
CHAPTER 4

Geometric Considerations

The purpose of this chapter is to discuss various geometric problems which are
informed by orthogonality and related considerations. We begin with Hurwitz’s
proof of the isoperimetric inequality using Fourier series. We prove Wirtinger’s
inequality, both by Fourier series and by compact operators. We continue with a
theorem comparing areas of the images of the unit disk under complex analytic
mappings. We again give two proofs, one using power series and one using Green’s
(Stokes’) theorem. The maps z �→ zd from the circle to itself play a prominent
part in our story. We naturally seek the higher-dimensional versions of some of
these results. It turns out, not surprisingly, that one can develop the ideas in many
directions. We limit ourselves here to a small number of possible paths, focusing
on the unit sphere in Cn, and we travel only a small distance along each of them.

Complex analytic mappings sending the unit sphere in Cn to the unit sphere
in some CN play a major role in this chapter. For example, we study polynomial
mappings that are also invariant under finite subgroups of the unitary group, and
we discover a surprising connection to Chebyshev polynomials. We also compute
many explicit integrals. The author’s technique of orthogonal homogenization is
introduced and is used to prove a sharp inequality about volumes (with multiplicity
accounted for) of complex analytic images of the unit ball. To prove this inequality
we develop needed information about differential forms and complex vector fields.
This material leads us to the Cauchy–Riemann (CR) geometry of the unit sphere.
We close with a generalization of the Riesz–Fejer theorem on nonnegative trig poly-
nomials to a result on Hermitian polynomials that are positive on the unit sphere.
This chapter thus provides many ways to extend results from the unit circle to
higher dimensions, all informed by orthogonality and Hermitian analysis.

We do not consider the Fourier transform in higher dimensions. Many books
on partial differential equations and harmonic analysis tell that story well.

1. The Isoperimetric Inequality

Geometric inequalities range from easy observations to deep assertions. One of
the easiest such inequalities is that the rectangle of a given perimeter with maximum
area is a square. The proof follows from (x+y)(x−y) = x2−y2 ≤ x2, with equality
when y = 0. One of the most famous inequalities solves the isoperimetric problem;

given a closed curve in the plane of length L, the area A enclosed satisfies A ≤ L2

4π .
Equality happens only if the curve is a circle. We use Fourier series to prove this
isoperimetric inequality, assuming that the curve is smooth.
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122 4. GEOMETRIC CONSIDERATIONS

Recall from calculus that a smooth planar curve is a smooth function γ : [a, b] →
R2 for which γ′(t) does not vanish. Officially speaking, the curve is the function,
but it is natural to think also of the curve as the image of the function traced out in
some order. The curve is called closed if γ(a) = γ(b) and simple if γ(t1) �= γ(t2) for
t1 �= t2 unless t1 = a, t2 = b or t1 = b, t2 = a. This complicated sounding condition
is clear in geometric terms; if one thinks of the curve as its image, then the curve is
simple if it neither crosses itself nor covers itself multiple times. Note, for example,
that the curve γ : [0, 2π] → C given by γ(t) = e2it is closed but not simple, because
it covers the circle twice.

The length of γ is the integral
∫
γ ds, where ds is the arc-length form. In terms of

the function t �→ γ(t), we have the equivalent formula L =
∫ b

a ||γ′(t)||dt; this value
is unchanged if we reparametrize the curve. It is often convenient to parametrize
using arc length; in this case ||γ′(s)|| = ||γ′(s)||2 = 1.

We can integrate 1-forms along nice curves γ. We give a precise definition of
1-form in Sect. 5. For now we assume the reader knows the meaning of the line
integral

∫
γ Pdx + Qdy, assuming P and Q are continuous functions on γ. This

integral measures the work done in moving along γ against a force given by (P,Q).
We also assume Green’s theorem from calculus. In Green’s theorem, the curve γ is
assumed to be positively oriented. Intuitively, this condition means the (image of
the) curve is traversed counterclockwise as the parameter t increases from a to b.

Proposition 4.1 (Green’s theorem). Let γ be a piecewise-smooth, positively
oriented, simple closed curve in R2, bounding a region Ω. Assume that P and Q
are continuously differentiable on Ω and continuous on Ω ∪ γ. Then

∫

γ

Pdx+Qdy =

∫

Ω

(
∂Q

∂x
− ∂P

∂y

)

dxdy.

The area A enclosed by γ is of course given by a double integral. Assume that
γ is positively oriented. Using Green’s theorem, we see that A is also given by a
line integral:

A =

∫

Ω

dxdy =
1

2

∫

γ

xdy − ydx =
1

2

∫ b

a

(x(t)y′(t)− x′(t)y(t)) dt. (1)

Notice the appearance of the Wronskian.

Exercise 4.1. Graph the set of points where x3+y3 = 3xy. Use a line integral
to find the area enclosed by the loop. Solve the same problem when the defining
equation is x2k+1 + y2k+1 = (2k + 1)xkyk. Comment: Set y = tx to parametrize
the curve. Then xdy − ydx = x(tdx + xdt)− txdx = x2dt.

Exercise 4.2. Verify Green’s theorem when Ω is a rectangle. Explain how to
extend Green’s theorem to a region whose boundary consists of finitely many sides,
each parallel to one of the coordinate axes.

Theorem 4.1 (Isoperimetric inequality, smooth version). Let γ be a smooth
simple closed curve in R2 of length L and enclosing a region of area A. Then

A ≤ L2

4π and equality holds only when γ defines a circle.
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Proof. This proof goes back to Hurwitz in 1901. After a change of scale,
we may assume that the length L of γ is 2π. After mapping [a, b] to [0, 2π], we
parametrize by arc length s and thus assume γ : [0, 2π] → R2 and ||γ′(s)|| = 1.

Since the curve is closed, γ may be thought of as periodic of period 2π. In
terms of Fourier series we may therefore write:

γ(s) = (x(s), y(s)) =

( ∞∑

−∞
ane

ins,
∞∑

−∞
bne

ins

)

(2)

γ′(s) = (x′(s), y′(s)) =

( ∞∑

−∞
inane

ins,

∞∑

−∞
inbne

ins

)

. (3)

Since (x′(s), y′(s)) is a unit vector, we have 2π =
∫ 2π

0 (x′(s))2 + (y′(s))2ds. The
only term that matters in computing the integral of a trigonometric series is the
constant term. Constant terms in x′(s)2 and y′(s)2 arise precisely when the term
with index n is multiplied by the term with index −n. It therefore follows that

∞∑

−∞
n2(|an|2 + |bn|2) = 1. (4)

We do a similar computation of xy′ − yx′ to find the area A. We have

A =
1

2

∣
∣
∫ 2π

0

(x(s)y′(s)− x′(s)y(s)) ds
∣
∣ =

1

2
2π
∣
∣
∑

in(anbn − bnan)
∣
∣

= π|
∑

in(anbn − bnan)| ≤ 2π
∑

n|an||bn|. (5)

Next we use |n| ≤ n2 and

|anbn| ≤ 1

2
(|an|2 + |bn|2) (6)

in the last term in (5). These inequalities and (4) yield

A ≤ π
∑

n2(|an|2 + |bn|2) = π =
L2

4π
,

where we have also used the value L = 2π.
We check when equality holds in the inequality. It must be that the only nonzero

terms are those with |n| = n2, that is, n = 0,±1. We must also have equality in (6),
and hence |an| = |bn|. By (4) we then must have |a1| = |b1| = 1

2 . Put a1 = 1
2e

iμ

and b1 = 1
2e

iν . Since x(s) and y(s) are real, a−1 = a1 and b−1 = b1. In other words
we must have

(x(s), y(s)) =
(
a0 + a1e

is + a1e
−is, b0 + b1e

is + b1e
−is
)
.

Under these conditions we get (x − a0, y − b0) = (cos(s + μ), cos(s + ν)). Finally,
remembering that (x′)2 + (y′)2 = 1, we conclude that cos(s + ν) = ±sin(s + μ).
Hence, γ defines a circle of radius 1. �

Exercise 4.3. Given an ellipse E, create a family Et of ellipses such that the
following all hold:

(1) E = E0.
(2) Each Et has the same perimeter.
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(3) The area enclosed by Et is nondecreasing as a function of t.
(4) E1 is a circle.

Exercise 4.4. A region Ω in the plane is convex if, whenever p, q ∈ Ω, the line
segment connecting p and q also lies in Ω. Assume that Ω is bounded, has a nice
boundary, but is not convex. Find, by a simple geometric construction, a region Ω′

with the same perimeter as Ω but with a larger area. (Reflect a dent across a line
segment. See Fig. 4.1.)

Figure 4.1. Convexity and the isoperimetric inequality

Remark 4.1. The isoperimetric inequality holds in higher dimensions. For
example, of all simple closed surfaces in R3 with a given surface area, the sphere
encloses the maximum volume.

2. Elementary L2 Inequalities

In this section we prove several inequalities relating L2 norms of functions and
their derivatives. The setting for the first example is an interval on the real line,
whereas the setting for the second example is the unit disk in C.

We begin with the Wirtinger inequality, an easy one-dimensional version of
various higher-dimensional inequalities relating functions and their derivatives. We
give two proofs to help unify topics in this book.

Theorem 4.2 (Wirtinger inequality). Assume f is continuously differentiable
on [0, 1] and f(0) = f(1) = 0. The following inequality holds and is sharp:

||f ||2L2 ≤ 1

π2
||f ′||2L2 .

Proof. First we show that there is a function for which equality occurs. Put
f(x) = sin(πx). Then ||f ′||2L2 = π2||f ||2L2 because

||f ||2L2 =

∫ 1

0

sin2(πx)dx =
1

2

||f ′||2L2 =

∫ 1

0

π2cos2(πx)dx =
π2

2
.

Next we use Fourier series to prove the inequality. By putting f(−x) = −f(x),
we extend f to be an odd function (still called f) on the interval [−1, 1]. The ex-
tended f is still continuously differentiable, even at 0. Then f equals its Fourier se-
ries, which involves only the functions sin(nπx). Put f(x) =

∑
cnsin(nπx). Since f
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is odd, c0 = f̂(0) = 0. Let L2 continue to denote L2([0, 1]). By either the Parseval
formula or by orthonormality, we get

||f ||2L2 =
1

2

∞∑

−∞
|cn|2 =

∞∑

n=1

|cn|2

||f ′||2L2 =

∞∑

n=1

n2π2|cn|2 = π2
∞∑

n=1

n2|cn|2.

Since 1 ≤ n2 for all n ≥ 1, we obtain

π2||f ||2L2 ≤ ||f ′||2L2 .

The proof also tells us when equality occurs! Put cn = 0 unless n = 1; that is, put
f(x) = sin(πx) (Fig. 4.2). �

Sin(px)
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Figure 4.2. Wirtinger inequality

Proof. We sketch a different proof using compact operators. Define a linear
operator T on the continuous functions in L2([0, 1]) by Tf(x) =

∫ x

0 f(t)dt. We
work on the subspace where f(0) = f(1) = 0. Computation (see Exercise 4.5)

shows that T ∗f(x) =
∫ 1

x f(u)du. The operator T ∗T is compact and self-adjoint.
It is easy to check that each eigenvalue of T ∗T is nonnegative. By the first part
of the proof of the spectral theorem, the maximal eigenvalue λM of T ∗T satisfies
λM = ||T ∗T || = ||T ||2. We find all eigenvalues.

Set T ∗Tf = λf to get
∫ 1

x

∫ t

0

f(u)dudt = λf(x).

Differentiating twice and using the fundamental theorem of calculus gives

−f(x) = λf ′′(x).

Since f(0) = f(1) = 0, we conclude that f(x) = c sin( x√
λ
), where 1√

λ
= nπ. Thus,

λ = 1
n2π2 . The maximum happens when n = 1. We get ||T ||2 = 1

π2 , which is
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equivalent to saying that ||Tg||L2 ≤ 1
π ||g||L2 for all g. Setting g = f ′ gives the

desired conclusion. �

Corollary 4.1. Assume f is continuously differentiable with f(a) = f(b) = 0.
Then ∫ b

a

|f(x)|2dx ≤ (
b− a

π
)2
∫ b

a

|f ′(x)|2dx.

Proof. The result follows from changing variables (Exercise 4.6). �

Exercise 4.5. Put Tf(x) =
∫ b

a K(x, y)f(y)dy. Express T ∗ as an integral
operator. Check your answer when T is as in the second proof of Theorem 4.2.

Exercise 4.6. Prove Corollary 4.1.

Higher-dimensional analogues of the Wirtinger inequality are called Poincaré
inequalities. Given a region Ω in Rn, a Poincaré inequality is an estimate of the
form (for some constant C)

||u||2L2 ≤ C2

(∣
∣
∣
∣

∫

Ω

u

∣
∣
∣
∣

2

+ ||∇u||2L2

)

. (P)

Let A denote the volume of Ω and let u0=
1
A

∫
Ω u denote the average value of u

on Ω. We can rewrite (P) in the form

||u− u0||2L2 ≤ ||∇u||2L2 . (P.1)

By expanding the squared norm on the left-hand side of (P.1) and doing some
simple manipulations, we can also rewrite (P) in the form

||u||2L2 ≤ 1

A

∣
∣
∣
∣

∫
u

∣
∣
∣
∣

2

+ C2||∇u||2L2 . (P.2)

The technique of subtracting the average value and expanding the squared norm
appears, in various guises, many times in this book. This reasoning is standard
in elementary probability, as used in Proposition 5.4. Observe also, for f, f0 in a
Hilbert space, that

||f − f0||2 = ||f ||2 − ||f0||2
whenever f − f0 ⊥ f0. This version of the Pythagorean theorem was used in the
proof of Bessel’s inequality, where f0 was the orthogonal projection of f onto the
subspace spanned by a finite orthonormal system.

Poincaré estimates do not hold for all domains. When such an inequality does
hold, the smallest value of C that works is called the Poincaré constant for the
domain.

We make one additional observation. In our proof of the Wirtinger inequality,
we assumed that f vanished at both endpoints. We could have assumed that f
vanished at only one endpoint, or instead that the average value of f was 0, and in
each case proved similar results. The condition that the average value of f vanishes
means that f is orthogonal to the one-dimensional subspace of constant functions.
The condition that f vanish at the endpoints means that f lies in a subspace of
codimension two.
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Exercise 4.7. Find the Poincaré constant for the interval [−A,A]. (The func-
tion sin( πx2A ) achieves the bound. The answer is 2A

π .)

Remark 4.2. The Wirtinger inequality provides a bound on the L2 norm of a
function in terms of the L2 norm of its derivative. Various inequalities that bound
the maximum of the derivative p′ of a polynomial in terms of the maximum of p
(thus going in the other direction) and its degree are called Bernstein inequalities
and Markov inequalities. We do not consider such results in this book.

We next prove a simple geometric inequality in one complex dimension. It
motivates a more difficult higher-dimensional analogue which we prove in Sect. 9.
The orthogonality of the functions einθ again features prominently.

Let f be a complex analytic function on the unit disk B1. Let Af denote the
area of the image, with multiplicity counted. For example, if f(z) = zm, then f
covers the disk m times and Af = mπ. The formula for Af involves the L2 norm
of the derivative. We make the concept of counting multiplicity precise by defining
Af as follows:

Definition 4.1. Let Ω be open in C. Assume f : Ω → C is complex analytic.
The area, written Af (Ω) or Af , of the image of f , with multiplicity counted, is
defined by

Af = ||f ′||2L2(Ω). (7)

We next note that this concept agrees with what we expect when f is injective.

Lemma 4.1. Let f : Ω → C be complex analytic and injective. Then the area
of f(Ω) equals ||f ′||2L2(Ω).

Proof. Let A(f) denote the area of the image of f . Write f = u+iv and define
F (x, y) = (u(x, y), v(x, y)). The Cauchy–Riemann equations and the definition of
f ′ imply det(F ′) = uxvy − uyvx = u2

x + u2
y = |f ′|2. Since F is injective, the change

of variables formula for double integrals applies and gives

A(f) =

∫

F (Ω)

dudv =

∫

Ω

|det(F ′)|dxdy =

∫

Ω

|f ′(z)|2dxdy = ||f ′||2L2 .

�

Versions of the change of variables formula hold more generally. Suppose that
f is m to one for some fixed m. The change of variables formula gives

m

∫

F (Ω)

dudv =

∫

Ω

|det(F ′)|dxdy =

∫

Ω

|f ′(z)|2dxdy = ||f ′||2L2 .

In general, the multiplicity varies from point to point. For complex analytic func-
tions, things are nonetheless quite nice. See [A] for the following result. Suppose
that f is complex analytic near z0 and the function z �→ f(z)− f(z0) has a zero of
order m. Then, for w sufficiently close to f(z0), there is a (deleted) neighborhood
of z0 on which the equation f(z) = w has precisely m solutions. By breaking Ω
into sets on which f has constant multiplicity, we justify the definition of Af .
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We return to the unit disk. The natural Hilbert space here is the set A2 of
square-integrable complex analytic functions f on the unit disk. The inner product
on A2 is given by

〈f, g〉 =
∫

B1

f(z)g(z)dxdy.

The subspace A2 is closed in L2 and hence is itself a Hilbert space. See, for example,
pages 70–71 in [D1] for a proof. The main point of the proof is that, on any compact
subset K of the disk, we can estimate (the L∞ norm) supK |f | by a constant times
(the L2 norm) ||f ||. Hence, if {fn} is Cauchy in L2, then {fn} converges uniformly
on compact subsets. By a standard fact in complex analysis (see [A]), the limit
function is also complex analytic.

We are also concerned with the subspace of A2 consisting of those f for which
f ′ is square-integrable.

Lemma 4.2. The functions zn for n = 0, 1, 2, . . . form a complete orthogonal
system for A2.

Proof. Using polar coordinates we have

〈zn, zm〉 =
∫ 1

0

∫ 2π

0

rn+m+1ei(n−m)θdθdr. (8)

By (8), the inner product vanishes unlessm = n. To check completeness, we observe
that a complex analytic function in the unit disk has a power series based at 0 that
converges in the open unit disk. If f is orthogonal to each monomial, then each
Taylor coefficient of f vanishes and f is identically 0. �

Lemma 4.2 illustrates a beautiful aspect of Hilbert spaces of complex analytic
functions. Let f be complex analytic in the unit disk, with power series

∑
anz

n.
By basic analysis, the partial sums SN of this series converge uniformly to f on
compact subsets of the unit disk. By Lemma 4.2, the partial sum SN can also be
interpreted as the orthogonal projection of f onto the subspace of polynomials of
degree at most N . Hence the partial sums also converge to f in the Hilbert space
sense.

