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Preface

This book aims both to synthesize much of undergraduate mathematics and to in-
troduce research topics in geometric aspects of complex analysis in several variables.
The topics all relate to orthogonality, real analysis, elementary complex variables,
and linear algebra. I call the blend Hermitian analysis. The book developed from
my teaching experiences over the years and specifically from Math 428, a capstone
honors course taught in Spring 2013 at the University of Illinois. Many of the
students in Math 428 had taken honors courses in analysis, linear algebra, and be-
ginning abstract algebra. They knew differential forms and Stokes’ theorem. Other
students were strong in engineering, with less rigorous mathematical training, but
with a strong sense of how these ideas get used in applications.

Rather than repeating and reorganizing various parts of mathematics, the
course began with Fourier series, a new topic for many of the students. Developing
some of this remarkable subject and related parts of analysis allows the synthesis
of calculus, elementary real and complex analysis, and algebra. Proper mappings,
unitary groups, complex vector fields, and differential forms eventually join this
motley crew. Orthogonality and Hermitian analysis unify these topics. In the pro-
cess, ideas arising on the unit circle in C evolve into more subtle ideas on the unit
sphere in complex Euclidean space C™.

The book includes numerous examples and more than 270 exercises. These
exercises sometimes appear, with a purpose, in the middle of a section. The reader
should stop reading and start computing. Theorems, lemmas, propositions, etc. are
numbered by chapter. Thus Lemma 2.4 means the fourth lemma in Chap. 2, and
Fig. 1.8 means the eighth figure in Chap. 1.

Chapter 1 begins by considering the conditionally convergent series - | Singlm) )
We verify its convergence using summation by parts, which we discuss in some
detail. We then review constant coefficient ordinary differential equations, the ex-
ponentiation of matrices, and the wave equation for a vibrating string. These topics
motivate our development of Fourier series. We prove the Riesz—Fejer theorem char-
acterizing nonnegative trig polynomials. We develop topics such as approximate
identities and summability methods, enabling us to complete the discussion on the
series 220:1 Sm;—"z) The chapter closes with two proofs of Hilbert’s inequality.

Chapter 2 discusses the basics of Hilbert space theory, motivated by orthonor-
mal expansions, and includes the spectral theorem for compact Hermitian opera-
tors. We return to Fourier series after these Hilbert space techniques have become
available. We also consider Sturm-Liouville theory in order to provide additional
examples of orthonormal systems. The exercises include problems on Legendre
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VI PREFACE

polynomials, Hermite polynomials, and several other collections of special func-
tions. The chapter ends with a section on spherical harmonics, whose purpose is
to indicate one possible direction for Fourier analysis in higher dimensions. As a
whole, this chapter links classical and modern analysis. It considerably expands the
material on Hilbert spaces from my Carus monograph Inequalities from Complex
Analysis. Various items here help the reader to think in a magical Hermitian way.
Here are two specific examples:

e There exist linear transformations A, B on a real vector space satisfying
the relationship A=! + B™! = (A + B)~! if and only if the vector space
admits a complex structure.

e It is well known that a linear map on a complex space preserves inner
products if and only it preserves norms. This fact epitomizes the polar-
ization technique which regards a complex variable or vector z and its
conjugate z as independent objects.

Chapter 3 considers the Fourier transform on the real line, partly to glimpse
higher mountains and partly to give a precise meaning to distributions. We also
briefly discuss Sobolev spaces and pseudo-differential operators. This chapter in-
cludes several standard inequalities (Young, Holder, Minkowski) from real analysis
and Heisenberg’s inequality from physics. Extending these ideas to higher dimen-
sions would be natural, but since many books treat this material well, we head in
a different direction. This chapter is therefore shorter than the other chapters and
it contains fewer interruptions.

Chapter 4, the heart of the book, considers geometric issues revolving around
the unit sphere in complex Euclidean space. We begin with Hurwitz’s proof (us-
ing Fourier series) of the isoperimetric inequality for smooth curves. We prove
Wirtinger’s inequality in two ways. We continue with an inequality on the areas of
complex analytic images of the unit disk, which we also prove in two ways. One
of these involves differential forms. This chapter therefore includes several sections
on vector fields and differential forms, including the complex case. Other geometric
considerations in higher dimensions include topics from my own research: finite
unitary groups, group-invariant mappings, and proper mappings between balls. We
use the notion of orthogonal homogenization to prove a sharp inequality on the
volume of the images of the unit ball under certain polynomial mappings. This
material naturally leads to the Cauchy—Riemann (CR) geometry of the unit sphere.
The chapter closes with a brief discussion of positivity conditions for Hermitian
polynomials, connecting the work on proper mappings to an analogue of the Riesz—
Fejer theorem in higher dimensions. Considerations of orthogonality and Hermitian
geometry weave all these topics into a coherent whole.

The prerequisites for reading the book include three semesters of calculus, linear
algebra, and basic real analysis. The reader needs some acquaintance with complex
numbers but does not require all of the material in the standard course. The
appendix summarizes the prerequisites. We occasionally employ the notation of
Lebesgue integration, but knowing measure theory is not a prerequisite for reading
this book. The large number of exercises, many developed specifically for this book,
should be regarded as crucial. They link the abstract and the concrete.
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Books in the Cornerstones Series are aimed at aspiring young mathematicians
ranging from advanced undergraduates to second-year graduate students. This
audience will find the first three chapters accessible. The many examples, exercises,
and motivational discussions make these chapters also accessible to students in
physics and engineering. While Chap. 4 is more difficult, the mathematics there
flows naturally from the earlier material. These topics require the synthesis of
diverse parts of mathematics. The unity and beauty of the mathematics reward
the reader while leading directly to current research. The author hopes someday to
write a definitive account describing where in complex analysis and CR geometry
these ideas lead.

I thank the Department of Mathematics at Illinois for allowing me to teach
various honors courses and in particular the one for which I used these notes. 1
acknowledge various people for their insights into some of the mathematics here,
provided in conversations, published writing, or e-mail correspondences. Such peo-
ple include Phil Baldwin, Steve Bradlow, David Catlin, Geir Dullerud, Ed Dunne,
Charlie Epstein, Burak Erdogan, Jerry Folland, Jen Halfpap, Zhenghui Huo, Robert
Kaufman, Rick Laugesen, Jeff McNeal, Tom Nevins, Mike Stone, Emil Straube,
Jeremy Tyson, Bob Vanderbei, and others, including several unnamed reviewers.

I also thank Charlie Epstein and Steve Krantz for encouraging me to write a
book for the Birkh&user Cornerstones Series. I much appreciate the efforts of Kate
Ghezzi, Associate Editor of Birkhauser Science, who guided the evolution of my
first draft into this book. I thank Carol Baxter of the Mathematical Association
of America for granting me permission to incorporate some of the material from
Chap. 2 of my Carus monograph Inequalities from Complex Analysis. 1 acknowledge
Jimmy Shan for helping prepare pictures and solving many of the exercises.

I thank my wife Annette and our four children for their love.

T acknowledge the support from NSF grant DMS-1066177 and from the Kenneth
D. Schmidt Professorial Scholar award from the University of lllinois.

Urbana, IL, USA John P. D’Angelo
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CHAPTER 1

Introduction to Fourier Series

1. Introduction

We start the book by considering the series Y~ | w, a nice example of a
Fourier series. This series converges for all real numbers x, but the issue of con-
vergence is delicate. We introduce summation by parts as a tool for handling some
conditionally convergent series of this sort. After verifying convergence, but before
finding the limit, we pause to introduce and discuss several elementary differential
equations. This material also leads to Fourier series. We include the exponentiation
of matrices here. The reader will observe these diverse topics begin being woven
into a coherent whole.

After these motivational matters, we introduce the fundamental issues con-
cerning the Fourier series of Riemann integrable functions on the circle. We define
trigonometric polynomials, Fourier series, approximate identities, Cesaro and Abel
summability, and related topics enabling us to get some understanding of the con-
vergence of Fourier series. We show how to use Fourier series to establish some
interesting inequalities.

In Chap. 2, we develop the theory of Hilbert spaces, which greatly clarifies the
subject of Fourier series. We prove additional results about Fourier series there,
after we know enough about Hilbert spaces. The manner in which concrete and
abstract mathematics inform each other is truly inspiring.

2. A Famous Series

Consider the infinite series 220:1 sinn) - This sum provides an example of a

Fourier series, a term we will define precisely a bit later. Our first agenda item is
to show that this series converges for all real x. After developing a bit more theory,
we determine the sum for each z; the result defines the famous sawtooth function.

Let {a,} be a sequence of (real or) complex numbers. We say that > >~ ap
converges to L if

N
lim E a, = L.
N —oc0

n=1

We say that Y7 | a, converges absolutelyif >~ " |a,| converges. In case > a,, con-
verges, but does not converge absolutely, we say that > a, converges conditionally
or is conditionally convergent. Note that absolute convergence implies convergence
but that the converse fails. See for example Corollary 1.3. See the exercises for
subtleties arising when considering conditionally convergent series.

J.P. D’Angelo, Hermitian Analysis: From Fourier Series to Cauchy-Riemann 1
Geometry, Cornerstones, DOI 10.1007/978-1-4614-8526-1_1,
© Springer Science+Business Media New York 2013



2 1. INTRODUCTION TO FOURIER SERIES

The expression Ay = 27]:’:1 an is called the Nth partial sum. In this section,
we will consider two sequences {a,} and {b,}. We write their partial sums, using
capital letters, as Ay and By. We regard the sequence of partial sums as an
analogue of the integral of the sequence of terms. Note that we can recover the terms
from the partial sums because a, = A4,, — A,—1 and we regard the sequence {a,}
of terms as an analogue of the derivative of the sequence of partial sums. The next
result is extremely useful in analyzing conditionally convergent series. One can
remember it by analogy with the integration by parts formula

/aB’ —=aB — /a’B. (1)

PROPOSITION 1.1 (Summation by parts). For 1 < j < N, consider complex
numbers a; and b;. Then
N N—1
> ajbj =anBy — Y (a1 — a;)B;. (2)
j=1 j=1
PROOF. We prove the formula by induction on N. When N = 1, the result is
clear, because a1b1 = a1 B; and the sum on the right-hand side of (2) is empty.
Assume the result for some N. Then we have

N+1 N N-1
Z ajbj =ant1bn1 + Zajbj =an+1bnt1 +anBy — Z (aj+1 —a;j)B;
j=1 j=1 j=1
N
= ant1bne1 +avBy — Y (a1 —a;)B; + (an+1 — an)By
j=1
N N
= an1bvi1 +aniiBy =Y (aj11 —a;)Bj = a1 Bys1 — Y (a541 — a;)B;.
j=1 j=1
The induction is complete. 0

COROLLARY 1.1. Suppose an, — 0 and that Y |ant1 — an| converges. Assume
also that the sequence { By} of partial sums is bounded. Then E;i1 ajb; converges.

PROOF. We must show that the limit, as IV tends to infinity, of the left-hand
side of (2) exists. The limit of the first term on the right-hand side of (2) exists and
is 0. The limit of the right-hand side of (2) is the infinite series

- Z(%‘H —a;)B;. (3)

We claim that the series (3) is absolutely convergent. By hypothesis, there is a
constant C' with |B;| < C for all j. Hence, for each j, we have
[(aj41 — a;)B;| < Claj1 — ajl. (4)

The series Y |a;j4+1—a;| converges. By (4) and the comparison test (Proposition 5.1),
> =1 [(@j41 — aj)Bj| converges as well. Thus, the claim holds, and the conclusion
follows by letting N tend to co in (2). O



2. A FAMOUS SERIES 3

COROLLARY 1.2. Suppose ay, decreases monotonically to 0. Then Y (—1)"a,
converges.

PRrOOF. Put b,, = (=1)". Then |By| <1 for all N. Since a,,+1 < a, for all n,
N

N
D lajin —agl = (a; — aj41) = a1 — an 1.
=1

j=1
Since ay 41 tends to 0, we have a convergent telescoping series. Thus, Corollary 1.1
applies. O

COROLLARY 1.3. Y 7, (_711) converges.

Proor. Put a, = % and b, = (—1)". Corollary 1.2 applies. [l

sin(nx)

PROPOSITION 1.2. > | converges for all real x.

PrRoOOF. Let a, = % and let b, = sin(na). First suppose z is an integer multiple
of . Then b, = 0 for all n and the series converges to 0. Otherwise, suppose x is
not a multiple of 7; hence, e’* # 1. We then claim that By is bounded. In the next
, and we justify this definition.

ei* _e—i%

section, for complex z, we define sin(z) by “—=¢

Using it we have

einw _ e—inw
2
Since we are assuming e'” # 1, the sum > ' e

which we can compute explicitly. We get

N 1 _eiN;E

Z einm _ eim — (5)

n=1

The right-hand side of (5) has absolute value at most =2, and hence, the left-

[1—e]
hand side of (5) is bounded independently of N. The same holds for Zﬁ;l e~z
Thus, By is bounded. The proposition now follows by Corollary 1.1. [l

b, = sin(nz) =

inx

is a finite geometric series

REMARK 1.1. The partial sums By depend on x. We will see later why the
limit function fails to be continuous in x.

REMARK 1.2. The definition of convergence of a series involves the partial sums.
Other summability methods will arise soon. For now we note that conditionally
convergent series are quite subtle. In Exercise 1.1 you are asked to verify Riemann’s
remark that the sum of a conditionally convergent series depends in a striking way
on the order in which the terms are added. Such a reordered series is called a
rearrangement of the given series.

EXERCISE 1.1. Let 3" a, be a conditionally convergent series of real numbers.
Given any real number L (or oo), prove that there is a rearrangement of > a,
that converges to L (or diverges). (Harder) Determine and prove a corresponding
statement if the a,, are allowed to be complex. (Hint: For some choices of complex
numbers a,, not all complex L are possible as limits of rearranged sums. If, for
example, all the a,, are purely imaginary, then the rearranged sum must be purely
imaginary. Figure out all possible alternatives.)



