. However, translocations in other positions are not com-
mon since the homoeologous chromosomes between wheat and alien species in 
wide hybrids show a low pairing level at meiotic metaphase I (MI) due to the action 
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of pairing homoeologous ( Ph ) gene system in wheat, which restricts the produc-
tion of wheat–alien translocations (Sears  1976 ; Martinez-Perez and Moore  2008 ). 
This system includes a major pairing gene,  Ph1 , on 5B (Okamoto  1957 ; Riley and 
Chapman  1958 ); an intermediate pairing gene,  Ph2 , on 3D (Mello-Sampayo  1971 ; 
Sutton et al.  2003 ); and several minor loci (Sears  1976 ). The  Ph1  locus is related to 
a cluster of genes similar to Cdk2 (cyclin-dependent kinase) in mammals (Griffi ths 
et al.  2006 ; Al-Kaff et al.  2008 ; Yousafzai et al.  2010a ,  b ) and has a downstream 
effect on the synapsis gene  TaASY1  by reducing its expression level (Boden et al. 
 2009 ). Cdk2 has been shown to participate in the transition from G1 into S phase 
and also to affect DNA replication. Although the 5B Cdk-like genes are transcribed, 
they all seem to be defective copies. These defective Cdk-like genes are responsible 
for reducing Cdk-type activity, and this leads to the  Ph1  effect. However, the 
increased Cdk-type activity can phenocopy the effect of deleting the Ph1 locus 
(Greer et al.  2012 ). The intermediate pairing gene  Ph2  is involved in the progression 
of synapsis (Martinez-Perez et al.  2001 ; Prieto et al.  2004 ) although the gene 
responsible for the phenotype is still to be isolated (Sutton et al.  2003 ). Pairing 
restriction by  Ph1  and  Ph2  involves not only wheat homoeologues but also wheat–
alien chromosomes in wide crosses containing a haploid set of related chromo-
somes. However, homoeologous chromosomes can pair in hybrids of Chinese 
Spring (CS) mutant lines  ph1b , CS ph2a , and CS ph2b  and related alien species 
enabling gene transfer from alien species to wheat (Wall et al.  1971 ; Sears  1982 ; 
Martinez-Perez and Moore  2008 ). Moreover, gene  Ph   I   from  Aegilops speltoides  can 
repress the action of  Ph1  and induce homoeologous chromosome pairing (Chen 
et al.  1994 ). A new strategy by increasing Cdk-type activity may be used in the 
induction of homoeologous chromosome pairing (Greer et al.  2012 ). The manipula-
tion of  Ph1  gene can relieve the restriction of homoeologous chromosome pairing 
and thus improve the effi ciency of alien translocation development. 

 On the other hand, natural phenotypic differences in homoeologous pairing have 
been observed among the hybrids of wheat and alien species (Driscoll and Quinn 
 1970 ; Dvorak and McGuire  1981 ; Farqoo et al.  1990 ; Ma et al.  1999 ; Ozkan and 
Feldman  2001 ) or in haploids from different common wheat cultivars (Martinez 
et al.  2005 ). Of which, Chinese common wheat landrace Kaixian-luohanmai (KL) 
exhibits homoeologous pairing in hybrids with  Secale cereale  L .  (2n = 2x = 14, RR) 
and  Aegilops variabilis  Eig. (2n = 4x = 28, UUS L S L ) at levels between those of 
hybrids involving Chinese Spring  ph1b  (CS ph1b ) or CS ph2b /CS ph2a  (Luo et al. 
 1992 ; Liu et al.  1998c ,  2003 ; Xiang et al.  2005 ). However, KL ×  Psathyrostachys 
huashanica  Keng ex Kuo (2n = 2x = 14, NsNs) hybrids showed signifi cantly higher 
chromosome pairing than CS ph1b  ×  Psa. huashanica  (Kang et al.  2008 ). The lower 
pairing in CS ph1b  ×  Psa. huashanica  may be caused by a suppressor in  Psa. 
huashanica  (Sun and Yen  1994 ). Recently, meiotic phenotypic differences on 
homoeologous chromosome pairing at metaphase I between hybrids of CS ph1b  and 
KL with rye were studied by genomic in situ hybridization (GISH). Although the 
frequency of wheat–wheat associations was higher in CS ph1b  × rye than in KL × 
rye, frequencies of wheat–rye and rye–rye associations were higher in KL × rye 
than in CS ph1b  × rye (Hao et al.  2011 ). These differences may be the result of dif-
ferent mechanisms of control between the ph-like gene(s) controlling 
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homoeologous chromosome pairing in KL and CS ph1b . These lines promoting 
homoeologous chromosome pairing can also be used in alien translocation 
development. 

 Another problem for alien translocation development is that randomly separated 
chromosomes in wide hybrids move towards opposite poles in meiotic anaphase I 
(AI) and thus result in reduced gametes with absent chromosomes. This sets a bar-
rier for developing translocation lines since the translocated chromosomes may be 
not contained in reduced gametes or cannot be transmitted into progenies due to the 
sterility of reduced gametes. High pairing in the inactive  Ph1  gene further reduces 
fertility of gametes that probably attributed an increase in meiotic disturbances 
(Ceoloni and Donini  1993 ). The effi ciency of genetic manipulations of  Ph1  gene for 
the production of wheat–alien translocations in past years was not as good as 
expected (Miller et al.  1998 ). How to effi ciently transmit the translocated chromo-
somes induced in F 1  hybrid into following generations still needs to be resolved for 
translocation line development. As mentioned above, unreduced gametes may be 
used in the fi xation of translocation chromosomes in wide progenies. Translocated 
chromosomes occurred in meiotic metaphase I in hybrids can be transmissed into 
amphidiploids by the union of fertile unreduced gametes. Haploid wheat–rye hybrids 
and its derivatives usually have very low fertility because their reduced gametes are 
often nonfunctional. However, some synthetic hexaploid wheat Syn-SAU-6/Qinling 
F 1  plants had relatively high seed set. Syn-SAU-6 was derived from spontaneous 
chromosome doubling of hybrids between  T. turgidum  L. ssp.  durum  cv. Langdon 
and  A. tauschii  accession AS65 and inherited the gene(s) for the formation of 

  Fig. 2.2    One wheat–rye 
translocation chromosome 
( arrow ) observed at mitotic 
metaphase in root-tip cells 
of the Syn-SAU-6/Qinling F 2  
plants       
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unreduced gametes from Langdon (Zhang et al.  2007 ,  2010 ). We observed some 
translocation chromosomes in some F 2  Syn-SAU-6/Qinling hybrid seeds, thus dem-
onstrating that unreduced gametes are capable to fi x chromosome rearrangements into 
progenies. Of which, one wheat–rye translocation chromosome is shown in Fig.  2.2 .
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    Abstract     Introgression of genes from alien species into crop plants could be 
achieved through distant hybridisation aided by tissue culture-based embryo rescue 
techniques. Beside this, in vitro mutagenesis, gametoclonal/somaclonal variation 
and transgenesis are the other tools which can generate additional variability. 
However, all these tissue culture-based tools require totipotent tissues. The direct 
regeneration of plants from an explant without a callus stage via organogenesis or 
somatic embryogenesis is the quickest path for micropropagation. Because of their 
speed and low costs of culture phase and the fi delity of the genotype in the cloned 
progeny, systems with direct somatic embryogenesis or organogenesis are often 
recommended and subjected to transformation. On the other hand, most microprop-
agation procedures with a callus stage can be applied as a basis for transformation, 
and the fresh friable calli can be directly used as the transformation target. Cell and 
microspore suspension cultures have also been seen as the ideal targets for genetic 
transformation due to the large amount of homogenous material, easy selection of 
the targeted cells and less chances of chimeric regeneration, while protoplasts due 
to exposed plasma membrane can introduce foreign DNA very easily and therefore 
form the ideal targets for generating unique and novel plants. This chapter discusses 
various plant regeneration methods and the factors affecting them towards achieving 
alien gene transfer in crop plants.  
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  Abbreviations 

   2,4-D    2,4-Dichlorophenoxy acetic acid   
  BA    6-Benzyladenine   
  BAP    Benzylaminopurine   
  IAA    Indole-3-acetic acid   
  PAA    Phenyl acetic acid   
  IBA    Indole-3-butyric acid   
  PGR    Plant growth regulators   
  SE    Somatic embryo   
  WPM    Woody plant medium   
  CPPU     N -(2-Chloro-4-pyridyl)- N ′-phenylurea   
  MS    Basal medium according to Murashige and Skoog (1962)   
  B5    Basal medium according to Gamborg Miller and Ojima (1968)   
  NAA    1-Naphthalene acetic acid   
  TDZ    Thidiazuron   

3.1           Introduction 

 The plant genetic transformation process can usually be divided into the following 
phases: (1) explant selection and preparation; (2) transfer of foreign DNA to the explant 
genome; (3) selection of the transformed cell/tissue and its regeneration into a plant; 
(4) confi rmation of the transgenic nature of the regenerated plant, including stabilisa-
tion of the transgene at the homozygotic level and (5) analysis of transgene expression. 
In most of the protocols, fi rst three steps of plant transformation are performed in vitro. 
Therefore, the factors infl uencing transformation effectiveness are directly related to 
the specifi c requirements of the in vitro culture. These key factors include the quality 
and developmental stage of the explants at the time of culture  initiation, the composi-
tion of the culture medium and the culture conditions prior to and after gene transfer, 
treatment of the culture to reduce tissue damage during gene transfer and the specifi c 
parameters of both the gene transfer and selection systems (Popelka and Altpeter 
 2003 ). All of these factors can hinder the effi ciency of a transformation protocol, unless 
they are optimised. High-throughput transformation  systems use a target tissue that can 
easily be isolated and processed through the in vitro protocol with a high regeneration 
capacity. Therefore, various culture protocols are optimised depending on the genetic 
background of the plant being subjected to the transformation. This chapter describes 
the different plant regeneration systems.  

3.2     In Vitro Plant Regeneration 

 The main plant regeneration systems can be divided based on the tissue targeted for 
the gene transfer: (1) explant cultures without callusing with subsequent direct 
organogenesis and/or somatic embryogenesis; (2) tissue callusing with subsequent 
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indirect organogenesis and/or somatic embryogenesis; (3) cell suspension culture 
and (4) protoplast culture (Fig.  3.1 ). These systems are described in the following 
separate sections.

  Fig. 3.1    Main in vitro-cultured targets for transformation and transgenic plant regeneration path-
ways.  Explants : Isolated and cultured young plant organs or tissues (apical shoot meristems, young 
leaves, hypocotyls, embryos, stem pieces and others) used directly for transformation, further 
regenerated to plant via direct organogenesis or somatic embryogenesis without the callus phase. 
 Callus : Initiated from explants, an unorganised mass of cells, transformed and regenerated through 
indirect organogenesis or somatic embryogenesis.  Cell  s uspension : Prepared by transferring young 
plant tissue or callus to a liquid medium and cells or cell clumps released by agitation. After trans-
formation, plant regeneration is performed similarly to the callus cultures.  Protoplast suspension : 
Plant cells in a suspension devoid of a cell wall by enzymatic digestion. After transformation and 
removal of the wall-digesting enzymes, a new cell wall formation leads to the establishment of a 
cell suspension culture, and the regeneration steps are performed accordingly.  Organogenesis : 
A formation of plant organs (shoots or roots) from meristematic cell clumps induced on a surface 
or within cultured intact explants or callus.  Somatic embryogenesis : The process by which an 
embryo- like structure is formed from a single somatic cell of an explant or a callus. Somatic 
embryos develop into plantlets in a way resembling zygotic embryogenesis. Organogenesis or 
somatic embryogenesis is called “ direct ” when the process does not involve callus formation or 
 “indirect”  when organs or somatic embryos are formed via callus tissue derived from the explants 
or on the surface of already in vitro-regenerated organs       
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3.2.1       Plant Regeneration via Direct Organogenesis 
or Somatic Embryogenesis 

3.2.1.1     Nature of the Process 

 The direct regeneration of plants from various explants of plant tissue without a cal-
lus stage is the quickest path for micropropagation. These types of tissue culture 
protocols were among the fi rst to be established and they are well described in manu-
als (Street  1973 ; Reinert and Yeoman  1982 ; Bhojwani and Razdan  1992 ; Dirr and 
Heuser  2009 ; Smith  2012 ). The process of direct regeneration of plants can happen 
in two ways: via organogenesis or somatic embryogenesis. The type of regeneration 
pathway mainly depends on the composition of the plant growth regulators (PGRs) 
which has been, among others, clearly demonstrated in the culture of leaf discs of 
sandal wood ( Santalum album ) (Bele et al.  2012 ), the immature embryonic stalks of 
 Bixa orellana  (Sharon et al.  2012 ) or in various chickpea ( Cicer arietinum ) explants 
on a variety of induction media differing exclusively in their PGR composition 
(Anwar et al.  2010 ). In vitro organogenesis is the process of plant organ formation 
and is called “direct” when the shoots or the roots are formed by groups of explant 
cells without a phase of callus formation. In order to regenerate the plants, the shoots 
are usually detached from the explants and transferred to a new medium to be rooted. 
Then the new plants can be potted in ex vitro conditions, and in this way the whole 
micropropagation cycle is accomplished. In vitro-induced roots usually do not grow 
into plants, and in this sense this is a dead end of the micropropagation protocol. 
However, a hairy root culture is often the goal when the culture is performed in order 
to obtain secondary metabolites in vitro, for example: fl avonoids (Zhang et al.  2009 ), 
resveratrol (Kim et al.  2008 ) or caffeic acid derivatives (Stojakowska et al.  2012 ). 
Therefore, many protocols of this kind are developed, including the transformation of 
such culture with the purpose of obtaining a higher concentration of the desired 
metabolite as reviewed by Cai et al. ( 2012 ). 

 Direct somatic embryogenesis is a process in which a single cell of the explant 
forms an embryo-like structure that mimics the development of zygotic embryos. 
The induction medium provides the proper nutrition and PGRs. Somatic embryos 
(SEs) usually germinate into plants when transferred to germination media. Both 
in vitro-obtained shoots and SEs can be subcultured in vitro on induction media 
to raise the effect of material multiplication; however, the effect of speed is lost 
this way.  

3.2.1.2     Explants and Media 

 The variability of explants has recently been used to obtain direct somatic embryo-
genesis (Loganathan et al.  2010 ; Piqueras et al.  2010 ; Aboshama  2011 ; Nada 
et al.  2011 ; Banerjee et al.  2012 ; Bele et al.  2012 ; Bhagyawant et al.  2012 ; Patil 
and Paikrao  2012 ; Xi et al.  2012 ; Zhao et al.  2012a ,  b ) or shoot formation 
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(Siddique and Anis  2009 ; Alam et al.  2010 ; Borna et al.  2010 ; Purkayastha et al. 
 2010 ; Kurmi et al.  2011 ; Dey et al.  2012 ; Kumar and Bhat  2012 ; Park et al.  2012 ). 
Among the most typical are the fragments of young seedlings: cotyledons, 
 cotyledonary nodes, hypocotyls and immature embryonic shoot tips. Another 
group of explants are leaves or leaf discs, petioles, shoot tips and nodal or inter-
modal stem segments. SEs have also recently been obtained from young root 
discs cultured in a liquid induction medium (Yang et al.  2010 ). In recent years, 
most studies have been based on jellifi ed Murashige and Skoog (MS) basal 
medium, sometimes combined with Gamborg’s B5 vitamins. In a few cases, a 
positive effect was achieved on liquid media (Yang et al.  2010 ; Aviles-Vinas et al. 
 2012 ). However, other types of basic media could also be an effective base of the 
protocol, as shown by the culture of  Piper nigrum  shoot tips and the nodal 
 segments on Schenk and Hildebrandt medium (Schenk and Hildebrandt  1972 ; 
Maju and Soniya  2012 ) or the culture of the shoots and nodal explants of  Tribulus 
terrestris  (Raghu et al.  2010 ) or  Capsicum annuum  (Aboshama  2011 ) on woody 
plant medium (WPM) (Lloyd and McCown  1980 ). 

 A variety of PGRs are in use to induce direct somatic embryogenesis or organo-
genesis. Among them are auxins or auxin analogues, alone (for example: Loganathan 
et al.  2010 ; Yang et al.  2010 ; Aviles-Vinas et al.  2012 ; Banerjee et al.  2012 ; Bhagyawant 
et al.  2012 ) or in combination with thidiazuron (TDZ), kinetine and/or giberelin 
(Siddique and Anis  2009 ; Anwar et al.  2010 ; Borna et al.  2010 ; Purkayastha et al. 
 2010 ; Aboshama  2011 ; Parimalan et al.  2011 ; Zhao et al.  2012a ). It is worth to notice 
some original compounds applied for direct SE or shoot induction. Zhao et al. ( 2012b ) 
found positive effect of CPPU on induction of somatic embryos on petiole explants of 
 Epipremnum aureum . Park et al. ( 2012 ) raised the number of induced shoots and their 
growth rate by addition of silver nitrate and putrescine to the induction medium. Greer 
et al. ( 2009 ) showed that modifi cation of the ammonium nitrate content in the direct 
somatic embryogenesis induction medium can increase the number of primary 
embryos produced over twofold in the elite hard red wheat cultivar “Superb”. 

 Somatic embryo germination is usually achieved on hormone-free media and/or 
with half-strength salt concentration. Sometimes, PGRs have been helpful. For 
instance, low concentration of BAP (Banerjee et al.  2012 ) supported  Bauhinia varie-
gata  SE germination. Dessication of soybean ( Glycine max ) SEs on sterile Petri 
dishes, prior to their germination on hormone-free MS medium was successfully 
applied by Loganathan et al. ( 2010 ). In contrast, shoot rooting often requires  addition 
of PGR. Alam et al. ( 2010 ) raised rooting effi ciency in  Ricinus communis  by apply-
ing combination of BAP with GA 3 , while BAP with IAA was applied in  Solanum 
tuberosum  for the same purpose (Borna et al.  2010 ). Similarly, IBA enabled rooting 
in  Piper nigrum  (Maju and Soniya  2012 ) and  Vitis vinifera  (Kurmi et al.  2011 ).  

3.2.1.3     Genome Stability and Transformation 

 One of the most desirable effects of direct and quick plant regeneration is fi delity of 
the genotype in the cloned progeny. Genome stability was confi rmed, among others, 
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by DNA marker analysis in sugarcane ( Saccharum offi cinarum ) plants, regenerated 
from young whorl leaf (Pandey et al.  2012 ), and patchouli ( Pogostemon cablin ), 
regenerated from mature leaf discs (Paul et al.  2010 ). 

 Because of their speed and low costs of culture phase, the systems with direct 
somatic embryogenesis or organogenesis are often recommended and/or subjected 
to transformation. Both of these well-established methods in plant transformation 
are used in combination with direct regeneration protocols: particle bombardment, 
also known as “biolistic method” (Greer et al.  2009 ; Purkayastha et al.  2010 ; Taparia 
et al.  2012 ), and the  Agrobacterium  method (Borna et al.  2010 ; Parimalan, et al. 
 2011 ; Dey et al.  2012 ; Maju and Soniya  2012 ; Sujatha et al.  2012 ). In some studies 
 Agrobacterium rhizogenes  was also used (Yoshimatsu  2008 ). The transformation 
methods are essentially the same as those used in callus culture and are described in 
more detail in the next section. Interestingly, treatment with particles or 
 Agrobacterium  can be applied at various phases of the protocol, e.g. at its very start, 
before the effects of shoots and/or SEs are visible (Sujatha et al.  2012 ) or when 
juvenile structures covered by thin cell walls appear (Borna et al.  2010 ; Parimalan, 
et al.  2011 ; Dey et al.  2012 ; Maju and Soniya  2012 ). A decision should then be 
taken considering the effi ciency of transformation and regeneration. 

 The direct regeneration of shoots or SE induction processes is separated from 
callusing by the thin balance of PGR composition. Taparia et al. ( 2012 ) have recently 
compared the effi ciency of the transformation of SEs obtained in sugarcane via both 
direct and indirect regeneration processes with the biolistic method. They found 
higher transformation effi ciency with indirectly regenerated SEs, while the transfor-
mation of the direct SEs substantially shortened the process.   

3.2.2     Plant Regeneration  via  Callus Culture 

 Most micropropagation procedures with a callus stage can be applied as a basis for 
transformation. The typical protocol stages involve explant isolation and disinfec-
tion and then callus induction followed by plant regeneration. Freshly collected 
explants before callusing or fresh friable calli are most often used as the transforma-
tion  targets. The callus propagation stage is reduced to minimum to prevent the high 
incidence of somaclonal variation and chimerism. Plants are regenerated by either 
of the two pathways: organogenesis or somatic embryogenesis. In the process of 
organogenesis, a shoot or a root differentiated from a group of cells is tightly con-
nected by the procambial strands with the explant or the callus, whereas the somatic 
embryo develops from a single cell and has no vascular connection with the tissue 
from which it originated. Organogenic differentiation of the so-called organ primor-
dia leads to the formation of a cluster of cambium-like cells (meristemoid), which 
develops into an organ in a monopolar manner. Due to the initial meristemoid plas-
ticity, both roots and shoots can be regenerated (Jimenez  2001 ). 
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3.2.2.1     Donor Plant Effect 

 The effi ciency of callus formation is strongly affected by the genotype of the explant 
donor. Protocol improvements made by adding or changing the concentration of 
various media components or altering the culture conditions should always be 
referred to the genotype under investigation. In barley, for example, Bregitzer and 
Campbell ( 2001 ) and Tyagi et al. ( 2010 ) described the identifi cation of QTL associ-
ated with green plant regeneration. These loci included a ferredoxin–nitrite reduc-
tase (NIR) gene linked to high regeneration ability (Nishimura et al.  2005 ) and 
genes involved in a hormonal response known to infl uence plant regeneration 
(Jha et al.  2007 ; Harwood  2012 ). 

 The genotypic effect is modifi ed by the vitality of the donor plant and its physi-
ological stage (Szechyńska-Hebda et al.  2012 ). The latter is under the infl uence of 
the plant environment; therefore, different results can be expected from the same 
genotype grown under fi eld or glasshouse conditions, under optimal light and irriga-
tion or subjected to physiological stress (Mitić et al.  2009 ). 

 The cells of explants suitable for callusing and regeneration should be totipotent. 
Totipotency is predetermined and maintained through many generations of cells cul-
tured in vitro; thus, the competent culture might retain the “memory” of the capacity of 
the initial cells (Szechyńska-Hebda et al.  2012 ). However, totipotent calli can lose their 
regeneration capacity when they are subjected to too many subculture cycles. Generally, 
competent calli preferentially contain small cells with a dense cytoplasm and compact 
nuclei, and they seem morphologically younger in comparison to the large, differenti-
ated, highly vacuolated cells of the non-competent calluses (Street  1973 ; Reinert and 
Yeoman  1982 ; Bhojwani and Razdan  1992 ; Smith  2012 ; Szechyńska-Hebda et al. 
 2012 ). The maintenance of small cell volumes is believed to be one of the conditions 
needed to enable the onset of embryogenesis/organogenesis (Pellegrineschi et al.  2004 ) 
and to represent a dedifferentiated cell state with the potency to initiate a new develop-
mental programme (Pasternak et al.  2002 ). Several pretreatments or culture conditions 
can support totipotency and regeneration effi ciency in competent tissue; however, they 
cannot break the internal barriers against induction of the regeneration process if the 
tissue is non-competent (Szechyńska-Hebda et al.  2007 ,  2012 ).  

3.2.2.2    Media in Callus Culture 

 A range of culture media components have been evaluated or the levels of the key 
nutrients manipulated in order to enhance regeneration in different culture systems. 
PGRs play a key role in callus culture protocols (Street  1973 ; Reinert and Yeoman 
 1982 , Bhojwani and Razdan  1992 ; Smith  2012 ). For instance, it was shown in 
 Arabidopsis  that the organogenesis pathway depends on a high cytokinin:auxin ratio 
(Zuo et al.  2002 ), while the high cytokinin level promotes  WUS  expression, which is 
essential to induce the de novo formation of the shoot meristem (Su et al.  2011 ). 
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In contrast, the formation of somatic embryos in wheat requires a high concentra-
tion of 2,4-dichlorophenoxyacetic acid (2,4-D) (Szechyńska-Hebda et al.  2007 ). 
Picloram and TDZ were shown to act as powerful growth regulators in cereals 
(Schulze  2007 ; Barro et al.  1999 ; Ganeshan et al.  2003 ). He et al. ( 2010 ) found that 
the concentration of picloram increased from 2 to 10 mg/l and resulted in an 
improved fi nal transformation frequency from 2.8 to 6.3 %. The regenerated leaf 
tissues of dicotyledonous species, e.g. sunfl ower, strawberry or tobacco, are often 
maintained in a medium supplemented with TDZ (0.1–2.0 mg/l) or isopentenylad-
enine (2iP) (2.0 mg/l) and indol-3 butyric acid (IBA), α-naphthalene acetic acid 
(NAA) or indole-3-acetic acid (IAA) (each 0.5 mg/l) (Silva  2005 ; Hanhineva and 
Kärenlampi  2007 ; Sujatha et al.  2012 ). The callus stage of potato is facilitated by 
treating the explant with zeatin or zeatin riboside in combination with low levels of 
NAA or IAA. Other growth regulators that have been successfully used in combina-
tion for callus induction and growth are kinetin, 2,4-D and gibberellic acid (Turhan 
 2004 ). The stage  corresponding to shoot production preferably has the cytokinin 
and auxin level reduced as well as the addition of gibberellin to stimulate shoot 
elongation (Heeres et al.  2002 ). The above examples are only a narrow probe of 
various growth regulator applications. 

 Besides the growth regulators, some other media components may substantially 
infl uence the culture effect. Lipoic acid, an antioxidant, was effective in increasing 
the number of responding embryogenic calluses in wheat transformation experi-
ments (Dan et al.  2009 ). Bartlett et al. ( 2008 ) developed a high-throughput transfor-
mation system for barley, and during its optimisation, enhancement was achieved 
by elevating the copper concentration in the culture media. This doubled the num-
ber of regenerated shoots which, in turn, increased transformation  effi ciency 
(Harwood  2012 ).  

3.2.2.3    Explants and Regeneration Pathways 

 Somatic embryogenesis and indirect organogenesis are two important morphogenetic 
alternatives in plant transformation protocols with callus formation steps. The 
embryogenic callus is both a preferable culture type and suitable target for a mono-
cotyledonous transformation (Anand et al.  2003 ; Gadaleta et al.  2006 ; Yue et al. 
 2008 ). It was utilised for the transformation of grasses by either particle infl ow gun or 
the biolistic particle delivery system, e.g.  Brachiaria ruziziensis  (Ishigaki et al.  2012 ), 
 Pennisetum glaucum  (Goldman et al.  2003 ),  Bouteloua gracilis  (Santacruz et al. 
 2009 ) and  Panicum virgatum  (Xi et al.  2009 ; Fu et al.  2011 ). Moreover, effi ciently 
regenerating callus tissue derived from the mature embryos of bread wheat ( Triticum 
aestivum ) and durum wheat ( T. durum ) cultivars were transformed by particle bom-
bardment (Patnaik and Khurana  2003 ; Vishnudasan et al.  2005 ; Ding et al.  2009 ; 
Galović et al.  2010 ; Wang et al.  2012 ; Li et al.  2012 ). Although the usage of mature 
embryos created the problem of low callus induction, which signifi cantly limited 
their application for genetic engineering, it can be successfully overcome by using 
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an endosperm-supported callus induction method (Galović et al.  2010 ). Alternatively, 
immature embryos can be used with subsequent initiation of morphogenic/embryo-
genic callus formation for wheat, rye and barley (Pellegrineschi et al.  2002 ; Popelka 
and Altpeter  2003 ; Hensel et al.  2007 ; Wu et al.  2008 ; He et al.  2010 ; Hu et al.  2012 ; 
Li et al.  2012 ; Fujii et al.  2012 ). Selecting the zygotic embryo developmental stage 
is one of the most important factors necessary to achieve high responsiveness of 
callusogenesis and regeneration (Varshney et al.  1996 ).  Agrobacterium -mediated 
co-cultivation of wheat embryogenic calluses derived from immature embryos has 
yielded 3–9.82 % effi ciency in transformation, which can be regarded as high 
(Vishnudasan et al.  2005 ; Zhao et al.  2006 ). In addition to the immature embryos, 
other wheat explants, such as anther- and infl orescence- derived calluses, apical 
meristems (Supartana et al.  2006 ; Zhao et al.  2006 ) and other fl oral organs (Agarwal 
et al.  2009 ; Zale et al.  2009 ), were employed in transformation protocols; however, 
most methods need further optimisation (Li et al.  2012 ). Young leaves are rarely 
used in monocots as explants for callus formation. However, the fresh innermost 
young leaf rolls of mature sugarcane crop plants have been used as a source for the 
induction of embryogenic calluses and then for the microprojectile-mediated trans-
formation (Ijaz et al.  2012 ). 

 In contrast, the immature leaves of dicotyledones are often employed as explants 
due to rapid callus formation and their high differentiation potential for regeneration 
(Niaz and Quraishi  2002 ; Anjum et al.  2012 ). Strawberry leaf pieces regenerate via 
organogenesis as dense clusters of emerging shoots after a short callus phase 
(Hanhineva and Kärenlampi  2007 ). The leaves are the most important explant 
source used for the transformation protocols of trees, e.g. sweet cherry, eucalyptus 
and pear (Sartoretto et al.  2002 ; Abdollahi et al.  2006 ; Feeney et al.  2007 ). The latter 
protocols involve a step of indirect organogenesis. Besides the leaves in potato, 
several other plant parts, such as roots, stems and tubers, have been used success-
fully for callus induction; however, stem segments were found to be the most 
responsive (Turhan  2004 ; Heeres et al.  2002 ; Piqueras et al.  2010 ). The cotyledons, 
hypocotyls or petioles of cucumber are sources of embryogenic callus which can be 
bombarded with microprojectiles coated with plasmid DNAs (Piqueras et al.  2010 ). 
The stem internodes and leaf tissue of tobacco (cv. “Samsun NN”) cut transversally 
into thin cell layers have resulted in green, yellow, white and red callus formed on 
in vitro and greenhouse explants (Silva  2005 ).  

3.2.2.4    Genotype Versus Transformation Effi ciency of Callus 

 Besides the type of explants, the effi ciency of transformation via the callus system 
strongly differs within the plant genotype. A highly responsive genotype is advanta-
geous because it may be useful in different transformation protocols. One of the 
most responsive and widely used wheat materials is the progeny of a hybrid between 
spring wheat lines, known under the generic name of “Bobwhite” (Jones  2005 ; 
Jones et al.  2005 ; Li et al.  2012 ). It represents a group of 129 accessions in the 
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Centro Internacional de Melhoramento de Maiz y Trigo (CIMMYT) ex situ 
 collection. The majority of the 129 tested genotypes produced a high yield of 
somatic embryos, and eight genotypes demonstrated transformation effi ciencies 
above 60 % (60 independent transgenic events per 100 immature embryos bom-
barded). However,  transformation effi ciency is not always signifi cantly linked to the 
embryogenic/morphogenic callus induction capacity. It was demonstrated that the 
“Jefi mija”  cultivar, which had one of the highest embryogenic potentials (93 %), 
exhibited the lowest transformation effi ciency. Two other cultivars, with 36 % 
(“Pesma”) and 100 % (“Kantata”) induction capacity, had almost identical transfor-
mation effi ciencies (14.2 and 14.5 %, respectively). These results are in agreement 
with those of Pellegrineschi et al. ( 2002 ), who found that the transformation success 
is due to the genotypic and physiological status of the donor plants. In barley, the 
most successful, high-throughput transformation systems use the spring variety 
“Golden Promise” (Bartlett et al.  2008 ; Harwood  2012 ). This genotype has excel-
lent regeneration from immature embryo target tissues, good susceptibility to 
 Agrobacterium  infection and transformation effi ciencies of up to 35 %. High-
throughput transformation systems are usually developed for a single responsive 
genotype and are rarely transferable to alternative genotypes. An ideal transforma-
tion system would be genotype independent (Harwood  2012 ). There has been only 
one report of a method for the transformation of barley that is considered to be 
genotype independent. This involves the infection of in vitro-cultured ovules with 
 Agrobacterium  (Holme et al.  2008 ). However, ovule isolation in barley, i.e. the 
 target tissue, is a labour-oriented, skilled procedure; therefore, it is not suitable for 
a high-throughput transformation system.  

3.2.2.5    Method of DNA Vector Application 

 The  Agrobacterium -mediated gene transfer protocols involving a callus induction 
step are standard for many dicotyledonous species (Riva et al.  1998 ; Dandekar and 
Fisk  2005 ; Alimohammadi and Bagherieh-Najjar  2009 ), whereas the restricted host 
range of  Agrobacterium -rendered infection of monocots is diffi cult (Khanna and 
Daggard  2003 ; Wu et al.  2009 , Ignacimuthu et al.  2000 ). However, recently 
 Agrobacterium  transformation effi ciency in barley has signifi cantly been raised 
(Hensel et al.  2007 ; Bartlett et al.  2008 ; Fujii et al.  2012 ). Moreover, Hu et al. ( 2003 ) 
and Travella et al. ( 2005 ) showed that  Agrobacterium -transformed plants had lower 
transgene copy numbers and more stable transgene expression in barley in compari-
son to the biolistic method. In wheat, an  Agrobacterium -mediated transformation is 
able to yield effi ciencies of up to 30 % (Risacher et al.  2009 ). The immature embryos 
of hexaploid wheat were used directly as explants for the  Agrobacterium -mediated 
transformation with the callus formation in the next step of transgenic plant produc-
tion (Cheng et al.  1997 ; Hu et al.  2003 ; Khanna and Daggard  2003 ; Wu et al.  2009 ). 
Several groups of researchers have inoculated the immature embryos of tetraploid 
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durum wheat with  Agrobacterium  with an effi ciency from 0.6 to 9.7 % depending 
on the cultivar (Wu et al.  2008 ; He et al.  2010 ). 

 Particle bombardment is the most widely used method for the genetic transfor-
mation of most monocots, including wheat (Lazzeri and Jones  2009 ; Sparks and 
Jones  2009 ). Sparks and Jones ( 2009 ) describe a biolistic protocol that has allowed 
the transformation of 35 wheat genotypes, while only a few of those could be trans-
formed using  Agrobacterium . Maize and rye are commonly transformed by particle 
bombardment (Frame et al.  2000 ; Popelka and Altpeter  2003 ). Particle bombard-
ment can cause serious physical damage to the explant tissues used for transforma-
tion, thus negatively affecting the embryogenesis/organogenesis, in vitro regeneration 
of the explants and, therefore, transformation effi ciency.   

3.2.3     Cell Suspension Cultures 

 Cell suspension cultures can be defi ned as a system of a homogeneous population of 
individual plant cells suspended in a liquid growth medium. Floating freely, the cells 
are evenly exposed to all of the nutrients, allow easy manipulation and control of the 
culture and provide a unique opportunity for studying various metabolic processes 
(Bhojwani and Razdan  1992 ; Boisson et al.  2012 ). Suspensions can be used as a 
perfect target for genetic transformation due to the large amount of homogeneous 
material, easy selection of transgenic cells and mitigated risk of chimeric plant 
regeneration (Finer and McMullen  1991 ; Cao et al.  1992 ; González et al.  1998 ; Ivic 
and Smigocki  2003 , Asaka-Kennedy et al.  2004 ; Ozawa and Takaiwa  2010 ). 

3.2.3.1    Cell Suspension Initiation and Growth 

 As has been described in several laboratory manuals (Reinert and Yeoman  1982 ; 
Bhojwani and Razdan  1992 ; Smith  2012 ), the suspension culture could be started 
from intact plant organs or in vitro-cultured cells by mechanical or enzymatic cell 
separation. The mechanical procedures are simple, cheap and less harmful. However, 
they can be used only with loosely arranged plant tissue, such as leaf mesophyll. 
The gentle grinding of plant tissue followed by fi ltration and centrifugation of the 
received homogenate is used most often. The best plant material for single-cell 
release is the friable fragments of callus tissue that are transferred to a liquid medium 
and dispersed by various procedures, e.g. sieving, syringe pumping or enzymatic 
digestion applied to reduce the aggregate sizes. Once received, the cultures should 
be agitated vigorously to uniformly distribute the cells in the medium and to stimu-
late gaseous exchange (Altpeter and Posseh  2000 ). Proper aeration of the cultures is 
usually secured by means of an orbital platform shaker with a shaking speed of 
30–150 rpm or occasionally by bubbling or stirring (Boisson et al.  2012 ). In suspen-
sion, the growth of the culture follows a specifi c pattern: the initial short lag phase, 
exponential growth phase with intensive cell divisions, phase of linear growth, then 
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progressively decelerated cell divisions and, fi nally, stationary phase. The duration 
of each phase mainly depends on the genotypic features and size of the inoculum 
(Ghosh et al.  2009 ). 

 The medium composition should be carefully balanced with respect to many 
parameters, e.g. nutrients, hormones, pH and osmotic potential (Altpeter and Posseh 
 2000 ). The composition of the liquid medium is usually based on the composition 
of the solid medium that is routinely used for callus culture, although sometimes 
modifi cations are necessary. The most common liquid media are MS (Murashige 
and Skoog  1962 ), B5 (Gamborg et al.  1968 ), LS (Linsmaier and Skoog  1965 ), 
Blaydes (Blaydes  1966 ), MX (Nash and Davies  1972 ), CC (Potrykus et al.  1979 ) 
and their further modifi cations. Generally, the complexity of the medium composi-
tion increases along with a decrease in suspension cell density. The very rich syn-
thetic medium as described by Kao and Michayluk ( 1975 ) supported cell growth 
and divisions in a suspension culture at a density of 25 cells per ml. Actively grow-
ing suspension cultures utilise a great amount of inorganic phosphate, so liquid 
media are usually enriched in this compound (Boisson et al.  2012 ). In some media, 
additional vitamins and amino and organic acids are used (Ivic and Smigocki  2003 ; 
Khanna et al.  2004 ; Huang et al.  2007 ; Ghosh et al.  2009 ; Ozawa and Takaiwa 
 2010 ). Similarly to the callus culture, the precise requirement for exogenously 
applied hormones depends on plant genotype, cell origin and in vitro culture condi-
tions, i.e. the parameters that obviously determine the endogenous level of the 
growth substances. 

 Suspension cultures should be subcultured regularly, usually every 1–2 weeks, 
but the right moment and the dilution ratio depend on the cells’ growth and division 
rates. Frequent subculturing diminishes the threat of carbon substrate consumption, 
which leads towards the autophagic process and cell death (Roby et al.  1987 ; Aubert 
et al.  1996 ). It usually also minimises the frequency of chromosomal disturbances 
and sustains the embryogenic potential, which is a prerequisite for its utilisation as 
a target for genetic transformation (Chen et al.  1998 ). A long-term suspension culture 
often loses its morphogenic potential, and after several repeated subcultures, conver-
sion into plants can be markedly decreased or totally lost which could be the result 
of nuclear instability (polyploidy, aneuploidy or mutations) of in vitro- cultured 
cells, a disturbed hormonal balance or altered cell sensitivity to growth substances 
(Bhojwani and Razdan  1992 ; Dirr and Heuser  2009 ; Smith  2012 ). In non-embryo-
genic suspension cultures of bromegrass, the optimal window for successful trans-
formation was very narrow, i.e. between 7 and 9 days after subculture, which 
corresponds to a late exponential and early stationary growth stage (Nakamura and 
Ishikawa  2006 ). Sometimes, when the loss of morphogenic potential is induced by 
physiological factors, it can be restored by various treatments, such as low temperature 
or modifi cation of the medium composition (see in Bhojwani and Razdan  1992 ). 
Another approach to solving the problem of a decreasing morphogenic potential is 
the use of cryopreserved cells stored at ultra-low temperatures, usually −196 °C 
(Benson  2008 ). In many cases, re-established cells possessed high competence for 
plant regeneration, and the plants derived from cryopreserved cells were morpho-
logically and physiologically unchanged (Cornejo et al.  1995 ; Huang et al.  1995 ; 
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Jain et al.  1996 ; Moukadiri et al.  1999 ). However, sometimes viability of the unfrozen 
cells decreased, and long lag phases before full recovery of cell culture growth were 
necessary (Boisson et al.  2012 ). Cryopreservation of embryogenic cell suspensions 
and their use as targets for genetic transformation have been reported in a number 
of economically important crops (Wang et al.  2012 ) such as rice (Cho et al.  2007 ), 
tobacco (Menges and Murray  2004 ), cassava (Puonti-Kaerlas et al.  1997 ), banana 
(Panis et al.  2005 ), grapevine (Wang et al.  2005 ) and sweet potato (Feng et al.  2011 ). 
Another approach has recently been reported (Boisson et al.  2012 ), i.e. suspension 
cultures of sycamore ( Acer pseudoplatanus ) and  Arabidopsis  were preserved for 
over 6 months in a phosphate-free nutrient medium at 5 °C to induce cell growth 
arrest. It took a couple of hours to restart cell growth, and no measurable cell death 
was observed. 

 Plant regeneration from cell suspension can follow either organogenesis or 
somatic embryogenesis pathway, which makes this process similar to plant regen-
eration from callus culture (Piqueras and Debergh  1999 ; Kim et al.  2010 ; Piqueras 
et al.  2010 ). However, somatic embryos at the globular stage can be released from 
the maternal cell clumps in suspension and can further develop into callus tissue 
clumps by repeated division (see in Bhojwani and Razdan  1992 ).  

3.2.3.2    Cell Suspension as the Target of Transformation 

 Monocotyledonous crop plants have been the most important targets for genetic 
transformation via suspension culture. Cell suspensions were initially reported to be 
a suboptimal explant choice for rice transformation (Hiei et al.  1994 ) but soon 
turned out to be an excellent target not only for rice (Urushibara et al.  2001 ) but also 
for other species, such as maize, barley, wheat and forage grasses (see Cheng et al. 
 2004 ). Until now among others, embryogenic suspension cells have been used as 
plant material for transgenic plant production in the case of maize (Fromm et al. 
 1990 ; Gordon-Kamm et al.  1990 ), oats (Somers et al.  1992 ), japonica and indica 
rice (Cao et al.  1992 ; Jain et al.  1996 ; Nandadeva et al.  1999 ; Urushibara et al. 
 2001 ), barley (Ritala et al.  1993 ; Wu et al.  1998 ) and forage grasses, e.g. tall and red 
fescue (Spangenberg et al.  1995a ; Dong and Qu  2005 ; Wang and Ge  2005 ), peren-
nial and Italian ryegrass (Spangenberg et al.  1995b ; Ye et al.  1997 ; Li et al.  2004 ; 
Wu et al.  2005 ,  2007 ; Sato and Takamizo  2006 ; Bajaj et al.  2006 ), festulolium 
( Lolium / Festuca  hybrids) (Guo et al.  2009 ) and orchardgrass (Lee et al.  2006 ). 

 The fi rst dicotyledonous species to be transformed with the use of the suspension 
culture technique were tobacco (Klein et al.  1987 ,  1988a ), carrot (Scott and Draper 
 1987 ; Ming-zhi  1996 ; Hardegger and Sturm  1998 ), soybean (McCabe et al.  1988 ; 
Parrott et al.  1989 ; Finer and McMullen  1991 ; Trick and Finer  1998 , Rech et al. 
 2008 ) and cotton (Finer and McMullen  1990 ; Rajasekaran et al.  1996 ,  2000 ). Then 
the technique was optimised for cucumber (Schulze et al.  1995 ; Burza et al.  2006 ), 
citrus (Yao et al.  1996 ; Dutt and Grosser  2010 ), grapevine (Perl et al.  1995 ; Wang 
et al.  2005 ; Vidal et al.  2006 ), cassava (Raemakers et al.  1996 ; Schöpke et al.  1996 ; 
González et al.  1998 ; Schreuder et al.  2001 ), sugarcane (Arencibia et al.  1998 ) and 
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melon (Guis et al.  2000 ). Recently, effi cient protocols have also been established for 
sugar beet (Ivic and Smigocki  2003 ); banana (Khanna et al.  2004 ; Huang et al. 
 2007 ; Ghosh et al.  2009 ; Ganapathi et al.  2001 ); some forage legumes like alfalfa, 
white clover and  Medicago truncatula  (Kalla et al.  2001 ; Zhang et al.  2005 ; Balance 
and McManus  2006 ; Crane et al.  2006 ; Wright et al.  2006 ; Xie et al.  2006 ; Montague 
et al.  2007 ; Rosellini et al.  2007 ; Barone et al.  2008 ) and sweet potato (Zang et al. 
 2009 ; Yang et al.  2011 ).  

3.2.3.3    Suspension Culture Versus Various Transformation Systems 

  Agrobacterium tumefaciens  was rarely used for transformation of the suspension 
cells of monocotyledonous plants (Newell  2000 ). Wu et al. ( 1998 ) fi rst described 
the  Agrobacterium tumefaciens -mediated transformation in a barley suspension cul-
ture initiated from immature embryo-derived and microspore- derived callus. This 
system was also used for an effi cient wheat suspension transformation (Weir et al. 
 2001 ). A few more reports describe the successful transformation of japonica 
(Lucca et al.  2001 ) and indica rice (Hoa and Bong  2003 ) with the use of embryo-
genic suspension cultures derived from friable callus tissue that is initiated from 
mesocotyl tissue, which then results in a transformed cell line production. In 2006, 
Nakamura and Ishikawa reported the transformation of non-embryogenic brome-
grass ( Bromus inermis ) suspension. 

 Among the dicotyledonous plants the  Agrobacterium  method is often used, and 
effective production of transgenic plants has been received in most cases for embryo-
genic cell suspension cultures initiated from friable callus tissue. A carrot suspension 
culture initiated from callus tissue was used for this purpose in several studies (Scott 
and Draper  1987 ; Ming-zhi  1996 ; Hardegger and Sturm  1998 ). The genetic transfor-
mation of sweet potato ( Ipomoea batatas ) was conducted utilising a suspension culture 
initiated from shoot bud-derived callus (Yang et al.  2011 ). The centrifugation-assisted 
 Agrobacterium- mediated transformation of banana cultivars (Musa ssp.) was effi cient 
for all three economically important genomic groups (AAA, AAB and AA) (Khanna 
et al.  2004 ; Huang et al.  2007 ). The embryogenic cell suspension of Musa ssp. can be 
established using an immature male fl ower culture (Ghosh et al.  2009 ). In the case of 
several citrus species, embryogenic cell suspension cultures were initiated from unfer-
tilised ovules (Dutt and Grosser  2010 ). Embryogenic cell suspensions are also the most 
often used target tissues for transformation studies in grapevine (Perl et al.  1995 ; Wang 
et al.  2005 ). In this species, improvement of  Agrobacterium -mediated transformation 
effi ciency and transgenic plant regeneration was achieved by the use of cryopreserved 
cell suspensions initiated from anther-derived callus tissue (Wang et al.  2005 ). 

 Compared with forage grasses, transformation is relatively easier in forage 
legume species. Effi cient protocols for the genetic transformation of alfalfa, white 
clover and  Medicago truncatula  using  A. tumefaciens  have been established over 
the last decade (Kalla et al.  2001 ; Zhang et al.  2005 ; Balance and McManus  2006 ; 
Crane et al.  2006 ; Wright et al.  2006 ; Xie et al.  2006 ; Montague et al.  2007 ; Rosellini 
et al.  2007 ; Barone et al.  2008 ). 
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 Cell suspension cultures serve as ideal target material for a biolistic transformation 
(Christou  1992 ), as in a relatively short period of time it can generate a large number 
of homogeneous cells (Ivic and Smigocki  2003 ) and has been used successfully to 
transform several monocotyledonous and dicotyledonous species (Kamo et al. 
 1995 ). The technique was fi rst successfully applied to the suspension cells of 
 Nicotiana tabacum  (Klein et al.  1987 ,  1988a ) and then  Zea mays  (Klein et al. 
 1988b ). A system for the generation of fertile, transgenic plants by the microprojec-
tile bombardment of embryogenic suspension cultures from immature embryos was 
developed for maize by Gordon-Kamm et al. ( 1990 ). Suspension cultures produced 
from the scutella of immature embryos were also used for rice transformation (Chen 
et al.  1998 ; Nandadeva et al.  1999 ) and Russian wildrye ( Psathyrostachys juncea ) 
plants, a forage species well adapted to semi-arid climates (Wang et al.  2004 ). 
Furthermore, microprojectile bombardment has been used to transform embryo-
genic suspension cultures from the friable callus of soybean (McCabe et al.  1988 ; 
Parrott et al.  1989 ; Finer and McMullen  1991 ; Rech et al.  2008 ). The biolistic 
method, with cell suspension initiated from leaf-derived callus tissues, was used for 
transgenic cucumber ( Cucumis sativus  L.) (Schulze et al.  1995 ) and sugar beet (Ivic 
and Smigocki  2003 ). Moreover, this transformation method can be applied to cryo-
preserved cultures (Rajasekaran et al.  1996 ). A stable transformation of cotton 
( Gossypium hirsutum  L.) has been obtained by multiple bombardments of cryopre-
served cultures of embryogenic cell suspension cultures during the rapid growth 
phase (Finer and McMullen  1990 ; Rajasekaran et al.  1996 ,  2000 ). 

 A method strictly applied to suspension cultures is the one described by Wang 
et al. ( 1995 ) with the use of  silicon carbide  (SiC)  whiskers  for cell penetration. The 
technique involves the mixing of plant cells and plasmid DNA with SiC whiskers, 
which have great hardness and possess sharp cutting edges. This facilitates DNA 
delivery by cell perforation and abrasion during the mixing process. However, the 
technique, although inexpensive and simple, is not widely applied, as only suspen-
sions of high regeneration potential can be used as the transformation object. The 
method was fi rst used for the cell suspension of maize ( Zea mays ) and tobacco 
( Nicotiana tabacum ) by Kaeppler et al. ( 1990 ) and Frame et al. ( 1994 ). Moreover, 
transgenic perennial ryegrass plants were produced with the use of embryogenic 
cell suspension cultures by (SiC) fi bre methods (Dalton et al.  1998 ), although effec-
tiveness of the process was very low.  

3.2.3.4    Microspore Suspension Cultures 

 Microspore suspension culture can be regarded as a separate variant of cell suspen-
sion culture. Microspores are haploid cells resulting from a meiotic division in the 
male reproductive organs of a plant, i.e. the anthers. They are originally designed to 
develop into pollen (Wędzony et al.  2009 ; Dubas et al.  2012 ). In microspore 
 suspension cultures, pollen formation is artifi cially inhibited by the application of 
various stress treatments (Shariatpanahi et al.  2006 ), and the microspores are 
induced to form multicellular, usually haploid, embryo-like structures called 
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“gametic embryos” (Dubas et al.  2010 ,  2011 ) or cell clumps of irregular shape 
(Barinova et al.  2004 ; Wędzony et al.  2009 ). Both types of structures can regenerate 
complete plants under appropriate conditions. After duplication of the chromosome 
number at either of the developmental stages, from microspore to plant, a com-
pletely homozygotic line is obtained, called a doubled haploid (DH) line. Microspore 
cultures offer a multiple and synchronous population of haploid cells (Dunwell 
 1996 ; Touraev et al.  1996a ,  b ; Ferrie and Caswell  2011 ), which are valued in com-
bination with different transformation protocols. The type of microspore isolation 
method used signifi cantly infl uences the effi ciency of androgenic induction and the 
number of plants obtained. Microspores can be obtained upon homogenisation of 
whole spikes or isolated anthers in a micro-blender (Jähne and Lörz  1995 ; Kasha 
et al.  2001 ; Zur et al.  2008 ,  2009 ). Indirectly, microspores can be released from an 
anther fl oating culture (shed-microspore culture), which precedes microspore re-
culture or isolation by pestle maceration (Jähne and Lörz  1995 ; Dubas et al.  2010 , 
 2011 ). A great number of factors determine the utility and effi ciency of the micro-
spore suspension method: genotype, developmental stage of the microspores and 
type of stress applied to androgenesis induction (reviewed by Wędzony et al.  2009 ). 

 Cold is the most common stress signal (reviewed by Wędzony et al.  2009 ); 
 however, heat treatments applied to the whole plant, donor infl orescence or isolated 
anthers prior to culture are also applied to induce androgenesis in the microspores 
(Coumans et al.  1989 ; Mejza et al.  1993 ). Starvation stress is achieved by the culture 
in mannitol medium (Hoekstra et al.  1996 ; Touraev et al.  1996a ,  b ; Kasha et al.  2001 ; 
Wędzony et al.  2009 ; Zur et al.  2008 ,  2009 ; Dubas et al.  2010 ), while osmotic stress 
can be enhanced by polyethylene glycol added to the culture medium (Ilic- Grubor 
et al.  1998 ; Delaitre et al.  2001 ; Lionneton et al.  2001 ; Ferrie and Keller  2004 ). 

 MS (Murashige and Skoog  1962 ), B5 (Gamborg et al.  1968 ), H (Nitsch and 
Nitsch  1969 ) and AT3 (Touraev and Heberle-Bors  1999 ) are the most popular as a 
basic medium. Maltose or sucrose is the most commonly applied sources of 
organic carbon, thus playing the role of the osmoticum at the same time (Indrianto 
et al.  1999 ; Mejza et al.  1993 ; reviewed by Wędzony et al.  2009 ). For crop micro-
spore culture, hormone-free media are often used; however, there are strong inter-
actions of the protocols with the genotypes. When applied, the most common 
auxins or auxin analogues are IAA, PAA, 2,4-D, picloram and dicamba (Wędzony 
et al.  2009 ), often in combination with kinetin, zeatin, BA or BAP (Castillo et al. 
 2000 ; reviewed by Wędzony et al.  2009 ). To enhance the regeneration rate, abscisic 
acid (Hoekstra et al.  1996 ; Wang et al.  1999 ) and extracellular arabinogalactans 
(AGPs) (Kasha et al.  2001 ; Borderies et al.  2004 ) have been used. Activated char-
coal and colchicine were also found to raise the overall effi ciency of microspore 
androgenesis (Zhao et al.  1996a ,  b ; Zheng et al.  2001 ; Zhou et al.  2002a ,  b ). As a 
substitute for exogenous growth regulators, ovaries are applied as a source of aux-
ins and other unidentifi ed compounds (Zheng et al.  2001 ; Liu et al.  2002a ,  b ; 
Wędzony et al.  2009 ). 

 Starting with the fourth week of culture, well-developed embryo-like structures 
can be transferred to regeneration conditions. The regeneration phase usually pro-
ceeds on solid media: half-strength MS (pH 5.8; Murashige and Skoog  1962 ) or B5 
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(Gamborg et al.  1968 ) medium supplemented with different concentrations of 
growth regulators (BA, NAA, kinetin, IBA for shoot and GA 3  for rooting). The 
addition of abscisic acid improves regeneration in cereals. The regenerated plants 
are fi nally treated with colchicine to duplicate the chromosome numbers in their 
cells. However, in some genotypes this step can be omitted due to the suffi cient 
spontaneous duplication of the chromosome number during culture. For example, a 
spontaneous chromosome doubling rate among microspore-derived wheat plants is 
only 15–25 %, while for barley 70–80 % has been reported (Kahrizi and Mohammadi 
 2009 ; Kahrizi  2009 ). 

 The combination of in vitro androgenesis and genetic transformation has been 
successfully applied to many species for the rapid development of fully homozy-
gous transgenic lines. Transgenic, microspore-derived plants include barley, maize, 
rice and wheat (review in Jähne and Lörz  1995 ) and other economically important 
species such as tobacco (Stöger et al.  1995 ), oilseed rape (Nehlin et al.  2000 , review 
in Ferrie and Möllers  2010 ) and sunfl ower (Weber et al.  2003 ). Several methods of 
transformation have been applied to transfer genes to the microspore containing the 
haploid plant genome. The transformation methods are basically the same as 
described above for the cell suspension cultures (Jardinaud et al.  1993 , review in 
Touraev et al.  2009 ). Particle bombardment was described as a suitable method for 
tobacco (Stöger et al.  1995 ), oilseed rape (Fukuoka et al.  1998 ), barley (review in 
Jähne and Lörz  1995 ; Yao et al.  1997 ; Carlson et al.  2001 ), wheat (Mentewab et al. 
 1999 ; Folling and Olesen  2001 ), maize (Wright et al.  2001 ) and conifers (reviewed 
by Luthra et al.  1997 ). In many species the  Agrobacterium -mediated methods are 
favoured because of their ease of implementation and low cost (reviewed by 
Maheshwari et al.  2011 ). They have been successfully used for late uni- to early 
 bi- nucleated microspores or the callus derived from them in barley (review in Jähne 
and Lörz  1995 ; Nehlin et al.  2000 ).   