In Proposition 4.2 we relate ||f ||2L2 to the l2 norm of the Taylor coefficients of f .

By (9) below we can identify elements of A2 with sequences {bn} such that
∑ |bn|2

n+1
converges.

Consider the effect on the area of the image if we multiply f by z. Since |z| < 1,
the inequality |zf(z)| ≤ |f(z)| is immediate. But the area of the image under zf
exceeds the area of the image under f , unless f is identically 0. In fact we can
explain and determine precisely how the area grows.

Proposition 4.2. Let f(z) =
∑∞

n=0 bnz
n be a complex analytic function on

the unit disk B1. We assume that both f and f ′ are in L2(B1). Then

||f ||2L2 = π

∞∑

n=0

|bn|2
n+ 1

(9)

||f ′||2L2 = π
∞∑

n=0

(n+ 1)|bn+1|2 (10)
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||(zf)′||2L2 = ||f ′||2L2 + π

∞∑

n=0

|bn|2. (11.1)

Thus Azf ≥ Af and equality occurs only when f vanishes identically.

Proof. The proof of (9) is an easy calculation in polar coordinates, using the
orthogonality of einθ. Namely, we have

||f ||2L2 =

∫

B1

|
∑

bnz
n|2dxdy =

∫ 1

0

∫ 2π

0

∑
bnbmrm+neiθ(m−n)rdrdθ.

The only terms that matter are those for which m = n and we see that

||f ||2L2 = 2π
∑

|bn|2
∫ 1

0

r2n+1dr = π
∞∑

n=0

|bn|2
n+ 1

.

Formula (10) follows immediately from (9). To prove (11.1), observe that (zf)′(z) =∑∞
n=0(n+ 1)bnz

n. By (10), we have

||(zf)′||2L2 = π

∞∑

n=0

(n+ 1)|bn|2 = π

∞∑

n=0

n|bn|2 + π

∞∑

n=0

|bn|2

= ||f ′||2L2 + π

∞∑

n=0

|bn|2.

�
We express (11.1) in operator-theoretic language. Let D = d

dz with domain

{f ∈ A2 : f ′ ∈ A2}. Then D is an unbounded linear operator. Let M denote
the bounded operator of multiplication by z. When f extends continuously to the
circle, we write Sf for its restriction to the circle, that is, its boundary values. Thus

||Sf ||2 = 1
2π

∫ 2π

0 |f |2. The excess area has a simple geometric interpretation:

Corollary 4.2. Suppose Mf is in the domain of D. Then Sf is square
integrable on the circle and

||DMf ||2L2 − ||Df ||2L2 =
1

2

∫ 2π

0

|f(eiθ)|2dθ = π||Sf ||2. (11.2)

Proof. The result is immediate from (11.1). �
Corollary 4.2 suggests an alternate way to view (11.1) and (11.2). We can

use Green’s theorem to relate the integral over the unit disk to the integral over
the circle. The computation uses the notation of differential forms. We discuss
differential forms in detail in Sects. 5 and 6. For now we need to know less. In
particular dz = dx+idy and dz = dx−idy. We can differentiate in these directions.
See Sect. 1 for detailed discussion. For any differentiable function f , we write ∂f for
∂f
∂z dz and ∂f for ∂f

∂z dz. If f is complex analytic, then ∂f = 0 (the Cauchy–Riemann
equations), and we have

df = (∂ + ∂)f = ∂f = f ′(z)dz.

The area form in the plane becomes

dx ∧ dy =
−1

2i
dz ∧ dz =

i

2
dz ∧ dz.
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Finally, we use Green’s theorem, expressed in complex notation, in formula (12) of
the geometric proof below. We generalize this proof in Sect. 9.

Exercise 4.8. Express Green’s theorem in complex notation: express the line
integral of Adz +Bdz around γ as an area integral over the region bounded by γ.

Exercise 4.9. Use Exercise 4.8 to show that
∫
γ
f(z)dz = 0 when f is complex

analytic and γ is a closed curve as in Green’s theorem. (This result is an easy form
of the Cauchy integral theorem.)

Here is a beautiful geometric proof of (11.2), assuming f ′ extends continuously
to the circle:

Proof. For any complex analytic f , we have

Af = ||f ′||2L2 =
i

2

∫

B1

∂f ∧ ∂f =
i

2

∫

B1

d(f∂f).

We apply this formula also to (zf)′. The difference in areas satisfies

Azf −Af = ||(zf)′||2L2 − ||f ′||2L2 =
i

2

∫

B1

d
(
zf∂(zf)− f∂f

)
.

Assuming f ′ extends continuously to the circle, we may use Green’s theorem to
rewrite this integral as an integral over the circle:

Azf −Af =
i

2

∫

S1

zf∂(zf)− (f∂f). (12)

By the product rule, ∂(zf) = fdz + z∂f . We plug this formula into (12) and
simplify, getting

Azf −Af =
i

2

∫

S1

(|z|2 − 1)f∂f +
i

2

∫

S1

z|f(z)|2dz.

−1.0

−0.5

−0.5

0.5

0.5

1.0

1.0

Figure 4.3. Injective image of unit disk
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The first integral vanishes because |z|2 = 1 on the circle. We rewrite the second
integral by putting z = eiθ to obtain

i

2

∫

S1

eiθ|f(eiθ)|2(−i)e−iθdθ =
1

2

∫

S1

|f(eiθ)|2dθ = π
1

2π

∫

S1

|f(eiθ)|2dθ = π||Sf ||2.

�
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Figure 4.4. Overlapping image of unit disk

Exercise 4.10. Show that Corollary 4.2 can be stated as M∗D∗DM −D∗D =
πS∗S.

Exercise 4.11. What are the eigenfunctions and eigenvalues of DM and of
MD? Show that the commutator [D,M ] = DM − MD is the identity. This
example arises in quantum mechanics.

Exercise 4.12. Find a closed formula for
∑∞

j=0
|z|2j
cj

, where cj = ||zj||2 is the

squared norm in A2. The answer is the Bergman kernel function of the unit disk.

Exercise 4.13. For 0 ≤ a ≤ 1 and for |z| < 1, put fa(z) =
√
1− a2z + az2.

Find ||f ′
a||2L2 in terms of a. For several values of a, graph the image of the unit disk

under f . For what values of a is f injective? See Figs. 4.3 and 4.4.

Exercise 4.14. Put f(z) = z+ z2+ z3. Describe or graph the image of the set
|z| = r under f for several values of r. Suggestion: Use polar coordinates.

3. Unitary Groups

We now begin studying geometric problems in several complex variables. Recall
that 〈z, w〉 denotes the Hermitian inner product of points in complex Euclidean
space Cn. The unitary group U(n) consists of the linear transformations T which
preserve the inner product; 〈Tz, Tw〉 = 〈z, w〉. Setting z = w shows that such
transformations also preserve norms. The converse is also true: if ||Tz||2 = ||z||2
for all z, then 〈Tz, Tw〉 = 〈z, w〉 for all z and w, by Proposition 2.6.
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The group law in U(n) is composition. Let U, V be unitary transformations on
CN . Then the composition UV is also unitary, because

(UV )∗ = V ∗U∗ = V −1U−1 = (UV )−1.

It follows that the collection U(N) of unitary transformations on CN is a subgroup
of the group of invertible linear transformations.

We will often deal with complex Euclidean spaces of different dimensions. It
is convenient to omit the dimension in the notation for the inner products and
norms. When doing so, we must be careful. Suppose L : Cn → Cn+1 is given by
L(z) = (z, 0). Then L is linear and ||L(z)|| = ||z||, but L is not unitary. Distance
preserving maps are called isometries. In this setting, when N > n, we often
identify Cn with the subspace Cn ⊕ 0 ⊆ CN .

Our first result (which holds much more generally than we state here) provides
a polarization technique and gets used several times in the sequel. We use it several
times in the special case when f and g are polynomial mappings.

Theorem 4.3. Let B be a ball centered at 0 in Cn. Suppose f : B → CN1

and g : B → CN2 are complex analytic mappings and ||f(z)||2 = ||g(z)||2 for all
z ∈ B. Assume that the image of g lies in no lower-dimensional subspace and that
N1 ≥ N2. Then there is an isometry U : CN2 → CN1 such that f(z) = Ug(z) for
all z. When f and g are as above and also N2 = N1, then U is unitary.

Proof. We expand f and g as convergent power series about 0, writing f(z) =∑
α Aαz

α and g(z) =
∑

α Bαz
α; the coefficient Aα lies in CN1 and the coefficient

Bα lies in CN2 . Equating the Taylor coefficients in ||f(z)||2 = ||g(z)||2 leads, for
each pair α and β of multi-indices, to

〈Aα, Aβ〉 = 〈Bα, Bβ〉. (13)

It follows from (13) that Aα1 , . . . , AαK is a linearly independent set if and only if
Bα1 , . . . , BαK is a linearly independent set. We then define U by U(Bα) = Aα for a
maximal linearly independent set of the Bα. If Bμ is a linear combination of some
Bα, then we define U(Bμ) as the same linear combination of the Aα. The relations
(13) guarantee that U is well defined. Furthermore, these relationships imply that
U preserves inner products. Hence, U is an isometry on the span of the Bα. When
N1 = N2, an isometry U must be unitary. �

Example 4.1. The parallelogram law provides an example of Theorem 4.3.
Suppose g(z1, z2) = (

√
2z1,

√
2z2) and f(z1, z2) = (z1 + z2, z1 − z2). Then

||g(z)||2 = 2|z1|2 + 2|z2|2 = |z1 + z2|2 + |z1 − z2|2 = ||f(z)||2.
In this case f = Ug, where U is given by

U =

(
1√
2

1√
2

1√
2

−1√
2

)

.

Our next example illustrates the situation when N1 > N2 in Theorem 4.3.

Example 4.2. Put f(z) = (z21 , z1z2, z1z2, z
2
2) and g(z) = (z21 ,

√
2z1z2, z

2
2). Then

f : C2 → C4 and g : C2 → C3. Also,

||f(z)||2 = |z1|4 + 2|z1|2 |z2|2 + |z2|4 = (|z1|2 + |z2|2)2 = ||g(z)||2.
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The map U : C3 → C4 for which f = Ug is given by the matrix (with respect to
the usual bases)

U =

⎛

⎜
⎜
⎝

1 0 0
0 1√

2
0

0 1√
2

0

0 0 1

⎞

⎟
⎟
⎠ .

If ζ = (ζ1, ζ2, ζ3), then ||Uζ||2 = |ζ1|2+ |ζ2|2+ |ζ3|2 = ||ζ||2. Thus, U is an isometry,
but U is not unitary.

Observe that each of the maps f and g from Example 4.2 sends the unit sphere
in the domain to the unit sphere in the target. We will now consider such mappings
in detail.

We begin with some examples of symmetries of the unit sphere. If eiθ lies on
the unit circle S1, and z lies on the unit sphere S2n−1, the scalar multiple eiθz lies
on S2n−1 as well. Thus, S1 acts on S2n−1. We can replace S1 with the n-torus
S1× . . .×S1. In this case we map z = (z1, z2, . . . , zn) to (eiθ1z1, e

iθ2z2, . . . , e
iθnzn).

Furthermore, for z ∈ S2n−1 and U ∈ U(n), we have of course that Uz ∈ S2n−1.
The next example of a symmetry is a bit more complicated. Choose a point a

in the open unit ball Bn. First define a linear mapping L : Cn → Cn by

L(z) = sz +
1

s+ 1
〈z, a〉a,

where s =
√
1− ||a||2. Then define φa by

φa(z) =
a− La(z)

1 − 〈z, a〉 .
The mapping φa is a complex analytic automorphism of the unit ball, and it maps
the unit sphere to itself. See Exercise 4.15, Exercise 4.16, and the discussion in
Sect. 4 for more information.

Exercise 4.15. Verify the following properties of the mapping φa:

• φa(0) = a.
• φa(a) = 0.
• φa : S2n−1 → S2n−1.
• φa ◦ φa is the identity.

Exercise 4.16. Carefully compute φb ◦φa. The result is not of the form φc for
any c with ||c|| < 1. Show, however, that the result can be written Uφc for some
unitary U . Suggestion: First do the computation when n = 1.

Remark 4.3. In complex analysis or harmonic analysis, it is natural to con-
sider the group of all complex analytic automorphisms preserving the sphere. Each
element of this group can be written as U ◦ φa for some unitary U and some φa.
Rather than considering the full group, we will focus on the unitary group U(n) and
its finite subgroups. Various interesting combinatorial and number-theoretic issues
arise in this setting.

We start in one dimension with an elementary identity (Lemma 4.3) involving
roots of unity. The proof given reveals the power of geometric reasoning; one can
also prove this identity by factoring 1− tm over the complex numbers.
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Definition 4.2. A complex number ω is called a primitive m-th root of unity
if ωm = 1 and m is the smallest such positive integer.

The imaginary unit i is a primitive fourth root of unity. Given a primitive m-th
root of unity ω, the powers ωj for j = 0, 1, . . . ,m− 1 are equally spaced on the unit
circle S1. These m points define a cyclic subgroup of S1 of order m. Note that the
inverse of ω is ωm−1, which also equals ω. Note also that S1 = U(1).

Lemma 4.3. Let ω be a primitive m-th root of unity. Then

1−
m−1∏

j=0

(1 − ωjt) = tm. (14)

Proof. The expression on the left-hand side is a polynomial in t of degree m.
It is invariant under the map t �→ ωt. The only invariant monomials of degree at
most m are constants and constants times tm. Hence, this expression must be of
the form α + βtm. Setting t = 0 shows that α = 0 and setting t = 1 shows that
β = 1. �

This proof relies on the cyclic subgroup Γm of the unit circle, or of U(1), gen-
erated by ω. We will generalize this lemma and related ideas to higher dimensions,
where things become more interesting.

We extend the notion of Hermitian symmetry (Definition 1.2) to higher dimen-

sions in the natural way. A polynomial R(z, ζ) on Cn×Cn is Hermitian symmetric

if R(z, ζ) = R(ζ, z). The higher-dimensional version of Lemma 1.3 holds; it is useful
in the solution of Exercise 4.19.

Let Γ be a finite subgroup of U(n). The analogue of the left-hand side of (14)
is the following Hermitian polynomial:

ΦΓ(z, ζ) = 1−
∏

γ∈Γ

(1 − 〈γz, ζ〉). (15)

One can show (we do not use the result, and hence, we omit the proof) that ΦΓ is
uniquely determined by the following properties:

(1) ΦΓ is Hermitian symmetric.
(2) ΦΓ(0, 0) = 0.
(3) ΦΓ is Γ-invariant.
(4) ΦΓ(z, z) is of degree in z at most the order of Γ.
(5) ΦΓ(z, z) = 1 for z on the unit sphere.

In the special case when Γ is the group generated by a primitive m-th root of
unity times the identity operator, (14) generalizes to the identity (16):

1−
m−1∏

j=0

(

1− ωj
n∑

k=1

tk

)

=

(
n∑

k=1

tk

)m

=
∑

|α|=m

(
m

α

)

tα. (16)

In this case the multinomial coefficients
(
m
α

)
make an appearance:

(
m

α

)

=
m!

α1! . . . αn!
.
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See Sects. 4 and 8 for more information about multi-index notation and the
multinomial theorem, which is the far right equality in (16).

Interesting generalizations of (16) result from more complicated representations
of cyclic groups. The product in (17) gives one collection of nontrivial examples:

1−
m−1∏

j=0

(

1−
n∑

k=1

ωkjtk

)

. (17)

The coefficients of the expansion are integers with many interesting properties.

Exercise 4.17. Prove Lemma 4.3 by factoring 1− tm.

Exercise 4.18. Prove that ΦΓ(z, w) is Hermitian symmetric.

Exercise 4.19. Let R(z, z) =
∑

α,β cα,βz
αzβ be a Hermitian symmetric poly-

nomial. Prove that there are linearly independent polynomials Aj(z) and Bk(z)
such that

R(z, z) =
∑

j

|Aj(z)|2 −
∑

k

|Bk(z)|2 = ||A(z)||2 − ||B(z)||2.

Exercise 4.20. Write ΦΓ = ||A||2 − ||B||2 as in the previous exercise. Show
that we may choose A and B to be Γ-invariant.

In the rest of this section, we consider several cyclic subgroups of U(2). Write
(z, w) for a point in C2. Let η be a primitive p-th root of unity. We next study the
mapping ΦΓ when Γ = Γ(p, q) is the cyclic group of U(2) of order p generated by
the matrix (

η 0
0 ηq

)

.

Remark 4.4. The quotient space S3/Γ(p, q) is called a lens space. These
spaces are important in topology.

The definition of ΦΓ(p,q) yields

ΦΓ(p,q) = 1−
p−1∏

j=0

(1− ηj |z|2 − ηqj |w|2).

This expression depends only upon the expressions |z|2 and |w|2; we simplify nota-
tion by defining the polynomial fp,q(x, y) by

fp,q(x, y) = 1−
p−1∏

j=0

(1− ηjx− ηqjy). (18)

By taking j = 0 in the product, it follows that fp,q(x, y) = 1 on the line x+ y = 1.

Lemma 4.4. fp,1(x, y) = (x+ y)p.

Proof. The result follows by replacing t by x+ y in Lemma 4.3. �
The (binomial) coefficients of fp,1 are integers which satisfy an astonishing num-

ber of identities and properties. More is true. For each q, the coefficients of fp,q are
also integers, and they satisfy many interesting combinatorial and number-theoretic
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properties as well. We mention one of the properties now. Most people know the
so-called freshman’s dream that (x + y)p ≡ xp + yp modulo p if and only if p is
prime. The same result holds for each fp,q, although we omit the proof here.

The polynomials fp,2 are more complicated than fp,1 = (x + y)p. When p is
odd, all the coefficients of fp,2 are nonnegative. Here are the first few fp,2:

f1,2(x, y) = x+ y

f2,2(x, y) = x2 + 2y − y2

f3,2(x, y) = x3 + 3xy + y3

f4,2(x, y) = x4 + 4x2y + 2y2 − y4

f5,2(x, y) = x5 + 5x3y + 5xy2 + y5. (19)

We can find all these polynomials by solving a single difference equation. We
offer two proofs of the following explicit formula for fp,2. The key idea in the first
proof is to interchange the order in a double product. See [D5] and its references
for general results about group-invariant polynomials, proved by similar methods.

Proposition 4.3. For all nonnegative integers p, we have

fp,2(x, y) = (
x+

√
x2 + 4y

2
)p + (

x−
√
x2 + 4y

2
)p − (−y)p. (20)

Proof. Set q = 2 in (18). Each factor in the product is a quadratic in ηj ,
which we also factor. We obtain

1− f(x, y) =

p−1∏

j=0

(1− ηjx− η2jy) =

p−1∏

j=0

(1− c1(x, y)η
j)(1− c2(x, y)η

j)

=

p−1∏

j=0

(1− c1(x, y)η
j)

p−1∏

j=0

(1− c2(x, y)η
j).