4 1. INTRODUCTION TO FOURIER SERIES

EXERCISE 1.2. Show that >~ , bf;g(?w)) and, (for o > 0), > | Siné;m) converge.

EXERCISE 1.3. Suppose that Y ¢; converges and that lim,, nc, = 0. Determine

§ Cn+1 - Cn

EXERCISE 1.4. Find a sequence of complex numbers such that > a,, converges
but 3 (a,)? diverges.

EXERCISE 1.5. This exercise has two parts.

(1) Assume that Cauchy sequences (see Sect. 1 of the Appendix) of real num-
bers converge. Prove the following statement: if {a,} is a sequence of
complex numbers and Y7, |a,| converges, then > ° | a,, converges.

(2) Next, do not assume that Cauchy sequences of real numbers converge;
instead assume that whenever Y | |a,| converges, then > °  a, con-
verges. Prove that Cauchy sequences of real (or complex) numbers con-
verge.

EXERCISE 1.6. (Difficult) For 0 < < 2, show that Y % converges
to a nonnegative function. Suggestion: Sum by parts twice and find an explicit
formula for 21]:[:1 >n_, cos(kz). If needed, look ahead to formula (49).

3. Trigonometric Polynomials

We let S denote the unit circle in C. Our study of Fourier series involves
functions defined on the unit circle, although we sometimes work with functions
defined on R, on the interval [—m, 7], or on the interval [0, 27]. In order that such
functions be defined on the unit circle, we must assume that they are periodic with
period 27, that is, f(z+ 27) = f(«). The most obvious such functions are sine and
cosine. We will often work instead with complex exponentials.

We therefore begin by defining, for z € C,

00 n N
z z - Ak

Using the ratio test, we see that the series in (6) converges absolutely for each z € C.
It converges uniformly on each closed ball in C. Hence, the series defines a complex
analytic function of z whose derivative (which is also e?) is found by differentiating
term by term. See the appendix for the definition of complex analytic function.

Note that €® = 1. Also it follows from (6) that, for all complex numbers z and
w, e*TW = e%e™. (See Exercise 1.14.) From these facts, we can also see for A € C
that d eM = A\eM. Since complex conjugation is continuous, we also have % = e#
for all z. (Continuity is used in passing from the partial sum in (6) to the infinite
series.) Hence, when t is real, we see that e~ is the conjugate of e*. Therefore,
2 _ pitemit — 0 — 1

le ee
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and hence, e lies on the unit circle. All trigonometric identities follow from the
definition of the exponential function. The link to trigonometry (trig) comes from
the definitions of sine and cosine for a complex variable z:

cos(z) = % (7)
sin(z) = %. (8)
i

We obtain e** = cos(z) + isin(z) for all z. In particular, when ¢ is real, cos(t) is the
real part of e*, and sin(t) is the imaginary part of ‘. Consider the bijection from
[0,27) to the unit circle given by t — €. We can define the radian measure of an
angle as follows. Given the point e on the unit circle, we form two line segments:
the segment from 0 to 1 and the segment from 0 to €. Then ¢ is the angle between
these segments, measured in radians. Hence, cos(t) and sin(¢) have their usual
meanings when ¢ is real.

Although we started the book with the series ) Sinsl—m), we prefer using complex
exponentials instead of cosines and sines to express our ideas and formulas.

DEFINITION 1.1. A complex-valued function on the circle is called a trigono-
metric polynomial or trig polynomial if there are complex constants c¢; such that

N

f(0) = Z cje?

j=—N

It is of degree N if Cy or C_y # 0. The complex numbers ¢; are called the (Fourier)
coeflicients of f.

LeEMMA 1.1. A trig polynomial f is the zero function if and only if all its
coefficients vanish.

Proor. If all the coeflicients vanish, then f is the zero function. The converse
is less trivial. We can recover the coefficients c¢; of a trig polynomial by integration:

1 2w .
o —156
¢ =5 ; f(@)e="7db. 9)
If f(#) = 0 for all #, then each of these integrals vanishes and the converse assertion
follows. g

See Theorem 1.12 for an important generalization. Lemma 1.1 has a geometric
interpretation, which we will develop and generalize in Chap.2. The functions
x — e for —N < n < N form an orthonormal basis for the (2N + 1)-dimensional
vector space of trig polynomials of degree at most N. The lemma states that f is
the zero vector if and only if all its components with respect to this basis are 0.

We need the following result about real-valued trig polynomials. See Lemma 1.7
for a generalization.

LEMMA 1.2. A trig polynomial is real valued if and only if c; =c—; for all j.
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PROOF. The trig polynomial is real valued if and only if f = f, which becomes

N N
Z cje? = Z G ? (10)
j=—N j=—N
Replacing j by —j in the second sum in (10) shows that f is real valued if and
only if
N N —-N N
Z c;ei? = Z Te i? = ereijﬂ _ Z e, (11)
j=—N j=—N j=N j=—N
The difference of the two far sides of (11) is the zero function; hence, the conclusion
follows from Lemma 1.1. O

We sometimes call this condition on the coefficients the palindrome property; it
characterizes real-valued trig polynomials. Our next result, which is considerably
more difficult, characterizes nonnegative trig polynomials.

THEOREM 1.1 (Riesz—Fejer 1916). Let f be a trig polynomial with f(0) > 0 for
all 0. Then there is a complex polynomial p(z) such that f(60) = |p(e?)|?.

PRrROOF. Assume f is of degree d and write

d
FO) =Y cje,
j=—d
where c_; = ¢; since f is real valued. Note also that c_4 # 0. Define a polynomial
q in one complex variable by

d
q(z) = 24 Z ;2. (12)
j=—d
Let &1, ..., &4 be the roots of ¢, repeated if necessary. We claim that the reality
of f, or equivalently the palindrome property, implies that if £ is a root of ¢, then
(€)7! also is a root of g. This point is called the reflection of ¢ in the circle. See
Fig.1.1. Because 0 is not a root, the claim follows from the formula

q(z) = 2** q((®)7). (13)
To check (13), we use (12) and the palindrome property. Also, we replace —j by j
in the sum to get

228 q((Z)"1) = 2¢ ch(%)j = dec_jz*j = dechzj = decjzj =q(z2).

Thus, (13) holds. It also follows that each root on the circle must occur with even
multiplicity. Thus, the roots of ¢ occur in pairs, symmetric with respect to the unit
circle.

By the fundamental theorem of algebra, we may factor the polynomial ¢ into

linear factors. For z on the circle, we can replace the factor z — (£) ™! with
1 £—

z 772'

Nl

i
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Let p(z) = CH?ZI(Z —¢;). Here we use all the roots in the unit disk and half
of those where |¢;| = 1. Note that |q| = |p|* on the circle. Since f > 0 on the circle,
we obtain

£(0) = 1£0)] = la(e™)] = Ip(e”)?.
O

EXERCISE 1.7. Put f(0) = 1+ a cos(f). Note that f > 0 if and only if |a| < 1.
In this case, find p such that |p(z)|? = f(z) on the circle.

EXERCISE 1.8. Put f(0) =1+ a cos(d) + b cos(20). Find the condition on a,b
for f > 0. Carefully graph the set of (a,b) for which f > 0. Find p such that
f = |p|? on the circle. Suggestion: To determine the condition on a, b, rewrite f as
a polynomial in 2 on the interval [—1, 1].

1VE

FIGURE 1.1. Reflection in the circle

EXERCISE 1.9. Find a polynomial p such that [p(e*?)|?> = 4 — 4sin®(6). (The
roots of p lie on the unit circle, illustrating part of the proof of Theorem 1.1.)

In anticipation of later work, we introduce Hermitian symmetry and rephrase
the Riesz—Fejer theorem in this language.

DEFINITION 1.2. Let R(z,w) be a polynomial in the two complex variables z
and w. R is called Hermitian symmetric if R(z, @) = R(w,Zz) for all z and w.

The next lemma characterizes Hermitian symmetric polynomials.

LEMMA 1.3. The following statements about a polynomial in two complex vari-
ables are equivalent:
(1) R is Hermitian symmetric.
(2) For all z, R(z,%) is real.
(3) R(z,w) = Za’b Cap2®TW" where cq, = Cog for all a,b.
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PROOF. Left to the reader. O

The next result, together with various generalizations, justifies considering z
and its conjugate Z to be independent variables. When a polynomial identity in 2
and Z holds for all z, it holds when we vary z and Z separately.

LEMMA 1.4 (Polarization). Let R be a Hermitian symmetric polynomial. If
R(z,Z) =0 for all z, then R(z,w) =0 for all z and w.

PROOF. Write z = |z]e?. Plugging into the third item from Lemma 1.3, we

are given
E cab|2|a+bei(a—b)0 -0

for all |z| and for all §. Put k = a — b, which can be positive, negative, or 0. By
Lemma 1.1, the coefficient of each ¢**Y is 0. Thus, for all k¥ and z

1215 cpanpl2l® =0. (14)

After dividing by |z|¥, for each k (14) defines a polynomial in |z|? that is identi-
cally 0. Hence, each coefficient ¢ ), vanishes and R is the zero polynomial.  [J

EXAMPLE 1.1. Note that |z +i|? = |2|? — iz + iz + 1. Polarization implies that
(z41)(w—1) = zw — iz + iw + 1 for all z and w. We could also replace w with .

REMARK 1.3. We can restate the Riesz—Fejer Theorem in terms of Hermitian
symmetric polynomials: If r is Hermitian symmetric and nonnegative on the circle,
then r(z,%) = |p(2)|? there. (Note that there are many Hermitian symmetric poly-
nomials agreeing with a given trig polynomial on the circle.) The higher-dimensional
analogue of the Riesz—Fejer theorem uses Hermitian symmetric polynomials. See
Theorem 4.13 and [D1].

EXERCISE 1.10. Prove Lemma 1.3.
EXERCISE 1.11. Verify the second sentence of Remark 1.3.
EXERCISE 1.12. Explain why the factor 22¢ appears in (13).

EXERCISE 1.13. Assume a € R, b € C, and ¢ > 0. Find the minimum of the
Hermitian polynomial R:

R(t,T) = a + bt + bt + c|t|*.
Compare with the proof of the Cauchy—Schwarz inequality, Theorem 2.1.
EXERCISE 1.14. Prove that e*% = e¢%e,
EXERCISE 1.15. Simplify the expression Y27, sin((2j — 1)z).

EXERCISE 1.16. Prove the following statement from plane geometry. Let £ be
a point in the complex plane other than the origin, and let w lie on the unit circle.
Then every circle, perpendicular to the unit circle, and containing both £ and w,
also contains (€)' (Fig. 1.2).
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1/&

FIGURE 1.2. Reflection and perpendicularity

4. Constant Coefficient Differential Equations

Our work thus far has begun to prepare us for the study of Fourier series.
Fourier series also arise in solving both ordinary and partial differential equations
(PDESs). In order to develop this connection, we recall some things from that realm,
thereby providing us with additional motivation.

The differential equation y’ = Ay has the obvious solution y(t) = y(0)e, for A
a real or complex constant and ¢ a real variable. How do we know that this solution
is the only one? In fact we have a simple lemma.

LEMMA 1.5. Suppose y is a differentiable function of one real variable t and
y' = Xy. Then y(t) = y(0)e*.

PROOF. Let y be differentiable with ¢/ = \y. Put f(t) = e *y(t). The product
rule for derivatives gives f/(t) = e *(=\y(t) +v'(¢)) = 0. The mean-value theorem
from calculus guarantees that the only solution to f’ = 0 is a constant c. Hence,
e My(t) is a constant ¢, which must be %(0), and y(t) = y(0)e . O

This result generalizes to constant coefficient equations of higher order; see
Theorem 1.2. Such equations reduce to first-order systems. Here is the simple idea.
Given a k-times differentiable function y of one variable, we form the vector-valued
function Y : R — R**! as follows:

/
vy = | YO | (15)
yM(t)
The initial vector Y(0) in (15) tells us the values for y(0),4'(0),...,y*(0).
Consider the differential equation y™ = coy + 19/ + ... + cm_1y™ ). Here

y is assumed to be an m-times differentiable function of one variable ¢, and each c;
is a constant. Put k =m — 1 in (15). Define an m-by-m matrix A as follows:

0 1 0 0
0 0 1 0

A= .. 1 0 (16)
0 0 0 1

Co C1 Co e Cm—1
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Consider the matrix product AY and the equation Y’ = AY. The matrix A has been
constructed such that the first m—1 rows of this equation tell us that 4y = y(+1)
and the last row tells us that 4™ = 3" ¢;y"). The equation

Y™ = coy+ a1y + ..+ oy ™ Y

is therefore equivalent to the first-order matrix equation Y/ = AY. In analogy with
Lemma 1.5, we solve this system by exponentiating the matrix A.
Let M, denote a sequence of matrices of complex numbers. We say that M,
converges to M if each entry of M, converges to the corresponding entry of M.
Let M be a square matrix, say n-by-n, of real or complex numbers. We define
eM . the exponential of M, by the series
0o Mk . N Mk
M=D = Nm > T a7)
k=0 k=0
It is not difficult to show that this series converges and also, when M K = K M, that
eM+E — MK Note also that € = I, where I denotes the identity matrix. As a
consequence of these facts, for each M, the matrix e is invertible and e=M is its
inverse. It is also easy to show that MeM = eM M, that is, M and its exponential

eM commute. We also note that e?? is differentiable and %e“” = AeAt,

EXERCISE 1.17. Prove that the series in (17) converges for each square matrix
of complex numbers. Suggestion: Use the Weierstrass M-test to show that each
entry converges.

EXERCISE 1.18. If B is invertible, prove for each positive integer k that
(BMB~ Y = BM*B~!.