3.2.4     Protoplasts 

 Protoplast culture is a kind of suspension culture and represents the fi nest single-
cell system which is reliable as long as their source is selected carefully (Faraco 
et al.  2011 ). Protoplasts of higher plants can introduce foreign DNA, cell organelles, 
bacteria or virus particles through their exposed plasma membrane. These unique 
properties, combined with the totipotent nature of plant cells, make protoplasts 
excellent starting material for generating unique and novel plants (Mendes et al. 
 2001 ; Ishikawa et al.  2003 ). 

 The totipotency and durability of protoplasts are some of the most important 
criteria for protoplast fusion or genetic transformation. Protoplasts can be isolated 
from in vitro tissue cultures (mainly callus or suspension cell cultures). Also, tissue 
organs and specialised groups of cells, such as roots, shoots, leaves, fragments of 
fl owers or pollen grains, can be used to obtain protoplasts (Sheen  2001 ; Grzebelus 
et al.  2012 ). 
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 The removal of the cell wall can proceed in two ways: by mechanical and 
 enzymatic digestion. Mechanical procedures, involving the slicing of plasmolysed 
tissues, are currently rarely employed for protoplast isolation, but they are useful 
with large cells and when limited (small) numbers of protoplasts are required. 
Normally, when large populations of protoplasts are required the enzymatic diges-
tion of source tissues is essential (Eriksson  1985 ; Davey et al.  2000 ; Aoyagi  2006 ). 
Several factors infl uence protoplast release, including the extent of the thickening of 
cell walls, temperature, duration of enzyme incubation, pH optima of the enzyme 
solution (Sinha et al.  2003 ), gentle agitation, and nature of the osmoticum. Freshly 
isolated protoplasts are spherical because they are unrestricted by the cell wall. 
When given the correct chemical and physical stimuli, each protoplast is capable of 
regenerating a new wall and undergoing repeated mitotic division to produce daugh-
ter cells, from which fertile plants may be regenerated via the tissue culture process. 
The culture of protoplasts is conducted on liquid, semi-solid or solid media. Many 
media have been based on the MS (Murashige and Skoog  1962 ) and B5 (Gamborg 
et al.  1968 ) formulations, with the addition of an osmoticum (Sato et al.  1993 ; 
Winkelmann et al.  2006 ; Badr-Elden et al.  2010 ). 

 Protoplasts are used as starting materials to transfer foreign genes into plants in 
a process called protoplast fusion. The general method of protoplast fusion is, fi rst, 
combining the parental protoplasts to obtain a mixture of protoplasts derived from 
different parental cell types. There are two ways to fuse protoplasts: (1) chemically 
induced fusion and (2) electrofusion. The thrust of the fi rst method is to overcome 
the net of negative surface charge on the protoplasts by treating them with chemical 
fusogens. The most common chemical used to stimulate DNA is PEG, i.e. polyeth-
yleneglycol, which increases the permeability of cell membranes (Potrykus et al. 
 1985 ; Nugent et al.  2006 ). The disadvantage of using this method is its unpredict-
ability, because it cannot be used on some plant species and also because the chemi-
cal fusion frequency may vary for a given species. Electrofusion is a method of 
using short electrical pulses of high fi eld strength to facilitate DNA uptake by 
increasing the permeability of the protoplast membranes. Usually, a high-frequency 
alternating fi eld of 0.5–1.5 MHz is applied across two electrodes to stimulate proto-
plast migration. The second step of electrofusion is to apply one or more short direct 
current pulses to cause reversible membrane breakdown. This method is used in 
many crops (Matsumoto et al.  2002 ; Zheng et al.  2003 ; Ge et al.  2006 ; Sharma et al. 
 2011 ). The fusion frequency is affected by a number of factors, e.g. different popu-
lations of protoplasts will vary in the type of the output product. The large- sized 
protoplasts fuse more readily than the smaller ones. A longer length of chains of 
protoplasts will lead to a higher fusion frequency, there will be more multifusion 
products if a longer pulse at a higher voltage is used and the inclusion of ions in the 
fusion medium increases the percentage of the fusion. However, it is notable that too 
long pulses at too high a voltage can kill the protoplasts. 

 Another method of protoplast transformation is electroporation (Bates  1999 ). 
This is a technique that uses an electrical pulse to render cell walls or protoplast 
membranes permeable so that DNA can be taken up into the cells. A high-voltage 
electrical pulse of shorter duration causes the formation of temporary pores which 
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allows cells to take up plasmid DNA; this may lead to stable or transient DNA 
expression. The method was originally applied to protoplasts (Zhang et al.  1988 ; He 
et al.  1994 ) but has been found applicable to cells and even tissues (D’Halluin et al. 
 1992 ). Joersbo and Brunstedt ( 1990 ) introduced DNA into sugar beet and tobacco 
protoplasts by applying a brief exposure of 20 kHz ultrasound in the presence of a 
plasmid containing the CAT gene fused to the 35S promoter. The method is known 
as the “sonication method”, and its advantage is that the system may be simpler than 
that of electroporation. 

 Microinjection is one of the most precise techniques for delivering foreign DNA 
into specifi c compartments of protoplasts (Crossway et al.  1986 ), but it is not rou-
tinely used (Jones-Villeneuve et al.  1995 ). Microinjections allow to introduce not only 
plasmids but also whole chromosomes into the plant cells (Griesbach  1987 ). Several 
plant species, such as tobacco (Schnorf et al.  1991 ), oilseed rape (Neuhaus et al.  1987 ) 
and barley (Holm et al.  2000 ), have been transformed using this technique.   

3.3     Conclusions 

 This chapter shows the great variability of possible in vitro culture technologies that 
are suitable for plant transformation. A range of protocols is available for some cul-
tivated crops and for the model plant,  Arabidopsis thaliana . Protocols for rare orna-
mental or medicinal plants are fewer in number. When preparing experiments with a 
new genotype, we need to have in mind that all methods are genotype dependent; 
therefore, even a protocol elaborated for the same species might not give the expected 
results across all genotypes and it will need fi ne tuning and adjustments to the condi-
tions available in the laboratory and to the genotype under investigation. 

 The basic research that tries to explain molecular mechanisms beyond the in vitro 
processes is making progress, but it also raises new questions at the same time. We 
are far from understanding all of the regulation pathways affecting in vitro calluso-
genesis, organogenesis or somatic embryogenesis. Thus, most of the protocols have 
been developed by experimenting with many options, followed by the selection of 
the most effective variants. The effi ciency of in vitro protocols is the result of 
numerous processes and it is under complex genetic regulation; thus, dissecting all 
of them would be equal to understanding the mystery of life. Science is persistently 
on its way to achieving that goal.     
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    Abstract     Embryo abortion occurs frequently in wide crosses, and thus embryo 
 rescue is required for survival of the next generation. Rescues are performed by 
either directly transferring the excised embryo to an artifi cial medium or indirectly 
through fl ower (ovary), immature seed (fertilized ovule), or pod (silique) culture. 
Various techniques used for oil crops, cereals, legumes, and horticultural crops are 
presented. Altering medium components were the major routes for developing pro-
tocols for each species with adaptations to the base medium, sucrose concentration, 
or vitamin and growth regulator content. Monocot culture tended to be more direct 
than dicot culture, where many protocols required a multi-step approach from pod 
to ovule culture to embryo rescue, shoot regeneration, and root induction. Each step 
required a specifi c medium and growth conditions. Hybrid embryos as young as 
2 days after pollination have been recovered. However, many species such as soy-
bean and chickpea still need procedures for rescue of very young embryos. In other 
species hurdles such as poor rooting have been overcome by using grafting tech-
niques. Embryo rescue remains a useful component in any breeding program where 
wide or interspecifi c crosses are preformed, where rapid cycling through genera-
tions is used, and where germplasm preservation is required.  
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4.1         Introduction 

 Embryo abortion occurs frequently in crosses between a cultivated species and its 
wild relatives but also in wide crosses made between different species for the pur-
pose of gene transfer or chromosome elimination. In these cases, embryo rescue is 
required because the embryo stops developing during various stages of seed devel-
opment and removal of the embryo from the parent plant is necessary for survival. 
Rescue is done by directly transferring the excised embryo to an artifi cial medium 
or indirectly through fl ower (ovary), immature seed (fertilized ovule), or pod 
(silique) culture. 

 The causes for post-fertilization barriers are multifarious. They can occur due to 
chromosome alterations, ploidy differences, lack of starch availability at syngamy, 
poor connections between chalazal cells and the cytoplasmic envelope as observed 
for peanut (Pattee and Stalker  1991 ), differences in growth rates as reported for 
 Cicer  species (Ahmad and Slinkard  1991 ), lack of delayed or degenerating endo-
sperm development, early suspensor degeneration, or mismatch between the differ-
ent chromosome sets. 

 The culture medium replaces the endosperm and provides the nutrients to the 
developing embryo. The younger the aborting hybrid, the more complex are the 
steps involved in rescuing the embryos and the more complex the medium require-
ments. For example, Geerts et al. ( 2011 ) succeeded in rescuing 2–5-day-old bean 
interspecifi c hybrids using a six-step procedure. Since removal of young, fragile 
embryos frequently leads to physical damage, immature seed (ovule) or pod (silique) 
cultures are the preferred methods until the embryo reaches more mature stages 
which is generally past the critical heart-shaped stage. This chapter provides an 
overview of recent methods used for embryo rescue in a wide variety of species and 
highlights some procedures for rescue of very young embryos.  

4.2     Oil Crops 

4.2.1     Brassicaeae 

 Most of the breeding work within the  Brassica  species has been focused on 
 resynthesis of  B. napus  or  B. juncea  in order to increase the genetic variability of 
these crops. For some interspecifi c crosses, it is relatively easy to generate hybrid 
seeds, but others have post-fertilization barriers that require embryo rescue. If the 
barrier occurs very early in hybrid embryo development, it is not technically possi-
ble to isolate the developing embryo, and methods such as culturing the silique or 
isolated ovaries are used. Thus, a wide variety of methods are available for embryo 
rescue in this family. 
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4.2.1.1     Embryo Culture 

 Nishi et al. ( 1959 ) used embryo culture methods in  Brassica  crosses with some success. 
A review of the literature (Inomata  1993 ) showed that the hybrid production rate ranged 
from 0 to 25.1 (number of hybrids/number of fl owers pollinated). For some crosses, 
embryo culture has become a fairly routine method for generating interspecifi c and 
intergeneric hybrids. In other crosses, in which hybrid embryos are not easily obtained, 
basic studies were required to refi ne culture conditions and medium constituents. 

 Embryo survival relies on the timely removal of the embryo after pollination. This 
depends on the species and genotypes involved in the specifi c cross. Abortion usually 
occurs from the mid to late stages of embryogenesis in  Brassicae . Therefore, embryos 
can be cultured anywhere from 6 to 28 days depending on the cross. Depending on 
the genotype of the maternal parent in crosses between  B. oleracea  and  B. rapa,  
hybrid embryos cultured 16–20 days after pollination (DAP) showed signs of degen-
eration (Wen et al.  2008 ), whereas in other crosses, viable ovules were still present 
16–22 DAP. In crosses of  B. campestris  ssp.  pekinensis  ×  B. oleracea  var.  acephala , 
embryos were cultured 6–20 DAP with the highest frequency of plantlet production 
obtained from those embryos cultured at 9–11 DAP (Zhu and Wei  2009 ). Other stud-
ies have shown that the highest frequency of hybrid embryos came from those res-
cued 20–28 DAP when employing  B. oleracea  var.  alboglabra  as the female parent 
(Rahman  2004 ) or rescued 18–22 DAP when using  B. carinata  as the female 
parent. 

 Composition of medium is a major factor for successful embryo rescue 
(Table  4.1 ). In crosses between  B. juncea  and  B. napus , embryo culture experiments 
compared two basal media, MS (Murashige and Skoog  1962 ) or B5 (Gamborg et al. 
 1968 ), and different combinations of NAA and BAP (Zhang et al.  2003 ). MS 
medium was better than B5 in terms of callus production and regenerated plants and 
is generally preferred in  Brassica  embryo culture (Table  4.1 ) although liquid NN 
medium (Nitsch and Nitsch  1967 ) has also been used (Ripley and Beversdorf  2003 ). 
As for growth regulators, 0.1–0.3 mg/L NAA with 1.5–2.0 mg/L BAP or 0.1 mg/L 
kinetin was benefi cial although some protocols do not require them (Table  4.1 ).

4.2.1.2        Ovary/Ovule Culture 

 This technique involves removal of the ovaries 7 DAP and then placing them on 
medium. Several medium compositions have been evaluated for  B. rapa  ×  B. olera-
cea  crosses, with ½-strength MS without growth regulators supporting higher 
embryo production rates (Table  4.1 ). The mean frequency of hybrids obtained per 
ovary over fi ve crosses was 26 % compared to no seed production through conven-
tional fi eld pollination (Wen et al.  2008 ). Other studies have shown that ovary cul-
ture 9 or 12 DAP was superior, depending on the  B. rapa  and  B. oleracea  genotypes 
involved in the cross (Zhang et al.  2004 ). These authors also observed that the 
 highest rate of seeds per ovary depended on the medium composition and cross 
when using MS or B5 with different concentrations of BA or NAA (Table  4.1 ). The 
rate of seed production per ovary reached 72 %.  
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4.2.1.3     Pistil/Ovary–Ovule Method 

 Pistils were collected 5–7 DAP and sterilized. They were then  cultured on hormone-
free MS medium with 50 g/L sucrose, 500 mg/L casein hydrolysate, and 8 g/L agar 
for 4–7 days (Table  4.1 ). The enlarged ovules were transferred to MS medium with 
30 g/L sucrose, but casein hydrolysate was omitted (Tonguç and Griffi ths  2004a ). 
Fifteen hybrid plants were obtained from  B. juncea  by  B. oleracea  crosses using this 
protocol. This approach has also been used for developing hybrids between  B. cari-
nata  and  B. oleracea  (Tonguç and Griffi ths  2004b ). However, no hybrid embryos 
were obtained in the reciprocal cross when using  B. oleracea  as the maternal parent. 
In crosses of  B. fruticulosa  by  B. rapa , pistils were excised 2–3 DAP (Chandra et al. 
 2004 ). These were cultured on MS medium as above with 30 g/L sucrose, 500 mg/L 
casein hydrolysate, and 8 g/L agar. After 10–12 days, the enlarged ovules were dis-
sected out of the ovary. From this study, the authors generated 13 seeds from 159 
cultured ovaries; 3 of those 13 seeds germinated to produce hybrid plants.  

4.2.1.4     Placenta/Ovule–Embryo Culture 

 Placenta/ovule–embryo culture involves excising the ovules and the attached 
 placenta from the ovary 14 DAP followed by culture on MS medium with 500 mg/L 
of casein hydrolysate, 30 g/L sucrose, and 11 g/L agar (Bang et al.  1996 ,  2007 ; 
Table  4.1 ). Embryos were subsequently excised and grown on White’s medium with 
500 mg/L casein hydrolysate, 30 g/L sucrose, and 8 g/L agar at 15 °C using a 16-h 
photoperiod (Bang et al.  1996 ). The placenta/ovule–embryo culture method has 
been used to develop intergeneric hybrids between  B. oleracea  and  Moricandia 
arvensis  (Bang et al.  2007 ). A higher frequency of hybrid production was obtained 
when  B. oleracea  was used as female parent.  

4.2.1.5     Siliques 

 Developing siliques that are 9 days old were excised, sterilized, and cultured on MS 
medium with 0.1 mg/L NAA, 1.0 mg/L kinetin, and 1.0 mg/L GA 3  (Srivastava et al. 
 2004 ). These cultures were incubated for 30 days, then the siliques were dissected, 
and the interspecifi c embryos were excised and cultured on the same medium with-
out growth regulators (Table  4.1 ). Plants were regenerated, and hybrids were identi-
fi ed by RFLP analysis and cytological studies. Colchicine treatment was applied to 
the plantlets to double their chromosome number. In the case of crosses between 
 B. rapa  and  B. nigra  to resynthesize  B. juncea , the success rate (number of seed-
lings obtained/number of siliques cultured) ranged from 0 to 5.99 depending on the 
parental genotypes (Srivastava et al.  2004 ).   

4 Methods and Role of Embryo Rescue Technique in Alien Gene Transfer
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4.2.2     Helianthus annuus L. (Sunfl ower) 

 Embryo rescue in  Helianthus  species focused on techniques to rescue wide crosses 
between wild or perennial species and  H. annuus . Immature embryos were the main 
explant used, although immature seeds were also useful (Table  4.1 ). For very young 
(2–7 DAP) embryos, the two-step method originally developed by Chandler and 
Beard ( 1983 ) continues to be routinely used. Embryos were cultured on a nutrient-
rich medium followed by a less rich medium at pH 5.4–5.6, depending on the size 
of the embryo (Chandler and Beard  1983 ; Krauter et al.  1991 ). Espinasse et al. 
( 1991 ) adapted this method by including an initial culture  in ovulo . Recent embryo 
culture protocols use a simpler medium, although the effectiveness of this modifi ca-
tion appears to be species specifi c (Table  4.1 ; Sukno et al.  1999 ; Faure et al.  2002 ; 
Sauca and Lazar  2011 ).   

4.3     Cereals 

4.3.1     Avena sativa L. (Oat) 

 Oat haploids and hybrids have been developed through the use of wide crosses and 
embryo rescue. Embryo rescue protocols also focused around the development of 
monosomic addition lines, where maize chromosomes were maintained in a haploid 
oat background (Rines et al.  2009 ). The medium developed by Kynast and Riera- 
Lizarazu ( 2011 ) was more effective than previous protocols. The application of 
auxin and/or gibberellins to the infl orescences at 1–2 DAP was necessary for 
embryo development (Table  4.2 ). Recently, the application of a cold treatment 
immediately after embryo culture was shown to be benefi cial for production of 
 haploid embryos (Sidhu et al.  2006 ).

4.3.2        Hordeum vulgare L. (Barley) 

 Interspecifi c crosses of barley with  Hordeum bulbosum  and  Elymus canadensis  
have been attempted for the purpose of gene transfer and/or haploid production 
(Dahleen and Joppa  1992 ; Xu and Kasha  1992 ). B5 medium was commonly used 
(Table  4.2 ). Embryo rescue was successful from crosses of barley with wild rye 
(Table  4.2 ); however, the interspecifi c cross required an initial callus stage before 
subsequent production of plants (Dahleen and Joppa  1992 ).  

M.M. Lulsdorf et al.
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4.3.3      Oryza  sp. (Rice) 

 Rice embryo rescue is required for interspecifi c hybridization, rescue from degraded 
endosperm, or rapid generation cycling. Embryo rescue was used to shorten genera-
tion time indicating that the technique has become routine (Ohnishi et al.  2011 ). The 
most recent protocol deviated from earlier work (Multani et al.  1994 ; Mariam et al. 
 1996 ) in the form of an increase in the MS concentration from ¼ to full strength 
(Table  4.2 ; Rodrangboon et al.  2002 ).  

4.3.4     Triticale (X Triticosecale) 

 The culture of immature triticale embryos was originally for the rescue of tetraploid 
wheat × diploid rye crosses, or the production of triticale, and the protocol produced 
by Taira and Larter ( 1978 ) appears to have been the basis of culture systems since 
then (Table  4.2 ). The latest developments were for the production of haploid triti-
cale where triticale and triticale × wheat crosses were pollinated with  Zea mays  and 
various other  Gramineae  genera (Pratap et al.  2005 ) .  Although plants were regener-
ated from wide crosses, haploid status was not confi rmed.  

4.3.5      Sorghum  L.  and Zea mays  L. (Corn) 

 In maize and sorghum, embryo rescue is employed for the production of interspe-
cifi c hybrids, polyploidization of lines, revival of germplasm stored for a long time, 
or rescue of mutant embryos with nonfunctional endosperms used for seed develop-
ment studies (Garcia and Molina  1995 ; Consonni et al.  2003 ; Gutierrez- Marcos 
et al.  2007 ). Sorghum embryos (15–20 DAP) rapidly regenerated to plants on MS 
medium with little supplementation (Table  4.2 ; Kuhlman et al.  2010 ; Price et al. 
 2005 ). The corn protocol was more complicated, and 12–30-day-old embryos were 
grown on various media with the addition of 0–884 mg/L 2,4-D and 0–292.8 mg/L 
BA (Table  4.2 ; Garcia and Molina  1999 ;  2001 ).   

4.4     Legumes 

4.4.1      Arachis hypogaea  L. (Peanut) 

 Peg tip culture followed by ovule culture and then embryo removal has led to the 
 recovery of hybrids between peanut and its wild relatives (Feng et al.  1996 ). Growth 
regulators during peg tip culture were detrimental for embryo development 

4 Methods and Role of Embryo Rescue Technique in Alien Gene Transfer



88

indicating that the explant provided the necessary hormones required for embryo 
growth (Table  4.3 ). The authors related the requirement for embryo rescue to differ-
ences in timing of nutrient availability and utilization as well as cytoplasmic 
 connections between the different species as observed by Pattee and Stalker ( 1991 ) 
and Pattee and Mohapatra ( 1987 ).

4.4.2         Cajanus cajan  L. (Pigeonpea) 

 Crossing the wild pigeonpea with the cultivated species requires a multiple step 
process from the initial ovule and then embryo culture phases on liquid medium 
using fi lter-paper bridges to a solid medium for shoot growth and root induction 
with a  1 / 10 -strength MS medium (Mallikarjuna and Moss  1995 ). Growth regulator 
content varied from 0.5 mg/L BAP and NAA during ovule culture to an increased 
concentration (1 mg/L BAP and 0.1 mg/L NAA) during embryo culture and a shift 
to auxin (0.2 mg/L NAA and 0.1 mg/L IBA) during root induction followed by 
growth without any growth regulators (Table  4.3 ). In a subsequent study, 
Mallikarjuna ( 1998 ) increased sucrose concentration to 50 g/L and added 0.5 mg/L 
each of IAA and kinetin to improve embryo recovery.  

4.4.3      Cicer arietinum  L. (Chickpea) 

 Mallikarjuna and Muehlbauer ( 2011 ) reported hybrids from crosses of  C. arietinum  
with  C .  pinnatifi dum  using a modifi ed liquid MS (ML-6) medium with ovules  sitting 
on fi lter-paper bridges (Table  4.3 ). Clarke et al. ( 2011 ) also succeeded with the more 
distantly related species  C. judaicum  using the same medium and fi lter-paper 
bridges but increasing the sucrose concentration to 90 g/L. Unfortunately, the 
hybrids often had poorly formed chloroplasts resulting in albino plantlets, but this 
trait was genotype specifi c and was infl uenced by nuclear factors (Clarke et al. 
 2011 ; Kumari et al.  2011 ). Differences in embryo growth rates between the various 
species also contribute to the requirement of embryo rescue (Ahmad and Slinkard 
 1991 ).  

4.4.4      Glycine max  L. Merr. (Soybean) 

 Rescue of soybean hybrid embryos requires a complex B5 medium supplemented 
with organic and amino acids (“B5 long”; Hu et al.  1996 ; Yeung and Sussex  1979 ). 
Depending on their size, embryos were cultured in this liquid medium for 22–61 
days and then transferred to a solid maturation and dormancy B5 long medium, 
with increased sucrose concentration (10 g/L) and activated charcoal (Table  4.3 ; 

M.M. Lulsdorf et al.
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Bodanese-Zanettini et al.  1996 ). This is in contrast to many other rescue protocols where 
the initial medium has high osmotic strength and subsequent media have lower sucrose 
concentrations. A solid Schenk and Hildebrandt ( 1972 )-based medium with 10 g/L 
sucrose was used for embryo germination and seedling development. Only hybrids with 
 G. tomentalla  collected 20–30 DAP could be recovered; other crosses could not be res-
cued since no medium has been developed for embryos younger than 8 DAP.  

4.4.5      Lens culinaris  Medik. (Lentil) 

 Two methods of embryo rescue were successfully used for the recovery of hybrids 
between the cultivated lentil and some of its wild relatives, but success seemed to be 
genotype specifi c. Cohen et al. ( 1984 ) used an initial high osmotic culture medium 
supplemented with IAA, zeatin, and gibberellin for rescue of 14-day-old hybrid 
seeds (Table  4.3 ). After 2 weeks of culture, embryos were excised and transferred to 
a medium with reduced sucrose content (30 g/L) and only zeatin added. In contrast, 
Fratini and Ruiz ( 2011 ) used a low osmotic medium (10 g/L sucrose) for the initial 
18-day-old seed culture and replaced zeatin with kinetin. Embryos were also excised 
after 2 weeks and cultured on the same medium using a short-day setting to improve 
vegetative growth. However, root development of developing hybrids is often poor. 
Grafting of hybrid shoots onto faba bean rootstock can be used to overcome poor 
rooting and has been successfully used for developing and multiplying hybrid mate-
rial (Gurusamy et al.  2012 ; S. Saha, personal communication; Yuan et al.  2011 ).  

4.4.6      Lupinus  sp. (Lupin) 

 Crosses between the narrow-leaf ( L. angustifolius ; 2n = 40) and yellow ( L. luteus ; 
2n = 52) lupin are complicated due to different chromosome numbers. Kasten et al. 
( 1991 ) obtained a single hybrid which eventually died due to chlorophyll defi ciencies. 
They used a B5 medium with a liquid overlay of 1.5 times the strength of B5 medium 
(Table  4.3 ). Plantlets were subsequently transferred to sterile Perlite™ with ¼-strength 
B5 medium. Clements et al. ( 2008 ) reported obtaining hybrids from lupin crosses 
involving  L. mutabilis  with  L. arizonicus ,  L. hartwegii , and  L. mexicanus . A simple 
B5 medium with 30 g/L sucrose was used, and embryos were subcultured on the same 
medium but with 20 g/L sucrose.  

4.4.7      Medicago sativa  L. (Alfalfa) 

 McCoy ( 1985 ) and McCoy and Smith ( 1986 ) developed an ovule–embryo rescue 
protocol for the development of interspecifi c  Medicago  hybrids. Ovules were cul-
tured on L2 (Phillips and Collins  1979 ) medium with 1 g/L ammonium nitrate 
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(Table  4.3 ). Interestingly, ovule culture was time limited to 6–9 days. Shorter or 
longer culture was detrimental, and embryos needed to be excised and transferred to 
the same medium for further development.  

4.4.8      Phaseolus vulgaris  L. (Dry Bean) 

 The bean embryo rescue protocol developed by Geerts et al. ( 2011 ) is unusual 
since the authors succeeded in rescuing 2–5-day-old hybrids using a six-step 
procedure consisting of (1) pod culture for 5–10 days, (2) embryo excision and 
culture  followed by (3) embryo maturation and dehydration for 14 days, (4) 
embryo germination, (5) rooting of shoots, and (6) hardening of plantlets 
(Table  4.3 ). The authors noted that  P. vulgaris  ×  P. polyanthus  crosses aborted 
due to a lack of division of the  primary endosperm nuclei, thus limiting nutrient 
exchange between embryo and endosperm. Embryo starvation was overcome by 
dripping a low-nutrient solution (P o O; modifi ed Phillips et al.  1982 ) with a high 
sucrose (143 g/L) concentration onto the young pods. Low concentrations of 
ABA and NAA were also added. The sucrose concentration was then gradually 
lowered to 102 and 80 g/L (P o 1) over a 5–7-day period. After excision, embryos 
were cultured on P o 1 medium for 2 weeks but with 1 mg/L BAP and then 
exposed to dehydration using a G6 (modifi ed Hu and Zanettini  1995 ) medium 
with 100 g/L sucrose, activated charcoal, and lower nutrient concentration 
except for 2.5 g/L KNO 3 . Embryo germination, shoot development, and rooting 
were accomplished on G7 (modifi ed Mergeai et al.  1997 ) medium with a reduced 
sucrose concentration (30 g/L) and a combination of BAP and GA 3 .  

4.4.9      Trifolium  sp. (Clover) 

 Several research groups have developed embryo rescue protocols for clover 
(Table  4.3 ; Kaushal et al.  2005 ; Phillips et al.  1992 ; Roy et al.  2004 ,  2011 ; Williams 
et al.  2011 ). The most recent techniques are summarized by Roy et al. ( 2011 ). 
Depending on the crosses, heart-shaped embryos were excised and transferred to a 
variety of media (Table  4.3 ). Interestingly, 15 % sterile cucumber juice was added; 
this juice contains among other nutrients potassium, magnesium, and sulfur as well 
as vitamins, amino acids, and silica according to Nakajima et al. ( 1969 ).  

4.4.10      Vigna  sp. 

 The genus  Vigna  contains a variety of crop species, and Palmer et al. ( 2002 ) obtained 
hybrids from crosses between a native Australian species,  V. lanceolata , and the 
wild mungbean ( V. radiata  ssp. sublobata) by culturing 9–15-day-old immature 
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embryos on MS medium with 30 g/L sucrose, 500 mg/L casein hydrolysate, and 
8 g/L agar (Table  4.3 ). Addition of growth regulators was detrimental to germina-
tion of embryos.   

4.5     Horticultural Species 

4.5.1      Allium  (Onion) 

 The genus  Allium  contains hundreds of distinct species, which includes many impor-
tant vegetables like onion ( Allium cepa ), garlic ( A. sativum ), leek ( A. ampeloprasum ), 
and chive ( A. schoenoprasum ). In an attempt to cross Welsh onion ( A. fi stulosum ) with 
Japanese garlic ( A. macrostemon  Bunge), ovaries at 7 DAP were separated and  cultured 
on BDS medium (Dunstan and Short  1977 ). One month after ovary culture, germi-
nated embryos were excised and transferred to BDS medium with 1 mg/L BAP, and 
rooting was achieved by subculturing shoots onto B5 medium (Table  4.4 , Umehara 
et al.  2006 ). An interspecifi c hybrid between leek ( A. ampeloprasum ) and garlic  
( A. sativum ) was also produced by using a fertile garlic clone as a pollen donor and 
ovary culture on LS (Linsmaier and Skoog  1965 ) medium (Yanagino et al.  2003 ).

4.5.2         Capsicum baccatum  (Chilli Pepper) 

 Hossain et al. ( 2003 ) reported that hybrid plants from  C. annuum  and  C. frutescens  
were produced only from embryos at 28–33 DAP when cultured on MS medium 
supplemented with casein hydrolysate, yeast extract, coconut water, and growth 
regulators (Table  4.4 ). Yoon et al. ( 2004 ) rescued  C. annuum  and  C. baccatum  
hybrid embryos (35–40 DAP) from torpedo to early cotyledonary stages and cul-
tured them on MS medium supplemented with 10 μg/L IAA and 10 μg/L GA 3 . 
Intact hybrid plants were regenerated, but few plants could be regenerated from 
embryos at the heart-shape stage and no plants were obtained from globular embryos 
(Yoon et al.  2006 ).  

4.5.3      Citrus  Species 

 Embryo rescue is important for citrus sexual breeding because polyembryony can 
interfere with hybrid recovery. Tan et al. ( 2007 ) reported that success of embryo culture 
was closely associated with the developmental stage of the embryo and 80 DAP was 
the optimal time for rescue of crosses between satsuma mandarin ( Citrus unshiu  Marc), 
red tangerine ( C. reticulata  Blanco), and trifoliate orange ( Poncirus trifoliata  (L.) 

M.M. Lulsdorf et al.
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Raf.). In crosses of satsuma mandarin with trifoliate orange, MT (Murashige and 
Tucker  1969 ) medium with 0.5 mg/L GA 3  resulted in higher embryo germination rates, 
while 1.0 mg/L GA 3  was required for crosses between red tangerine with trifoliate 
orange (Tan et al.  2007 , Table  4.4 ).  

4.5.4      Cucumis sativus  L. (Cucumber) 

 To obtain interspecifi c hybrids from crosses between  C. hystrix  Chakr. and 
 C. sativus  L., immature embryos (16 DAP) were dissected out and cultured on MS 
hormone- free medium until plantlets developed (Table  4.4 ; Chen et al.  2003 ). One-
week- old embryos from crosses of  C. anguria  ×  C. zeyheri  formed mostly callus 
through intact seed culture, but plants were obtained by culture of 2–6-week-old 
embryos (Table  4.4 ; Skalova et al.  2008a ). MS medium containing 5 % coconut water 
was suitable for the initial embryo germination, and a medium with 20 mg/L ascorbic 
acid was best for embryo development and plant recovery (Skalova et al.  2008a ,  b ).  

4.5.5      Lycopersicon esculentum  Mill. (Tomato) 

 To overcome barriers in crossing wild with cultivated tomatoes, a combination of two 
or more methods was necessary such as crossing with pollen mixtures (10:1, wild: 
cultivated), stigma treatment with 100 mg/L H 3 BO 3 , spraying pistils with 75 mg/L 
GA 3 , and embryo rescue (Pico et al.  2002 ). Globular stage embryos (25 DAP) cul-
tured in HLH (Neal and Topolesky  1983 ) saline solution supplemented with 2.25 mg/L 
BA and 1 mg/L yeast extract (YE) were suitable for callus induction. Calli were then 
transferred to MS medium supplemented with different growth regulators to regener-
ate shoots and induce rooting (Table  4.4 , Pico et al.  2002 ).  

4.5.6      Prunus  Species 

 To overcome incompatibilities between parents in wide hybridization of  Prunus  
species, a three-step strategy was established by Liu et al. ( 2007 ). First, pollen was 
exposed to an electrostatic fi eld (434.78 kV/m) to enhance germination and fruit set; 
second, immature embryos were not rescued until 10 weeks after pollination; and 
third, appropriate media were selected for embryo germination and multiplication 
of the hybrid seedlings (Table  4.4 ). Attempts to create new germplasm by wide 
hybridization between plum ( P. salicica ) and apricot ( P. armeniaca ) also found that 
the proper stage for embryo rescue and optimum culture media were important 
 factors (Table  4.4 ; Yang et al.  2004 ). Kukharchyk and Kastrickaya ( 2006 ) reported 
that the timing of embryo rescue varied depending on the cross combination of 
genotypes used.  
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4.5.7      Solanum tuberosum  subsp.  tuberosum  ( Potato ) 

 Ramon and Hanneman ( 2002 ) crossed tuber-bearing late blight-resistant wild 
 relatives of the cultivated potato from central Mexico with  Solanum tuberosum  subsp. 
 tuberosum . Embryos were dissected out and rescued 15–20 DAP and a haploid 
 cultivar developed. A second pollination combined with embryo rescue resulted in 
one true  S. tuberosum  subsp.  tuberosum  haploid ×  S .  pinnatisectum  hybrid, which 
showed a high degree of late blight resistance in the fi eld, equivalent to the resistance 
in its  S. pinnatisectum  parent (Table  4.4 ).  

4.5.8      Vitis vinifera  L. (Grape) 

 Tian et al. ( 2008 ) established an embryo rescue protocol that can be applied to 11 
different cross combinations of grape. In their protocol, ovules were cultured 
7 weeks after pollination in a double-phase ER medium (Emershad and Ramming 
 1994 ) containing 60 g/L sucrose and 3 g/L activated charcoal (Table  4.4 ). After 
8–12 weeks of culture, embryos were dissected out and transferred onto WPM 
medium (McCown and Lloyd  1981 ) supplemented with growth regulators until 
plantlet recovery. Culture duration of in vitro ovules has an important role in plant 
development since more than 16 weeks of culture reduced the regeneration ability 
of embryos (Tian et al.  2008 ). Further optimization of this protocol found that the 
addition of 0.26 g/L asparagine signifi cantly increased the embryo recovery rate 
(Tian and Wang  2008 ).   

4.6     Conclusions 

 Although the role of embryo rescue is similar across species, the methods available are 
as diverse as the species cultured (Tables  4.1 ,  4.2 ,  4.3 , and  4.4 ). Changes in medium 
components are a major route of adapting protocols to each species with differences in 
base medium, vitamins, sucrose concentration, and growth regulators added. Growth 
conditions vary from initial growth in light or darkness to changes in the optimum 
photoperiod and growth temperatures. Monocot culture tends to be more direct than 
dicot culture, where many protocols require a multi-step approach from pod to ovule 
culture to embryo rescue, shoot regeneration, and root induction. The number of 
explants available in  Brassica , from embryo, pod/silique, and ovaries to immature 
seeds (ovules) with attached placentas, allows species-specifi c protocol adaptations. 
The parental genotypes and the direction of the cross are also important in the  Brassica  
species. Legume species likewise stand out because some researchers managed to 
obtain hybrids from embryos as young as 2 days after pollination (Geerts et al.  2011 ). 
However, many species such as soybean and chickpea still require procedures for 
 rescue of very young embryos. Others have overcome hurdles such as poor rooting in 
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tissue culture by using grafting onto a different species (Yuan et al.  2011 ). In all species, 
the role of the methodology was to rescue aborting embryos and ensure the survival of 
unique germplasm. These techniques remain a useful component in any breeding pro-
gram where wide or interspecifi c crosses are preformed, where rapid cycling through 
generations is used, and where germplasm preservation is required.     
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    Abstract     Gene transfer technology in crop plants has tremendous potential to 
introduce newer and better traits through development of transgenics and broaden 
the genetic base of crop plants by transferring genes from novel sources overcoming 
the species and genus barriers. Nevertheless, development of effi cient transforma-
tion systems remains a prerequisite and might involve many years of exhaustive 
research. This chapter overviews the different methods of alien gene transfer 
through genetic transformation and factors affecting effi cient transformation across 
different crop species. A comparative study on  Agrobacterium  and biolistics- 
mediated transformation including methods for production of marker-free transgen-
ics are described in detail. Addressing the growing concerns over the biosafety issue 
constraining wider application of GM products in agriculture this chapter also 
focuses on improved methods of choice with respect to a crop family and also deals 
with future strategies which can help in further exploiting the existing technologies 
to develop improved crop varieties which can help to combat poverty, hunger and 
global agro-climatic changes.  
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5.1         Introduction 

 The recent advancement of horizontal gene transfer technology enabled scientists to 
fi nd a better way to answer problems related to stress response, disease or herbicide 
resistance or development of tolerance against climate change. It is now feasible to 
introduce into crop plants genes that have previously been inaccessible to the plant 
breeder or which did not exist in the crop of interest. 

 Transgenic technologies have enormous potential to improve crops in a rela-
tively precise way (Barampuram and Zhang  2011 ). Genes of interest are introduced, 
often by  Agrobacterium -mediated transformation, and become integrated at random 
positions in the genome. Initial experiments involved gene transfer by using 
 Agrobacterium tumefaciens  (Herrera-Estrella et al.  1983 ). The development of 
sophisticated methods later opened the way for an alternative procedure for engi-
neering plants using direct DNA transfer. The protocols for this transfer include 
particle bombardment (Gan  1989 ), chemical treatments and electroporation (Bates 
 1994 ). However, the unavailibility of effi cient transformation methods to introduce 
foreign DNA (alien gene) can be a substantial barrier to the application of recombi-
nant DNA methods in some crop plants (Bhatnagar et al.  2010 ). 

 Despite signifi cant advances over the past decade, the development of effi -
cient transformation methods can take many years of painstaking research 
(Sharma et al.  2005a ,  b ). The major components for the development of trans-
genic plants are (1) the development of reliable tissue culture regeneration 
 systems; (2) preparation of gene constructs and transformation with suitable vec-
tors; (3) effi cient transformation techniques for the introduction of genes into the 
crop plants; (4) recovery and multiplication of transgenic plants; (5) molecular 
and genetic characterisation of transgenic plants for stable and effi cient gene 
expression; (6) transfer of genes to elite cultivars by conventional breeding meth-
ods if required; and (7) evaluation of transgenic plants for their effectiveness in 
alleviating the biotic and abiotic stresses without being an environmental biohazard 
(Birch  1997 ). Some of the key characteristics of these components are discussed 
in this chapter.  

5.2     Plant Regeneration in Tissue Cultures 

 Transformation of plants involves the stable introduction of DNA sequences usually 
into the nuclear genome of cells capable of giving rise to a whole transformed plant. 
Transformation without regeneration and regeneration without transformation are 
of limited value (Bhatnagar et al.  2010 ). The very basis of regeneration in tissue 
cultures is the recognition that somatic plant cells are totipotent (i.e., capable of giv-
ing rise to a whole plant) and can be stimulated to regenerate into whole plants in 
vitro, via organogenesis (shoot formation) or somatic embryogenesis, provided they 

P. Bhatnagar-Mathur et al.



107

are given the optimum hormonal and nutritional conditions (Skoog and Miller 
 1957 ). Adventitious shoots or embryos are thought to arise from single cells and, 
thus, provide totipotent cells that can be identifi ed which are both competent and 
accessible for gene transfer and will give rise directly to nonchimeric transformed 
plants. Transformation techniques reliant on plant regeneration from in vitro- 
cultured tissues have been described for many crop species (Lindsey and Jones 
 1989 ; Birch  1997 ).  

5.3     Transformation Vectors 

 Most vectors used for the genetic transformation of plants carry ‘marker’ genes that 
allow the recognition of transformed cells, by either selection or screening. These 
genes are dominant, usually of microbial origin, and placed under the control of 
strong and constitutive, eukaryotic promoters, often of viral origin (Birch  1997 ). 
The most popular selectable marker genes used in plant transformation vectors 
include constructs providing resistance to antibiotics such as kanamycin, chloram-
phenicol and hygromycin and genes that allow growth in the presence of herbicides 
such as phosphinothricin, glyphosate, bialaphos and several other chemicals 
(Wilmink and Dons  1993 ). 

 For successful selection, the target plant cells must be susceptible to relatively 
low concentrations of the antibiotic or the herbicide in a non-leaky manner. 
Screenable marker ‘reporter genes’ have also been developed from bacterial genes 
coding for easily assayed enzymes, such as chloramphenicol acetyl transferase 
(CAT), b- galactosidase, b-glucuronidase (GUS), luciferase (LUX), green fl uores-
cent protein (GFP), nopaline synthase and octopine synthase (Herrera-Estrella et al. 
 1983 , Reichel et al.  1996 ). The utility of any particular marker gene construct as a 
transformation marker varies depending on the plant species and explant involved. 
To date kanamycin resistance (Reiss et al.  1984 ) is the most widely used selectable 
marker phenotype, and b-glucuronidase (Jefferson et al.  1987 ) is the most widely 
used screenable marker. 

 Most commonly used plant transformation vectors have features required for 
various recombinant DNA manipulations that include multiple unique restriction 
sites, bacterial origins of replication and prokaryotic selectable markers for 
 plasmid selection and maintenance in  Escherichia coli  (e.g. antibiotic resistance). 
In addition, these vectors contain specifi c selectable marker genes engineered for 
expression in plants that may be used directly as transformation vectors in physi-
cal DNA delivery strategies such as particle bombardment. However, for 
 Agrobacterium - mediated  gene transfer, these vectors need additional features 
such as wide host range replication and transfer functions to allow conjugation 
from  E. coli  to  Agrobacterium  and plasmid maintenance in both bacterial hosts 
(Klee et al.  1987 ).  
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5.4     Methods of Plant Gene Transfer 

5.4.1     Agrobacterium-Mediated Gene Transfer 

  Agrobacterium tumefaciens  is a soil bacterium that leads to gall formation at the 
wound sites of many dicotyledonous plants. The tumour inducing capability is due 
to the presence of a large Ti (tumour inducing) plasmid in virulent strains of 
 Agrobacterium.  Likewise, Ri (root-inducing) megaplasmids are found in virulent 
strains of  A. rhizogenes , the causative agent of ‘hairy root’ disease. The molecular 
biology of Ti and Ri plasmids and of crown gall and hairy root induction have been 
studied in great detail (Klee et al.  1987 ; Zambryski  1992 ). The number of plant spe-
cies transformed by  Agrobacterium  vectors has increased steadily over the past few 
years, and representatives of many taxonomically diverse genera have proved ame-
nable to transformation (Dale et al.  1993 ). This success can mainly be ascribed to the 
improvements in tissue culture technology, particularly adventitious shoot regenera-
tion in the crop plants concerned.  Agrobacterium -mediated transformation in plants 
has been carried out across a vast range of plant species by using both tissue culture-
dependent transformation as well as tissue culture-independent transformation (non-
tissue culture-based) techniques (Keshamma et al .   2008 ; Rao et al.  2012 ). 

 The important requirements for  Agrobacterium -mediated transformation fi rstly 
include the production of some active compounds like acetosyringone by the 
explants in order to induce the  vir  genes present on the Ti plasmid and then the 
induced  Agrobacteria  must have access to competent plant cells that are capable of 
regenerating adventitious shoots or somatic embryos at a reasonable frequency 
(Barghchi  1995 ). There is evidence to suggest that for gene transfer to occur, cells 
must be replicating DNA or undergoing mitosis (Moloney et al.  1989 ; Sharma et al. 
 1990 ). The majority of transformation experiments utilise either freshly explanted 
tissue sections or protoplasts in the process of reforming a cell wall and entering cell 
division or callus and suspension-cultured cell clumps wounded by chopping or 
pipetting and stimulated into rapid cell division by the use of nurse cultures (Draper 
et al.  1988 ). The adventitious shoot production in vitro is most commonly employed 
in most systems of genetic transformation. 

5.4.1.1     Role of Agrobacterium-Related Factors in Alien Gene Transfer 

 Plant-specifi c factors, such as compounds (phenolics) that induce the expression of 
 Agrobacterium vir  genes, are necessary for effi cient transformation (Stachel and 
Zambryski  1989 ). Virulence-inducing phenolic compounds were fi rst described by 
Bolton et al. ( 1986 ) and are limited to dicolyledonous plants (Smith and Hood  1995 ). 
Although these have been comprehensively reviewed (Gheysen et al.  1998 ; Gelvin 
 2000 ), transfer and integration process of T-DNA is still not fully understood. 

 Till date, several key factors involved in  Agrobacterium -mediated transfer have 
been described (Pradhan et al.  2012 ; Guo et al.  2012 ). Impact of these factors on 
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transformation effi ciency was modifi ed by using a large number of  Agrobacterium  
strains (Klee  2000 ), binary vectors (Hoekema et al.  1983 ), disarmed plasmids such 
as disarmed version of p TiBo542  (Hood et al.  1986 ) and use of super-binary vector 
with a fragment containing the  virB ,  virC  and  virG  genes (from p TiBo542 ). Multiple 
T-DNAs were delivered to plant cells either from a mixture of strains or from a 
single strain and segregation of one T-DNA from others observed in various occa-
sions (McKnight et al.  1987 , De Block and Debrouwer,  1991 ). In another approach 
Komari et al. ( 1996 ) co-transformed tobacco and rice with unique plasmids carrying 
two separate T-DNAs and were able to separate them in successive generations by 
Mendelian segregation. 

 Addition of phenolic compounds, particularly acetosyringone, enhances the 
induction of the  Agrobacterium vir  genes, during bacteria/plant co-cultivation 
(Vijayachandra et al.  1995 ). Hence it was recognised as a key for successful trans-
formation in rice (Hiei et al.  1994 ). Other inducing factors are low pH (Godwin 
et al.  1991 ), temperature (Dillen et al.  1997 ) and high osmotic pressure (Usami et al. 
 1988 ). It has been observed that certain carbohydrates in the presence of 100 μM 
acetosyringone did not have any signifi cant synergistic effect (Hiei et al.  1997 ). 
Wounding of targeted tissue prior to co-cultivation enhanced  Agrobacterium  trans-
formation frequencies by microprojectile bombardment (Bidney et al.  1992 ). 
However, inoculation of  Agrobacterium  after plasmolysis alone gave an even  better 
transient expression compared to the combination of plasmolysis and  bombardment 
(Uzé et al.  1997 ). Genotype and type of tissue to be transformed, composition of 
culture media and elimination of  Agrobacterium  after co-cultivation further infl u-
ence the effi cient production of stable transformants in plants (Nauerby et al.  1997 ).  

5.4.1.2     Factors Affecting  Agrobacterium -Mediated Transformations 

 The transfer of T-DNA and its integration into the plant genome are infl uenced by 
several  A. tumefaciens  and plant tissue-specifi c factors. These include plant geno-
type, explant, vectors-plasmid, bacteria strain, addition of vir-gene-inducing 
 synthetic phenolic compounds, culture media composition, tissue damage, suppres-
sion and elimination of  A. tumefaciens  infection after co-cultivation (Nauerby et al. 
 1997 ; Klee  2000 ). 

   Osmotic Treatment 

 Osmotic treatment for enhancement of  Agrobacterium -mediated transformation 
largely depends upon the species. However, plasmolysis with sucrose (292 mM) 
improved T-DNA delivery into precultured immature embryos of rice (Uzé et al. 
 1997 ) and was later used extensively later on in development of transgenic plants 
(Lucca et al.  2001 ). Extensive use of sucrose and glucose transformation did not 
describe any effect of osmotic medium on T-DNA delivery and stable transforma-
tion in rice and maize (Hiei et al.  1994 ; Zhao et al.  2001 ; Frame et al.  2002 ) and in 
wheat (Cheng et al.  2003 ).  
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   Preconditioning and Co-cultivation Time 

 Co-cultivation of explants with  A. tumefaciens  has made possible the use of some 
explants, which were hitherto recalcitrant for transformation. Optimising the pre-
conditioning time (72 h) and co-cultivation time with  A. tumefaciens  (48 h) increased 
the transformation effi ciency in canola (Cadoza and Stewart  2003 ) and in Chinese 
cabbage (Zhang et al.  2000 ).  

   Desiccation of Explants 

 A signifi cant factor that enhances transformation of crop species is desiccation of 
explants prior to or post  A. tumefaciens  infection. Arencibia et al. ( 1998 ) reported 
that air-drying sugarcane suspension cells prior to inoculation under laminar fl ow for 
15–60 min slightly improved T-DNA delivery and subsequently increased transfor-
mation effi ciency. Similarly in rice, air-drying calli derived from suspension cultures 
for 10–15 min increased the transformation effi ciency by tenfold or more (Urushibara 
et al.  2001 ). Desiccation of precultured immature embryos, suspension culture cells 
and embryonic calluses of wheat and embrogenic calluses of maize greatly enhanced 
T-DNA delivery and plant tissue recovery after co-culture, leading to increased sta-
ble transformation frequency (Cheng et al.  2003 ). This treatment has also improved 
T-DNA delivery in dicot species such as soybean suspension cells based on prelimi-
nary study (Cheng and Fry  2000 ). Although the molecular mechanism of desiccation 
during co-culture remains unclear, it is known that desiccation suppresses the growth 
of  Agrobacterium  similar to the effect observed with silver nitrate (Opabode  2006 ).  

   Anti-necrotic Treatments 

 Anti-necrotic mixtures for pre-induction have shown to be important for reducing 
oxidative burst. Treatment of meristem explants of sugarcane and rice with medium 
containing 15 mg/1 ascorbic acid, 40 mg/1 cysteine and 2 mg/1 silver nitrate improved 
the transformation effi ciency and explant viability (Enriquez-Obregon et al.  1999 ). 
Inclusion of silver nitrate in co-culture medium enhanced stable transformation in 
maize (Armstrong and Rout  2001 ; Zhao et al.  2001 ). It signifi cantly suppresses the 
 Agrobacterium  growth during co-culture without compromising T-DNA delivery and 
subsequent T-DNA integration, facilitating plant cell recovery and increased effi -
ciency of transformation (Cheng et al.  2003 ). Inclusion of cysteine in the co-culture 
medium led to an improvement in both transient GUS expression in target cells and a 
signifi cant increase in stable transformation frequency in maize (Somers et al.  2003 ).  

   Temperature 

 The effect of temperature during co-culture on T-DNA delivery was fi rst reported in 
dicot species (Dillen et al.  1997 ). The optimal temperature for stable transformation 

P. Bhatnagar-Mathur et al.



111

should be evaluated with each specifi c explant and  Agrobacterium  strain involved 
(Salas et al.  2001 ; Alimohammadi and Bagherieh-Najjar  2009 ). A temperature of 
22 °C was found to be optimal for T-DNA delivery in tobacco leaves (Dillen et al. 
 1997 ). However, in another study the highest number of transformed plants were 
obtained in tobacco at 25 °C, even though 19 °C was optimal for T-DNA delivery 
(Salas et al.  2001 ). In monocots, the co-culture temperature for most of the crops 
ranged from 24 to 25 °C, and in some cases, 28 °C was used for co-culture (Rashid 
et al.  1996 ; Enriquez-Obregon et al.  1999 ; Hashizume et al.  1999 ). The effect of 
lower temperature (23 °C) on T-DNA delivery and stable transformation was also 
evaluated, and highest transient GUS expression (64 %) was observed at 22 °C in 
garlic (Kondo et al.  2000 ). In maize, higher transformation frequency was observed 
at 20 °C than at 23 °C (Frame et al.  2002 ). In another study, transgenic maize plants 
were obtained by co-culture of the immature embryos at 20 °C followed by 28 °C 
subculture (Gordon-Kamm et al.  1990 ). The optimal temperature for both T-DNA 
delivery and stable transformation was 23–25 °C for wheat and 23 °C for maize 
(Frame et al.  2002 ).  

   Surfactants 

 Including surfactants such as Silwet L77 and Pluronic acid F68 in inoculation 
medium greatly enhanced T-DNA delivery in immature embryos of wheat (Cheng 
et al.  1997 ). These surfactants may enhance T-DNA delivery by aiding  A. tumefa-
ciens  attachment and/or by elimination of certain substances that inhibit this attach-
ment. Their addition in the inoculation medium plays a role similar to vacuum 
infi ltration, i.e. facilitating the delivery of  A. tumefaciens  cells to closed ovules (pri-
mary target for transformation of  A. thaliana  (Ye et al.  1999 ; Desfeux et al.  2000 )). 
The surfactant Silwet L77 was shown to be useful to the success of the fl oral dip 
method of  Arabidopsis thaliana  transformation (Dehestani et al.  2010 ).  

   Inoculation and Co-culture Medium 

 Culture medium components like sugar, plant growth regulators and  vir  induction 
chemicals are important factors that affect the transformation frequency. MS 
(Murashige and Skoog  1962 ) or a modifi ed MS-based medium has shown to be suit-
able for inoculation and co-culture (Dong et al.  1996 ; Enriquez-Obregon et al.  1999 ; 
Lucca et al.  2001 ). The modifi ed N6 medium (Chu et al.  1995 ) containing 2,4-dichlo-
rophenoxyacetic acid (2,4-D) was shown to be suitable for co-culture in rice. 
Transformation of maize immature embryo using LS-based (Linsmaier and Skoog 
 1965 ) medium and N6-based medium failed to generate transformed plants (Ishida 
et al.  1996 ). However, addition of silver nitrate in N6-based medium for inoculation 
and co-culture of immature embryos resulted in regeneration of transgenic plants in 
maize (Zhao et al.  2001 ). Similarly, addition of CaCl 2  in the medium has increased 
transformation effi ciency in barley (Kumlehn et al.  2006 ). One-tenth MS salt 

5 Horizontal Gene Transfer Through Genetic Transformation



112

strength enhanced transient GUS expression tenfold over full-strength salts in bar-
ley (Ke et al.  2002 ). Furthermore, the distribution of cells expressing the GUS gene 
within each set of immature embryos was clearly altered, showing signifi cantly 
more cells on the scutellar surface expressing GUS. Reduction in the salt strength of 
the inoculation and co-culture media was shown to be useful in development of 
transgenics of canola (Fry et al.  1987 ), wheat (Cheng et al.  1997 ) and maize 
(Armstrong and Rout  2001 ; Khanna and Daggard  2003 ). Use of  vir  induction chem-
icals improved the transformation effi ciency in most of the crops (Cheng et al.  1997 ; 
Zhao et al.  2000 ; Kumlehn et al.  2006 ). However in some other cases, explants of 
monocot species could be effi ciently transformed without the aid of external  vir  
induction chemicals for special treatment (Enriquez-Obregon et al.  1999 ; Cheng 
et al.  2003 ).  

   Antibiotics 

 Antibiotics such as cefotaxime, carbenecillin and timentin have been used regularly 
in  Agrobacterium -mediated transformation (Cheng et al.  1997 ; Bottinger et al. 
 2001 ; Sunikumar and Rathore  2001 ). Though initially cefotaxime worked well in 
rice and maize, later on it was observed that its use had a detrimental effect to maize 
Hi II callus (Ishida et al.  1996 ). Hence the use of carbenicillin has become the anti-
biotic of choice in reports of  Agrobacterium -mediated transformation of wheat and 
maize in subsequent studies (Cheng et al.  2003 , Zhang et al.  2003 ). On the other 
hand, 100 mg/l kanamycin was economical and improved the transformation effi -
ciency in white spruce by enrichment of transformed tissue in budforming callus 
(Le et al.  2001 ) and increased the proportion of positively transformed shoots dur-
ing subculture on kanamycin-containing medium in peanut and pigeonpea (Sharma 
and Anjaiah  2000 ; Thu et al.  2003 ).  