Here c1 and c2 are the reciprocals of the roots of the quadratic 1− xη − yη2. Each
of the two products is familiar from Lemma 4.3. Using that result we obtain

1− f(x, y) = (1− c1(x, y)
p)(1− c2(x, y)

p).

It follows that f has the following expression in terms of the cj :

f(x, y) = c1(x, y)
p + c2(x, y)

p − (c1(x, y)c2(x, y))
p.

The product c1(x, y)c2(x, y) equals−y. The sum c1(x, y)+c2(x, y) equals x. Solving
this system for c1 and c2 using the quadratic formula determines the expressions
arising in (20). �

We sketch a second proof based on recurrence relations.

Proof. (Sketch). It follows by setting x = 0 in formula (18) that the term
−(−y)p appears in fp,2. Let gp(x, y) denote the other terms. The recurrence relation
gp+2(x, y) = xgp+1(x, y)+ygp(x, y) also follows from (18). To solve this recurrence,
we use the standard method. The characteristic equation is λ2−xλ−y = 0. Its roots

are
x±

√
x2+4y

2 . Using the initial conditions that g1(x, y) = x and g2(x, y) = x2+2y,
we determine gp(x, y). Adding in the term −(−y)p yields (20). �
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These polynomials are related to some classical mathematics.

Definition 4.3. The n-th Chebyshev polynomial Tn is defined by

Tn(x) = cos(n cos−1(x)).

Although it is not instantly obvious, the n-th Chebyshev polynomial is a poly-
nomial of degree n. Hence these polynomials are linearly independent.

Example 4.3. The first few Chebyshev polynomials:

• T0(x) = 1.
• T1(x) = x.
• T2(x) = 2x2 − 1.
• T3(x) = 4x3 − 3x.
• T4(x) = 8x4 − 8x2 + 1.
• T5(x) = 16x5 − 20x3 + 5x.

Exercise 4.21. Verify that Tn(x) is a polynomial. (See Exercise 4.23 for one
approach.) Verify the formulas for Tj(x) for j = 1, 2, 3, 4, 5.

Remark 4.5. The polynomials Tn(x) are eigenfunctions of a Sturm–Liouville
problem. The differential equation, (SL) from Chap. 2, is (1−x2)y′′−xy′+λy = 0.
The Tn are orthogonal on the interval [−1, 1] with respect to the weight function
w(x) = 1√

1−x2
. By Theorem 2.13, they form a complete orthogonal system for

L2([−1, 1], w).

Exercise 4.22. Verify that Tn is an eigenfunction as described in the remark;
what is the corresponding eigenvalue λ?

Proposition 4.4. The fp,2 have the following relationship to the Chebyshev
polynomials Tp(x):

fp,2(x,
−1

4
) + (

1

4
)p = 21−p

(
cos(p cos−1(x))

)
= 21−pTp(x).

Proof. See Exercise 4.23. �

Remark 4.6. Evaluating the fp,2 at other points also leads to interesting things.
For example, let φ denote the golden ratio. Then

fp,2(1, 1) = (
1 +

√
5

2
)p + (

1−√
5

2
)p + (−1)p+1 = φp + (1 − φ)p + (−1)p+1.

The first two terms give the p-th Lucas number, and hence, fp,2(1, 1) differs from
the p-th Lucas number by ±1. The p-th Fibonacci number Fp has a similar formula:

Fp =
1√
5

(

(
1 +

√
5

2
)p − (

1−√
5

2
)p

)

=
1√
5

((φ)p − (1 − φ)p) .

It is remarkable that our considerations of group-invariant mappings connect
so closely with classical mathematics. The polynomials fp,2 arise for additional
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reasons in several complex variables. When p is odd, all the coefficients of fp,2 are
nonnegative. Put x = |z|2 and y = |w|2 and write p = 2r + 1. Then

f2r+1,2(|z|2, |w|2) =
∑

b

cb|z|2(2r+1−2b)|w|2b = ||g(z, w)||2.

Since f2r+1,2(x, y) = 1 on x+ y = 1, we see that ||g(z, w)||2 = 1 on the unit sphere.
Hence, g(z, w) maps the unit sphere S3 to the unit sphere S2N−1, where N = r+2.
Thus, g provides a far from obvious example of a group-invariant mapping between
spheres.

The functions fp,2 satisfy an extremal property. If a polynomial f of degree d
in x, y has N terms, all nonnegative coefficients, and f(x, y) = 1 on x+ y = 1, then
the inequality d ≤ 2N − 3 holds and is sharp. We omit the proof of this difficult
result. Equality holds for the f2r+1,2.

Exercise 4.23. Prove Proposition 4.4. Suggestion: First find a formula for

cos−1(s) using cos(t) = eit+e−it

2 = s and solving a quadratic equation for eit.

Exercise 4.24. Show that Tnm(x) = Tn(Tm(x)).

Exercise 4.25. Find a formula for the generating function
∑∞

n=0 Tn(x)t
n. Do

the same for
∑∞

n=0 fn,2(x, y)t
n.

The next exercise is intentionally a bit vague. See [D3] and the references there
for considerably more information.

Exercise 4.26. Use Mathematica or something similar to find fp,3 and fp,4 for
1 ≤ p ≤ 11. See what you can discover about these polynomials.

4. Proper Mappings

Consider the group-invariant polynomial (15) above when ζ = z. The factor
1 − 〈γz, z〉 vanishes on the sphere when γ is the identity of the group. Hence
ΦΓ(z, z) = 1 when z is on the sphere. By Exercises 4.19 and 4.20, we may write

ΦΓ(z, z) =
∑

j

|Aj(z)|2 −
∑

k

|Bk(z)|2 = ||A(z)||2 − ||B(z)||2

, where the polynomials Aj and Bk are invariant. If B = 0, (thus ΦΓ is a squared
norm), then ΦΓ will be an invariant polynomial mapping between spheres. If B �= 0,
then the target is a hyperquadric.

The group-invariant situation, where the target is a sphere, is completely un-
derstood and beautiful. It is too restrictive for our current aims. In this section we
therefore consider polynomial mappings between spheres, without the assumption
of group invariance.

In one dimension, the functions z �→ zm have played an important part in our
story. On the circle, of course, zm = eimθ. The function z �→ zm is complex analytic
and maps the unit circle S1 to itself. One of many generalizations of these functions
to higher dimensions results from considering complex analytic functions sending
the unit sphere S2n−1 into some unit sphere, perhaps in a different dimension. We
discuss these ideas here and relate them to the combinatorial considerations from
the previous section.
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Definition 4.4. Let Ω and Ω′ be open, connected subsets of complex Euclidean
spaces. Suppose f : Ω → Ω′ is continuous. Then f is called proper if whenever
K ⊂ Ω′ is compact, then f−1(K) is compact in Ω.

Lemma 4.5. A continuous map f : Ω → Ω′ between bounded domains is proper
if and only if the following holds: whenever {zν} is a sequence tending to the bound-
ary bΩ, then {f(zν)} tends to bΩ′.

Proof. We prove both statements by proving their contrapositives. First let
{zν} tend to bΩ. If {f(zν)} does not tend to bΩ′, then it has a subsequence which
stays in a compact subset K of Ω′. But then f−1(K) is not compact, and f is
not proper. Thus properness implies the sequence property. Now suppose f is not
proper. Find a compact set K such that f−1(K) is not compact in Ω. Then there
is a sequence {zν} in f−1(K) tending to bΩ, but the image sequence stays within a
compact subset K. �

Lemma 4.5 states informally that f is proper if whenever z is close to bΩ, then
f(z) is close to bΩ′. Hence, it has an ε − δ version which we state and use only
when Ω and Ω′ are open unit balls.

Corollary 4.3. A continuous map f : Bn → BN is proper if and only if for
all ε > 0, there is a δ > 0 such that 1− δ < ||z|| < 1 implies 1− ε < ||f(z)|| < 1.

Our main interest is complex analytic mappings, especially such polynomial
mappings, sending the unit sphere in Cn to the unit sphere in some CN . Consider
mappings that are complex analytic on the open ball and continuous on the closed
ball. The maximum principle implies that if such a mapping sends the unit sphere
in the domain to some unit sphere, then it must actually be a proper mapping from
ball to ball. On the other hand, a (complex analytic) polynomial mapping between
balls is also defined on the boundary sphere, and Lemma 4.5 implies that such
mappings send the boundary to the boundary. It would thus be possible never to
mention the term proper map, and we could still do everything we are going to do.
We continue to work with proper mappings because of the intuition they provide.

Remark 4.7. Proper complex analytic mappings must be finite-to-one, al-
though not all points in the image must have the same number of inverse images.
By definition of proper, the inverse image of a point must be a compact set. Because
of complex analyticity, the inverse image of a point must also be a complex variety.
Together these facts show that no point in the target can have more than a finite
number of inverse images.

Exercise 4.27. Which of the following maps are proper from R2 → R?

(1) f(x, y) = x2 + y2.
(2) g(x, y) = x2 − y2.
(3) h(x, y) = x.

Exercise 4.28. Under what circumstances is a linear map L : Cn → CN

proper?

Our primary concern will be complex analytic proper mappings between balls.
We start with the unit disk B1 contained in C. Let us recall a simple version of the
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maximum principle. Suppose f is complex analytic in the open unit disk B1 and
|f(z)| ≤ M on the boundary of a closed set K. Then the same estimate holds in
the interior of K.

Proposition 4.5. Suppose f : B1 → B1 is complex analytic and proper. Then
f is a finite Blaschke product: there are points a1, . . . , ad in the unit disk, possibly
repeated, and a point eiθ on the circle, such that

f(z) = eiθ
d∏

j=1

aj − z

1− ajz
.

If also either f−1(0) = 0 or f is a polynomial, then f(z) = eiθzm for some positive
integer m.

Proof. Because f is proper, the set f−1(0) is compact. We first show that
it is not empty. If it were empty, then both f and 1

f would be complex analytic

on the unit disk, and the values of 1
|f(z)| would tend to 1 as z tends to the circle.

The maximum principle would then force | 1
f(z) | ≤ 1 on the disk, which contradicts

|f(z)| < 1 there.
Thus, the compact set f−1(0) is not empty. Because f is complex analytic,

this set must be discrete. Therefore, it is finite, say a1, . . . , ad (with multiplicity

allowed). Let B(z) denote the product
∏ aj−z

1−ajz
. We show that z �→ f(z)

B(z) is a

constant map of modulus one. Then f = eiθB.
By Corollary 4.3, applied to both f and B, for each ε > 0 we can find a δ > 0

such that 1 − ε < |f(z)| ≤ 1 and 1 − ε < |B(z)| ≤ 1 for |z| > 1 − δ. It follows
by the maximum principle that these estimates hold for all z with |z| ≤ 1 − δ as

well. The function g = f
B is complex analytic in the disk, as the zeros of B and

of f correspond and thus cancel in g. By the maximum principle applied to g, we
have for all z that 1 − ε < |g(z)| < 1

1−ε . Since ε is arbitrary, we may let ε tend to

0 and conclude that |g(z)| = 1. It follows (by either Theorem 4.3 or the maximum
principle) that g is a constant eiθ of modulus one. Thus f(z) = eiθB(z). �

Exercise 4.29. Suppose f : B1 → B1 is complex analytic and proper. Find
another proof that there is a z with f(z) = 0. One possible proof composes f with
an automorphism of the disk, preserving properness while creating a zero.

Consider next the proper complex analytic self-mappings of the unit ball Bn in
Cn for n ≥ 2. We do not prove the following well-known result in several complex
variables: the only proper complex analytic maps from the unit ball Bn to itself
(when n ≥ 2) are automorphisms. These mappings are analogues of the individual
factors in Proposition 4.5. They have the form

f(z) = U
z − La(z)

1− 〈z, a〉 .
Here U is unitary, and La is a linear transformation depending on a, for a an
arbitrary point in Bn. These rational maps were mentioned in Sect. 3; see the
discussion near Exercises 4.15 and 4.16. The only polynomial proper self-mappings
of a ball are the unitary mappings f(z) = Uz. In order to obtain analogues of
z �→ zd, we must increase the target dimension.
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The analogue of z �→ zd in one dimension will be the tensor product z �→ z⊗d.
We will make things concrete, but completely rigorous, by first identifying CM⊗CN

with CNM . The reader may simply regard the symbol ⊗ as notation.

Definition 4.5. Let f = (f1, . . . , fM ) and g = (g1, . . . , gN) be mappings taking
values in CM and CN . Their tensor product f ⊗ g is the mapping taking values in
CMN defined by (f1g1, . . . , fjgk, . . . , fMgN).

In Definition 4.5 we did not precisely indicate the order in which the terms fjgk
are listed. The reason is that we do not care; nearly everything we do in this section
does not distinguish between h and Lh when ||Lh|| = ||h||. The following formula
suggests why the tensor product is relevant to proper mappings between balls:

||f ⊗ g||2 = ||f ||2||g||2. (21)

To verify (21), simply note that

||f ||2 ||g||2 =
∑

j

|fj |2
∑

k

|gk|2 =
∑

j,k

|fjgk|2.

Let m be a positive integer. We write z⊗m for the tensor product of the identity
map with itselfm times. We show momentarily that ||z⊗m||2 = ||z||2m; in particular
the polynomial map z �→ z⊗m takes the unit sphere in its domain to the unit sphere
in its target. It exhibits many of the properties satisfied by the mapping z �→ zm

in one dimension. The main difference is that the target dimension is much larger
than the domain dimension when n ≥ 2 and m �= 1.

In much of what we do, the mapping z �→ f(z) is less important than the real-
valued function z �→ ||f(z)||2. It is therefore sometimes worthwhile to introduce the
concept of norm equivalence. Consider two maps f, g with the same domain, but
with possibly different dimensional complex Euclidean spaces as targets. We say
that f and g are norm-equivalent if the functions ||f ||2 and ||g||2 are identical.

We are particularly interested in the norm equivalence class of the mapping
z �→ z⊗m. One member of this equivalence class is the monomial mapping described
in (22), and henceforth, we define z⊗m by the formula in (22). The target dimension
is
(
n+m−1

m

)
, and the components are the monomials of degreem in n variables. Thus

we put
Hm(z) = z⊗m = (. . . , cαz

α, . . .). (22)

In (22), zα is multi-index notation for
∏n

j=1(zj)
αj ; each α = (α1, . . . , αn) is an

n-tuple of nonnegative integers which sum to m, and all such α appear. There are(
n+m−1

m

)
such multi-indices; see Exercise 4.30. For each α, cα is the positive square

root of the multinomial coefficient
(
m
α

)
. We write |z|2α as an abbreviation for the

product ∏

j

|zj|2αj .

See Sect. 8 for more information about multi-index notation and for additional
properties of this mapping.

By the multinomial expansion we see that

||z⊗m||2 =
∑

α

|cα|2|z|2α =
∑

α

(
m

α

)

|z|2α = (
∑

j

|zj |2)m = ||z||2m.



142 4. GEOMETRIC CONSIDERATIONS

The crucial formula ||z⊗m||2 = ||z||2m explains why cα was defined as above.

Furthermore, by Theorem 4.4 below,
(
n+m−1

m

)
is the smallest possible dimension k

for which there is a polynomial mapping f : Cn → Ck such that ||f(z)||2 = ||z||2m.
In other words, if f is norm-equivalent to z⊗m, then the target dimension must be
at least

(
n+m−1

m

)
.

Example 4.4. Put n = 2 and m = 3. We identify the map z⊗m with the map
H3 defined by

(z1, z2) → H3(z1, z2) = (z31 ,
√
3z21z2,

√
3z1z

2
2 , z

3
2).

Note that ||H3(z1, z2)||2 = (|z1|2 + |z2|2)3.
Definition 4.6. Let p : Cn → CN be a polynomial mapping. Then p is called

homogeneous of degree m if, for all t ∈ C, p(tz) = tmp(z).

Homogeneity is useful for many reasons. For example, a homogeneous polyno-
mial is determined by its values on the unit sphere. Unless the degree of homogeneity
is zero, in which case p is a constant, we have p(0) = 0. For z �= 0, we have

p(z) = p(||z|| z

||z|| ) = ||z||mp(
z

||z|| ).

This simple fact leads to the next lemma, which we use in proving Theorem 4.6.

Lemma 4.6. Let pj and pk denote homogeneous polynomial mappings, of the
indicated degrees, from Cn to CN . Assume that 〈pj(z), pk(z)〉 = 0 for all z on the
unit sphere. Then this inner product vanishes for all z ∈ Cn.

Proof. The statement is trivial if j = k = 0, as p0 is a constant. Otherwise
the inner product vanishes at z = 0. For z �= 0, put w = z

||z|| . Homogeneity yields

〈pj(z), pk(z)〉 = ||z||j+k〈pj(w), pk(w)〉,
which vanishes by our assumption, because w is on the sphere. �

Exercise 4.30. Show that the dimension of the vector space of homogeneous
(complex-valued) polynomials of degree m in n variables equals

(
n+m−1

m

)
.

Exercise 4.31. Give an example of a polynomial r(z, z) that vanishes on the
sphere, also vanishes at 0, but does not vanish everywhere.

Recall formula (22) defining the mapping z⊗m. In particular, z⊗m : Cn →
CN , where N is the binomial coefficient N =

(
n+m−1

m

)
, the number of linearly

independent monomials of degree m in n variables. This integer is the minimum
possible dimension for any map f for which ||f(z)||2 = ||z||2m.

Theorem 4.4. Let hm : Cn → CN be a homogeneous polynomial mapping of
degree m which maps S2n−1 to S2N−1. Then z⊗m and hm are norm-equivalent.
Assume in addition that the components of hm are linearly independent. Then
N =

(
n+m−1

m

)
, and there is a unitary transformation U such that

hm(z) = Uz⊗m.
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Proof. By linear independence of the components of hm, the target dimension
N of hm is at most

(
n+m−1

m

)
. We claim that N =

(
n+m−1

m

)
. We are given that

||hm(z)|| = ||z|| = 1 on the sphere. Hence ||hm(z)||2 = ||z||2m = ||z⊗m||2 on the
sphere as well. By homogeneity, this equality holds everywhere, and the maps are
norm-equivalent. Theorem 4.3 then implies the existence of an isometry V such
that z⊗m = V hm(z). Since z⊗m includes all the monomials of degree m, so does
hm. Hence the dimensions are equal, and V is unitary. Put U = V −1. �

A variant of the tensor product operation allows us to construct more examples
of polynomial mappings between spheres. By also allowing an inverse operation,
we will find all polynomial mappings between spheres.