EXERCISE 1.19. If B is invertible, prove that BeM B—1 = ¢BMB ™"

EXERCISE 1.20. Find a simple expression for det(e?) in terms of a trace.

A simple generalization of Lemma 1.5 enables us to solve constant coefficient
ordinary differential equations (ODEs) of higher order m. As mentioned above, the
initial vector Y (0) provides m pieces of information.

THEOREM 1.2. Suppose y : R — R is m times differentiable and there are
constants c; such that

m—1
g = 37 ey, (18)
7=0

Define Y as in (15) and A as in (16) above. Then Y (t) = eA*Y (0), and y(t) is the
first component of eAtY (0).

PROOF. Suppose Y is a solution. Differentiating e~ 'Y (t) gives

% (e MY (1)) = e (Y (t) — AY(1)). (19)

Since y satisfies (18), the expression in (19) is the zero element of R™. Hence,

e~ 'Y (t) is a constant element of R™ and the result follows.
O
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In order to apply this result, we need a good way to exponentiate matrices
(linear mappings). Let A : C™ — C™ be a linear transformation. Recall that A
is called an eigenvalue for A if there is a nonzero vector v such that Av = Mwv.
The vector v is called an eigenvector corresponding to A. One sometimes finds
eigenvalues by finding the roots of the polynomial det(A — AI). We note that the
roots of this equation can be complex even if A is real, and we consider A to be an
operator on R".

In order to study the exponentiation of A, we first assume that A has n distinct
eigenvalues. By linear algebra, shown below, there is an invertible matrix P and a
diagonal matrix D such that A = PDP~!. Since (PDP~')¥ = PD*P~! for each
k, it follows that

eA = PPPT = pePp1, (20)
It is easy to find e”; it is the diagonal matrix whose eigenvalues (the diagonal
elements in this case) are the exponentials of the eigenvalues of D.

We recall how to find P. Given A with distinct eigenvalues, for each eigenvalue
Aj, we find an eigenvector v;. Thus, v; is a nonzero vector and A(v;) = A\jv,;. Then
we may take P to be the matrix whose columns are these eigenvectors. We include
the simple proof. First, the eigenvectors form a basis of C™ because the eigenvalues
are distinct.

Let e; be the jth standard basis element of R". Let D be the diagonal matrix
with D(e;) = Aje;. By definition, P(e;) = v;. Therefore,

PDP~'(vj) = PD(e;) = P(\je;) = A\jP(ej) = Ajvj = A(v)). (21)

By (21), A and PDP~! agree on a basis, and hence they define the same linear
mapping. Thus, A = PDP~%.

We apply this reasoning to solve the general second-order constant coefficient
homogeneous differential equation y” = b1y’ + boy. Let A1 and A2 be the roots of
the polynomial A2 — by A — by = 0.

COROLLARY 1.4. Assume y: R — C is twice differentiable, and
v = M+ Ay + Mday =0 (22)

for complex numbers A1 and X\o. If A\ # Aa, then there are complex constants ¢y
and co such that

y(t) = creMt + cpet2t (23)

In case \1 = Ao, the answer is given by
y(t) = eMy(0) + e (y'(0) — Ay(0)).

PROOF. Here the matrix A is given by

0 1
(—)\1)\2 A+ )\2> ' (24)

Its eigenvalues are A\; and A\o. When A\ # Ao, we obtain eAt by the formula

eAt — PeDtpfl,
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where D is the diagonal matrix with eigenvalues A\; and A2 and P is the change of
basis matrix. Here eP? is diagonal with eigenvalues e*’ Azt

a1 1 1Y [eMt 0 o -1
© = Ao — A\q A1 Ao 0 g2t -\ 1

The factor ﬁ on the outside arises in finding P~!. Performing the indicated

and e

matrix multiplications, introducing the values of y and 3’ at 0, and doing some
tedious work gives

y(t) _ ()\tht _ Alekgt)i(o) _/*\_ (6>‘2t _ €>\1t)y/(0)' (25)

2 — A1
Formula (23) is a relabeling of (25). An ancillary advantage of writing the answer
in the form (25) is that we can take the limit as A2 tends to A; and obtain the
solution in case these numbers are equal; write A = Ay = A in this case. The result

(See Exercise 1.21) is

y(t) = eMy(0) + e (y'(0) — Ay(0)). (26)
O

A special case of this corollary arises often. For ¢ real but not 0, the solutions
to the differential equation y” = cy are (complex) exponentials. The behavior of
the solutions depends in a significant way on the sign of c. When ¢ = k2 > 0, the
solutions are linear combinations of e**. Such exponentials either decay or grow
at infinity. When ¢ = —k2, however, the solutions are linear combinations of e,
which we express instead in terms of sines and cosines. In this case, the solutions
oscillate.

EXERCISE 1.21. Show that (25) implies (26).

The assumption that A has distinct eigenvalues is used only to find e easily.
Even when A has repeated eigenvalues and the eigenvectors do not span the space,
the general solution to Y’ = AY remains Y () = ¢**Y(0). The Jordan normal form
allows us to write A = P(D + N)P~!, where D is diagonal and N is nilpotent of a
particular form. If the eigenvectors do not span, then N is not 0. It is often easier
in practice to exponentiate A by using the ideas of differential equations rather than
by using linear algebra. The proof from Exercise 1.21 that (25) implies (26) nicely
illustrates the general idea. See also Exercises 1.25 and 1.28.

EXERCISE 1.22. Find e4? if

A_<3 i)

If you know the Jordan normal form, then describe how to find e?* when the
eigenvectors of A do not span the full space. Suppose first that A is a Jordan block

of the form A + N, where N is nilpotent (as in the normal form) but not 0. What
to pAL9
is e

EXERCISE 1.23. Give an example of two-by-two matrices A and B such that
edel £ eAtE,
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4.1. Inhomogeneous Linear Differential Equations. We also wish to
solve inhomogeneous differential equations To do so, we introduce natural nota-
tion. Let p(z) = 2™ — ZT 01 c;jz? be a monic polynomial of degree m. Let D
represent the operation of dlﬁerentlatlon with respect to x. We define the operator
p(D) by formally substituting D7 for 2.

In Theorem 1.2, we solved the equation p(D)y = 0. In applications, however,
one often needs to solve the equation p(D)y = f for a given forcing function f. For
example, one might turn on a switch at a given time xy, in which case f could be
the function that is 0 for x < xp and is 1 for = > xg.

Since the operator p(D) is linear, the general solution to p(D)y = f can be
written y = yo + y«, where yp is a solution to the equation p(D)y = 0 and y, is
any particular solution to p(D)y. = f. We already know how to find all solutions
to p(D)(yo) = 0. Thus, we need only to find one particular solution. To do so,
we proceed as follows. Using the fundamental theorem of algebra, we factor the

polynomial p:
m

p(=) = [ (= = M.
k=1
where the A\, can be repeated if necessary.
When m = 1, we can solve the equation (D — A\1)g1 = f by the following
method. We suppose that gi(z) = c(z)e*® for some differentiable function c.
Applying D — A1 to g1, we get

(D —X)g1 = (d(z) + c(x)/\l)ehx — Alc(a:)ehx = c/(a:)ehx = f(z).

For an arbitrary real number a (often it is useful to take a = +00), we obtain

/ f(t)e Mt

This formula yields the particular solution g; defined by

g1(x) = eM® /I e_’\ltf(t)dt

and amounts to finding the inverse of the operator D — A;.
The case m > 1 follows easily from the special case. We solve the equation

(D=2)(D = Az)...(D=An)(y) = f
by solving (D — A1)g1 = f and then for j > 1 solving (D — \;)g; = gj—1. The
function y = g,, then solves the equation p(D)y = f.

REMARK 1.4. Why do we start with the term on the far left? The reason is
that the inverse of the composition BA of operators is the composition A~'B~! of
the inverses in the reverse order. To take off our socks, we must first take off our
shoes. The composition product (D — A1)(D — A2)...(D — A,) is independent of
the ordering of the factors, and in this situation, we could invert in any order.

EXAMPLE 1.2. We solve (D — 5)(D — 3)y = e”. First we solve (D — 5)g = €7,
obtaining

¥ -1
g(z) = 659”/ ele ™ tdt = Tex.
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Then we solve (D — 3)h = SLe® to get

3z -1 t_—3t 1 z
h(z)=e —e'e N dt = —e”.
o 4 8
The general solution to the equation is c1€%% + cq9e3% + %ew, where ¢; and ¢ are
constants. We put a = oo because e~** vanishes at oo if A > 0.

EXERCISE 1.24. Find all solutions to (D? + m?)y = e®.

EXERCISE 1.25. Solve (D — \)y = e**. Use the result to solve (D — \)?(y) = 0.
Compare the method with the result from Corollary 1.4, when A\ = As.

EXERCISE 1.26. Find a particular solution to (D — 5)y = 1 — 7522,

EXERCISE 1.27. We wish to find a particular solution to (D — A)y = g, when
¢ is a polynomial of degree m. Identify the coefficients of g as a vector in C™*1.
Assuming A # 0, show that there is a unique particular solution y that is a poly-
nomial of degree m. Write explicitly the matrix of the linear transformation that

sends y to g and note that it is invertible. Explain precisely what happens when
A=0.

EXERCISE 1.28. Consider the equation (D — A)™y = 0. Prove by induction
that 27e** for 0 < j < m — 1 form a linearly independent set of solutions.

We conclude this section with some elementary remarks about solving systems
of linear equations in finitely many variables; these remarks inform to a large degree
the methods used throughout this book. The logical development enabling the
passage from linear algebra to solving linear differential equations was one of the
great achievements of nineteenth century mathematics.

Consider a system of k linear equations in n real variables. We regard this
system as a linear equation Ly = w, where L : R” — R*. Things work out better
(as we shall see) in terms of complex variables; thus, we consider the linear equation
Lz = w, where now L : C" — C*. Let (z, () denote the usual Hermitian Euclidean
inner product on both the domain and target spaces. Let L* denote the adjoint
of L. The matrix representation of L* is the conjugate transpose of L. Then Lz = w
implies (for all ¢)

(w,¢) = (Lz,¢) = (z,L"().
In order that the equation Lz = w have a solution at all, the right-hand side w
must be orthogonal to the nullspace of L*.

Consider the case where the number of equations equals the number of vari-
ables. Using eigenvalues and orthonormal expansion (to be developed in Chap. 2
for Hilbert spaces), we can attempt to solve the equation Lz = w as follows. Under
the assumption that L = L*, there is an orthonormal basis of C™ consisting of
eigenvectors ¢; with corresponding real eigenvalues A;. We can then write both z
and w in terms of this basis, obtaining

w=" (w,¢;);
= Z<37¢J>¢J
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Equating Lz to w, we get

D (b Ny = Y (W, 65)6;.

Now equating coefficients yields

<Zv¢j>)‘j = <w7¢j>' (27)

If A; = 0, then w must be orthogonal to ¢;. If w satisfies this condition for
all appropriate 7, then we can solve Lz = w by division. On each eigenspace with
Aj # 0, we divide by A; to find (z, ¢;), and hence, we find a solution z. The solution
is not unique in general; we can add to z any solution ¢ to L{ = 0. These ideas
recur throughout this book, both in the Fourier series setting and in differential
equations.

5. The Wave Equation for a Vibrating String

The wave equation discussed in this section governs the motion of a vibrating
string. The solution of this equation naturally leads to Fourier series.

We are given a twice differentiable function u of two variables, x and ¢, with x
representing position and ¢ representing time. Using subscripts for partial deriva-

tives, the wave equation is
1

Upyr = gutt. (28)
Here ¢ is a constant which equals the speed of propagation of the wave.

Recall that a function is continuously differentiable if it is differentiable and
its derivative is continuous. It is twice continuously differentiable if it is twice
differentiable and the second derivative is continuous. We have the following result
about the PDE (28). After the proof, we discuss the appropriate initial conditions.

THEOREM 1.3. Let u : R x R — R be twice continuously differentiable and
satisfy (28). Then there are twice continuously differentiable functions F and G (of
one variable) such that

u(z,t) = Fa + ct) + G(x — ct).

Proor. Motivated by writing a = x 4 ¢t and 8 = x — ct, we define a function
¢ by

_a+p a-4
(b(Oé, B) - ’LL( 2 ? 20 )
We compute second derivatives by the chain rule, obtaining
d d uz ug Ugy Uzt | Uty Ut
B = — Qo = —(— —) = _ — ——_:O. 29
Pap dﬁ¢ dB(Z 5) T4 e T ac i (29)

Note that we have used the equality of the mixed second partial derivatives u,; and

U, 1t follows that ¢, is independent of 3, hence a function h of o alone. Integrating

again, we see that ¢ is the integral F of this function h plus an integration constant,
say GG, which will depend on 3. We obtain

u(z,t) = ¢la, B) = Fa) + G(B) = F(x + ct) + G(z — ct). (30)

O
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This problem becomes more realistic if z lies in a fixed interval and u satisfies
initial conditions. For convenience we let this interval be [0, 7]. We can also choose
units for time to make ¢ = 1. The conditions u(0,t) = u(m,t) = 0 state that the
string is fixed at the points 0 and 7. The initial conditions for time are u(z,0) = f(x)
and u¢(z,0) = g(x). The requirement u(x,0) = f(x) means that the initial displace-
ment curve of the string is defined by the equation y = f(x). The requirement on
uy means that the string is given the initial velocity g(z).

Note that f and ¢ are not the same functions as F' and G from Theorem 1.3
above. We can, however, easily express F' and G in terms of f and g.

First we derive d’Alembert’s solution, Theorem 1.4. Then we attempt to solve
the wave equation by way of separation of variables. That method leads to a Fourier
series. In the next section, we obtain the d’Alembert solution by regarding the wave
equation as a constant coefficient ODE and treating the second derivative operator
D? as a number.