   Selectable Marker 

 Genes encoding for hygromycin phosphotransferase ( hpt ), phosphinothricin acetyl-
transferase ( pat  or  bar ) and neomycin phosphotransferase ( npt II) are most widely 
used selectable markers for transformation. These marker genes work well under 
the control of constitutive promoters such as the  35S  promoter from caulifl ower 
mosaic virus and the ubiquitin promoter from maize for selection of transformed 
cells. In  Asparagus  and banana, the  npt II gene under the control of the nopaline 
synthase promoter has been used successfully to select stable transformants with 
kanamycin (May et al.  1995 ; Limanton-Grevet and Jullien  2001 ). The positive 
selectable marker phosphomannose isomerase (PMI) was fi rst used for 
 Agrobacterium- mediated  transformation of sugar beet and was recently used to 
enhance transformation of sorghum (Joersbo et al.  1998 ; Gao et al.  2005 ). Introns 
were inserted into the coding region of  hpt  for enhancing transgene expression in 
monocot species (Simpson and Filipowcz  1996 ). Besides improving transformation 
frequency in rice, this modifi cation in the selectable marker reduced copy numbers 
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of the marker gene, enabled better control of  Agrobacterium  growth during the 
transformation (Wang et al.  1997 ) and enhanced stable transformation (Wang et al. 
 2001 ). Glyphosate-insensitive plant 3-enolpyruvylshikimate-5-phosphate synthase 
(EPSPS) genes, the bacterial CP4 gene or a bacterial gene that degrades glyphosate, 
i.e. glyphosate oxidoreductase (GOX) gene, have also been used as selectable 
marker genes to generate transgenic plants in wheat and maize (Armstrong and 
Rout  2001 ; Howe et al.  2002 ; Hu et al.  2003 ).    

5.4.2      Modifi ed Methods of Agrobacterium -Mediated 
Gene Transfer 

5.4.2.1     Sonication-Assisted Agrobacterium-Mediated 
Transformation 

 An important modifi cation in  Agrobacterium -mediated transformation involves 
subjecting the plant tissue to brief periods of ultrasound in the presence of 
 Agrobacterium . Sonication-assisted  Agrobacterium -mediated transformation 
(SAAT) treatment produces a large number of small and uniform wounds through-
out the tissue, allowing easy access to the  Agrobacterium , resulting in improved 
transformation effi ciency in several different plant tissues including immature coty-
ledons, leaf tissue, suspension cultures and somatic and zygotic embryos. It was 
reported to increase transformation rates in those species which are more recalci-
trant to  Agrobacterium -mediated transformation (Trick and Finer  1997 ). 

 Tissue culture-independent transformation systems have also been demonstrated 
in various crops such as soybean (Chee et al.  1989 ), Arabidopsis (Feldmann and 
Marks  1987 ), sunfl ower (Rao and Rohini  1999 ), saffl ower (Rohini and Rao  2000a ) 
and peanut (Rohini and Rao  2000b ). Arabidopsis seeds infected with  Agrobacterium  
and allowed to grow into mature plants in vivo resulted in about 1 % transformation 
frequency. Inoculation of  Agrobacterium  onto wounded sites arising from cutting 
away infl orescences of  Arabidopsis  yielded transformed seeds from newly emerg-
ing infl orescences (Chang et al.  1994 ; Katavic et al.  1994 ). This has also been used 
to generate transgenics in groundnut (Rohini and Rao  2000b ).  

5.4.2.2     Floral Dip Method 

 In this method,  Agrobacterium  is directly applied to fl oral tissues and thus  eliminates 
possibility of generation of somaclonal variations due to the bypass of tissue culture 
techniques (Clough et al.  1998 ). In  Arabidopsis , studies demonstrated the use of 
female gametophytes of immature fl owers as targets of fl oral-dip transformation 
(Ye et al.  1999 ; Desfeux et al.  2000 ). This method requires considerably less time 
and effort than vacuum infi ltration and is greater in yield.  Agrobacterium - based  
fl oral dip transformation method, requiring no vacuum infi ltration step, reported 
transformation effi ciencies up to 0.8 % (Liu et al.  2012 ).  
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5.4.2.3     Vacuum Infi ltration Method 

 The vacuum infi ltration method of transformation has been applied mostly in mono-
cot crops in order to avoid both in vitro culture and regeneration steps during trans-
formation. The cells of a plant when subjected to a vacuum environment establish 
more intimate contact with  Agrobacterium . This method was used to obtain stable 
transgenics in  Medicago truncatula  (a model legume plant) (Trieu et al.  2000 ).  

5.4.2.4     Agrolistics 

 The agrolistics approach combines the advantages of effi cient biolistic delivery and 
the precision of the  Agrobacterium  T-DNA insertion mechanism, minimising the 
regions of homology contributing to genetic and/or epigenetic instability (Hansen 
and Chilton  1996 ). By combining features of  Agrobacterium- mediated transforma-
tion it is possible to achieve relatively predictable inserts in plants that are not 
 normally transformable using  Agrobacterium . Agrolistic transformation allows 
integration of the gene of interest without the undesired vector sequence, using 
plant expression cassettes for  virD1  and  virD2  genes co-delivered with a vector 
containing T-DNA border sequences fl anking a gene of interest, resulting in produc-
tion of transformants without the extraneous vector DNA as a result of T-DNA 
border cleavage by  virD1  and  virD2  gene products (Sharma et al.  2005a ,  b ).   

5.4.3     Biolistics-Mediated Gene Transfer 

 The invention of the particle bombardment technique (Sanford et al.  1987 ) was a 
major breakthrough in plant transformation as it has enabled the genetic engineer-
ing of species not amenable to  Agrobacterium  or protoplast-based transfer tech-
niques. Based on acceleration, microscopic tungsten (Russel et al.  1992 ) or gold 
particles coated with DNA can be propulsed into practically all kinds of tissues 
(Tomes et al.  1990 ; Ritala et al.  1994 ; Zhong et al.  1996 ). It has been used to develop 
the transgenic cereal plants in wheat (Vasil et al.  1992 ), oat (Somers et al.  1992 ), 
barley (Wan and Lemaux  1994 ) and rye (Castillo et al.  1994 ). 

5.4.3.1     Factors Affecting Biolistics-Mediated Gene Transfer 

 Several factors have been found to infl uence the applicability and effi ciency of 
biolistic gene transfer. The factors related with tissue culture techniques include 
genotype (Koprek et al.  1996 ), type and age of bombarded explants (Armaleo et al. 
 1990 ), culture period prior to and after gene transfer (Rasco-Gaunt et al.  1999 ), 
culture medium composition (Barro et al.  1998 ) and osmotic pretreatment (Vain 
et al.  1993 ). Concerning the biolistic device, the applied acceleration pressure 
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(Rasco- Gaunt et al.  1999 ); the adjustable distances between rupture disc, macrocar-
rier,  stopping screen and target plate (Koprek et al.  1996 ; Rasco-Gaunt et al.  1999 ); 
the vacuum pressure in the bombardment chamber (Rasco-Gaunt et al.  1999 ); num-
ber of bombardments (Lonsdale et al.  1990 ) as well as size and density of micro- 
particles (Altpeter et al.  1996 ; Rasco-Gaunt et al.  1999 ); DNA/micro-particle 
mixing protocols (Perl et al.  1992 ) and physical confi guration of transforming DNA 
(Nandadeva et al.  1999 ; Fu et al.  2000 ) are factors to be optimised. Several attempts 
to establish or improve transformation protocols focused on transient GUS expres-
sion without consideration of the regeneration response of the bombarded tissues 
(Chibbar et al.  1991 ; Bilang et al.  1993 ). However, particle bombardment, espe-
cially of recalcitrant species, can have severe effects on the regeneration capability 
of cultures. Optimised protocols for generating transgenic plants should therefore 
not be based exclusively on transient gene expression assays (Nandadeva et al. 
 1999 ); adjustment of  bombardment parameters to maintain the shoot regeneration 
ability and allow the recovery of stable transformants is recommended (Altpeter 
et al.  1996 ).   

5.4.4     Other Methods of Gene Transfer 

 Other DNA delivery protocols like macroinjection (Soyfer  1980 ; Zhou et al.  1983 ), 
the use of silicon carbide whiskers (Wang et al.  1995 ; Petolino et al.  2000 )  and 
ultrasound- (Joersbo and Brunstedt  1990 ) or laser-mediated gene transfer (Weber et al. 
 1988 ) are of rather theoretical importance and have been extensively reviewed by 
Rasco-Gaunt et al. ( 1999 ).   

5.5     Marker-Free Plants: The Most Relevant Answers 
to Biosafety-Related Issues 

 Selectable marker gene (SMG) and reporter genes play the most crucial role in 
transferring foreign genes and are almost always present in engineered DNA plas-
mids used for genetic transformation of plant tissue (Lee and Gelvin  2008 ). It is 
only the presence of SMG that serves as a weapon for transformed cells to tolerate 
a lethal exposure to antibiotic and herbicide, and the desired gene can safely grow 
and regenerate into the plants (Lee and Gelvin  2008 ). Selectable markers and visi-
ble marker reporter genes rarely affect the studied trait of interest, but provide a 
 powerful tool in determining the success of the transformation events or identifi ca-
tion of transformation events before the gene of interest can be identifi ed in the 
culture (Sheen et al.  1995 ). However there is a need to free transgenic plants from 
these markers due to harmful effects to human. Therefore the following strategies 
have been used widely to remove such markers. 
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5.5.1     Co-transformation 

 The co-transformation method is used to eliminate the marker gene from the nuclear 
genome and involves transformation that targets insertion at two different plant 
genome loci. Co-transformation studies utilise the strategy to load the selectable 
and target genes between the same pair of borders or loaded into separate T-DNAs, 
which are expected to segregate independently in a Mendelian fashion (Ramana 
Rao et al.  2011 ). The three methods used in the co-transformation system include 
(1) two different vectors carried by different  Agrobacterium  strains (De Neve et al. 
 1997 ) and biolistic introduction of two plasmids in the same tissue (Shiva Prakash 
et al.  2009 ; Kumar et al.  2010 ); (2) two different vectors in the same  Agrobacterium  
cell (Sripriya et al.  2008 ) and (3) two T-DNAs borne by a single binary vector (2 
T-DNA system) (Miller et al.  2002 ). This has the following advantages.

    1.    The conventional unmodifi ed  Agrobacterium -mediated gene transfer methods 
have high adaptability and easier handling of the binary vectors (Tuteja et al. 
 2012 ).   

   2.    This method depends on the co-transformation effi ciency which ranges from 30 
to 50 % and the independent integration of T-DNA into the plant genome, which 
is acceptable for practical applications (McCormac et al.  2001 ). Recently, in rice, 
high transformation frequency (86 %) was achieved through genetic separation 
in four out of ten primary co-transformants that were forwarded to the T1 gen-
eration (Sripriya et al.  2011 ).    

5.5.2       Multi-Autotransformation Vector System 

 The multi-autotransformation (MAT) vector system represents a highly sophisti-
cated approach for the removal of nuclear marker genes (Ebinuma et al.  1997 ). It 
is a unique transformation system that is based on morphological changes caused 
by oncogene [the isopentenyl transferase ( ipt ) gene] or rhizogene (the  rol  gene) of 
 A. tumefaciens  (Tuteja et al.  2012 ). The  ipt -type MAT system has been considered 
better for successful generation of marker-free transgenic plants (Saelim et al. 
 2009 ). This system utilises the  ipt  gene as morphological marker for visual selec-
tion of transgenic lines. The extreme shooty phenotype (ESP) of transgenic lines is 
lost due to the removal of  ipt  gene mediated by the yeast recombinase/recognition 
sites R/RS system. As a result, phenotypically normal shoots, considered marker-
free transgenic plants, could be obtained. The  ipt  marker gene has been effi ciently 
used as selectable marker gene for obtaining marker-free plant in several crops 
(Khan et al.  2010a ,  b ). Rol-type MAT vector (pMAT101) containing  lacZ  gene as 
a model gene and the removable cassette with  GUS  gene in the T-DNA region were 
used to produce morphologically normal transgenic  Kalanchoe blossfeldiana  pol-
len, employing  rol  gene as the selectable marker gene and  gus  gene as a reporter 
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gene (Thirukkumarana et al.  2010 ). This vector has been tried in  Antirrhinum 
majus  (Cui et al.  2001 ), tobacco (Ebinuma and Komamine  2001 ), white poplar 
(Zelasco et al.  2007 ) and  Petunia hybrida  (Khan et al.  2010c ). Genetic transforma-
tion of an elite white poplar genotype ( Populus alba  L., cv. ‘Villafranca’) was 
performed with MAT vectors carrying the  ipt  and  rol  genes from  A. tumefaciens  
spp. as morphological markers. The occurrence of abnormal  ipt  and  rol  phenotypes 
allowed the visual selection of transformants (Zelasco et al.  2007 ).  A. tumefaciens  
strain EHA105 harbouring a Rol-type MAT vector, pMAT101, was used to pro-
duce morphologically normal transgenic  Petunia hybrida  ‘Dainty Lady’ employ-
ing  rol  gene as the selection marker gene. The  lacZ  gene was used as a model GOI 
(Khan et al.  2010c ).  

5.5.3     Site-Specifi c Recombination 

 The site-specifi c recombination methods in plants have been developed to delete 
selection markers to produce marker-free transgenic plants or to integrate the trans-
gene into a predetermined genomic location to produce site-specifi c transgenic 
plants (Nanto and Ebinuma  2008 ). The three well-known site-specifi c recombina-
tion systems discussed below are used for the elimination of selection marker gene.  

5.5.4     Cre/Lox Site-Specifi c Recombination System 

 The Cre/loxP (CLX) system consists of two components: (a) two loxP sites each 
consisting of 34 bp inverted repeats cloned in direct orientation fl anking a DNA 
sequence and (b) the  cre  gene encoding a 38 kDa recombinase protein that specifi -
cally binds to the loxP sites and excises the intervening sequence along with one of 
the loxP sites. A number of studies describes the successful utilisation of CLX sys-
tem including  Arabidopsis thaliana  (Zuo et al.  2001 ),  Nicotiana benthamiana  
(Gleave et al.  1999 ),  Zea mays  (Zhang et al.  2003 ) and  Oryza sativa  (Hoa et al. 
 2002 ; Sreekala et al.  2005 ). 

 The specifi city of the enzyme for its 34 bp recognition sequence is one of the 
major advantages of Cre/lox system because insertion and excision of genes with 
precision in the plant genome without a site-specifi c recombination system are dif-
fi cult (Tuteja et al.  2012 ). However, use of this system for marker gene removal 
requires re-transformation and outcrossing approaches that are laborious and time 
consuming (Dale and David  1991 ). Several approaches were developed to over-
come these shortcomings, including the use of some chemical inducers (Zhang 
et al.  2006 ) and heat shock (Cuellar et al.  2006 ). Marker-free transgenic tomato 
plants expressing  Cry1Ac  were obtained by using a chemically regulated Cre/lox- 
mediated site-specifi c recombination system (Zuo et al.  2001 ; Zhang et al.  2006 ). 
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Lin et al. ( 2008 ) reported a chemical induction method for creating selectively ter-
minable transgenic rice using benzothiadiazole (bentazon), a herbicide used for 
weed control in major crops like rice, maize, wheat, cotton and soybean. Similarly, 
Ma et al. ( 2009 ) used salicyclic acid-inducible Cre–loxP recombination system to 
develop marker-free transgenic tomato.  

5.5.5     Flippase/Flippase Recombination Target 
Recombination System 

 Nandy and Srivastava ( 2011 ) reported the use of fl ippase (FLP)/fl ippase recogni-
tion target (fl p) system for effi cient targeting of foreign gene into the engineered 
genomic site in rice. In the FLP/frt site-specifi c system, the FLP enzyme effi -
ciently catalyses recombination between two directly repeated FLP recombination 
target (frt) sites, eliminating the sequence between them (Tuteja et al.  2012 ). By 
controlled expression of the FLP recombinase and specifi c allocation of the frt 
sites within transgenic constructs, the system can be applied to eliminate the 
marker genes after selection (Cho  2009 ). This system has been used to generate 
marker-free salt-tolerant transgenic maize plants constitutively expressing 
AtNHX1, a Na(+)/H(+) antiporter gene from  A. thaliana  (Li et al.  2010 ). An 
 oxidative stress-inducible FLP gene was used successfully to excise antibiotic-
resistance genes from transgenic plants (Woo et al.  2009 ). Two site- specifi c 
recombination systems, Cre/lox and FLP/frt, were tested for marker gene removal 
and targeted gene transfer in a  Populus  (Fladung et al.  2010 ) and observed to be 
useful for removal of marker genes. Combining both site-specifi c recombination 
systems, a strategy is suggested for targeted transgene transfer and removal of 
antibiotic marker genes.  

5.5.6     R/RS Recombination System 

 The MAT vectors consist of yeast site-specifi c recombination R/RS system to 
excise the DNA fragment and the  ipt  gene positioned between two directly oriented 
recombination sites (Araki et al.  1987 ). The R/RS system comprises an R recombi-
nase gene and two RS recombination site sequences. The  ipt  combined with the  ‘R’  
gene is placed within two directly oriented recognition sites to remove it from 
transgenic cells after transformation. The improved MAT vector is used to generate 
marker- free transgenic plants effi ciently. A new binary vector for  A. tumefaciens -
mediated transformation, pHUGE-Red, was developed (Untergasser et al.  2012 ). 
This vector enables modular cloning of large DNA fragments by employing 
Gateway technology and contains DsRED1 as visual selection marker. However, an 
R/Rs-inducible recombination system was included allowing subsequent removal 
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of the selection markers in the newly generated transgenic plants. This strategy 
allowed successful transfer of eight genes essential for  Medicago truncatula  
(Untergasser et al.  2012 ).  

5.5.7     Transposon-Based Marker Methods 

 Transposon-mediated repositioning of a transgene of interest has been proposed as 
an alternative for generating a wide range of expression levels in selectable marker 
gene- free transgenic plants (Yoder and Goldsbrough  1994 ). Two transposon- 
mediated strategies have been developed to generate marker-free transgenic plants. 
The fi rst strategy involves intragenomic relocation of transgene of interest after 
 Agrobacterium -mediated transformation and its subsequent segregation from the 
selectable marker in the progeny (Goldsbrough et al.  1993 ). The second involves 
excision of the marker gene from the genome (Ebinuma et al.  1997 ). Though maize 
Ac/Ds transposable  element has been used in the above strategies, similar approach 
can be adopted to other autonomous transposable elements. In 2012, Li and Charng 
developed an improved strategy involving insertion of the end of the inducible 
transposon in an intron of a target gene for subsequent removal of its function in 
transgenic plants. Salicylic acid-induced transposition of COKC transposon, which 
led to both marker gene and transposase gene breakages in exons, was analysed in 
single-copy transgenic rice plants. It has been observed that the COKC element 
exhibits the potential as a tool to create ‘marker-off’ (marker free) transgenic plants 
(Li and Charng  2012 ). However, its application is limited for selectable marker gene 
without native introns, e.g. hygromycin- or kanamycin-resistant genes. Therefore in 
order to expand the application of the ‘marker-off’ transgenic system, an artifi cial 
intron containing one end of the transposon has been generated (Li and Charng 
 2012 ), and as the result successful transgenic plants were obtained after screening 
with the selection agent. Thus it indicated the use of an inducible transposon for 
‘cleaner’ plant biotechnology (Li and Charng  2012 ).  

5.5.8     Chemical-Inducible System 

 The chemical-inducible CLX vector system benefi ts from a particularly regulated 
system of chemical induction (Sreekala et al.  2005 ). It is used in vegetatively prop-
agated and other crop species (Tuteja et al.  2012 ). The strategy utilises the CLX 
recombination system keeping it under the control of estrogen receptor- based 
transactivator XVE. Upon induction by β-estradiaol, the selection marker gene 
fused with Cre recombinase, fl anked by two lox sites and autoexcised from the 
genome (Zuo et al.  2001 ). Marker-free transgenic tomato expressing  cry1AC  was 
obtained by using the above system. A chemical-induced method for creating 
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selectively terminable transgenic rice using benzothiadiazole herbicide (bentazon) 
has already been discussed in the section of Cre/lox site-specifi c recombination 
system (Lin et al.  2008 ).  

5.5.9     Heat-Inducible System 

 Transgenic tobacco has been developed using FLP/frt recombinase system in which 
the expression of FLP was tightly under the control of heat-shock protein (HSP) 
(Shan et al.  2006 ). Heat-inducible strategy for the elimination of selection marker 
gene was also used in vegetatively propogated plants like potato (Cuellar et al. 
 2006 ) and seed-producing plants like tobacco (Wang et al.  2005 ). The disadvantage 
of this method is that when autoexcision constructs are used, the recombinase can 
be activated by a chemical compound or by a heat shock in the shoots and seeds or 
during a subculture step and an extra regeneration step. The latter possibility length-
ens the time to obtain marker-free transgenic plants and can introduce (additional) 
somaclonal variation (Tuteja et al.  2012 ).  

5.5.10     Positive Selection System 

 A better way to select and identify the genetically modifi ed cell is through the posi-
tive selection system. The GUS gene is widely used as a reporter gene in transgenic 
plants. A glucuronide derivative of benzyladenine (benzyladenine N-3-glucuronide) 
is used as a selective agent and being in inactive form does not have any effect on 
the non-transformed cells. However, there are only a few reports concerning the 
successful use of this system in the effective recovery of transgenic plants (Joersbo 
and Okkels  1996 ; Okkels et al.  1997 ). 

 The  manA  gene codes for the PMI enzyme (EC 5.3.1.8) and is isolated from 
 Escherichia coli . Because mannose is used as the sole carbohydrate source for the 
transformed cells this selection system is immediate and extremely effi cient (Joersbo 
et al.  1998 ). Those species which are extremely sensitive to mannose such as sugar 
beet, maize, wheat, oat, barley, tomato, potato, sunfl ower, oilseed rape and pea have 
been successfully transformed by the use of mannose as a selective agent (Joersbo 
et al.  1998 ; Wang et al.  2000 ). Use of positive selection system was found at least 
ten times more effi cient than the traditional protocols based on the use of kanamycin 
as selection agent (Wright et al.  2001 ). Similarly a positive selection system has 
also been developed using the xylose isomerase gene (xylA) isolated from 
 Thermoanaerobacterium thermosulfurogenes  or from  Streptomyces rubiginosus , as 
selection marker gene (Haldrup et al.  1998 ), and used in development of transgenic 
plants of potato, tobacco and tomato. The DOG R1 gene encoding 2-deoxyglucose-
6-phosphate phosphatase (2-DOG-6-P) was used to develop a positive selection 
system for tobacco and potato plants (Kunze et al.  2001 ).  
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5.5.11     Negative Selection System 

 Negative selectable markers are of two types: (a) conditional negative selectable 
marker and (b) non-conditional negative selectable marker (e.g. diphtheria toxin). 
MYMV TrAP is a good non-conditional negative selectable marker for developing 
marker-free transgenic plants (Ramana Rao and Veluthambi  2010 ). It is also possi-
ble to apply negative selection after a positive selection using one marker gene. Use 
of  tms2  gene is the fi rst conditional selective marker gene, which is used in tobacco 
(Depicker et al.  1988 ) and  Arabidopsis  (Karlin-Neumann et al.  1991 ). Other condi-
tional markers proven to be effective in dicots are  aux2  in cabbage (Beclin et al. 
 1993 ), the  HSV-tk  gene in tobacco (Czako and Marton  1994 ), a bacterial cytochrome 
P450 mono-oxygenase gene in tobacco (O’Keefe et al.  1994 ) and  Arabidopsis  
(Tissier et al.  1999 ) and  codA  in  Arabidopsis  (Kobayashi et al.  1995 ) and tobacco 
(Schlaman and Hooykaas  1997 ).  

5.5.12     Autoexcision Strategy 

 Autoexcision strategy is used to eliminate selection marker gene from the plant 
genome, controlled by pollen- and/or seed-specifi c promoters. Highly effi cient 
autoexcision of selective markers has been reported to be successful in tobacco 
(Mlynarova et al.  2006 ; Luo et al.  2007 ) and in rice (Bai et al.  2008 ). The novel 
marker-free approach mediated by the  Cre–lox  recombination system and the  Cre  
gene was under the control of fl oral specifi c promoter  OsMADS45 . The marker-free 
transgenic plants of  A. thaliana  were developed by using a germline-specifi c auto-
excision vector containing a  Cre  recombinase gene under the control of a germline- 
specifi c promoter ( APETALA1  and  SOLO DANCERS  genes from  Arabidopsis ). 
However, this strategy is not useful in the vegetatively propagated plants (Verweire 
et al.  2007 ).   

5.6     Gene Transfer for Stress Tolerance in Crop Species 

 Development of genetically engineered plants by the introduction and/or overex-
pression of selected genes seems to be a viable option to hasten the breeding of 
‘improved’ plants against various biotic and abiotic stresses. It is a faster way to 
achieve transgenesis when genes of interest are originated from cross barrier species, 
distant relatives or non-plant sources. Several traits associated with resistance to 
various stresses have been introgressed and tested in transgenic plants for improv-
ing stress tolerance in plants (Bhatnagar et al.  2010 ). 
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5.6.1     Tolerance to Abiotic Stresses 

 Drought is one of the most signifi cant environmental stresses on world agricultural 
production, and enormous efforts are being made by plant scientists to improve crop 
yields in the face of decreasing water availability. The genes that encode enzymes 
for the synthesis of selected osmolytes have been used to develop osmoprotection in 
plants (Bray  1993 ). This has resulted in a profusion of reports involving osmopro-
tectants such as glycine-betaine (Ishitani et al.  1997 ; Sakamoto et al.  2000 ; McNeil 
et al.  2000 ) and proline (Nanjo et al.  1999 ; Yamada et al.  2005 ). Also, a number of 
‘sugar alcohols’ (mannitol, trehalose, myo-inositol and sorbitol) have been targeted 
for the engineering of compatible solute overproduction, thereby protecting the 
membrane and protein complexes during stress (Pilon-Smits et al.  1995 ; Garg et al. 
 2002 ; Cortina and Culianez-Macia  2005 ; Gao et al.  2000 ). Similarly, transgenics 
engineered for the overexpression of polyamines have also been developed (Waie 
and Rajam  2003 ; Capell et al.  2004 ). 

 LEA proteins are high-molecular-weight proteins found in abundance during 
late embryogenesis and accumulate during seed desiccation in response to water 
stress (Galau et al.  1987 ). Transgenic melon (Borda’s et al.  1997 ) and tomato 
(Gisbert et al.  2000 ) plants expressing the  HAL1  gene showed a certain level of salt 
tolerance due to retention of more K+ under salinity stress. Overexpression of 
 AtCLCd  gene, which is involved in cation detoxifi cation, and  AtNHXI  gene which is 
homologous to  NhxI  gene of yeast conferred salt tolerance in  Arabidopsis . 
Transgenic  Arabidopsis  and tomato plants that overexpress  AtNHX1  accumulated 
abundant quantities of the transporter in the tonoplast and exhibited substantially 
enhanced salt tolerance (Zhang and Blumwald  2001 ). Transgenic groundnut plants 
expressing  AtNHX1  gene showed more resistance to high concentration of salt and 
water deprivation due to higher level of salt and proline (Asif et al.  2011 ). 

 It has been observed that transferring a single gene encoding a single specifi c 
stress protein may not be suffi cient to reach the required tolerance levels (Bohnert 
et al.  1995 ). Therefore, use of gene encoding a stress-inducible transcription factor 
has been suggested as an alternative for enhancing tolerance towards multiple 
stresses (Yamaguchi-Shinozaki et al.  1994 ; Chinnusamy et al.  2005 ). Several stud-
ies showed that overexpression of drought-responsive transcription factors can 
enhance abiotic stress tolerance in plants (see review, Zhang et al.  2004 ). For exam-
ple, overexpression of an ethylene response factor controlled by gene  Sub1A  in rice 
conferred enhanced submergence tolerance (Xu et al.  2006 ). Manipulating  CBF/
DREB  genes confer improved drought tolerance in crop plants. Transgenic tomato 
plants expressing  CBF1 , containing three copies of an ABA-responsive complex 
(ABRC1) from the barley  HAV22  gene, exhibited enhanced tolerance to chilling, 
water defi cit and salt stress (Lee et al.  2003 ). In another study, expression of  CBF/
DREB  genes under stress-inducible promoters in transgenic plants is reported to 
minimise the growth retardation and other adverse effects (Al-Abed et al.  2007 ). 
Development of transgenic with the use of a single regulatory gene ( DREB1A  tran-
scription factor) in groundnut regulated the expression of downstream genes leading 
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to the activation of many functional genes (Bhatnagar-Mathur et al.  2009 ). Another 
transcription factor that has been manipulated in order to increase plant drought 
tolerance is the  HARDY  ( HRD ) gene, which has been linked to increased transpira-
tion effi ciency related to stomatal adjustment. HRD is an AP2/ERF-like transcrip-
tion factor isolated from hrd-dominant ( hrd-D )  Arabidopsis  mutants, which 
displayed vigorous rooting and dark green leaves that were smaller and thicker than 
WT plants. Karaba et al. ( 2007 ) isolated the HRD gene and constitutively expressed 
it in  Arabidopsis  under the control of the caulifl ower mosaic virus (CaMV) 35S 
promoter. Transgenic rice seedlings, expressing  OsWRKY11  under the control of a 
rice HSP promoter, HSP101, were shown to survive longer and lose less water 
under a short and severe drought treatment (Wu et al.  2008 ). Young transgenic rice 
plants overexpressing  ZFP252  survived longer, displayed less relative electrolyte 
leakage and accumulated more compatible osmolytes than WT plants during a 
14-day period of drought stress (Xu et al.  2008 ). A salt- and drought- induced RING-
fi nger protein, SDIR1, was found to confer enhanced drought tolerance to tobacco 
and rice (Zhang et al.  2008 ). 

 Prior to transcriptional activation of genes, drought stress signals are received 
and messages conveyed to the appropriate components of the downstream pathway 
(Xiong and Ishitani  2006 ). Receptor molecules that have been identifi ed to date in 
plants include ROP10, a small G protein from the ROP family of Rho GTPases, that 
negatively regulates ABA response in  Arabidopsis  (Zheng et al.  2002 ); ATHK1, a 
putative homolog of the yeast SLN1, which is a functional histidine kinase feeding 
into the HOG MAPK pathway (Reiser et al.  2003 ); NtC7, a receptor-like membrane 
protein from tobacco (Tamura et al.  2003 ) and Cre1, a putative cytokinin sensor and 
histidine kinase from Arabidopsis (Reiser et al.  2003 ). The  ERECTA  gene from 
 Arabidopsis  is the fi rst gene to be shown to act on the coordination between transpi-
ration and photosynthesis (Masle et al.  2005 ). 

 Few known studies have focused on engineering heavy metal tolerance in plants. 
For example, Zhang et al. ( 2008 ) reported an aquaporin gene  BjPIP1  from the heavy 
metal hyperaccumulator Indian mustard, which is upregulated in leaves under 
drought, salt, low temperature and heavy metal stress. Constitutive expression of 
 BjPIP1  in tobacco decreased water loss rate, transpiration rate and stomatal conduc-
tance of transgenic plants compared to WT under osmotic stress.  

5.6.2     Tolerance to Biotic Stresses 

 Plants sense and respond to environmental cues by a repertoire of mechanisms that 
regulate gene expression in order to maximise chances of survival in hostile envi-
ronments (Dorantes-Acosta et al.  2012 ). In addition to preformed defence traits, 
plants have evolved inducible defences against microbial pathogens, herbivores and 
even other plants that involve the regulation of gene expression for the synthesis of 
defensive secondary metabolites and specifi c proteins (Walling  2000 ; Mithofer and 
Boland  2012 ). 
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5.6.2.1     Insect Resistance 

 Bt technology has emerged as a powerful modality for battling some of the impor-
tant insect pests. It is a chemical free and economically viable approach for insect 
pest control in plants (Gatehouse  2008 ; Pratap and Gupta  2009 ; de Villiers and 
Hoisington  2011 ). Transgenic Bt crops are used worldwide to control major pests 
(caterpillars and rootworms) of cotton, corn and soybean. The fi rst widely planted 
Bt crop cultivars were corn producing Bt toxin Cry1Ab and cotton producing Bt 
toxin  Cry1Ac  (Tabashnik et al.  2009 ). However, resistance in fi ve lepidopteran pests 
against the Bt crops carrying the different genes ( Cry1Ab, Cry1F, Cry1Ac and 
Cry2Ab ) has also been reported in South Africa, Puerto Rico, India, the USA and 
Australia (Kruger et al.  2009 ; Tabashnik et al.  2008 ,  2009 ; Downes et al.  2010 ). 
In spite of this, the area under the Bt crops has been increasing since 1996 and in 
2011, and biotech crops were grown on 160 million hectares (James  2011 ). The 
USA had the largest share of global biotech crop plantings in 2011 (69 million ha), 
followed by Brazil (30.3 M ha). The other main countries planting biotech crops in 
2011 were Argentina (23.7 M ha), India (10.6 M ha) and Canada (10.4 M ha). 
Brookes and Barfoot ( 2005 ) reported that 725 approvals for commercial cultivation 
had been granted for 155 events in 24 crops, and 57 countries globally have granted 
regulatory approvals for biotech crops for import for food and feed use and for 
release into the environment since 1996 (Karthikeyan et al.  2012 ).  

5.6.2.2     Virus Resistance 

 Plant viruses constitute one of the major problems of the agricultural production 
worldwide. To date, there are no therapeutical measures available for the control of 
plant-virus diseases in the fi eld, and the main control strategy used in practice is 
based on prevention measures. Host plant resistance is by far the most effective way 
to control plant viruses. However, ‘traditional’ genetic sources of resistance to 
viruses are rare, and due to the high rate of mutation of the viral genomes this resis-
tance even when applicable is frequently broken under fi eld conditions. 
 Agrobacterium -mediated genetic transformation technology (Thomashow et al. 
 1980 ) offered new promising prospects for engineered genetic resistance to viruses 
with numerous following studies reporting a successful use of the transgenic tech-
nology against almost all genera of plant viruses or even viroids (Prins et al.  2008 , 
Schwind et al.  2009 ). The breakthrough for the creation of transgenic resistance to 
plant viruses came by Beachy’s group which showed that the expression of the coat 
protein gene of tobacco mosaic virus (TMV) in transgenic plants confers resistance 
to TMV (Abel et al.  1986 ). 

 RNA silencing-based resistance against viruses was fi rst reported by Lindbo 
et al. ( 1993 ) and was shown to be related to the previously observed co-suppression 
mechanism (Van der Krol et al.  1990 ). It has been reported that short genome 
incomplete sequences can be used, and effi ciencies of up to 90 % of all transgenic 
plants produced to be resistant to the homologous virus were achieved (Lin et al. 
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 2007 ; Tenllado et al.  2004 ). In order to overcome the weakness of RNA silencing-
based resistance Bucher et al. ( 2006 ) fused 150-nt fragments of viral sequences of 
four tospoviruses in a single small chimeric IR construct. This strategy resulted in a 
high frequency of resistant plants. A most recent approach used modifi ed plant 
miRNA cistrons to produce a range of antiviral artifi cial miRNAs (amiRNAs) (Niu 
et al.  2006 ; Qu et al.  2007 ; Zhang et al.  2011 ). Vasillakos ( 2012 ) reviewed that 
recent advances like the construction of chimeric IR constructs incorporating 
sequences derived from different virus species if combined with epidemiological 
data and pest risk analyses could reduce the effect of mixed virus infections on 
the resistance (Dafny-Yelin and Tzfi ra  2007 ; Kung et al.  2009 ). Recently, virus 
resistance was achieved through the expression of amiRNAS against viral coding 
sequences (Ding and Voinnet  2007 ; Duan et al.  2008 ; Zhang et al.  2011 ). Although 
there was evidence that amiRNA-mediated virus resistance may not be inhibited by 
low temperature (Niu et al.  2006 ) this possibly depends on the plant species exam-
ined (Qu et al.  2007 ). Moreover, the durability of this approach, which resulted in 
relatively few antiviral small RNAs compared with those of the long dsRNA 
approach, needs to be further demonstrated (Duan et al.  2008 ; Simon-Mateo and 
Antonio Garcia  2006 ).  

5.6.2.3     Fungus and Bacteria Resistance 

 Signifi cant yield losses due to fungal attacks occur in most of the agricultural and 
horticultural species. In Indian context, fungal diseases are rated either the most 
important or second most important factor contributing to yield losses in our major 
cereals, pulses and oilseed crops. The most signifi cant development in the area of 
varietal development for disease resistance is the use of the techniques of gene isola-
tion and genetic transformation to develop transgenics resistant to fungal diseases. 

 Genetic engineering allows for introduction of resistance genes from unrelated 
plant species, which often remain functional in the new host plant (Collinge et al. 
 2008 ). The R-gene  Rxo1  from maize was successfully introduced into rice and con-
ferred resistance against bacterial streak disease caused by  Xanthomonas oryzae  pv . 
oryzicola  (Zhao et al.  2005 ). Additional examples of this strategy involve the R-gene 
 RCT1  from  Medicago truncatula  that was expressed in alfalfa and conferred resis-
tance to  Colletotrichum trifolii  (Yang et al.  1996 ) and  RPI-BLB2  from wild potato, 
 Solanum bulbocastanum,  conferring resistance to  Phytophthora infestans  in 
 cultivated potato (Van der Vossen et al.  2005 ). Chitinase (PR) originating from 
mycoparasitic biocontrol agents, most notably  Trichoderma harzianum , that can 
exhibit higher anti-fungal activity than plant chitinases, has been proven to be a 
more effective source for enhancing fungal disease resistance in transgenic plants 
(Dana et al.  2006 ; Kumar et al.  2009 ). 

 In contrast to biotrophic pathogens, necrotrophs produce copious amounts of 
pathogenicity factors, including toxins and cell wall-degrading enzymes, as a means 
of successfully establishing infections. Mutants lacking these pathogenicity factors 
often have reduced virulence or in some instances are completely avirulent. 
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Overexpression of PGIPs in transgenic plants has successfully reduced disease 
symptoms due to  B. cinerea  (Joubert et al.  2007 ; Manfredini et al.  2005 ) and 
 Bipolaris sorokiniana  (Janni et al.  2008 ). Similarly, antisense suppression of PGIPs 
in  Arabidopsis  increased susceptibility towards  B. cinerea  (Ferrari et al.  2006 ). The 
main strategy to resist  Sclerotinia sclerotiorum  infection includes wheat oxalate 
oxidase and oxalate decarboxylase, converting oxalic acid to CO2 and hydrogen 
peroxide or CO 2  and formate, respectively. Overexpression of these enzymes in let-
tuce (Dias et al.  2006 ), sunfl ower (Hu et al.  2003 ), soybean (Cober et al.  2003 ), 
rapeseed (Dong et al.  2008 ) and tomato (Walz et al.  2008 ) demonstrated at least 
partial resistance to  S. sclerotiorum . Adaptation of these technologies will only 
progress once the costs associated with growing, developing and registering the 
transgenic technologies are balanced by the gains observed by the producers and 
ultimately with the consumers of the plants. Once the economic threshold is passed 
and the plants can be proven safe to be consumed, large-scale adoption of these 
technologies may become a reality (Wally and Punja  2010 ).    

5.7     Regulations and Biosafety Concerns 

 Biosafety issue has already become a crucial factor in constraining the further 
development of transgenic biotechnology and wider application of GM products in 
agriculture. The most important concerns can be summarized as follows: (1) direct 
and indirect effects of toxic transgenes (e.g. the Bt insect-resistance gene) to non- 
target organisms (O'Callaghan et al.  2005 ; Oliveira et al.  2007 ); (2) infl uences of 
transgenes and GM plants on biodiversity, ecosystem functions and soil microbes 
(Giovannetti et al.  2005 ; Oliveira et al.  2007 ); (3) transgene escape to crop landraces 
and wild relatives through gene fl ow and its potential ecological consequences 
(Mercer et al.  2007 ) and (4) potential risks associated with the development of resis-
tance to biotic-resistance transgenes in the target organisms (Wu  2007 ). Among the 
above environmental biosafety issues, transgene escape from a GM crop variety to 
its non-GM crop counterparts or wild relatives has aroused tremendous debates 
worldwide (Ellstrand  2001 ,  2003 ). Transgene escape may result in potential 
 ecological consequences if signifi cant amounts of transgenes constantly move to 
non- GM crops and wild relative species. 

 The development of marker-free transgenic plants could solve the issues of 
 biological and biosafety in the genetically engineered (GE) crops, besides support-
ing multiple transformation cycles for transgene pyramiding (Vaucheret et al. 
 1998 ). The presence of SMG is undesirable as per the European regulatory agen-
cies’ norms. Also trasngene integration at random positions in the genome leads to 
possible unwanted side effects (mutation) and unpredictable expression patterns. In 
addition to the risk of HGT, there is also a ‘vertical cross-species’ transfer risk that 
could potentially create enhanced weediness problems (Dale et al.  2002 ). The pro-
duction of marker-free transgenic crops eliminates the risk of HGT and could miti-
gate vertical gene transfer. In view of the biosafety requirements, it is recommended 
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to phase out the SMG since these are unnecessary once an intact transgenic plant 
has been identifi ed and established (Darbani et al.  2007 ). Besides, there are public 
concerns about the widespread occurrence of SMG in novel ecosystems as these are 
integrated into the plant genome along with the gene of interest (Daniell et al. 
 2001 ). Transfer of plant DNA into microbial or mammalian cells under normal 
conditions of dietary exposure would require all of the following events to occur: 
(1) removal of the relevant gene(s) from the plant genome, probably as linear frag-
ments; (2) protection of the gene(s) from nuclease degradation in the plant as 
well as animal gastrointestinal tract; (3) uptake of the gene(s) with dietary DNA; 
(4) transformation of bacteria or competent mammalian cells; (5) insertion of the 
gene(s) into the host DNA by rare repair or recombination events into a transcrib-
able unit and fi nally (6) continuous stabilization of the inserted gene (FAO/WHO 
 2000 ; Tuteja et al.  2012 ).  

5.8     Conclusions and Future Prospects 

 Genetic transformation of crop plants has emerged as a remarkable achievement in 
modern biotechnology. Transgenic plant varieties hold great promise for augment-
ing agricultural production and productivity when properly integrated into tradi-
tional agricultural research systems. From the recent advances in genetics and 
genomics it is clear that gene transfer is emerging as a major player in the under-
standing of gene function and its validation and also that it has a potential to play an 
important role in generating genetic novelties that, once traits are introduced in the 
fi eld, should fi nd their way into the breeding strategies for a number of crops. Owing 
to the utility of this technique, the use of transgenic crop varieties having resistance 
to a wider range of biotic and abiotic stresses is expected to gain more popularity. 
However, at the same time, the concerns of general public regarding the safety issues 
as well as their impact on environment need to be properly addressed. Advancements 
in removal of selectable markers from the transgenics once they are identifi ed and 
detailed and unbiased studies on transgene escape to the environments and their real 
ecological impact may help to a great extent in tackling public scepticism about the 
development and use of transgenics.     
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    Abstract     The combination of genomes from diverse genetic backgrounds through 
wide hybridisation has become very important during the present days of global 
climate change. However, in some cases it is not possible to recover hybrids with 
genomes from both the parental species. The elimination of whole chromosome 
complement of one of the parents from the wide hybrids, that is, uniparental chro-
mosome elimination, has acted as a boon to the crop breeders for rapid genetic 
upgradation of the crop varieties. This chapter depicts various chromosome elimi-
nation approaches of doubled-haploidy breeding in barley, wheat, oats, triticale and 
potato. The chapter also presents the possible mechanisms of chromosome elimina-
tion including its advantages to the other DH breeding systems in crop plants. It also 
covers various investigations undertaken throughout the world and the effi ciency of 
various chromosome elimination systems in induction of haploids.  

  Keywords     Wheat   •    Potato   •   Wheat X maize   •   Wide hybridisation   •   Chromosome 
elimination   •   Haploid  

6.1         Introduction 

 Crop improvement involves genetic manipulation of plants in a predetermined way, 
which often utilises the transfer of genes from one source or genetic background to 
another. When a plant breeder has determined the direction in which a crop is to be 
improved, the next crucial step is to fi nd a source of the appropriate gene(s) for 
making the desired change(s). Once an appropriate source (germplasm) has been 
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found, the next step is to transfer the gene(s) to the parent to be improved. In fl ower-
ing species, the conventional method of gene transfer is by crossing or sexual 
hybridisation. This procedure causes genes from the two parents to be assembled 
into a new genetic matrix. It follows that if parents are not genetically compatible, 
gene transfer by sexual means cannot occur at all. Artifi cial sexual hybridisation is 
the most common conventional method of generating a segregating population for 
selection in breeding of fl owering species. In some breeding programmes, the 
hybrid (F 1 ) is the fi nal product. However, in most situations, the F 1  is selfed to gen-
erate recombinants (F 2 ) as a result of recombination of the parental genomes or a 
segregating population, in which selection is practiced. The tools of modern bio-
technology now enable and assist the breeders to transfer genes by circumventing 
the sexual process, that is, without crossing. More signifi cantly, gene transfer can 
transcend natural reproductive or genetic barriers. Transfers can occur between 
unrelated plants and even between different species. 

 The fi rst choice of parents for use in a breeding programme are cultivars and 
experimental materials with the traits of interest. Most of the time, plant breeders 
make elite × elite crosses as they are highly adapted and improved materials. Even 
though genetic gains from such crosses may not always be dramatic, they are none-
theless signifi cant enough to warrant the practice. After exhausting the variability in 
the elite germplasm as well as in the cultivated species, the breeder may look else-
where, based on the gene pool concept of Harlan and de Wet ( 1971 ). Hybridisation is 
a strong evolutionary force which can potentially reshape the genetic composition of 
populations and create novel genotypes that facilitate adaptation to new environ-
ments (Stebbins  1950 ). Crosses involving materials outside the cultivated species are 
collectively described as wide crosses. When the wide cross involves another species, 
it is called an interspecifi c cross. When it involves a plant from another genus, it is 
called an intergeneric cross. Intra- and interspecifi c hybridisation are common means 
of extending the range of variation beyond that displayed by the parental species. 

 The primary purpose of wide crosses is to improve a species for economic pro-
duction by transferring one or a few genes, or segment of chromosomes or whole 
chromosomes, across interspecifi c or intergeneric boundaries. The genes may con-
dition a specifi c disease or pest resistance or may be a product quality trait. 
Combining genomes from diverse backgrounds may trigger a complementary gene 
action or even introduce a few genes that could produce previously unobserved 
phenotypes that may be superior to the parental expression of both qualitative and 
quantitative traits. Wide crosses often produce sterile hybrids. The genome of such 
hybrids can be doubled to create a new fertile alloploid species, such as triticale. 
Cytogenetic studies following a wide cross may be used to understand the phylo-
genic relationships between the parents of a cross. 

 Interspecifi c hybridisation provides information on phylogenetic relationships 
between any two species giving clues with regard to evolutionary patterns. Often gen-
eration of such information is based on cross compatibility, chromosome association 
and pollen fertility. Such information also helps in developing breeding strategies for 
introgression of genes from related species into economically useful species. As it 
creates genetic variation, it has great potential for plant improvement (Goodman et al. 
 1987 ; Choudhary et al.  2000 ; Sain et al.  2002 ). For certain crops, plant breeders in the 
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twentieth century have increasingly used interspecifi c hybridisation for gene transfer 
from a non-cultivated plant species to a crop variety in a related species. Goodman 
et al. ( 1987 ) presented a list of species in which gene transfers have been successful. 

 Wild relatives may be sources of useful traits for the improvement of crops. From 
plant breeding point of view, it is desirable to document the possibility of transferring 
traits to a crop plant from its wild relatives through conventional sexual hybridisation. 
Sexual exchanges between species as sources of genetic variability to improve crops 
have been made possible during the last century by the discovery of effi cient ways to 
circumvent the natural barriers to genetic exchange (Goodman et al.  1987 ). However, 
inherent problems of specifi c introgression such as hybrid instability, infertility, non-
Mendelian segregations and low levels of intergenomic crossing-over can constitute 
important limitations (Stebbins  1950 ). Moreover, features associated with polyploidy 
or ploidy dissimilarity between species may result in additional constraints for inter-
specifi c gene fl ow (Rieseberg et al.  2000 ). After a hybrid plant has been successfully 
recovered, differences in the number or the compatibility of parental chromosomes 
may cause sterility. Cytogenetic manipulations have been instrumental in obtaining 
stable gene transfers. Sterility may result from incomplete or unstable pairing of chro-
mosomes during cell division. For a desired gene from the donor to be incorporated 
into a chromosome of the crop variety, recombination must take place. If the two spe-
cies are closely related, natural pairing and recombination may occur (Goodman et al. 
 1987 ). High pairing affi nity contributes so that once the barriers separating the species 
are overcome, the gene pools of the two genera are interchangeable (Zwierzykowski 
et al.  1999 ). Until recently, the results of interspecifi c hybridisation could only be 
studied in a fairly indirect manner. One method was to analyse the phenotype of 
hybrids, such as the symmetry of morphological characters or the viability of pollen 
or seed. Alternatively, meiosis in hybrids could be studied by light microscopy and the 
degree of differentiation between hybridising taxa estimated by analyses of chromo-
some pairing behaviour and meiotic abnormalities (Rieseberg et al.  2000 ). Although 
both of these approaches have been extremely valuable, they can only provide 
glimpses into the complex interactions of alien genes and genomes following genetic 
recombination. Cytological analyses are usually performed to evaluate the meiotic 
process in experimental hybrids. Species with close genetic affi nity produce hybrids 
with regular chromosome pairing, while the hybrids of those more distantly related 
species have meiotic irregularities and are sterile (Marfi l et al.  2006 ). In diploid inter-
specifi c hybrids, the meiotic analysis of chromosome association in the F 1  generation 
shows the genetic homology between the respective pairs of chromosomes. However, 
in interspecifi c tetraploid or hexaploid hybrids, chromosome pairing is affected by the 
number and similarity among genomes. 

 Interspecifi c hybrids have the potential to capture hybrid vigour as well as 
 combine traits that do not occur within a single species (Volker and Orme  1988 ). 
Because a breeder always wants to add new type of characteristics to the current 
cultivars, interspecifi c hybridisation is indispensable to combine diverse gene pools. 
Thus interspecifi c or intergeneric hybrids have the enormous potential to extend not 
only their qualitative but also quantitative traits such as the type of fl ower, plant phe-
notypes and other single dominant traits from parent species with an environmental 
adaptation. While natural hybrids can exist between species whose fl owering times 
overlap, pre- and post-fertilisation barriers hinder the frequency of these hybrids.  
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 Reproductive barriers to wide or distant hybridisation can be divided into two 
broad groups—premating and postmating. The premating barriers include failure of 
zygote formation due to fertilisation barriers like pollen–stigma incompatibility and 
failure of pollen tube to reach the ovary, whereas the postmating barriers comprise 
failure of zygote development and uniparental chromosome elimination. The unipa-
rental chromosome elimination acts a bane for the transfer of desirable traits from the 
wild species into the genetic background of target species, that is, cultivated species. 
But at the same time, it may act as a boon when whole chromosome complement of 
the wild species is eliminated resulting in the development of haploid plants of the 
recipient species. The doubled haploids, produced by doubling the chromosome num-
ber of the haploids, have been quite effi ciently used by the breeders for achieving 
absolute homozygosity in just 2 years, thereby saving 5 years of varietal development 
programmes (Fig.  6.1a, b ). Moreover, they have helped us in the quick development of 
mapping populations. The haploids are also useful in the development of transgenics. 

  Fig. 6.1    (a and b) Flow chart exhibiting comparison of the conventional and DH breeding approaches       
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Fig. 6.1 (continued) 

The doubled haploidy (DH) breeding following chromosome elimination approach 
has been exploited in various crops like barley, wheat, oats, triticale, rye and potato, 
where the other techniques of haploid induction like anther, pollen/microspore  culture 
and ovule culture were not so effi cient. In order to apply the DH systems successfully 
to a breeding programme, any technique should fulfi l the following three criteria: 
(1) DH line(s) should be produced effi ciently from all the genotypes, (2) DH should 
represent a random sample of the parental gametes and (3) DH should be genetically 
normal and stable (Snape et al.  1986 ).

  Wide crossing between species has been shown to be a very effective and suc-
cessful method for haploid induction in several species. It exploits haploidy from the 
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female gametic line and involves both interspecifi c and intergeneric pollinations. In 
some interspecifi c and intergeneric crosses of the Poaceae and Panicoideae, fertilisa-
tion is followed by paternal chromosome elimination from the hybrid embryo. In 
these crosses, the endosperm is either not formed or poorly developed; thus, such 
embryos do not mature in the caryopsis, and embryo rescue and in vitro culture are 
necessary. The production of doubled haploids through chromosome elimination 
occurring during wide crossing is most common in cereals (Laurie et al.  1990 ). 

 Several explanations have been proposed to account for uniparental chromosome 
elimination, viz., difference in timing of essential mitotic processes attributable to 
asynchronous cell cycling (Gupta  1969 ) and asynchrony in nucleoprotein synthesis 
leading to a loss of the most retarded chromosomes (Bennett et al.  1976 ; Laurie and 
Bennett  1989 ). Other hypotheses that have been put forward are the formation of 
multipolar spindles (Subrahmanyam and Kasha  1973 ), spatial separation of genomes 
during interphase (Finch  1983  and Linde-Laursen and von Bothmer  1999 ) and 
genome elimination by nuclear extrusions (Gernand et al.  2005 ,  2006 ). In addition, 
degradation of alien chromosomes by host-specifi c nucleases (Davies  1974 ), unipa-
rental nondisjunction of anaphase chromosomes (Ishii et al.  2010 ) and parent-specifi c 
inactivation of centromeres (Finch  1983 ;    Jin et al.  2004 ; Mochida et al.  2004 ) have 
been suggested. The actual cellular mechanism involved in the process of uniparen-
tal chromosome elimination remains poorly understood.  

6.2     Doubled Haploid Through Distant Hybridisation 

 Various distant hybridisation-mediated doubled haploid techniques are discussed 
hereunder: 

6.2.1      Hordeum vulgare  ×  H. bulbosum  

 The fi rst method in cereals based on wide crossing following chromosome elimina-
tion was  H. vulgare  ×  H. bulbosum , commonly known as ‘bulbosum method’ 
(Stephan  1969 ; Kasha and Kao  1970 ; Lange  1971 ). During early embryogenesis, 
chromosomes of the wild relative are preferentially eliminated from the cells of 
developing embryos leading to the formation of the haploid embryos. The endo-
sperm is frequently formed, but its development is usually disturbed; hence, at 
12–14 days of pollination, the embryos are excised from developing caryopsis and 
cultured  in vitro . The bulbosum method was the fi rst haploid induction method to 
produce large number of haploids across most genotypes and this method quickly 
entered into breeding programmes. Kasha and Kao ( 1970 ) presented evidence to 
show that these haploids are not caused by parthenogenesis but by the elimination 
of  H. bulbosum  chromosomes. This elimination is under genetic control (Ho and 
Kasha  1975 ). Haploids of  H. vulgare  are also obtained when it is used as a male 
parent in the wide hybridisation programme. This method represents a considerable 
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advanced approach in the production of barley haploids and it has a number of 
 advantages over anther culture. In particular, haploids can be produced from any cul-
tivar of barley, whereas with anther culture, success is dependent on the genotype. 