Let A be a subspace of CN , and let πA be orthogonal projection onto A. Then
we have ||f ||2 = ||πAf ||2 + ||(1− πA)f ||2 by the Pythagorean theorem. Combining
this fact with (21) leads to the following:

Proposition 4.6. Suppose f : Cn → CM and g : Cn → CN satisfy ||f ||2 =
||g||2 = 1 on some set S. Then, for any subspace A of CM , the map EA,gf =
(1− πA)f ⊕ (πAf ⊗ g) satisfies ||EA,gf ||2 = 1 on S.

Proof. By definition of orthogonal sum and (21), we have

||EA,gf ||2 = ||(1 − πA)f ⊕ (πAf ⊗ g)||2 = ||(1− πA)f ||2 + ||πAf ||2||g||2. (23)

If ||g||2 = 1 on S, then formula (23) becomes ||(1 − πA)f ||2 + ||πAf ||2 = ||f ||2 = 1
on S. �

When g(z) = z, we can write the computation in (23) as follows:

||EA(f)||2 = ||f ||2 + (||z||2 − 1)||πA(f)||2.
This tensor operation evokes our discussion of spherical harmonics, where we multi-
plied polynomials by the squared norm in Rn. The operation EA is more subtle for
several reasons; first of all, our map f is vector valued. Second of all, we perform
the multiplication (now a tensor product) on a proper subspace A of the target.

We will begin studying nonconstant (complex-analytic) polynomial mappings
taking S2n−1 to S2N−1. By Proposition 4.5, when n = N = 1, the only possibilities
are z �→ eiθzm. When n = N ≥ 2, the only nonconstant examples are unitary maps.
When N < n, the only polynomial maps are constants. The proofs of these facts
use several standard ideas in the theory of analytic functions of several complex
variables, but we omit them here to maintain our focus and because we do not
use them to prove any of our results. We therefore summarize these facts without
proof. We also include a simple consequence of Proposition 4.5 in this collection of
statements about polynomial mappings between spheres.

Theorem 4.5. Assume that p : Cn → CN is a polynomial mapping with
p(S2n−1) ⊆ S2N−1. If N = n = 1, then p(z) = eiθzm for some m. If N < n,
then p is a constant. If n ≤ N ≤ 2n− 2, then p is either a constant or an isometry.

When N is much larger than n, there are many maps. We can understand them
via a process of orthogonal homogenization.
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Let p : Cn → CN be a polynomial mapping. Let || || denote the Euclidean norm
in either the domain or target. We expand p in terms of homogeneous parts. Thus

p =
∑d

k=0 pk, where each pk : Cn → CN and pk is homogeneous of degree k. That

is, pk(tz) = tkpk(z) for all t ∈ C. Suppose in addition that p : S2n−1 → S2N−1.
Then, if ||z||2 = 1, we have

||p(z)||2 = ||
∑

pk(z)||2 =
∑

k,j

〈pk(z), pj(z)〉 = 1. (24)

Replacing z by eiθz and using the homogeneity yields

1 =
∑

k,j

eiθ(k−j)〈pk(z), pj(z)〉. (25)

But the right-hand side of (25) is a trig polynomial; hence, all its coefficients vanish
except for the constant term. We conclude that p must satisfy certain identities
when ||z|| = 1:

∑
||pk||2 = 1, (26)

∑

k

〈pk, pk+l〉 = 0. (l �= 0). (27)

Let d be the degree of p. When l = d in (27), the only term in the sum is
when k = 0, and we conclude that p0 and pd are orthogonal. Let πA denote the
projection of CN onto the span A of p0. We can write

p = (1− πA)p⊕ πAp. (28)

Consider a new map g, defined by

g = EA(p) = (1 − πA)p⊕ (πAp⊗ z).

By Proposition 4.6, EA(p) also takes the sphere to the sphere in a larger target
dimension. The map g = EA(p) has no constant term and is of degree d. Thus
g0 = 0. Now we apply (27) to g, obtaining the following conclusion. Either g
is homogeneous of degree 1 or its first-order part g1 is orthogonal to its highest
order part gd. We apply the same reasoning to g, letting πB denote the orthogonal
projection onto the span of the homogeneous part g1. We obtain a map EB(EA(p)),
still of degree d, whose homogeneous expansion now has no terms of order 0 or 1.

Proceeding in this fashion, we increase the order of vanishing without increasing
the degree, stopping when the result is homogeneous. Thus we obtain a sequence of
subspaces A0, . . . , Ad−1 such that composing these tensor product operations yields
something homogeneous of degree d. As the last step, we compose with a linear map
to guarantee that the components are linearly independent. Applying Theorem 4.3,
we obtain the following result about orthogonal homogenization.

Theorem 4.6. Let p be a polynomial mapping such that p(S2n−1) ⊆ S2N−1

and p is of degree d. Then there is a linear L and a finite sequence of subspaces and
tensor products such that

z⊗d = L(EAd−1
(. . . (EA0(p)) . . . )). (29)

Here L = qU , where U is unitary and q is a projection.
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Proof. We repeat the previous discussion in more concise language. If p is
homogeneous, then the conclusion follows from Theorem 4.3. Otherwise, let ν

denote the order of vanishing of p. Thus ν < d and p =
∑d

j=ν pj , where pj is

homogeneous of degree j. By (27), pν is orthogonal to pd on the sphere. By
Lemma 4.6, they are orthogonal everywhere. Let A denote the span of the coefficient
vectors in pν . By Proposition 4.2, the polynomial mapping EA(p) sends the unit
sphere in its domain Cn to the unit sphere in its target. This mapping is also of
degree d, but its order of vanishing exceeds ν. After finitely many steps of this sort,
we reach a homogeneous mapping of degree d. We then apply Theorem 4.3. �

In the next section we will use this result to prove a geometric inequality con-
cerning the maximum volume (with multiplicity counted) of the image of the ball
under a proper polynomial map, given its degree.

Next we illustrate Theorem 4.6 by way of a polynomial mapping S3 to S7.

Example 4.5. Put z = (w, ζ) and p(w, ζ) = (w3, w2ζ, wζ, ζ). Then A0 = 0.
Also A1 is the span of (0, 0, 0, 1), and EA1(p) = (w3, w2ζ, wζ, wζ, ζ2). Now A2 is
the span of the three standard basis vectors e3, e4, and e5 in C5. Tensoring on the
subspace A2 yields

f = E2(E1(p)) = (w3, w2ζ, w2ζ, wζ2, w2ζ, wζ2, wζ2, ζ3).

The image of f is contained in a 4-dimensional subspace of C8. We can apply a
unitary map U to f to get

Uf = (w3,
√
3w2ζ,

√
3wζ2, ζ3, 0, 0, 0, 0).

Finally we project ontoC4 and identify the result with the map z⊗3. In the notation
(29), L = qU is the composition of the unitary map U and the projection q.

5. Vector Fields and Differential Forms

Our second proof of Corollary 4.2 used the differential forms dz and dz in one
dimension. In order to extend the result to higher dimensions, we must discuss
complex vector fields and complex differential forms. We begin by reviewing the
real case. See [Dar] for an alternative treatment of the basics of differential forms
and interesting applications.

As a first step, we clarify one of the most subtle points in elementary calculus.
What do we mean by dx in the first place? High school teachers often say that dx
means an infinitesimal change in the x direction, but these words are too vague to
have any meaning. We proceed in the standard manner.

A vector field on Rn is simply a function V : Rn → Rn. We think geometrically
of placing the vector V (x) at the point x. We make a conceptual leap by regarding
the two copies of Rn as different spaces. (Doing so is analogous to regarding the x
and y axes as different copies of the real line.) For j = 1, . . . , n, we let ej denote the

j-th standard basis element of the first copy of Rn. We write ∂
∂xj

for the indicated

partial differential operator; ∂
∂xj

will be the j-th standard basis vector of the second

copy of Rn.



146 4. GEOMETRIC CONSIDERATIONS

Thus, at each point x = (x1, . . . , xn) of Rn, we consider a real vector
space Tx(R

n) called the tangent space at x. The vector space Tx(R
n) is also

n-dimensional. Here is the precise definition of ∂
∂xj

:

∂

∂xj
(f)(x) =

∂f

∂xj
(x) = lim

t→0

f(x+ tej)− f(x)

t
. (30)

The ∂
∂xj

, for j = 1, . . . , n, form a basis for Tx(R
n). Thus an element of Tx(R

n) is

a vector of the form
∑n

j=1 cj
∂

∂xj
.

Partial derivatives are special cases of directional derivatives. We could there-
fore avoid (30) and instead start with (31), the definition of the directional derivative
of f in the direction v = (v1, . . . , vn):

∂f

∂v
(x) = lim

t→0

f(x+ tv)− f(x)

t
=

n∑

j=1

vj
∂f

∂xj
(x) = V [f ](x). (31)

In this definition (31) of directional derivative, we do not assume that v is a
unit vector. Given a vector field V , we write V =

∑
vj

∂
∂xj

. Then V can be applied

to a differentiable function f , and V [f ] means the directional derivative of f in the
direction v, as suggested by the notation. Thus, Tx(R

n) is the set of directions in
which we can take a directional derivative at x.

Remark 4.8. The viewpoint expressed by the previous sentence is useful when
we replace Rn by a smooth submanifold M . The tangent space Tx(M) is then
precisely the set of such directions. See [Dar].

Remark 4.9. The expression ∂
∂xj

is defined such that ∂
∂xj

(f) equals the direc-

tional derivative of f in the j-th coordinate direction. Warning! The expression
∂

∂xj
depends on the full choice of basis. We cannot define ∂

∂x1
until we have chosen

all n coordinate directions. See Exercise 4.33.

The beauty of these ideas becomes apparent when we allow the base point x
to vary. A vector field becomes a function whose value at each x is an element of
Tx(R

n). Thus a vector field is a function

x �→ V (x) =

n∑

j=1

vj(x)
∂

∂xj
.

A vector field is called smooth if each vj is a smooth function.
We pause to restate the definition of vector field in modern language. Let

T (Rn), called the tangent bundle, denote the disjoint union over x of all the spaces
Tx(R

n). (To be precise, the definition of T (Rn) includes additional information,
but we can safely ignore this point here.) A point in T (Rn) is a pair (x, vx), where
x is the base point and vx is a vector at x. A vector field is a map V : Rn → T (Rn)
such that V (x) ∈ Tx(R

n) for all x. In other words, V (x) = (x, vx). In modern
language, a vector field is a section of the tangent bundle T (Rn). At each x, we
regard V (x) as a direction in which we can differentiate functions defined near x.

Now what is a differential 1-form? We begin by defining df for a smooth
function f . Here smooth means infinitely differentiable.
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Let f : Rn → R be a smooth function. Let V be a vector field; v = V (x) is a
vector based at x; thus V (x) ∈ Tx(R

n). We define df as follows:

df(x)[v] = (df(x), v) =
∂f

∂v
(x) = lim

t→0

f(x+ tv)− f(x)

t
. (32)

The formula on the far right-hand side of (32) is the definition. The other expres-
sions are different notations for the same quantity. In the first formula, df(x) is
a function, seeking a vector v as the input and producing a real number as the
output. In the second formula, df(x) and v appear on equal footing. The third
formula means the rate of change of f in the direction v at x. In coordinates, we
have V (x) =

∑
vj

∂
∂xj

, where v = (v1, . . . , vn) and

df(x)[v] =

n∑

j=1

vj(x)
∂f

∂xj
(x). (33)

Formula (32) gives a precise, invariant definition of df for any smooth function f .
In particular we can finally say what dxk means. Let f = xk be the function that
assigns to a point x in Rn its k-th coordinate, and consider df . The equation
dxk = df gives a precise meaning to dxk. (Confusion can arise because xk denotes
both the k-th coordinate and the function whose value is the k-th coordinate.)

The expression df is called the exterior derivative or total differential of f . We
discuss the exterior derivative in detail in the next section. We can regard df as a
function. Its domain consists of pairs (x, v), where x ∈ Rn and v ∈ Tx(R

n). By
(32), df(x)[v] is the directional derivative of f in the direction v at x. Since taking
directional derivatives depends linearly on the direction, the object df(x) is a linear
functional on Tx(R

n). It is natural to call the space T ∗
x (R

n) of linear functionals
on Tx(R

n) the cotangent space at x. The cotangent space also has dimension n, but
it is distinct both from the domain Rn and from the tangent space. The disjoint
union of all the cotangent spaces is called the cotangent bundle and written T ∗(Rn).
A point in T ∗(Rn) is a pair (x, ξx), where x is the base point and ξx is a co-vector
at x. A differential 1-form is a section of the cotangent bundle. Not all 1-forms
can be written in the form df for some function f . See the discussion after Stokes’
theorem.

Remark 4.10. Assume f is defined near x, for some x ∈ Rn. Then f is
differentiable at x if it is approximately linear there. In other words, we can write
f(x + h) = f(x) + df(x)(h) + error, where the error tends to 0 faster than ||h|| as
h → 0. The same definition makes sense if f is vector valued. In that case we write
Df(x) for the linear approximation. In this setting, Df(x) is a linear map from the
tangent space at x to the tangent space at f(x).

We summarize the discussion, expressing things in an efficient order. For each
x ∈ Rn we presume the existence of a vector space Tx(R

n), also of dimension n. The
union T (Rn) over x of the spaces Tx(R

n) is called the tangent bundle. A vector field
is a section of the tangent bundle. For each smooth real-valued function f , defined
near x, we define df by (32). In particular, when f is the coordinate function xj , we
obtain a definition of dxj . For each smooth f and each x, df(x) is an element of the
dual space T ∗

x (R
n). The union of these spaces is the cotangent bundle. A 1-form

is a section of the cotangent bundle.
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We define the operators ∂
∂xj

by duality. Thus the differentials dxj precede the

operators ∂
∂xj

in the logical development. A 1-form is a combination
∑

bj(x)dxj

and a vector field is a combination
∑

aj(x)
∂

∂xj
.

5.1. Complex Differential Forms and Vector Fields. Our work requires
complex vector fields and complex differential forms. In terms of real coordinates, a
complex vector field on Rm is an expression

∑m
j=1 gj(x)

∂
∂xj

where the functions gj
are smooth and complex valued. Similarly, a complex 1-form onRm is an expression∑m

j=1 hj(x)dxj where the functions hj are smooth and complex valued.

We can identify complex Euclidean space Cn with R2n. Write z = (z1, . . . , zn),
and put zj = xj + iyj (where i is the imaginary unit). We can express vector fields

in terms of the ∂
∂xj

and ∂
∂yj

and differential forms in terms of the dxj and dyj .

Complex geometry is magic; things simplify by working with complex (note the
double entendre) objects. Everything follows easily from one obvious definition.

Definition 4.7. Suppose Ω is an open set in Cn and f : Ω → C is smooth.
Write f = u+ iv where u and v are real valued. We define df by df = du + idv.

Corollary 4.4. Let zj = xj + iyj denote the j-th coordinate function on Cn.
Then dzj = dxj + idyj and dzj = dxj − idyj.

We define complex differentiation by duality as follows in Definition 4.8. We
could also use the formulas in Corollary 4.5 as definitions.

Definition 4.8. For j = 1, . . . n, let { ∂
∂zj

, ∂
∂zj

} denote the dual basis to the

basis {dzj , dzj}. Thus ∂
∂zj

is defined by dzk[
∂

∂zj
] = 0 if j �= k and by dzk[

∂
∂zk

] = 1.

Also, ∂
∂zj

is defined by dzk[
∂

∂zj
] = 0 for all j, k and dzk[

∂
∂zj

] = 0 for j �= k, but

dzk[
∂

∂zk
] = 1.

Differentiable functions g1, . . . , gm form a coordinate system on an open set Ω
in Rm if their differentials are linearly independent on Ω and the mapping g =
(g1, . . . , gm) is injective there. This concept makes sense when these functions are
either real or complex valued. For example, the functions z and z define a coordinate
system on R2, because dx+ idy and dx− idy are linearly independent and the map
(x, y) �→ (x + iy, x− iy), embedding R2 into C2, is injective.

We can regard the 2n functions z1, . . . , zn, z1, . . . , zn as complex-valued coor-
dinates on R2n. The exterior derivative df is invariantly defined, independent of
coordinate system, by (32) and Definition 4.7. Hence, the following equality holds:

df =

n∑

j=1

∂f

∂xj
dxj +

n∑

j=1

∂f

∂yj
dyj =

n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂zj
dzj . (34)

The following formulas then follow by equating coefficients. See Exercise 4.32.

Corollary 4.5.
∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)

(35.1)

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)

. (35.2)
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Suppose f is differentiable on an open set in Cn. By (34), we can decompose
its exterior derivative df into two parts:

df = ∂f + ∂f =

n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂zj
dzj . (36)

Formula (36) defines the splitting of the 1-form df into the sum of a (1, 0)-form and
a (0, 1)-form. The important thing for us is the definition of complex analyticity in
this language.

Definition 4.9. Let Ω be an open subset of Cn. Assume that f : Ω → C and
f is continuously differentiable. Then f is complex analytic if and only if ∂f = 0.
Equivalently, if and only if ∂f

∂zj
= 0 for all j.

The differential equations in Definition 4.9 are called the Cauchy–Riemann
equations. Thus complex analytic functions are the solutions to a first-order system
of partial differential equations. As in one variable, complex analytic functions are
given locally by convergent power series. In Theorem 4.3 we used the power series
expansion of a complex analytic mapping in a ball. For most of what we do, the
crucial point is that the Cauchy–Riemann equations have the simple expression
∂f = 0. By (36), ∂f = 0 means that f is independent of each zj . Part of the magic
of complex analysis stems from regarding z and its conjugate z as independent
variables.

Corollary 4.6. A continuously differentiable function, defined on an open set
in Cn, is complex analytic if and only if df = ∂f .

In the rest of this chapter most of the complex analytic functions we will en-
counter are polynomials. We emphasize the intuitive statement: f is complex
analytic if and only if f is independent of the conjugate variable z = (z1, . . . , zn).

Exercise 4.32. Use (34) to verify (35.1) and (35.2).

Exercise 4.33. This exercise asks you to explain Remark 4.9. Consider the
functions x and y as coordinates on R2. Then by definition, ∂y

∂x = 0. Suppose

instead we choose u = x and v = x+y as coordinates. Then we would have ∂v
∂u = 0.

But ∂(x+y)
∂x = 1. Explain!