THEOREM 1.4. Let u be twice continuously differentiable and satisfy uz, = Uy,
together with the initial conditions u(x,0) = f(x) and u(z,0) = g(x). Then

x x — ot
FEPI (LTIEI LTIy

g(a)da. (31)

—t
PRrROOF. Using the F' and G from Theorem 1.3, and assuming ¢ = 1, we are
given '+ G = f and F' — G’ = g. Differentiating, we obtain the system

G )E)-6) &

Solving (32) by linear algebra expresses F’ and G’ in terms of f and ¢g: we obtain
F' = —+ and G’ = f 2. Integrating and using (30) with ¢ = 1 yields (31). O

We next attempt to solve the wave equation by separation of variables. The
standard idea seeks a solution of the form wu(z,t) = A(x)B(t). Differentiating and
using the equation u,, = w4 leads to A”(x)B(t) = A(z)B”(t), and hence the
expressions ’i;/((;)) and i;/(g) are equal. Since one depends on x and the other on
t, each must be constant. Thus, we have A”(x) = {A(z) and B”(t) = £B(t) which
we solve as in Corollary 1.4. For each &, we obtain solutions. If we insist that
the solution is a wave, then we must have £ < 0 (as the roots are then purely

imaginary). Thus,
z) = aysin(y/|€]z) + azcos(V/|€|z)

for constants a1, as. If the solution satisfies the condition A(0) = 0, then as = 0. If
the solution also satisfies the condition A(7) = 0, then /|| is an integer. Putting
this information together, we obtain a collection of solutions u,, indexed by the
integers:

U (2, 1) = (dpm, cos(mt) 4+ dpm,sin(mt)) sin(mz),

for constants d,,, and d,,,. Adding these solutions (the superposition of these
waves), we are led to a candidate for the solution:

oo

Z dpm, cos(mt) + dp,sin(mt)) sin(maz).

m=0
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Given u(z,0) = f(x), we now wish to solve the equation (where d,, = dp,,)

f(z) = desin(mx). (33)

Again we encounter a series involving the terms sin(maz). At this stage, the basic
question becomes, given a function f with f(0) = f(w) = 0, whether there are
constants such that (33) holds. We are thus asking whether a given function can
be represented as the superposition of (perhaps infinitely many) sine waves. This
sort of question arises throughout applied mathematics.

EXERCISE 1.29. Give an example of a function on the real line that is differen-
tiable (at all points) but not continuously differentiable.

EXERCISE 1.30. Suppose a given function f can be written in the form (33),
where the sum is either finite or converges uniformly. How can we determine the
constants d,,,? (We will solve this problem in Sect.9.)

We conclude this section with a few remarks about the inhomogeneous wave
equation. Suppose that an external force acts on the vibrating string. The wave
equation (28) then becomes

1
Ugx — gutt = h(Ia t) (*)
for some function h determined by this force. Without loss of generality, we again
assume that ¢ = 1. We still have the initial conditions «(0,t) = u(m,t) = 0 as well
as u(z,0) = f(z) and ui(x,0) = g(x). We can approach this situation also by using
sine series. We presume that both u and h are given by sine series:

u(z,t) = Z dpm, (t)sin(max)
h(w,t) =Yk (t)sin(ma).

Plugging into (*), we then obtain a family of second-order constant coefficient ODE
relating d,, to kp,:

A2 () + mPdp(t) = —kn(t).
We can then solve these ODEs by the method described just before Remark 1.4.
This discussion indicates the usefulness of expanding functions in series such as (33)
or, more generally, as series of the form ) d,e™?.

6. Solving the Wave Equation via Exponentiation

This section is not intended to be rigorous. Its purposes are to illuminate
Theorem 1.4 and to glimpse some deeper ideas.

Consider the PDE on R x R given by us, = u; with initial conditions u(z,0) =
f(z) and u(z,0) = g(x). We regard it formally as a second-order ODE as follows:

() = ()= (s ) () o

Here D? is the operator of differentiating twice with respect to x, but we treat it
formally as a number. Using the method of Corollary 1.4, we see formally that the
answer is given by
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0 1

(u(:v,t)) _ e<D2 o)t (fgx)) (35)

ug(x, t) g(z)

The eigenvalues of ( 0 1) are =D, and the change of basis matrix is given by

D? 0
1 -1
r=(p o)

Proceeding formally as if D were a nonzero number, we obtain by this method

eDt eth Dt —Dt
)+ (D1g)(@) (36)

We need to interpret the expressions e*P* and D~! in order for (36) to be useful.
It is natural for D~! to mean integration. We claim that e?!f(z) = f(z +1t). We
do not attempt to prove the claim, as a rigorous discussion would take us far from
our aims, but we ask the reader to give a heuristic explanation in Exercise 1.31.
The claim and (36) yield d’Alembert’s solution, the same answer we obtained in
Theorem 1.4:

u(z,t) =

x x — ot
o= EH0TIEZ0 1

5 5 g(u)du. (37)

—t

EXERCISE 1.31. Give a suggestive argument why eP!f(z) = f(z + ).

7. Integrals

We are now almost prepared to begin our study of Fourier series. In this section,
we introduce some notation and say a few things about integration.

When we say that f is integrable on the circle, we mean that f is Riemann inte-
grable on [0, 2] there and that f(0) = f(27). By definition, a Riemann integrable
function must be bounded. Each continuous function is Riemann integrable, but
there exist Riemann integrable functions that are discontinuous at an infinite (but
small, in the right sense) set of points.

Some readers may have seen the more general Lebesgue integral and measure
theory. We sometimes use notation and ideas usually introduced in that context.
For example, we can define measure zero without defining measure. A subset S of
R has measure zero, if for every ¢ > 0, we can find a sequence {I,} of intervals
such that S is contained in the union of the I,, and the sum of the lengths of the
I,, is less than e. A basic theorem we will neither prove nor use is that a bounded
function on a closed interval on R is Riemann integrable if and only if the set of its
discontinuities has measure zero.

In the theory of Lebesgue integration, we say that two functions are equivalent
if they agree except on a set of measure zero. We also say that f and g agree almost
everywhere. Then L' denotes the collection of (equivalence classes of measurable)
functions f on R such that ||f]|;1 = [|f] < co. For 1 < p < oo, LP denotes
the collection of (equivalence classes of measurable) functions f such that || f|[7, =
J1fIP < co. We are primarily interested in the case where p = 2. Finally, L™
denotes the collection of (equivalence classes of measurable) functions that agree
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almost everywhere with a bounded function. For f continuous, ||f||r~ = sup|f]|.
We write L(S), L?(S), and so on, when the domain of the function is some given
set S. We do not define measurability here, but we note that being measurable is
a weak condition on a function, satisfied by all functions encountered in this book.
See [F1] for detailed discussion of these topics.

Perhaps the fundamental result distinguishing Lebesgue integration from Rie-
mann integration is that the LP spaces are complete in the Lebesgue theory. In
other words, Cauchy sequences converge. We do not wish to make measure theory
a prerequisite for what follows. We therefore define L'(S) to be the completion of
the space of continuous functions on S in the topology defined by the L' norm. We
do the same for L2(S). In this approach, we do not ask what objects lie in the com-
pletion. Doing so is analogous to defining R to be the (metric space) completion of
Q but never showing that a real number can be regarded as an infinite decimal.

We mention a remarkable subtlety about integration theory. There exist se-
quences { f,,} of functions on an interval such that each f,, is (Riemann or Lebesgue)
integrable, [ f, converges to 0, yet {f,(z)} diverges for every z in the interval.

ExaMpPLE 1.3. For each positive integer n, we can find unique nonnegative
integers h and k such that n = 2" + k < 2"+1. Let f,, be the function on [0, 1] that
is 1 on the half-open interval I,, defined by

kE kE+1
In=lgn o)

and 0 off this interval. Then the integral of f,, is the length of I,,, hence % Asn
tends to infinity, so does h, and thus [ f,, also tends to 0. On the other hand, for
each z, the terms of the sequence {f,(x)} equal both 0 and 1 infinitely often, and

hence the sequence diverges.

S (X)=1 Ju (X)=1

m

FiGUure 1.3. Example 1.3

In Example 1.3, there is a subsequence of the f,, converging almost everywhere
to the 0 function, illustrating a basic result in integration theory (Fig.1.3).

We will use the following lemma about Riemann integrable functions. Since f
is Riemann integrable, it is bounded, and hence we may use the notation ||f]|Le.
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LEMMA 1.6. Suppose f is Riemann integrable on the circle. Then there exists
a sequence {fn} of continuous functions such that both hold:

(1) For all k, sup(| fx(x)|) < sup|f(z)|. That is, || fellLe < [If[|Le-
(2) lim [ |fe(z) — f(z)|dz = 0. That is, fr, — f in L.

We end this section by indicating why it is unreasonable to make the collection
of Riemann integrable functions into a complete metric space. We first note that it is
difficult to define a meaningful distance between two Riemann integrable functions.
The natural distance might seem to be d(f, g) = [ | f—g|, but this definition violates
one of the axioms for a distance. If f and g agree except on a (nonempty) set of
measure zero, then [ |f —g| =0, but f and g are not equal. Suppose instead we
define f and g to be equivalent if they agree except on a set of Lebesgue measure
zero. We then consider the space of equivalence classes of Riemann integrable
functions. We define the distance between two equivalence classes F' and G by
choosing representatives f and g and putting 6(F, G) = [|f—g|. Then completeness
fails. The next example shows, with this notion of distance, that the limit of
a Cauchy sequence of Riemann integrable functions needs not be itself Riemann
integrable.

EXAMPLE 1.4. Define a sequence of functions { f,,} on [0, 1] as follows: f,,(x) =0
for 0 < 2 < L and f,(z) = —log(z) otherwise. Each f, is obviously Riemann
integrable, and f,, converges pointwise to a limit f. Since f is unbounded, it is not
Riemann integrable. This sequence is Cauchy in both the L' and the L? norms. To
show that it is Cauchy in the L' norm, we must show that || f,, — |21 tends to 0
as m,n tend to infinity. But, for n > m,

1

! w
/0 |fn($)—fm($)|d$=/i [log(z)|dz.

The reader can easily show using calculus that the limit as n,m tend to infinity of
this integral is 0. A similar but slightly harder calculus problem shows that { f,,} is
also Cauchy in the L? norm.

In this book, we will use the language and notation from Lebesgue integration,
but most of the time, we work with Riemann integrable functions.

EXERCISE 1.32. Verify the statements in Example 1.4.
EXERCISE 1.33. Prove Lemma 1.6.

EXERCISE 1.34. Prove that each n € N has a unique representation n = 2" + k
where 0 < k < 2"

8. Approximate Identities

In his work on quantum mechanics, Paul Dirac introduced a mathematical
object often called the Dirac delta function. This function ¢ : R — R was supposed
to have two properties: §(z) = 0 for z # 0 and [_&(z)f(z)dz = f(0) for all
continuous functions f defined on the real line. No such function can exist, but it
is possible to make things precise by defining d to be a linear functional. That is,
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0 is the function ¢ : V' — C defined by 6(f) = f(0), for V an appropriate space of
functions. Note that

6(f +9) = (f +9)(0) = £(0) + 9(0) = 6(f) + 6(9)
d(cf) = (cf)(0) = cf(0) = cd(f),

and hence ¢ is linear. We discuss linear functionals in Chap.2. We provide a
rigorous framework (known as distribution theory) in Chap. 3, for working with the
Dirac delta function.

In this section, we discuss approximate identities, often called Dirac sequences,
which we use to approximate the behavior of the delta function.

DEFINITION 1.3. Let W denote either the natural numbers or an interval on
the real line, and let S' denote the unit circle. An approzimate identity on S* is
a collection, for t € W, of continuous functions K, : S* — R with the following
properties:

(1) For all ¢, o= [* Ky(z)dx =1

(2) There is a constant C such that, for all ¢, 5~ ["_|Ky(z)|dz < C.
(3) For all € > 0, we have

lim | K (x)|dx = 0.

2T Je<|a|<n

Here T' = oo when W is the natural numbers, and 7' = sup(W) otherwise.

Often our approximate identity will be a sequence of functions K,,, and we let
n tend to infinity. In another fundamental example, called the Poisson kernel, our
approximate identity will be a collection of functions P, defined for 0 < r < 1. In
this case, we let r increase to 1. In the subsequent discussion, we will write K, for
an approximate identity indexed by the natural numbers and P, for the Poisson
kernel, indexed by r with 0 <r < 1.

We note the following simple point. If K; > 0, then the second property follows
from the first property. We also note that the graphs of these functions K; spike
at 0. See Figs.1.4-1.6. In some vague sense, Dirac’s delta function is the limit of
K. The crucial point, however, is not to consider the K; on their own but rather
the operation of convolution with K;.

We first state the definition of convolution and then prove a result clarifying
why the sequence {K,,} is called an approximate identity. In the next section, we
will observe another way in which convolution arises.

DEFINITION 1.4. Suppose f,g are integrable on the circle. Define f * g, the
convolution of f and g, by
1 s
(fxg)(@) =5 | Flyglx—y)dy.
™ —T
Note the normalizing factor of % One consequence, where 1 denotes the con-
stant function equal to 1, is that 1+ 1 = 1. The primary reason for the normalizing
factor is the connection with probability. A nonnegative function that integrates to
1 can be regarded as a probability density. The density of the sum of two random
variables is the convolution of the given densities. See [HPS].
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THEOREM 1.5. Let {K,} be an approzimate identity, and let f be Riemann
integrable on the circle. If f is continuous at x, then

Jim (£ Ka)(@) = £ (@)

If f is continuous on the circle, then f *x K, converges uniformly to f. Also,

™ ™
1) = tm o= [ oK@y = im [ ) Ky,
n—oo 2w J__ n—oo 21 J__

PRrROOF. The proof uses a simple idea, which is quite common in proofs in
analysis. We estimate by treating f(z) as a constant and integrating with respect
to another variable y. Then |(f * K,)(z) — f(z)] is the absolute value of an integral,
which is at most the integral of the absolute value of the integrand. We then break
this integral into two pieces, where y is close to 0 and where y is far from 0. The
first term can be made small because f is continuous at x. The second term is made
small by choosing n large.