 The parent-specifi c inactivation of centromeres during the mitosis-dependent 
process of chromosome elimination in  H. vulgare  ×  H. bulbosum  hybrids was con-
fi rmed by Sanie et al. ( 2011 ). They reported that the loss of centromeric histone H3 
(CENH3) from centromeres precedes uniparental chromosome elimination in inter-
specifi c barley hybrids. Gernand et al. ( 2006 ) studied the mechanism underlying 
selective  elimination of the paternal chromosomes during the development of 
 H. vulgare  ×  H. bulbosum  hybrid embryos that is restricted to an early stage of devel-
opment. In almost all embryos, most of the  H. bulbosum  chromatin undergoes a fast 
rate of elimination within 9 days after pollination. According to them, elimination of 
chromosomes in  H. vulgare  ×  H. bulbosum  crosses occurs during mitosis and inter-
phase involves micronucleus formation and progressive heterochromatinisation. The 
rate of chromosome elimination differs signifi cantly between hybrids, while within 
each hybrid, differences in mean chromosome number were recorded between and 
within individual tillers. An increase in temperature from 25 to 30 °C caused a sig-
nifi cant increase in the rate of elimination of  H. bulbosum  chromosomes (Humphreys 
 1978 ). A high effi ciency of  H. bulbosum -mediated haploid  production in barley was 
achieved using a fl oret culture technique in which fl orets pollinated with  H. bulbo-
sum  are cultured on modifi ed N 6  medium containing 0.5 mg/l kinetin and 1.2 mg/l 
2,4-dichlorophenoxyacetic acid (2,4-D) (Chen and Hayes  1989 ). Toojinda et al. 
( 2000 ) used bulbosum approach for mapping qualitative and  quantitative disease 
resistance genes in a doubled-haploid population of barley ( H. vulgare ). 

 Keeping in view the increased effi ciency of bulbosum technique of haploid 
induction in barley as compared to anther culture, the method was extended to 
wheat where the androgenesis-mediated haploid induction response was very poor 
and genotype specifi c.  

6.2.2      Triticum aestivum  ×  H. bulbosum  

 Haploid wheat plantlets were obtained when ‘Chinese Spring’ variety of  T. aesti-
vum  (2n = 6x = 42) was crossed with  H. bulbosum  (2n = 2x = 14). This happened as a 
result of elimination of  H. bulbosum  chromosomes from the interspecifc hybrid 
during its early embryogenesis (Barclay  1975 ; Zenketler and Straub  1979 ). However, 
this method was not successful with other wheat varieties just like anther culture 
due to the effect of dominant crossability inhibitor alleles  Kr1 ,  Kr2 ,  Kr3  and  Kr4  
located on 5B, 5A, 5D and 1A chromosome arms (Riley and Chapman  1967 ; 
Krolow  1970 ; Sitch et al.  1985 ; Zheng et al.  1992 ) which prevent the entry of 
 H. bulbosum  pollen tube into the ovary of wheat. The ‘Chinese Spring’ variety 
of bread wheat possesses recessive crossability alleles, that is,  kr1 and kr2 . Jalani 
and Moss ( 1980 ) reported that the crossability genes have little effect on pollen 
germination and on the time taken for the pollen tubes to reach the micropyle. The 
number of pollen tubes reaching the micropyle is, however, affected by the  Kr  
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genes, as high crossable genotypes have more pollen tubes than the low crossable 
ones. Factors affecting crossability between ‘Chinese Spring’ wheat and  H. bulbo-
sum  were also found on chromosomes 3A, 3B and 3D (Miller et al.  1983 ). This 
system was hence useful to a  limited extent due to the sensitivity of the  H. bulbosum  
pollen to the crossability inhibitor genes.  

6.2.3     Wheat × Maize 

 Zenkteler and Nitzsche ( 1984 ) reported for the fi rst time that embryos were 
 frequently formed when hexaploid wheat was pollinated with maize. Later, their 
results were confi rmed by Laurie and Bennett ( 1986 ). They cytologically demon-
strated that the maize pollen normally germinated and grew into the wheat embryo 
sac where the wheat egg was fertilised by the maize pollen. A hybrid zygote with 21 
wheat chromosomes and 10 maize chromosomes was produced (Laurie and Bennett 
 1988 ). The hybrid zygotes were karyotypically unstable, and the maize chromo-
somes failed to move towards the spindle poles during cell divisions. Possibly, their 
centromeres failed to attach to the spindle microtubules due to progressive loss of 
centromere activity. Resultantly, maize chromosomes were eliminated after three to 
four mitotic cell divisions forming wheat haploid embryo with n = 21 chromosomes 
(Laurie and Bennett  1989 ). 

 Some earlier studies showed that wheat × maize system has more effi ciency of 
embryo formation as compared to other techniques. For haploid embryo production 
a system of wheat × maize crossing is widely used due to higher production of hap-
loid embryos as compared to other grass species pollination systems (Inagaki and 
Tahir  1990 ; Kisana et al.  1993 ; Inagaki and Mujeeb-Kazi  1995 ). This system is fast, 
economically viable, easy in application and more effi cient than others due to low 
level of genotype specifi city (Cherkaoui et al.  2000 ). 

 The maize chromosome elimination system in wheat is insensitive to crossability 
inhibitor genes (Laurie and Bennett  1989 ) and it enables the production of large 
number of haploids from any genotype including those recalcitrant to androgenesis 
(Inagaki et al.  1998 ; David et al.  1999 ; Cherkaoui et al.  2000 ; Chaudhary et al. 
 2002 ; Singh et al.  2004 ; Pratap et al.  2006 ). Several other investigations of haploid 
wheat production through wide crossing have since been reported (Laurie and 
Bennett  1989 ; Laurie and Reymondie  1991 ; Matzk and Mahn  1994 ; Suenaga  1994 ; 
Morshedi and Darvey  1995 ). It appears that a wide range of wheat and maize geno-
types can be used to produce haploid wheats, although there is evidence to suggest 
that the effi ciency of production is variable (Suenaga  1994 ). Haploid production 
effi ciency is affected by the proportion of pollinated fl orets which develop haploid 
embryos. Yields of haploid embryos have been reported to be as high as 53 % 
(Morshedi and Darvey  1995 ) and as low as 1 % (Suenaga and Nakajima  1989 ) 
depending upon a wide range of variables. Factors that affect the yield of haploid 
embryos include genotypic differences between individual wheat and maize lines 
(lnagaki and Tahir  1990 ; Suenaga  1994 ; Chaudhary et al.  2002 ; Sharma et al.  2005 ; 
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Pratap and Chaudhary  2007 ; Dhiman et al.  2012 ), the timing and use of exogenous 
growth substances to stimulate ovule development (Suenaga and Nakajima  1989 ) 
and environmental factors (especially temperature) during and after pollination. 

 Laurie and Bennett ( 1989 ) reported that all maize chromosomes were lost during 
the fi rst three cell division cycles in most embryos. All embryos with four or more 
cells had micronuclei, showing that embryo development was dependent on fertili-
sation. The only primary endosperm metaphase obtained in the experiment had 42 
wheat and 10 maize chromosomes, and the presence of micronuclei in most devel-
oping endosperms showed that at least 85 % were of hybrid origin. 

 Zhang et al. ( 1996 ) comparatively analysed the embryogenesis in wheat × maize 
hybrids and self-pollinated wheat plants using paraffi n sectioning. They reported 
that development of embryo is not accompanied by the formation of an endosperm 
and the endosperm nuclei remain free in the cytoplasm, fail to advance into the 
 cellular stage and degenerate later. 

 Pratap et al. ( 2005 ) evaluated the comparative effi ciency of anther culture and 
maize-mediated system of haploid induction in wheat and triticale genotypes. They 
reported that haploid plantlet formation was signifi cantly higher through maize-
mediated approach as compared to androgenesis in both wheat and triticale geno-
types. Auxin analogues play a key role in the induction and maintenance of haploid 
wheat embryos. Pratap and Chaudhary ( 2012 ) investigated the comparative effect of 
auxins on induction of polyhaploids in triticale × wheat through wheat × maize system. 

 Wang et al. ( 1991 ) studied the frequency of fertilisation and embryo formation in 
wheat × maize crosses. Hybrid embryos and endosperms obtained from wheat × maize 
hybridisation were karyotypically unstable and were characterised by rapid elimina-
tion of the maize chromosomes to produce haploid wheat embryos. Hence, the 
reduced genotypic specifi city, absence of albinism and ease of application make the 
wheat × maize hybridisation technique more effi cient than the anther culture and the 
 bulbosum  technique for the production of haploids in common wheat. Accordingly, 
Inagaki and Tahir ( 1991 ), Sun et al. ( 1992 ) and Kasha et al. ( 1995 ) advocated the use 
of this technique for breeding purpose by raising a large number of wheat haploids. 

 Suenaga and Nakajima ( 1993 ) evaluated 110 wheat DH lines derived from 
wheat × maize crosses and found that 15 DH lines were variable for two traits like 
extreme dwarfi sm, low seed fertility, alteration of spike type and strips. Analysis of 
variance within and between DH lines showed the presence of heterogeneity/het-
erozygosity in the DH lines/plants. Limited studies have been conducted on this 
line. They inferred that most of the variations detected in the DH lines were due to 
the effect of colchicine treatment. Similarly Kammholz et al. ( 1998 ) also found that 
expected normal segregation pattern for six glutenin loci across the seven crosses 
indicated that wheat × maize system is stable across the generations and may meet 
the third criterion proposed by Snape et al. ( 1986 ) for practical wheat breeding 
programmes. Moreover, Lefebvre and Devaux ( 1996 ) also reported normal segre-
gation for 1BL–1RS chromosome through wheat × maize system of cross but which 
deviates from 1:1 in the haploid progenies produced by anther culture. The 
wheat × maize system was quite effi ciently utilised in the development of the fi rst 
doubled-haploid wheat variety of India (Him Pratham) (Fig.  6.2 ) by Dr. Harinder 
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Kumar Chaudhary of CSK HP Agricultural University, Palampur, Himachal 
Pradesh, India (Chaudhary  2013 ).

   Inagaki et al. ( 1997 ) crossed hexaploid triticale as well as triticale substitution 
lines with maize. Hexaploid triticales produced embryos at low frequencies 
(0.0–5.4 %), whereas higher frequencies were obtained in substitution lines with 2D 
and 4D chromosomes. This gives an indication that the D-genome chromosomes in 
triticale genetic background have the effect of increasing the frequency of poly-
ploidy production in triticale × maize crosses. However, maize-mediated system was 
not able to induce any haploids in wheat × rye derivatives (Kishore et al.  2011 ). 

 Durum wheat (2n = 4x = 28) or macaroni wheat is the only tetraploid species of 
wheat of commercial importance that is widely cultivated today. The ploidy level is 
not a barrier in the production of haploid embryos through wheat × maize system, and 
haploids were produced in durum wheat using maize as the pollen source (Ahmad and 
Chowdhry  2005 ). Haploid seedlings were recovered from  Triticum turgidum  ssp. 
  turgidum  cv ‘Rampton Rivet’ pollinated with maize following  in vivo  treatment of 
ovaries with 2,4-D for 2 weeks and subsequent embryo culture. The recovery of hap-
loid seedlings from  T. turgidum  ssp.  durum  cv. ‘Wakona’ pollinated with maize neces-
sitated the addition of AgNO 3  to the 2,4-D treatment (O’Donoughue and Bennett 
 1994 ). Almouslem et al. ( 1998 ) also reported haploid durum wheat production via 
hybridisation with maize. Ballesteros et al. ( 2003 ) analysed the infl uence of the rela-
tive humidity of the environment, when culturing detached tillers during the produc-
tion of haploid plants in durum wheat by the maize method and they found that low 
relative humidity increases haploid induction in durum wheat × maize crosses. 

 The high haploid induction effi ciency and genotype non-specifi city of 
wheat × maize system in comparison to anther culture and bulbosum technique 

  Fig. 6.2    First doubled-haploid wheat variety of India: DH 114 (Him Pratham) developed through 
chromosome elimination-mediated approach       
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make the system more practicable. However, the fl owering times of maize and 
wheat can be matched under fi eld conditions in subtropical and tropical climates 
only, while in other areas experiments are run under glasshouse conditions. Keeping 
this in view, various efforts have been made throughout the world to search for 
alternative pollen source for haploid induction in wheat whose fl owering must syn-
chronise with wheat under natural conditions. Some of the alternative pollen sources 
for haploid induction in wheat include pearl millet (Ahmad and Comeau  1990 ; 
Inagaki and Mujeeb-Kazi  1995 ; Ohkawa et al.  1992 ),  Tripsacum dactyloides  (Riera- 
Lizarazu and Mujeeb-Kazi  1992 ) and Job’s tears (   Mochida and Tsujimoto  2001 ). 
More recently,  Imperata cylindrica , a perennial weedy grass has been reported as 
the most effi cient pollen source for the induction of haploids in wheat, wheat × rye 
and triticale (Chaudhary et al.  2005 ; Pratap et al.  2005 ).  

6.2.4     Wheat ×  Tripsacum dactyloides  

 To extend the crossing cycle duration, Riera-Lizarazu and Mujeeb-Kazi ( 1992 ) per-
formed intergeneric crosses of  T. aestivum ,  T. turgidum  L. and  T. turgidum  ×  Aegilops 
squarrosa  L. ( T. tauschii ) synthetic hexaploids (2 n  = 6 x  = 42; AABBDD) with 
 Tripsacum dactyloides  (2 n  = 2 x  = 36) as a pollen donor which resulted in progenies 
that were polyhaploids of the Triticeae parents, presumably due to elimination of 
the  Tripsacum dactyloides  chromosomes during early embryo development. 
Embryo recovery frequencies were 20.6 % for  T. aestivum  cultivars, 26.8 % for 
 T. turgidum  cultivars and 23.5 % for the synthetic hexaploids. Plant regeneration 
ranged between 66.7 and 78.5 % over the three maternal crossing groups. As with 
maize, polyhaploid production in the Triticeae with  Tripsacum  is dependent upon a 
post-pollination treatment with 2,4-D to promote embryo development and shows 
no strong genotypic specifi city. Limited meiotic analyses for the  T. aestivum  culti-
vars and synthetic hexaploids gave metaphase I associations characteristic of non-
allosyndetic chromosomal pairing. Pollinations with  Tripsacum , together with 
maize pollinations, offer an extended crossing cycle and in addition extend the 
range of alien species for producing polyhaploids in the Triticeae.  

6.2.5     Wheat × Pearl Millet 

 Pearl millet ( Pennisetum glaucum ) is the most widely grown type of millet. It has 
been grown in Africa and the Indian subcontinent since prehistoric times. Pearl mil-
let is well adapted to growing areas characterised by drought, low soil fertility and 
high temperature. Haploid wheat plants were obtained when crossed with pearl mil-
let. The wheat plants retained a single pearl millet chromosome at tillering stage, 
but this chromosome was eliminated from pollen mother cells prior to and also 
during gamete formation (Ahmad and Comeau  1990 ). Laurie ( 1989 ) undertook 
wheat × pearl millet crosses to determine whether fertilisation occurred and any 
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resulting hybrids were karyotypically stable. Crosses between the hexaploid wheat 
genotype ‘Chinese Spring’ ( kr1 ,  kr2 ) and the pearl millet genotype ‘Tift 23BE’ 
yielded fertilisation in 28.6 % of the 220 fl orets pollinated. Chromosome counts 
from zygotes at metaphase confi rmed the hybrid origin of the embryos. Three had 
the expected F 1  combination of 21 wheat and 7 pearl millet chromosomes, and a 
fourth had 21 wheat and 14 pearl millet chromosomes. The expected F 1  chromo-
some complement was also found in primary endosperm mitosis. The hybrid 
embryos were karyotypically unstable and probably lost all the pearl millet chromo-
somes in the fi rst four cell division cycles. Similar results were obtained using two 
other wheat genotypes. Crosses between the hexaploid wheat genotype ‘Highbury’, 
which differs from ‘Chinese Spring’ in having alleles for reduced crossability with 
rye and  H. bulbosum  at the  Kr1  and  Kr2  loci, and ‘Tift 23BE’ registered fertilisation 
in 32 % of analysed fl orets. This was not signifi cantly different from the frequency 
found in ‘Chinese Spring’, indicating that ‘Tift 23BE’ was insensitive to the action 
of the  Kr  genes. Crosses between the tetraploid wheat genotype ‘Kubanka’ and ‘Tift 
23BE’ showed fertilisation in 48 % of fl orets. 

 Inagaki and Hash ( 1998 ) produced haploids in bread wheat, durum wheat and 
hexaploid triticale when crossed with pearl millet. The crossability of bread wheat 
was found to be higher as compared with maize. Inagaki and Mujeeb-Kazi ( 1995 ) 
compared the frequencies of haploid induction in wheat when crossed with maize, 
pearl millet and sorghum and they observed that maize-mediated haploid induction 
frequency was higher as compared to the other two which were found to be geno-
type specifi c. Deimling et al. ( 1994 ) obtained six embryos from which two doubled-
haploid lines resulted after pollination of 48,000 emasculated fl owers. One embryo 
was induced by pearl millet and others with maize. Overall, pearl millet could not 
show its superiority over the maize system in any case of haploid induction and the 
system was genotype specifi c.  

6.2.6     Wheat × Job’s Tears 

 Job’s tears ( Coix lacryma-jobi ) is a tall grain-bearing tropical plant of the family 
Poaceae native to Southeast Asia but elsewhere cultivated in gardens as an annual. 
It has been naturalised in the southern United States and the New World tropics. In 
its native environment, it is grown in higher areas where rice and corn do not grow 
well. Job’s tears are also commonly sold as Chinese pearl barley in Asian supermar-
kets, although  C. lacryma-jobi  is not closely related to barley ( Hordeum vulgare ). 
Job’s tears is a perennial plant which forms several stalks and its pollen can be 
 collected throughout the year when the plant is maintained in a controlled environ-
ment. Mochida and Tsujimoto ( 2001 ) produced wheat ( Triticum aestivum  L.) 
 haploids by crossing with Job’s tears ( Coix lachryma-jobi  L.) as the pollen parent. 
Pollination was followed by 2,4-D treatment, detached tiller culture and embryo 
culture, as described for maize pollination. The frequency of embryo formation was 
similar to that obtained by crossing wheat with maize pollen.  
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6.2.7     Wheat ×  Imperata cylindrica  

 Considering the above chromosome elimination-mediated haploid induction 
 systems, no alternative pollen source was reported to overcome the problems of 
wheat × maize system  viz ., non-synchronisation of fl owering with wheat naturally 
and poor performance in producing haploids from triticale × wheat and wheat × rye 
derivatives (Kishore et al.  2011 ). These constraints made it imperative to search for 
some other pollen source. Among all the  Gramineae  genera  viz .,  Zea mays ,  Sorghum 
bicolor ,  Pennisetum americanum ,  Setaria italica ,  Festuca arundinacea ,  Imperata 
cylindrica ,  Cynodon dactylon ,  Lolium temulentum  and  Phalaris minor  tested for 
haploid plant production,  I. cylindrica  produced more embryos and haploids over 
others (Chaudhary et al.  2005 ; Pratap et al.  2005 ). Cogon grass ( I. cylindrica ) 
(Fig.  6.3 ) is a wild weedy perennial grass (2n = 2x = 20), does not require repeated 
sowings and its fl owering coincides well with that of wheat and triticale under natu-
ral conditions. Furthermore, it is available under natural conditions in almost all 
parts of the world wherever wheat is cultivated. The  I. cylindrica -mediated 
 chromosome elimination approach of doubled-haploidy breeding is genotype non- 
specifi c for hybridisation with any variety of wheat, triticale or their derivatives.

    I. cylindrica  has been reported to perform signifi cantly better than maize for all the 
haploid induction parameters in wheat and triticale and their derivatives (Chaudhary 
 2008a ,  b ,  2012 ,  2013 ). Cytological investigation of the wheat ×  I. cylindrica  chromo-
some elimination system has shown that there is no endosperm formation and the 
elimination of chromosomes of  I. cylindrica  takes place in the fi rst zygotic division 

  Fig. 6.3    Spike of  Imperata 
cylindrica , the effi cient 
pollen source for haploid 
induction in wheat       
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in seed development, thus allowing the production of  embryo- carrying seeds (Komeda 
et al.  2007 ). Recently, Tayeng et al. ( 2012 ) reported that the  in vivo  application of 
colchicine (2,000 ppm) enhances the doubled-haploid production effi ciency in 
wheat ×  I. cylindrica -mediated chromosome elimination approach of doubled- 
haploidy breeding. The haploid chromosome set of wheat (n = 21) obtained after 
wheat ×  I. cylindrica  hybridisation is shown in Fig.  6.4 . According to Kaila et al. 
( 2012 ), the chromosome elimination in wheat ×  I. cylindrica  system is being trig-
gered by the B and D genome of wheat. Similar to wheat × maize system, the mean 
response of wheat and  I. cylindrica  to haploid induction varies from genotype to 
genotype (Rather et al.  2013 ). The morphological marker, that is, absence of endo-
sperm in haploid embryo-carrying seeds developed from wheat ×  I. cylindrica  hybrid-
isation, can be used quite effi ciently to exploit the asynchronous behaviour of anthesis 
within wheat spikes (Chaudhary et al.  2013 ) for undertaking this wide hybridisation 
without emasculation. This endeavour has saved considerable time and energy 
required otherwise for emasculation in wheat ×  I. cylindrica  hybridisation.

6.2.8        Triticale ×  Imperata cylindrica  

 Triticale is a hybrid of wheat ( Triticum ) and rye ( Secale ) fi rst bred in laboratories 
during the late nineteenth century. Commercially available triticale is almost a 
second- generation hybrid, i.e. a cross between two kinds of primary (fi rst cross) 
triticales. As a rule, triticale combines the yield potential and grain quality of wheat 

  Fig. 6.4    Cytological 
confi rmation of wheat 
haploid (n = 21) produced 
from wheat ×  Imperata 
cylindrica  hybridisation 
(source: Tayeng et al.  2012 )       
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with the disease and environmental stress tolerance (including stresses related to 
soil conditions) of rye. 

 As far as haploid induction following chromosome elimination approach of 
 doubled-haploidy breeding is concerned, Kishore et al. ( 2011 ) carried out interge-
neric hybridisation using pollen of maize and  I. cylindrica  in wheat–rye-derived 
backcross (BC 1 F 1  and BC 1 F 2 ) generations to study the relative effi ciency of the two 
chromosome elimination systems. The relative effi ciency of embryo-carrying seeds 
ranged from 8 to 30 % with  I. cylindrica , whereas with maize, no embryo-carrying 
seeds were obtained.    Wedzony et al. ( 1998 ) reported the production of haploid 
embryos in triticale by means of maize-mediated system. However,  I. cylindrica -
mediated system outperformed the maize system in triticale × wheat derivatives in 
respect of embryo formation and embryo regeneration frequency (Pratap et al.  2005 ).  

6.2.9     Oat × maize 

 The common oat ( Avena sativa ) is a cereal mostly grown for its seed. Oats are suitable 
for human consumption as oatmeal and rolled oats; however, these are commonly used 
as livestock feed. Riera-Lizarazu et al. ( 1996 ) crossed hexaploid oat (2n = 6x = 42) and 
maize (2n = 2x = 20) and recovered 90 progenies through embryo rescue. Fifty-two 
plants (58 %) produced from oat × maize hybridisation were oat haploids (2n = 3x = 21) 
following maize chromosome elimination. Twenty-eight plants (31 %) were found to 
be stable partial hybrids with 1–4 maize chromosomes in addition to a haploid set of 
21 oat chromosomes (2n = 21 + 1 to 2n = 21 + 4). Ten of the 90 plants produced were 
found to be apparent chromosomal chimeras, where some tissues in a given plant 
contained maize chromosomes while other tissues did not, or else different tissues 
contained a variable number of maize chromosomes. Jing-San and Tie-Gang ( 1995 ) 
crossed naked oat with maize and obtained haploid plants of naked oat. 

 Factors infl uencing the rate of caryopsis and haploid embryo production includ-
ing genotype, post-pollination plant growth regulator application and temperature 
were investigated (Sidhu et al.  2006 ). The four growth regulators tested showed 
signifi cant differences in their capacity to induce caryopsis formation with dicamba 
producing the highest numbers of caryopses, followed by picloram, 2,4-D and gib-
berellic acid (GA 3 ). No signifi cant differences were observed between these growth 
regulators for their effect on embryo production. The concentration of dicamba was 
also important and was found to infl uence caryopsis but not embryo production, 
with 50 and 100 mg/l dicamba producing signifi cantly more caryopses than 25 or 
5 mg/l. Temperature had a signifi cant impact on both caryopsis and embryo produc-
tion with the magnitude and direction of response depending on genotype. Rates of 
haploid embryo production observed were between 0.8 and 6.7 % of the pollinated 
fl orets. The proportion of haploids, which survived and were successfully doubled 
with colchicine following transfer to soil, was between 72 and 81 %. 

 Rines ( 2002 ) produced haploids of cultivated oat from wide hybridisation with 
Panicoideae species, particularly maize. Haploid oat production by the maize wide 
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cross method appears to be less genotype restricted than haploid production by 
anther culture. However, the plant recovery frequencies reported to the tune of 
1–2 % of maize-pollinated fl orets are low like those for oat haploid production by 
anther culture and not yet adequate for routine use in breeding. The oat × maize 
hybridisation results in novel features in respect of types and reproductive behav-
iour of plants recovered. These include maize chromosome retention in a portion 
of the recovered oat plants and partial self-fertility in oat haploid plants. These 
differences in products can be detrimental in routine production of doubled hap-
loids for breeding, but on the other side the sea normalities have led to the recovery 
of valuable materials for genetic and genomic studies in both oat and maize. This 
report details protocols currently in use for recovery and for molecular and cyto-
logical characterisation of doubled-haploid oat plants, both with and without added 
maize chromosomes, from oat × maize hybridisation and describes features of 
derived plants that make them novel and valuable. Keeping in view the low fre-
quency of haploid recovery through maize-mediated system, there is a need to 
search some other effi cient pollen source so as to enhance the haploid induction 
effi ciency in oat.  

6.2.10      Solanum tuberosum  ×  S. phureja  

 Doubled haploids can be produced from tetraploid genotypes of  S. tuberosum  
 (cultivated potato) by pollination with the diploid potato species,  S. phureja  
(Mendiburu et al.  1974 ; De Maine  2003 ). In about 0.5 % of pollinated ovules, both 
male sperm cells of  S. phureja  take part in the formation of functional endosperm. 
The best pollinator lines of  S. phureja  were bred for a dominant purple spot embryo 
marker; thus, seeds containing haploid embryos can be easily distinguished from 
hybrid  S. tuberosum  ×  S. phureja  seeds. Methods of more effective chromosome 
number duplication were developed more recently, and production of potato can 
now be obtained by androgenetic methods with a better effi ciency (Jacobsen and 
Ramanna  1994 ; Rokka et al.  1996 ; Rokka  2003 ). Moreover, androgenesis is appli-
cable to a much wider range of  Solanum  species in comparison to crosses with 
 S. phureja  (Jacobsen and Ramanna  1994 ;    Aziz et al.  1999 ; Rokka  2003 ). 

 Montelongo-Escobedo and Rowe ( 1969 ) reported that the superior pollinator in 
potato haploidy breeding following chromosome elimination approach may be the 
one that produces a high frequency of restitution sperm nuclei. Dihaploid potatoes 
can be used for breeding purposes, including alien germplasm introgression or 
selection at the diploid level, but such plants are not homozygous. Haploids have 
a signifi cant role in potato breeding programmes, since they enable interspecifi c 
hybridisation which would not be otherwise possible due to differences in ploidy 
levels and endosperm balance numbers. The gene pool of potato can be broadened, 
and certain valuable traits, such as disease resistance characters from the wild 
solanaceous species, can be more effi ciently introgressed into cultivated potato 
(Rokka  2009 ).   
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6.3     Conclusion 

 Distant hybridisation has been quite extensively used in various crop improvement 
programmes as it results in the creation of genetic variation and broadening of the 
genetic base of the crop plants which helps them to adapt to changing climatic con-
ditions. Among the various barriers involved in the transfer of desirable genes from 
wild species into the genetic background of modern-day crop varieties, chromo-
some elimination has been studied to a great extent by the researchers in various 
crops, especially cereals. The uniparental chromosome elimination in distant or 
wide hybrids leading to the development of haploids has speeded up the genetic 
improvement programmes in different crop species as it helps us to achieve the 
absolute homozygosity in 2 years, thereby saving 5 years of varietal development 
programmes. Moreover, it assists in the quick development of mapping populations 
used for molecular studies at various levels. The chromosome elimination-mediated 
approaches of doubled-haploidy breeding have been used quite effi ciently in crops 
like barley, wheat, oats, triticale and potato, whereas other approaches, viz., andro-
genesis and gynogenesis, were not so effi cient and practicable. The application of 
any doubled haploid technique to breeding programmes should be able to produce 
DH lines from all the genotypes, and the DHs should be genetically stable (Snape 
et al.  1986 ). The bulbosum technique of haploid induction was found genotype 
specifi c just like anther or ovule culture. The wheat × maize system was genotype 
non-specifi c, but it failed to produce haploids in wheat × rye derivatives (Kishore 
et al.  2011 ). Wheat ×  I. cylindrica , the newly invented system of chromosome elimi-
nation, has showed a great promise in producing haploids from wheat, triticale and 
wheat × rye derivatives (Chaudhary et al.  2005 ; Chaudhary  2013 ). Keeping in view 
that most of the studies in respect of doubled-haploidy breeding following unipa-
rental chromosome elimination have been reported in cereals, the plant breeders 
should look forward for such types of genotype-non-specifi c and effi cient haploid 
induction systems in other crops.     

  Acknowledgment     The authors are highly obliged to Prof. Yasuhiko Mukai, Osaka Kyoiku 
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    Abstract     Over the past two decades tremendous progress has been made in the 
area of genomics of crop plants, especially evolution of large number of high- 
throughput cost effective molecular markers and genotyping platforms which have 
helped to identify, map, and introgress alien genes from the wild backgrounds. The 
alien genes once mapped have been introgressed into cultivated crop plants through 
marker-assisted backcrossing (MABC) for improving biotic and abiotic stresses in 
major crop species including rice, wheat, chickpea, cotton, tomato, etc. Molecular 
markers associated with favorable alien QTL of wild species have an important role 
in introgression and tracing of these QTL during their transfer into the background 
of cultivated species. Thus these have become important for exploitation of alien 
genes in crop improvement. This chapter discusses the role of molecular markers in 
crop improvement through alien gene transfer.   

    Chapter 7   
 Role of Molecular Markers 

             Reyazul     Rouf     Mir      ,     Javaid     Akhter     Bhat    ,     Nelofer     Jan    ,     Bikram     Singh    , 
    Ashok     Kumar     Razdan    ,     Mohd     Ashraf     Bhat    ,     Ajay     Kumar    , 
    Ekta     Srivastava    , and     Nupur     Malviya   

        R.  R.   Mir      (*) •      J.  A.   Bhat  •      B.   Singh   •     A.  K.   Razdan    
  Division of Plant Breeding & Genetics ,  Shere-Kashmir University of Agricultural Sciences 
& Technology of Jammu (SKUAST-J) ,   Chatha   180009 ,  Jammu ,  India   
 e-mail: imrouf2006@gmail.com   

    N.   Jan    
  Department of Botany ,  Chaudhary Charan Singh University (CCSU) , 
  Meerut   250004 ,  U.P. ,  India     

    M.  A.   Bhat    
  Molecular Biology Laboratory, Division of Plant Breeding & Genetics ,  Sher-e-Kashmir 
University of Agricultural Sciences & Technology of Kashmir (SKUAST-K) ,   Shalimar  
 191121 ,  Kashmir ,  India     

    A.   Kumar    
  Department of Plant Sciences ,  North Dakota State University ,   Fargo ,  ND ,  USA     

    E.   Srivastava   •      N.   Malviya    
  Division of Crop Improvement ,  Indian Institute of Pulses Research ,   Kanpur   208024 ,  India    



166

  Keywords     AB-QTL analysis   •   Alien genes   •   Gene mapping   •   Introgression   
•   Marker-assisted backcrossing   •   Molecular markers  

7.1         Introduction 

 Making selections for desired traits such as non-shattering habit, uniform maturity, 
improved seed fertility, seed dormancy, increased seed number, increase in seed and 
fruit size, modifi ed plant architecture, and conversion from perennial to annual 
forms during the process of crop domestication led to a gradual loss in genetic 
diversity (Tanksley and McCouch  1997 ). This reduction/loss in genetic diversity 
during crop domestication could be attributed to: (i) selection by human beings for 
desirable “domestication related traits”, (ii) genetic drift in the form of “domestica-
tion bottlenecks” (Eyre-Walker et al.  1998 ), and (iii) modern plant breeding prac-
tices that resulted in the development of high yielding and uniform crop varieties. 
This reduction in diversity has been more prominent in self-pollinated crops like 
wheat, where the level of genetic variation in cultivated pool has often been reported 
to drops below 5 % of that available in nature (Miller and Tanksley  1990 ; Wang 
et al.  1992 ). It makes crops more vulnerable to biotic and abiotic stresses. This may 
also result in huge losses in yield and quality as observed previously by the attack 
of shoot fl y and Karnal bunt in India (Reif et al.  2005 ) and the Southern corn leaf 
blight in the United States (Tanksley and McCouch  1997 ). Moreover, it reduces 
chances to identify new and useful gene combinations for crop improvement. To 
overcome these concerns and for further genetic improvement in crops plants, the 
natural variation available in wild relatives, landraces, and primitive cultivars of the 
crop species is required to be harnessed for a rapid and sustainable improvement of 
crop species for many years (Tanksley and McCouch  1997 ). Nonetheless, most of 
our germplasm and wild material stocked in the gene banks could not be exploited 
effi ciently for crop improvement by the scientists/breeders due to: (i) the traditional 
plant breeding practices, which made improvement of simple traits more feasible 
rather than the complex traits on the basis of phenotype (Tanksley and McCouch 
 1997 ), (ii) F 1  hybrid sterility, (iii) hybrid breakdown, and (iv) linkage drag. Realizing 
the importance of greater genetic variability in crop improvement, several new tools 
and  technologies have been developed for effi cient utilization of these genetic 
resources. Development in the science of genomics has been one such measure 
which provided DNA-based molecular markers for use in crop improvement pro-
grams. Molecular markers tightly linked to genes/QTL help to reduce the linkage 
drag associated with alien introgressed segments by transferring only desirable seg-
ment/loci from the wild species. These markers also help in identifi cation of favor-
able QTL/gene alleles controlling agronomically important traits in the background 
of unadapted germplasm in spite of their inferior phenotype (deVicente and Tanksley 
 1993 ; Eshed and Zamir  1995 ). In this chapter, we have discussed the role of molecu-
lar markers for crop improvement through alien introgressions.  
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7.2     Importance of Alien Gene Introgression 

 Genetic variation of crop plants is continuously decreasing due to domestication and 
modern plant breeding practices (Fig.  7.1 ). This has although resulted in development 
of high yielding, uniform crop varieties, but it has happened largely at the cost of 
extinction of primitive ancestors. This problem is especially severe in self-pollinated 
crops than in cross-pollinated ones (Miller and Tanksley  1990 ; Wang et al.  1992 ). 
Consequently, these uniform and high yielding varieties become more vulnerable to 
attacks by diseases and insect-pests leading to heavy losses and in some cases, to near 
extinction of a crop, as is evident from the following two examples in rice and potato.

7.2.1       Grassy Stunt Virus (GSV) Epidemics in Rice 

 During the early 1970s, before the release of resistant rice cultivars in 1974, GSV 
 epidemics destroyed more than 116,000 ha (287,000 acres) of rice in Indonesia, 
India, Sri-Lanka, Vietnam, and Philippines. After this, screening of ~17,000 

  Fig. 7.1    Diagrammatic representation of loss of genetic diversity in crop species (A) due to 
domestication, (B) modern plant breeding practices, (C) introgression of alien genes from the wild 
species to improve modern uniform crop varieties (D) for a variety of traits. The Symbol ( asterisk ) 
indicates the novel genetic variation that has not been selected during domestication and due to 
modern plants breeding practices, and these novel alleles are now being introgressed from the wild 
species into elite cultivars with the help of molecular markers to improve them for biotic and 
 abiotic stresses       
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cultivated and wild rice lines for resistance to GSV for 4 years led to the 
 identifi cation of a  population of “ Oryza nivara ”, growing wild near Gonda in Uttar 
Pradesh, India and showing resistant to GSV. This resistance in  O. nivara  for 
“ grassy-stunt virus strain 1 ” was governed by a single resistance gene. This gene 
was transferred from  O. nivara  into cultivated rice and it is believed that GSV 
resistant hybrids containing the wild Indian gene are grown across 110,000 km 2  of 
Asian rice fi elds (Robert and Prescott-Alen  1983 ). This is one of the most impor-
tant examples showing how wild relatives of crop plants came to the rescue of 
cultivated crops and thus prevented  massive crop failure and famine.  

7.2.2     Late Blight of Potato 

 The potato crop was severely attacked by a disease “late blight” caused by the fun-
gus  Phytopthora infestans  in 1945 and 1946. This disease occurred in epidemic 
throughout northern Europe. In Ireland, where potato was the staple food, a loss of 
the crop led to wide spread famine. Consequently, human deaths from starvation, 
combined with emigration to Britain or North America, reduced the population of 
Ireland from 8.2 million in 1841 to 6.2 million in 1851. However, a breakthrough 
came in 1908, when the British plant breeder R.N. Salaman found that the wild 
Mexican species “ Solanum demissum ” and its natural hybrid with the potato  S. edi-
nese  were resistant to late blight. Thus “ S. demissum ” was utilized for the transfer 
of late blight resistance genes into cultivated pool. It is well documented that out of 
586 potato cultivars grown in Europe (West and East, excluding the USSR), 320 
have genes from wild species (Stegemann and Loeschcke  1979 ). Out of 71 cultivars 
grown in the Soviet Union, 30 contain genes from the wild species (Ross  1979 ; 
Robert and Prescott-Alen  1983 ).   

7.3     Evolution of Molecular Maker Technology 
for Studying Alien Genes 

 During the last three decades, a variety of DNA-based molecular markers have 
evolved and helped to study the genetics and molecular breeding of crop plants 
(Mir and Varshney  2013 ). Some of these important molecular markers include 
 low- throughput restriction fragment length polymorphisms (RFLPs), medium- 
throughput random amplifi ed polymorphic DNAs (RAPDs), amplifi ed fragment 
length polymorphisms (AFLPs) and microsatellite or simple sequence repeats 
(SSRs), high-throughput single nucleotide polymorphisms (SNPs), diversity array 
technology (DArT) markers and ultra-high throughput assays for whole-genome 
genotyping and genotyping-by-sequencing (GBS) (Mir et al.  2013 ). All these mark-
ers have been classifi ed into different categories viz., (i) PCR and non-PCR based, 
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(ii) hybridization and non-hybridization based, (iii) sequence and non-sequence 
based, (iv) fi rst, second, third, and fourth generation markers. Additionally, recently 
these molecular markers have also been classifi ed into (i) past, present, and future 
molecular markers (Mir and Varshney  2013 ) and (ii) low- throughput, medium-
throughput, high-throughput, and ultra-high throughput molecular markers (Mir 
et al.  2013 ; Table  7.1 ). The last category includes the recently emerged novel array-
based, low cost marker systems, including DArTs and single feature polymorphisms 
(SFPs; Gupta et al.  2008 ,  2013 ).

   The development of high-throughput array-based markers (e.g., DArTs) over-
comes the problems of expensive and laborious scoring of marker panels across target 
populations in gel-based marker systems (see Gupta et al.  2008 ,  2013 ). Among all 
these markers, SSR markers had become the markers of choice initially because of 
their various desirable attributes (Gupta and Varshney  2000 ), but in recent times single 
nucleotide polymorphisms (SNPs), whose discovery required sequence information 
have became the markers of choice (in addition to SSRs) due to their abundance and 
uniform distribution throughout the genomes. All these markers provide most power-
ful diagnostic tools for the detection of polymorphism either at the specifi c loci level 
in the genome or at the whole genome level (Mir and Varshney  2013 ). 

 The improvements in screening techniques by molecular markers have been 
found important in facilitating the tracking of agronomically important genes 
(Langridge and Chalmers  2004 ). However, the ultimate approach of studying poly-
morphism in any crop would be to sequence/resequence the entire genome (or a part 
of it) of a large number of accessions. This was unimaginable during 1980s and is 
even still not very cost effective. Therefore, DNA-based molecular markers are 
employed for detecting and utilization of genetic variation (Collard et al.  2005 ; 

    Table 7.1    Classifi cation of molecular markers on the basis of throughput and generation a    

 Molecular marker  Throughput  Time/generation 

 Restriction fragment length polymorphisms 
(RFLPs) 

 Low-throughput  Past 

 Random amplifi ed polymorphic DNAs (RAPDs)  Medium-throughput  Past 
 Amplifi ed fragment length polymorphisms 

(AFLPs) 
 Medium-throughput  Past 

 Simple sequence repeats (SSRs)  Medium-throughput  Present 
 Single nucleotide polymorphisms (SNPs)  High-throughput  Present 
 Single feature polymorphisms (SFPs)  High-throughput  Present 
 Diversity array technology (DArT)  High-throughput  Present 
 Infi nium assays  Ultra high-throughput  Future 
 Genotyping by sequencing (GBS)  Ultra high-throughput  Future 
 Reduced-representation libraries (RRLs)  Ultra high-throughput  Future 
 Restriction site, associated DNA (RAD)-seq  Ultra high-throughput  Future 
 Complexity reduction of polymorphic sequences 

(CRoPS) 
 Ultra high-throughput  Future 

   a Modifi ed from Mir et al.  2013 ; Mir and Varshney  2013   
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Gupta et al.  2002 ,  2008 ). However, the availability of next-generation sequencing 
(NGS) platforms have revolutionized genomics approaches to biology and have 
drastically increased the speed at which DNA sequence can be acquired while 
reducing the costs by several folds. These NGS methods are now using restriction 
enzyme digestion of target genomes to reduce the complexity for genome-wide 
genetic marker development and genotyping. The use of restriction enzymes for 
high-throughput genetic marker discovery and genotyping have several advantages 
and are becoming the methods of choice for marker discovery (see Davey et al. 
 2011 ; Mir and Varshney  2013 ; Table  7.1 ). It is anticipated that these emerging tech-
nologies will answer many complex biological questions and will help us in identi-
fying recombination breakpoints for linkage mapping or QTL   mapping, locating 
differentially expressed genomic regions between populations for quantitative 
genetics studies, genotyping large number of progenies for marker- assisted selec-
tion (MAS) or resolving the phylo-geography of wild populations. These emerging 
methods can be grouped into: (1) reduced-representation sequencing, including 
reduced-representation libraries (RRLs) and complexity reduction of polymorphic 
sequences (CRoPS), (2) restriction site-associated DNA (RAD)-seq, and (3) low 
coverage genotyping, including multiplexed shotgun genotyping (MSG) and geno-
typing by sequencing (GBS). A detailed comparison of  various molecular markers 
and their use has been discussed in detail elsewhere (see Gupta et al.  2008 ,  2013 ; 
Mir et al.  2013 ; Mir and Varshney  2013 ).  

7.4     Role of Molecular Markers in Alien Gene Introgression 

7.4.1     Molecular Markers for Mapping/Tagging of Alien Genes 

 Several alien genes have been tagged, mapped, and introgressed in major crops like 
rice and wheat for important traits. A summary of genes/QTLs identifi ed, mapped, 
and introgressed into elite cultivars in crops like wheat, rice, chickpea, tomato, cot-
ton, etc. have been tabulated in Table  7.2 . These useful alien genes have been 
mapped for crop improvement using several approaches of mapping including sin-
gle marker analysis (SMA), bulk-segregant analysis (BSA), composite interval 
mapping (CIM), etc. Markers associated with genes of interest can be deployed to 
select the genotypes having desirable genes in their background.

7.4.2        Identifi cation of Favorable Alleles/QTL for Complex 
Traits in the Background of Exotic Germplasm 

 In general, wild species of crop plants are poor in yield as compared 
to cultivated species. However, before the advent of molecular markers, it has 
been shown that use of wild species improves yield of sugar, grains, and fruits. 
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For example, nobilization of sugarcanes where interspecifi c crossing of wild 
 species,  Saccharum spontaneum , was executed with cultivated sugarcane ( S .  offi -
cinarum ) increased the yield and sucrose content by about 50 %. Similarly, the 
yield of cultivated oats,  Avena sativa , increased by 4–7 % by crossing with wild 
species  A. sterilis  (Frey et al.  1984 ) and transgressive segregants had >20 % yield 
increase over the recurrent parent (Lawrence and Frey  1975 ). The progeny derived 
from using wild species of tomato, which had small green fruit, showed large red 
fruits and increased fruit weight (Rick  1974 ). Improvement in yield was also 
reported in wheat, oat, barley, sorghum, and maize crops, when wild species were 
used in crossing (Frey et al.  1984 ). In maize, crosses with  Tripsacum , a distant 
relative of maize, helped to improve yield of popular varieties (Reeves and 
Bockholt  1964 ). Yield of chickpea ( Cicer arietinum ) also increased by crossing 
with wild species  C. echinospermum  (IWC 179) and the derivative lines produced 
higher yield (19 %), higher biological yield, and heavier seed than the cultivars 
(Singh and Ocampo  1997 ). These examples illustrate the possibility of improving 
yield by up to 20 % using introgressions from wild and related species. However, 
use of traditional methods only provided limited information on genetic basis of 
such complex traits, chromosomal locations of QTL and effects of QTL on other 
traits (epistasis, pleiotropy, or linkage). Availability of dense molecular maps made 
it possible to locate the genomic regions contributing to a complex trait. Molecular 
markers help to  identify the yield enhancing QTLs among the several QTLs identi-
fi ed in the background of wild species. These yield enhancing- QTL have been 
mapped by using backcrossed, F 2 , introgression lines (ILs) and backcross-double 
haploid populations in several crops including rice, tomato, wheat, barley, soy-
bean, beans, and capsicum (see Swamy and Sarla  2008  for details). Recently in 
rice, 40 % alleles of wild species  O. nivara  were identifi ed as trait enhancing 
alleles in  O. sativa  cv Swarna ×  O. nivara  crosses (Swamy et al.  2012 ). Thus 
molecular markers associated with these favorable alien genes/QTL of wild spe-
cies can be traced or  introgressed in the background of cultivated species while 
breeding improved varieties.  

7.4.3     Markers for Introgression of Alien Genes through 
Marker-Assisted Backcrossing (MABC) 

 The next step followed by mapping of alien genes is their introgression into elite 
cultivars and improving them for different traits. It is well documented that a large 
number of alien genes have been introgressed from wild species with the help of 
molecular markers in all major crop species. These DNA-based molecular markers 
provided necessary tools for selection of plants in backcross (BC) generations, thus 
helping to restore the maximum recurrent parent genome along with alien gene 
from the donor wild parent. This has been done by selecting against the markers 
from the wild parent outside the region carrying target gene. 

7 Role of Molecular Markers



174

 Conventional means of transfer of genes from donor into recipient genome takes 
six backcross generations to yield 99.2 % recurrent parent genome (Allard  1999 ). 
However, the most serious concern of breeders is the linkage drag which affects the 
agronomic performance of the recombinants having most of its genome from the 
recurrent parent. Molecular markers are used to solve the above two disadvantages 
associated with the conventional approach through marker-assisted backcrossing 
(MABC). The MABC involves two steps: (i) foreground selection, which is used to 
trace the presence of a target gene from the donor parent, and (ii) background selec-
tion to track the recovery of the recurrent parent genome. The reconstruction of 
recurrent genotype through MABC requires only three generations in comparison to 
more than six generations in traditional backcrossing (Tanksley et al.  1989 ) and also 
reduces the chances of linkage drag (Frisch et al.  1999 ). 

 Molecular markers, in addition to facilitating alien gene transfer, help to monitor 
alien gene transfer as well as understand the mechanism of gene transfer. For 
instance, RFLP markers were used to confi rm introgression of 11 out of 12 
 O.  offi cinalis  chromosomes in a cross between  O. sativa  and  O. offi cinalis  in back-
cross-derived progenies (   Jena et al. ( 1992 )). Similarly, introgression of one or two 
RFLP markers was detected from  O. brachyantha  and  O. granulate  into rice (Brar 
et al.  1996 ). MABC breeding has been used successfully for introgression of useful 
genes from wild and exotic accessions with minimum linkage drag in backcrossing 
programs. In rice, genes from wild species have been identifi ed in the advanced 
backcross progenies of crosses involving wild species,  O. australiensis  and 
 O. brachyantha,  using molecular markers (Ishii et al.  1994 ; Brar et al.  1996 ). 
Substitution lines have been developed with chromosome segments of  O. glaber-
rima  in  O. sativa  background using RFLP markers during the backcrossing process 
and constitute useful resources for rice improvement (Doi et al.  2003 ). 

 In rice, dozens of alien genes have been characterized, mapped, and transferred 
into different genetic backgrounds through marker-assisted selection (MAS). 
Molecular mapping of  Xa-21  gene for bacterial blight using various molecular trait 
association strategies fi nally led to the positional cloning of this gene in rice (Song 
et al.  1995 ). The gene “ Xa-21 ” has been extensively used in molecular breeding 
programs and more than a dozen rice varieties carrying this gene have been already 
released through MAS programs worldwide (Brar and Singh  2011 ). Several other 
bacterial blight genes were also mapped and used in molecular breeding programs 
aiming at enhancing bacterial blight resistance of rice. Similarly, gene conferring 
resistance to  BPH resistance (Bph-10(t))  was also mapped on chromosome 12 by 
studying co-segregation of BPH with molecular markers and thus closely linked 
markers for this disease could be identifi ed for molecular breeding programs. 
Similarly, genes for earliness, blast resistance, tungro tolerance, BPH resistance, 
and tolerance to aluminum toxicity have also been mapped. 

 In wheat ~30 species have been investigated and found to contain disease resis-
tance genes. Several genes have been successfully transferred into cultivated wheat 
using molecular markers leading to release of new varieties with enhanced disease 
resistance. The amount of alien genome transferred in wheat varies from single gene 
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to chromosome arms and sometimes even whole chromosome (Jones et al.  1995 ). 
Introgression, inheritance and mapping of leaf rust gene of  Ae. Caudata  (CC) in 
cultivated wheat has been reported using bulk segregant analysis with SSR markers 
in F 2:3  mapping populations. This led to the mapping of leaf rust resistance gene 
( LrAC ) on short arm of chromosome 5D. The gene  LrAC  was found novel homoeo-
allele of an orthologue  Lr57  (Riar et al.  2012 ). Introgression of group 4 and group 7 
chromosomes of  Ae. peregrina  into wheat resulted in 100 % enhancement in grain 
iron and >200 % increase in grain zinc concentration of BC 2 F 2  derivatives. The back-
cross progenies were tested with SSR markers and the analysis revealed the intro-
gression of 7S, 7U, group 4 and 4S of  Ae. peregrina  (Neelam et al.  2011 ). Similarly, 
a major QTL for both grain Zn and Fe on chromosome 7A in a biparental RIL map-
ping population derived from a cross between  T. boeoticum  ×  T. monococcum  was 
identifi ed (Tiwari et al.  2009 ). The substitution of group 2 and 7 of  Ae. kotschyi  in 
wheat has been reported to be responsible for increasing grain Zn and Fe concentra-
tion (Tiwari et al.  2010 ). Among biotic stresses, cereal cyst nematode resistance was 
mapped by identifi cation of two QTLs on chromosome arms 1AS and 2AS. The 
QTL/gene on 1AS may be allelic to  Cre5  (gene from  Ae. ventricosa ) when trans-
ferred to cultivated wheat using durum wheat as a bridge species. The use of linked 
molecular markers confi rmed the introgression of CCN resistance in F 8  CCN resis-
tant lines and thus these introgression lines could be used in MAS programs to trans-
fer this gene to elite bread wheat cultivars susceptible to CCN. 

 In an interesting study, successful transfer, characterization, and mapping of 
cryptic alien introgression from  Ae. geniculata  with new leaf and stripe rust resis-
tance genes  Lr57  and  Yr40 . In the induced homoeologous chromosome pairing 
between wheat chromosome 5D and 5M g  of  Ae. geniculata  (U g M g ) and character-
ization of rust resistant BC 2 F 5  and BC 3 F 6  progenies identifi ed three introgressions. 
Molecular mapping revealed that the cryptic alien introgression that confers resis-
tance to leaf and stripe rust comprised <5 % of the chromosome arm 5DS, while 
genetic mapping using F 2  segregating population showed monogenic and dominant 
inheritance. Previously mapped RFLP markers on the chromosome arm 5DS 
showed co-segregation with the rust diseases in F 2  population and mapping loca-
tions of these two genes suggested that the leaf and stripe rust resistance genes were 
new and were designated as  Lr57  and  Yr40  (Kuraparthy et al.  2007a ). Similarly, a 
cryptic introgression from  Ae. triuncialis  into bread wheat were detected using 
molecular markers. Genetic mapping in a segregating F 2:3  mapping population 
showed that rust resistance due to this introgression is controlled by single gene and 
some selected RFLP markers and one SSR marker could clearly discriminate the 
resistant lines from the susceptible ones closely linked with this gene. Using bulk 
segregant analysis, it was proved that the introgressed segment belongs to chromo-
some arm 2BL, which indicated that the leaf rust resistance gene is new, hence 
designated as  Lr58  (Kuraparthy et al.  2007b ). 

 Linkage mapping of two adult plant stripe rust resistance genes/QTLs were under-
taken in a mapping population derived from a cross between  T. monococcum  × 
 T. boeoticum , followed by transfer of one of the genes into bread wheat (Chhuneja 
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et al.  2008a ). The introgressed genes once identifi ed were transferred into different 
genetic backgrounds for the improvement of concerned diseases. For instance, leaf rust 
resistance gene  Lr58  discovered by Kuraparthy et al. ( 2007b ) was utilized in MAS 
programs by developing PCR based codominant markers. The gene was transferred 
from  Ae. triuncialis  into “Jagger” and “Overley”, two popular winter wheat cultivars of 
Southern Great Plains, through MABC programs. Screening of BC 3 F 4  plants at seed-
ling stage confi rmed that the resistance to rust in these progenies was due to the pres-
ence of gene “ Lr58 ” (Kuraparthy et al.  2011 ). For powdery mildew disease in wheat, 
two genes/QTLs fl anked by SSR/DArT markers were identifi ed on chromosome 7A 
and are being deployed into bread wheat cultivars through MABC for development of 
wheat cultivars with improved powdery mildew resistance (Chhuneja et al.  2012 ).  

7.4.4     Introgressed Alien Gene from the Wild Species 
and Linkage Drag 

 Interspecifi c and even intergeneric crossed have been attempted with good success 
in majority of crop species to bring/transfer novel genes for different agronomic 
traits from wild species. However, one needs to take care while attempting to trans-
fer targeted traits from wild species because several undesirable traits also get 
 transferred, the phenomenon known as linkage drag    during alien introgression. This 
linkage drag during the process of alien introgression is due to suppression in 
recombination at the target gene region and therefore recombination-based 
approaches cannot be used in the dissection of the target genes (Gill et al.  2011 ). 
Precise transfer of genes into cultivated species from wild species without or less 
linkage drag can be achieved by integrated approaches of cytology, gene expression 
analysis, conventional and molecular breeding involving use of molecular markers 
(see Brar and Singh  2011 ). In case of wheat, it has been shown successfully that the 
problem can be circumvented and resistance gene can be isolated from an alien 
introgression using a combination of cytology and gene expression analysis (Cao 
et al.  2011 ). Compensating transfer, which involves the induction of homeologous 
chromosome pairing and thus transfer, takes place between homeologous chromo-
somes only. This has been demonstrated successfully in the transfer of  LrAC  from 
WL711 into PBW343 with no apparent linkage drag (Riar et al.  2012 ). Therefore, 
one of the major consideration in transferring alien genes is to selectively transfer 
agronomically important genes from wild species without linkage drag (Brar and 
Khush  2002 ; Brar and Singh  2011 ). 

 Molecular markers have been found indispensable and used for a variety of 
 purposes including alien gene tagging, mapping, and helping to track and transfer 
alien genes into different genetic backgrounds. A number of studies have been 
reported in major crop species including rice and wheat, where alien genes have 
been tagged and mapped using a variety of molecular markers followed by their 
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transfer into different genetic backgrounds (Table  7.2 ). The alien genes reported and 
transferred in cereals including wheat, rice, and legumes like chickpea have been 
discussed below. 