6. Differential Forms of Higher Degree

Our work in higher dimensions relies on differential forms of higher degree. This
discussion presumes that the reader has had some exposure to the wedge product
of differential forms and therefore knows intuitively what we mean by a k-form. We
also use the modern Stokes’ theorem, which in our setting expresses an integral of a
2n-form over the unit ball as an integral of a (2n−1)-form over the unit sphere. We
develop enough of this material to enable us to do various volume computations.

Definition 4.10. Let V be a (real or) complex vector space of finite dimension.
A function F : V × · · · × V → C (with k factors) is called a multi-linear form if F
is linear in each variable when the other variables are held fixed. We often say F is
k-linear. It is called alternating if F (v1, . . . , vk) = 0 whenever vi = vj for some i, j
with i �= j.
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Example 4.6. Consider a k-by-k matrix M of (real or) complex numbers.
Think of the rows (or columns) of M as elements of Ck. The determinant function
is an alternating k-linear form on Ck × · · · ×Ck.

Example 4.7. Given vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3, define
F (a, b) = a1b3 − a3b1. Then F is an alternating 2-linear form.

Lemma 4.7. A multi-linear form F (over Rn or Cn) is alternating if and only if
the following holds. For each pair i, j of distinct indices, the value of F is multiplied
by −1 if we interchange the i-th and j-th slots:

F (v1, . . . , vi, . . . , vj , . . . vk) = −F (v1, . . . , vj , . . . vi, . . . , vk). (37)

Proof. It suffices to ignore all but two of the slots and then verify the result
when F is 2-linear. By multi-linearity we have

F (v + w, v + w) = F (v, v) + F (v, w) + F (w, v) + F (w,w). (38)

If F is alternating, then all terms in (38) vanish except F (v, w) + F (w, v). Hence
this term must vanish as well. Conversely, if this term always vanishes, then (38)
gives F (v + w, v + w) = F (v, v) + F (w,w). Put w = −v. We get

0 = F (0, 0) = F (v, v) + F (−v,−v) = F (v, v) + (−1)2F (v, v) = 2F (v, v).

Hence F (v, v) = 0 for all v. �
Remark 4.11. The reader might wonder why we chose the definition of alter-

nating to be the vanishing condition rather than the change of sign condition. The
reason is suggested by the proof. Over R or C, the conditions are the same. If we
were working over more general fields, however, we could not rule out the possibility
that 1 + 1 = 0. In this case the two conditions are not equivalent.

We note that 0 is the only alternating k-linear form on V if k exceeds the
dimension of V . When k equals the dimension of V , the only alternating k-linear
form is a multiple of the determinant.

Exercise 4.34. Verify the statements in the previous paragraph.

We can now introduce differential forms of higher degree.

Definition 4.11. Let V be a (real or) complex vector space of finite dimension
n with dual space V ∗. The collection Λk(V ∗) of all k-linear alternating forms on V
is itself a vector space of dimension

(
n
k

)
. It is called the k-th exterior power of V ∗.

Note that Λ1(V ∗) consists of all 1-linear forms on V ; thus, it is the dual space
of V and Λ1(V ∗) = V ∗. By convention, Λ0(V ∗) equals the ground field R or C.

Definition 4.12. Let Ω be an open subset of Rn. A differential form of degree
k on Ω (or a differential k-form) is a (smooth) section of the k-th exterior power of
the cotangent bundle T ∗(Rn).

At each point x ∈ Ω, we have the vector space Tx(R
n) and its dual space

T ∗
x (R

n). A differential k-form assigns to each x an element of Λk(T ∗
x (R

n)). The
value of the k-form at x is an alternating k-linear form.

By convention, a 0-form is a function. A 1-form assigns to each x a linear
functional on Tx(R

n), as we have seen already. The value of a 2-form at x is a
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machine which seeks two vectors at x as inputs and returns a number. If we switch
the order of the two inputs, we multiply the output by −1.

Forms of all degrees can be generated from 1-forms using the wedge product.
Before giving the definition of the wedge product, we express the idea informally
using bases. Suppose e1, . . . , en form a basis for the 1-forms at a point x. For each
k with 1 ≤ k ≤ n, and each increasing sequence of indices i1 < i2 < · · · < ik, we
define a formal expression eI , written

eI = ei1 ∧ ei2 ∧ · · · ∧ eik . (39)

Note that there are exactly
(
n
k

)
such expressions. We decree that the collection of

these objects form a basis for the space of k-forms. Thus the space of k-forms on
an n-dimensional space has dimension

(
n
k

)
.

We can regard eI as an alternating k-linear form. As written, the index I
satisfies i1 < · · · < ik. We extend the notation by demanding the alternating
property. For example, when k = 2 and l,m are either 1 or 2, we put

(el ∧ em)(v, w) = el(v)em(w) − el(w)em(v).

Then e2 ∧ e1 = −e1 ∧ e2. More generally we put

(e1 ∧ · · · ∧ ek)(v1, . . . , vk) = det(ei(vj)). (40)

Example 4.8. Consider R3 with basis e1, e2, e3. The zero forms are spanned
by the constant 1. The 1-forms are spanned by e1, e2, e3. The 2-forms are spanned
by e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3. The 3-forms are spanned by e1 ∧ e2 ∧ e3.

Exercise 4.35. For 0 ≤ k ≤ 4, list bases for the k-forms on a 4-dimensional
space.

A relationship between wedge products and determinants is evident. It is there-
fore no surprise that we define the wedge product in a manner similar to the Laplace
expansion of a determinant.

First we recall the algebraic definition of the determinant. The motivation is
geometric; det(v1, . . . , vn) measures the oriented volume of the n-dimensional box
spanned by these vectors. We normalize by assuming that the volume of the unit
n-cube is 1.

Definition 4.13. Let V be either Rn or Cn. The determinant, written det, is
the unique alternating n-linear form whose value on e1, . . . , en is 1.

The Laplace expansion of the determinant follows from the definition. Suppose
vj =

∑
cjkek. We compute det(v1, . . . , vn) by the definition. Multi-linearity yields

det(v1, . . . , vn) =
n∑

k1=1

n∑

k2=1

· · ·
n∑

kn=1

n∏

j=1

cjkjdet(ek1 , . . . , ekn).

Next we apply the alternating property to rewrite the determinant of each
(ek1 , . . . ekn). If indices are repeated, we get 0. Otherwise we get ±1, depending
on the signum of the permutation of the indices. We obtain the standard Laplace
expansion of the determinant

det(cjk) =
∑

τ

sgn(τ)

n∏

j=1

cj τ(j). (41)
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A permutation τ on n objects is a bijection on the set of these objects. The
expression sgn(τ) is either 1 or −1; it equals 1 when τ is an even permutation and
−1 when τ is an odd permutation. Thus sgn(τ) is the parity of the number of
interchanges (of pairs of indices) required to put the indices in the order 1, 2, . . . , n.

Exercise 4.36. Show that sgn(τ) =
∏

1≤i<j≤n
τ(i)−τ(j)

i−j .

Exercise 4.37. Show that sgn(τ1 ◦ τ2) = sgn(τ1)sgn(τ2). Suggestion: Use the
previous exercise.

The wedge product is defined in a similar fashion:

Definition 4.14. The wedge product of a k-form α and an l-form β is the
(k + l)-form α ∧ β defined by

(α ∧ β)(v1, . . . , vk+l) =
∑

τ

sgn(τ)α(vτ(1), . . . , vτ(k))β(vτ(k+1), . . . , vτ(k+l)). (42)

The sum in (42) is taken over all permutations τ on k + l objects.

Proposition 4.7 (Properties of the wedge product). Let α, β, β1, β2 be differ-
ential forms. Then:

(1) α ∧ (β1 + β2) = (α ∧ β1) + (α ∧ β2).
(2) α ∧ (β1 ∧ β2) = (α ∧ β1) ∧ β2.
(3) α ∧ β = (−1)klβ ∧ α if α is a k-form and β is an l-form.

Proof. Left to the reader as Exercise 4.38. �
The exterior derivative d is one of the most important and elegant operations

in mathematics. When η is a k-form, dη is a (k + 1)-form. When η is a function
(a 0-form), dη agrees with our definition from (32). We can extend d to forms
of all degrees by proceeding inductively on the degree of the form. After stating
Theorem 4.7, we mention a more elegant approach.

If f is a function, then df is defined as in (32) by df [v] = ∂f
∂v . In coordinates,

df =
∑ ∂f

∂xj
dxj . When g =

∑
j gjdxj is an arbitrary 1-form, we define dg by

dg =
∑

j

dgj ∧ dxj =
∑

j

∑

k

∂gj
∂xk

dxk ∧ dxj =
∑

k<j

(
∂gj
∂xk

− ∂gk
∂xj

)dxk ∧ dxj . (43)

On the far right-hand side of (43), we have rewritten dg using dxk∧dxj = −dxj∧dxk

to make the indices increase. The terms dxj ∧ dxj drop out. For example,

d(Pdx+Qdy) =
∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy = (

∂Q

∂x
− ∂P

∂y
)dx ∧ dy. (44)

Suppose in (44) that Pdx + Qdy = df for some smooth function f . Then
the equality of mixed second partial derivatives and (44) show that d(df) = 0.
This statement in the language of differential forms is equivalent to the classical
statement “the curl of a gradient is 0.” In fact d2 = 0 in general; see Theorem 4.7
and Exercise 4.38.

Let η be a k-form. We wish to define dη in coordinates. To simplify the
notation, write

dxJ = dxj1 ∧ dxj2 ∧ · · · ∧ dxjk .
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Then we can write η =
∑

J ηJdx
J where the ηJ are functions and each J is a k-tuple

of indices. We proceed as we did for 1-forms and put

dη =
∑

J

dηJ ∧ dxJ =
∑

J

∑

k

∂ηJ
∂xk

dxk ∧ dxJ .

Thus dη =
∑

gLdx
L, where now L is a (k + 1)-tuple of indices.

The following standard result, which applies in the setting of smooth manifolds,
characterizes d. We omit the simple proof, which can be summarized as follows.
Choose coordinates, use the properties to check the result in that coordinate system,
and then use the chain rule to see that d is defined invariantly.

Theorem 4.7. There is a unique operator d mapping smooth k-forms to smooth
(k + 1)-forms satisfying the following properties:

(1) If f is a function, then df is defined by (32).
(2) d(α + β) = dα+ dβ.
(3) d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ if α is a p-form.
(4) d2 = 0.

It is possible to define d without resorting to a coordinate system. The definition
on 0-forms is as in (32). We give the definition only for 1-forms. Let η be a 1-form;
the 2-form dη requires two vector fields as inputs; it must be alternating and multi-
linear. Thus we will define dη(v, w) for vector fields v and w.

We regard v and w as differential operators by recalling that v(f) = df(v) for
smooth functions f . Earlier we wrote df [v], but henceforth we will use the symbol
[, ] in another manner. We therefore use parentheses for the application of a 1-form
on a vector field and for the action of a vector field on a function. We wish to define
the expression dη(v, w).

Definition 4.15. Let v and w be vector fields. Their Lie bracket , or com-
mutator, is the vector field [v, w] defined by [v, w](f) = v(w(f)) − w(v(f)). Here
f is a smooth function, and we regard a vector field as a differential operator.
(Exercise 4.39 asks you to check that the commutator is a vector field.)

We can now define dη. Given vector fields v and w, we put

dη(v, w) = v(η(w)) − w(η(v)) − η([v, w]).

The notation v(η(w)) here means the derivative of the function η(w) in the
direction v. The full expression is alternating in v and w. The term involving
commutators is required to make certain that dη is linear over the functions. See
Exercise 4.40. This formula (and its generalization to forms of all degrees) is known
as the Cartan formula for the exterior derivative.

Exercise 4.38. Show that d2 = 0. Recall, for smooth functions f , we have

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
.

Exercise 4.39. Verify that the commutator of two vector fields is a vector
field. Suggestion: Use coordinates.
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Exercise 4.40. Suppose we tried to define a 2-form ζ by ζ(v, w) = v(η(w))
−w(η(v)). Show that ζ(gv, w) �= gζ(v, w) in general, and thus linearity fails. Then
show that the commutator term in the definition of dη enables linearity to hold.

Equation (44) fits nicely with Green’s theorem. The line integral of the 1-form
η = Pdx+Qdy around a simple closed curve equals the double integral of dη over
the curve’s interior. The generalization of this result to forms of all degrees is known
as the modern Stokes’ theorem. This theorem subsumes many results, including the
fundamental theorem of calculus, Green’s theorem, Gauss’s divergence theorem, and
the classical Stokes’ theorem, and it illuminates results such as Maxwell’s equations
from the theory of electricity and magnetism. We state it only for domains in RN ,
but it holds much more generally. We will apply Stokes’ theorem only when the
surface in question is the unit sphere, which is oriented by the outward normal
vector.

Theorem 4.8 (Stokes’ theorem). Let S = bΩ be a piecewise-smooth-oriented
(N−1)-dimensional surface bounding an open subset Ω of RN . Let η be an (N−1)-
form that is smooth on Ω and continuous on Ω ∪ bΩ. Then

∫

bΩ

η =

∫

Ω

dη.

Corollary 4.7. If dη = 0, then
∫
bΩ η = 0.

Theorem 4.8 holds whether or not bΩ is connected, as long as one is careful
with orientation. If Ω is the region between concentric spheres, for example, then
the spheres must be oppositely oriented.

Each 1-form η on an open subset of RN can be written η =
∑N

j=1 gjdxj , where
the gj are smooth functions. A 1-form η is called exact if there is a smooth function

f such that η = df ; thus gj =
∂f
∂xj

. Readers who are familiar with using line integrals

to compute work will recognize that exact 1-forms correspond to conservative force
fields. More generally, a k-form η is exact if there is a (k − 1)-form α with dα = η.
A necessary condition for being exact arises from the equality of mixed partial
derivatives. A form η is called closed if dη = 0. That exact implies closed follows
directly from d2 = 0.

If a form is closed on an open set, it need not be exact there. The standard
examples are of course

η =
−ydx+ xdy

x2 + y2
(45.1)

η =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)
3
2

. (45.2)

These are defined on the complement of the origin in R2 and R3, respectively.
The form in (45.2) provides essentially the same information as the electrical or
gravitational field due to a charge or mass at the origin.

Such forms lead to the subject of deRham cohomology. One relates the existence
and number of holes in a space to whether closed forms are exact.
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Exercise 4.41. Prove Proposition 4.7.

Exercise 4.42. For 0 < r < ∞ and 0 ≤ θ < 2π, put (x, y) = (r cos(θ), r sin(θ)).
Show that dx ∧ dy = rdr ∧ dθ.

Exercise 4.43. For 0 < ρ < ∞, for 0 ≤ θ < 2π, and for 0 ≤ φ < π, put

(x, y, z) = (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ)).

Compute dx ∧ dy ∧ dz in terms of ρ, θ, φ, dρ, dθ, dφ.

Exercise 4.44. Express the complex 1-form dz
z in terms of x, y, dx, dy. Express

the form in (45.1) in terms of dz and dz.

Exercise 4.45. Show that dz ∧ dz = −2idx ∧ dy.

Exercise 4.46. Put z = reiθ . Compute dz ∧ dz.

Exercise 4.47. Put η = dx1 ∧ dx2 + dx3 ∧ dx4. Find η ∧ η. The answer is
not 0. Explain.

Exercise 4.48. Verify that the forms in (45.1) and (45.2) are closed but not
exact. (To show they are not exact, use Stokes’ theorem on concentric circles or
concentric spheres.) For n ≥ 3, what is the analogue of (45.2) for the complement
of the origin in Rn?

Exercise 4.49. Use wedge products to give a test for deciding whether a col-
lection of 1-forms is linearly independent.

Exercise 4.50. For n ≥ k ≥ 2, let r1, . . . rk be smooth real-valued functions
on Cn. Show that it is possible for dr1, . . . , drk to be linearly independent while
∂r1, . . . , ∂rk are linearly dependent. Here ∂r =

∑ ∂r
∂zj

dzj . This problem is even

easier if we drop the assumption that the rj are real valued. Why?

7. Volumes of Parametrized Sets

Our next geometric inequality extends the ideas of Proposition 4.2 to higher
dimensions. Things are more complicated for several reasons, but we obtain a sharp
inequality on volumes of images of proper polynomial mappings between balls. We
will also perform some computations from multivariable calculus which are useful
in many contexts.

We begin with a quick review of higher-dimensional volume. Let Ω be an open
subset of Rk. Let u1, . . . , uk be coordinates on Rk. The ordering of the uj, or
equivalently the duj , defines the orientation on Rk. We write

dV = dVk = dVk(u) = du1 ∧ · · · ∧ duk

for the Euclidean volume form. When u = F (x) is a change of variables, preserving
the orientation, we obtain

dV (u) = det(DF (x))dV (x).

Suppose F : Ω → RN is continuously differentiable and injective, except per-
haps on a small set. Let us also assume that the derivative map DF : Rk → RN

is injective, again except perhaps on a small set. At each x, DF (x) is a linear
map from Tx(R

k) → TF (x)(R
N ). Let (DF )(x)∗ denote the transpose of DF (x).
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Then (DF )(x)∗ : TF (x)(R
N ) → Tx(R

k). The composition (DF )∗(x)DF (x) is then

a linear mapping from the space Tx(R
k) to itself, and hence, its determinant is

defined. The k-dimensional volume of the set F (Ω) is then given by an integral

Vol(F (Ω)) =

∫

Ω

√
det((DF )∗DF )dVk. (46)

Example 4.9. Let Ω denote the unit disk in R2. Define Fα : Ω → R4 by

Fα(x, y) = (cos(α)x, cos(α)y, sin(α)(x2 − y2), sin(α)2xy).

Computation shows that

DFα =

⎛

⎜
⎜
⎝

cos(α) 0
0 cos(α)

2xsin(α) −2ysin(α)
2ysin(α) 2xsin(α)

⎞

⎟
⎟
⎠ . (47)

Matrix multiplication shows that DF ∗
α(x, y)DFα(x, y) is the matrix in (48):

(
cos2(α) + 4(x2 + y2)sin2(α) 0

0 cos2(α) + 4(x2 + y2)sin2(α)

)

. (48)

Hence,
√
det(DF ∗

αDFα) = cos2(α)+4(x2+y2)sin2(α). Thus, the area of the image
of the unit disk B1 under Fα is the integral

∫

B1

(cos2(α) + 4(x2 + y2)sin2(α))dxdy = π(1 + sin2(α)). (49)

Example 4.10. To anticipate a later development, we find the 3-dimensional
volume of S3. Let Ω denote the open subset of R3 defined by the inequalities
0 < r < 1, 0 < θ < 2π, 0 < φ < 2π. We parametrize (most of) S3 by

(r, θ, φ) �→ F (r, θ, φ) = (r cos(θ), r sin(θ), s cos(φ), s sin(φ)).