Here are the details. Since {K,} is an approximate identity, the integrals of
|K,| are bounded by some number M. Assume that f is continuous at z. Given
€ > 0, we first find  such that |y| < § implies

€

fw=y) = J@) < 507

If f is continuous on the circle, then f is uniformly continuous, and we can choose
0 independent of x to make the same estimate hold. We next write

(f # Kn) (@) — f()] = / Kn()(f(z —y) — F(x))dy

< [1aw)Fe =) = f@)ldy =1+ I (3%)
Here I; denotes the integral over the set where y is close to 0. We have
§
€ €
= [ K@@ =9 = Sy < g = 5 (39)

Next, we estimate I3, the integral over the set where |y| > §. Since f is integrable,
it is bounded. For some constant C', I is then bounded by

C K (y)ldy. (40)

ly|>6
The third defining property of an approximate identity enables us to choose Ny
sufficiently large such that, for n > Ny, we can bound (40) by § as well. Both
conclusions follow. O

Each of the next three examples of approximate identities will arise in this book.
The third example is defined on the real line rather than on the circle, but there is
no essential difference.

ExAMPLE 1.5 (Fejer kernel). Let Dy(z) = EiVN e’*®: this sequence is
sometimes called the Dirichlet kernel. Although the integral of each Dy over
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the circle equals 1, the integral of the absolute value of Dy is not bounded inde-
pendent of N. Hence, the sequence { Dy} does not form an approximate identity.
Instead we average these functions; define Fy by

| N1
Fn(z) = N Z D, (z).
n=0

The sequence {Fy} defines an approximate identity called the Fejer kernel. See
Fig.1.4. See Theorem 1.8 both for the verification that { Fiv } defines an approximate
identity and for a decisive consequence.

= 2 g T Ty
FIGURE 1.4. Fejer kernel

EXAMPLE 1.6 (Poisson kernel). For 0 < r < 1, define P.(6) as follows. Put
. 2
z=re? and put P,(0) = =L

o=z

P.(0) = Z rinleind (41)

nez

Then, as shown in Exercise 1.35, we have

It follows from (41) that the first property of an approximate identity holds. (The
only term not integrating to 0 is the term when n = 0.) The second property is
immediate, as P.(#) > 0. The third property is also easy to check. Fix e > 0. If
0] > € and z = re', then |1 — z|> > ¢, > 0. Hence, P,(0) < 1;—’”2 Thus, the limit
as r increases to 1 of P.(0) is 0. Hence, the Poisson kernel defines an approximate

identity on the circle. Figure 1.5 shows the Poisson kernel for the values r = %,
1 2

r=g,and r = 3.

EXAMPLE 1.7 (Gaussian). For 0 < ¢ < oo, put Gi(z) = \/;eftﬁ' Then G;

defines an approximate identity on R. Since Gi(z) > 0, we need only to show that
ffooo Gi(x)dx =1 and, that for § > 0,

lim Gi(x)dz = 0.

t—o00 || >6

See Exercise 1.36. Figure 1.6 shows the Gaussian for three different values of t.
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P,(0)
5

-3 -2 -1 1 2 3

FIGURE 1.5. Poisson kernel

0.

FIGURE 1.6. Gaussian kernel

A Gaussian is any function of the form

1 —(z—p)?
e 202

G(x) =

oV 2T

Here o > 0 and p is an arbitrary real number. Gaussians are of crucial importance
in probability and statistics. The function G represents the density function for a
normal probability distribution with mean p and variance 0. In Example 1.7, we
are setting y = 0 and 02 = % When we let ¢ tend to infinity, we are making the
variance tend to zero and clustering the probability around the mean, thus giving
an intuitive understanding of why G, is an approximate identity. By contrast, when
we let ¢ tend to 0, the variance tends to infinity and the probability distribution

spreads out. We will revisit this situation in Chap. 3.
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EXERCISE 1.35. Verify (41). (Hint: Sum two geometric series.)

EXERCISE 1.36. Verify the statements in Example 1.7.

9. Definition of Fourier Series

An infinite series of the form Y "= ¢,e™ is called a trigonometric series.

n=-—oo 1
Such a series need not converge.
Let f be an integrable function on the circle. For n € Z, we define its Fourier
coeflicients by
. 1 [27 )
fln)=— flx)e """ dx.
2 Jo
Note by (9) that the coefficient ¢; of a trig polynomial f is precisely the Fourier
coefficient f(j). Sometimes we write F(f)(n) = f(n). One reason is that this
notation helps us think of F as an operator on functions. If f is integrable on
the circle, then F(f) is a function on the integers, called the Fourier transform of
f. Later we will consider Fourier transforms for functions defined on the real line.
Another reason for the notation is that typographical considerations suggest it.

DEFINITION 1.5. The Fourier series of an integrable function f on the circle is
the trigonometric series

nez

When considering convergence of a trigonometric series, we generally consider
limits of the symmetric partial sums defined by

N
Sn(z) = Z ane™®.
n=—N

Considering the parts for n positive and n negative separately makes things more
complicated. See [SS].

The Fourier series of an integrable function need not converge. Much of the
subject of Fourier analysis arose from asking various questions about convergence.
For example, under what conditions does the Fourier series of f converge pointwise
to f, or when is the series summable to f using some more complicated summability
method? We discuss some of these summability methods in the next section.

LEMMA 1.7 (Properties of Fourier coefficients). The following Fourier transform
formulas hold:

(1) F(f +9)=F() +Fg)
(2) Flef) = cF(f)

(3) For all n, F(f)(n) = f(n) = f(—n) = F(f)(—n).
(4) For alln, |F(f)(n)| <||fllzr- Equivalently, ||F(f)l|lre < ||fl|z1-

PROOF. See Exercise 1.37. O

The first two properties express the linearity of the integral. The third property
generalizes the palindrome property of real trig polynomials. We will use the fourth
property many times in the sequel.

We also note the relationship between antiderivatives and Fourier coefficients.
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LEMMA 1.8. Let f be Riemann integmble (hence bounded). Assume that f(0) =

% J f(u)du = 0. Put F(x fo u)du. Then F is periodic and continuous; also,
forn #0, R
: f(n)
F(n) = . 42
(m) = 25 (42)
ProoOF. The following inequality implies the continuity of F:

<o =yl [[fllz=-

@) - Fo)l = | " f(u)du

Since f(0) = 0, we see that 0 = F(2x) = F(0). Finally, formula (42) follows either
by integration by parts (Exercise 1.37) or by interchanging the order of integration:

F(n) = Py /27T (/ flu du) e~ Ty = % 0277 (/27T e_imd:v> f(u)du

T ey puydu = L0,

T on 0 —in mn

since [ f(u)du = 0. O

S

See Exercise 1.40 for a generalization of this Lemma. The more times f is
differentiable, the faster the Fourier coefficients must decay at infinity.

EXERCISE 1.37. Prove Lemma 1.7. Prove Lemma 1.8 using integration by
parts.

EXERCISE 1.38. Find the Fourier series for cos*V(#). (Hint: Don’t do any
integrals!)

EXERCISE 1.39. Assume f is real valued. Under what additional condition can
we conclude that its Fourier coefficients are real? Under what condition are the
coefficients purely imaginary?

EXERCISE 1.40. Assume that f is k times continuously differentiable. Show
that there is a constant C' such that

5 C
< N
fm)] < =
EXERCISE 1.41. Assume that f(x) = —1 for —7 < z < 0 and f(x) = 1 for

0 < z < 7. Compute the Fourier series for f.

EXERCISE 1.42. Put f(z) = e® for 0 < z < 2m. Compute the Fourier series
for f.

EXERCISE 1.43. Put f(z) = sinh(z) for —7 < = < 7. Compute the Fourier

series for f. Here sinh is the hyperbolic sine defined by sinh(z) = < —— (Fig.1.7).

We next establish the fundamental relationship between Fourler series and
convolution.

THEOREM 1.6. If f and g are integrable, then f*g is continuous and F(fxg) =
F(f)F(g). In other words, for all n we have

F(f +g9)(n) = (f *g)(n) = f(n)a(n) = F(£)(n)F(g)(n). (43)
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Sinh (x)

FIGURE 1.7. Periodic extension of hyperbolic sine

PROOF. The proof is computational when f and g are continuous. We compute
the left-hand side of (43) as a double integral and then interchange the order of
integration. The general case then follows using the approximation Lemma 1.6.

Here are the details. Suppose first that f and g are continuous. Then

F(f# g)n) = / (5 %f(y)g(a?—y)dy)e_imdz.

:% 2T 0

By continuity, we may interchange the order of integration, obtaining

e = [ 16 ([ o) ay

Change variables by putting  — y = ¢. Then use e "W+t = ¢="Ve=int and the
result follows.

Next, assume f and g are Riemann integrable, hence bounded. By Lemma 1.6,
we can find sequences of continuous functions f; and gj, such that || fx||z~ < ||f]|Le,
also ||f — fxllzr — 0, and similarly for gx. By the usual adding and subtracting
trick,

frg—"Jfrxge=((f = fr)*g)+ (fe*(9—9x)). (44)

Since g and each fi is bounded, both terms on the right-hand side of (44) tend to
0 uniformly. Therefore, fi * gi tends to f * g uniformly. Since the uniform limit of
continuous functions is continuous, f * g is itself continuous. Since f; tends to f in
L' and (by property (4) from Lemma 1.7)

2
felm) = fl < 3= [ 1= 11 (45)

it follows that |fx(n) — f(n)| converges to 0 for all n. Similarly |gi(n) — §(n)|
converges to 0 for all n. Hence, for each n, fr(n)gr(n) converges to f(n)g(n).
Since (43) holds for fi and g, it holds for f and g. O

By the previous result, the function fxg is continuous when f and g are assumed
only to be integrable. Convolutions are often used to regularize a function. For
example, if f is integrable and ¢ is infinitely differentiable, then f % ¢ is infinitely
differentiable. In Chap.3 we will use this idea when g, defines an approximate
identity consisting of smooth functions.
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10. Summability Methods

We introduce two notions of summability, Cesaro summability and Abel
summability, which arise in studying the convergence of Fourier series.

First we make an elementary remark. Let {4,} be a sequence of complex
numbers. Let oy denote the average of the first IV terms:

A+ A+ + AN
= ~ :

If Ay — L, then oy — L as well. We will prove this fact below. It applies
in particular when Ay is the Nth partial sum of a sequence {a,}. There exist
examples where Ay does not converge but oy does converge. See Theorem 1.7.
We therefore obtain a more general notion of summation for the infinite series ) ay,.

Suppose next that Y a, converges to L. For 0 < r < 1, put f(r) = > anr™.
We show in Corollary 1.5 that lim,_,; f(r) = L. (Here we are taking the limit as
r increases to 1.) There exist series Y a, such that > a, diverges, but this limit
of f(r) exists. A simple example is given by a, = (—1)"*!. A more interesting
example is given by a,, = n(—1)"*1.

ON

DEFINITION 1.6. Let {a,} be a sequence of complex numbers. Let Ay =

Zj-v:l a;j. Let oy = %Zjvd Aj. For 0 <r <1, weput Fn(r) = Zjvzl

ajrj.
(1) Y77 a; converges to L if limy 00 An = L.
(2) ZTO a; is Cesaro summable to L if imy_ ooy = L.

(3) -7 a; is Abel summable to L if lim,_,; limy o0 Fn(r) = L.

THEOREM 1.7. Let {a,} be a sequence of complex numbers.

(1) If > an converges to L, then Y a, is Cesdro summable to L. The converse
fails.

(2) If 5" ay is Cesaro summable to L, then Y a, is Abel summable to L. The
converse fails.

PRrROOF. We start by showing that the converse assertions are false. First put
a, = (=1)"*L. The series 3 a,, certainly diverges, because the terms do not tend
to 0. On the other hand, the partial sum Ay equals 0 if NV is even and equals 1 if
N is odd. Hence, ooy = % and ooy i1 = 2%‘:11 — % Thus, imy_e0 ON = % Thus,
> ay, is Cesaro summable but not convergent.

Next put a, = n(—1)"*1. Computation shows that Aoy = —N and Aoyi1 =
N + 1. Tt follows that ooy = 0 and that oon41 = QNN—Tl These expressions have

different limits, and hence, limy oy does not exist. On the other hand, for |r| < 1,
o0 o0 r
Z n(—=1)"Tpm = an(—r)"fl =
— T (I+7)
Letting r tend upwards to 1 gives the limiting value of %. Hence, Y ay, is Abel
summable to i but not Cesaro summable.
Proof of (1): Suppose that > a, = L. Replace a1 with a; — L and keep all the
other terms the same. The new series sums to 0. Furthermore, each partial sum
Ap is decreased by L. Hence, the Cesaro means oy get decreased by L as well.
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It therefore suffices to consider the case where > a,, = 0. Fix ¢
tends to 0, we can find an Ng such that N > Ny implies |[Ay| < §.
We have for N > Ny,

> 0. Since Ay

No—1

ZAJr—ZA (46)

Jj=No

Since Ny is fixed, the first term tends to 0 as IV tends to infinity, and hence its
absolute value is bounded by § for large enough N. The absolute value of the
second term is bounded by £ W and hence by § because N > Ny > 1. The
conclusion follows.

Proof of (2): This proofis a bit elaborate and uses summation by parts. Suppose
first that oy — 0. For 0 < r < 1, we claim that

(1—7r)? i no,r" = i anr™. (47)
n=1 n=1

We wish to show that the limit as r tends to 1 of the right-hand side of (47) exists
and equals 0. Given the claim, consider € > 0. We can find Ny such that n > Ny
implies |o,| < §. We break up the sum on the left-hand side of (47) into terms
where n < Ny — 1 and the rest. The absolute value of the first part is a finite sum
times (1 — r)? and hence can be made at most 5 by choosing r close enough to 1.