7.4.4.1     Wheat 

 In wheat, most of the high yielding varieties possess alien chromosomal introgres-
sion from related weedy species. For instance, alien introgression of 1BL·1RS in 
wheat is due to wheat 1BS and rye 1RS. The rye chromosome arm “1RS” in 
1BL·1RS translocation has been found to possess a battery of disease resistance 
genes including leaf rust ( Lr26 ), stem rust ( Sr31 ), stripe rust ( Yr9 ), and powdery 
mildew ( Pm8 ) as well as genes for adaptation to abiotic stresses, including a robust 
drought-tolerant root system (Friebe et al  1996 ; Sharma et al.  2011 ). A number of 
other alien genes have been transferred at School of Biotechnology, Punjab 
Agricultural University, Ludhiana, India from wild relatives for number of diseases 
including  Lr57 ,  Yr40  (for leaf and stripe rust from  Ae. geniculata ),  Lr58  (for leaf 
rust, powdery mildew, Karnal bunt from  Ae. triuncialis ),  LrU1 ,  LrU2 ,  YrU1  (for 
leaf and stripe rust from  Ae. umbellulata ),  LrC  (for leaf and stripe rust from  Ae. 
caudata ),  LrV ,  YrV  (for leaf and stripe rust from  Ae. variabilis ), some QTLs for leaf 
and stripe rust, Karnal bunt, powdery mildew, CCN from  T. monococcum  and 
 T. boeoticum    . For powdery mildew resistance, gene “ Pm21 ” has been found effec-
tive against a broad spectrum of  Bgt  races in China and other parts of the world. 
Although large number of alien genes have been deployed in wheat but all of them 
may not offer durable resistance. For instance, the  Sr31  gene of rye origin, widely 
deployed in wheat production has recently been broken down by new stem rust 
races originating in Kenya threatening wheat crop worldwide. Therefore, one has to 
look for new genes from the wild backgrounds and try to transfer them into culti-
vated gene pool using different approaches.  

7.4.4.2     Rice 

 Introgression of useful alien genes from wild relatives is routine in rice. The fi rst 
report of successful alien gene transfer from wild species is introgression of gene 
for grassy stunt virus resistance from closely related AA genome species 
“ O. nivara ” to cultivated rice varieties (Khush et al.  1977 ) and CMS from  O. sativa  
ssp . spontanea  to develop CMS lines for commercial hybrid rice production (   Lin 
and Yuan  1980 ) Similarly, a dominant gene “ Xa-21 ” for bacterial blight was also 
transferred to rice from  O. longistaminata  (Khush et al.  1990 ). Crosses were also 
made between distantly related BB genome and CC genome, which led to the 
 production of several introgression lines with useful genes for resistance to brown 
plant hopper (BPH), white backed plant hopper (WBPH), and bacterial blight (BB) 
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(see Brar and Singh  2011 ). Similarly, genes were introgressed from other wild 
 species with BBCC, CCDD, EE, FF, GG, HHJJ genomes into cultivated rice (for 
more details see Brar and Khush  1997 ; Brar and Singh  2011 ).  

7.4.4.3     Chickpea 

 Most of the food legumes including chickpea suffer from severe crop/yield losses 
due to damages caused by several biotic and abiotic stresses. Some of the major 
constraints for chickpea production and productivity include diseases like  Fusarium  
wilt and Ascochyta blight, and abiotic stresses, like heat and drought. Several meth-
ods have been adopted to breed varieties with enhanced tolerance/resistance to 
above biotic and abiotic stresses. However, the progress is slow and this could be 
attributed to unavailability of adequate resistance sources to important stresses 
within the crop gene pool and the narrow genetic base of chickpea. Therefore, wild 
crop relatives with broader diversity have been utilized in breeding programs to 
develop varieties showing enhanced resistance/tolerance to these stresses 
(Mallikarjuna et al.  2011 ). For instance, wild  Cicer  species have been used to breed 
for enhanced resistance against Ascochyta blight,  Fusarium  wilt, Botrytis Gray 
Mold,  H. armigera  (Pod Borer), Bruchids ( Callosobruchus chinensis ), Cyst nema-
tode ( H. ciceri  Vovlas, Greco, and Divito), protein content and yield, cold tolerance 
and drought tolerance (Mallikarjuna et al.  2011 ).   

7.4.5     Simultaneous Mapping and Transfer of Alien 
Genes Through AB-QTL Analysis 

 The QTL mapping studies have now become common and have been reported in the 
number of crops like rice, maize, wheat, barley, and other major crops. In all these 
cases, the QTL mapping involving the identifi cation of QTLs linked to particular 
marker and their introgression into the elite genotype through MAS are two inde-
pendent processes. Most of these QTL studies have used early segregating genera-
tions (F 2 , F 3 , and BC 1 ) for QTL mapping and its detection. The QTLs/genes identifi ed 
in these early segregating populations loose their effect once they are introgressed 
into another background of elite genotype, and is because of inter-allelic or epistatic 
interactions that occur between donor QTL alleles and other donor genes in early 
mapping generations. However, in the advanced backcross generation due to the 
recovery of maximum recurrent genome, these interactions get fi xed thus leading to 
possible silencing of the measured QTL effects (Pillen et al.  2003 ). To solve the 
above two problems, a new molecular breeding approach has been proposed, which 
mostly involves two parents: one wild (donor parent) and the other an elite culti-
vated recurrent parent. This approach simultaneously combines the process of QTL 
identifi cation in the advanced generation and its introgression into the elite back-
ground from the unadapted germplasm. This approach is known as AB-QTL analy-
sis (Tanksley and Nelson  1996 , Also see Chap.   1    ). In this approach the QTL analysis 
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is delayed till the latter generations like BC 2  and BC 3 , because in these advanced 
generations most of the recurrent parent genome is recovered and any QTLs/genes 
identifi ed are free from the epistatic interactions offered by the donor genome. So, 
the QTLs/genes identifi ed through this approach are believed to perform well in the 
other genetic backgrounds as well. From almost all these studies it is evident that 
this approach has the potential in unlocking the favorable alleles from the wild par-
ents. Some of the crops where the AB-QTL analysis has been used for the detection 
and introgression of QTLs/genes into elite background are tomato, wheat, rice, 
maize, barley, and cotton (Table  7.3 ).

   Table 7.3    AB-QTL analysis studies conducted in crop plants   

 Crop  Wild/donor parent  Trait studied  Reference 

 Wheat  Synthetic wheat line 
(W-7984) 

 Yield and yield 
component traits 

 Huang et al. ( 2003 ) 

 Synthetic wheat line (XX86)  Agronomic traits  Huang et al. ( 2004 ) 
 Synthetic wheat line 

(TA 4152-4) 
 Yield and yield 

component traits 
 Narasimhamoorthy 

et al. ( 2006 ) 
 Synthetic hexaploid wheat 

accessions (Syn022) 
and (Syn086) 

 Baking quality traits  Kunert et al. ( 2007 ) 

 Synthetic wheat accession 
(Syn022L) 

 Leaf rust resistance  Naz et al. ( 2008 ) 

 Rice   O. rufi pogon  (IRGC 105491)  Agronomic traits  Xiao et al. ( 1998 ) 
  O. rufi pogon  (IRGC 105491)  Yield  Xiao et al. ( 1996 ) 
  O. rufi pogon  (IRGC 105491)  Yield, yield component 

and morphological 
traits 

 Thomson et al. ( 2003 ) 

  O. rufi pogon  (IRGC 105491)  Agronomic traits  Septiningsih et al. ( 2003a ) 
  O. rufi pogon  (IRGC 105491)  Seed quality traits  Septiningsih et al. ( 2003b ) 
  O. rufi pogon   Yield, yield component 

traits 
 Marri et al. ( 2005 ) 

  O. grandiglumis   Agronomic traits  Yoon et al. ( 2006 ) 
  O. rufi pogon  (IRGC 105491)  Yield and yield 

component traits 
 Xie et al. ( 2008 ) 

  O. rufi pogon  (IRGC 105491)  Yield and yield 
component traits 

 Cheema et al. ( 2008b ) 

 Barley   H. vulgare  ssp. spontaneum  Yield and yield 
component traits 

 Pillen et al. ( 2003 ) 

  H. vulgare  ssp. spontaneum 
(ISR42-8) 

 Powdery mildew, leaf 
rust and Scald 

 Von Korff et al. ( 2005 ) 

  H. vulgare  ssp. spontaneum  Agronomic traits  von Korff et al. ( 2006 ) 
  H. vulgare  ssp. spontaneum  Malting quality traits  Von Korff et al. ( 2008 ) 

 Tomato   L. pimpinellifolium  (LA1589)  Horticulture traits  Tanksley et al. ( 1996 ) 
  L. peruvianum  (LA1706)  Fruit weight  Fulton et al. ( 1997 ) 
  L. hirsutum  (LA1777)  Agronomic traits  Bernacchi et al. ( 1998 ) 
  L. parvifl orum   Horticultural traits  Fulton et al. ( 2000 ) 
  S. habrochaites   Ascorbic acid  Stevens et al. ( 2007 ) 

 Pepper   C. frutescens   Yield related traits     Rao et al. ( 2003 ) 
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7.5         Conclusions 

 The past two decades have seen tremendous progress in the development of genomic 
resources across different species of crop plants which have led to a better under-
standing of the genome structure of crop plants as well as offered new possibilities 
for their genetic improvement. The availability of next generation sequencing plat-
forms has revolutionized the way genomic resources are developed and also the 
speed at which a DNA sequence can be acquired at impressively reduced costs. 
Consequently, an array of DNA-based molecular markers have been developed and 
employed in not only regular breeding programs but also in successful alien intro-
gressions in several crops including cereals, pulses, oilseeds, ornamentals, and 
 vegetables. Using these markers, numerous alien gene introgressions have been 
 confi rmed while through marker-assisted backcrossing new alien introgressions into 
cultivated background have been materialized. However, keeping in view that the 
global population is continuously increasing, still more food has to come from plant 
sources, thereby necessitating exploitation of wild sources for conferring biotic and 
abiotic stress resistance, nutritional quality and increased yield of crop plants. The 
AB-QTL approach has to play an increased role in future to breeding cultivars with 
wider genetic backgrounds while genomic selections aided by genotyping will help 
in identifi cation of recombination events more precisely. Utilization of specifi c popu-
lations such as introgression and chromosome segment substitution lines, naturally 
introgressed lines, association mapping populations will further help in mapping of 
genes/QTLs as well and serve as a useful resource to make selection for desirable 
recombinants towards development of superior genotypes in different crops. 
Molecular markers have to still fi nd more use in introgression breeding and this is 
just a beginning towards sustainable agriculture.     
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    Abstract     The transfer of alien genes into the genetic background of cultivated crop 
varieties is becoming an important aspect of modern crop improvement programmes. 
Introgressive hybridization has widened the genetic base of the present day crop cul-
tivars. This chapter depicts the necessity of molecular cytogenetic tools for identifi ca-
tion and characterization of the introgressed alien chromosome segments or genes. 
There are several instances where different molecular cytogenetics tools including in 
situ hybridization, FISH, GISH and high resolution mapping have been successfully 
used to detect alien chromosomes or chromosome segments across different crop 
species and such alien introgressions have been successful in increasing the eco-
nomic value of the crop. This chapter discusses many such examples and emphasizes 
upon the increasing role of molecular cytogenetics in alien gene transfers.  

  Keywords     Cytogenetics   •   In situ hybridization   •   FISH   •   GISH   •   High resolution 
mapping   •   Karyotype  

8.1         Introduction 

 Utilization of plant breeding tools for genetic improvement of crop plants has 
increased crop productivity worldwide, but has simultaneously eroded their genetic 
variability (Allard  1996 ; Hoisington et al.  1999 ). Most of the modern day cultivars 
have been derived from similar parents and hence have narrow genetic base that 
makes them fragile to global climate change and disease and insect epidemics 
(Tanksley and McCouch  1997 ; Chan  2010 ). Wild relatives, on the other hand, main-
tain a wide range of allelic diversity for traits related to their fi tness such as disease 
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resistance and enhanced stress tolerance. Broadening the genetic variability will 
make crop production more sustainable under various biotic and abiotic stresses 
which are posing major threat in current and upcoming scenario. Introgressive 
hybridization, the incorporation of genetic materials from one species into another 
through wide hybridization and repeated backcrossing, plays an important role in 
the evolution, genetic modifi cation, and enriching the gene pool of plant species 
(Anamthawat-Jonsson  2001 ; Brar and Khush  2005 ; Jellen and Leggett  2005 ; Singh 
 2005 ; Jauhar et al.  2009 ). The “advanced backcross” approach allows the transfer of 
genes controlling useful agronomic traits that are not present in the natural back-
ground of crop plants, while introgressing the genomic regions and the potential 
genes controlling specifi c traits (Tanksley and Nelson  1996 ). Plant breeders are 
interested in introgressing genes conferring desirable traits from wild to crop spe-
cies in breeding programmes (Zhou et al.  2008 ). While introduction and integration 
of alien genetic material in crop plants is considered important, its characterization 
(physical size and precise location) is more vital so as to confi rm the introgression 
of desirable traits only with no linkage drag. However, it is diffi cult to incorporate 
alien chromosomes or chromosome segments due to limited chromosome homol-
ogy and low rates of recombination among chromosomes of wild and recipient crop 
species (Mujeeb-Kazi  1998 ; Navabi et al.  2011 ). The major hindrance in introgres-
sive hybridization lies in recovering and identifying meiotic recombinant chromo-
somes. Identifi cation of alien introgressions in plants could be done on the basis of 
expression of that particular alien chromosome or chromosome segment which 
results in a distinctive morphological expression (Yang and Chen  2009 ; Anuradha 
et al.  2006 ; Multani et al.  2003 ). In addition, genetic maps can be useful to establish 
a relative “ranking” among a series of recombinant products (Donini et al.  1995 ), 
but they represent poor indicators of physical distances along chromosomes. Other 
techniques include utilization of biochemical and molecular markers which suc-
cessfully identify if the introgressions are incorporated in the genetic background of 
recipient parent (Zhou et al.  2008 ; Ceoloni et al.  2005 ; Niu et al.  2011 ; Simmonds 
 1993 ). Most of the times combination of two or more techniques are used to identify 
desirable introgressions (Multani et al.  2003 ); however, with such screening tech-
niques signifi cant information about precise location and behaviour of alien seg-
ments introgressed is not available. As mentioned above, introgressive hybridization 
can also introduce resultant linkage drag that can lead to the simultaneous introduc-
tion of undesirable chromosome segments from alien parental species (Brown et al. 
 2003 ; Desloire et al.  2003 ). Such introgressions may remain undetected by utilizing 
aforesaid methods. Hence, to physically map the alien introgressions cytogenetic 
techniques have been proposed as complementary tools.  

8.2     Conventional Cytogenetics 

 Cytogenetics is the branch of biology dealing with the study of structure and proper-
ties of chromosomes in relation to genetics and their behaviour in somatic cell 
 division during growth and development (mitosis) and germ cell division during 
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reproduction  (meiosis), as well as their infl uence on phenotype. Apart from struc-
tural and developmental aspects, cytogenetics also includes the study of factors that 
bring about chromosomal changes in a somatic compliment. The conventional cyto-
genetics includes study of metaphase cells based on staining with basic dyes  viz.,  
 aceto- carmine, feulgen reagent, alcoholic-hydrochloric acid-carmine (Snow  1963 ), 
lacto-propionic-oresin (Dyer  1963 ), carboral fusin (Darlington and La Cour  1969 ), 
etc. that stain the chromosomes and make them distinct from rest of the cell con-
stituents. The chromosomes are studied on the basis of chromosome number, mor-
phology such as  chromosome size, arm ratio, and presence of secondary constrictions 
or the chromosomal behaviour during meiosis (Zhou et al.  2008 ; Tan et al.  2009a , 
 b ). The identifi cation of chromosomes and development of karyotype was easy and 
highly exploited utilizing conventional cytogentic techniques, especially in species 
where complete and distinct alien chromosomes are introgressed. However, the con-
ventional staining techniques were not useful when the chromosomes of alien and 
recipient species were not distinctive, hence, different banding techniques were 
used to distinguish chromosomes belonging to different species. Chromosome 
banding techniques were applied on prophase chromosomes which have just started 
to coil, having distinct euchromatin and heterochromatin region. The heterochro-
matic region constitutes of the highly repetitive areas which coil faster than the 
unique euchromatin regions of DNA. The more coiled repetitive sequences are 
stained darker in comparison to the euchromatin region and thus, on the basis of 
location of heterochromatin and euchromatin region, the chromosomes could be 
easily differentiated (Gill and Kimber  1974 ; Merker  1979 ; Nakata et al.  1977 ; Sethi 
and Plaha  1988 ). The various chromosome banding techniques include Q-bands, 
G-bands, C-bands, R-bands, N-bands, H-bands, and T-bands (Casperson et al.  1971 ; 
Bostock and Sumner  1978 ; Kannan and Zilfalil  2009 ). These classical approaches 
have proven valuable for chromosome characterization, but were unable to distin-
guish cryptic alien translocations in the host genome. The development of in situ 
hybridization (ISH), a molecular cytogenetic technique combining cytology with 
molecular biology allowed direct visualization of specifi c alien DNA sequences 
 translocated on host chromosomes (Gill and Friebe  1998 ; Harper and Cande  2000 ; 
Rieseberg et al.  2000 ; Anamthawat-Jonsson  2001 ).  

8.3     Molecular Cytogenetics 

 Molecular cytogenetics involves the analysis of genomic compositions and 
 alterations using ISH-based technology. The development of ISH techniques opened 
up opportunities for cytogenetic analysis of essentially any species, regardless of its 
inherent chromosome morphology. In plants, the use of radioactive tracer or modi-
fi ed nucleotides (attached to biotin, digoxigenin, or fl uorescent moieties) to make 
ISH probes permits microscopic  visualization and localization of complementary 
sequences in cells, nuclei, and  individual chromosomes on metaphase spreads 
(Buongiorno-Nardelli and Amaldi  1969 ; John et al.  1969 ; Gall and Pardue  1969 ). 
Molecular cytogenetics is commonly used to map alien introgressions, unique or 
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low-copy-number sequences, repetitive sequences to produce chromosome recogni-
tion cocktails or even whole genome to explore genome relations in polyploid or 
closely related plant species. The broad applications of molecular cytogenetics in 
structural, comparative, and functional genomics place plant cytogenetics in a 
unique position to complement, accelerate, or guide plant-genome research. 

 Molecular cytogenetics and the methods of ISH, especially with fl uorescently 
labelled probes, have revolutionized our understanding of the structure, function, 
organization, and evolution of genes and the genome. These methods made it fea-
sible to link the molecular data about DNA sequence with chromosomal and expres-
sion information at the tissue, cellular, and sub cellular level and hence, changed the 
way we apply cytogenetics to agriculture (Schwarzacher and Heslop- Harrison 
 2000 ). The above-mentioned characteristics of this technique make molecular cyto-
genetics an effi cient tool to assess the physical amount of exchanged material, 
which is a critical parameter in evaluating the potential impact of an alien transfer 
on the recipient genotype. Molecular cytogenetic techniques of nonradioactive ISH, 
particularly fl uorescence in situ hybridization (FISH), represent a very effi cient tool 
for precise estimation of the size of chromosomal segments incorporated and, in 
some cases, directly select promising lines on this basis for practical utilization 
(Yamamoto and Mukai  1989 ).  

8.4     Molecular Cytogenetic Techniques 

8.4.1     In Situ Hybridization 

 ISH technique, originally developed by Buongiorno-Nardelli and Amaldi ( 1969 ), 
Gall and Pardue ( 1969 ), and John et al. ( 1969 ), allows genes or DNA sequences to 
be directly localized on chromosomes in cytological preparations. In this tech-
nique, radioactive-labelled probes were hybridized with immobilized cells either in 
interphase or metaphase spreads. Upon hybridization, the signals emitted by radio-
active-labelled probes were detected by autoradiography. The technique was ini-
tially illustrated by the hybridization of ribosomal RNA to the amplifi ed ribosomal 
genes in oocytes of the toad  Xenopus  (Gall and Pardue  1969 ). The ISH of RNA to 
the DNA in a cytological preparation should exhibit a high degree of spatial local-
ization as each RNA species hybridizes only with sequences to which it is comple-
mentary. The procedure of ISH requires removal of basic proteins from chromosomes 
or nuclei as they may interfere with the hybridization process. This method was a 
better technique for rapid localization of specifi c DNA sequences on cytological 
preparations itself; however, it was accompanied by a number of limiting factors 
such as use of radioisotopes whose shelf life is limited. ISH technique has been 
used to identify chromosomes in several plant species and special cytogenetic 
stocks, particularly in wheat and its allied genera. Rayburn and Gill ( 1985 ) 
reported a biotin-labelling technique for the mapping of DNA sequences in plant 
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chromosomes by means of ISH. The biotin- labelling technique also permits the 
location of single-copy DNA sequences in plant chromosomes, suggesting that the 
technique may be as sensitive as the isotope- labelling technique for the detection of 
hybridization sites. This technique was similarly utilized effectively to identify 
alien DNA segments in the chromosome spreads of plant species. Lapitan et al. 
( 1986 ) used ISH of wheat–rye hybrids using biotin-labelled rye repetitive sequences 
and detected translocations of rye chromatins in 14 wheat chromosomes and sug-
gested it as an effi cient and sensitive method of detecting translocations. 
Simultaneously Ambros et al. ( 1986 ) utilized this technique to identify the physical 
location of T-DNA from  Agrobacterium ryzogenes  into the chromosomes of  Crepis 
capillaris . Although, the development of this technique allowed rapid and precise 
physical localization of the target but only one target could be visualized at one 
time as autoradiography cannot differentiate between two spots. Also, the spatial 
resolution of image obtained following ISH was less and obviously safety always 
remains a prime concern.  

8.4.2     Fluorescence In Situ Hybridization 

 Fluorescent ISH emerged to replace the isotopic ISH as powerful physical DNA 
mapping technique for detection of specifi c nucleic acid sequences, localization of 
unique or low copy number sequences and highly repetitive DNA sequences in the 
specifi c regions of the chromosomes by using DNA probes labelled with a marker 
molecule (fl uorophore) that emits fl uorescent signals which are visualized using a 
fl uorescent microscope. The technique was initially used in plants by Yamamoto 
and Mukai ( 1989 ). They used biotin-labelled wheat ribosomal RNA gene and 120 
bp repeated DNA family of rye to detect monosomic and substitution lines and 
hybrid between wheat and rye  via  fl uorescent detection and suggested that the tech-
nique was useful for identifi cation of specifi c chromosomes of a species or related 
species and alien chromosomes in their hybrids. Several such probes are cloned and 
can be used for identifi cation of chromosome in those genomes and their chromo-
somes (Leitch et al.  1991 ; Mukai et al.  1993b ; Mukai  1995a ). In particular, FISH 
has been  successfully applied in diverse breeding strategies with various plant spe-
cies (Jiang and Gill  1994 ). The main advantage of FISH is that it allows detection 
of the extent of introgression across the entire genome in a single hybridization 
experiment,  utilizing the in situ labelling of homologous chromosomes or chromo-
some regions on the basis of divergent and dispersed repetitive or unique sequences. 

 The hessian fl y resistance imparted to bread wheat  via  two terminal transloca-
tions T6BS-6BL-6RL and T4BS-4BL-6RL were detected using fl uorescently 
labelled rye-specifi c probes pSc119 and pSc74. The study revealed not only the 
introgressed alien chromatin but the exact break points were also identifi ed. Alien 
introgressions imparting resistance or tolerance against biotic and abiotic stresses 
were incorporated into genetic background of wheat from  Thinopyrum bessarabicum  
by William and Mujeeb-Kazi ( 1995 ) and later from  Th .  elongatum  ×  Secale cereale  
hybrids or amphiploids,  Ae .  Variablis ,  Th .  bessaracicum ,  Triticum currifolium , 

8 Molecular Cytogenetics for Identifi cation of Alien Chromosomes…



192

 T .  scirpeum, and T .  elongatum  and these introgressions were diagnosed  via  FISH 
(Mujeeb-Kazi et al.  1996 ). Ahmad et al. ( 2000 ) reported various types of aberra-
tions including wheat–rye, wheat–wheat, rye–rye, wheat–rye–wheat, rye–wheat– 
rye translocations by treating wheat–rye hybrids with ionizing radiations, and FISH 
was used to detect alien-introgression due to induced chromosomal translocations. 
Similarly, FISH was used to characterize the powdery mildew resistant lines derived 
from wheat–rye substitution lines and wheat- Lymus mollis  amphidiploids contain-
ing rye chromosomes by Forsstrom et al. ( 2002 ). They also successfully detected 
chromosome rearrangements like pericentric inversion of 1R chromosome in wheat-
triticale cross using FISH. Recently, Chen et al. ( 2012 ) detected a translocation 
from  Th .  ponticum  using pAs1 probe in a novel semi-dwarf line developed from 
wheat ×  Th .  ponticum  and reported that this cryptic translocation could not be 
detected  via  GISH. In addition to hexaploid wheat, FISH was also used successfully 
in tetraploid wheats, and Armstrong et al. ( 1992 ) used this technique to study seg-
regation of homeologous chromosomes in an amphidiploid of  T .  durum  ×  Th .  disti-
chum . In rice ( Oryza sativa ), Jiang et al. ( 1995 ) mapped  Xa21  gene conferring 
resistance against bacterial blight using FISH and BAC clones, whereas Asghar 
et al. ( 1998 ) applied FISH for detecting chromosomes of  O .  sativa  and  O .  offi cinalis  
on the basis of rDNA loci on somatic chromosomes of their hybrid. Koumbaris and 
Bass ( 2003 ) used maize chromosome 9 addition line and an improved single locus 
FISH protocol to localize loci on pachytene chromosomes. FISH using ribosomal 
probes of alien species ( Pisum fulvum ) was carried out to confi rm the presence of 
alien chromosome segments in genome of hybrids  P .  sativum  ×  P .  fulvum  and the 
segregation of these alien chromosomes in the selfed and backcross generations (De 
Martino et al.  2000 ). 

 The powerful technique of FISH can also be used to visualize transgene integra-
tion sites and provides a better understanding of transgene behaviour. Studies 
using FISH to characterize transgene integration have focused primarily on meta-
phase chromosomes, because the number and position of integration sites on the 
chromosomes are more easily determined at this stage. However, native or alien 
gene expression occurs mainly during interphase (Santos et al.  2006 ). The trans-
gene in  Agrobacterium -mediated  Cry1A ( b )-transgenic rice plants has been detected 
and its chromosomal location was determined by FISH. Eight of the nine trans-
genic lines tested showed hybridization signals and demonstrated that 
 Agrobacterium -mediated genes can integrate into multiple sites distributed in dif-
ferent parts of the chromosome. The distal regions were reported to be the pre-
ferred sites, whereas regions near the centromeres were suggested as the 
nonpreferential sites for T-DNA integration. Although, whatever the site may be 
but the transformed DNA sequences remained linked in the recipient genome (Jin 
et al.  2002 ). Similarly, fertile transgenic barley was evaluated and FISH revealed 
that transgene has been integrated in seven out of 19 lines at distal position, 
whereas four at telomeric region, three each at centromeric and satellite regions 
and two in  subtelomeric regions (Choi et al.  2002 ). 

 The ease with which FISH can rapidly and accurately localize the alien intro-
gressions that account for desirable traits from alien species and its broad 
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applications in structural, comparative, and functional genomics, place this plant 
molecular cytogenetic tool in a unique position to complement, accelerate, or 
guide plant- genome research. ISH can also be carried out using total genomic DNA 
(GISH), chromosome-derived DNA probes, or large genomic insert clones such 
as bacterial artifi cial chromosomes (BAC-FISH) (Anamthawat-Jonsson  2001 ; 
Schubert et al.  2001 ; Raina and Rani  2001 ; Herrera et al.  2007 ) as several modifi ca-
tions of FISH.  

8.4.3     Genomic In Situ Hybridization (GISH) 

 GISH is a genomic painting technique which allows parental genomes in interspe-
cifi c hybrids to be distinguished. Total genomic DNA from one parent is labelled as 
a probe and unlabelled total DNA of the other parent is used as a block. Alternatively, 
total DNA from both the parents may be labelled and these are both used as probes, 
each one labelled with a different fl uorochrome. This technique is based on the 
rapid evolution during speciation of repeated sequences, which represents the major 
part of plant DNA. If the species are distant enough, the repeat sequences allow the 
chromosomes from the two parental species to be differentiated. The concept of 
GISH (a modifi ed FISH) was given by Schwarzacher et al. ( 1989 ) and was fi rst used 
in  Hordeum chilense  ×  Secale africanum  and  Triticum aestivum  ×  Secale cereale . 
The advantage of GISH is the recognition of all alien chromosome segments con-
tained in the nucleus and is therefore the method of choice when interspecifi c 
crosses and derived introgressed lines are analyzed to reveal alien chromosomes 
and translocations (Mukai  1994 ,  1995b ; Mukai et al.  1993a ; Schwarzacher et al. 
 2011 ). GISH is used for identifi cation of chromosomes belonging to different 
genomes in a polyploid species or for physical localizations of alien introgressions 
(Heslop-Harrison et al.  1999 ). This technique also allows visualization of chromo-
some pairing in interspecifi c hybrids which determines the production of recombi-
nations or translocations (Kopecky et al.  2009 ). 

 Ribeiro-Carvalho et al. ( 1997 ) detected spontaneously introgressed rye chromo-
some segments in a wheat landrace, Barbela using genomic DNA of rye as probe 
and later, the introgressions were allocated onto wheat chromosome arm 2DL in 
two of the lines (Ribeiro-Carvalho et al.  2001 ). Likewise, various workers have 
 identifi ed rye chromosomes (Forsstrom et al.  2002 ; Chaudhary and Mukai  2004 ) or 
wheat–rye translocations like 7BS/7RL (Carvalho et al.  2009 ), 1BL/1RS (Fig.  8.1 ), 
and 6BL/1RS (Yan et al.  2009 ; Chaudhary  2004 ; Jeberson  2010 ). Total rye genomic 
DNA was utilized by Lima-Brito et al. ( 1996 ) for detection of rye genome in 
 triticale × tritordeum F 1  hybrids. Szarka et al. ( 2002 ) used GISH for verifi cation of 
the maize + wheat somatic hybrids. GISH can also be used to detect presence of the 
chromosomes of different species in an intergeneric cross like wheat ×  Imperata 
cylindrica  (Chaudhary et al.  2013 ) where the chromosome of two species can be 
seen distinctly in two different colours to verify the wide hybridization (Fig.  8.2 ). 
Similarly, GISH of selected maize-carrying somatic hybrid regenerants revealed 
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maize chromatin dispersed throughout the wheat nuclear genome by Xu et al. 
( 2003 ). Likewise, GISH was used effectively to identify  Haynaldia villosa  chromo-
somes (Zhong et al.  1996 ), small translocations of wheat grass (Han et al.  1998 ), 
 Elymus rectisetus  (Wang et al.  2006 ), and  Aegilops speltoides  (Klindworth et al. 
 2012 ) chromosomes in the genetic background of bread wheat. Li et al. ( 2000 ) 
used GISH to characterize single and reciprocal chromosome translocations arising 
from tissue culture in hybrids of  T .  aestivum  ×  T durum - Dassypyrum villosum  
amphiploid. GISH of  T. durum  ×  Aegilops squarrosa  L. indicated that the  translocated 
chromosome 1A/1D had a terminal 1DL segment of about 35–40 % of the recom-
binant arm length (Blanco et al.  2002 ). Zhang et al. ( 2002 ) developed seven wheat-
  Thinopyrum   bessarabicum  disomic addition lines. They characterized them on the 

  Fig. 8.1    FISH on metaphase spreads of triticale × wheat derived DH line of bread wheat revealing 
1BL/1RS translocation (Source: Chaudhary  2004 )       

  Fig. 8.2    Confi rmation of hybrid nature of wheat ×  I .  cylindrica  derived zygotes and the sequential 
elimination of  I .  cylindrica  chromosomes during fi rst zygotic mitosis (Source: Komeda et al.  2007 )          
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basis of GISH and reported that six of the seven addition lines were true disomic 
addition lines, whereas one was a duplication–translocation addition line. A BC 1  
population from the cross of Tal-Ph I / Triticum durum - Dasypyrum villosum  amphi-
ploid (AABBVV)//CS-Ph I , and its progenies were screened for chromosome recom-
bination by GISH analysis and a homozygous translocation line T5VS.5VL-5DL 
was identifi ed by Li et al. ( 2011 ).

    Such introgressions are known to impart resistance against many pests and 
 diseases and harbour traits of agronomic value. Resistance against hessian fl y was 
transferred into breadwheat from resistant durum wheat line by Friebe et al. ( 1999 ) 
and the segments introgressed from alien source were identifi ed using GISH. 
Similarly, Li et al. ( 2007 ) developed fi ve disomic addition lines in wheat, one 5RS 
ditelosomic addition, two multiple addition lines that confer resistance against 
wheat spindle streak mosaic virus and the different addition lines were identifi ed 
using GISH, whereas Fu et al. ( 2010 ) utilized GISH to identify the small rye chro-
matin introgressed into terminal chromosomes of wheat which accounted for 
improved disease resistance in the translocation lines. A partial amphidiploid line 
derived from wheat ×  Th .  intermedium  which was resistant to both powdery mildew 
and stripe rust was characterized by Bao et al. ( 2009 ) using GISH and suggested 
that resistance is imparted as a result of two St-genome, eight Js-genome, two SATJ 
chromosomes, and two J-St translocations. GISH of partial wheat- Th .  ponticum  
amphidiploids was carried out to identify the physical location of chromosome seg-
ment of  Th .  ponticum  in translocated chromosome imparting resistance against 
Fusarium head blight in wheat (Cai et al.  2008 ). Kang et al. ( 2011 ) suggested that 
GISH has effectively tagged the alien chromosomes harbouring resistance to wheat 
stripe rust in wheat— Psathyrostachys huashanica  addition lines. Similarly, four 
recombinant lines having  Sr39  genes conferring resistance against stem rust with 
minimal amount of goat grass chromatin were verifi ed using this technique by Niu 
et al. ( 2011 ). Likewise, Bao et al. ( 2012 ) used GISH to identify the chromosome 
segments of  Lymus mollis  harbouring single dominant  Yr  gene for rust resistance in 
wheat. Zheng et al. ( 2006 ) carried out GISH for physical localization of  Th .  ponti-
cum  chromosome that imparts blue colour to aleurone in translocated lines of 
wheat ×  Th .  ponticum . The technique of painting chromosomes with genomic probes 
is useful in detection of parental genomes in interspecifi c hybrids, identifi cation of 
alien chromosomes in monosomic alien addition lines (MAALs), and localization 
of introgressed segments in crop species with chromosomes of small size like rice 
and wheat. GISH has been used to identify alien introgression in interspecifi c 
hybrids of rice with species having different genomes  viz .,  O .  offi cianlis  (CC), 
 O .  brachyantha  (FF),  O .  australiensis  (EE),  O .  granulata , and  O .  ridleyi  (HHJJ) by 
Brar and Khush ( 1997 ). Yan et al. ( 1999 ) used FISH and GISH to identify the chro-
mosomes of  O .  eichingeri  in genetic background of rice in F 1 , F 2 , and back cross 
generations. Abbasi et al. ( 1999 ) used GISH to understand allo- and auto-syntenic 
pairing among A and E genomes of  O .  sativa  and  O .  australiensis , respectively. 
Similar study was carried out by Hue ( 2004 ) among rice genome and C-, BC-, E-, 
F-, G-, and HJ-genomes. Likewise, in maize GISH helped in demonstrating that 
small chromosome segments of  Zea mays  ssp.  mexicana  had been integrated into 
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the maize genome (Wang et al.  2008 ). Similarly, intergenomic A/D-C translocations 
were detected using GISH in hexaploid oats and to detect maize chromosomes in 
oat × maize partial hybrids (Riera-Lizarazu et al.  1996 ). Ochatt et al. ( 2004 ) con-
fi rmed the hybrid origin of plants obtained from  P .  sativum  ×  P .  fulvum  cross using 
GISH which resulted in a clear discrimination of the two parental genomes, using 
the total genomic DNA probe from  P .  fulvum . F 1  hybrid exhibited seven chromo-
somes each from  P .  sativum  and seven from  P .  fulvum . Application of GISH in 
advanced generations indicated translocation events taking place between two 
parental genomes. Fahleson et al. ( 1997 ) performed GISH using differently labelled 
total DNA from the two parental species, in combination with a preannealing step 
to remove common sequences. The labelling in  Brassica napus  was restricted to the 
centromeric regions, while a uniform distribution over the chromosomes was found 
in  Eruca sativa . GISH revealed that the somatic hybrid progeny contained one or 
two complete  E .  sativa  chromosome(s) but no intergenomic translocation could be 
detected. Similarly, the alien chromosomes belonging to different genomes in 
 Brassica  amphidiploids and chromatin of  Rhaphanus sativus  were detected using 
GISH by Snowdon et al. ( 1997 ) and in  Brassica rapa  ×  Isatis indigotica  by Tu et al. 
( 2009 ). Jacobsen et al. ( 1994 ) and Garriga-Caldere et al. ( 1997 ) detected alien chro-
mosomes of tomato in potato–tomato fusion hybrid by using GISH. Likewise, Dong 
et al. ( 2005 ) also identifi ed chromosomes of  Solanum brevidens  in potato- S .  brevi-
dens  hybrids. Unilateral and reciprocal translocations were detected using GISH 
among S and T genome of amphidiploids  Nicotiana tabaccum . Desel et al. ( 2002 ) 
demonstrated GISH as useful tool for high resolution detection of translocations 
resultant of interspecifi c hybridization which are only 1 mb in size in genus  Beta . 
According to Harper et al. ( 2011 ), alien introgressions can be detected by GISH in 
 Lolium - Festuca  interspecifi c hybrids and assigned to chromosome arms to create a 
physical map and suggested that genes of interest may then be located more accu-
rately following further recombination events which reduce the size of the relevant 
alien introgression. Herrera et al. ( 2007 ) used GISH to identify alien chromatin seg-
ments on chromosome spreads of  Caffea liberica  introgressed from  C .  arabica . The 
introgressed fragment carried the SH 3  factor involved in resistance to the  coffee rust. 
Liu et al. ( 2009 ) reported that GISH could be successfully used to identify alien 
chromosome or chromosome segments during interspecifi c gene transfer in 
sunfl ower. 

 In totality, GISH approach of molecular cytogenetics has been reported as 
a novel tool not only for detection of alien chromatin which may or may not carry 
the useful genes but has also proved to be helpful in understanding the genomic 
relationships among diploid and polyploid species.  

8.4.4     Multicolour FISH (MFISH) 

 MFISH involves simultaneous use of more than one fl uorescent dye in one 
 experiment to detect multiple loci in a single cytological preparation. MFISH was 
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fi rst of all carried by Mukai et al. ( 1993b ) for identifi cation of chromosomes belong-
ing to different genomes in a hexaploid wheat. These researchers used as much as 
seven differentially labelled probes showing seven different colours. Later, MGISH 
was used to identify wheat–rye hybrids or translocation lines using mixture of 
probes corresponding to A, B, D-, and R-genomes (Sanchez-Moran et al.  1999 ; 
Hasterok et al.  2002 ; Han et al.  2003 ,  2004 ; Chaudhary  2004 ; Schwarzacher et al. 
 2011 ; Chaudhary et al.  2013 ; Chaudhary  2013 ). Castilho et al. ( 1996 ) carried out 
multicolour FISH to identify the breakpoints in translocated chromosomes in wheat-
 Ae .  umbellulata  recombinant lines and Biagetti et al. ( 1999 ) in wheat- Ae .  longissima  
powdery mildew resistant recombinant lines. Vidal et al. ( 2005 ) used multicolour 
FISH to identify instability of  Th .  ponticum  amphiploids and reported that only cells 
with 2n = 56 had entire genome of wheat along with two monoploid chromosome 
sets of  Th .  ponticum . Lima-Brito et al. ( 2006 ) confi rmed hybrid nature of wheat × tri-
todeum F 1  hybrids by using genomic DNA from  Hordeum chilense  and ribosomal 
segments of pTa71. Lang Molnar et al. ( 2006 ) used MFISH with GAA, pAs1, 
Hv701, Afa family, pTa 71, and genomic probes for identifi cation of disomic and 
monosomic wheat/barley addition lines. Sepsi et al. ( 2008 ) utilized MFISH to iden-
tify 16 chromosomes originating from  Th .  ponticum , 14 from A genome, 14 from B 
genome, and 12 from D genome in wheat– Th .  ponticum  hybrids using differentially 
labelled genomic probes. Also the rearrangements of these chromosomes were visu-
alized in advanced generations of the hybrid. Szakacs and Molnar-Lang ( 2010 ) 
checked genetic stability of disomic wheat–rye addition lines using FISH based on 
repetitive DNA probes pSc 119.2 and (ACC)5 as well as rDNA probes (5S and 45 
S) FISH revealed the chromosome rearrangements. Tang et al. ( 2005 )  confi rmed 
successful introgression of three chromosomes of  Z .  perennis  into a maize- perennial 
teosinte substitution line. 

 Conclusively, MFISH provided an edge over the earlier techniques of molecular 
cytogenetics by utilizing combination of probes for targeting more than one site and 
hence overcoming the limitations of radioactive ISH.  

8.4.5     Nuclei FISH 

 When interphase nuclei are subjected to FISH analysis, that technique is termed as 
nuclei FISH or interphase FISH. The advantage of nuclei FISH is that it can be applied 
to cells from any tissue and at any stage of cell division and cells are not required to 
be in metaphase stage. It is also benefi cial in the study of samples where low mitotic 
index is observed. Interphase FISH is also useful to understand the organization of 
chromatin fi bres and centromeric regions or telomeric regions during interphase. 
Leitch et al. ( 1990 ) carried out GISH in interphase nuclei of  Hordeum chilense  × 
 Secale africanum  for physical localization of chromatin of different genomes during 
interphase nuclei and reported that the genomes of both the species remain at different 
domains. Similarly, Kosina and Heslop-Harrison ( 1996 ) used GISH to analyze lines 
derived from an amphidiploid between tetraploid wheat ( T .  durum ) and wheat grass. 
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Chromosomal aberrations and translocations from similar genomes of J and E into A 
and B genomes of tetraploid wheat were reported and using interphase FISH they 
revealed that the three genomes were not intermixed and often lay in distinct sectors. 
Angelova and Georgiev ( 2006 ) reported like other workers that the genetic material of 
different species in interspecifi c hybrids remain separate during interphase. Georgiev 
( 2008 ) reported that FISH in interphase nuclei helped in identifi cation of active rRNA 
genes from rye chromosomes in translocation mutants of wheat. Apart from physical 
localization of different genomes, interphase FISH has also helped in identifying the 
number of alien chromosomes or small segments introgressed into target genome 
(Wetzel and Rayburn  2000 ). Detection of the wild beet chromosome by using FISH 
with the satellite repeat pTS5 and 18S–5.8S–25S rRNA genes in  Beta vulgaris  mono-
somic addition lines in interphase nuclei (apart from FISH and GISH on metaphase 
chromosomes) was done by Schmidt et al. ( 1997 ). 

 The nuclei FISH, hence, is an potential tool for understanding the behaviour of 
two different genomes when brought together via wide hybridization. It also helps 
in detecting the number and presence of active genes in the genome.  

8.4.6     Fibre FISH or Extended DNA Fibre (EDF) Map 

 The organization of gene and DNA structures can be visualized by ISH of probes 
to DNA fi bres extended to their full molecular length. The technique was fi rst of all 
given by Fransz et al. ( 1996 ). Theoretical consideration of the length of the extended 
DNA molecule and calibration from hybridization with probes of known length and 
interspersion pattern (Fransz et al.  1996 ; Sjöberg et al.  1997 ; Brandes et al.  1997 ) 
can relate the lengths of observed fi bres to the numbers of bases. EDF provides an 
alternative to interphase or metaphase preparations. In this approach, interphase 
chromosomes are attached to a slide and stretched out in a straight line (rather than 
being tightly coiled, as in conventional FISH, or adopting a random conformation, 
as in interphase FISH). The preparation of fi bre FISH samples is a skilled art and 
only specialized laboratories use the technique routinely. The basis of fi bre FISH is 
to release DNA-molecules from the nucleus and to fi x the stretched DNA in a linear 
fashion (parallel to each other) onto a glass slide. The DNA fi bres are hybridized 
with a set of probes labelled with different fl uorochromes that cover the entire 
region of interest resulting in a characteristic string of FISH signals that have the 
attributes of a multicolor barcode. Barcodes up to 1,000 kb can be generated but a 
length of approx 300 kb is used in practice. When larger regions are targeted, arti-
fi cial breakage of the target DNA may  complicate interpretation of results. 

 There are two methods for preparation of extended DNA fi bres. One is mechan-
ical shearing along the length of the slide (either to cells that have been fi xed to the 
slide and then lysed or to a solution of purifi ed DNA). The other method is chromo-
some combing in which the extended conformation of the chromosomes allows 
dramatically higher resolution, even down to a few kilobases. This method is used 
to prepare parallel extended DNA fi bres. EDF is capable of identifi cation of a DNA 
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sequence as short as 10–20 kb, whereas in a metaphase FISH a sequence of about 
100 kb and above can be detected. The use of fi bre FISH is restricted on a larger 
scale for physical localization of unique or repetitive sequences and only to a lim-
ited scale for identifi cation of alien chromatins, but it is quiet effi cient for detection 
of transgenes. The hybridization of  Agrobacterium  T-DNA sequences in transgenic 
potato plants to extended DNA fi bres revealed that T-DNA copies are closely 
 integrated. Moreover, by using probes to T-DNA and vector sequences the compo-
sition and arrangement of inserts can be assessed (Wolters et al.  1998 ). Similarly, 
relatively little is known about how transgenes are physically integrated into the 
host genome by biolistic methods. Using FISH on extended DNA fi bres (fi bre-
FISH), 13 independent transgenic wheat lines were analyzed to determine the 
structural arrangement of stably inherited transgenes in host-plant chromosomes 
by Jackson et al. ( 2001 ) and three basic integration  patterns were observed viz., 
large tandemly repeated integration, large tandem integrations interspersed with 
unknown DNA and small insertions, possibly interspersed with unknown DNA, 
while metaphase FISH showed that the integration of transgenes was in both het-
ero- and euchromatic, as well as proximal, interstitial and distal, regions of the 
chromosomes. Stupar et al. ( 2001 ) utilized EDF for detection of mitochondrial 
DNA (mtDNA) fragment insertion into a pericentric region on chromosome 2, and 
EDF revealed that the mitochondrial DNA content of the nuclei is approximately 
2.3 times greater than estimated by contig assembly and subsequent sequence anal-
ysis. Physical localization of 92-kb DNA fragment of the wheat  Ha - locus  region 
introgressed into rice by  Agrobacterium -mediated transformation was done by 
FISH on extended DNA fi bres. Rearrangements of the large-insert T-DNA, involv-
ing duplication, deletion, and insertion, were observed in all four lines (Nakano 
et al.  2005 ). FISH on extended DNA fi bres (fi bre FISH) was performed by Imazawa 
et al. ( 2009 ) on transgenic tobacco plants harbouring multiple 37-kb T-DNA con-
structs. Five and seven types of integrations were successfully visualized in two 
transgenic lines. Most of the loci suffered duplication, deletion, and/or transloca-
tion, indicating the complex integration events of the medium-size T-DNA. They 
concluded that fi bre-FISH analysis is a powerful tool to analyze organization of 
multiple T-DNA loci in detail. 

 With the high and wide ranging resolution (1–1,000 kb) as well as its colour 
barcoding capacity of fi bre FISH, it has proven to be well suited as an adjunct physi-
cal mapping tool and for analysis of length polymorphism as well as a valuable tool 
in molecular pathological research to pinpoint regions of chromosome (DNA) rear-
rangements at a much larger genomic scope than polymerase chain  reaction (PCR), 
Southern blotting, and interphase-FISH.  

8.4.7     Flow Cytometry 

 Flow cytometry refers to the analysis of moving particles (chromosomes) in a sus-
pension with the help of fl ow cytometer. Chromosomes are excited by a source of 
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light (UV or laser) which in turn emit an epi-fl uorescence which is fi ltered through 
a series of dichroic mirrors. The emitted signals are converted by the in-built pro-
gramme of the equipment into a graph plotting the intensity of the epi-fl uorescence 
emitted against the count of cells emitting it at a given time. 

 Wetzel and Rayburn ( 2000 ) carried out FISH, GISH, and fl ow cytometry of two 
alien addition and one normal wheat lines and lines with larger DNA content were 
observed to have alien DNA present and the DNA difference accounted to the per-
cent of DNA that is in addition to the replaced DNA of wheat. They suggested that 
determination of nuclear DNA content via fl ow cytometry can give the idea whether 
alien chromosome has been introgressed or not. Ochatt et al. ( 2004 ) reported that 
fl ow cytometry can be used to confi rm the hybrid origin of plants followed by 
hybridization. The hybrids of  P .  sativum  ×  P .  fulvum  had intermediate 2C & 4C 
peaks of hybrids in comparison to the parents. Shigyo et al. ( 2003 ) used fl ow cytom-
etry along with GISH to detect the alien chromosomes of  Allium   cepa  in disomic 
alien addition lines of  Allium fi stulosum . Flow cytometry analysis clearly helped in 
revealing that a double dose of the alien 8A chromosome existed in the addition line 
that caused fl uorescence intensity values spurring in DNA content. Later, Hang 
et al. ( 2004 ) also suggested that fl ow cytometry can detect variable number of alien 
chromosomes in the genetic background of  A .  cepa  addition lines. Lysak et al. 
( 1999 ) also suggested that fl ow cytometry can be used to identify chromosomal 
translocations also. 

 The wheat/rye translocation 1BL.1RS is present in many modern wheat cultivars 
and its presence generates a diagnostic change in fl ow karyotype. However, the 
discriminating peak was not suffi ciently resolved to allow effective sorting of the 
translocated chromosome. Other translocation chromosomes especially, 5BL.7BL 
and 4AL.4AS-5BL produced fl ow karyotype peaks which were discrete enough to 
permit sorting. However, the most important breakthrough was that almost all the 
wheat telosomes (with the exception of 3BL and 5BL), which are maintained in 
stable cytogenetic stocks covering most of the 42 chromosome arms, could be rec-
ognized against the background of the rest of the genome, and sorted. The 3BL and 
5BL arms were isolated from stocks carrying them as isochromosomes (Doelzel 
et al.  2007 ). The oat × maize chromosome 9 addition line produced a fl ow peak 
 corresponding to maize chromosome 9 and the chromosome was sorted at a level of 
purity exceeding 90 % (Li and Arumuganathan  2001 ). 

 Although fl ow cytometry does not allow physical localization of alien 
 chromosomes/chromatin, however such introgressions and translocations could be 
detected through fl ow peaks. Hence, allowing rapid detection of plants with alien 
introgressions. 

 Likewise, other molecular cytogenetic approaches viz., micro-FISH where 
whole chromosome, a marker or a particular chromosome band scrapped from 
metaphase spreads using a micromanipulator is used as a probe after amplifi cation 
through polymerase chain reaction; primed in situ labelling (PRINS) in which short 
oligonucleotide primers are annealed to target sequences in situ, followed by elon-
gation of the sequences with a  Taq  polymerase and simultaneous labeling of the 
target sequences with a fl uorochrome and spectral karyotyping (SKY) where a 
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probe mixture composed of chromosome-specifi c libraries generated from fl ow-
sorted chromosomes are simultaneously visualized in different colours by means of 
digital classifi ed spectra. These techniques have emerged as potential tools for 
enhancing effi ciency of crop improvement programmes through precise detection 
of alien introgressions.   

8.5     Conclusion 

 Introgressive hybridization has become very important in the modern days of 
 climate change to develop cultivars resistant to the prevailing and potential biotic 
and abiotic stresses. Through this aspect of plant breeding, an enormous amount of 
genetic variation is being created that will be quite useful for selection and develop-
ment of improved cultivars. During integration of alien genetic material in crop 
plants, the characterization of the introgressed genes is very essential in order to 
confi rm their transfer into the genetic background of recipient crop plants with min-
imum linkage drag. During the past years, it has become obvious that genetic and 
physical maps are not directly comparable as chiasmata are not evenly distributed 
along the chromosome axis. Molecular cytogenetic tools viz., fl uorescence in situ 
hybridization (FISH), genomic in situ hybridization (GISH), multicolour FISH, 
fi bre FISH, spectral karyotyping (SKY), and primed in situ hybridization (PRINS) 
have shown a great promise in terms of proper identifi cation and localization of the 
alien chromosome segments in the genetic background of crop varieties. By inte-
grating physical maps created by GISH and genetic linkage maps, the precise site of 
genes on a chromosome arm may be determined and resulting markers tightly 
linked to the genes of interest can be used for future breeding programmes 
(Humphreys et al.  1998 ). As compared to in situ hybridization, FISH and GISH 
have increased the effectiveness of the introgressive hybridization programmes 
through high resolution mapping of the targeted alien chromosome segments. 
Multicolour FISH, a modifi cation of FISH has provided the ways to characterize the 
introgressed chromosome segments of more than one species simultaneously. The 
resolution of FISH has been increased to a great extent through extended DNA fi bre 
mapping (EDF). Extended DNA fi bres allow characterization of the introgressed 
alien segments beyond the limits of FISH. Similarly, other techniques like SKY, 
PRINS, micro-FISH, and CGM have also increased the effi ciency of alien gene 
transfer in crop plants. 

 Conclusively, it can be stated that molecular cytogenetics has become an 
 invaluable and inevitable part of targeted, highly precise and effi cient introgressive 
hybridization undertaken to broaden the genetic base of cultivated crop varieties.     
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    Abstract     Extensive selection for increased crop productivity resulted in increased 
frequency of extreme traits that eroded diversity for a number of plant attributes 
making the present day crop genotypes vulnerable to changes in environmental con-
ditions, biotic and abiotic stresses. The early domesticates and wild relatives of crop 
plants are rich sources of diversity and exhibit better performance under harsh cli-
matic conditions as well as under high pathogen loads. The plant breeders have 
realized the need of broadening the genetic base of cultivated genotypes and have 
made genuine efforts to explore alien-diversity to breed genotypes for challenging 
environmental conditions, improved yield and quality. It is evident from these 
efforts that incorporation of the alien chromatin into the cultivated background is an 
important tool to improve plant productivity. In this chapter, we deal with available 
sources of diversity, methods of alien introgression, available breeding material and 
its implications in characterization of the alien genes, successful examples of alien- 
introgression and their contribution to the crop improvement.  

  Keywords     AB-QTL   •   Alien introgression   •   Backcross breeding   •   Domestication   • 
  Gene pool   •   Wild relatives  

9.1         Introduction 

 Advent of agriculture in the Neolithic era set the foundation of human civilization 
and initially, the domestication process carved wild plants into their domesticated 
counterparts through extensive selection for morphological traits that directly or 
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indirectly benefi tted humans (Salamini et al.  2002 ). Polyploidy also played a major 
role in domestication process of some of the major crop plants, and aided by exten-
sive artifi cial selection, it resulted in the fertility barriers between crop plants and 
their respective wild relatives (Zeven  1980 ; Feuillet et al.  2008 ; Matsuoka  2011 ). 
However, these activities gradually narrowed down the genetic base of different 
crop plants. The crop monocultures over vast areas in past led to some major crop 
failures and famines due to disease epidemics, and can lead to disasters even in 
future. For example, more than 80 % of the wheat cultivated around the globe at 
present is susceptible to  Ug99  and breakdown to this important disease could lead 
to a major disaster (Stokstad  2007 ). Similarly, changes in environments, such as an 
increase in temperature by a few degrees, will push the wheat belt up in the arctic 
region since most of the presently cultivated wheat is incapable of thriving in high 
temperatures, especially during anthesis period (Black  2006 ; Lobell et al.  2008 ; 
Swaminathan  2009 ). Monoculture of crop varieties has also lead to a plateau in 
terms of the grain yield, because the existing genotypes for most of the crops have 
already reached their maximum yield potential with improved agronomical prac-
tices (Conway  1997 ; Swaminathan  2010 ; Jacques and Jacques  2012 ). Therefore, 
there is a need to expand the genetic base of the crop plants using exotic germplasm 
and wild relatives (Fig.  9.1 ). This has been well realized by the breeders, who started 
exploring this option as early as in 1950s in the “cytogenetics era” and developed 
several important genetic resources using the germplasm and exotic material (Gill 
and Friebe  2009 ). As a result, several important characters including resistance to 
biotic and abiotic stresses, improvement in different components of grain yield and/
or quality have been transferred to the cultivated plants over the years. These mate-
rials have been characterized and evaluated using the existing technologies, while 
the procedures have been improved tremendously to increase the level of precision 
in their analysis (Kole  2011a ,  b ,  c ). The improvement in the technology has allowed 
identifi cation of even submicroscopic segments of foreign DNA dubbed as “cryptic 
introgressions” (Kuraparthy et al.  2007 ,  2009 ). The ways to break the segments 
introgressed from the alien species have also improved, and in recent years, the 
technologies are also available which help in reducing the proportion of linkage 
drag and also isolation of the underlying gene(s) in specifi c cases (Gill et al.  2011 ; 
Cao et al.  2011 ). In this chapter we discuss about the methods and technologies of 
alien introgression in light of the agronomically important traits transferred into 
several crop plants.