Here s =
√
1− r2. Note that both θ and φ range from 0 to 2π; they are not the

usual spherical coordinates on S2. Computing DF and DF ∗ gives

(DF )∗ =

⎛

⎝
cos(θ) sin(θ) −r

s2 cos(φ)
−r
s2 sin(φ)−r sin(θ) r cos(θ) 0 0

0 0 −s sin(φ) s cos(φ).

⎞

⎠

Multiplying (DF )∗ by DF and computing determinants yields the 3-dimensional
volume form rdrdθdφ on the sphere. Thus

Vol(S3) =

∫ 2π

0

∫ 2π

0

∫ 1

0

rdrdθdφ = (2π)2
1

2
= 2π2.

We are interested in images of sets in Cn under complex analytic mappings.
When f is a complex-analytic and equi-dimensional mapping, we write f ′ for its
derivative and Jf for its Jacobian determinant. Thus

Jf = det

(
∂fj
∂zk

)

.

Volume computations simplify in the complex-analytic case, even when f is not
equi-dimensional. We could express Example 4.9 using the complex analytic map
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fα defined by fα(z) = (cos(α)z, sin(α)z2), and we easily obtain (49). The following
result in the equi-dimensional case explains why:

Lemma 4.8. Suppose f : Ω ⊆ Cn → Cn is complex analytic. Define F : R2n →
R2n by F (x, y) = (Re(f(x + iy)), Im(f(x + iy))). Then det(DF ) = |det(f ′)|2 =
|Jf |2. In particular, F preserves orientation.

Proof. When u = F (x) is a change of variables on Rk, then dV (u) =
±det((DF )(x))dV (x). The proof amounts to rewriting this equality using complex
variables and their conjugates and using the relationship between wedge products
and determinants.

Put w = f(z), where both z and w are in Cn. Put w = u+ iv and z = x+ iy.
In real variables we have

dV2n(u, v) = du1∧dv1 ∧· · ·∧dun∧dvn = det(DF )dx1 ∧dy1∧· · ·∧dxn ∧dyn. (50)

We will write the volume forms in the z, z variables in the domain and the w,w
variables in the target. Note that

dwj =
∑ ∂fj

∂zk
dzk.

Hence dw1 ∧ · · · ∧ dwn = det(
∂fj
∂zk

) dz1 ∧ · · · ∧ dzn = (Jf) dz1 ∧ · · · ∧ dzn.

Recall from Exercise 4.45 that dzj ∧ dzj = (−2i)dxj ∧ dyj and similarly for the
w variables. Putting everything together we get

dV2n(u, v) = du1 ∧ dv1 ∧ · · · ∧ dun ∧ dvn = (
i

2
)ndw1 ∧ dw1 ∧ · · · ∧ dwn ∧ dwn

= |det(f ′(z))|2( i
2
)ndz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

= |det(f ′(z))|2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = |det(f ′(z))|2dV2n(x, y). (51)

Comparing (50) and (51) finishes the proof. �
Exercise 4.51. Prove (51) using the real form of the Cauchy–Riemann equa-

tions. The computation is somewhat punishing; do it only in two complex variables
where you will deal with four-by-four matrices.

We continue discussing higher-dimensional volumes of complex analytic images.
Let Ψ denote the differential form on CN defined by

Ψ =
i

2

N∑

j=1

dζj ∧ dζj .

The factor i
2 arises because dz∧dz = −2idx∧dy in one dimension. See Exercise 4.45.

The form Ψk, where we wedge Ψ with itself k times, is used to define 2k-dimensional
volume. As before we take multiplicity into account.

Definition 4.16. (2k-dimensional volume) Let Ω be an open subset in Ck,
and suppose that f : Ω → CN is complex analytic. We define V2k(f,Ω), the (2k)-
dimensional volume with multiplicity counted, by (52):

V2k(f,Ω) =

∫

Ω

(f∗Ψ)k

k!
=

1

k!
(
i

2
)k
∫

Ω

(

N∑

j=1

∂fj ∧ ∂fj)
k. (52)
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Remark 4.12. Equation (52) is the natural definition based on our L2

perspective. When f is not injective, the formula takes multiplicity into account.
For w ∈ CN , let #(f, w) denote the number of points in Ω ∩ f−1(w). Then we
could define V2k(f,Ω) by

V2k(f,Ω) =

∫

CN

#(f, w)dh2k(w).

Here dh2k(w) is the 2k-dimensional Hausdorff measure. The so-called area formula
from geometric measure theory shows under rather general hypotheses, met in our
context, that this computation agrees with (52).

We are primarily interested in the case when Ω is the unit ball Bk; in this case
we abbreviate V2k(f,Ω) by Vf . In (52) the upper star notation denotes pullback,
and the k! arises because there are k! ways to permute the indices from 1 to k.

The form (f∗Ψ)k

k! is rdV , where dV = dV2k is the Euclidean volume form in k
complex dimensions, for some function r depending on f . The next section provides
techniques for evaluating the resulting integrals.

Remark 4.13. Caution! In the complex 2-dimensional case, the volume form
is h dV4, where h = EG− |F |2 and

E = ||∂f
∂z

||2,

G = || ∂f
∂w

||2,

F = 〈∂f
∂z

,
∂f

∂w
〉.

No square root appears here. By contrast, in the real case, the classical formula for
the surface area form is

√
EG− F 2, where E,G, F have analogous definitions.

Example 4.11. We consider several maps from B2 to C3. Using (52) and the
methods of the next section, we obtain the following values:

(1) Put g(z, w) = (z, 0, w). Then Vg = π2

2 .

(2) For 0 ≤ λ ≤ √
2, put f(z, w) = (z2, λzw,w2). Then Vf = 2(λ2+1)

3 π2.

The first map is injective, and Vf gives the volume of the image. For λ �= 0, the
second map is generically two to one. If (a, b, c) is in the image of f , and (a, b, c) is
not the origin, then f−1(a, b, c) has precisely two points. When λ2 = 2, we obtain
4 times the volume of the unit ball. See Theorem 4.9. When λ = 0, the answer is
4
3 times the volume of the unit ball.

Example 4.12. Define h : C2 → C3 by h(z, w) = (z, zw,w2). This map and
its generalization to higher dimensions will play an important role in our work,
because h maps the unit sphere in C2 into the unit sphere in C3. Here it illustrates
the subtleties involved in computing multiplicities. Let p = (a, b, c) be a point in
C3. Suppose first that a �= 0. Then h−1(p) is empty unless b2 = ca2, in which
case h−1(p) is a single point. When a = 0, things change. If b �= 0, then h−1(p) is
empty. If a = b = 0, then h−1(p) consists of two points for c �= 0 and one point
with multiplicity two if c = 0.
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We will use the expanded version of the far right-hand side of (53) to compute
volumes. Let Ω be an open set in Ck, and assume that f : Ω → CN is complex
analytic. Here we allow the target dimension to differ from the domain dimension.
We define the pointwise squared Jacobian ||Jf ||2 by

||Jf ||2 =
∑

|J(fi1 , . . . , fik)|2 =
∑

|J(fI)|2. (53)

The sum in (53) is taken over all increasing k-tuples. Equivalently, we form all
possible Jacobian determinants of k of the component functions and sum their
squared moduli. Recall, in the equi-dimensional case, that

Jg = det

(
∂gj
∂zk

)

.

Exercise 4.52. Let α =
∑3

j=1 ∂fj ∧ ∂fj. Find α ∧ α ∧ α by expanding and

compare with (53).

The next lemma provides another method for finding Vf . Let r be a twice
differentiable function of several complex variables. The complex Hessian of r is

the matrix (rjk) =
(

∂2r
∂zj∂zk

)
. Lemma 4.9 relates the determinant of the Hessian

of ||f ||2 to the Jacobian Jf , when f is a complex analytic mapping. This lemma
allows us to compute one determinant, rather than many, even when N > n.

Lemma 4.9. If f : Ck → CN is complex analytic, then ||Jf ||2 = det
(
(||f ||2)jk

)
.

Proof. See Exercise 4.53. �

To find the volume (with multiplicity accounted for) of the image of a complex
analytic mapping f : Ω ⊆ Ck → CN , we must either integrate the determinant of
the Hessian of ||f ||2 or sum the L2 norms of each Jacobian J(fj1 , . . . , fjk) formed
from the components of f :

V2k(f,Ω) =

∫

Ω

||Jf ||2dV2k =

∫

Ω

det
(
(||f ||2)jk

)
dV2k. (54)

Exercise 4.53. Put r(z, z) =
∑N

j=1 |fj(z)|2 = ||f(z)||2. Use differential forms
to prove Lemma 4.9.

8. Volume Computations

Our next goal is to compute the 2n-dimensional volume of the image of the
unit ball in Cn under the mapping z �→ z⊗m. As a warm-up, suppose n = 1. Then
the map z �→ zm covers the ball m times, and hence the area of the image with
multiplicity counted is πm. We get the same answer using integrals:

A =

∫

B1

|mzm−1|2dV = m2

∫ 2π

0

∫ 1

0

r2m−1drdθ = m2 2π

2m
= πm. (55)

In order to help us do computations and to simplify the notation, we recall
and extend our discussion of multi-index notation from Sect. 4. A multi-index α
is an n-tuple α = (α1, . . . , αn) of nonnegative numbers, not necessarily integers.
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When the αj are integers, we write |α| = ∑n
j=1 αj and α! =

∏n
j=1 αj !. In case

d = |α|, we write multinomial coefficients using multi-indices:
(
d

α

)

=
d!

α!
=

d!

α1! . . . αn!
.

Multi-indices are especially useful for writing polynomials and power series. If
z ∈ Cn, we write

zα =
n∏

j=1

(zj)
αj

|z|2α =

n∏

j=1

|zj|2αj .

The multinomial theorem gives the following result from Sect. 4:

||z||2d = (

n∑

j=1

|zj |2)d =
∑

|α|=d

(
d

α

)

|z|2α.

In order to help us find volumes in higher dimensions, we introduce the Γ-
function. For x > 0, we let Γ(x) denote the Gamma function:

Γ(x) =

∫ ∞

0

e−ttx−1dt.

The integral is improper at t = 0 for x < 1, but it converges there for x > 0. When n
is an integer and n ≥ 0, then Γ(n+1) = n!. More generally, Γ(x+1) = xΓ(x). This
property enables one to extend the definition of the Γ-function. The integral defining
Γ(x) converges when x is complex and Re(x) > 0. The formula Γ(x + 1) = xΓ(x)
provides a definition when −1 < Re(x) < 0 and, by induction, a definition whenever
Re(x) is not a negative integer or zero (Fig. 4.5).

1 2 3−3 2 −1

−10

−5

5

1.0

Figure 4.5. The Gamma function

It is useful to know that Γ(12 ) =
√
π. Exercise 4.55 asks for a proof; the result

is equivalent to the evaluation of the Gaussian integral from Proposition 3.4. One
squares the integral and changes variables appropriately.
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Let K+ denote the part of the unit ball in Rn lying in the first orthant; that
is, K+ = {x :

∑
x2
j ≤ 1 and xj ≥ 0 for all j}. Let α be an n-tuple of positive real

numbers. We define an n-dimensional analogue of the Euler Beta function by

B(α) =
∏

Γ(αj)

Γ(|α|) . (56)

The expression (56) is the value of a certain integral

B(α) = 2n|α|
∫

K+

r2α−1dV (r). (57)

Note the use of multi-index notation in (57); 2α − 1 means the multi-index whose
j-th entry is 2αj − 1. Thus r2α−1 means

n∏

j=1

r
2αj−1
j .

The notation r = (r1, . . . , rn) has a specific purpose. Certain integrals over balls in
Cn (See Lemma 4.10) reduce to integrals such as (57) when we use polar coordinates
in each variable separately; that is, zj = rje

iθj .

Corollary 4.8. The volume of the unit ball in Rn is
Γ( 1

2 )
n

Γ(n
2 +1) .

Proof. Put α = (12 ,
1
2 , . . . ,

1
2 ) in (57) and use (56). �

Exercise 4.54. Verify that Γ(x+ 1) = xΓ(x) and Γ(n+ 1) = n!.

Exercise 4.55. Show that Γ(12 ) =
√
π.

Exercise 4.56. Express the formula for the volume of the unit ball in Rn in
the form cnπ

n. (Use the previous two exercises.)

Exercise 4.57. Put β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt for a, b > 0. This integral is

the classical Euler Beta function. By first computing Γ(a)Γ(b), evaluate it in terms
of the Γ-function. Explain the relationship with (57).

Exercise 4.58. Prove that (56) and (57) are equivalent.

Remark 4.14. Integrals of the form
∫ 2π

0
cosk(θ)sinl(θ)dθ (for integer exponents)

are easily evaluated by using the complex form of the exponential. Integrals of the

form
∫ π

2

0
cosk(θ)sinl(θ)dθ are harder. Such integrals reduce to Beta functions:

β(a, b) =

∫ 1

0

ta−1(1− t)b−1dt = 2

∫ π
2

0

sin2a−1(θ)cos2b−1(θ)dθ,

even when a and b are not integers.

Exercise 4.59. Use the Euler Beta function to verify the following duplication
formula for the Γ function.

Γ(x)

Γ(2x)
= 21−2x Γ(12 )

Γ(x+ 1
2 )

. (58)

Suggestion: First multiply both sides by Γ(x). The left-hand side of the result is
then β(x, x). Write it as a single integral over [0, 1] as in Exercise 4.57. Rewrite by
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symmetry as twice the integral over [0, 1
2 ]. Then change variables by 2t = 1 −√

s.

You will obtain 21−2xβ(x, 1
2 ) and (58) follows.

Exercise 4.60. Put φ(x, y) = Γ(x)Γ(x+y)
Γ(2x)Γ(y) . Find φ(x, 1

2 ) and φ(x, 3
2 ). Show that

φ(x,
5

2
) = 21−2x (1 + 2x)(3 + 2x)

3
.

Exercise 4.61. (Difficult) Verify the following formula for Γ(z)Γ(1− z):

Γ(z)Γ(1− z) =
π

sin(πz)
.

Suggestion: First obtain a Beta function integral. Convert it to an integral over
[0,∞). Then use contour integration. The computation is valid for all complex
numbers except the integers. See also Exercise 3.45.

The Γ function also arises naturally in the following exercise.

Exercise 4.62 (For those who know probability). Let X be a Gaussian random
variable with mean 0 and variance σ2. Use the fundamental theorem of calculus
to find the density of the random variable X2. The answer is called the Γ-density
with parameters 1

2 and 1
2σ2 . Use this method to show that Γ(12 ) =

√
π.

We will evaluate several integrals using the n-dimensional Beta function. Recall
the notation |z|2α =

∏ |zj|2αj used in (60).

Lemma 4.10. Let d be a nonnegative integer, and let α be a multi-index of
nonnegative real numbers. Let Bn denote the unit ball in Cn. Then

∫

Bn

||z||2ddV =
πn

(n− 1)!(n+ d)
. (59)

∫

Bn

|z|2αdV =
πn

(n+ |α|)B(α+ 1). (60)

Proof. We use polar coordinates in each variable separately; to evaluate (59),
we have

I =

∫

Bn

||z||2ddV2n = (2π)n
∫

K+

||r||2d
∏

rjdVn.

We then expand ||r||2d using the multinomial theorem to obtain (61)

I = πn2n
∑

|γ|=d

(
d

γ

)∫

K+

r2γ+1dVn. (61)

Using formulas (56) and (57) for the Beta function in (61) we obtain

I = πn
∑

|γ|=d

(
d

γ

)B(γ + 1)

|γ + 1| = πn
∑

|γ|=d

d!
∏

γj

∏
γj

(d+ n)Γ(d+ n)
= πn d!

(d+ n)!

∑

|γ|=d

1.

(62)
By Exercise 4.30, the number of independent homogeneous monomials of degree

d in n variables is
(
n+d−1

d

)
. We replace the sum in the last term in (62) with this

number to obtain the desired result:

I = πn d!

(d+ n)!

(n+ d− 1)!

(n− 1)!d!
=

πn

(n− 1)!(n+ d)
. (63)
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The calculation of (60) is similar but easier as there is no summation to compute
∫

Bn

|z|2αdV2n = (2π)n
∫

K+

r2α+1dVn = πnB(α+ 1)

|α|+ n
.

�
For convenience we write (60) when n = 2 and a, b are integers:

∫

B2

|z|2a|w|2bdV4 =
π2a!b!

(a+ b+ 2)!
. (64)

We return to the homogeneous mapping Hm(z). We consider Hm : Bk → CN ,

where N =
(
k+m−1
k−1

)
, the dimension of the space of homogeneous polynomials of

degree m in k variables. We use the following lemma to find (Theorem 4.9) an
explicit formula for the 2k-dimensional volume (with multiplicity counted) of the
image of the unit ball under Hm.

Lemma 4.11. The pullback k-th power (H∗
m(Ψ))k satisfies the following:

(H∗
m(Ψ))k = mk+1k!||z||2k(m−1)dV2k. (65)

Proof. Note first that (H∗
m(Ψ))k is a smooth (2k)-form, and hence a multiple

τ of dV2k. Note next that Hm is invariant under unitary transformations, and
therefore τ must be a function of ||z||2. Since Hm is homogeneous of degree m, each
first derivative is homogeneous of degree m− 1. The (1, 1) form H∗

m(Ψ) must then
have coefficients that are bihomogeneous of degree (m − 1,m− 1). The coefficient
τ of its k-th power must be homogeneous of degree 2k(m − 1). Combining the
homogeneity with the dependence on ||z||2 gives the desired expression, except for
evaluating the constant mk+1k!.

For simplicity we write |dzj |2 for dzj ∧ dzj . To evaluate the constant it suffices

to compute the coefficient of |z1|2k(m−1). To do so, we compute dHm and then work
modulo z2, . . . , zn. Thus, in the formula for (H∗

m(Ψ))k, we set all variables equal to
zero except the first. Doing so yields

H∗
m(Ψ) = m2|z1|2m−2|dz1|2 +m|z1|2m−2

k∑

j=2

|dzj|2. (66)

From (66) it suffices to compute

(m2|dz1|2 +m

k∑

j=2

|dzj |2)k. (67)

Expanding (67) yields

k!mk+1dz1 ∧ dz1 ∧ . . . ∧ dzk ∧ dzk,

and (65) follows by putting the factor |z1|(2m−2)k from (66) back in. �
Theorem 4.9. Let f : Bn → BK be a proper complex analytic homogeneous

polynomial mapping of degree m. The 2n-dimensional volume Vf (with multiplicity
counted) is given by

Vf = mnπn 1

n!
. (68)
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Proof. Consider the function ||f ||2. Since
||f(z)||2 = 1 = ||z||2m = ||Hm(z)||2

on the unit sphere, and both f and Hm are homogeneous, this equality holds ev-
erywhere. Hence, ||f ||2 = ||Hm||2, and these two functions have the same complex
Hessian determinant. By Lemma 4.9 they determine the same volume form:

∑

I

|J(fI)|2 =
∑

I

|J((Hm)I))|2,

and hence by Lemma 4.11

Vf =

∫

Bn

(H∗
m(Ψ))n

n!
=

∫

Bn

mn+1||z||2n(m−1)dV2n.