Note that > o, nr"~t = ﬁ The second term 7' can then be estimated by

IT| < (1 —7)? an <(l1-r) %inrnz

Hence, given the claim, by choosing r close enough to 1, we can make the absolute
value of (47) as small as we wish. Thus, > a, is Abel summable to 0. As above,
the case where oy tends to L reduces to the case where it tends to 0.

It remains to prove (47), which involves summation by parts twice.

N N-1 N-1
Zanr" = AnrN — Z Ap(rm Tt — )y = AnrN 4+ (1 =) Z A,r™.
1 1 1

Next we use summation by parts on Zivfl Apr™:

N-1 N—-2

Z Apr™ = (N = Doy_1rV 1 = Z noy, (r T — )
1

1

=(N—=Dony_ 17V P+ (1-7) Z no,r".

Note that Ay = Noy — (N — 1)on—1. Hence, we obtain
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N

E anr" =

1
N—-2

(Noy — (N = Doy )N + (1 =r)rV YN = Doy_1 + (1 —7r)? Z no,r". (48)

Since |r| < 1, im(Nr) = 0. Since also oy is bounded, each of the terms in (48)

other than the sum converges to 0. Thus, Zf[ anr™ converges to (1—r)2 30" no,r",
as desired. O

We will recall the notion of radius of convergence of a power series in
Theorem 1.10 below. Here we note that Abel summability provides information
about the behavior of a series on the circle of convergence.

COROLLARY 1.5 (Abel’s theorem). Suppose > 7 an,z™ has radius of conver-
gence 1, and assume Y . a, converges to L. Then the function f, defined on
(—1,1) by this series and by f(1) = L, is continuous at x = 1. (The limit is taken
as x — 1 from the left.)

PROOF. Combining the two conclusions of the Theorem shows that the series
is Abel summable to L. But Abel summability is simply another way to state the
conclusion of the corollary: lim,_,1 f(x) = f(1). O

oo (="
n=0 2n+1 -

COROLLARY 1.6. § =3

PROOF. By integrating the series for 14-% term by term on (—1,1), we obtain
the power series for inverse tangent there:

L s x2n+1
tan™ = 1" .
The series converges at = 1 by Corollary 1.2. By Corollary 1.5, it converges to
tan~'(1) = %. O

The series in Corollary 1.6 converges rather slowly, and hence it does not yield
a good method for approximating 7.

The reader should note the similarities in the proofs of Theorem 1.5 and The-
orem 1.7. The same ideas appear also in one of the standard proofs of the funda-
mental theorem of calculus. .

Cesaro summability will be important in our analysis of the series Y~ Smglm)
We will prove a general result about convergence to f(z) of the Cesaro means of
the Fourier series of the integrable function f at points x where f is continuous.
Then we will compute the Fourier series for the function x on the interval [0, 27].
It then follows for 0 < z < 27 that

i sin(nz)  7w—x
~ n 2

Note that equality fails at 0 and 27. Figure 1.8 shows two partial sums of the series.
See also Remark 1.5.

Recall that Sy (x) = ZiVN f(n)e'™* denotes the symmetric partial sums of the
Fourier series of f.
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FIGURE 1.8. Approximations to the sawtooth function

THEOREM 1.8. Suppose f is integrable on [—m, 7| and f is continuous at x.
The Fourier series for f at x is Cesaro summable to f(z).

PROOF. Put Dk (z) = ZIfK e"®. Define F by

Do(ZE) + Dl(fb) + ...+ DN,1($)
N .

Note that on (f)(x) = (f * Fn)(x). We claim that {Fy} defines an approximate
identity.

Since each Dy integrates to 1, each Fy integrates to 1. The first property of
an approximate identity therefore holds. A computation (Exercise 1.44) shows that

FN(:E) =

1 sin (NT)
N sz(%) '

Since Fy > 0, the second property of an approximate identity is automatic. The
third is easy to prove. It suffices to show for each € with 0 < ¢ < 7 that

Fy(z) = (49)

lim Fn(z)dz = 0.
N—oo [,
But, for = in the interval [¢, 7], the term - ( is bounded above by a constant and
the term sin®*(£) is bounded above by 1. Hence, Fy < & and the claim follows.
The conclusion of the theorem now follows by Theorem 1.5. O

COROLLARY 1.7. For 0 < z < 27, we have

n 2

Z sin(nxz) -z

n=1
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Proor. Put f( ) = x on [0,27]. Compute the Fourier coefficients of . We
have f (0) =7 and f (n) = —Z Hence, the Fourier series for f is given by

w+z z

This series converges in the Cesaro sense to f (x) at each x where f is continuous,
namely, everywhere except 0 and 27. By Proposition 1.2, it converges for all z, and
by Theorem 1.7, to f(z) when f is continuous. For 0 < z < 27, we get

T = 7T+Zelnx ] Z —inz ¥ ) 7T_2i singlnx),
1

from which the conclusmn follows. O

REMARK 1.5. The sine series in Corollary 1.7 converges for all . The limit
function is continuous everywhere except at integer multiples of 2. The value 0 at
the jump discontinuities is the average of the limiting values obtained by approach-
ing from the right and the left. This phenomenon holds rather generally. Figure 1.8
illustrates the situation in this case and also displays the Gibbs phenomenon; the
Fourier series overshoots (or undershoots) the value by a fixed percentage near a
jump discontinuity. See [SS, F2] and their references for more information.

COROLLARY 1.8. Let f be continuous on the circle. Then there is a sequence
of trig polynomials converging uniformly to f.

PRrROOF. Each partial sum Sy is a trig polynomial, and hence each Cesaro
mean also is. Therefore, we need only to strengthen the theorem to show, when
f is continuous, that f x F converges uniformly to f. The strengthened version
follows from the proof. 1

Thus, trig polynomials are dense in the space of continuous functions on the
circle with the norm ||f||«. Ordinary polynomials are dense in the space of con-
tinuous functions on a closed interval as well. This result, called the Weierstrass
approximation theorem, has many proofs. In particular it can be derived from
Corollary 1.8.

EXERCISE 1.44. Prove (49). Here is one possible approach. We have
N-1 &k N-1 k

| Nl
:N;Dk( NZZWE:NZZU)J

where w = €**. Hence, w™' = w. After multiplying by @", rewrite the inner sum

as a sum from 0 to 2k. Sum the finite geometric series. Each of the two terms
becomes itself a geometric series. Sum these, and simplify, canceling the common
factor of 1 — w, until you get

1 1 2 —2cos(Nx)
Fy(@) = ——— (2 —wVN —gV) = — 27 200UTT)
M@ = g ) S S T a8t
We finally obtain (49) after using the identity
g a1 —cos(a)
sin (2) =—
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EXERCISE 1.45. Verify the previous trig identity using complex exponentials.

EXERCISE 1.46. Put f(z) = @. Show that f is convex and decreasing.

Conclude that f(x +2) + f(z) > 2f(z + 1).

EXERCISE 1.47. Find the following limit:

1 1 2
li - .
o <log<x +2) " log(a)  log(a + 1))
EXERCISE 1.48. Use (49) and Exercise 1.46 to solve Exercise 1.6. (Again sum
by parts twice.) Exercise 1.3 might also be useful.

REMARK 1.6. In solving Exercise 1.48, one must include the first term.

EXERCISE 1.49. Derive the Weierstrass approximation theorem from Corollary
1.8. Suggestion: First show that the Taylor polynomials of e uniformly approx-
imate it on any closed and bounded interval. Thus, any trig polynomial can be
uniformly approximated by ordinary polynomials.

EXERCISE 1.50. If {s,,} is a monotone sequence of real numbers, show that the
1 N .
averages oN = 7 i=15j also define a monotone sequence. Give an example where
the converse assertion is false.

11. The Laplace Equation

In this section, we connect ideas from Abel summability to the Dirichlet problem
for the Laplace equation.

We have defined Abel summability of a series Y.~ z, of complex numbers.
For Fourier series, we make a small change and consider Abel summability of the
series Ziooo ane™. Thus, we consider

Z anr™em? (50)
nez
and we let 7 increase to 1. The series in (50) turns out to have a simple expression;
it is the convolution of the Fourier series with the Poisson kernel. Since the Poisson
kernel is an approximate identity, our next result will follow easily.

THEOREM 1.9. Suppose h is integrable on the circle. Then the Fourier series
of h is Abel summable to h at each point of continuity of h. If h is continuous on
the circle, then the Abel means of its Fourier series converge uniformly to h.

z

PROOF. Recall that P,(0) = ‘11{&!; when z = 7. We have noted that P, is
an approximate identity and that
P.(0) = Z rlnlein?,
nez
The Abel means of the Fourier series for h are then

Z h(n)r!™em? = (P, « h)(6).

neZ
By Theorem 1.5 the Abel means converge to h(f) at each point where h is contin-
uous. Also by Theorem 1.5, the convergence is uniform if A is continuous. O
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We recall that a twice differentiable function w of two real variables is called
harmonic if A(u) = 0; that is,
A(u) = Ugy + Uyy = 0.
The Dirichlet problem is perhaps the most fundamental boundary-value prob-
lem in applied mathematics. We are given a continuous function h on the boundary
of an open set €2, and we wish to find a harmonic function u on 2 such that v = h

on the boundary.
For us, 2 will be the unit disk in C; its boundary is the unit circle. Suppose h

is given by a Fourier series,
h(0) = Z ane™.

nez
Then the solution u to the Dirichlet problem is uniquely determined and satisfies

u(z) = u(re') = Z g, e, (51)
nez

Before proving this result (Theorem 1.11), we recall one of the basic ideas from
complex variable theory, the notion of radius of convergence of a power series.

THEOREM 1.10. Given a power series y .- | an2", there is a nonnegative real
number R, or the value infinity, such that the series converges for |z| < R and
diverges for |z| > R. The number R can be computed by Hadamard’s formula

R = sup{r : |a,|r" is a bounded sequence}. (52)

If R =0, then the series converges only if z = 0. If 0 < r < R, the series converges
absolutely and uniformly for |z| < r.

PROOF. Define R by (52). If |z| > R, then the terms of the series are un-
bounded, and hence the series diverges. Next assume that 0 < p < r < R. Assume
that |ap|r™ < M. We claim that ) a,z" converges absolutely and uniformly in
{]z] < p}. The claim follows by the comparison test and the convergence of a
geometric series with ratio ¢t = f:

D lanz" <3 lanlp” = Y lanl™ (B < MY

Each assertion follows. O
REMARK 1.7. We also can compute R by the root test. See Exercise 1.54.

The Laplacian A has a convenient expression using complex partial derivatives:
P
0207
Here the complex partial derivatives are defined by
9] 1,0 .0
= = (= —i0)
0z 2°0x 0y
o 10 0
0z 20z Oy’
EXERCISE 1.51. Verify the formula A(u) = 4u.z.

Au) = 4du,z =
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EXERCISE 1.52. Show that the Laplacian in polar coordinates is given as follows:
1 1
A(u) = Upp + —ur + —ugp.
r r2
EXERCISE 1.53. Use the previous exercise to show that the real and imaginary
parts of 2™ are harmonic for n a positive integer.

EXERCISE 1.54. Given the series 3" a,2", put L = lim sup(|a,|=). Show that

the radius of convergence R satisfies R = %

EXERCISE 1.55. Give three examples of power series with radius of convergence
1 with the following true. The first series converges at no points of the unit circle,
the second series converges at some but not all points of the unit circle, and the
third series converges at all points of the unit circle.

EXERCISE 1.56. Let p be a polynomial. Show that the series > (—1)"p(n) is
Abel summable. More generally, for |z| < 1, show that Y~ p(n)z" is a polynomial
1

in 1= with no constant term. Hence, the limit, as we approach the unit circle from

within, exists at every point except 1.

By analogy with the wave equation, the formula for the Laplacian in complex
notation suggests that a function u = w(z,y) is harmonic if and only if it can be
written u(x,y) = f(z) + g(Z), for functions f and g of the indicated one complex
variable. In particular, it suggests that a real-valued function is harmonic if and
only if it is the real part of a complex analytic function.

We use these considerations to revisit the Dirichlet problem. Let h be contin-
uous on the circle.

THEOREM 1.11. Suppose h is continuous on the unit circle. Put
u(re?) = (P, x h)(6).

Then u is infinitely differentiable on the unit disk, u is harmonic, and uw = h on the
circle.

PROOF. Since h is continuous, the Fourier coefficients h(n) are bounded.
Hence, for each r < 1, the series in (51) converges absolutely. Put z = re? and
write u(re )= )( ). We have

(P
i P zm9 Z e —ind Z h Z + i iL(—
n=0 n=1

= f(2)+9(2).
Each 2™ or Z" is harmonic. The power series for f and g each converge absolutely
and uniformly in the unit disk. Hence, they represent infinitely differentiable func-
tions. We can therefore differentiate term by term to conclude that w is harmonic.
Since h is continuous, h(f) = lim,_,; u(re’?). O

The Dirichlet problem for domains (open and connected sets) more general than
the unit disk is of fundamental importance in applied mathematics. Amazingly
enough, the solution for the unit disk extends to much more general situations.
By the Riemann mapping theorem, each simply connected domain other than C is
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conformally equivalent to the unit disk. Hence, one can transfer the problem to
the disk and solve it there. See [A] or [D2] for additional discussion. Exercise 1.59
provides an important formula.

We make some additional remarks about the Cauchy—Riemann equations. Sup-
pose f is complex analytic in an open set, and we write f = u + ‘v there. Then
u and v are harmonic and satisfy the system of PDE u, = v, and uy = —v,.
These two equations are equivalent to the simpler statement fz = 0 (which yields

f. =0 as well). Since u = %? (and v has a similar formula), it follows from the

formula A = 4%{; that v and v are harmonic. Furthermore, the Cauchy—Riemann
equations guarantee that the level curves of u and v intersect orthogonally. This
geometric fact partially explains why complex analytic functions are useful in ap-
plied subjects such as fluid flow.