9.2        Sources of Diversity Available for Introgression Breeding 

 Due to the limited genetic diversity in the elite cultivated gene pools of most of the 
crop plants, the major source of diversity available to the breeders comes from the 
wild relatives. Based on the degree of sexual compatibility, the source of diversity or 
“gene pool” used for the improvement of a given species was classifi ed into the 
primary, secondary, and tertiary gene pools (Harlan and de Wet  1971 ) (see Fig.  9.2 ). 
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  Fig. 9.1    A glimpse of genetic diversity existing in the exotic gene pools of maize, rice, tomato, 
wheat, and barley. ( a ) Mature infl orescence, or “ear” of teosinte ( Zea mays  ssp.  mexicana ) ( left ) 
and of modern corn ( Z. mays  ssp.  mays  L.) ( right ). ( b ) Mature panicle of wild rice species  Oryza 
rufi pogon  ( left ) and of modern rice ( O. sativa ) cultivar from China ( right ). ( c ) Green fruits of the 
wild species  Lycopersicon pennellii  ( left ), and the lycopene-rich red fruits of  L. esculentum  ( right ). 
( d ) The grain-bearing spikes of wild and domesticated forms of wheat and barley. From  left  to 
 right :  Triticum urartu  (A u A u ),  Aegilops speltoides  (SS),  Ae. tauschii  (DD),  T. turgidum  ssp.  dicoc-
coides  (AABB),  T. aestivum  (bread wheat, AABBDD),  Hordeum spontaneum  (HH), and six rowed 
 H.  vulgare (HH)       
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Nevertheless, with the advent of genetic-engineering procedures there are essen-
tially no barriers restricting the fl ow of genes across the genome boundaries, and 
thus, a fourth category including unrelated organisms known as quaternary gene 
pool was includes (Suslow et al.  2002 ). The fi rst two categories mostly include intra- 
and/or interspecifi c (rarely intergeneric) introgressions, where in the latter case the 
two species must share at least one common genome to allow normal recombination 
to take place. The third category includes intergeneric introgressions that involve 
crossing between two different genera where normal recombination does not take 
place. These different categories are elaborated further using specifi c examples of 
cereals in the tribe Triticeae (Feuillet et al.  2008 ), rice (Lu and Snow  2005 ), cotton 
(Stewart  1995 ), soybean (Singh  2007 ), and  Brassica  (Branca and Cartea  2011 ).

9.2.1       Primary Gene Pool (GP-1) 

 This group comprises species that are interfertile and have no problems related to the 
fertility of the crossed progeny. Species in the primary gene pool include landraces, 
early domesticates and wild species that hybridize directly with the cultivated types. 

  Fig. 9.2    Sources of genetic variation or “gene pools” for crop improvement. Harlan and de Wet 
( 1971 ) proposed the crop gene pools to guide the germplasm use by the plant breeders, where it 
was suggested to fi rst utilize the germplasm in the gene pool 1 (GP1) and proceed outwards. The 
number of species in each of the GPs that plant breeders can use varies among crops       
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In addition, species listed in this category have chromosomes homologous to the 
cultivated types, which allow homologous recombination to take place, thus these 
lines can be easily exploited in breeding and selection schemes. For example, in the 
case of the polyploid cotton the primary gene pool includes the wild, commensal and 
feral forms of  Gossypium hirsutum  and  G. barbadense  and three other wild tetra-
ploid cotton species. Similarly, in case of soybean (2n = 40) the primary gene pool is 
only comprised of its wild annual progenitor  Glycine soja  (2n = 40), and for rapeseed 
it represents  Brassica carinata ,  B. juncea ,  B. napus  ssp.  napus ,  B. napus  ssp.  napo-
brassica , and  B. napus  ssp.  pabularia . In case of polyploid wheat,  Triticum turgidum  
(AABB) and diploid donors of the A and D subgenomes [ T. urartu  (AA) and  T. 
tauschii  (DD)] represent the primary gene pool. In barley (HH) and rye (RR), the 
primary gene pools include very diverse but sexually compatible, diploid progeni-
tors  Hordeum spontaneum  and  Secale vavilovii ,  S. montanum , respectively.  

9.2.2     Secondary Gene Pool (GP-2) 

 The members of this group include both cultivated and wild relatives of a crop spe-
cies and are more distantly related and encounter crossability barriers. However, the 
hybrids in this group are just suffi ciently fertile to allow gene fl ow. The secondary 
gene pool of cotton comprises of the extant relatives of the A and D subgenome 
progenitors as well as the B and F genomes. Similarly, the secondary gene pool of 
 Brassica  is comprised of  B. nigra ,  B. oleracea , and  B. rapa , and of wheat contains 
polyploid species that share at least one homologous genome with the cultivated 
types. Gene transfer from these species is possible through homologous recombina-
tion when the target gene is located on the homoeologous genome. This includes 
polyploid  Triticum  and  Aegilops  species, such as  T. timopheevii  (AAGG) and the 
diploid S-genome (related to the B genome) species from the  Sitopsis  section of 
 Aegilops . For barley and rye, this includes diploid and tetraploid  H. bulbosum  (II) 
and  Elymus  (HHS t S t ), and  S. silvestre , respectively. However,  G. max  does not have 
a secondary gene pool.  

9.2.3     Tertiary Gene Pool (GP-3) 

 Members of this group mostly face fertility problem when crossed with the mem-
bers of GP-1. Since homologous recombination cannot be exploited, the gene 
transfers are really diffi cult, result in lethality, sterility, and other abnormalities, and 
require use of special strategies (such as embryo rescue, use of bridge species, irra-
diation, and gametocidal chromosomes) to overcome these diffi culties (see below). 
Species in the tertiary gene pool contain more distantly related diploids and poly-
ploids. They possess none of the cultivated species genome constitutions. This 
group in cotton includes the African-Arabian E genome and the Australian C, G, 
and K genomes, and in wheat includes most members of the Triticeae that are not 
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within the primary or secondary gene pools. A large proportion in this group 
 comprises perennials and for wheat includes important species from  Secale  (RR), 
 Thinopyrum  (EE), and  H. marinum  (XX). For barley, the American wild barleys 
and  H. bogdanii  fall in this category, whereas for rye, the tertiary pool would 
include  Triticum  and  Aegilops  species. The tertiary gene pool in soybean includes 
26 wild perennial species of the subgenus  Glycine , and in rapeseed includes genera 
belonging to 36 cytodemes capable of genetic fl ux, such as  Diplotaxis, 
Enarthrocarpus ,  Eruca ,  Erucastrum ,  Hirschfeldia ,  Rhynchosinapis ,  Sinapis , 
 Sinapodendron , and  Trachystoma .  

9.2.4     Quaternary Gene Pool (GP-4) 

 The defi nition for the quaternary gene pool is quite controversial, according to some 
it incorporates incompatible related species, whereas according to others it incorpo-
rates any synthetic strain whose nucleic acid (DNA or RNA) frequency does not 
occur in nature. According to yet another defi nition, any organism from microbes to 
humans fall in this category where gene transfer is not possible by pollination or 
tissue culture and is only feasible through genetic transformation.   

9.3     Tools and Techniques Used for Gene Introgression 

 Exploitation of secondary and tertiary gene pool requires application of specifi c 
cytogenetic procedures broadly described as “chromosome engineering” (c.f. Gupta 
and Tsuchiya  1991 ; Ceoloni and Jauhar  2006 ; Chan  2010 ). Traditionally the gene 
transfer takes place in the following steps: (1) addition of the whole alien genome 
(i.e., the production of amphiploids), (2) addition or substitution of a pair of alien 
chromosome (i.e., production of addition or substitutions lines), and (3) introgres-
sion of a segment of alien chromosome (i.e., production of recombinant chromo-
some line with the desired gene or the production of translocation lines). Though 
induction of homoeologous paring causes translocation, in several instances it 
occurred spontaneously (e.g., see Gill and Friebe  2002 ). 

 Introgressions from the alien species mostly take place in the form of Robertsonian 
translocations, which may occur naturally or can be induced through induction of 
pairing between homoeologous chromosomes (Mujeeb-Kazi and Rajaram  2002 ). 
For instance, mutations in  Pairing homoeologous 1  ( Ph1 ) gene ( ph1b  in bread wheat 
and  ph1c  in durum wheat), responsible for diploid like pairing behavior of the poly-
ploidy wheat, were extensively used to transfer genes from alien species and to 
reduce linkage drag in the introgressed alien segments (Mujeeb-Kazi and Rajaram 
 2002 ). The  PrBn  gene identifi ed in  Brassica  is shown to have somewhat similar 
function, and mutations in this gene are expected to exhibit similar effects in 
 Brassica  (Jenczewski et al.  2003 ). Another homoeologues pairing suppressor  Ph2  
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was also identifi ed in bread wheat, but it has milder effect in comparison to the  Ph1  
gene, and has rarely been exploited to induce homoeologous pairing in bread wheat 
(Ceoloni and Donini  1993 ). Different accessions of  Aegilops speltoides ,  Ae. longis-
sima ,  Ae .  peregrina , and  Ae. kotschyi  are shown to induce homoeologous chromo-
some pairing by suppression of the  Ph1  gene activity and were used to some extent 
for transferring genes to the cultivated wheat (Kilian et al.  2011 ). The  Ph  suppressor 
genes  Su1-Ph1  (also known as  Ph   I  ) and  Su2-Ph1  were, respectively, assigned to  
Ae. speltoides  chromosomes 3S and 7S, and the  Su1-Ph1  was transferred from  Ae. 
speltoides  to the bread wheat genome (Dvorak et al.  2006 ). This  Ph   I   stock is an 
effi cient inducer of homoeologous pairing since  Ph   I   gene is dominant and epistatic 
to the wheat  Ph1  gene (Chen et al.  1994 ). The other methods, which are more gener-
ally used to induce translocation and to transfer alien segment, are X-ray or gamma 
ionizing irradiation, which induces random chromatin translocation between chro-
mosomes. Ability of gametocidal genes for breaking chromosomes was also used as 
a method for transferring alien segments in wheat, especially for production of 
wheat–rye translocations (Jauhar  2006 ). 

 Transfer of genes within the primary gene pool is affected by dominant nature of 
crossability inhibitor ( Kr ) genes in wheat. This markedly reduces the effi ciency of 
successful production of interspecifi c hybrids. Four such genes ( Kr1  on 5BL,  Kr2  
on 5AL,  Kr3  on 5D, and  Kr4  on 1A;  Kr1  having the largest effect on crossability) 
have been identifi ed in most elite European wheat varieties, which have made the 
transfer of novel traits from exotic germplasm in to elite varieties diffi cult (Mujeeb- 
Kazi and Rajaram  2002 ). Therefore, in the presence of these crossability inhibitor 
genes, special cytogenetic procedures described above need to be applied to transfer 
genes within the primary gene pool.  

9.4     Populations Developed Using Alien Sources 
and Their Applications 

9.4.1     Advanced Backcross (AB) Population 

 Advanced backcross population was initially used by Tanksley and Nelson ( 1996 ) 
for mapping the genes/QTL introgressed from wild relatives. The advanced back-
cross populations (BC 2 /BC 3 ) are developed from fi rst crossing between improved 
cultivated lines and unadapted germplasm and subsequent back crossing with 
improved cultivated lines. AB populations comprising of different introgression 
lines carry the genetic variation in wild relatives (i.e., valuable QTLs/genes from 
unadapted germplasm) in the background of elite breeding lines. Several genes/
QTL controlling agronomically important traits transferred from wild relatives have 
been dissected successfully in a number of crop plants including wheat, rice, tomato, 
barley, maize, and cotton (Table  9.1 ). The main purpose of using AB generations is 
to precisely measure effects of the individual QTLs by reducing size of the alien 
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          Table 9.1    List of advanced-backcross QTL studies conducted in various crop plants   

 Salient features  Alien/other source  Reference 

  Tomato  
 Horticultural traits   L. pimpinellifolium  

  L. peruvianum  
  L. hirsutum  
  L. pimpinellifolium  and 

 L. hirsutum  
  L. parvifl orum  

 Tanksley et al. ( 1996 ) 
 Fulton et al. ( 1997 ) 
 Bernacchi et al. ( 1998a ) 
 Bernacchi et al. ( 1998b ) 
 Fulton et al. ( 2000 ) 

 Biochemical properties  –  Fulton et al. ( 2002 ) 
 Quality traits  Cherry tomato  Chaïb et al. ( 2006 ) 
 Ascorbic acid   S. pennellii  and 

 S. habrochaites  
 Stevens et al. ( 2007 ) 

  Rice  
 Agronomic traits   O. rufi pogon  

  O. grandiglumis  
 Xiao et al. ( 1998 ) 
 Yoon et al. ( 2006 ), Xie et al. ( 2008 ) 

 Heading date   O. sativa  Nipponbare  Yamamoto et al. ( 2000 ) 
 Yield and morphological 

traits 
  O. rufi pogon   Thomson et al. ( 2003 ) 

 Grain quality traits   O. rufi pogon   Septiningsih et al. ( 2003b ) 
 Blast resistance   O. rufi pogon  

  O. glaberrima  
  –  

 Wu et al. ( 2004 ) 
 Liu et al. ( 2004 ) 
 Manosalva et al. ( 2009 ) 

 Grain quality and grain 
morphology 

  O. glaberrima   Li et al. ( 2004 ) 

 Yield and yield contribut-
ing traits 

  O. rufi pogon   Septiningsih et al. ( 2003a ), Marri 
et al. ( 2005 ), Cheema et al. 
( 2008 ) 

  Barley  
 Yield and yield contribut-

ing traits 
 Spot blotch resistance 

  H. vulgare  ssp . spontaneum   Pillen et al. ( 2003 ), Li et al. ( 2006 ) 
 
Yun et al. ( 2006 )    

 Morphological and 
agronomic traits 

 Harrington/OUH602  Gyenis et al. ( 2007 ) 

 Photoperiodic response 
 Powdery mildew, leaf rust, 

and scald resistance 
 Agronomic traits 
 Malting parameters 

  H. vulgare  ssp . spontaneum  
 ISR42-8 

 von Korff et al. ( 2004 )    
 von Korff et al. ( 2005 ) 
 
von Korff et al. ( 2006 ) 
 von Korff et al. ( 2008 ) 

 Powdery mildew 
and leaf rust 

 Agronomic traits 
 Yield traits 

  H. vulgare  ssp . spontaneum  
 ISR42-8 

 Schmalenbach et al. ( 2008 ) 
 
Schmalenbach et al. ( 2009 ) 
 Saal et al. ( 2011 ) 

 Yield and yield contribut-
ing traits 

  H. spontaneum   Eshghi et al. ( 2013 ) 

  Wheat  
 Yield and yield contribut-

ing traits 
 Synthetic Wheat “W-7984”  Huang et al. ( 2003 ) 

(continued)
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chromatin by repeated backcrossing. This allows to avoid the confounding effect of 
deleterious wild alleles for domestication-related traits such as sterility, seed shat-
tering, undesirable growth habit, and small fruits that could interfere with the mea-
surements of yield and other fi eld performance traits (Tanksley and Nelson  1996 ). 
Moreover, if epistasis interaction(s) are contributing to the effect, it is more likely to 
dissect the effect in the AB progeny than in the F 2  population, because the assembly 
of favorable epistatic alleles formed by the conventional breeding is expected to 
breakdown by the recombination events taking place during the backross cycles 
(Allard  1996 ). The AB-QTL analysis is best suited to annual inbred cultivars of 
crops rather than long-generation perennial crops, because the time required to 
develop an AB population and/or near-isogenic lines is prohibitively long in peren-
nials and outbreeding crops. Following section describes a few examples of use of 
AB populations in QTL studies of selected crop plants (see Wang and Chee  2010 ; 
Grandillo and Tanksley  2005  for details).

9.4.1.1       Tomato 

 In this crop, genetic variability for fruit size and shape traits in the wild tomato spe-
cies  Lycopersicon pimpinellifolium  “LA1589” was exploited through AB popula-
tion-based QTL analysis (Tanksley et al.  1996 ). Several QTLs for horticultural traits 
were mapped, and a few NILs were developed. In another AB-QTL mapping study, 
performed for 35 traits, eight stable QTLs for fruit weight were identifi ed in BC 2  
and followed through BC 3  and BC 4  generations (Fulton et al.  1997 ). The results of 
QTL analysis showed that wild alleles contribute for horticulturally benefi cial traits, 
albeit the wild (donor) parent has an allover inferior phenotype (Table  9.1 ). In a 
similar study, Bernacchi et al. ( 1998a ) used AB-QTL mapping approach to transfer 

 Salient features  Alien/other source  Reference 

 Agronomic traits  Synthetic Wheat “XX86” 
 Synthetic Wheat “TA 4152-4” 

 Huang et al. ( 2004 ), 
Narasimhamoorthy et al. ( 2006 ) 

 Quality traits  Synthetic Wheat “Syn022”  Kunert et al. ( 2007 ) 
 Leaf rust resistance  Synthetic Wheat “Syn022L”  Naz et al. ( 2008 ) 

  Maize  
 Adventitious root 

formation under 
fl ooding conditions 

 Maize cv. Mi29 × teosinte 
  Z .  nicaraguensis  

 Mano et al. ( 2009 ) 

  Cotton  
 Fiber length   G. barbadense  and 

 G. hirsutum  
 Chee et al. ( 2005 a, b) 

 Fiber quality   G. barbadense  and 
 G. hirsutum  

 Draye et al. ( 2005 ) 

Table 9.1 (continued)
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and map 19 horticultural traits from wild species  L. hirsutum  “LA1777” using BC 2  
and BC 3  populations (Table  9.1 ). The results showed that many QTLs transferred 
from  L. hirsutum  contribute for the superior alleles increasing total yield, soluble 
solid, and other traits. However, the overall phenotype of the donor parent is infe-
rior. Later in another study, Bernacchi et al. ( 1998b ) developed NILs having intro-
gressions of wild chromatin carrying alleles originating from two donor species 
 L. hirsutum  (LA1777) and  L. pimpinellifolium  (LA1589). Evaluation of the agro-
nomic performance of the NILs showed that the ranges of per-location gains over 
the elite control were from 6 to 59 % for different traits. Using BC 3  populations 
derived from an interspecifi c cross between an elite tomato inbred and the wild spe-
cies  L. parvifl orum  detected 199 QTLs for 30 horticultural traits, and at least one 
QTL each identifi ed for 19 traits carried  L. parvifl orum  allele with agronomically 
favorable effect (Fulton et al.  2000 ). 

 The use of AB-QTL approach in tomato is not limited to the horticultural traits 
but was also used to transfer and dissect important quality traits such as fl avor. To 
study genetics of this complex trait, four AB populations were developed and used 
to identify QTLs responsible for the biochemical properties such as sugar and 
organic acid content, which contribute to the fl avor of tomatoes (Fulton et al.  2002 ). 
Later this approach was used to identify QTLs for ascorbic acid content using three 
different populations developed using tomato related wild species or subspecies 
(Stevens et al.  2007 ). Majority of the QTLs detected during these studies were stably 
expressed in multiple environments.  

9.4.1.2      Rice 

 Rice is represented by two cultivated species viz.,  Oryza sativa  L. and  O. glaberrima  
Steud and 21 wild species, and the  O. sativa  L. is further divided into two subspe-
cies  indica  and  japonica  (Oka  1958 ; Khush  1997 ; Veasey et al.  2004 ). In rice, 
AB-QTL approach has been extensively used to improve agronomical performance 
of the cultivated rice, because genetic bottlenecks imposed during domestication 
and through modern breeding practices signifi cantly reduced genetic variability for 
most of the agronomical traits in the modern rice cultivars (Kovach and McCouch 
 2008 ). Thus, a wide array of alien species was used as source of genetic diversity to 
improve a number of agronomically important traits in large number of studies (see 
Brar and Khush  1997 ; Wang and Chee  2010 ). For example, an accession of  O. rufi -
pogon  was used to develop an interspecifi c BC 2  testcross population. Though the 
used accession of this species was phenotypically inferior to cultivated rice for 12 
targeted traits, its backcross progeny revealed transgressive segregants better than 
elite parent for all studied traits (Xiao et al.  1998 ). The AB populations (BC 2 ) were 
also developed using  O. rufi pogon ,  O .  glaberrima , and  O. grandiglumis  to transfer 
and dissect the yield and yield component traits (Xiao et al.  1996 ; Thomson et al. 
 2003 ; Septiningsih et al.  2003a , b ; Li et al.  2004 ; Marri et al.  2005 ), heading date 
(Yamamoto et al.  2000 ), and blast resistance (Wu et al.  2004 ; Yoon et al.  2006 ) 
(Table  9.1 ).  
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9.4.1.3     Barley 

 The genus  Hordeum  comprises 32 species and 45 taxa including diploid, tetraploid, 
and hexaploid species (von Bothmer et al.  1995 ). Wild barley,  H. vulgare  ssp.  spon-
taneneum,  is the progenitor of cultivated barley and is fully interfertile with the cul-
tivated species. AB populations have been developed and used to introgress favorable 
alleles from wild to the cultivated barley (see Wang and Chee  2010 ). Albeit most of 
the wild species are phenotypically inferior in nature, have been successfully used to 
improve agronomical traits such as yield and yield components, malting quality and 
resistance to diseases such as leaf rust, powdery mildew, and scald resistance (Baum 
et al.  2003 ; Pillen et al.  2003 ,  2004 ; Grando et al.  2005 ; von Korff et al.  2005 ,  2006 , 
 2008 ; Gyenis et al.  2007 ; Wang and Chee  2010 ; Eshghi et al.  2013 ).  

9.4.1.4     Wheat 

 Bread or common wheat ( Triticum aestivum  L.) is an allohexaploid, which repre-
sents 95 % of the cultivated wheat, and the remaining 5 % of it is represented by the 
allotetraploid durum wheat ( T. turgidum  ssp . durum ) (Dubcovsky and Dvorak  2007 ). 
AB populations in wheat have been used to exploit diversity existing in the exotic 
gene pool for traits such as yield and yield components, quality and disease resis-
tance (Table  9.1 ). The identifi cation of QTLs for yield and its component traits using 
a backcross population was accomplished in crosses made between synthetic wheat 
lines (W7984 and XX86) and German wheat cultivars (Huang et al.  2003 ,  2004 ).  

9.4.1.5     Maize 

 AB-QTL analysis was performed in maize to identify QTLs for the traits of agro-
nomical importance by using a population derived from a cross between two inbred 
lines, namely RD6502 and RD3013 (Ho et al.  2002 ). As many as, four QTLs were 
detected for grain yield, six for grain moisture content, and three for plant height, 
where favorable allele for each QTL was contributed by RD3013. In the same study, 
the four QTLs identifi ed for grain yield were selected as target introgressions to 
develop BC 3  testcross families. Later, a few other AB-QTL studies were performed 
in maize for yield contributing and developmental traits, and utility of the wild rela-
tives in improving performance of the cultivated maize was demonstrated (Wang 
and Chee  2010 ).  

9.4.1.6     Cotton 

 The genus  Gossypium  consists of 45 diploid (2 n  = 2 x  = 26) and fi ve tetraploid 
(2 n  = 4 x  = 52) species out of which only four species ( G. herbaceum, G. arboreum, 
G. hirsutum , and  G. barbadense ) are under cultivation (Fryxell  1992 ; Wendel and 
Cronn  2003 ). Among these  G. hirsutum  and  G. barbadense  are the two most widely 
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cultivated tetraploid species. For using the superior fi ber quality of  G. barbadense  
and high fi ber yield of  G. hirsutum,  BC 3 F 2  population derived from an intercross 
between  G. hirsutum  cv. Tamcot 2111 and  G. barbadense  cv. Pima F 6  was used to 
dissect the QTLs (Chee et al.  2005a, b ). These studies led to the detection of 28 
QTLs for fi ber length. The QTLs were distributed on 15 different chromosomes and 
explained 8–28 % of the phenotypic variation for the fi ber length, while  G. bar-
badense  was shown to have lower fi ber length in comparison with the  G. hirsutum , 
 G. barbadense  alleles at 64 % of the detected QTLs contributed for the increased 
fi ber elongation (see Table  9.1 ).   

9.4.2     Development and Use of Introgression Line (IL) 
or Chromosome Segment Substitution Line (CSSL) 
Libraries 

 To facilitate breeding of environmentally stable highly productive elite cultivars 
several alien introgression and/or substitution lines have been developed in a num-
ber of crop plants. These introgression and/or substitution lines served as mapping 
populations for gene localization as well as germplasm to breed for the superior 
traits. These lines have been successfully developed in a variety of crop plants and 
used to decipher genetic basis of several agronomical traits (Brar and Khush  1997 ; 
Singh and Hymowitz  1999 ; Gill et al.  2006 ; Lippman et al.  2007 ). Elucidation of the 
molecular mechanism underlying many of these traits allowed creation of new gene 
combinations to improve plant performance (Ashikari and Matsuoka  2006 ; Lippman 
et al.  2007 ; Sacco et al.  2013 ). 

 In the last decade, a number of concepts were proposed to breed for the elite 
genotypes using alien introgression lines. According to the concept of Galinat 
( 1999 ), reverting back to the state (of more genetic diversity) from where one has 
started selecting for the traits of interest (resulting in the present state of reduced 
genetic diversity) is defi ned as “reverse breeding,” and is one of the ways of creating 
unique gene combinations. McCouch ( 2004 ) defi ned it as “smart breeding” as it 
recycles “old genes” to produce new combinations with better output in terms of 
phenotypic gains. The objective of “reverse breeding” was to combine various plant 
attributes by taking some traits from the exotic germplasm and the others from the 
elite cultivars. These objectives can be achieved by the development of introgres-
sion line (IL) libraries, where a single homozygous segment from wild species is 
introgressed into a uniform, cultivated background with the help of molecular mark-
ers (Zamir  2001 ). The ILs thus produced assist in fi ne mapping as well as pyramid-
ing of the desired characters in a single genotype by crossing different ILs (Fernie 
et al.  2006 ). Some success has already achieved in this direction, for instance, in 
tomato Gur and Zamir ( 2004 ) created an IL library by crossing  Solanum pennellii  
(wild tomato) with  S. lycopersicum  var. M82 (cultivated tomato) followed by select-
ing for lines each carrying a unique introgressed segment from the wild tomato in 
the uniform recipient parent background. Later, they used these ILs to “pyramid” 
three independent yield contributing genomic regions derived from the wild species 
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into a single elite genotype. Their results demonstrated that an approach based on 
 biodiversity, which takes advantage of genetic variability existing in the wild rela-
tives of tomato can be used to create genotypes that can outperform any commer-
cially available hybrid variety both in terms of yield and drought resistance. 
Recently, to improve fruit quality traits in tomato, Schauer and coworkers screened 
an IL library, where segments determining variation in quantities of different metab-
olites from  S. pennellii  were introgressed in the genetic background of  S. lycopersi-
cum  var. Roma. This effort not only allowed mapping of 1,200 new “metabolite 
QTLs” (mQTLs) but also revealed a sizable correlation between the fruit quality 
traits and other yield-related traits (Schauer et al.  2006 ). The localization of fruit 
quality and yield contributing traits to specifi c genomic regions will assist in devel-
opment of an ideal genotype using “breeding by design” and its implementation by 
crossing desirable ILs following MAS (Giovannoni  2006 ). Similar approach can be 
applied in rice where two IL populations carrying donor segments from the wild 
species ( O. glumaepatula  and  O. meridionalis ) in the genetic background of culti-
vated rice ( O. sativa ), cv. Taichung 65 were developed (Yoshimura et al.  2010 ).    
More recently, 105 ILs were developed in cotton by crossing a wild cotton species, 
 G. darwinii  Watt with four upland cotton cultivars. Eventhough these ILs are in four 
different genetic backgrounds, high similarity coeffi cients existed between lines 
derived from different parents. When these ILs and their upland cotton parents were 
used for association mapping of fi ber quality traits SSR markers were identifi ed to 
be linked with fi ve fi ber quality traits. Some of these associations were detected in 
multiple environments (Wang et al.  2012 ). 

 The CSSLs were also developed in the orphan crops like peanut. A marker- 
assisted backcrossing strategy was used to produce a population of 122 CSSLs, 
derived from a cross between wild synthetic allotetraploid ( Arachis ipaënsis  ×  A. 
duranensis ) 4x  and the cultivated peanut ( A. hypogaea  L.) var. Fleur11. The 122 
CSSLs showed good coverage of the peanut genome with target wild chromosome 
segments averaging 39.2 cM in length. To demonstrate the utility of these lines, four 
traits were evaluated in a subset of 80 CSSLs. The marker trait association analysis 
allowed assignment of 42 QTLs including 14 QTLs for plant growth habit, 15 QTLs 
for height of the main stem, and 12 QTLs for plant spread and one for fl ower color 
(Fonceka et al.  2012 ).  

9.4.3     Development and Use of Recombinant Inbred 
Chromosomal Lines (RICLs), Recombinant Inbred 
Chromosome Substitution Lines (RICSLs), and 
Recombinant Chromosome Substitution Lines (RCSLs) 

 Typically the genome of chromosome substitution lines is comprised of all chromo-
somes derived from a recurrent parent except for a single chromosome originating 
from the donor parent. To determine the position of genes on the substitution 
 chromosome and to reduce confounding effect of the epistatic interactions 
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(background noise), RICL populations were developed for individual substitution 
chromosomes by crossing a substitution line with the recurrent parent (Law  1966 ; 
Joppa et al.  1997 ). These RICL populations were successfully used to clone genes 
contributing for a number of agronomically important traits (Frary  2000 ; Yano 
 2001 ; Song et al.  1995 ; Uauy et al.  2006 ). RICLs are common in wheat where they 
have had a long history (Sears  1953 ). However, due to the laborious process of 
developing these lines only a few QTL mapping studies have so far been conducted 
using RICLs. In general RICLs allow more effi cient dissection of complex traits 
than any other commonly used biparental mapping population (Campbell et al. 
 2003 ; Distelfeld et al.  2006 ; Rustgi et al.  2013 ). For instance, using an RICL carry-
ing an introgression from  T. dicoccoides  (wild emmer wheat), Uauy et al. ( 2006 ) 
identifi ed and cloned a gene ( Gpc-B1 ) responsible for senescence, grain protein, 
zinc, and iron content in bread wheat. 

 In barley two different RICL populations were developed, one from a cross 
between a wild barley accession H602 ( H. vulgare  ssp.  spontaneum ) and a malting 
barley cv. Haruna Nijo ( H. vulgare  ssp.  vulgare ) (Hori et al.  2005 ), and the other 
from the cross of an accession of  H. spontaneum  (Caeserea 26-24, from Israel) 
with a North American malting barley cv. Harrington ( H. vulgare  subsp.  vulgare ) 
(Matus et al.  2003 ). The former population consists of 144 RICLs (BC 3  genera-
tion), which was scored for fi ve qualitative and nine quantitative traits and 
 genotyped with 85 DNA markers and a total of 18 QTLs for nine qualitative traits. 
In spite of general inferior agronomic performance of wild barley, several H602 
QTL alleles contributed for the agronomically positive effects (Hori et al.  2005 ). 
The later populations of 140 RICLs obtained using two backcrosses with the recur-
rent parent and six generations of self-pollination (BC 2 F 6 ) was used to fi nd markers 
associated with a variety of traits. For instance, Matus et al. ( 2003 ) evaluated 140 
RICLs for yield contributing traits, malting quality traits, and domestication traits. 
Signifi cant differences among the RICLs for all measured phenotypes were 
detected. The phenotypic effects of the introgressions were assessed using associa-
tion analysis. In this study  H. vulgare  ssp.  spontaneum  was observed to be contrib-
uting for the favorable alleles for agronomic and malting quality traits. In another 
study, a subset of 80 RICLs was evaluated for grain yield and plant height in six 
different environments. The association analysis performed using the phenotype 
data and 47 SSR markers identifi ed 21 chromosomal regions that showed high cor-
relations with differences in grain yield, plant height, and/or yield adaptability. In 
about one-fourth of the cases, the  H. spontaneum  (donor) contributed for the favor-
able alleles (Inostroza et al.  2009 ). 

 Another study evaluated a subset of 80 RICLs for grain yield and plant height in 
six different environments. The marker-trait association analysis showed that 
 H. spontaneum  (donor) contributed for the favorable alleles (Inostroza et al.  2009 ). 
Using this set of 80 RICLs, accumulation of fructans was observed to be higher in 
RICLs in comparison with the recurrent parent Harrington. This provided evidence 
that the introgressions from the wild ancestor ( H. vulgare  ssp.  spontaneum ) into cv. 
Harrington are responsible for increasing the terminal drought tolerance in culti-
vated barley (Méndez et al.  2011 ; del Pozo et al.  2012 ).  
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9.4.4     Naturally Introgressed Lines (Admixed Populations) 

 Not only the experimentally created populations but also the natural admixed 
 populations in crop plants and horticultural species can be used to map genes and to 
serve as germplasm to breed for agronomically important traits. Naturally occurring 
hybrids of wheat and  Aegilops , wheat and rye, maize and  Teosinte ,  Sorghum bicolor  
and  S. halepense ,  japonica  and  indica  rice could be utilized to study traits of adap-
tive signifi cance (such as weediness, biotic and abiotic stresses), domestication-
related traits, consequences of gene fl ow between wild plants and their cultivated 
relatives and its infl uence on evolutionary process (Hegde and Waines  2004 ; Arrigo 
et al.  2011 ). 

 These natural populations exhibit linkage disequilibrium (LD) induced by 
admixture of subpopulations with different ancestries. Efforts have therefore been 
made to develop tools to utilize these natural admixed populations to study 
marker- trait associations. In this connection, the concept of mapping by admix-
ture linkage disequilibrium (MALD) came into existence, and has been widely 
discussed since the late 1980s (Reich and Patterson  2005 ). Feasibility of admix-
ture mapping in plants was studied using natural admixed populations of sun-
fl ower (Rieseberg and Buerkle  2002 ; Rieseberg et al.  1999 ), poplar (Lexer et al. 
 2007 ), and cocoa (Marcano et al.  2007 ). Two of these studies demonstrated suc-
cessful implementation of admixture mapping in tree species, where desired 
crosses are often diffi cult to obtain. 

 In sunfl ower ( Helianthus ), introgression regions, i.e., chromosomal blocks from 
wild species contributed to reproductive isolation and affected the pollen sterility 
when an admixture population comprising 139 individuals from three zones of wild 
sunfl ower hybrid ( H. annuus  ×  H. petiolaris ) were analyzed (Rieseberg et al.  1999 ). 

 In poplar ( Populus  spp.), Lexer et al. ( 2007 ) suggested that admixture LD among 
highly informative SSR markers in  Populus  hybrid zones should permit precise esti-
mation of marker ancestry in hybrids leading to the identifi cation of individual chro-
mosome blocks with high adaptive and/or selective values (fi tness effects) in the 
admixed populations, and hybrid populations in other European river valleys could 
serve as independent “replicates”. Admixture should also allow the detection of 
associations among markers and quantitative phenotypic traits or ecological habitat 
factors. This information would be of great interest not only for evolutionary biol-
ogy but also for applied breeding programs. 

 Similarly, in cocoa an admixed population derived from the mixture of “Criollo” 
and “Trinitario” (originally a hybrid of “Criollo” and “Forastero”) was used for 
admixture mapping. Two different collections, one collected 25 years ago repre-
sented by 150 individuals and the other collected from the contemporary stands of 
cocoa represented by 1,000 individuals was used for admixture mapping. The for-
mer allowed estimation of ancestral allelic states and the latter was used for a 
genome- wide scan of marker trait associations, after screening individuals for the 
presence of “Criollo/Trinitario” alleles at 10 SSR loci. This information has allowed 
minimization of the above set of 1,000 individuals selected on the basis of morpho-
logical traits to a set of 291 individuals. A genome-wide scan of 291 individuals 
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using 101 SSR markers allowed identifi cation of 15 genomic regions involved in 
seed and fruit weight variations. These loci corresponded to ten previously identi-
fi ed QTLs and fi ve novel ones (Marcano et al.  2007 ). The results suggested potential 
implication of admixture mapping in the dissection of complex traits, and identifi ca-
tion of markers- tags for component loci that can be used in future breeding 
applications.  

9.4.5     Nested Association Mapping (NAM) Population 

 To assist mapping of genes/QTLs contributing for agronomically relevant traits, 
Edward Buckler and his coworkers developed a single unifi ed mapping population 
daubed as nested-association mapping (NAM) population. The NAM population 
allows mapping of genes by both linkage- and LD-based approaches. The fi rst NAM 
population was developed in maize by crossing one common parent B73 with 25 
diverse maize founder inbreds followed by selfi ng the F 1 s to generate 25 F 2  popula-
tions. These F 2  populations were advanced through single seed descent (SSD) to 
generate 25 half-sib RIL populations each with 200 RILs, collectively constituting 
an NAM population of 5,000 RILs. This population takes in account both historic 
and recent recombination events, thus will allow simultaneous deception of marker 
trait association and validation of identifi ed markers (Yu et al.  2008 ). 

 Later the similar NAM design was applied in barley to explore the genetic diver-
sity for fl owering time (FT) in the wild barley. For this purpose a barley NAM popu-
lation consisting of 1,500 BC 1 S 3  lines was obtained by crossing barley cultivar 
Barke with 25 highly divergent wild barley accessions. For genotypic characteriza-
tion, the NAM population is currently being genotyped with 9,000 Infi nium SNPs 
and selected candidate genes with known functions in the FT control. The data 
obtained will be used to carry out an association genetics screen to localize new 
wild barley QTLs, which are associated with the expression of FT. The new exotic 
QTL alleles will help to broaden the genetic diversity of the elite barley gene pool. 
Additionally, the exotic QTL alleles will shed further light on the genetic network 
of FT control in cereals (Klaus Pillen personal communication).   

9.5     Role of Exotic Germplasm in Improving Performance 
of the Elite Counterparts 

9.5.1     Breeding for Abiotic Stress Resistance 

 Changes in the climatic conditions such as rising temperature and uncertain precipi-
tation pattern in combination with the deteriorating edaphic conditions are one of 
the major causes of yield stagnation (Gupta et al.  2012 ; Cossani and Reynolds  2012 ; 
Lobell and Gourdji  2012 ). Keeping in view the increasing global population it is 
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important to develop crops that are less demanding and can perform stably in 
 suboptimal growth conditions. It has been realized well before that the wild rela-
tives of the cultivated plants perform more stably under stress conditions, and have 
since been extensively exploited to breed for abiotic stress resistance (Trethowan 
and Mujeeb- Kazi  2008 ). One of the specifi c examples includes the 1BL.1RS trans-
location (Rajaram et al.  1983 ; Villareal et al.  1995 ). This translocation of the long 
arm of chromosome 1B (1BL) with the short arm of rye ( Secale cereale  L.) chromo-
some 1R (1RS) was fi rst discovered in the winter wheat cv. Kavkaz, and was later 
transferred to spring bread wheat cv. Veery (Rajaram et al.  1990 ). It was observed 
that the lines carrying this translocation exhibit vigorous root growth, and maintain 
high grain yield in drought prone conditions and on Zn-defi cient or acidic soils 
(Schlegel et al.  1997 ; Ribeiro-Carvalho et al.  1997 ; Manske and Vlek  2002 ; Ehdaie 
et al.  2003 ). The yield advantage of 1RS translocation lines was attributed to the 
increase in root biomass that increases uptake of water and nutrients from the soil 
(Ehdaie et al.  2003 ; Snape et al.  2007 ; Ehdaie and Waines  2008 ). In general the 
1BL.1RS carrying lines have inferior industrial quality, although later it became 
possible to break the association between agronomically inferior attributes from the 
superior characters (Lukaszewski  2000 ). Homoeologous recombinants of 1RS with 
1BS were used for precise mapping the genes/QTLs for root traits in wheat (Sharma 
et al.  2009 ,  2011 ). 

 Similarly, tolerance to salinity has been transferred from the wild Triticeae 
species to the cultivated wheat (Zan-Min  2003 ). For instance,  Thinopyrum bessar-
abicum  was crossed to bread wheat and the salt tolerance of the resulting amphi-
ploid was found to be signifi cantly improved relative to the recurrent parent (King 
et al.  1997 ). The translocated segment of another species ( Th. junceum ) of same 
genera into the cultivated wheat background signifi cantly improved the salt toler-
ance (Wang et al.  2003 ). The salt-tolerant grasses  Lophopyrum elongatum  (Host) 
Love and  Elytrigia pontica  (Podp.) Holub also offer potential for improving the 
salt tolerance of wheat (Dvorak and Knott  1974 ; Dvorak et al.  1988 ). The wild 
relatives such as  Ae. geniculata  found in harsh environments are reported to have 
low carbon isotope discrimination and therefore high water-use effi ciency 
(Zaharieva et al.  2001 ), and can be potential source of variability for drought and 
heat tolerance. 

 In a recent study, physiological and molecular consequences of an alien chromo-
some segment (7DL) introgression from a wild wheat relative,  Agropyron elonga-
tum  into cultivated wheat ( T. aestivum ) background were investigated. The wheat 
translocation lines showed signifi cantly improved water stress adaptation, and 
higher root and shoot biomass compared to the control genotypes. Enhanced uptake 
of water and nutrients from the soil due to higher root biomass enabled the translo-
cation line to maintain more favorable gas exchange and carbon assimilation levels 
relative to the wild type during water stress. Transcriptome analysis allowed identi-
fi cation of candidate genes associated with root development. Two of these candi-
date genes were mapped to the site of translocation on chromosome 7DL. Based on 
the candidate gene analysis, brassinosteroid signaling pathway was predicted to be 
involved in the novel root responses observed in the  Agropyron  translocation line 
(Placido et al.  2013 ).  
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9.5.2     Breeding for Biotic Stress Resistance 

 Application of modern genomic tools in combination with the cytogenetic 
 procedures has enabled the plant breeders to identify and transfer desirable disease 
resistance genes from exotic to the cultivated gene pool of different crops. In wheat 
signifi cant progress has been achieved in identifying and transferring alien genes 
conferring resistance against a number of diseases such as leaf, stem and stripe 
rusts, powdery mildew, bunts, and smuts (Knott  1989 ; Pienaar  1990 ; Jiang and Gill 
 1994 ; Friebe et al.  1996 ; Bommineni and Jauhar  1997 ; Gill et al.  2006 ,  2011 ). 
Almost all genes conferring resistance against various diseases are of alien origin, 
in particular the ones providing resistance against  Fusarium  head blight (FHB), 
stem rust ( Sr ), powdery mildew ( Pm ), and leaf rust ( Lr ) (c.f. Brown-Guidera et al. 
 1996 ; Fedak et al.  1997 ; Singh et al.  2008 ; Chen et al.  2013 ; Timonova et al.  2013 ). 
As this topic is widely reviewed in several recent articles in the following paragraph 
we focus on a few major examples (see Table  9.2 ).

   Thirty accessions of  T. araraticum  were identifi ed to show resistance against 
seven different diseases and two of them showed resistance against both FHB and 
leaf rust (Fedak  1999 ). In  T. monococcum,  resistance for eyespot disease was found 
(Murray et al.  1994 ), which was later transferred to the cultivated gene pool (Cadle 
et al.  1997 ; Sheng et al.  2012 ). Thus, in order to make use of the insect/pest resis-
tance identifi ed in several different alien sources a large collection of synthetic 
wheat lines were developed at the International Maize and Wheat Improvement 
Center, CIMMYT, and are currently being used in several breeding programs around 
the globe (Mujeeb-Kazi and Rajaram  2002 ). Use of alien gene in rice and maize for 
insect/pest and disease resistance have been used to develop the introgressed lines 
(Amante- Bordeos et al.  1992 ; Brar and Khush  1997 ; Rahman et al.  2009 ) (pre-
sented in Sect.  4.1.2 , and Tables  9.1  and  9.2 ). 

 In rice alien genes for insect/pest resistance have been introgressed in cultivated 
varieties using AB populations (Amante-Bordeos et al.  1992 ; Brar and Khush  1997 ; 
Rahman et al.  2009 ). Similarly, in maize introgression lines were developed for 
southern leaf blight, northern leaf blight, and grey leaf spot resistance using marker- 
assisted backcrossing (Tables  9.1  and  9.2 ). 

 In  Brassica , a large number of  B. oleracea  accessions were screened for resis-
tance against verticillium wilt, and a good source of resistance was identifi ed for 
this devastating disease (Happstadius et al.  2003 ). Similarly, other wild  Brassica  
species in particular  B. vollosa  and  B. incana  were also used as the sources of resis-
tance against insect-pests (Ellis et al.  2000 ). Similarly, in cotton due to low genetic 
variability only tertiary gene pool has been exploited (by bridge crossing) to improve 
disease resistance (Brubaker and Brown  2003 ; McFadden et al.  2004 ).  

9.5.3     Breeding for Yield and Yield Contributing Traits 

 In wheat, the key examples of alien introgressions that contributed to yield improve-
ment include (1) introgressions from  Ae. umbellulata , which saved the US wheat crop 
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     Table 9.2    Wild sources used to improve desirable traits in crop plants   

 Crop 
 Trait under 
consideration  Donor  Recipient  Reference 

  Biotic and abiotic stress  
 Tomato  Yellow leaf curl 

resistance 
  S. chilense   –  de Castro et al. 

( 2013 ) 
  Brassica   Resistance to cabbage 

aphid  Brevicoryne 
brassicae  

  B. incana  and 
 B. villosa  

 –  Ellis et al. ( 2000 ) 

 Resistance to verticel-
lium wilt 

  B. incana   –  Happstadius et al. 
( 2003 ) 

 Powdery mildew 
resistance 

  B. carinata    B. oleracea   Tonguc and 
Griffi ths 
( 2004 ) 

 Characterization of 
mustard aphid 
 Lipaphis erysimi  
resistance gene 

  B. fruticulosa    B. juncea   Kumar S et al. 
( 2011 ) 

 Aphid resistance   B. fruticulosa    B. rapa   Atri et al. ( 2012 ) 
 Blackleg resistant   B. rapa  ssp.  Sylvestris    B. napus   Yu et al. ( 2012 ) 

 Wheat  Elimination of large 
amount of goatgrass 
chromatin surround-
ing stem rust 
resistance gene  Sr39  

  Ae. speltoides    T. aestivum   Niu et al. ( 2011 ) 

 Powdery mildew 
resistance 

  Dasypyrum villosum  
syn.  Haynaldia 
villosa  

  T. aestivum   Cao et al. ( 2011 ) 

 Powdery mildew 
resistance 

  H. villosa    T. aestivum   Chen et al. ( 2013 ) 

 Leaf rust resistance   T. timopheevii    T. aestivum   Timonova et al. 
( 2013 ) 

 Stripe rust resistance   Psathyrostachys 
huashanica  Keng 

  T. aestivum   Du et al. ( 2013 ) 

 Improved water stress 
adaptation, higher 
root and shoot 
biomass 

  Ag. elongatum    T. aestivum   Placido et al. 
( 2013 ) 

 Rice  Brown plant hopper 
resistance 

  O. minuta    O. sativa   Rahman et al. 
( 2009 ) 

 Bacterial blight and 
brown plant hopper 
resistance 

  O. minuta    O. sativa   Guo et al. ( 2013 ) 

 Maize  Southern and northern 
leaf blight and grey 
leaf spot resistance 

 Elite Maize line  Cultivated 
maize 

 Belcher et al. 
( 2012 ) 

 Cotton   Fusarium  wild 
resistance 

  G. sturtianum  
  G. australe  

  G. hirsutum   McFadden et al. 
( 2004 ) 

(continued)
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 Crop 
 Trait under 
consideration  Donor  Recipient  Reference 

  Yield and yield contributing traits  
 Rice  Yield contributing traits   O. rufi pogon    O. sativa   Tian et al. ( 2006 , 

2007) 
 Increased grain yield   O. minuta    O. sativa   Linh et al. ( 2008 ) 
 Yield and yield 

contributing traits 
  O. rufi pogon    O. sativa   Fu et al. ( 2010 ) 

 Morphological and 
yield contributing 
traits 

  O. minuta    O. sativa   Guo et al. ( 2013 ) 

 Wheat  Leaf rust resistance 
 Lr19  and high grain 
yield 

  Ag. elongatum    T. aestivum   Reynolds et al. 
( 2001 ) 

 Increased grain yield   T. dicoccoides    T. aestivum   Simmonds et al. 
( 2008 ) 

 Increased number of 
fl orets and kernels 

  Ag. cristatum    T. aestivum   Wu et al. ( 2006 ) 

 Yield and yield 
contributing traits 

  Th. bessarabicum    T. aestivum  
cv. 
Chinese 
Spring 

 Qi et al. ( 2010 ) 

  Quality traits  
 Maize  Kernel protein content 

and amino acid 
composition 

  Z. mays  ssp. 
 mexicana  

  Z. mays  cv. 
Ye515 

 Wang et al. 
( 2008a ) 

 Wheat  Soft grain texture   H. villosa    T. aestivum   Zhang et al. 
( 2012 ) 

 Rice  High head rice 
percentages and 
grain amylose 
content 

  O. rufi pogon    O. sativa  cv. 
MR219 

 Fasahat et al. 
( 2012 ) 

  Brassica   High glucoraphanin 
content 

  B. villosa   -  Sarikamis et al. 
( 2006 ) 

 Cotton  Fiber quality traits   G. darwinii  Watt  Cultivated 
cotton 

 Wang et al. 
( 2012 ) 

  Other interesting traits  
  Brassica   Yellow seed trait   Sinapis alba    B. napus   Li et al. ( 2012 ) 
 Wheat  Polycarpic life history   Th. elongatum    T. aestivum  

cv. 
Chinese 
Spring 

 Lammer et al. 
( 2004 ) 

 Blue wheat grain color   Th. bessarabicum    T. aestivum   Shen et al. ( 2013 ) 

Table 9.2 (continued)

from catastrophic failure in 1960s (Sears  1956 ,  1972 ), and (2) the 1B/1R introgres-
sion from rye that conferred resistance against a number of insect-pests, tolerance to 
the acid soils, and contributed for increased plant biomass and grain yield. After its 
discovery in the 1990s, the 1B/1R translocation was transferred to the majority of 
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world wheat varieties and is still present in the leading wheat varieties under cultiva-
tion throughout the globe (Ammar et al.  2004 ). Similarly, another translocation from 
 T. dicoccoides  is present in many of the leading Europe wheat varieties, for example, 
“Robigus.” A few other examples of yield improvement in wheat using alien 
introgression(s) include the 7Ag.7DL introgression from  Ag. elongatum , which con-
tributed for both increase in grain yield and biomass in different wheat backgrounds 
(Reynolds et al.  2001 ). This introgression can be tracked with the help of molecular 
markers associated with the leaf rust resistance gene  Lr19 . Non- glaucousness intro-
duced from  T. dicoccoides  delayed plant senescence and prolong grain-fi lling dura-
tion in wheat leading to an increase in grain yield (Simmonds et al.  2008 ). Development 
of synthetic wheats at CIMMYT also showed great potential of alien species in breed-
ing for improved grain yield (Trethowan and Mujeeb-Kazi  2008 ). 

 The AB-QTL approach was successfully used in rice to introgress alien seg-
ments contributing for improved grain yield into the cultivated rice background 
(Xiao et al.  1998 ). In this study, chromosome segments introgressed from a 
Malaysian accession (IRGC 105491) of  O. rufi pogon  increased the grain yield of 
cultivated rice in the BC 3  testcross progeny. Two other studies used the same 
 O. rufi pogon  accession to cross with different recipient genotypes, which also 
resulted in increased grain yield in backcross progenies (Thomson et al.  2003 ; 
Septiningsih et al.  2003a , b ).  

9.5.4     Breeding for Nutritional Quality 

 Grain protein content is one of the major determinants of the nutritional quality of 
agricultural crops. It has a direct infl uence on the quality of end products and also 
on the health of consumers. In cereal grains, GPC ranges from 10 to 12 % of dry wt. 
and in legume seeds it is 20–40 % (Shewry and Halford  2002 ). Wild emmer wheat, 
 T. turgidum  ssp.  dicoccoides , accession FA-15-3 was identifi ed as a source for high 
GPC (Avivi  1978 ). Two decades after its discovery, Joppa et al. ( 1997 ) developed 
alien chromosome substitution lines using FA-15-3, which not only allowed transfer 
of the gene(s) responsible for high GPC from exotic to the elite background but also 
assisted in assignment of the effect to wheat chromosome 6B. Later a map-based 
cloning approach was followed to clone the gene ( Gpc-B1 ) responsible for high 
GPC which was found to encode an NAC transcription factor designated as “No 
Apical Meristem1” (NAM1) protein (Uauy et al.  2006 ). It was also reported that the 
tetraploid wheat  T. turgidum  ssp.  dicoccoides  has a functional  Gpc-B1  allele, while 
the modern tetraploid and hexaploid wheat cultivars have a deletion at this locus or 
a nonfunctional copy (Uauy et al.  2006 ). This is one of the success stories of nutri-
tional enhancement in wheat where the gene conferring high GPC was originally 
identifi ed in a wild species, successfully transferred to the cultivated tetraploid and 
hexaploid wheats, and with the availability of functional markers for the gene  Gpc-
B1 , has been successfully used in developing wheat genotypes with enhanced GPC 
without any yield penalty (Kumar J et al.  2011 ; Balyan et al.  2013 ). 
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 In maize, introgression lines were developed from a cross between  Zea mays  ssp. 
 mexicana , a close wild relative of cultivated maize, and an elite maize inbred line 
Ye515 for increasing protein content and nutritional value. Kernel protein contents 
in the progeny ranged from 7.89 to 12.44 % with considerable variability in the 
proportions of different seed storage proteins and amino acid composition. Protein 
content and amino acid composition (specifi cally Lys content) of some introgres-
sion lines was signifi cantly higher and improved than that of Ye515. The results 
demonstrated that these introgressions had great potential in improving the protein 
content and composition of maize grains (Wang et al.  2008a ,  b ,  2012 ). 

 In rice, a limited backcrossing procedure was utilized to introgress genes associ-
ated with grain quality traits from  O. rufi pogon  (IRGC 105491), a wild rice relative, 
to the cultivated rice  O. sativa  cv. MR219. Advanced breeding lines carrying  O. 
rufi pogon  introgressions showed signifi cantly higher head rice (amount of whole 
grain rice) percentages (70–88 %), and two progenies showed higher amylose con-
tents than MR219 (Fasahat et al.  2012 ).  

9.5.5     Bio-Fortifi cation of Mineral Nutrients Using 
Alien Species 

 Dietary defi ciency of micronutrients, known as hidden hunger, affect more than 
40 % of the world’s population, especially in the developing nations (Welch and 
Graham  2002 ). Worldwide, more than 3 billion people living on staple crops suffer 
from micronutrient defi ciencies (Welch and Graham  2004 ; Liu et al.  2006 ). Out of 
these, 2 billion people suffer from iron and zinc defi ciencies alone. About one-third 
of humans in all age groups and populations, especially women and children, are 
severely affected by defi ciency of key micronutrients, e.g., iron (Fe), zinc (Zn), 
iodine (I), selenium (Se), and vitamin A (Ghandilyan et al.  2006 ). Breeding for 
micronutrient enhancement has recently been seen as one of the major breeding 
objectives in many crop plants. Modern day cultivars of all major crops have limited 
variability for mineral content (Graham et al.  2001 ; Bouis  2003 ). However, wild 
germplasm of crops has been found to harbor suffi cient variability for improvement 
of mineral content (Cakmak et al.  2000 ; Chavez et al.  2005 ; Vreugdenhil et al. 
 2005 ; Rawat et al.  2009a ,  b ; White and Broadley  2009 ). Breeding for biofortifi ca-
tion in wheat has been discussed in some recent reviews (Rawat et al.  2013 ; Balyan 
et al.  2013 ). In wheat, six tetraploid species including  Ae. kotschyi ,  Ae. peregrina , 
 Ae. geniculata ,  Ae. ventricosa , and  Ae. cylindrica  and a diploid species,  Ae. longis-
sima  exhibited high grain Fe and Zn content that can be exploited for biofortifi ca-
tion of Fe and Zn content in the elite bread and durum wheat cultivars (Rawat et al. 
 2009a ). Few accessions of  Ae. kotschyi  were also used to make wide crosses with 
bread wheat to produce chromosome substitution lines (Rawat et al.  2011 ). 
The substitution lines carrying chromosomes 2S and 7S from  Ae .  kotschyi  in com-
mon wheat background showed threefold increase in grain Fe and Zn contents 
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(Rawat et al.  2009b ; Tiwari et al.  2010 ). Similarly, introgression of  Ae. peregrina  
(a tetraploid with U and S genomes) segments in common wheat genome resulted 
in two- to threefold increase in the grain Fe and Zn content (Neelam et al.  2011 ). 
Disomic addition lines derived using  Ae. longissima ,  Ae. searsii ,  Ae. umbellulata , 
 Ae. caudata ,  Ae. peregrina , and  Ae. geniculata  showed increased grain Fe or Zn 
concentration of between 50 and 248 % compared with the recipient cultivar, 
Chinese Spring. Most of alien chromosomes addition lines with signifi cantly higher 
grain Fe and/or Zn concentrations belonged to the U and S genotypes and homoeol-
ogous groups 1 and 2 chromosomes (Wang et al.  2011 ). 