Lemma 4.10 yields

Vf = mn+1 πn

(n(m− 1) + n)

1

(n− 1)!
=

mnπn

n!
.

As a check we observe, when m = 1, that Vf = πn

n! , which is the volume of Bn.
When n = 1, we obtain Vf = πm, also the correct result, as noted in (55). �

The factor of mn in (68) arises because the image of the unit sphere in Cn

covers m times a subset of the unit sphere in the target. Compare with item (2) of
Example 4.11.

9. Inequalities

We are now ready to state a sharp inequality in Theorem 4.10. The proof of this
volume comparison result combines Theorems 4.6, 4.9, and Theorem 4.11 (proved
below). Theorem 4.11 generalizes Proposition 4.2 to higher dimensions. Our proof
here uses differential forms; the result can also be proved by elaborate computation.
See [D4] for the computational proof.

Theorem 4.10. Let p : Cn → CN be a polynomial mapping of degree m.
Assume that p(S2n−1) ⊆ S2N−1. Then Vp ≤ mnπn

n! . Equality happens if and only if
p is homogeneous of degree m.

Proof. If p is a constant mapping, then m = 0 and the conclusion holds.
When p is homogeneous of degree m, the result is Theorem 4.9. When p is not ho-
mogeneous, we apply the process from Theorem 4.6 until we obtain a homogeneous
mapping. The key point is that the operation of tensoring with z on a subspace A
increases the volume of the image, in analogy with Proposition 4.2. Since tensoring
on a k-dimensional subspace gives the same result as tensoring k times on one-
dimensional subspaces, we need only show that the volume of the image increases
if we tensor on a one-dimensional space.

We must therefore establish the following statement, which we state and prove
as Theorem 4.11 below. Put f = (f1, . . . , fN). Put

g = (z1f1, . . . , znf1, f2, . . . , fN). (69)

Then Vf ≤ Vg, with equality only if f1 = 0.
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Each tensor operation from Theorem 4.6 then increases the volume. We stop
when we reach a homogeneous map. Theorem 4.9 then gives the volume mnπn

n! , the
stated upper bound. �

With g as in (69), we need to verify that Vf ≤ Vg. We proved this result
(Corollary 4.2) when n = N = 1, in two ways. As noted above, one can prove the
general result in both fashions. We give the proof involving a boundary integral.

Let us first recall what we mean by the volume form on the unit sphere in RN .
It is convenient to introduce the notion of interior multiplication. Assume η is a
k-form, and write

η = dxj ∧ τ + μ,

where μ does not contain dxj . The contraction in the j-th direction, or interior

product with ∂
∂xj

, is the (k − 1)-form Ij(η), defined by Ij(η) = τ . Informally

speaking, we are eliminating dxj from η. More precisely, we define Ij(η) by its
action on vectors v2, . . . , vk:

Ij(η)(v2, . . . , vk) = η(
∂

∂xj
, v2, . . . , vk).

We use this notation to write a standard expression from calculus. The Euclidean
(N − 1)-dimensional volume form on the sphere is given by

σN−1 =

N∑

j=1

xj(−1)j+1Ij(dx1 ∧ · · · ∧ dxN ).

For example, when N = 2 (and x, y are the variables), we have σ1 = xdy − ydx.
When N = 3 (and x, y, z are the variables), we have

σ2 = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy.

Note that dσN−1 = N dVN , where dVN is the volume form on Euclidean space. It
follows immediately from Stokes’ theorem that the (N − 1)-dimensional volume of
the unit sphere is N times the N -dimensional volume of the unit ball.

Remark 4.15. In the previous paragraph, σN−1 is a differential form, and
dσN−1 is its exterior derivative. Calculus books often write dσ for the surface area
form (and ds for the arc-length form), even though these objects are not differential
forms. The symbol d is simply irresistible.

Exercise 4.63. Verify the following formulas for the (N − 1)-dimensional vol-
ume WN of the unit sphere in RN :

• W1 = 2.
• W2 = 2π.
• W3 = 4π.
• W4 = 2π2.
• W5 = 8

3π
2.

Put ρ(z) = ||z||2. The unit sphere S2n−1 is the set of points where ρ = 1.
The differential form dρ is orthogonal to the sphere at each point, and the cotan-
gent space to the sphere is the orthogonal complement to dρ. The decomposition
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dρ = ∂ρ+ ∂ρ will be crucial to our proof. Since dρ is orthogonal to the sphere, we
may use the relation ∂ρ = −∂ρ when doing integrals over the sphere.

We can express the form σ2n−1 in terms of complex variables. Let Wjj denote

the (2n− 2)-form defined by eliminating dzj ∧ dzj from dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.

For 1 ≤ j ≤ n, put zj = xj + iyj. Write xj =
zj+zj

2 and yj =
zj−zj

2i . Substituting
in the form σ2n−1 and collecting terms, we obtain

σ2n−1 = (
i

2
)n

n∑

j=1

(zjdzj − zjdzj) ∧Wjj . (70)

As a check, we note when n = 1 that this expression equals i
2 (zdz − zdz). Putting

z = eiθ then yields dθ, as expected. As a second check, we compute d of the
right-hand side of (70), using dzj ∧ dzj = −2i dxj ∧ dyj , obtaining

(
i

2
)n(2n)(−2i)ndV2n = 2n dV2n,

as expected (since we are in 2n real dimensions).
With these preparations we can finally show that the tensor product operation

increases volumes; in other words, VEf > Vf (unless f1 = 0).

Theorem 4.11. Assume that f = (f1, . . . , fN) is complex analytic on the unit
ball Bn in Cn. Define the partial tensor product Ef by

Ef = (z1f1, z2f1, . . . , znf1, f2, . . . , fN).

Then VEf > Vf unless f1 = 0.

Proof. We prove the result assuming f has a continuously differentiable ex-
tension to the boundary sphere. [D4] has a proof without this assumption.

Recall that Vf =
∫
Bn

||Jf ||2dV . Here, as in (53), Jf denotes all possible

Jacobians formed by selecting n of the components of f . In case f is an equi-
dimensional mapping, we also have

Vf = cn

∫

Bn

∂f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (71)

In general Vf is a sum of integrals, as in (71), over all choices of n components. The
constant cn equals ( i

2 )
n; see the discussion near Definition 4.16.

We want to compute VEf =
∫ ||J(Ef)||2. Many terms arise. We partition

these terms into three types. Type I terms are those for which the n functions
selected among the components of Ef include none of the functions zjf1 for 1 ≤
j ≤ n. These terms also arise when computing Vf . Hence terms of type I drop
out when computing the difference VEf − Vf , and we may ignore them. Type
II terms are those for which we select at least two of the functions zjf1. These
terms arise in the computation of VEf , but not in the computation of Vf . All
of these terms thus contribute nonnegatively. The type III terms remain. They
are of the form (zjf1, fi2 , . . . , fin). We will show, for each choice (fi2 , . . . , fin) of
n − 1 of the functions f2, . . . , fN , that the sum on j of the volumes of the images
of (zjf1, fi2 , . . . , fin) is at least as large as the volume of the image of the map
(f1, fi2 , . . . , fin). Combining these conclusions shows that VEf ≥ Vf .
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For simplicity of notation, let us write the (n − 1)-tuple as (f2, . . . , fn). By
the above paragraph, it suffices to prove the result when f = (f1, . . . , fn) is an
equi-dimensional mapping. In the rest of the proof, we let f denote this n-tuple.

Since f1 is complex analytic, df1 = ∂f1. We can therefore write the form in
(71) as an exact form and then apply Stokes’ theorem to get

Vf = cn

∫

Bn

d(f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn)

= cn

∫

S2n−1

f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (72)

For 1 ≤ j ≤ n we replace f1 in (72) with zjf1 and sum, obtaining

VEf ≥ cn

n∑

j=1

∫

S2n−1

zjf1 ∧ ∂(zjf1) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (73)

Note that ∂(zjf1) = f1dzj + zjdf1 by the product rule. Using this formula in
(73) and then subtracting (72) from (73) shows that the excess is at least

VEf − Vf ≥ cn

∫

S2n−1

(

n∑

j=1

|zj|2 − 1)f1∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn

+ cn

∫

S2n−1

|f1|2(
n∑

j=1

zjdzj) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (74)

Since
∑ |zj|2 = 1 on the sphere, the expression in the top line of (74) vanishes. We

claim that the other term is nonnegative. We will show that the form

cn|f1|2(
n∑

j=1

zjdzj) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn

arising in (74) is a nonnegative multiple of the real (2n − 1)-dimensional volume
form on the sphere, and hence, its integral is nonnegative.

It suffices to prove that the form

η = cn∂ρ ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn (75)

is a nonnegative multiple of the volume form on the sphere.
Note that ∂fj = dfj , because fj is complex analytic. We wish to write dfj in

terms of a particular basis of 1-forms. We would like to find independent differential
1-forms ω1, . . . , ωn−1, with the following properties. Each of these forms involves
only the dzj (not the dzj). Each ωj is in the cotangent space to the sphere. Finally,

these forms, their conjugates, and the additional forms ∂ρ and ∂ρ are linearly
independent at each point. Doing so is not generally possible, but we can always
find ω1, . . . , ωn−1 such that linear independence holds except on a small set. After
the proof (Remark 4.17), we explain how to do so.

Given these forms, we work on the set U where linear independence holds. We
compute the exterior derivatives of the fj for 2 ≤ j ≤ n in terms of this basis:

dfj = ∂fj =
n−1∑

k=1

Bjkωk +Bj∂ρ.
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On the intersection of U and the sphere, we obtain

dfj = ∂fj =

n−1∑

k=1

Bjkωk +Bj∂ρ =

n−1∑

k=1

Bjkωk − Bj∂ρ.

∂fj =

n−1∑

k=1

Bjkωk +Bj∂ρ.

In these formulas, Bjk denotes the coefficient function; Bjk can be written Lk(fj)
for complex vector fields Lk dual to the ωk.

These formulas allow us compute the wedge product in (75) very easily. We
can ignore all the functions Bj , because the wedge product of ∂ρ with itself is 0.
We obtain

η = cn|det(Bjk)|2∂ρ ∧ ω1 ∧ ω1 ∧ · · · ∧ ωn−1 ∧ ωn−1. (76)

In (76), the index k runs from 1 to n− 1, and the index j runs from 2 to n. Hence,
it makes sense to take the determinant of the square matrix Bjk of functions. Since
the ωk and their conjugates are orthogonal to the normal direction dρ, the form in
(76) is a nonnegative multiple of σ2n−1.

We have verified that VEf − Vf ≥ 0. �

Remark 4.16. Let f and Ef be as in Theorem 4.11. Assume f1 is not identi-
cally 0. For all z in the ball, ||(Ef)(z)||2 ≤ ||f(z)||2, with strict inequality except

where f1(z) = 0. There is no pointwise inequality relating det
(
(||Ef ||2)jk

)
and

det
(
(||f ||2)jk

)
. But, Theorem 4.11 and Lemma 4.9 yield
∫

det
(
(||Ef ||2)jk

)
dV >

∫
det
(
(||f ||2)jk

)
dV.

Thus ||Ef ||2 is (pointwise) smaller than ||f ||2, there is no pointwise inequality
between their Hessian determinants, but the average value (integral) of the Hessian
determinant of ||Ef ||2 is larger than the average value of the Hessian determinant
of ||f ||2.

Remark 4.17. We show how to construct the 1-forms used in the proof. First
consider S3 ⊆ C2. We can put ω1 = z dw − w dz. Then, except at the origin,
the four 1-forms ω1, ω1, ∂ρ, ∂ρ do the job. The three 1-forms ω1, ω1, ∂ρ− ∂ρ form
a basis for the cotangent space at each point of the unit sphere.

In the higher-dimensional case, we work on the set U where zn �= 0. The
complement of U in the sphere is a lower-dimensional sphere, and hence, a small
set as far as integration is concerned. For 1 ≤ j ≤ n− 1, we define ωj by

ωj =
zn dzj − zj dzn
|zj |2 + |zn|2 .

The forms ωj are linearly independent on U , and each is orthogonal to dρ. See the
next section and Exercise 4.71 for their role in CR geometry.

We now discuss in more detail why η is a nonnegative multiple of the (2n− 1)-
dimensional volume form on the sphere. One way to verify this fact is to introduce
polar coordinates in each variable separately and compute. Thus, zj = rje

iθj , where
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each rj is nonnegative. On the unit sphere we have the relation
∑

r2j = 1; it follows

that
∑

rjdrj = 0 on the sphere. We therefore use all the θj as coordinates, but we
use only r1, . . . , rn−1. The (2n − 1)-dimensional volume form on the sphere turns
out to be (where the product is a wedge product)

⎛

⎝
n−1∏

j=1

rjdrj ∧ dθj

⎞

⎠ ∧ dθn.

We continue this geometric approach by noting the following simple Lemma,
expressing the Cauchy–Riemann equations in polar coordinates.

Lemma 4.12. Assume h is complex analytic in one variable. Use polar coordi-
nates z = reiθ. Then ∂h

∂θ = ri∂h∂r .

Proof. We will use subscripts to denote partial derivatives in this proof. Since
h is complex analytic, hz = ∂h

∂z = 0. It follows that

hr =
∂h

∂r
=

∂h

∂z

∂z

∂r
= hze

iθ.

Similarly,

hθ =
∂h

∂θ
=

∂h

∂z

∂z

∂θ
= hzrie

iθ = rihr.

�
Remark 4.18. One can also prove Lemma 4.12 by observing that it suffices to

check it for h(z) = zk, for each k.

Exercise 4.64. Prove Lemma 4.12 as suggested in the Remark.

A continuously differentiable function of several complex variables is complex
analytic if and only if it is complex analytic in each variable separately. (The
same conclusion holds without the hypothesis of continuous differentiability, but
this result, which we do not need, is much harder to prove.) The geometry of the
sphere suggests, and the easier implication justifies, working in polar coordinates in
each variable separately.

Put zj = rje
iθj for 1 ≤ j ≤ n. Computation yields

dzj = eiθjdrj + irje
iθjdθj .

Note that
∑n

1 rjdrj = 0 on the sphere. We compute ∂ρ =
∑n

1 zjdzj as follows:

∂ρ =

n∑

j=1

zjdzj =

n∑

j=1

rjdrj − i

n∑

j=1

r2jdθj = −i(

n∑

j=1

r2jdθj).

We can express the form η from (75) in terms of these new variables. We
provide the details only when n = 2. For ease of notation, we write z = reiθ and
w = seiφ. We obtain

zdz + wdw = −i(r2dθ + s2dφ). (77)

We compute ∂g∧∂g, where g = f2 in (75). Now that we do not have subscripts
on the functions, we can use subscripts to denote partial derivatives. Since g is
complex analytic, we have

∂g = dg = grdr + gθdθ + gsds+ gφdφ.
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The Cauchy–Riemann equations in polar coordinates give gθ = rigr and gφ = sigs.
From these equations we find

∂g = gr(dr + irdθ) + gs(ds+ isdφ). (78)

We need to compute ∂g ∧ ∂g. We obtain

∂g ∧ ∂g = |gr|2(−2irdr ∧ dθ) + |gs|2(−2isds ∧ dφ)

+grgs(−isdr ∧ dφ+ irdθds + rsdθ ∧ dφ)

+ gsgr(−isdr ∧ dφ+ irdθds − rsdθ ∧ dφ). (79)

We wedge (77) with (79) and collect terms in the order drdθdφ. The result is

(zdz + wdw) ∧ ∂g ∧ ∂g = −2r|sgr − rgs|2drdθdφ. (80)

The form η in question is ( i
2 )

2 times the expression in (80). Hence, we see that

η = |sgr − rgs|2 r
2
drdθdφ, (81)

which is a nonnegative multiple of the volume form rdrdθdφ for the sphere.
We gain considerable insight by expressing sgr − rgs in terms of gz and gw.

Using the chain rule and some manipulation, we get

|sgr − rgs|2 = |sgzzr − rgwws|2 = |seiθgz − reiφgw|2 = |wgz − zgw|2. (82)

We can interpret (82) geometrically. Define a complex vector field L by

L = w
∂

∂z
− z

∂

∂w
. (83)

Then L is tangent to the unit sphere, and (81) and (82) yield η = 1
2 |L(g)|2 σ3. In

the next section, we will interpret L in the context of CR Geometry.

Exercise 4.65. Use polar coordinates to compute the form η from (75) in 3
complex dimensions.

Exercise 4.66. Show that {zα}, as α ranges over all nonnegative integer multi-
indices, is a complete orthogonal system for A2. Here A2 denotes the complex
analytic functions in L2(Bn).

Exercise 4.67. Let cα = ||zα||2L2 for the unit ball Bn. Find a simple formula
for the Bergman kernel B(z, z) for the ball, defined by

B(z, z) =
∑

α

|z|2α
cα

.

Exercise 4.68. Compute Vf if f(z, w) = (za, wb). Also compute Vg if g(z) =
(za, zwb, wb+1).

Exercise 4.69. Express the (2n − 1)-dimensional volume of the unit sphere
S2n−1 in terms of the 2n-dimensional volume of Bn. Suggestion: Use (71) and (72)
when f(z) = z.

Exercise 4.70. Consider the Hilbert space H consisting of complex analytic
functions on Cn that are square-integrable with respect to the Gaussian weight
function exp(−||z||2). Show that the monomials form a complete orthogonal system
for H.
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10. CR Geometry

CR Geometry considers the geometry of real objects in complex spaces. The
name itself has an interesting history, which we do not discuss here, other than to
say that CR stands both for Cauchy–Riemann and for Complex–Real. See [DT] for
a survey of CR Geometry and its connections with other branches of mathematics.
See [BER] for a definitive treatment of the subject. In this section we mostly
consider simple aspects of the CR Geometry of the unit sphere in Cn.