The next exercise approaches the Laplace equation by way of polar coordinates
and separation of variables. It presages spherical harmonics, discussed in Sect. 13
of Chap. 2, where the circle gets replaced with the sphere.

EXERCISE 1.57. Use Exercise 1.52 and separation of variables to find solutions
of the Laplace equation A(f) = 0. Your answers should be in the form r"e™?.
Compare with Exercise 1.53.

EXERCISE 1.58. Graph some level sets of the real and imaginary parts of f,
when f(z) = 2%, when f(z) = e*, and when f(z) = log(z), for some branch of the
logarithm.

EXERCISE 1.59. Assume that f is complex analytic and that A is twice differ-
entiable in a neighborhood of the image of f. Compute the Laplacian of h o f.
Suggestion: Use the formula from Exercise 1.51.

EXERCISE 1.60. Discuss the validity of the formula
1
log( + iy) = Slog(a? + %) +i tan*l(%).
EXERCISE 1.61. Assume 0 < r < 1. Find formulas for
>, r"cos(nf) =, r"sin(nd)
_ d .

Suggestion: Start with the geometric series
- 1
Z 2= 1 ’
n=0 -z

valid for |z| < 1. Integrate to obtain a series for —log(1 — 2). Replace z with re®,
equate real and imaginary parts of the result, and use Exercise 1.60.

Fourier’s original work considered the heat equation uy = A(u). The Laplace
equation can be regarded as the steady-state solution of the heat equation.

We pause to consider the heat equation by way of separation of variables. Put
u(z,y,t) = A(x,y)B(t). The heat equation becomes AA(z,y)B(t) = A(z,y)B’(t),
and hence A—{f = % = ) for some constant \ and B(t) = e*. To guarantee that B
tends to zero at co, the constant A must be negative. We also obtain the eigenvalue
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problem AA = MA. We then introduce polar coordinates and use the formula in
Exercise 1.52. Doing so leads to the equation

2 Ap + 1A, + Agg = M2 A.

We can attack this equation using separation of variables as well. Let us write
A(r,0) = g(r)h(f). We obtain two equations as usual. The equation for h has
solutions h(f) = e**?; we assume that k is an integer to ensure periodicity in 6.
The equation for g becomes

r2g"(r) + g (r) — (\r* — k?)g(r) = 0.
The change of variables x = \/|A|r yields the Bessel differential equation
2 " (x) + 2 f' (z) + (¢® — ) f(x) = 0. (Bessel)

Here v is the integer k, but the Bessel equation is meaningful for all real values of v.
We make only two related remarks about solutions to the Bessel equation. If we di-
vide by 22, and then think of |z| as large, the equation tends to f”+f=0. Hence, we
might expect, for large |x|, that the solutions resemble cosine and sine. In fact, they

more closely resemble (linear combinations of) CL\/(;) and &(;) These statements

can be made precise, and they are important in applications. The second remark
is that a notion of Fourier—Bessel series exists, in which one expands functions in
terms of scaled solutions to the Bessel equation. See [G, GS, F2| for considerable
information on Bessel functions and additional references. We note here only that
Wilhelm Bessel (1784-1846) was an astronomer who encountered Bessel functions
while studying planetary motion.

12. Uniqueness of Fourier Coefficients for Continuous Functions

Suppose two functions have the same Fourier coefficients. Must the two func-
tions be equal? We next show that the answer is yes when the given functions are
continuous. This conclusion follows from Theorem 1.5, but we give a somewhat
different proof here in order to illustrate the power of approximate identities. The
answer is certainly no when the given functions fail to be continuous; if a function
is zero except at a finite set of points, for example, then all its Fourier coefficients
vanish, but it is not the zero function. Thus, continuity is a natural hypothesis
in the following theorem and its corollaries. See Remarks 1.8 and 1.9 below for
additional information.

THEOREM 1.12. Suppose f is integrable on the circle and f(n) =0 for alln. If
[ is continuous at p, then f(p) = 0. In particular, if f is continuous on the circle,

and f(n) =0 for all n, then f is the zero function.

PROOF. Assume first that f is real valued. Represent the circle as [, 7] and
suppose without loss of generality that p = 0. Assuming that f is continuous at
0 and that f(p) > 0, we will show that some Fourier coefficients must be nonzero,
thereby proving the contrapositive statement.

In the proof, we consider the integrals

/F (c 4 cos(0))k f(0)db.

—T
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Here ¢ is a suitable positive constant, and k is chosen sufficiently large that this
integral is positive. Let xx(x) = (c + cos(x))¥. Since xj is a trig polynomial, the
positivity of this integral guarantees that f (n) # 0 for some n. Note that, as k
tends to infinity, the functions xj concentrate at 0, and hence the idea of the proof
is one we have seen several times.

We divide the interval [—7, 7] into several parts. See Fig.1.9. These parts will
be given by [0 < n, by n < |0] < §, and by § < |0] < 7. Since we are assuming
f(0) > 0, there is a § with 0 < § < F such that f(0) > @ for |0] < §. Once
§ is chosen, we find a small positive ¢ such that cos(§) < 1 — 3¢ when [6] > 6.
Doing so is possible because cos(#) is bounded away from 1 there. The inequality
lc+cos(f)] <1 — 5 for [0] > § follows.

We want yj(0) big near 0. We next find n with 0 < 1 < ¢ such that c+cos(f) >
§ + 1 for |0] < 7. Doing so is possible because 1 — cos(f) is small near 0.

On the part where 6 is close to 0, [ xxf > C(1 + (5))*. On the part where

n <160l <4, [ xxf > 0. On the part where || > 4,

}/xk f] <o 9 (53)

We gather this information. The integral

/ k(@) (@)da
[01<n

actually tends to infinity with k. The integral over the set where n < [0] < § yields
a positive number. By (53), the integral over the remaining part is bounded as k
tends to infinity. Thus, the sum of the three pieces tends to infinity, and hence

/_F Xk (z) f(x)dz >0

for large k. Hence, some Fourier coefficient of f must be nonzero.

The case when f is complex valued follows by applying the above reasoning to
f+F

its real and imaginary parts. Note that the real part of f is 5 and the imaginary

part of f is % By Lemma 1.7 we know that

fn) = f(=n).
Hence, all the Fourier coefficients of f vanish if and only if all the Fourier coeflicients
of its real and imaginary parts vanish. O

COROLLARY 1.9. If both f and g are continuous on the circle, and f(n) = g(n)
for all n, then f=g.

ProoOF. The function f — g is continuous and all its Fourier coefficients vanish.
Hence, f — g =0 and thus f =g. O

COROLLARY 1.10. Suppose S |f(n)| converges and f is continuous. Then Sy
converges uniformly to f.
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PrOOF. Recall that Sy (f)(z) = Y7y €@ f(n). Each Sy(f) is continuous,
and the hypothesis guarantees that Sy (f) converges uniformly. Hence, it has a
continuous limit g. But g and f have the same Fourier coefficients. By Corollary 1.9,

=g O

f(0)

~
ME
=

- -5 -1 n s ™

FIGURE 1.9. Proof of Theorem 1.12

Assuming the continuity of f is not adequate to ensure that the Fourier series
of f converges absolutely. If f is twice differentiable, however, then a simple com-
putation shows that |f(n)| < %, and hence the Fourier series for f does converge
absolutely, as > n—12 converges. Since n—lp converges for p > 1, we see that an
inequality of the form

A C
o)< o (54)
for p > 1 also guarantees absolute convergence. In Chap.2 we prove a related but

more difficult result involving Holder continuous functions.

REMARK 1.8. The following fact follows immediately from Theorem 1.12. If all
the Fourier coefficients of a Riemann integrable function f vanish, then f(z) =0 at
all points x at which f is continuous. In the theory of integration, one establishes
also that the set of points at which a Riemann integrable function fails to be con-
tinuous has measure zero. Thus, we can conclude, when f (n) = 0 for all n, that f
is zero almost everywhere.

REMARK 1.9. There exist continuous functions whose Fourier series do not
converge at all points. Constructing such a function is a bit difficult. See [K] or
pages 83-87 in [SS].

13. Inequalities

In this section, we use Fourier series to establish inequalities. The first example
is a famous inequality of Hilbert. Rather than proving it directly, we derive it from
a general result. There is a vast literature on generalizations of Hilbert’s inequality.
See [HLP, B, S| and their references.
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THEOREM 1.13 (Hilbert’s inequality). Let {z,} (for n > 0) be a sequence of
complex numbers with Y. |z,|* finite. Then

ijk 2
55
|§: TS w§j|zk| (55)

Furthermore the constant 7 is the smallest possible.

Hilbert’s inequality follows by choosing g(t) = i(m — t)e~" in Theorem 1.14
below. With this ch01ce of g, we have g(n) = +1, and hence the j, k entry of the
infinite matrix C' is m. Furthermore, |g| is bounded by .

The inequality can be stated in equivalent ways. For example, by choosing

g(t) = i(m —t), we have §(n) = L, and we obtain the following:

> jzf;|<w2|zk|2

k=1

Polarization yields, in case both sequences {z;} and {wy} are square summable,

> < (Zw?) (Dwu?) . (56)

J,k=1 k=1 k=1

We omit the proof that 7 is the smallest possible constant. Hardy et al. [HLP)]
have several proofs. We do remark however that equality holds in (55) only if z is
the zero sequence. In other words, unless z is the zero sequence, one can replace <
with < in (55).

We can also write (55) or (56) in terms of integrals rather than sums:

/ / iz d:cdy<w||f||L2||g||Lz (57.1)

where the L? norm is taken over [0,00). See Exercise 1.63. This formulation
suggests a generalization due to Hardy. Let % + % = 1. Then p,q are called
conjugate exponents. For 1 < p < oo, Hardy’s result gives the following inequality:

//fx+ ey = (

Again the constant is the smallest possible, and again strict inequality holds unless
f or g is zero almost everywhere. We will verify (57.2) in Chap. 3 after we prove
Holder’s inequality.

)||f||Lp||g||Lq (57.2)

s
p

THEOREM 1.14. Let g be integrable on [0,2n] with sup(|lg|) = M and Fourier
coefficients g(k). Let C denote an infinite matriz whose entries c;i, for 0 < j. k
satisfy

cik = 9(j + k).
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Let {z} and {wy} be square-summable sequences. The following inequalities hold:

| Z cinzizZk| < MZ |z 2. (58.1)
J,k=0
1

2

| Z CinzWx| < M Z|ZJ|2 > lwi*] (58.2)
j=0

7,k=0

[N

PROOF. Since (58.1) is the special case of (58.2) when the sequences are equal,
it suffices to prove (58.2). Put uy = E;V:O zje™t and vy = Y p_, Wre . For
each N, we have

1 27 N .
> e = 5r |2 mme U (e
J:k=0

7,k=0

or N B N ) 1 2
D zem N wpeHg(t)dt = — un(t)oy(t) g(t)dt.  (59)
=0 k=0 2m Jo

Since |g| < M, we obtain

S ey < - / ()] fon (8)]dt (60)

J,k=0

The Cauchy—Schwarz inequality for integrals (see Chap.2) implies that

frns (f)’ (f )

By the orthogonality of the functions ¢t — €™, we also see that

o [ lunl? = |zj|2<2|zj|2—||z||2, (611

N oo
1
or [ 1ol =3l < 3 = ful (612
k=0 k=0

We can therefore continue estimating (60) to get

N

1
2

N
| Z CjkzjWk| < M Z |ZJ|2 Z |wj|2
=0

7,k=0

The desired inequality (58.2) follows by letting N tend to infinity. O

The computation in the proof of this theorem differs when the coefficients of
the matrix C' are instead given by ¢(j — k). Suppose the sequences z and w are
equal. Then we obtain

o0 21 o0

1 —ili—
Z Cijjzk = % ) Z szke -kt ( )dt |ZZJ ZJt|2
J,k=0

4, k=0
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To this point, no inequality is used. We obtain information from both upper and
lower bounds for g. When ¢ is nonnegative, we conclude that the infinite matrix
g(j — k) is nonnegative definite. This result is the easy direction of Herglotz’s
theorem: The matrix whose entries satisfy C;, = c;_j is nonnegative definite if and
only if there is a positive measure p such that ¢; = fi(j). In our case, the measure
is simply %. See [K] for a proof of Herglotz’s theorem.

We sketch another proof of Hilbert’s inequality. We change notation slightly;
the coefficients a,, play the role of the sequence {z,} in (55).

Proor. Consider a power series f(z) = Y.~ a,z" that converges in a re-
gion containing the closed unit disk. By the Cauchy integral theorem, the integral
f_ll(f(z))de along the real axis equals the integral — fv (f(2))?dz, where v denotes
the semicircle (of radius 1) from 1 to —1 (Fig.1.10). We get the expression in
Hilbert’s inequality by integrating from 0 to 1:

! > Gy O,
/O (f(2))%dz = m;0m~ (62)

Next, assume that all coefficients are nonnegative and that f is not identically 0.
Using (62) and the orthogonality of the e™’  we obtain

nfm = 1 2’22 1 2’22
= [era< [ ey

nzol—l—m—l—n 1

o0

= - [ueyra<g [ 1senr =n Yl (63

The assumption that the series converges in a region containing the closed unit disk
is a bit too strong. It we follow the same proof for f a polynomial of degree N,
and then let IV tend to infinity, we obtain Hilbert’s inequality, but with the strict
< replaced by < in (63). O

FiGure 1.10. Contour used in second proof of Hilbert’s inequality
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EXERCISE 1.62. Give an example of a sequence {a,} such that the radius of
convergence of Y a, 2" equals 1 but Y |a,|* diverges. Give another example where
3" |an|? converges.