 Selenium is an essential micronutrient for mammals (but not plants), being pres-
ent as seleno cysteine in a number of enzymes. However, it is also toxic when pres-
ent in excess (above ~600 μg d −1 ). Cereals are major dietary sources of Se, where Se 
exists in high-selenium gluten with as much as 7 ppm. About 40–45 % of the Se is 
bound in as seleno methionine and/or seleno cysteine, and incorporation of seleno 
amino acids into plant proteins happens by a replacement of cysteine and methio-
nine, often with a deleterious consequence on the plant’s health (Hawkesford and 
Zhao  2007 ). 

 In a recent study no signifi cant genotypic variation in grain Se density among 
cultivated bread or durum wheat, triticale, or barley varieties was observed. However, 
a wild wheat relative,  Ae. tauschii  and rye showed higher grain Se concentration 
(42 and 35 %, respectively) than the other evaluated lines (Lyons et al.  2005 ).   

9.6     Conclusions and Future Prospects 

 The need to look for the source of biodiversity outside the cultivated or elite gene 
pools has been realized since long and resulted in establishment of germplasm 
banks around the globe. For instance there are almost 500,000 wheat accessions 
available worldwide in gene banks, encompassing landraces, non-domesticated 
species, and advanced and obsolete cultivars (Ortiz et al.  2008 ). Similarly, more 
than 80,000 rice germplasm accessions are available in national and international 
collections (Chang  1984 ; Jackson  1997 ). In several other crops also a large num-
ber of germplasm accessions and wild genetic resources are available with the 
gene banks. This vast reservoir of biodiversity must be explored and utilized to 
address the issue of feeding the global population in changing environmental con-
ditions. Advanced genetic and genomic approaches are creating new opportunities 
in large- scale omics (genomics, metabolomics, proteomics, transcriptomics, and 
ionomics), with great potentials to enable a thorough understanding of genome 
structure and behavior. The new genotyping platforms based on array-based 
(Gupta et al.  2013 ) and next-generation sequencing (NGS) methods (Seifollah 
et al.  2013 ) will make genome-wide molecular marker discovery and genotyping 
faster and cost effective, which will consequently improve the use of wild germ-
plasm to breed crops for future needs. It is expected that genomic selection (GS) 
enabled by genotyping- by- sequencing (GBS) will allow precise estimation of 
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recombination events (Poland and Rife  2012 ), which will signifi cantly improve 
the precision with which alien introgressions could be tracked or located. These 
new resources will accelerate the isolation of genes underlying key agronomic 
traits and provide a new generation of gene-specifi c diagnostic markers for breed-
ing and genes for genetic manipulations (GM). These advances in marker technol-
ogy will also enable the plant breeders to engineer genotypes with the desired 
attributes following the concept of “Breeding by Design” (Peleman and van der 
Voort  2003 ). Although effi ciently relating gene sequence variation with functional 
variation remains a challenge, a better knowledge of genome structure, recombi-
nation distribution and regulation will accelerate the development of strategies 
such as “allele replacement” through sequence-specifi c homologous recombina-
tion to reducing linkage drag. With the improvements in the transformation proto-
cols in different crops, it is now possible to transfer cis-/transgenes in the desired 
genetic backgrounds. Further, with the advent of zink- fi nger (ZF) and transcrip-
tion activator like effector (TALE) nucleases now it is feasible to target gene(s) to 
desired genomic locations (Baker  2012 ). With these emerging technologies we 
can foresee a whole new era in crop improvement which will circumvent the pres-
ent day limitations of using elite gene pools and will allow to breed for genotypes 
with desired attributes.     
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    Abstract     For developers and regulators of genetically modifi ed plants, an evalua-
tion of gene fl ow is an essential part of the risk assessment required prior to a deci-
sion on whether a transgenic crop variety may enter the marketplace. Assessments 
of the probability of gene fl ow relative to non-GM varieties and the potential impact 
of the establishment of a transgene in populations outside of cultivation are used to 
determine a level of risk. We provide here an overview of the principles and meth-
odologies which have been used in gene fl ow studies in transgenic crops.  

  Keywords     Gene dispersal   •   GM crops   •   Transgene   •   Herbicide resistance   •   Gene 
fl ow impact  

10.1         Introduction 

 Since the introduction of transgenic, or genetically modifi ed (hereafter abbreviated 
to “GM”) crops, the potential for gene fl ow has been a central consideration for 
those developing, commercialising and regulating GM crops. In assessing potential 
impacts of gene fl ow, it is necessary to know what the probability of gene fl ow to, 
from and within the crop under consideration is and what is the likely impact of 
“escape” of transgene(s) from the cultivated environment (Glover  2002 ; Gomez- 
Galera et al.  2012 ). This may be considered through an examination of the compo-
nents of risk assessment; the probability of an event happening and the possible 
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impacts of such an event happening. An assessment of probability comes from base-
line knowledge of the crop in question coupled with case-by-case considerations of 
possible gene fl ow with the related phenotypic changes in the GMO. The potential 
impact of the occurrence of an event will very much depend on case-specifi c factors, 
such as the introduced trait, the crop or GM species in question, the release site and 
the eventual use of the crop, the GM plant or derivatives of these. In this short arti-
cle, it is not possible to review the extensive work that has been carried out in gene 
fl ow in transgenic crops, and by no means the breadth of literature available on 
introgression in plants, or risk assessment applied to non-transgenic invasive plant 
species (Pysek  2001 ; Lee  2002 ). More detailed information and viewpoints on this 
aspect have been discussed earlier in several reviews (Becker et al.  1992 ; Ellstrand 
et al.  1999 ; Ellstrand and Schierenbeck  2000 ; Abbot et al.  2003 ; Stewart et al.  2003 ; 
Gealy et al.  2007 ; Wilkinson and Ford  2007 ; Chandler and Dunwell  2008 ). Besides, 
general issues on integration of transgene into agricultural plants have been dis-
cussed excellently by Ellstrand ( 2003 ,  2006 ) in his reviews. Because weedy rela-
tives exist for most major crops (Gealy et al.  2007 ), impact of gene fl ow and 
introgression from domesticated plants to wild relatives has also been reviewed 
earlier (Ellstrand et al.  1999 ). This chapter only provides a practical framework 
around which to build a plan to consider gene fl ow issues for those contemplating 
the development of a transgenic plant product.  

10.2     Mechanisms of Gene Flow 

 The potential routes for gene fl ow from a transgenic crop are the same as those for 
conventional non-GM varieties of the same crop. These routes include gene dis-
persal from the crop via natural mechanisms of seed (Tiffney  2004 ; Cummings 
et al.  2008 ; Bailleul et al.  2012 ) or pollen (Beckie et al.  2012 ) dissemination, 
persistence of feral populations in and around cultivated areas as a result of long-
lived vegetative organs or seed banks (Desplanque et al.  1999 ; Pohl-Orf et al. 
 1999 ; Walker et al.  2004 ), hybridisation with related weed species in and around 
areas under cultivation, hybridisation of GM to non-GM varieties of the same spe-
cies. Human- aided dispersal mechanisms are also important. In the case of orna-
mentals, for example, both plants and fl owers are traded at an international level, 
potentially introducing alien species (Anderson  2007 ; Cook and Proctor  2007 ; 
Aldous et al.  2011 ). 

10.2.1     Baseline Information on Crop Biology 

 Good knowledge of the fundamental biology of a crop is essential in order to esti-
mate the probability of gene dispersal. For the major crops, there is detailed knowl-
edge of their reproductive and seed biology and consensus documents are published 
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by a variety of regulatory authorities (Luijten and de Jong  2010 ), the Organization 
for Economic Cooperation and Development (OECD) and within the scientifi c lit-
erature (Arriaga et al.  2006 ; Ferreira et al.  2007 ; Gealy et al.  2007 ). For some crops, 
models of gene fl ow are now available (Colbach et al.  2001 ; Baker and Preston 
 2003 ; Cresswell  2003 ; Meagher et al.  2003 ; Fricke et al.  2004 ; Glemnitz et al.  2011 ; 
Schmidt and Schroder  2011 ; Tyson et al.  2011 ). However, for minor crops, a detailed 
baseline may not be available, but can often be generated in the experimental data 
that will be required to assess the probability of gene fl ow from the GM crop under 
consideration. Where a minor crop has not been known to hybridise with wild rela-
tives, experimental crosses to assess the potential for interspecifi c reproduction may 
be appropriate (Armstrong et al.  2005 ; FitzJohn et al.  2007 ). In these experiments, 
transgenic lines can be assessed against comparator lines, including the variety used 
to initially develop the GM plant under consideration. Data that can be measured for 
assessment are summarised in Table  10.1 . Decisions need to be made on parameters 
most relevant for assessment, and these parameters need to be based on the biology 
of the crop. For example, considering a vegetatively propagated horticultural crop, 
adventitious rooting capacity will be more relevant than a detailed analysis of pollen 
production. For an insect pollinated crop, factors that may infl uence the amount of 
visits per plant by insect vectors will be more relevant. Depending on the prelimi-
nary data generated, more specifi c experiments can be carried out such as measur-
ing a specifi c parameter like fl owering time under a number of environmental 
conditions. Clearly, these supplementary experiments will be mandatory if the 
introduced genes confer upon the GM plant a phenotype affecting parameters such 
as those described in Table  10.1 .

   Regulators are particularly interested in compatibility with related species, 
especially if such related species include weeds, as is the case for oilseed rape 

    Table 10.1    Morphological and physiological parameters that can be measured to provide baseline 
information on gene fl ow in transgenic plants   

 Parameter  Variables that can be measured 

 Reproductive organs  Flowers per plant; number of styles, stamens and viable anthers per 
fl ower; size of reproductive organs; dynamics of cross- and 
self-compatibility 

 Vegetative reproduc-
tion capacity 

 Number of reproductive organs per plant; percentage adventitious root 
formation; dormancy 

 Pollen  Percentage of viable anthers; pollen viability; pollen germination; pollen 
grain size 

 Flowering  Number of fl owers per plant; fl ower longevity on plant and detached 
from plant; fl owering time; patterns of fl ower opening; period of 
receptivity; rates of successful pollination and seed set; presence and 
nature of pollination track lines 

 Seed  Number of seed and fruit formed per plant; seed size and weight; size of 
seed capsules; strength of seed capsules; seed germination 

 Persistence  Dormancy/survival times for vegetative organs; pollen longevity; seed 
dormancy 
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(Warwick et al.  2003 ; FitzJohn et al.  2007 ) and sugar beet (Desplanque et al.  1999 ; 
Cureton et al.  2006 ). Analysis of the wild fl ora in and around fi eld trial sites 
(Chandler et al.  2008 ) is important in order to eliminate or evaluate the potential 
for hybridisation to wild-related species. 

 In addition to reproductive and seed biology, knowledge of the agronomy of a 
crop is also important from a gene fl ow perspective. For example, whether the crop 
typically produces seed banks or feral populations, or whether non-GM conven-
tional plant varieties have historically become weeds outside of cultivation. One 
benefi t of the focus on transgenic crop safety by regulators has been that more is 
now known about gene fl ow and some of the previously less quantifi ed mechanisms 
of gene fl ow, such as seed spillage (von der Lippe and Kowarik  2007 ). For 
 herbicide-tolerant transgenic varieties, baseline knowledge should also include 
gene fl ow studies with conventionally bred herbicide resistant varieties (Mallory-
Smith and Sanchez Olguin  2011 ; Krato and Petersen  2012 ; Presotto et al.  2012 ). 
Some crops may already be known to regularly hybridise with related species in the 
wild. Information on the biology of these hybrids and how they evolve (Vacher et al. 
 2011 ) should be included in baseline information.  

10.2.2     Factors Affecting Gene Flow 

 Having established good baseline knowledge, it is necessary to identify the major 
environmental and ecological factors, and their interactions, that can impact gene 
fl ow (Becker et al.  1992 ). Some of the more signifi cant examples are listed in 
Table  10.2 .

   For crops that are insect-pollinated, knowledge of insect foraging behaviour 
(Cresswell  2000 ; Osborne et al.  1999 ; Zaller et al.  2007 ; Tyson et al.  2011 ) is criti-
cal to understand the probability of gene dispersal at varying distance from the crop. 

   Table 10.2    Examples of environmental factors which may affect the probability of gene fl ow   

 Factor  Examples of parameters affecting gene fl ow 

 Seasonal  Effects of temperature and/or drought on pollinator abundance; wind 
direction and speed; abundance and type of nearby food sources for 
insect pollinators; abundance and type of potential vectors for seed 
dispersal 

 Wild relatives  Type and frequency; fl owering times in comparison to crop; compatibility 
with related species 

 Agronomic practices  Normal practice for control of related weed species; normal practice for 
control of feral species; normal practice for harvest and distribution of 
seed 

 Proximity to non-GM 
varieties 

 Expected proximity to compatible varieties; synchrony of fl owering with 
non-GM varieties 

 Importance of variety 
segregation 

 Proximity to elite lines; importance of need for variety segregation 
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Agronomically, manipulation of the amount and type of transgenic material in a 
crop may affect gene fl ow (Feili et al.  2003 ), as can environmental factors such as 
carbon dioxide concentration (Ziska et al.  2012 ). In  Brassica napus , there is varia-
tion in out-crossing rates at different locations (Becker et al.  1992 ). In sugar beet, 
habitat appears to dictate the amount of gene fl ow observed (Cureton et al.  2006 ).   

10.3     Assessing the Probability of Gene Flow 

 Once the baseline information is in place, this can be complemented with data from 
laboratory experiments, greenhouse experiments and fi eld trials to provide a mea-
sure of the probability of gene fl ow. Establishing a measure of the probability of 
gene fl ow has two purposes: fi rstly to evaluate the inherent probability for the crop 
under consideration and secondly to evaluate whether there is any increased or 
reduced probability of gene fl ow from the transgenic variety relative to that observed 
with the conventional non-GM variety it is derived from. 

10.3.1     Experimental Data 

 Side by side experiments in which transgenic lines are assessed against comparator 
lines will generate data that will be of great assistance in establishing whether there 
are signifi cant differences between the modifi ed line(s) and conventional, non-GM 
line(s). Intra-varietal variation in parameters affecting gene fl ow is likely, particu-
larly for the major crops and any signifi cant differences may be less signifi cant than 
the variance observed between non-GM varieties of the crop. An understanding of 
this variation is important when evaluating any differences between the transgenic 
line and the variety it was derived from. 

 Experimental design factors such as plot size (Willenborg et al.  2009 ; Palaudelmas 
et al.  2012 ; Rong et al.  2012 ), sampling error (Begg et al.  2007 ) and pollen density 
(Goggi et al.  2007 ) can have an effect on the measured rates of gene fl ow. The deci-
sion on whether to use gaps or plants in assessing separation distance was observed 
to have a signifi cant impact on measurements of gene fl ow in oil seed rape, a species 
that is both wind and insect pollinated (Reboud  2003 ).  

10.3.2     Field Studies 

 Experimental data is usually collected from contained experiments where the envi-
ronment is relatively closely controlled. The advantage of contained experiments is 
that relatively small differences between lines can be measured. However, many 
external variables are excluded in such trials and fi eld trials provide additional 
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information on gene fl ow. There is no substitution for fi eld trials if pollen fl ow can 
be expected across many hundreds of metres, as is the case in canola, for example 
(Beckie et al.  2003 ; Devaux et al.  2005 ). Field trials also provide the opportunity to 
measure gene fl ow under natural conditions in which pollen spread is left to the 
wind (Hoyle and Cresswell  2007 ) or naturally occurring pollination vectors (Pons 
et al.  2011 ). Field trials should be carried out over several seasons if the intention is 
to understand the affect of seasonal factors such as temperature and rainfall varia-
tion on gene fl ow. In designing experiments to measure the rates of gene fl ow it is 
most ideal to have at hand a reliable and inexpensive technique to identify and track 
the transgene. This is because identifi cation of very low frequencies of gene fl ow 
will require the analysis of populations of tens of thousands or even millions (Jhala 
et al.  2012 ) of individual samples. Readily identifi able physical tags such as reporter 
gene (Messeguer et al.  2001 ; Halfhill et al.  2003 ; Lim et al.  2007 ; Pons et al.  2011 ) 
or colour modifi cation genes (Tanaka et al.  2009 ; Kovinich et al.  2012 ) are very use-
ful in this respect. A real time bioluminescent technique has recently been reported 
(Kiddle et al.  2012 ) and real-time PCR has been shown to be a reliable indicator of 
cross-pollination in maize (Pla et al.  2006 ). In the absence of suitable markers, 
analysis of batched samples (Guadagnuolo et al.  2001 ; Baack  2006 ; Mazzara et al. 
 2012 ) is necessary but when hybridisation events are expected to occur at a very low 
frequency the level of inaccuracy (false negatives and positives) inherent in a tech-
nique must also be quantifi ed (Peter et al.  2001 ; Begg et al.  2007 ). Where a crop 
produces a large number of seed a minimum number of seed must be determined for 
analysis in order for statistical analysis to be applied (Jhala et al.  2012 ). In some 
cases gene fl ow must be measured in the absence of a phenotype. For example, the 
introduced gene may only be expressed in certain tissues, or may be transferred, but 
not expressed, in recipient genetic backgrounds. In these cases molecular tech-
niques are used to detect the presence of introduced genes (Abbot et al.  2003 ; 
Nakamura et al.  2011 ). 

 Estimation of segregation distance generates important data for segregation rules 
(for example separating organic and non-organic production, or varieties which are 
being grown for non-food use). For trees (DiFazio et al.  2004 ; Pons et al.  2011 ) and 
some ornamental crops (Gross et al.  2012 ) long-term fi eld studies are required to 
collect data on gene fl ow (Smouse et al.  2007 ). This is because of the long time to 
maturation and the annual cycle of pollen and seed formation. The seed may also 
have a long dormancy period—in these cases experiments in which dormancy 
breaking methods are compared for the transgenic line and the parent are most use-
ful. One of the fi rst transgenic crops to be commercialised was  Brassica napus  
(oilseed rape, canola). Gene fl ow from this species is mediated by both pollen 
(Lavigne et al.  1998 ; Beckie et al.  2003 ; Funk et al.  2006 ) and seed dispersal 
(Lutman et al.  2005 ; Devos et al.  2012 ) and has been evaluated on a landscape scale 
in the UK (Weekes et al.  2005 ) and the US (Schafer et al.  2011 ). Like other species 
(Luo et al.  2005 ; Fenart et al.  2007 ) oilseed rape pollen can be dispersed over long 
distances (Devaux et al.  2005 ). For species such as  Brassica  and wind pollinated 
grasses (Wang et al.  2004 ) experimental design and workload for accurate measure-
ment of separation distance is obviously a challenge. Nevertheless, crop-crop level 

S.F. Chandler and T.W. Stevenson



253

gene fl ow (Weekes et al.  2007 ; Rieger et al.  2007 ) is the reality of the agricultural 
situation and there are examples where gene fl ow has been estimated for a crop on 
a territory basis (Wilkinson et al.  2000 ,  2003 ; Züghart  2010 ; Sausse et al.  2012 ). 
Field studies can also be extended to the study of already established feral popula-
tions, as have occurred from seed spillage in  Brassica napus  (Claessen et al.  2005 ). 
Examples of experimental research on gene fl ow in transgenic crops are tabulated in 
Table  10.3 .

10.3.3        Tools to Reduce the Probability of Gene Flow 

 Physical barriers to gene fl ow are usually mandatory in the early stages of evalua-
tion of transgenic lines (Glaser  2003 ; van Hengstum et al.  2012 ). Typically these 
small-scale trials are carried out in contained conditions in which the potential for 
insect pollination is minimised. In the fi eld, trials can be physically isolated from 
any potential recipient plants by distance or by suitable inclusion of gaps (Reboud 
 2003 ) and/or barrier plants. More permanent genetic modifi cation techniques to 
reduce the probability of gene fl ow have been proposed, including Barnase-based 
systems (Lannenpaa et al.  2005 ; Kobayashi et al.  2006 ), “gene deletor” technology 
(Li  2012 ), selection of varieties with low inherent potential for gene fl ow (Gruber 
et al.  2012 ; Ohmori et al.  2012 ) or inclusion of genes which will allow feral plants 
to be killed by chemicals (Liu et al.  2012 ). Whilst we will not review these tech-
niques in detail here (see review Chapman and Burke  2006  for details on this sub-
ject), clearly these are examples of where the probability of gene fl ow is affected by 

   Table 10.3    Experimental measurements of gene fl ow from transgenic crops   

 Crop  Reference 

 Soybean ( Glycine max )  Abud et al. ( 2007 ) 
 Oilseed rape, canola ( Brassica napus )  Lavigne et al. ( 1998 ), Beckie et al. ( 2003 ), 

Reboud ( 2003 ) 
 Bahiagrass ( Paspalum notatum )  Sandhu et al. ( 2009 ,  2010)  
 Wheat ( Triticum aestivum )  Brule´-Babel et al. ( 2006 ), Gatford et al. ( 2006 ), 

Willenborg et al. ( 2009 ) 
 Chinese cabbage ( Brassica rapa  

ssp.  pekinensis ) 
 Lim et al. ( 2007 ) 

 Maize ( Zea mays )  Pla et al. ( 2006 ), Weekes et al. ( 2007 ), Viljoen and 
Chetty ( 2011 ) 

 Flax ( Linum usitatissimum   Jhala et al. ( 2012 ) 
 Potato ( Solanum tuberosum )  Scurrah et al.( 2008 ), Bravo-Segretin et al. ( 2011 ) 
 Barley ( Hordeum vulgare )  Gatford et al. ( 2006 ) 
 Rice ( Oryza sativa )  Messeguer et al. ( 2001 ,  2004) , Chun et al. ( 2011 ), 

Rong et al. ( 2012 ) 
 Tomato ( Lycopersicon esculentum )  Ilardi and Barba ( 2002 ) 
 Sugar beet ( Beta vulgaris )  Pohl-Orf et al. ( 1999 ) 
  Citrus  sp.  Pons et al. ( 2011 ) 
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expression of the transgene (Glaser  2003 ). Depending on the crop, regulators may 
ask for signifi cant evidence that this reduced probability is not conditional, i.e., is 
expressed in the range of environmental and agronomic conditions that the trans-
genic plant is likely to be grown in. Transgene mitigation has been proposed as a 
tool to reduce the fi tness of any escaped genes, on the assumption the transgenic 
trait will escape (Al-Ahmad et al.  2005 ).  

10.3.4     Quantifi cation of Gene Flow 

 The most common example of quantifi cation of gene fl ow is the establishment of 
segregation distance, based on hybridisation from outside the crop of interest. This 
is usually quantifi ed by measuring the occurrence of transgenic/non-transgenic 
hybrid seeds at varying distances from a centrally located plot of transgenic plants, 
surrounded by non-transgenic plants (Lavigne et al.  1998 ; Beckie et al.  2003 ; Funk 
et al.  2006 ; Gatford et al.  2006 ; Pla et al.  2006 ; Abud et al.  2007 ; Jhala et al.  2012 ). 
It is diffi cult to provide an assessment of a probability when that probability is very 
close to zero and the crop in question has no history of establishing as a feral popu-
lation or of introgression to other related species. If a transgenic trait does confer a 
competitive advantage, even at a very low frequency of gene transfer this trait may 
eventually become incorporated into and subsequently maintained in populations of 
wild or related species. In these cases, it is more useful to focus on any differences 
between the transgenic line and non-GM varieties of the same species. It is reason-
able to assume the characteristics of the crop will also apply to the transgenic. For 
example, if there is a history of feral population establishment for a crop, this is also 
likely to occur for the transgenic varieties. Likewise, if a crop has no history of 
introgression or invasiveness, this is also likely to be the case for the transgenic. 
Now there is a history of cultivation of transgenic crops, the weight of data indicates 
that the gene fl ow characteristics of transgenic varieties do, to a large extent, mirror 
those of non-GM varieties of the same species.   

10.4     Assessing the Impact of Gene Flow 

 Assuming gene fl ow is probable and that the most likely mechanism of gene fl ow 
has been identifi ed, the impact of gene fl ow can be determined. This impact will 
almost certainly focus on any phenotype caused by expression of the transgene and 
will be again need to be assessed in terms of whether the impact is likely to be 
greater or less than that imposed by gene fl ow from comparable non-GM plants of 
the same species. Where possible, comparison with similar phenotypes such as for 
GM herbicide-tolerant varieties and non-GM herbicide-resistant varieties is appro-
priate. The impact may or may not present a hazard (Gealy et al.  2007 ). Relevant 
questions will focus on whether the expression of the transgene in the absence of 
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selection pressure confers any competitive advantage. The complexity of this type 
of assessment has been increased with the introduction of stacked genes (Orson 
 2002 ; Liu et al.  2012 ) in single GM varieties. The inserted transgenes may, for 
example, confer both herbicide resistance and insect resistance phenotypes to an 
individual plant (Lenaic et al.  2012 ). Where there is the possibility of transfer of 
several different transgenes, specifi c molecular analysis methods are required in 
order to assess the gene fl ow frequencies of each gene (Wang et al.  2012 ). 

10.4.1     Gene Flow in Commercial Transgenic Crops 

 For some transgenic crop/trait combinations there is now an extended history of 
production, over massive areas. In North America, herbicide-tolerant and insect-
resistant varieties of upland cotton, soybean and maize now dominate for these three 
crops representing 94, 93 and 88 %, respectively, of all plantings in 2012 (National 
Agricultural Statistics Service, Agricultural Statistics Board, United States 
Department of Agriculture, June 29 2012). With this history and the enormous scale 
of planting an understanding of the potential for gene fl ow to occur, at least in the 
North American environment, has moved from theoretical to an actual understand-
ing. Raybould et al. ( 2012 ) have assessed experimentally the potential ecological 
risks from feral populations of insect-resistant transgenic maize, concluding trans-
genic maize posed a similar invasiveness potential to non-transgenic maize.  

10.4.2     Experimental Studies 

 Several experiments have been designed to assess whether the expression of trans-
genes confers any form of selective advantage to transgenic plants in comparison to 
other varieties or in cultivated competition with comparable varieties (Al-Ahmad 
et al.  2005 ; Chapman and Burke  2006 ; Burke and Riesenberg  2007 ; Yang et al. 
 2012 ). Such information is critical to assessing the potential impact of gene fl ow. 
Introduction of a transgene may come at a metabolic cost, reducing plant fi tness 
(Tardif et al.  2006 ) and thereby reducing potential competitiveness. However, more 
direct experiments and observations to test whether transgenes will survive when 
introduced into the environment are needed. Warwick et al. ( 2007 ) generated trans-
genic sunfl owers carrying a disease resistance gene. Hybrids were then generated 
with related non-GM varieties and subjected to selection pressure (Burke and 
Riesenberg  2007 ). To be informative, measurement of fi tness under experimental 
conditions requires replication and repetition in a variety of different environments 
and conditions, and ideally should be conducted in several different genetic back-
grounds (Burke and Riesenberg  2007 ). Transgenic herbicide-tolerant oilseed rape 
has escaped from cultivation via seed spillage, presenting an opportunity to intro-
duce the tolerance to weeds, but Devos et al. ( 2012 ) have stated the trait would only 
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be amplifi ed if the herbicides to which herbicide-tolerant volunteers are tolerant 
were used routinely in the fi eld. The performance of direct fi eld plot experiments to 
measure the potential invasiveness of the GM volunteers compared to the non-GM 
parents, as has been done for insect-resistant maize (Raybould et al.  2012 ) would be 
valuable. In canola the herbicide tolerance trait did become established in weedy 
relatives in the absence of selection pressure (Dlugosch and Whitton  2008 ). 
However, in the case of the maize there was no increase in invasiveness observed 
(Raybould et al.  2012 ). Yang et al. ( 2012 ) evaluated the fi tness advantage of the  Bt  
gene in a hybrid developed between transgenic and weedy rice, concluding the fi t-
ness of insect resistance would be unlikely to spread from transgenic rice crops to 
related weeds growing nearby.   

10.5     Risk Assessment 

 Literature reviews, fi eld studies and larger scale releases will all generate informa-
tion upon which it will be possible to estimate a probability of gene fl ow and gener-
ate an estimate of the magnitude of this gene fl ow under different environmental 
conditions. As explained above, this probability will need to be placed into the 
context of conventional varieties. It is important to know whether the transgenic line 
has any characteristics that either reduce or increase the probability of gene fl ow. 
Once a probability is determined then together with the potential impact these then 
provide a basis to estimate risk. As this depends on phenotype conferred by the 
introduced gene; the phenotype or phenotypes generated by this gene or genes, the 
species, and in some cases the specifi c varieties under consideration, this assess-
ment is nearly always on a case-by-case basis. 

10.5.1     Quantifi cation of Risk 

 A variety of frameworks exist that quantify risk and uncertainty in the context of 
gene fl ow. However, such frameworks must be adapted to the precise crop/trait com-
bination under consideration, making the quantifi cation of risk complex and by 
extension imprecise. For example, more emphasis is likely to be placed on non-food 
transgenic lines compatible with food varieties of the same species (for example, 
corn) if those non-food lines produce pharmaceuticals or are designed for biofuels 
(Kausch et al.  2010 ; Wang and Brummer  2012 ). Evaluation of gene fl ow issues 
related to the production of pharmaceuticals, industrial compounds and/or biofuels 
in GM lines of non-food plant species is likely to be more focused on the possibility 
of hybridisation to related wild species. 

 As mentioned earlier, there has been signifi cant experience with commercial 
transgenic crops planted over very wide areas in North America and this has added 
to knowledge on the probability and actual extent of gene fl ow from these particular 
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plant species. However, despite provision of this observational data, most risk 
assessment processes remain qualitative, assessing risk on scales of probability (low 
to high) or impact (none to hazardous). Quantitative assessment of risk is very dif-
fi cult for a commercially transgenic crop, which will be grown in numerous envi-
ronments under climatic conditions which can not be precisely predicted. All of the 
information gathered during collection of baseline information, together with 
experimental data are used to estimate risk (refer to Gealy et al.  2007  for an over-
view). Where the probability of dispersal of the transgene is certain (Dlugosch and 
Whitton  2008 ) much more attention will need to be paid to the potential impact of 
the effect of expression of the inserted genes.  

10.5.2     Post Release Monitoring 

 Post release monitoring, which is mandatory as part of the release of certain GMOs 
and in certain territories (Pascher et al.  2011 ; Züghart et al.  2011 ) can provide useful 
information supplementing the suppositions on the rate of gene fl ow (Sanvido et al. 
 2006 ,  2007 ,  2008 ). Post release monitoring provides an opportunity to review the 
accuracy and validity of risk assessments performed prior to the release of the trans-
genics and is also essential where there exists potential for long-term impact on the 
ecosystem (Heinemann and El-Kawy  2012 ). For example, whether herbicide resis-
tance or pest resistance is likely to become integrated into the gene pool of weed 
species (Wozniak and Martinez  2011 ) or whether pests and weeds may evolve resis-
tance. Herbicide resistance as a trait, whether developed by GM technologies or 
conventional breeding or mutagenesis will quickly establish in weed populations if 
those weeds are in or adjacent to production of herbicide-tolerant varieties, and are 
so regularly subjected to selection pressure (Brule´-Babel et al.  2006 ). General sur-
veillance monitoring via fl oristic databases and vegetation surveys (Chandler et al. 
 2008 ) can be used to confi rm lack of establishment of the GMO to hybrids outside 
of cultivation. Detailed surveys directed at the borders or within the production 
areas are an ideal test environment, as this is where the probability of hybridisation 
and feral population establishment is greatest. Case-specifi c monitoring in compari-
son to general monitoring has been reviewed by    Heinemann and El-Kawy ( 2012 ). It 
is important to note that post release monitoring has so far not lead to the recall of 
any transgenic plant variety. However, the information can be useful—should the 
recall of any very widely grown product be required its removal from the environ-
ment once marketing has stopped and farmers stop growing saved seed will rely on 
the information on gene fl ow gathered during development and production to iden-
tify the mechanisms by which the gene could have dispersed. These avenues can 
then be followed to remove the genes from the environment. Continual monitoring 
is also valuable given that regulators need to evaluate the probability and risks of 
gene fl ow in the ever changing environment of an agricultural situation. The effects 
of climate change, for example, may well change the dynamics of gene fl ow in the 
future as suggested by Ziska et al. ( 2012 ).   
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10.6     Conclusions 

 In the end, because the risk assessment will always come down to a case-by-case 
basis, it is diffi cult to provide a simple and widely applicable formula which a devel-
oper or a regulator can apply to whether a particular transgenic product will pose an 
unacceptable risk. From a purely scientifi c perspective there are those that argue the 
risks associated with gene fl ow from transgenics are no different to those from non-
 GM crop varieties. Certainly, there is now enough history and a plethora of exam-
ples that show the environmental damage caused by invasive species has been more 
devastating than the introduction of transgenic crops (Pysek  2001 ; Cook and Proctor 
 2007 ). Valid questions therefore have to be asked about the inconsistency between 
the detailed evaluations afforded transgenic varieties that data and history indicate 
pose no environmental risk and the lesser evaluation afforded non-GM plants. 

 This does of course lead into the debate about whether it should be the technique 
used to develop the new variety under consideration or the phenotype itself that is 
regulated, and furthermore places under the spotlight on the lack of international 
harmonisation of regulation regarding the development, commercialization and 
release of transgenic plants. In the real world the regulatory process can not be 
divorced from politics or the marketplace and as Raybould ( 2012 ) has reviewed, 
policies towards GMOs should clearly indicate to what extent the results of scien-
tifi c research, such as that outlined in this review, will be utilised as part of the 
decision-making process. Any fi nal assessment of potential risk can sometimes 
therefore be modifi ed by policies which seek to place limits on the use of GM vari-
eties in agriculture. This presents diffi cult decisions for regulators when the proba-
bility of gene fl ow is no different from the transgenic plants than from non-GM 
varieties of the same crop and the introduced transgene is unlikely to have any 
environmental impact. An example is the potential for movement of transgenes to 
organic or conventional fi elds (Bruce  2003 ; Jones  2006 ). 

 There are examples where transgenic plants have escaped from cultivation, 
including seed dispersal in canola referenced earlier in this chapter, and in creeping 
bentgrass ( Agrostis stolonifera ), in which gene fl ow by pollen and seed has been 
documented (Baack  2006 ). It is important to note that oilseed rape has not become 
invasive outside of cultivated and roadside habitats (Devos et al.  2012 ). This may 
refl ect the fact that the potential for plants to establish outside of cultivation estab-
lishment is more a function of fi tness level, not rate of gene fl ow from the GM plants 
(Chapman and Burke  2006 ; Burke and Riesenberg  2007 ). Interestingly Ellstrand 
et al. ( 1999 ) reviewed 13 of the world’s important crops and documented that 12 of 
these 13 have hybridised with wild relatives at some stage somewhere in the world, 
suggesting that gene fl ow from widely grown transgenic crops, such as wheat 
(Brule´-Babel et al.  2006 ), may be inevitable. Such inevitability would indicate that 
risk assessment should primarily focus on the potential impacts of gene fl ow. It also 
indicates mitigation strategies are unnecessary, particularly in cases where success 
cannot be guaranteed (Chapman and Burke  2006 ). As Ellstrand ( 2006 ) has stated, 
thorough risk assessment may be the best form of containment.     
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    Abstract     A large number of bioinformatics methods have been developed in recent 
years for detecting gene transfers between distantly related or unrelated organisms. 
These have been mainly classifi ed as parametric and phylogenetic methods. While 
the former methods have been frequently invoked for detecting recent gene trans-
fers, detection of ancient gene transfers have relied upon phylogenetic methods. 
Numerous evidences emerging from the applications of these methods have fi rmly 
established interspecies gene transfer as a signifi cant force-driving prokaryotic 
genome evolution. The focus is now shifting to assessing the extent and impact of 
this mechanism in eukaryotic genome evolution. The methods developed for detect-
ing alien genes in unicellular organisms have been adapted for identifying and cata-
loging instances of gene transfers in multicellular organisms. A signifi cant interest 
is in cataloging gene transfers in plants which have more leaky barriers to gene 
transfer than highly evolved animals. We review the advances in this fi eld with a 
focus on alien gene transfer in plants and the bioinformatics methods frequently 
used to detect such transfers.  

  Keywords     HGT quantifi cation   •   Bayesian method   •   Bootstrapping   •   Phylogenetic 
tree   •   Parametric methods   •   UPGMA  
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11.1         Introduction 

 Classical genetics has traditionally focused on vertical gene transfer that has helped 
shape the “tree thinking” in explaining the evolution of extant or extinct organisms. 
Advances in genome era have brought a change in this thinking, triggered by pleth-
ora of compelling evidences emerging in support of horizontal genetic inheritance, 
particularly in the prokaryotic domain (Ochman et al.  2000 ; Koonin et al.  2001 ; 
Gogarten and Townsend  2005 ). Horizontal Gene Transfer (HGT), also referred to as 
lateral gene transfer, is the transfer of genetic material between organisms by means 
other than parent-to-offspring (vertical) inheritance (Syvanen and Kado  1998 ; 
Ochman et al.  2000 ; Koonin et al.  2001 ; Gogarten and Townsend  2005 ; Keeling and 
Palmer  2008 ). While HGT is now recognized as a potent force-driving prokaryotic 
genome evolution, a relatively better sampling of eukaryotic genomes now available 
as a consequence of DNA sequencing revolution has necessitated a reassessment of 
the extent and impact of HGT in eukaryotic genome evolution. Numerous instances 
of eukaryotic HGT events reported in recent years have further galvanized this fi eld, 
bringing the spotlight on gene fl ow among eukaryotes (Andersson  2005 ; Keeling 
and Palmer  2008 ; Sanchez  2011 ). 

 The evolutionary history of plant genomes is also replete with intracellular gene 
transfer (IGT)—the transfer of genes between organelles within a plant cell 
(Keeling and Palmer  2008 ; Bock  2010 ). Single to multiple instances of HGTs 
involving plants have been the subject of numerous recent studies and have been 
reviewed by several authors. Plants have served as both recipients and donors of 
alien genes (see Richardson and Palmer  2007 ; Keeling and Palmer  2008 ; Bock 
 2010  for comprehensive reviews on HGTs in plants). However, a comprehensive 
treatise is lacking on the methods for detecting HGTs in plants. This review is 
intended to provide the plant community an overview of the methods and protocols 
for detecting HGTs in plants. In what follows, we briefl y narrate the case studies of 
plant HGT as reported in recent articles and reviews (Bock  2010 ; Keeling and 
Palmer  2008 ) and follow this up with an elaborate description of the methodology 
for detecting HGTs in plants. 

 Plants have also integrated genomes of viruses which often act as carriers for 
foreign DNAs. Tobacco plants have been found to have Gemini viral DNAs in their 
nuclear genomes (Bejarano et al.  1996 ). Interestingly, evidences exist even of the 
transfer of viral RNA sequences into plant genomes: viral sequences likely originating 
from closteroviruses were found in the mitochondrial genome of grape (Goremykin 
et al.  2009 ); the host’s reverse transcriptase is likely to have transcribed viral RNAs 
to cDNAs thus facilitating their integration into the host genome. 

 Ralph Bock and colleagues recently designed a genetic screen to demonstrate 
plant to plant HGT (Stegemann and Bock  2009 ). Genetic engineering is a classic 
example of man-made HGT. Initially thought to be very rare, advances in genome 
sequencing and development, in parallel, of more sophisticated phylogenetic meth-
ods have helped elucidate numerous instances of natural plant–plant HGT. In most 
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cases, evidences appear to support cell to cell contact as a mechanism of transfer of 
genetic material; this has led to hypothesize that plant parasitism and natural graft-
ing are the major factors in plant–plant HGT (Bock  2010 ). Plant parasites are known 
to be both the recipients and donors of foreign DNAs mobilized via cell to cell 
contact. However, the importance of other mechanisms such as transformation 
(uptake of naked DNA), illegitimate pollination, and vector-mediated transfers may 
have been understated; this needs to be reassessed in light of new genomic data 
emerging from plant sequencing projects. 

 Perhaps due to the ability of mitochondria to fuse and recombine, mitochon-
drion‒mitochondrion HGTs are much more prevalent than plastid-initiated trans-
fers. Unlike chloroplasts, plant mitochondria contain active DNA uptake system 
(Koulintchenko et al.  2003 ; Logan  2006 ). Of the few cases of alien gene transfer 
involving chloroplast genomes, it has been argued that these transfers may actu-
ally be mediated by mitochondria and less likely be de novo chloroplast HGTs. 
A more plausible explanation for the presence of chloroplast  pvs - trnA  genic 
sequence in the mitochondrial genome of  Phaseolus  is the IGT of this sequence 
from donor’s chloroplast to its mitochondrion followed by mitochondrion to mito-
chondrion HGT (Woloszynska et al.  2004 ). The transfer of whole chloroplast 
genome by performing grafting experiments involving  Nicotiana tabacum  (donor), 
 Nicotiana glauca  (recipient), and  Nicotiana benthamiana  (recipient) has been 
demonstrated recently (Stegemann et al.  2012 ). This study thus provides a strong 
case for natural grafting as a possible mechanism for chloroplast transfer among 
plant species. 

 Nuclear genes are also not immune to plant–plant HGT. HGT of a transposon, 
MULE (Mu-like elements), involving nuclear genomes of  Setaria  and  Oryza , could 
be an example of vector-mediated nuclear HGT (Diao et al.  2006 ). A just published 
study on the evolution of C 4  photosynthesis trait in the grass lineage  Alloteropsis  
implicates plant–plant nuclear HGT involving donors from the C 4  lineage that 
diverged from  Alloteropsis  more than 20 million years ago (Christin et al.  2012 ). 

 The horizontal acquisition of alien DNAs is not restricted to a single gene or 
multiple genes but may even involve fragments of genes. A few cases of horizontal 
intron transfer in plants have been reported:  Peperomia polybotrya , a basal angio-
sperm, has integrated an intron from a fungal donor into its mitochondrial  cox1  
gene (Vaughn et al.  1995 ); another example is a self-splicing intron likely originat-
ing from a cyanobacterium found in the  psbA  gene of the alga  Euglena myxocylin-
dracea  (Sheveleva and Hallick  2004 ). Won and Renner provided an striking 
example of plant to plant horizontal intron transfer: the intron 2 belonging to group 
II introns along with its fl anking exons from the mitochondrial gene  nad1 of an 
asteroid (angiosperm) was transferred to Gnetum (gymnosperms) 2–5 million year 
ago (Won and Renner  2003 ). An interesting case is of the  rps11  gene in the mito-
chondrial genome of  Sanguinaria , an eudicot; this gene has a chimeric structure 
with its 3′ half acquired from a monocot (Bergthorsson et al.  2003 ; Richardson and 
Palmer  2007 ).  
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11.2     Mechanisms of HGT 

 Although cell to cell contact has been the most cited mechanism of gene transfer in 
plants, the contributions of other mechanisms including transformation and trans-
duction might have remained underestimated. Plants can acquire alien DNAs via all 
the three basic mechanisms reported for gene transfer among prokaryotes (Ochman 
et al.  2000 ). 

11.2.1     Transformation 

 Through this mechanism, a recipient cell can take in naked DNA directly from the 
environment. Although a common mechanism for gene transfer among bacteria, 
this is less common among eukaryotes. Short DNA fragments can be readily trans-
ferred using this mechanism.  

11.2.2     Conjugation 

 Conjugation requires the physical contact of donor and recipient cells and the trans-
fer is mediated through plasmids. This process can facilitate transfer of genetic 
material between distantly related organisms, and by its very nature, conjugation 
can move large fragments of DNAs.  

11.2.3     Transduction 

 In transduction, the transfer of genetic material is mediated through bacteriophages 
which package alien DNAs from a donor cell and inject it into a recipient cell during 
infection. The amount of transferred DNAs is limited by the size of phage. 

 However, there are several barriers to HGT, which help to protect the recipient 
organism from deleterious effects by maintaining the integrity of the host genome 
(Kurland et al.  2003 ; Kurland  2005 ; Thomas and Nielsen  2005 ). These barriers 
include physiological state of donor and recipient cell, adaptability of the incoming 
DNA into a recipient cell, surface exclusion for the plasmid-mediated transfers, 
cleavage of foreign DNA by recipient’s restriction system, hindrance to plasmid 
replication within recipient cell, successful integration into host genome, and the 
likelihood of acquired gene’s expression within the recipient system. An under-
standing of these barriers will help advance the fi eld of genetic engineering, the 
artifi cial counterpart of natural HGT, which has become an important tool to secure 
a desired phenotype by augmenting the physiological repertoire of an organism 
through gene transfer.   
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11.3     Quantifying HGT 

 The prevalence and signifi cance of HGT has necessitated the development of novel 
methodologies for robust quantifi cation of horizontal gene fl ow. Detection of HGT 
is often confounded by many factors and no single method is capable of addressing 
this problem. Therefore, several complementary approaches have been proposed, 
and a combination of disparate approaches appears to address the detection of HGT 
more convincingly (Azad and Lawrence  2012 ). The extent and impact of HGT in 
plants have not been realized until recently, mainly due to lack of sequenced 
genomes of close relatives of a species of interest, and also because of the limitation 
of experimental methods frequently invoked by plant biologists in cataloging gene 
transfer events. Post genome sequencing revolution, detection of alien genes has 
come to rely upon computational methods which can assess, on a genome-wide 
scale, the extent and consequence of HGT in plant evolution. Several computational 
methods have been developed to detect horizontally transferred genes, which can be 
categorized into two types: phylogenetic methods and parametric methods (some-
times also called composition based or surrogate methods) (Azad and Lawrence 
 2012 ). While the former methods have almost always been invoked in detecting 
alien genes in plants, the latter methods have not yet been seriously explored for 
assessing gene transfer among eukaryotes. We discuss below the principles underlying 
both approaches, and the different questions or hypothesis they test to infer alien 
genes in a given genome.  

11.4     Phylogenetic Methods for Alien Gene Detection 

 This class of methods is focused on detecting aberrant phylogenetic patterns, that is, 
the gene relationships that differ signifi cantly from the canonical organismal 
phylogeny (Beiko and Hamilton  2006 ; Poptsova  2009 ). Phylogenetic methods, as 
the name suggests, infer relationships by constructing phylogenetic trees based on 
complex morphological features or nucleotide sequences of genes. This is perhaps 
the most commonly used approach for detecting HGT in eukaryotes including 
plants (Keeling and Palmer  2008 ). HGT is primarily inferred by detecting discrep-
ancies in the phylogenetic tree of orthologous genes when compared to species tree 
which represents the overall phylogenetic relationships among all considered 
species. The requirement of presence of homologues of a gene in  all  genomes of 
interest limits the applicability of phylogenetic tree-based methods; complementary 
phylogenetic methods that do not explicitly require building trees in order to infer 
alien genes have also been developed. We summarize below the frequently invoked 
phylogenetic approaches for alien gene detection. 
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11.4.1     Phylogenetic Tree 

 To construct a phylogenetic tree representing relationships among organisms, highly 
conserved molecular sequences of DNA, RNA, or protein molecules that have 
evolved slowly yet engendered subtle differences to reliably compare taxa over 
large evolutionary distances have been used. A frequently used phylogenetic 
marker, initially proposed by Woese and colleagues, is the nucleotide sequence of 
16S small subunit ribosomal RNA gene which has primarily been relied upon for 
inferring organismal phylogeny (Woese et al.  1990 ; Woese  1991 ; Olsen and Woese 
 1993 ). However, organismal phylogenies inferred from other conserved sequences 
differ among themselves and from ribosomal RNA phylogeny (Hilario and Gogarten 
 1993 ; Brown et al.  1994 ; Gogarten  1995 ; Nesbo et al.  2001 ; Poptsova  2009 ). This 
has led to developing other strategies for extracting a reliable species or organismal 
tree from molecular sequence data. One approach is to fi nd a consensus from orthol-
ogous gene trees. Variants of consensus methods include strict consensus, majority-
rule consensus (Day and McMorris  1992 ; Dong et al.  2010 ), Adams consensus 
(Adams  1972 ), and super tree consensus methods (Bininda-Emonds and Sanderson 
 2001 ; Eulenstein et al.  2004 ; Bininda-Emonds  2005 ; Nguyen et al.  2012 ; Swenson 
et al.  2012 ). This is based on the premise that a majority of genes are acquired verti-
cally and therefore the phylogenetic signal representing vertical inheritance can be 
reconciled to an acceptable degree of confi dence from the orthologous gene trees. 
Another approach to infer species tree is based on concatenation of orthologous 
gene alignments (Wolf et al.  2002 ), referred to as super matrix approach (Lapierre 
et al.  2012 ). Both super tree and super matrix methods are used frequently. A recent 
study used genome simulations to assess the accuracy of these methods in recover-
ing species tree when subjected to HGT (Lapierre et al.  2012 ). The methods were 
found sensitive to the amount of HGT. The super matrix approach performed better 
for low amount of HGT, while the super tree approach was more accurate for mod-
erate amount of HGT. Any prior information on the frequencies of HGT in the 
evolution of organisms of interest could thus help in selecting the most appropriate 
method. The species tree thus obtained represents the null hypothesis that there was 
no HGT in the history of orthologous genes. If a gene tree deviates signifi cantly 
from species tree, this indicates an HGT in the history of this gene. One major advan-
tage of this approach is that the likely scenarios of horizontal gene fl ow are assessed 
directly and the direction of gene fl ow determined unambiguously, thus identifying 
the recipient and donor organisms involved in gene transfer. Because of this attri-
bute, phylogenetic tree methods have been often invoked to infer roadmap of gene 
transfers. There are fi ve steps to phylogenetic tree construction: 

11.4.1.1     Identify Orthologues of a Gene of Interest 

 Identifi cation of homologues of a gene diverging following speciation events, 
namely, the orthologues, is the fi rst step in phylogenetic gene tree construction. 
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Given a set of genes, one can use all against all BLAST similarity search (Altschul 
et al.  1990 ) to identify reciprocal best hits within the set followed by elimination of 
paralogous genes (homologous as a consequence of gene duplication). There are 
databases of orthologous genes that one can also use such as Clusters of Orthologous 
Groups (COGs) (Tatusov et al.  2000 ), OrthoMCL-DB (Chen et al.  2006 ), and 
MultiParanoid (Alexeyenko et al.  2006 ). NCBI’s HomoloGene is a useful reposi-
tory (  http://www.ncbi.nlm.nih.gov/homologene    ) for eukaryotic orthologues and 
paralogues.  

11.4.1.2     Perform a Multiple Sequence Alignment of Gene Orthologues 

 Dynamic programming methods as well as heuristic methods have been developed 
for multiple sequence alignment of members of gene or protein families. Programs 
based on progressive alignment methods such as ClustalW (Thompson et al.  2002 ) 
and MUSCLE (Edgar  2004 ) use a guide tree to perform multiple sequence align-
ment, progressively assembling most similar pair of sequences into a multiple align-
ment. Iterative refi nement methods refi ne the progressive alignment by recursively 
aligning a sequence to the rest of the sequences in the progressive alignment. This 
is repeated for each sequence in the alignment or until the convergence of the align-
ment score (Durbin et al.  1998 ). Popular programs implementing iterative refi ne-
ment include (Katoh et al.  2009 ), INTERALIGN (Pible et al.  2005 ) and PRALINE 
(Simossis and Heringa  2003 ,  2005 ). Probabilistic models, namely, the profi le hid-
den Markov models, have been used in the consistency-based methods to achieve 
greater accuracy in alignment (e.g., the ProbCons program) (Do et al.  2005 ).  

11.4.1.3     Select an Evolutionary Model of Nucleotide/Amino 
Acid Substitution 

 A simple approach to measure differences between two sequences in an alignment 
is to count the alignment positions where the residues (nucleotides or amino acids) 
differ and divide this difference by the alignment length. More sophisticated substi-
tution models include the Jukes-Cantor model and Kimura 2- or 3-parameter model 
(Durbin et al.  1998 ).  

11.4.1.4     Use One of the Tree Construction Methods 

 The fi ve tree construction methods are classifi ed as distance-based methods 
(UPGMA and neighbor-joining), character-based methods (maximum parsimony), 
and model-based methods (maximum likelihood and Bayesian) (Durbin et al.  1998 ; 
Pevsner  2003 ). Distance-based methods use a distance measure to perform pair- 
wise comparison of DNA or protein sequences. This way two sequences with least 
nucleotide or amino acid changes observed in their alignment form the fi rst two 
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sister branches of the phylogenetic tree, joining at a node representing their common 
ancestor. This process is repeated recursively to generate other branches and ances-
tral nodes of the tree. In contrast, character-based methods process the information 
within multiple sequence alignment all at once; maximum parsimony approach 
accomplishes this by evaluating the likely scenarios in evolution giving rise to varia-
tions in characters (nucleotides or amino acids) at the informative sites of multiple 
sequence alignment. The tree postulating relationship among given taxa with mini-
mal number of character variations or mutations is the most parsimonious explana-
tion of relationship among taxa and is therefore considered the optimal tree given 
the sequence data. The maximum likelihood methods are based on the premise that 
the most likely tree representing the given data is the one that maximizes the likeli-
hood of generating the observed data. Here, all possible trees with different topolo-
gies and branch lengths are explored in order to fi nd the optimal tree representing 
the evolutionary history of the given sequence data. Unlike maximum parsimony 
which requires counting of nucleotide or amino acid substitutions, maximum likeli-
hood associates probability to each evolutionary event and so requires specifying 
probabilistic evolutionary models. Bayesian methods are similar in spirit to the 
maximum likelihood methods, searching for most probable tree given the data; 
however, the optimal tree is now inferred from the posterior distribution of trees 
computed via Markov Chain Monte Carlo (MCMC) (Gelman and Rubin  1996 ) 
simulations. Bayesian methods add the fl exibility to incorporate prior information 
about the model (tree parameters, etc.). The above approaches have been imple-
mented in different software programs such as PHYLIP (distance based, maximum 
parsimony, maximum likelihood) (Felsenstein  1989 ), PAUP (maximum parsimony) 
(Swofford  1998 ), TREE-PUZZLE (maximum likelihood) (Schmidt et al.  2002 ; 
Schmidt and von Haeseler  2007 ), and MrBayes (Bayesian) (Huelsenbeck and 
Ronquist  2001 ).  

11.4.1.5     Evaluate Trees Using Bootstrapping 

 Bootstrapping methods are used to assess confi dence over the branching patterns of 
a tree topology (Efron et al.  1996 ; Durbin et al.  1998 ). Each node with bifurcating 
or multi-furcating branches is given a confi dence score as follows. Columns from a 
multiple sequence alignment are selected randomly and with replacement in order 
to construct a random replicate of the original alignment. Confi dence on a clade in 
a tree is obtained as the proportion of times that clade appears in the random 
replicates of the tree. 

 The next step in this sequence of protocols is to assess the gene tree against the 
background (organismal) tree. Likelihood-based methods such as Shimodaira- 
Hasegawa (S-H) (Shimodaira and Hasegawa  1999 ), Kishino-Hasegawa (K-H) 
(Kishino and Hasegawa  1989 ), and Approximately Unbiased (AU) tests (Shimodaira 
 2002 ) are frequently used for this purpose. These tests allow testing the null hypoth-
esis that a gene tree is similar to the organismal tree; if the  p -value for the likelihood 
statistics is less than a signifi cance threshold (typically 0.05 or less), the null 
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hypothesis is rejected thus inferring HGT in the evolutionary history of the gene. 
The other approach is to compute Robinson-Foulds (R-F) distance (Robinson and 
Foulds  1981 ) between gene tree and species tree, which is essentially the minimum 
number of operations required to transform a gene tree into a species tree. Assuming 
most genes in an organism to have been vertically inherited, a signifi cant deviation 
from the mean of R-F distances between gene trees and species tree is an indicator 
of HGT. Similar in spirit to R-F distance is the sub-tree prune-and-graft (SPR) dis-
tance (Swofford and Olsen  1990 ), which is equivalent to minimum number of rear-
rangements required to change the topology of a gene tree to that of the species tree. 