Let S2n−1 denote the unit sphere in R2n. Consider a point p in S2n−1. If
we regard p as a unit vector v (from 0 to p) in R2n, then v is orthogonal to the
sphere at p. Hence, any vector w orthogonal to v is tangent to the sphere. Put
r(x) =

∑2n
j=1 x

2
j − 1. Then the unit sphere is the zero-set of r, and furthermore,

dr(x) �= 0 for x on the sphere. We call such a function a defining function for the
sphere. The 1-form dr annihilates the tangent space Tp(S

2n−1) at each point. It
defines the normal direction to the sphere.

In this section we write 〈η, L〉 for the contraction of a 1-form η with a vector

field L. Previously we have been writing η(L). A vector field L =
∑2n

j=1 aj
∂

∂xj
on

R2n is tangent to S2n−1 if and only if

0 = 〈dr, L〉 = dr(L) = L(r) =
2n∑

j=1

aj
∂r

∂xj

on the sphere.
Given the focus of this book, we regard R2n as Cn and express these geometric

ideas using complex vector fields. A new phenomenon arises. Not all directions in
the tangent space behave the same, from the complex variable point of view.

Let X be a complex vector field on Cn. We can write

X =
n∑

j=1

aj
∂

∂zj
+

n∑

j=1

bj
∂

∂zj

where the coefficient functions aj , bj are smooth and complex valued. Each complex
vector field is the sum of two vector fields, one of which involves differentiations in
only the unbarred directions, the other involves differentiations in only the barred
directions. Let T 1,0(Cn) denote the bundle whose sections are vector fields of the
first kind and T 0,1(Cn) the bundle whose sections are of the second kind. The only
vector field of both kinds is the 0 vector field. We therefore write

T (Cn)⊗C = T 1,0(Cn)⊕ T 0,1(Cn). (84)

The tensor product on the left-hand side of (84) arises because we are considering
complex (rather than real) vector fields. The left-hand side of (84) means the
bundle whose sections are the complex vector fields on Cn. We next study how the
decomposition in (84) applies to vector fields tangent to S2n−1.

Let T 1,0(S2n−1) denote the bundle whose sections are complex vector fields of
type (1, 0) and tangent to S2n−1. Then T 0,1(S2n−1) denotes the complex conjugate
bundle. For p on the sphere, each of the vector spaces T 1,0

p (S2n−1) and T 0,1
p (S2n−1)

has complex dimension n−1. But Tp(S
2n−1)⊗C has dimension 2n−1. Hence, there

is a missing direction. How can we describe and interpret this missing direction?
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Observe first that the commutator [L,K] of vector fields L,K, each of type
(1, 0) and tangent to S2n−1 also satisfies these properties. That [L,K] is of type
(1, 0) follows easily from the formula [L,K] = LK − KL. That [L,K] is tangent
follows by applying this formula to a defining function r:

[L,K](r) = L(K(r))−K(L(r)) = 0− 0 = 0.

Since K is tangent, K(r) = 0 on the sphere. Since L is tangent, L(K(r)) = 0
there. By symmetry, K(L(r)) = 0 as well. Note Remark 4.19. By symmetry
considerations, the commutator of two (0, 1) tangent vector fields is also of type
(0, 1) and tangent. On the sphere, however, the commutator of each nonzero (1, 0)
vector field L with its conjugate L will have a nonvanishing component in the
missing direction.

Remark 4.19. Warning! Is the derivative of a constant zero? The function
R(x, y) = x2+y2−1 equals 0 everywhere on the unit circle, but ∂R

∂x = 2x and hence
is NOT zero at most points. The problem is that the differentiation with respect
to x is not tangent to the unit circle.

We can abstract the geometry of the sphere as follows:

Definition 4.17. The CR structure on S2n−1 is given by the subbundle V =
T 1,0(S2n−1), which has the following properties:

(1) V ∩ V = {0}.
(2) The set of smooth sections of V is closed under the Lie bracket.
(3) V ⊕ V has codimension one in T (S2n−1)⊗C.

Definition 4.18. A CR manifold of hypersurface type is a real manifold M
for which there is a subbundle V ⊆ T (M)⊗C satisfying the three properties from
Definition 4.17.

Any real hypersurface M in Cn is a CR manifold of hypersurface type. Since
V ⊕V has codimension one in T (M)⊗C, there is a nonvanishing 1-form η, defined
up to a multiple, annihilating V ⊕ V . By convention, we assume that this form is
purely imaginary. (See Exercise 4.76 for an explanation of this convention.) Thus,
〈η, L〉 = 0 whenever L is a vector field of type (1, 0) and similarly for vector fields
of type (0, 1).

Definition 4.19. Let M be a CR manifold of hypersurface type. The Levi
form λ is the Hermitian form on sections of T 1,0(M) defined by

λ(L,K) = 〈η, [L,K]〉.
Let us return to the unit sphere. Near a point where zn �= 0, for 1 ≤ j ≤ n− 1,

we define n− 1 vector fields of type (1, 0) by

Lj = zn
∂

∂zj
− zj

∂

∂zn
. (85)

A simple check shows that each Lj is tangent to the sphere. Similarly the complex

conjugate vector fields Lj are tangent. These vector fields are linearly independent
(as long as we are working where zn �= 0). There are 2n− 2 of them. The missing
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direction requires both unbarred and barred derivatives. We can fill out the complex
tangent space by setting

T = zn
∂

∂zn
− zn

∂

∂zn
. (86)

Then L1, . . . , Ln−1, L1, . . . , Ln−1,T span the complex tangent space to S2n−1 at
each point where zn �= 0.

Exercise 4.71. Verify that the Lj from (85) and T from (86) are tangent to
the sphere. Let ωj be as in Remark 4.17. Verify that 〈Lj, ωj〉 = 1.

Exercise 4.72. Find a purely imaginary 1-form annihilating T 1,0⊕T 0,1 on the
sphere.

Exercise 4.73. Compute the commutator [Lj, Lk].

Exercise 4.74. Use the previous two exercises to show that the Levi form on
the sphere is positive definite.

Exercise 4.75. Show that translating the sphere leads to the defining function

r(ζ, ζ) =

n−1∑

j=1

|ζj |2 + |ζn|2 + 2Re(ζn). (87)

Show that a more elaborate change of variables leads to the defining function:

r(w,w) =

n−1∑

j=1

|wj |2 + 2Re(wn). (88)

Suggestion: First do the case n = 1.

Exercise 4.76. Show that λ(L,K) = λ(K,L).

Exercise 4.77. Let r be a smooth real-valued function on Cn. Assume that
dr does not vanish on M , the zero-set of r. Then M is a real hypersurface and
hence a CR manifold. Compute the Levi form λ on M in terms of derivatives of r.
The answer, in terms of the basis {Lj} given below for sections of T 1,0(M), is the
following formula:

λjk = rjk|rn|2 − rjnrnrk − rnkrjrn + rnnrjrk.

Suggestion: Work near a point where rzn �= 0. For 1 ≤ j ≤ n− 1, define Lj by

Lj =
∂

∂zj
− rzj

rzn

∂

∂zn

and define Lk in a similar manner. Find the 1-form η, and compute [Lj, Lk].

Remark 4.20. The answer to Exercise 4.77 is the restriction of the complex
Hessian of r to the space T 1,0(M).

Exercise 4.78. Find the Levi form on the hyperplane defined by Re(zn) = 0.
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The zero-set of (88), a biholomorphic image of the sphere, is an unbounded
object H , commonly known as the Heisenberg group. Put n = 2 and define A by

A =
∂

∂w1
− w1

∂

∂w2
.

Then A, A, and [A,A] form a basis for the sections of T (H)⊗C at each point. See
[DT] and its references for considerable information about the role of the Heisenberg
group in complex analysis, geometry, and PDE.

We next use the CR geometry of the unit sphere to briefly study harmonic
polynomials. For simplicity we work on S3, where the vector field L from (83)
defines the CR structure. Recall that (z, w) denotes the variable in C2. We also
recall from Sect. 11 of Chap. 1 that a smooth function is harmonic if its Laplacian
is 0. We can express the Laplace operator in terms of complex partial derivatives;
a (possibly complex-valued) smooth function u is harmonic on C2 if and only if

uzz + uww = 0.

As in Sect. 13 from Chap. 2, it is natural to consider harmonic homogeneous
polynomials. Here we allow our harmonic functions to be complex valued. The
complex vector space Vd, consisting of homogeneous polynomials of degree d (with
complex coefficients) in the underlying 2n real variables, decomposes into a sum of
spaces Vp,q. Here p+ q = d and the elements of Vp,q are homogeneous of degree p
in z and of degree q in z. We obtain a decomposition Hd =

∑
Hp,q of the space of

harmonic homogeneous polynomials.

Example 4.13. Put n = 2 and d = 2. By our work in Chap. 2, the space H2

is 9-dimensional. We have the following:

• H2,0 is spanned by z2, zw,w2.
• H1,1 is spanned by zw, zw, |z|2 − |w|2.
• H0,2 is spanned by z2, zw,w2.

As in Chap. 2, the sum of these three spaces is the orthogonal complement of the
(span of the) function |z|2 + |w|2 in the space of polynomials of degree 2.

Interesting results about eigenvalues and the CR vector fields also hold. We
give a simple example. For each pair a, b of nonnegative integers, observe that the
monomials zawb and zawb are harmonic. Elementary calculus yields

L(zawb) = aza−1wb+1

L(zawb) = −bza+1wb−1.

Combining these results shows that

LL(zawb) = −b(a+ 1)zawb.

LL(zawb) = −a(b+ 1)zawb

Thus the harmonic monomials zawb are eigenfunctions of the differential opera-
tors LL and LL, with eigenvalues −b(a + 1) and −a(b + 1). Hence, they are also
eigenfunctions of the commutator T = [L,L], with eigenvalue a− b.
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11. Positivity Conditions for Hermitian Polynomials

This section aims to glimpse recent research directions along the lines of this
book. We state and discuss, but we do not prove, an analogue of the Riesz–Fejer
theorem for positive polynomials on the unit sphere. We offer an application of this
result to proper mappings between balls.

The Riesz–Fejer theorem (Theorem 1.1) characterizes nonnegative trig polyno-
mials; each such polynomial agrees on the circle with the squared absolute value of a
single polynomial in the complex variable z. We naturally seek to extend this result
from the unit circle to the unit sphere in Cn. Things become more complicated but
also more interesting.

We start with a Hermitian symmetric polynomial r(z, z) =
∑

α,β cαβz
αzβ of

degree d in z ∈ Cn. We can always bihomogenize r by adding a variable as follows.
We put rH(0, 0) = 0. For z �= 0 we put

rH(z, t, z, t) = |t|2dr(z
t
,
z

t
).

Then rH is homogeneous of degree d in the variables z, t and also homogeneous of
degree d in their conjugates. The polynomial rH is thus determined by its values on
the unit sphere in Cn+1. Conversely we can dehomogenize a bihomogeneous poly-
nomial in two or more variables by setting one of its variables (and its conjugate!)
equal to the number 1.

Example 4.14. Put n = 1 and put r(z, z) = z2 + z2. We compute rH :

rH(z, t, z, t) = |t|4((z
t
)2 + (

z

t
)2) = t

2
z2 + z2t2.

Example 4.15. Put r = (|zw|2− 1)2+ |z|2. Then r is positive everywhere, but
rH , while nonnegative, has many zeroes.

There is no loss in generality in our discussion if we restrict our attention to
the bihomogeneous case. Let R be a bihomogeneous polynomial in n variables (and
their conjugates). Assume R(z, z) ≥ 0 on the unit sphere. As a generalization of
the Riesz–Fejer theorem, we naturally ask if there exist homogeneous polynomials
f1(z), . . . , fK(z) such that

R(z, z) = ||f(z)||2 =

K∑

j=1

|fj(z)|2.

We call R a Hermitian sum of squares or Hermitian squared norm. Of course we
cannot expectK to be any smaller than the dimension. For example, the polynomial∑n

j=1 |zj |4 is positive on the sphere, but cannot be written as a Hermitian squared
norm with fewer terms. Furthermore, not every nonnegative R is a Hermitian
squared norm. Even restricted to the unit sphere, such a result fails in general, and
hence, the analogue of the Riesz–Fejer theorem is more subtle.

Example 4.16. Put R(z, z) = (|z1|2 − |z2|2)2. Then R is bihomogeneous and
nonnegative. Its underlying matrix Cαβ of coefficients is diagonal with eigenvalues
1,−2, 1. Suppose for some f that R(z, z) = ||f(z)||2. Then f would vanish on the
subset of the unit sphere defined by |z1|2 = |z2|2 = 1

2 (a torus), because R does.
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A complex analytic function vanishing there would also vanish for |z1|2 ≤ 1
2 and

|z2|2 ≤ 1
2 by the maximum principle. Hence f would have to be identically zero.

Thus R does not agree with a squared norm of any complex analytic mapping. The
zero-set of R does not satisfy appropriate necessary conditions here.

The following elaboration of Example 4.16 clarifies the matter. Consider the
family of polynomials Rε defined by

Rε(z, z) = (|z1|2 − |z2|2)2 + ε|z1|2|z2|2.
For each ε > 0, we have Rε(z, z) > 0 on the sphere. By Theorem 4.12 below there
is a polynomial mapping fε such that Rε = ||fε||2 on the sphere. Both the degree
and the number of components of fε must tend to infinity as ε tends to 0. See [D1]
for a lengthy discussion of this sort of issue.

From Example 4.15 we discover that nonnegativity is too weak of a condition
to imply that R agrees with a Hermitian squared norm. See also Example 4.18.
On the other hand, when R(z, z) > 0 on the sphere, the conclusion does hold. See
[D1] for detailed proofs of Theorem 4.12 and Theorem 4.13 below. The proof of
Theorem 4.12 there uses the theory of compact operators, but other proofs have
been found.

Theorem 4.12. Let r be a Hermitian symmetric bihomogeneous polynomial in
n variables and their conjugates. Suppose r(z, z) > 0 on S2n−1. Then there are
positive integers d and K, and a polynomial mapping g : Cn → CK , such that

||z||2dr(z, z) = ||g(z)||2.
We can remove the assumption of bihomogeneity if we want equality to hold

only on the unit sphere.

Theorem 4.13. Let r be a Hermitian symmetric polynomial in n variables and
their conjugates. Assume that r(z, z) > 0 on S2n−1. Then there are an integer N
and a polynomial mapping h such that, for z ∈ S2n−1,

r(z, z) = ||h(z)||2.
Proof. We sketch the derivation of Theorem 4.13 from Theorem 4.12. First we

bihomogenize r to get rH(z, t, z, t), bihomogeneous of degree m in the z, t variables.
We may assume m is even. The polynomial rH could have negative values on the
sphere ||z||2 + |t|2 = 1. To correct for this possibility, we define a bihomogeneous
polynomial FC by

FC(z, z, t, t) = rH(z, t, z, t) + C(||z||2 − |t|2)m.

It is easy to show that we can choose C large enough to make FC strictly positive
away from the origin. By Theorem 4.12, we can find an integer d such that

(||z||2 + |t|2)dFC(z, z, t, t) = ||g(z, t)||2.
Setting t = 1 and then ||z||2 = 1 shows, for z ∈ S2n−1, that

2dr(z, z) = ||g(z, 1)||2.
�



11. POSITIVITY CONDITIONS FOR HERMITIAN POLYNOMIALS 177

The following Corollary of Theorem 4.13 connects these ideas with proper
complex analytic mappings between balls.

Corollary 4.9. Let f = p
q : Cn → CN be a rational mapping. Assume that

the image of the closed unit ball under f lies in the open unit ball in CN . Then
there are an integer K and a polynomial mapping g : Cn → CK such that p⊕g

q

maps the unit sphere S2n−1 to the unit sphere S2(N+K)−1.

Proof. The hypothesis implies that |q|2 − ||p||2 is strictly positive on the
sphere. By Theorem 4.13 there is a polynomial map g such that |q|2− ||p||2 = ||g||2
on the sphere. Then p⊕g

q does the job. �

This corollary implies that there are many rational mappings taking the unit
sphere in the domain into the unit sphere in some target. We choose the first several
components to be anything we want, as long as the closed ball gets mapped to the
open ball. Then we can find additional components, using the same denominator,
such that the resulting map takes the sphere to the sphere. The following simple
example already indicates the depth of these ideas.

Example 4.17. Consider the maps pλ : C2 → C given by pλ(z, w) = λzw.
Then pλ maps the closed ball in C2 inside the unit disk if |λ|2 < 4. If this condition
is met, then we can include additional components to make pλ into a component of
a polynomial mapping sending S3 to some unit sphere. In case λ =

√
3, we obtain

the map (
√
3zw, z3, w3), which is one of the group-invariant examples from Sect. 3.

If
√
3 < λ < 2, then we must map into a dimension higher than 3. As λ approaches

2, the minimum possible target dimension approaches infinity.

We conclude with a surprising example that combines ideas from many parts
of this book.

Example 4.18. ([D1]). There exists a bihomogeneous polynomial r(z, z), in
three variables, with the following properties:

• r(z, z) ≥ 0 for all z.
• The zero set of r is a copy of C (a one-dimensional subspace of C3).
• 0 is the only polynomial s for which rs is a Hermitian squared norm.

We put r(z, z) = (|z1z2|2 − |z3|4)2 + |z1|8. The nonnegativity is evident. The zero-
set of r is the set of z of the form (0, z2, 0) and hence a copy of C. Assume that
rs is a Hermitian squared norm ||A||2. Consider the map from C to C3 given by
t �→ (t2, 1 + t, t) = z(t). Pulling back yields the equation

r(z(t), z(t)) s(z(t), z(t)) = ||cmtm + · · · ||2,
where · · · denotes higher-order terms. Hence, the product of the lowest order terms
in the pullback of s with the lowest order terms in the pullback of r is ||cm||2|t|2m.
A simple computation shows that the lowest order terms in the pullback of r are

t4t
6
+ 2|t|10 + t6t

4
= 2|t|10(1 + cos(2θ)). (89)

There is no trig polynomial p other than 0 for which multiplying the right-hand
side of (89) by an expression of the form |t|2kp(θ) yields a result independent of θ.
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No such example is possible in one dimension, because the only bihomogeneous
polynomials are of the form c|t|2m. It is easy to find a nonnegative polynomial g(t, t)
that does not divide any Hermitian squared norm (other than 0); for example,

2|t|2 + t2 + t
2
= 2|t|2(1 + cos(2θ))

does the job. Our example is surprising because r is bihomogeneous.

The theorems, examples, and geometric considerations in this chapter illustrate
the following theme. When passing from analysis on the unit circle to analysis in
higher dimensions, the mathematics becomes both more complicated and more
beautiful. Ideas revolving around Hermitian symmetry appear throughout. This
perspective leads naturally to CR Geometry. We refer again to [DT] for an intro-
duction to CR Geometry and to its references for viewing the many directions in
which Hermitian analysis is developing.
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