 A nontrivial issue in alien gene detection is the fi delity of the phylogenetic meth-
ods. To assess the phylogenetic methods, one must have orthologous gene sets with 
no history of HGT (the “null” datasets for estimating the false-positive rate) and 
orthologous gene sets with history of HGT (for estimating false-negative rate). 
Since evolutionary events are often diffi cult to validate, alternative approaches have 
been developed to construct test datasets. One approach is based on absolute con-
sensus; if none of the phylogenetic methods fi nd a support for HGT in the history of 
orthologous genes, the set of such genes defi nes the “backbone” signifying vertical 
inheritance. Gene transfers could be simulated within the same dataset to construct 
a set of genes with one or more HGT events happening in the course of their evolu-
tion. The power of a phylogenetic method could thus be assessed on these datasets. 
The other approach is to simulate species evolution. Evolsimulator (Beiko and 
Charlebois  2007 ) starts with a set of genes in an ancestral genome which is evolved 
through speciation and other evolutionary processes sans the HGT. This gives sets 
of orthologous genes that have evolved vertically and therefore could be used for 
estimating the false-positive rate. One can also simulate HGT in the history of 
orthologous genes and this data could be used for estimating false-negative rate. 

 Keeling and Palmer ( 2008 ) elucidated six likely scenarios of gene transfer which 
include (1) duplicative transfer, where the recipient genome retains both the hori-
zontally acquired and original copies of a homologous gene, (2) recent homologous 
replacement where a gene transfer event between extant organisms results in 
replacement of the recipient’s gene by a homologous copy from a distantly related 
donor, (3) ancient homologous replacement where the homologous gene replacement 
involves ancestors of different lineages, (4) duplicative transfer with differential 
loss where the lineage-specifi c gene losses follow the gene transfer event, (5) 
sequential transfer where the same gene gets transferred more than once to different 
lineages, and (6) new gene transfer where a gene of recent origin in a lineage gets 
transferred to another lineage with no history of this gene via illegitimate recombi-
nation (Fig.  11.1 ). Phylogenetic methods are thus subjected to different sets of 
challenges arising from different scenarios of gene transfer, and the differential 
gene loss, in particular, has a deeper confounding effect on deciphering HGT.

   In addition to lineage-specifi c gene loss, other confounding factors in HGT 
detection via tree building include biased mutation rates, improper clade selection, 
long branch length attraction, and segregation of paralogues (Kurland et al.  2003 ; 
Kurland  2005 ). Further, the phylogenetic HGT prediction is only as good as the 
consensus organismal tree which is hard to reconcile despite recent advances. 
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Perhaps one of the biggest bottlenecks is determining the phylogeny of “orphan” 
genes (those lacking homologues in the database). It is plausible that many orphan 
genes might have arrived horizontally; however, due to the absence of their ortho-
logues, phylogenetic methods cannot be applied to detect orphan gene transfer. 
Despite these shortcomings, phylogenetic methods are considered most reliable in 
inferring ancient gene transfer.   

11.4.2     Unusual Phyletic Pattern 

 Phylogenetic tree methods may lead to confounding interpretation as discussed 
above. At the same time, comparative genomics provide alternative routes to avoid 
the vagaries of the tree methods. This approach examines the genomes of closely 
related organisms for the presence of unusual phyletic pattern (Lander et al.  2001 ; 
Gophna et al.  2006 ; Vernikos and Parkhill  2008 ; Arvey et al.  2009 ). If a gene is 
present in the genome of an organism but absent in the genomes of closely related 
organisms, it is likely to have been acquired horizontally. This approach is now 
receiving greater acceptance due to more reliable sampling of closely related genomes. 

  Fig. 11.1    Incongruent gene phylogenies as a consequence of different kinds of gene transfers 
(Keeling and Palmer  2008 ; Reprinted by permission from Nature Publishing Group: Nature 
Reviews Genetics)       
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However, this approach is also not free from caveats. The unusual phyletic pattern 
may be a consequence of lineage-specifi c gene loss than a gene gain. Further, the 
gene of interest may actually be a paralogue that has diverged following the duplica-
tion event and therefore does not appear to reside in the closely related genomes. 
Incomplete genome or the loss of original gene copy complicates the verifi cation of 
this hypothesis. Another caveat is that the gene displaying unusual pattern might be 
evolving rapidly, due to selective pressure resulting in unusually high substitution 
rate. This could occur either in the gene of interest or in the orthologues of this gene 
in the related genomes. Frequent gene or genome rearrangement and the require-
ment of multiple strains of closely related species potentially limit the applicability 
of this approach to lineages or clades with good sampling of completely sequenced 
genomes. Further, the arbitrary choice of phylogenetic distance to defi ne close or 
distant relationship renders this approach susceptible to incorrect interpretations.  

11.4.3     Similar Genes in Distant Lineages 

 Pairwise sequence similarity methods such as BLAST are used to fi nd genes with 
unusually high degree of similarity in otherwise distant lineages (Aravind et al. 
 1998 ; Nelson et al.  1999 ; Lander et al.  2001 ; Armbrust et al.  2004 ). Many interdo-
main gene transfers were reported through this approach. For example, if a gene in 
a plant appears more similar to bacterial genes than plant genes, this presents an 
evidence of transfer of this gene from a bacterial genome to a plant genome. Note 
that such transfers are easier to detect due to large evolutionary distance between 
donor and recipient organisms, and thus much stronger phylogenetic signal to 
resolve in order to infer gene transfer events. Although relatively rare, interdomain 
transfers have contributed signifi cantly to shaping the evolution of extant organ-
isms. Such transfer events have been documented as important players in evolution-
ary and ecological processes such as host-parasite interaction. However, these 
methods are also not immune to the vagaries of the comparative approaches. 
Perhaps, they are highly vulnerable to misinterpretation, and a well-known example 
comes from the human genome project which reported hundreds of bacterial genes 
in human genome (Lander et al.  2001 ) but was strongly refuted by subsequent 
 studies (Salzberg et al.  2001 ; Stanhope et al.  2001 ). Therefore, one needs to care-
fully weigh the caveats including high conservation of the gene of interest coupled 
with the likely scenario of its differential loss in certain lineages, and also the feasi-
bility of convergent evolution contributing this non-concordance before inferring 
HGT using this approach. Despite its inherent limitations, this approach is still used 
frequently but in conjunction with other approaches to add confi dence over predic-
tions (Richards et al.  2009 ).  
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11.4.4     Phylogenetic Methods and Their Inferences: Most 
Comprehensive yet Most Confounding 

 The scope and advantages of phylogenetic methods arise from their inherent ability 
to construct a roadmap of gene transfer, identifying both the recipient and donor 
organisms as well as the paths of gene fl ow. However, the just discussed other likely 
scenarios that may also explain the observed pattern could be sometimes over-
whelming and it is often nontrivial to assign probabilities to each of the alternative 
scenarios let alone unambiguously rule out the rest in favor of one. By the very 
nature of their design, the success of these methods solely depends on the breadth 
and depth of sequence database. Given the sheer complexity and sophistications 
involved in tree making, quantifying horizontal gene fl ow at genome scale could be 
diffi cult. Although alternative approaches have been developed to make this task 
computationally less intensive, for example, by prioritizing genes that are more 
likely to have evolved via HGT, but this issue still remains at the core of phyloge-
netic limitations (Beiko and Hamilton  2006 ; Beiko and Ragan  2008 ,  2009 ). 

 In order to catalog plant–fungi HGT, Richards et al. ( 2009 ) recently proposed a 
pipeline that excluded a large proportion of plant genes from further downstream 
phylogenetic tree analysis; only those plant genes showing the greatest similarity to 
fungal genes (excluding other plant genes) were selected for phylogenetic tree anal-
ysis. Although HGT quantifi cation becomes much faster and applicable genome- 
wide, this approach is biased towards detecting recent gene transfers from distinct 
lineages. Another attempt to address this problem culminated in the development of 
Effi cient Evaluation of Edit Paths (EEEP) method (Beiko and Hamilton  2006 ), 
however, the computer memory still remained a limiting factor, and further it is hard 
to resolve the equally parsimonious edit paths and the direction of gene transfer. 

 Consensus-based methods have been developed to infer an organismal tree, how-
ever, since the HGT prediction methods are highly sensitive to heuristically derived 
organismal tree, any error in extracting the consensus phylogenetic signal would 
have a profound negative effect on the reliability of inference on all genes being 
tested for HGT hypothesis.   

11.5     Parametric Methods for Alien Gene Detection 

 This class of methods is based on the premise that an alien gene having evolved in 
a different (donor) genomic context appears compositionally distinct in the recipi-
ent genome context, and could therefore be identifi ed by measuring the composi-
tional disparities against the recipient genome background. Note that ancient 
transfers are diffi cult to detect using parametric methods as these alien genes, 
constrained by recipient’s mutation-selection pressure, may have their composition 
ameliorated to that of the recipient genome (Lawrence and Ochman  1997 ). However, 
since most acquired genes are lost over the course of evolution, the repertoire of 
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alien genes in a genome is replete with recently acquired genes. And, therefore, 
parametric methods have often been invoked to assess the scale and impact of recent 
gene transfers, particularly, among the microbes (Lawrence and Ochman  1998 ; 
Ochman et al.  2000 ). These methods have sparingly been used for detecting HGT 
in plants, partly because most remarkable developments in parametric alien gene 
detection have happened only recently (Arvey et al.  2009 ; Azad and Lawrence 
 2011 ,  2012 ). The earlier parametric methods used simpler discrimination criteria 
such as G + C compositional bias to identify alien genes (Lawrence and Ochman 
 1998 ); more recent parametric methods have much greater sophistication and have 
shown consistently high performance in detecting bacterial gene transfer (Vernikos 
and Parkhill  2006 ; Azad and Lawrence  2007 ,  2011 ; Arvey et al.  2009 ; Azad and 
Li  2013 ). Many of these recent methods hold the promise to robustly quantify the 
horizontal gene fl ow among eukaryotes. Since these methods are computationally 
less intensive and amenable to genome scale analysis, their adaptation for detecting 
gene transfers in plants will signifi cantly advance our understanding of plant evolu-
tion via HGT. 

11.5.1     Bottom Up Parametric Methods 

 These methods perform gene-by-gene analysis to classify each gene as either native 
or alien (see, for example, Lawrence and Ochman  1998 ; Garcia-Vallve et al.  2000 ). 
Alternatively, without gene information, one can move a fi xed size window along a 
genome sequence and assess the compositional character of the region within the 
window (Karlin  1998 ). The bottom up methods can be further categorized as clustering 
and non-clustering methods. 

11.5.1.1     Gene Clustering Methods 

 The fundamental principle underlying gene clustering methods is that the genes that 
have evolved under similar evolutionary constraints appear similar to each other and 
thus could be grouped together and discriminated against other groups having simi-
lar genes. Since majority of the genes in a genome are ancestral or native genes, the 
largest cluster of genes correspond to the genome backbone and all other smaller 
clusters harbor similar genes that are likely arising from different donor sources. A 
popular approach to group similar genes is to fi rst randomly assort given genes into 
 k  number of clusters, and then compute the cluster center (represents the mean of 
the sequence properties, e.g., nucleotide frequencies, in a cluster) of each cluster, 
followed by reassignment of genes to the clusters with closest cluster center. This 
process is repeated until convergence, that is, further reassignment will result in the 
same cluster confi guration. Variants of  k -means clustering procedure were used for 
grouping genes with similar compositional pattern in earlier studies (Médigue et al. 
 1991 ; Hayes and Borodovsky  1998 ). One serious limitation of this approach is that 
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one has to specify a priori the number of clusters (value of  k ) which is often 
unknown for the given data. For identifying alien genes, a naïvely chosen value of  k  
(e.g.,  k  = 2) may result in high misclassifi cation errors (Azad and Lawrence  2005 ). 
To address this problem, Azad and Lawrence ( 2007 ) developed a gene clustering 
method that identifi es the number of clusters inherent to genome heterogeneity in a 
hypothesis testing framework. Beginning with single gene clusters, a hierarchical 
agglomerative clustering procedure allows to group recursively two most similar 
gene clusters. This recursion is halted when the difference between gene clusters in 
any cluster pair becomes signifi cantly large. The largest cluster is identifi ed as 
native and the remaining smaller clusters as alien. While this procedure reduced the 
misclassifi cation errors signifi cantly in comparison to other methods, combining it 
with biological information such as gene context information for reassigning the 
compositionally ambiguous genes further reduced the misclassifi cation errors 
(Azad and Lawrence  2007 ).  

11.5.1.2     Non-clustering Methods 

 Since a large majority of genes in a typical genome are ancestral, the genome 
composition (average over all genes) is often taken to represent the composition of 
ancestral genes. One can thus infer alien genes by assessing the compositional 
atypicality of a gene against the genome background. Most parametric methods are 
based on this premise yet they test different hypothesis and thus often lead to non- 
convergent predictions (Ragan  2001 ; Lawrence and Ochman  2002 ). The most simple, 
and perhaps most used, among these methods, is to measure the discrepancies in 
nucleotide composition of a gene vis-à-vis the whole genome. Lawrence and 
Ochman ( 1998 ) proposed that if the G + C composition at fi rst and third codon posi-
tion of a gene deviates signifi cantly from the respective means for all genes, the 
gene in question is likely an alien gene. Karlin ( 1998 ) went a step further, suggest-
ing that the dinucleotide compositional bias is a stronger indicator of atypicality, 
perhaps inspired by the dinucleotide compositional differences he observed in pair-
wise comparison of genomes of different species, which led him to propose that 
dinucleotide composition represents genomic signature, and thus could be exploited 
to detect alien genes which exemplify genomic signatures of donor organisms and 
so appear distinct from recipient organism’s genomic signature. More recent 
studies suggest that higher order  k -mers carry greater discriminative power and thus 
can potentially improve alien detection (Tsirigos and Rigoutsos  2005a ). Design-
Island (Chatterjee et al.  2008 ) and a chaos game representation-based method 
(Deschavanne et al.  1999 ; Dufraigne et al.  2005 ) were developed for exploiting the 
power of tetra-nucleotide compositional bias in alien gene detection. Advantages of 
higher order  k -mers include the utilization of codon usage information lying within 
trimers or longer oligomers ( k  > 3), and better predictive abilities encoded within 
nucleotide ordering patterns arising as a consequence of differential evolutionary 
forces acting upon genomes of different organisms. Nakamura et al. ( 2004 ) used 
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hexamer frequency as a discriminant criterion in a Bayesian formalism, Horizontal 
Transfer Index, to catalog alien genes in bacterial genomes. Another Bayesian 
approach, the naïve Bayesian classifi er, also used oligomer frequencies to compute 
the a posteriori probability of a genomic segment to be originating from one of the 
possible donor sources (Sandberg et al.  2001 ). However, there is a caveat to the 
usage of higher order  k -mers: longer oligomers carry greater predictive ability only 
if there is a good sampling (recurrence) of longer oligomers in the data. For exam-
ple, a hexamer, which does not occur frequently enough in the data, cannot be used 
to predict the nucleotide that just succeeds this hexamer in a DNA sequence. This 
issue could be circumvented to an extent by using a variable length  k -mer model, 
also called interpolated Markov model (Salzberg et al.  1998 ; Azad and Borodovsky 
 2004 ), which was implemented in the IVOM  a . k . a . Alien Hunter program (Vernikos 
and Parkhill  2006 ). Another critical aspect of this class of methods is the choice of 
measure or model framework for assessing the compositional difference between 
DNA sequences of interest. Arvey et al. ( 2009 ) have shown that an entropy-based 
measure outperforms a covariance-based measure (Tsirigos and Rigoutsos  2005a ) 
even when the former uses just the nucleotide composition while the latter uses its 
“optimal” octanucleotide composition as the discriminate criterion. The octanu-
cleotide compositional bias was also exploited in a Support Vector Machine frame-
work (Tsirigos and Rigoutsos  2005b ), a frequently invoked supervised learning 
procedure used successfully in solving a range of biological problems, e.g., dis-
ease forecasting (Kaundal et al.  2006 ), subcellular localization prediction (Kaundal 
and Raghava  2009 ; Kaundal et al.  2010 ). Though the octanucleotide composition 
approach was outperformed by other methods that used dinucleotide composition 
in a model selection framework or codon usage in a hypothesis testing framework 
(Azad and Lawrence  2007 ). Note that where the gene information is available, one 
can use codon usage information to exploit the atypical codon usage biases of 
alien genes. This was implemented in methods by Karlin ( 1998 ), and Azad and 
Lawrence ( 2007 ).   

11.5.2     Top Down Parametric Methods 

 While bottom up parametric methods robustly classify the strongly typical and atyp-
ical genes,  all  bottom up methods have diffi culty in classifying compositionally 
ambiguous genes. Given that genes often arrive  en masse , with tens to hundreds 
acquired in a single transfer event, misclassifi cation of compositionally ambiguous 
genes in these alien gene islands (also, genomic islands) will lead to overestimation 
of gene transfer events. Consequently, it will lead to a fragmented structure of oth-
erwise large genome islands. To address this problem, Azad and Lawrence ( 2011 ) 
have recently suggested the use of gene context and operon structural information 
embedded within the genome of an organism to classify compositionally ambiguous 
genes in a multiple threshold model framework. However, a robust identifi cation of 
large acquired regions with dozens of alien genes requires a different approach that 
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separate in this particular case can not just simultaneously analyze multiple genes 
within an acquired region but be able to do so without regard to gene information 
and thus predict island boundaries more precisely, which can even lie in non-genic 
regions. Arvey et al. ( 2009 ) have shown that this can be realized in a top down 
framework. They used a recursive segmentation procedure to divide a given genome 
sequence recursively into compositionally homogeneous regions within a hypothe-
sis framework. If a homogeneous segment thus obtained was found suffi ciently 
atypical vis-à-vis the genome composition, it was labeled alien. As a consequence, 
all genes—whether strongly, moderately, or weakly atypical—harbored by this seg-
ment, were labeled alien. This class of methods, having demonstrated their power in 
delineating genomic islands in bacterial genomes, holds a great promise in deci-
phering large acquired regions in eukaryotic genomes, including genomic islands in 
plant genomes, where often the gene annotation is incomplete or unavailable.  

11.5.3     Parametric Methods and Their Inferences 

 Parametric methods are becoming increasingly popular because of their simplicity, 
genome-wide applicability, interpretability, and ease in their implementation. One 
of the biggest advantages of this class of methods is that these methods do not 
require multiple related (or sometimes, unrelated) genomes to infer alien genes. The 
sole input is the genome of an organism (either the whole genome sequence or the 
sequences of all genes). Alien genes are identifi ed without regard to the presence or 
absence of their homologues in the genomes of other organisms. However, these 
methods often generate non-convergent results, which is perhaps because of their 
testing different hypotheses for being alien (Lawrence and Ochman  2002 ). Azad 
and Lawrence ( 2005 ) have argued that this is rather a strength than a weakness, for 
this offers an opportunity to combine the complementary strengths of different para-
metric methods. To buttress this claim, they combined the predictions from two 
methods, one using dinucleotide composition and the other using codon usage bias 
as discriminant criterion, and showed that a simple union of predictions at conserva-
tive thresholds signifi cantly minimizes both Type I and Type II errors of misclassi-
fi cation (Azad and Lawrence  2005 ). Though both, bottom up and top down 
parametric methods, were designed for different purposes, integration of the two 
disparate methods will augment the power in delineating and characterizing the 
compositionally aberrant regions (Arvey et al.  2009 ; Azad and Lawrence  2012 ). 

 Like phylogenetic methods, which suffer from the vagaries related to consensus 
phylogenetic signals, the performance of bottom up parametric methods is also a 
function of consensus signal. Often the whole genome composition is assumed to 
represent the “native” parametric signal; however, this assumption would be severely 
violated for genomes that have undergone rampant gene transfers. In contrast, bot-
tom up hierarchical clustering methods do not suffer from this limitation. Other 
caveats include the failure to detect HGT among phylogenetically similar organisms 
(for example, transfer between  E .  coli  and  S .  enterica ) and false predictions of 
 otherwise differentially evolving native genes.   
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11.6     Conclusions 

 A survey of the recent developments in quantifying HGT in plants highlights the 
importance of gene transfer in plant genome evolution. It was not long ago that 
HGT was perceived extremely rare in higher eukaryotes (unlike microbes that swap 
genetic material frequently among themselves), but this long-held perception has 
now come into question due to emergence of numerous evidences supporting HGT 
in eukaryotes, and particularly bolstered by a plethora of plant HGTs reported in 
recent years. This has infused renewed interest and enthusiasm in the fi eld. There 
are bottlenecks that must be addressed; this includes the tendency to fi lter bacterial 
DNAs if any during eukaryotic genome assembly, and more importantly, confl icting 
predictions generated by different methods. Integrative approaches to reconcile 
confl icting signals have remained elusive despite forceful arguments put forward in 
support of this (Arvey et al.  2009 ). Parametric methods have come a long way, and 
with the inclusion of more sophisticated, top down methods in parametric repertoire 
(Arvey et al.  2009 ), time is just ripe to exploit the power of these methods, which 
has, rather surprisingly, been overlooked for alien gene detection in plants. Future 
strategies should focus on integration of phylogenetic and parametric methods for 
robustly cataloging both ancient and recent gene transfers in the evolutionary his-
tory of plants.     
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    Abstract     Alien genes have contributed several traits in the crop plants which are 
not available in the cultivated background. These have helped plant breeders in 
creating newer genetic diversity, thereby providing additional avenues of selection 
of better plant types. Vertical and horizontal transfer of alien genes has changed the 
fate of several crops by imparting resistance to diseases and insect–pests, tolerance 
to abiotic stresses such as salinity, water stress, and high temperature as well as 
improving quality. However, alien gene transfer is always not so easy and smooth as 
it appears from the successful examples of such transfers with massive effects in 
some crops, especially cereals. Several challenges such as pre- and post-fertilization 
barriers in distant crosses, problems in normal chromosome pairing, linkage drag, 
pleiotropic effects and role of recipient genome background on the expression of 
introgressed alien gene(s) in HGT and erratic regeneration protocols, diffi culty in 
isolation of genes from wild species and their expression in recipient plants, and 
possibilities of gene fl ow from cultivated to wild types pose signifi cant challenges 
to make alien gene transfer a routine process across all crop species. Nevertheless, 
refi nements in various gene transfer technologies have led to generation of tremen-
dous opportunities which provide newer means to obtain successful alien gene 
transfer in even those species which were earlier considered to be either recalcitrant 
to tissue culture or were considered as diffi cult. This chapter discusses in detail vari-
ous challenges and opportunities associated with alien gene transfer in crop plants.  
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12.1         Introduction 

 The infl uence of alien gene transfer on the way the fate of a crop can be changed 
was fi rst demonstrated as early as in 1956 when a small segment from  Aegilops 
umbellulata  Zhuk. carrying a gene for resistance to leaf rust was translocated onto 
the wheat chromosome 6B (Sears  1956 ). This revolutionary work ushered an era of 
utilization of wild genetic resources for the improvement of crop plants. 
Consequently, interspecifi c and intergeneric hybridization have been widely adopted 
by plant breeders across different crops and used to develop improved cultivars with 
enhanced agronomic performance, resistance to biotic and abiotic stresses, and 
quality improvement. However, the success in utilizing wild genetic resources for 
transfer of desirable genes has not been uniform across all crop species since alien 
gene transfer largely depends upon availability of such resources, ease of hybridiza-
tion and expression of the trait of interest in the progeny. Owing to these require-
ments, routine alien gene introgression from wild species is still a challenge before 
scientists for harnessing the desirable genes of wild species across all species. While 
evaluation of wild relatives and identifi cation of genes conferring traits of interest 
themselves pose greatest challenges to breeders, effecting successful hybridization 
and obtaining a viable progeny with the gene(s) of interest transferred into them is 
further a diffi cult task. For involving wild species in hybridization, these need to be 
available in the vicinity of the recipient parent and their fl owering must synchronize 
with that of the cultivated species. Raising wild species and exotic germplasm in 
fi eld condition is often not easy and development of controlled conditions such as 
glass houses and plant growth chambers requires huge investments on time and 
money. Alien gene introgression is sometimes associated with several other diffi cul-
ties such as linkage drag and pleiotropic effects; while in some instances this is 
associated with some unforeseen advantages also such as development of chromo-
some elimination technique for doubled haploidy breeding in wheat and barley. 
Advancements of in vitro techniques, in vivo and in vitro hormonal manipulations, 
techniques such as somatic hybridization and protoplast fusion and the most recent 
development of cisgenesis and intragenesis have offered commendable opportuni-
ties towards alien gene introgression. This chapter discusses the opportunities and 
challenges of alien gene transfer in crop plants.  

12.2     Sources of Alien Genes and Their Characterization 

 The genes present in distant relatives (i.e., wild species) are usually known as alien 
genes. Therefore, these species are important source of such alien genes in crop 
plants. Among these species, phylogenetic relationships have been established on 
the basis of crossability of cultivated species with the wild species and other cyto-
logical and molecular analysis. This has led to characterization of wild species into 
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primary, secondary, and tertiary gene pools according to the gene pool concept of 
Harlan and De Wet ( 1971 ). This gene pool concept provides the knowledge regard-
ing the possibilities of transferring alien genes controlling desirable traits from wild 
species either through conventional crossing or by using the advanced modern tech-
nologies. In general, species within the primary gene pool are easily crossable with 
each other and hence have been used easily for transfer of alien genes. Although 
wild species belonging to secondary gene pool may also cross readily with culti-
vated species, some post-zygotic barriers restrict their use in alien gene transfer. 
However as described earlier, recent advances in tissue culture techniques have 
made it feasible to use the species of this group. Wild species of tertiary gene pool 
are not found cross compatible with cultivated species. A large proportion of wild 
species belongs to this group and consequently is of no use for crop improvement 
through sexual manipulations (see Chap.   1     for details).  

12.3     Challenges in Alien Gene Transfer 

 Alien gene introgression has opened new ways and opportunities in creating addi-
tional genetic variability and providing newer avenues of useful selection in crop 
plants besides helping in evolution of the crop species. While developments in 
hybridization strategies and advancement of in vitro techniques have made alien 
gene introgression in cultivated species easier, certain challenges are still there 
which make alien gene introgression a routine practice a bit diffi cult in plant breeding. 
Challenges and opportunities (discussed in next section) for exploitation of alien 
gene pools have been presented in Fig.  12.1 .

12.3.1       Vertical Gene Transfer 

12.3.1.1     Crossability Barriers 

 Wild species are an important reservoir of useful genes. However their use, espe-
cially of those species belonging to the tertiary gene pool, has been limited for 
transferring the useful genes due to crossability inhibition and limited recombina-
tion between chromosomes of wild and cultivated species (Brar and Khush  1986 ; 
Khush and Brar  1992 ; Sitch  1990 ). These crossability barriers developed during the 
process of speciation frustrate breeders’ efforts in successful hybridization between 
species of different gene pools. The pre-fertilization cross incompatibility between 
parent species arises when pollen grains do not germinate, the pollen tube does not 
reach ovary, or the male gametes do not fuse with female gametes (Chowdhury and 
Chowdhury  1983 ; Shanmungam et al.  1983 ).  
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12.3.1.2     Chromosome Pairing 

 Pairing of chromosomes of wild species with the cultivated species in their hybrids 
is the key to transfer of gene(s) across species. Genetic control of pairing of chromo-
somes derived from two different genomes has been identifi ed in wheat, where this 
gene is known as  Ph1 . The suppressing of the  Ph1 -pairing regulation of polyploid 
wheats and oat has resulted in desired chromosome pairing and hence alien gene 
transfers into these crop species (Jauhar  2006 ). Such cytogenetic manipulations, 
including the suppression of the  Ph1  system, for recombining desirable alien chro-
matin into wheat were termed as chromosome engineering (Sears  1972 ). Essentially 
similar cytogenetic manipulations affecting gene transfer can also be done in hexa-
ploid oats (Jellen and Leggett  2006 ). In rice, very limited chromosome pairing has 
been observed at metaphase I in F 1  hybrids of cultivated and wild species. Therefore, 
it has been diffi cult to transfer the alien genes from wild species to cultivated species 
(Brar and Khush  1997 ). Similarly, the high response of wheat to chromosome elimi-
nation technique for induction of haploids with respect to embryo formation has 

  Fig. 12.1    Challenges and opportunities for exploitation of alien gene resources in crop 
improvement       
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been reported mainly due to genotypic nonspecifi city, which is because of the insen-
sitivity of the maize pollen to the action of  Kr1  and  Kr2  genes, which express in the 
style of many wheat varieties (Laurie and Bennett  1987a ,  b ).  

12.3.1.3     Linkage Drag 

 One of biggest challenges in using wild species for introgression of alien genes into 
cultivated background is the association of undesirable genes with the useful alien 
genes, known as linkage drag. Its effect is more severe in crops with diploid genetic 
systems because their genomes are more sensitive to genetic imbalance compared 
to relatively more buffered polyploid genomes. This has resulted in exploitation of 
only a few exotic genes in alien germplasm in agriculture (Friebe et al.  1996 ). 
In wheat, for example, genes other than the targeted gene (e.g.,  Sr39  transferred 
from wild species ‘ Aegilops speltoides  Tauschii’) was carried on the alien chroma-
tin (Xu et al.  2008 ) during introgression, which had a deleterious effect on yield and 
quality (The et al.  1988 ; Lukaszewski  2000 ; Labuschagne et al.  2002 ). Therefore, it 
became important to eliminate the excess  Ae. speltoides  chromatin surrounding 
 Sr39  in order to make this gene useful for fi ghting against  Ug99  (Niu et al.  2011 ). 
The details about the impact of linkage drag have already been discussed in various 
chapters of this book.  

12.3.1.4     Background Effects 

 It has been observed that there is a problem of variable expression of introgressed 
alien genes in cultivated backgrounds. In wheat, Chinese spring and  Leymus race-
mosus  translocated chromosomes carrying genes for resistance to  Fusarium  Head 
blight have been transferred to different common wheat backgrounds. However, 
expression of resistant gene was observed to be uniform among the resultant lines. 
These results demonstrated that effects of genetic backgrounds on the expression of 
alien resistance genes in wheat were due to epistatic interactions (Cai et al.  2005 ). 
Therefore, it is evident that effi cient manipulation of alien chromatin and selection 
of proper recipient genotypes play a crucial role in the success of alien introgression 
for Fusarium head blight resistance (Stack et al.  2003 ; Garvin et al.  2003 ).  

12.3.1.5     Pleiotropic Effects of Alien Genes 

 Sometimes introgressed alien genes affect more than one trait. If such effects are 
positively associated with desirable traits, introgression of alien genes with pleiotro-
pic effects can be useful. However, if these are associated with undesirable traits, it 
becomes a challenge for breeders to use them in crop improvement. For example in 
wheat, introgression of leaf rust resistance gene  Lr47  (from  Triticum speltoides ) led 
to an overall reduction of 3.8 % in grain yield; nevertheless it varied signifi cantly 
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across genotypes and environments. At the same time, lines with the alien  Lr47  
segment showed consistent increase in grain and fl our protein concentration, while 
there was signifi cant decrease in fl our yield and an increase in fl our ash (Brevis et al. 
 2008 ). Similarly, the slow rusting genes in wheat often have pleiotropic effects on 
multiple rust diseases. Cloning of the well-characterized pleiotropic resistance gene 
 Lr34/Yr18/Sr57/Pm38/Sb1/Bdv1/Ltn1  showed that it belonged to the ABC- 
transporter group and was distinct from cloned race-specifi c resistance genes 
(Krattinger et al.  2009 ).   

12.3.2     Horizontal Gene Transfer (HGT) 

12.3.2.1     Regeneration Protocol 

 Horizontal transfer of alien genes across genera requires suitable regeneration 
system for the development of transgenic plants. This is one of the major chal-
lenges, especially in recalcitrant species such as food legumes that restrict transfer 
of alien genes through genetic transformation (i.e., transgenics). Tissue-culture 
techniques are part of a large group of strategies and range from molecular genetics 
to recombinant DNA studies, genome characterization, gene-transfer and in vitro 
regeneration of plants. All these tools require totipotent tissues that readily respond 
to tissue culture procedures. In most of the species, in vitro regeneration is highly 
genotype specifi c and cultivated varieties are rarely amenable to regeneration. 
Additionally, morphogenesis is generally very slow and very often there are prob-
lems like development of albinos and vitreous tissues, and no-response in dediffer-
entiated calli. Therefore, successful and reliable plant regeneration in many crop 
species still remains an aspiration that requires considerable refi nement in technol-
ogy and training of the human resources to develop the skills that are needed to 
generate green plants.  

12.3.2.2     Isolation of Genes form Wild Species 

 Desirable genes present in the background of wild species belonging to primary 
gene pool have been exploited in development of improved varieties in several 
crops. These can be isolated through map-based cloning. However introgressions 
are accompanied by linkage drag where recombination is suppressed in the target 
gene region, and standard recombination-based approaches cannot be used in the 
molecular dissection of the target genes (Gill et al.  2011 ). In addition to this isola-
tion of desirable genes from species belonging to secondary and tertiary gene pools 
is still diffi cult through map-based cloning. Although the wild species are good 
genetic resources for genes controlling resistance to biotic and abiotic stresses as 
well as quality traits, these could not be used extensively in breeding programs in 
either way.  
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12.3.2.3     Expression of Alien Genes 

 HGT trough genetic transformation is one of the most exciting approaches that 
opened practical opportunities for the improvement of crop plant without any limi-
tation of genome boundaries. However, the unpredictable silencing or variable 
expression of transgenes is a ubiquitous phenomenon and it is an important 
challenge for genetic engineering of crops. This has been observed invariably in all 
plant species studied (Cerutti et al.  1997 ). There is not yet a reliable way to prevent 
silencing, although the converse affects—consistent gene silencing—has been 
reported (Angell and Baucombe  1997 ). Silencing resulting from interactions among 
multiple copies of transgenes and related endogenous genes involves homology-
based mechanisms that act at either the transcriptional or post-transcriptional level 
(Meyer and Saedler  1996 ). It has been shown that high level expression of foreign 
proteins in plants often leads to gene silencing (Pickford and Cogoni  2013 ).  

12.3.2.4     Gene Flow 

 Flow of alien transgenes from transgenic plants to their weedy and wild relatives 
through sexual reproduction and/or vegetative propagation is one of major concerns 
with potential ecological risks. Gene fl ow from the transgenic plants having 
resistance to diseases and insect-pests, drought and salt tolerance, and herbicide 
resistance can signifi cantly enhance the ecological fi tness of weedy and wild popu-
lations. As results, they can become aggressive weeds that can have unpredictable 
consequences to local ecosystems. This gene fl ow can also change the original wild 
populations and better ecological fi tness could even lead to the extinction of endan-
gered wild species populations locally (Kiang et al.  1979 ). Therefore, alien gene 
transfer through genetic transformation has a challenge of its negative impact of 
present ecological system.    

12.4     Opportunities 

 During the past two decades, a lot of information relating to possible gene fl ow 
between cultivated crop species and their wild relatives, crossability barriers and 
methods to overcome them has been generated. These developments have provided 
tremendous opportunities to breeders to introgress alien genes into cultivated spe-
cies. Simultaneously, the efforts in wide hybridization for transferring the alien 
gene into cultivated crops have also provided opportunities to develop new meth-
ods/techniques, which have made genetic enhancement of crop plants easier and 
faster. The following section discusses the new opportunities that have been gener-
ated while transferring alien genes from wild species. 
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12.4.1     Cross Compatibility 

 In has been reported that certain genes are responsible for pairing between the 
chromosomes leading to cross compatibility of wild species with the cultivated 
ones. In wheat, a gene  Ph1  has been identifi ed on chromosome 6B, which sup-
presses the chromosome pairing. Suppression or removal of this chromosome pair-
ing controlling gene has been used to transfer alien genes following wide 
hybridization coupled with the manipulation of chromosome pairing. This chromo-
some-mediated gene transfer has resulted in the development of several commercial 
cultivars with genes of alien origin. For example, a small segment from  Aegilops 
umbellulata  that carried a gene for resistance to leaf rust has been incorporated onto 
wheat chromosome 6B using cytogenetic techniques (Sears  1956 ). Subsequently, 
improved wheat cultivars with improved agronomic performance, pest tolerance, 
and high yields have been developed using inter-specifi c and inter- generic hybrid-
ization (Friebe et al.  1996 ; Jauhar and Chibbar  1999 ).  

12.4.2     Advances in In Vitro Techniques 

 Concerted efforts has been made to develop the new technologies/ways in order to 
overcome the crossing barriers and avail the opportunity to transfer the alien gene(s) 
from cross-incompatible species/genera of crop plants. Major developments have 
been made in tissue culture techniques such as embryo rescue, ovule culture, and 
in vitro hormonal treatments, which have greatly increased the scope of distant 
hybridization in crop plants (Gupta and Sharma  2005 ; Clarke et al.  2006 ; Fratini and 
Ruiz  2006 ; Mallikarjuna et al.  2006 ). The embryo rescue technique has been suc-
cessfully used for hybridization of cultivated lentil with  L. ervoides  and  L. nigricans  
and a two-step in vitro method of embryo–ovule rescue has led to obtain successful 
distant hybrids (Cohen et al.  1984 ; Fiala  2006 ; Fratini and Ruiz  2006 ). Similarly in 
chickpea, embryo rescue technique has been successfully used to obtain viable 
embryos from  C. arietinum  ×  C. bijugum  and  C. arietinum  ×  C. pinnatifi dum  crosses 
(Clarke et al.  2006 ). In rice, low crossability and abortion of hybrid embryos are the 
commonly occurring problems for crosses made between cultivated rice and dis-
tantly related wild species. However, use of embryo rescue produces F 1 s and subse-
quent backcrossing of these F 1 s resulted in fertile plants with normal diploid 
chromosome complement (2 n  = 24) or 2 n  = 25 (monosomic alien addition lines). 
The fertile progenies were selfed to produce advanced introgression lines and evalu-
ated for transfer of useful traits (Brar and Khush  1997 ). 

 Somatic hybridization using protoplast fusion has a great potential to overcome 
the barriers of gene transfer from wild species to cultivated species (Powers et al. 
 1976 ; Davey et al.  2005 ). Plants have been regenerated from protoplast cultures in 
 Pisum  (Ochatt et al.  2000 ),  Trifolium  (Gresshoff  1980 ), and  Melilotus  (Luo and Jia 
 1998 ). Asymmetric protoplast fusion has been used for  Medicago  improvement 
(Tian and Rose  1999 ). Initially, although, protoplast-derived tissues were obtained 
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in ricebean, no shoot regeneration could be obtained from these tissues. Later, shoot 
regeneration from protoplasts of  V. sublobata  was reported by Bhadra et al. ( 1994 ) 
and the maximum protoplast yield was obtained from 5-day-old seedlings. There 
are no reports of successful growth or regeneration of protoplasts of  Lens  species. 
Rozwadowski et al. ( 1990 ) cultured protoplasts from lentil epicotyl tissue and 
around 6 % of protoplasts developed into cell colonies.  

12.4.3     Chromosome Doubling 

 Vertical transfer of alien genes through wide hybridization in some cases is restricted 
due to sterility of F 1  plants since this leads to problems in advancement of genera-
tion to F 2  for generating recombinants. This generally occurs in distant species 
where the parental species have different genomes. In such cases, no chromosome 
paring occurs in F 1  generation, which leads to sterility. However, studies have shown 
that chromosome doubling of either of the parental species before crossing or of the 
F 1  itself increases the chances of obtaining a viable hybrid. This has been used in 
several crop species including wheat,  Vigna , cotton where allopolyploid species 
have been developed following chromosome doubling from most of the semi-fertile 
and completely seed sterile F 1  hybrids (Dana  1966 ; Pande et al.  1990 ). Thus the 
chromosome doubling technique has given additional opportunities to transfer alien 
genes using allopolyploids as a bridge species in wide crosses. In pigeonpea, chro-
mosome doubling of diploid F 1  hybrids derived from cross between  Cajanus platy-
carpus  ×  C. cajan  gave mature seeds in tertraploid F 1  hybrids and subsequent selfed 
generations. As the result, it was possible to introgress the resistance gene for 
 Phytophthora  blight disease from  C. platycarpus  (Mallikarjuna and Moss  1995 ). 
Irradiation techniques have also been successful in recovering fertile plants in F 1 s 
and increased pod set in interspecifi c crosses between  V. radiata  ×  V. umbellata  
(Pandiyan et al.  2008 ).  

12.4.4     Reciprocal Crossing 

 It has been observed that disharmony the between genome of one species and cyto-
plasm of the other causes fertilization barrier, restricting the transfer of alien genes 
from wild species. However, reciprocal crossing in such cases has given an oppor-
tunity of successful recovery of viable hybrids. This approach has been reported 
successful in crossing between  V. mungo  and  V. radiata , where using the later spe-
cies as female parent produced successful hybrids (Verma and Singh  1986 ; Ravi 
et al.  1987 ). Another species  V. riukinensis  if used as only a male parent with  V. 
angularis  and  V. umbellata  produced successful hybrids (Siriwardhne et al.  1991 ). 
As a general rule, use of species with higher chromosome number as the female 
parent is more successful compared to their reciprocals.  

12 Alien Gene Transfer: Challenges and Opportunities



298

12.4.5     Use of Bridge Species 

 Wild species belonging to secondary and tertiary gene pools when directly involved 
in crossing with cultivated species do not result in fertile hybrids. However, use of 
another species which crosses easily with both, cultivated and wild species, can 
often be used as bridge species for transferring the alien genes. This approach has 
been successfully used in lentil where  L. ervoides  was used as a bridge species for 
transferring genes for resistance to ascochyta blight and anthracnose from  L. lamot-
tei  and  L. nigricans  to  L. culinaris  following embryo rescue technique (Ye et al. 
 2002 ; Tullu et al.  2006 ). In mungbean, bruchid resistance has been transferred from 
 V. umbellata  to azuki bean by using the bridge species,  V. nakashimae  (Tomooka 
et al.  1992 ,  2000 ). Based on close relationship reported in perennial  Cicer anatoli-
cum, C. reticulatum  and  C. echinospermum,  bridge cross approach deserves further 
attention. In buckwheat,  Fagopyrum homotropicum  (4×) has been used to improve 
the success of interspecifi c hybridization between the two cultivated buckwheat 
species,  Fagopyrum tataricum  and  F. esculentum  (Wang et al.  2002 ). 

 The successful crossing of wild species of barley,  Hordeum chilense  with dip-
loid, tetraploid, and hexaploid wheats resulted in development of intergeneric 
amphiploids known as tritordeums.  H. chilense  and its amphiploids showed useful-
ness for several traits viz., resistance to rusts, powdery mildew,  Septoria tritici , 
karnal bunt, smuts, aphids, nematodes, and certain degree of tolerance to drought 
and salt. Thus hexaploid tritordeum has been recommended for use as bridge spe-
cies to introgress genetic material from wild barley into durum wheat (Ballesteros 
et al.  2000 ). Another genus, limegrass ( Leymus arenarius  L. Mollis), which can 
cross with cultivated common wheat ( Triticum aestivum ;  T. carthlicum ), has also 
been reported to be used as bridge species for transferring stress tolerance and dis-
ease resistance (Anamthawat-Jónsson  1995 ).  

12.4.6     Use of Growth Hormones 

 Application of growth hormones such as gibberellic acid (GA), naphthalene ace-
tic acid (NAA), kinetin, or 2, 4-D (dimethylamine), singly or mixed, has given an 
opportunity to make success in crossing of wild species where the hybrid embryos 
in distant crosses die due to their small size. Post pollination application of these 
growth regulators helps to maintain the developing seeds by facilitating division 
of hybrid zygote and endosperm. Use of growth regulators after pollination pro-
vided successful interspecifi c crosses in  Phaseolus  (Stalker  1980 ),  Cajanus  
(Singh et al.  1993 ), and  Cicer  (Shiela et al.  1992 ). In chickpea, when growth regu-
lators were applied to pollinated pistils, it prevented initial pod abscission and 
helped to save the aborting hybrid embryos by embryo rescue techniques 
(Mallikarjuna  1999 ). 
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 In  Vigna  species  V. vexillata  is the closest to cowpea ( V. unguiculata ) and has 
high level of resistance to insect–pests. Various accessions of  V. vexillata  showed 
high levels of resistance to pod sucking bugs, fl ower thrips,  Maruca vitrata , bruchid, 
and  Striga gesnerioides  (Fatokun et al.  1993 ). Richness of V. vexillata in these traits 
attracts legume breeders to make interspecifi c crosses between  V. vexillata  and cow-
pea. For this purpose, application of 2,4-D was observed most effective among the 
various hormones used. Sprays of this hormone at low concentrations (approxi-
mately 1.0 mg/l) before or after pollination promoted the retention of  V. vexillata  
fl owers pollinated with cowpea and subsequently the pods resulting from the cross- 
pollination (see Fatokun  2002 )  

12.4.7     Backcrossing 

 Utilization of alien genes is sometimes restricted due to the poor expression of 
desirable traits transferred from wild species, even though the wild species may 
have cross compatibility with the cultivated species. In such a case, backcrossing of 
F 1  hybrid with the cultivated species in early generation makes use of wild species 
possible. This approach has been used in pigeonpea where  Cajanus platycarpus  
genome was introgressed into cultivated pigeonpea by backcrossing F 1  hybrids 
rescued through embryo culture followed by in vitro culture of aborting embryos of 
BC 1  progeny (Mallikarjuna et al.  2006 ). Similarly, one or more backcrosses with the 
recurrent parent are often required in common bean to restore the fertility of hybrids 
derived from crossing of cultivated species with  P. acutifolius  and  P. parvifolius . 
Using  P. acutifolius  as female parent in initial F 1  cross, and/or fi rst backcrossing of 
 P. vulgaris  ×  P. acutifolius  hybrid with  P. acutifolius,  is often more diffi cult than 
using  P. vulgaris  as the female parent of the initial cross and backcrossing the inter-
specifi c hybrid with  P. vulgaris  (Mejia-Jimenez  1994 ). The choice of parents 
(Federici and Waines  1988 ; Mejia-Jimenez  1994 ) and use of the congruity backcross 
(i.e., backcrossing alternately to each species) over recurrent backcrossing (Haghighi 
and Ascher  1988 ; Mejia-Jimenez  1994 ) facilitate interspecifi c crosses of common 
and tepary beans, in addition to recovery of fertility and more hybrid progenies.  

12.4.8     Use of Cytology and Advanced Genomics Tools 
in Isolation of Alien Genes 

 Alien gene introgressions are many times accompanied by linkage drag while 
recombination is suppressed in the target gene region and hence all genes on an arm 
are inherited as a single block. In wheat, gene  Pm21  found on chromosome arm of 
distant wheat relative  Dasypyrum villosum  (L.) Candargy (syn.  Haynaldia villosa ) 
showed resistant to all races of  Blumeria graminis  (DC.) Speer f. sp.  tritici  (Bgt). 
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However, isolation of this alien gene could not be possible due to inheritance of 
whole chromosome arm. Cao et al. ( 2011 ) used cytology and gene expression anal-
ysis strategy to isolate these genes. For this purpose, they fi rst used microarray 
analysis to identify candidate genes induced on infection with Bgt. Radiation hybrid 
mapping was used to localize the  Pm21  gene on a segment using. Subsequently fol-
lowing molecular cytology techniques FISH used successfully to isolate this gene. 
Study showed that this gene encodes a serine threonine protein kinase which plays 
an important role in powdery mildew resistance. This was verifi ed by transforma-
tion and virus-induced gene silencing (Gill et al.  2011 ).  

12.4.9     Molecular Markers Aided Backcrossing 
(AB-QTL Strategy) 

 It has been shown that introgression of desirable genes from wild species carries the 
undesirable gene(s) also. However use of a novel breeding strategy known as 
AB-QTL (Advanced Backcross-Quantitative Trait Loci) helps minimize the nega-
tive effect of linkage drag associated with alien gene introgression (Tanksley and 
Nelson  1996 ). This technology has been used successfully in tomato, wheat, and 
rice. In this approach, molecular markers associated with improved background are 
used to genotype the advance backcross progenies (BC 2 /BC 3 ). As a result, progenies 
having minimum linkage drag are selected on the basis of genome recovery of 
improved genotypes. For example, development of salt tolerant genotypes in rice by 
introgression of salt tolerance genes into high yielding varieties is often diffi cult 
through conventional breeding methods due to the unexpected linkage drag encoun-
tered in the progenies, which affects yield and grain quality characteristics of rice 
cultivars (Jeung et al.  2005 ; Yeo and Shon  2001 ). Recently three backcrosses have 
been used to transfer positive alleles of  Saltol  (salt tolerance) from genotype 
“FL478” in the background of improved cultivar “BT7”. The selected lines in BC 3 F 1  
with the  Saltol  alleles showed improved salt tolerance and agronomic performance 
similar to the original BT7 in the fi eld. As the result, marker-assisted backcross 
breeding (i.e., AB-QTL) could help in removing the linkage drag (Linh et al.  2012 ).  

12.4.10     Recombinant DNA Technology 

 This is a horizontal gene transfer approach which has been discussed in detail in 
Chap.   5    . Traditional breeding for transferring a desired gene into a crop plant 
depends on the source of the gene and the evolutionary distance of that source with 
the recipient crop. If the source of a gene is available in less or distantly related wild 
species, belonging to the secondary or even tertiary gene pool, it may be diffi cult to 
transfer through traditional crossing and if at all possible, it may take 10–15 years 
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or even longer. In such case, Genetic engineering offers an excellent tool for asexu-
ally inserting well-characterized gene(s) of unrelated organisms into plant cells, 
which on regeneration produce sporophytes with the inserted gene(s) integrated into 
their genome. This process may take less than a year to about 18 months in some 
cases, thus accelerating the process of genetic improvement of crop plants. 
Moreover, this exciting technology allows access to unlimited gene pool without the 
constraint of sexual compatibility and genome boundary. Tremendous potential of 
genetic transformation through microprojectile bombardment has, for example, 
been demonstrated in wheat and other cereals (Jauhar and Chibbar  1999 ; Dahleen 
et al.  2001 ; Jauhar and Khush  2002 ; Altpeter et al.  2005 ). Many isolated plant genes 
are now being transferred between sexually incompatible plant species. In chickpea 
and pigeonpea,  Helicoverpa  pod borer is a major insect–pest for which no genetic 
solution has been reported till now. However, efforts are now underway towards 
development of  Helicoverpa  resistant transgenic lines in these two important grain 
legumes. The recent report of a  Bt  chickpea is an encouraging step toward improve-
ment of food legumes for diffi cult traits such as pod borer resistance (Acharjee et al. 
 2010 ). Similar is the case with botrytis gray mold in chickpea and efforts are under-
way to construct a resistance locus against this disease. For gene introgression pur-
poses, diffi cult species falling in tertiary and quaternary gene pools may turn out to 
be important sources of alien genes. For example, identifi cation and cloning useful 
genes from  P. fi liformis, P. angustissimus, and P. lunana  and successful regeneration 
and transformation of common bean may facilitate gene introgression in the future.  

12.4.11     Cisgenesis/Intragenesis 

 Use of transgenic crop varieties, especially in food crops, is not accepted widely for 
commercial production due to introgression of genes from altogether unrelated 
species. One of the major concerns of the general public about transgenic crops 
relates to the mixing of genetic materials between species that cannot hybridize by 
natural means. To meet this concern, the two transformation concepts, cisgenesis 
and intragenesis, were developed as alternatives to transgenesis. Both concepts 
imply that plants must only be transformed with the genetic material derived from 
the species itself or from closely related species capable of sexual hybridization. 
Furthermore, foreign sequences such as selectable marker genes and vector-back-
bone sequences should be absent. Intragenesis differs from cisgenesis by allowing 
use of new gene combinations created by in vitro rearrangements of functional 
genetic elements. Several surveys show higher public acceptance of intragenic/ 
cisgenic crops compared to transgenic crops. Thus, although the intragenesis and 
cisgenesis concepts were introduced internationally only 8–10 years back, several 
different traits in a variety of crops have already been modifi ed using these methods. 
Such crops developed in apple, barley, and potato are now in fi eld trials and two 
have pending applications for deregulation in USA and European countries. 
Currently, intragenic/cisgenic plants are regulated as transgenic plants worldwide. 
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However, as the gene pool exploited by intragenesis and cisgenesis are identical to 
the gene pool available for conventional breeding, less comprehensive regulatory 
measures are expected. The regulation of intragenic/cisgenic crops is presently 
under evaluation in the European Union and in the US regulators are considering if 
a subgroup of these crops should be exempted from regulation. Although, in 
Australia, a narrow group of cisgenic crops with genes introduced from the same 
species without T-DNA borders and other foreign DNA would not fall under 
Australian GM defi nition, no such crops have yet been dealt there (Lusser and 
Cerezo  2012 ). Nevertheless, it is possible that the intragenic/cisgenic route will be 
of major signifi cance for future plant breeding (see Holme et al.  2013  for details).  

12.4.12     Development of New Technologies 

 Distant hybridization between two different genera has also helped in generating 
new technologies also. For example, the production of wheat haploid plants through 
wide hybridization followed by chromosome elimination was fi rst used successfully 
by crossing wheat with  Hordeum bulbosum , commonly referred to as the  Bulbosum  
technique (Barclay  1975 ). However, because of the present of the crossability inhib-
itor ( Kr ) genes that express in the style of many wheat genotypes and inhibit the 
growth of pollen tube of  H. bulbosum , this technique had limited practical use. Later 
on wheat × maize hybridization was followed where no such limitation is encoun-
tered, since maize is insensitive to the action of dominant genes  Kr1  and  Kr2,  
located on the long arm of the chromosomes 5B and 5A, respectively (Sitch et al. 
 1985 ; Laurie and Bennett  1987a ,  b ). Subsequently, Laurie and Bennet ( 1988 ) devel-
oped fi rst in vitro method to rescue the haploid embryo from wheat × maize crosses. 
Similarly another Gramineae genera,  Imperata cylindrica  was reported to be still 
more effi cient for haploid induction through distant crosses in triticale (Pratap et al. 
 2005 ) and wheat (Choudhary et al.  2005 ).   

12.5     Conclusions and Future Prospects 

 Hybridization followed by gene transfer between different crop species is not a new 
phenomenon and has been known to occur since thousands of years in nature. 
Species in nature have remained often incompletely isolated for millions of years 
after they had been formed. Therefore, while evolution of complete reproductive 
isolation occurring in them, there has been a limited quantity of gene fl ow between 
the evolving species. The consequences of such gene transfers have been multifari-
ous including an increase in genetic variability, origin and transfer of adaptations, 
evolution of species and ecotypes, breakdown of isolating barriers, and promotion 
of colonization and dispersal (Abbott et al.  2003 ). Both vertical and horizontal gene 
transfers together have been vital to the overall evolution of crop plants. The vertical 
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gene transfers have been largely responsible for recombination of genes within a 
species. HGT has addressed the issues related to genome boundary limitations in 
alien gene transfers. Alien gene transfer by both methods has revolutionized the 
global agriculture and in cereals crops its use helped to develop the diverse geno-
types against the major diseases. This could be possible due to the better under-
standing of underlying biological principles for successful alien gene transfer in 
crop plants. Tremendous developments in advanced technologies and basic knowl-
edge of genetics and genomics have taken place towards addressing the challenges 
in accomplishing alien gene transfer. The most important opportunities, which 
helped to overcome the challenges of alien gene transfer, are development of in 
vitro techniques and effi cient regeneration protocols, in vivo hormonal manipula-
tions, stress pretreatments, and application of chemicals and reagents to accomplish 
hybridization. These opportunities resolved important challenges in order to make 
alien gene transfer successful in many agricultural crops, especially cereals. In spite 
of this, for use of alien gene transfer as a routine for improvement of crop plants, 
there are still a number of challenges ahead. 

 Use of horizontal transfer for alien genes poses important challenges including 
the production, management, and maintenance of GM crops, availability of genes 
from wild source, reliable regeneration protocol in recalcitrant crop species, and 
social acceptability of GM crops. Although fl ow of transgene from GM population 
to natural population can help in increasing the frequency of favorable alleles in the 
sink population, it may have harmful consequences in the absence of selection such 
as increased weediness and the increased likelihood of the extinction of wild rela-
tives and exotic germplasm. Though conventionally transferred alien genes are 
more acceptable in cultivated background by the society than GM crops, use of alien 
genes from secondary and tertiary gene pool is still a challenge for plant breeders. 
However further advancement in genetics, genomics, and tissue culture technolo-
gies will certainly increase the possibility of introgression of favorable genes/QTL 
for yield and other desirable traits from wild species and will help to widen the 
genetic base. As the result, we can achieve a sustainable growth in production and 
productivity of crop plants in changing environmental conditions.     
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