EXERCISE 1.63. Verify for n # —1 that g(n) = n+r1 when g(t) = i(m — t)e .

EXERCISE 1.64. Show that (57.1) is equivalent to (55). Suggestion: Given
sequences (7o, x1,...) and (Yo, y1,...) in [?, define f(x) by f(z) = zo on [0,1), by
x1 on [1,2) and so on, and give a similar definition of g.

EXERCISE 1.65. The trig polynomial p(8) = 1 + acos(f) is nonnegative on the
circle if and only if |a| < 1. By Herglotz’s theorem (see the discussion preceding
the second proof of Hilbert’s inequality) , a certain infinite matrix is therefore
nonnegative definite if and only if |a| < 1. Find this matrix, and verify directly that
it is nonnegative definite if and only if |a| < 1. Suggestion: Find an explicit formula
for the determinant of the Nth principal minor, and then let N tend to infinity.

EXERCISE 1.66 (Difficult). Generalize Exercise 1.65 to the polynomial consid-
ered in Exercise 1.8.



CHAPTER 2

Hilbert Spaces

1. Introduction

Fourier series played a significant role in the development of Hilbert spaces and
other aspects of abstract analysis. The theory of Hilbert spaces returns the favor
by illuminating much of the information about Fourier series. We first develop
enough information about Hilbert spaces to allow us to regard Fourier series as
orthonormal expansions. We prove that (the symmetric partial sums of) the Fourier
series of a square-integrable function converges in L2. From this basic result we
obtain corollaries such as Parseval’s formula and the Riemann—Lebesgue lemma.
We prove Bernstein’s theorem: the Fourier series of a Holder continuous function
(with exponent greater than %) converges absolutely. We prove the spectral theorem
for compact Hermitian operators. We include Sturm-Liouville theory to illustrate
orthonormal expansion. We close by discussing spherical harmonics, indicating one
way to pass from the circle to the sphere. These results leave one in awe at the
strength of nineteenth-century mathematicians.

The ideas of real and complex geometry combine to make Hilbert spaces a
beautiful and intuitive topic. A Hilbert space is a complex vector space with a
Hermitian inner product and corresponding norm, making it into a complete met-
ric space. Completeness enables a deep connection between analytic and geometric
ideas. Polarization, which holds only for complex vector spaces, also plays a signif-
icant role.

2. Norms and Inner Products

Let V be a vector space over the complex numbers. In order to discuss conver-
gence in V, it is natural to use norms to compute the lengths of vectors in V. In
Chap. 3, we will see the more general concept of a semi-norm.

DEFINITION 2.1 (Norm). A norm on a (real or) complex vector space V is a
function v — ||v|| satisfying the following three properties:

(1) |Jv]] > 0 for all nonzero v.
(2) |lev|] = || ||v]| for all ¢ € C and all v € V.
(3) (The triangle inequality) ||v + w|| < ||v|| + ||w]| for all v,w € V.

Given a norm || ||, we define its corresponding distance function by
d(u, v) = |lu—v|. (1)
J.P. D’Angelo, Hermitian Analysis: From Fourier Series to Cauchy-Riemann 45
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The function d is symmetric in its arguments v and v, its values are nonnegative,
and its values are positive when u # v. The triangle inequality

[lu = ¢l < fJu = ol| + [lv = (]|

follows immediately from the triangle inequality for the norm. Therefore, d defines
a distance function in the metric space sense (defined in the appendix) and (V,d)
is a metric space.

DEFINITION 2.2. A sequence {z,} in a normed vector space V' converges to z
if ||z, — 2|| converges to 0. A series Y zj, converges to w if the sequence {>_7_, 2}
of partial sums converges to w.

Many of the proofs from elementary real analysis extend to the setting of metric
spaces and even more of them extend to normed vector spaces. The norm in the
Hilbert space setting arises from an inner product. The norm is a much more
general concept. Before we give the definition of Hermitian inner product, we recall
the basic example of complex Euclidean space. Figures.2.1-2.3 provide geometric
intuition.

ExaMPLE 2.1. Let C™ denote complex Euclidean space of dimension n. As a
set, C™ consists of all n-tuples of complex numbers; we write z = (z1,...,2z,) for a
point in C™. This set has the structure of a complex vector space with the usual
operations of vector addition and scalar multiplication. The notation C" includes
the vector space structure, the Hermitian inner product defined by (2.1), and the
squared norm defined by (2.2). The Euclidean inner product is given by

n
(2 w) = 3 277, (2.1)
j=1
and the Euclidean squared norm is given by
12112 = (2, 2). (22)
Properties (1) and (2) of a norm are evident. We establish property (3) below.

The Euclidean norm on C” determines by (1) the usual Euclidean distance
function. A sequence of vectors in C™ converges if and only if each component
sequence converges; hence C" is a complete metric space. See Exercise 2.6.

DEFINITION 2.3 (Hermitian inner product). Let V' be a complex vector space.
A Hermitian inner product on V' is a function ( , ) from V x V to C satisfying the
following four properties. For all u,v,w € V, and for all c € C:
(1) (u+v,w) = (u,w) + (v, w).
(2) {cu,v) = c(u,v).
(3) (u,v) = (v,u). (Hermitian symmetry)
(4) (u,u) >0 for u # 0. (Positive definiteness)

Three additional properties are consequences:
o (u,v+w) = (u,v) + (u,w).
o (u,cv) = ¢{u,v).
e (0,w) =0 for all w € V. In particular, (0,0) = 0.
Positive definiteness provides a technique for verifying that a given z equals 0.
We see from the above that z = 0 if and only if (z,w) =0 for all w in V.
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DEFINITION 2.4. The norm || || corresponding to the Hermitian inner product
(', ) is defined by
ol = v/ (v, v).

A Hermitian inner product determines a norm, but most norms do not come
from inner products. See Exercise 2.5.

EXERCISE 2.1. Verify the three additional properties of the inner product.

ztHtw

FIGURE 2.1. Proof of the Cauchy—Schwarz inequality

FI1GURE 2.2. Triangle inequality

THEOREM 2.1 (The Cauchy-Schwarz and triangle inequalities). Let V' be a
complex vector space, let { , ) be a Hermitian inner product on V, and let ||v|| =
V{(v,v). The function || || defines a norm on V' and the following inequalities hold
for all z,w e V:

{2, w) < I2]] [|wl] (3)
[z + wl| < [2[] + [[w]]. (4)

PROOF. The first two properties of a norm are evident. The first follows from
the positive definiteness of the inner product. To prove the second, it suffices to
show that |c|?||v||? = ||cv||?. This conclusion follows from

[levl|* = (v, ev) = e{v, cv) = [e]*(v,0) = |ef* [Jv][*.
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Note that we have used the linearity in the first slot and the conjugate linearity in
the second slot. The third property of a norm is the triangle inequality (4).

We first prove the Cauchy—Schwarz inequality (3). For all t € C, and for all z
and w in V,

0 < ||z + twl|[* = [[2]]* + 2Re(z, tw) + [t*||w]]*. (5)

Think of z and w as fixed, and let ¢ be the quadratic Hermitian polynomial in ¢ and
t defined by the right-hand side of (5). The values of ¢ are nonnegative; we seek its
minimum value by setting its differential equal to 0. (Compare with Exercise 1.13.)
We use subscripts to denote the derivatives with respect to ¢ and . Since ¢ is real
valued, we have ¢ = 0 if and only if ¢y = 0. From (5) we find

¢ = (z,w) +t|wl]*.

When w = 0 we get no useful information, but inequality (3) is true when
w = 0. To prove (3) when w # 0, we may set

t=_<271§>
o]
in (5) and conclude that
2 2 2
T L g [ ) )
<=2 e = I = e (©)

Inequality (6) yields
{2, w)[* < []2]]?||wl[?,
from which (3) follows by taking square roots.
To establish the triangle inequality (4), we begin by squaring its left-hand side:

Iz +wl[* = [|2][* + 2Re(z, w) + [[w][*. (7)
Since Re(z, w) < |{z,w)|, the Cauchy—Schwarz inequality yields

Iz +wl® = ||2]* + 2Re(z, w) + [Jw][* < [|2]* + 2l|2]] [Jwll + [[wl|* = (2] + |[w]])*.

Taking the square root of each side gives the triangle inequality and completes the
proof that y/(v,v) defines a norm on V. O

In the proof, we noted the identity (7). This (essentially trivial) identity has
two significant corollaries.

THEOREM 2.2. Let V be a complex inner product space. The following hold:
Pythagorean theorem: (z,w) =0 implies ||z + w||> = ||z]|> + ||Jw]|*.
Parallelogram law: ||z 4+ w||? + ||z — w||? = 2(]|z|]* + |[w][?).

PROOF. The Pythagorean theorem is immediate from (7), because (z, w) = 0
implies that Re((z,w)) = 0. The parallelogram law follows from (7) by adding the
result in (7) to the result of replacing w by —w in (7). O

The two inequalities from Theorem 2.1 have many consequences. We use them
here to show that the inner product and norm on V are (sequentially) continuous
functions.
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PROPOSITION 2.1 (Continuity of the inner product and the norm). Let V' be
a complex vector space with Hermitian inner product and corresponding norm. Let
{zn} be a sequence that converges to z in V. Then, for all w € V, the sequence of
inner products (z,,w) converges to (z,w). Furthermore, ||z,|| converges to ||z||.

PRrROOF. By the linearity of the inner product and the Cauchy—-Schwarz inequal-
ity, we have
[(zn, w) = (z,w0)| = [(2n — 2, 0)| < ||z — 2]| [Jw]|. (8)
Thus, when z,, converges to z, the right-hand side of (8) converges to 0, and therefore
so does the left-hand side. Thus the inner product (with w) is continuous.
The proof of the second statement uses the triangle inequality. From it we
obtain the inequality ||z]| < ||z — 2zn|| + ||2x|| and hence

21| = [lznll <12 = 2n]|-

Interchanging the roles of z, and z gives the same inequality with a negative sign
on the left-hand side. Combining these inequalities yields

21 = Tzall T < {12 = 2nll;

from which the second statement follows. O

Suppose that > v, converges in V. For all w € V, we have

<Z Up, W) = Z(vn, w).

n n
This conclusion follows by applying Proposition 2.1 to the partial sums of the series.
We will often apply this result when working with orthonormal expansions.
Finite-dimensional complex Euclidean spaces are complete in the sense that
Cauchy sequences have limits. Infinite-dimensional complex vector spaces with
Hermitian inner products need not be complete. By definition, Hilbert spaces are
complete.

DEFINITION 2.5. A Hilbert space H is a complex vector space, together with
a Hermitian inner product whose corresponding distance function makes H into a
complete metric space.

EXERCISE 2.2. Prove the Cauchy—Schwarz inequality in R™ by writing
llz|[?[|y]|* — [{z,y)|? as a sum of squares. Give the analogous proof in C™.

EXERCISE 2.3. Prove the Cauchy-Schwarz inequality in R™ using Lagrange
multipliers.

EXERCISE 2.4. Let H be an inner product space. We showed, for all z and w
in #H, that (9) holds:

12+ wl® + [z — wl* = 2]|2]]* + 2[w]*. (9)
Why is this identity called the parallelogram law?

EXERCISE 2.5 (Difficult). Let V' be a real or complex vector space with a norm.
Show that this norm comes from an inner product if and only if the norm satisfies
the parallelogram law (9). Comment: Given the norm, one has to define the inner
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product somehow and then prove that the inner product satisfies all the necessary
properties. Use a polarization identity such as (19) to get started.

We give several examples of Hilbert spaces. We cannot verify completeness in
the last example without developing the Lebesgue integral. We do, however, make
the following remark. Suppose we are given a metric space that is not complete. We
may form its completion by considering equivalence classes of Cauchy sequences in
a manner similar to defining the real numbers R as the completion of the rational
numbers Q. Given an inner product space, we may complete it into a Hilbert space.
The problem is that we wish to have a concrete realization of the limiting objects.

ExaMPLE 2.2. (Hilbert Spaces)
(1) Complex Euclidean space C™ is a complete metric space with the distance
function given by d(z,w) = ||z — w||, and hence it is a Hilbert space.
(2) 12. Let a = {a,} denote a sequence of complex numbers. We say that a is
square-summable, and we write a € [?, if ||a]|3 = Y, |a,|? is finite. When
a,b € 12 we write

(a,b)s = Z a,b,

for their Hermitian inner product. Exercise 2.6 requests a proof that 12 is
a complete metric space; here d(a,b) = ||a — b]|2.

(3) A2?(B1). This space consists of all complex analytic functions f on the
unit disk By in C such that [, |f[*dzdy is finite. The inner product is
given by

(f,9) = | fgdedy.
1

(4) L?(Q). Let Q be an open subset of R™. Let dV denote Lebesgue measure
in R". We write L?(€2) for the complex vector space of (equivalence classes
of) measurable functions f : Q — C for which [, |f(x)[?dV (x) is finite.
When f and g are elements of L?(Q), we define their inner product by

(f.9) = /Q F@)g@dv (x).

The corresponding norm and distance function make L?(2) into a
complete metric space, so L2(£2) is a Hilbert space. See [F1] for a proof of
completeness.

EXERCISE 2.6. Verify that C™ and [? are complete.

EXERCISE 2.7. Let V be a normed vector space. Show that V is complete if
and only if whenever ) ||v,|| converges, then ) wv, converges. Compare with
Exercise 1.5.

3. Subspaces and Linear Maps

A subspace of a vector space is a subset that is itself a vector space under
the same operations of addition and scalar multiplication. A finite-dimensional
subspace of a Hilbert space is necessarily closed (in the metric space sense), whereas
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infinite-dimensional subspaces need not be closed. A closed linear subspace of a
Hilbert space is complete and therefore also a Hilbert space. Let B be a bounded
domain in C™. Then A%(B) is a closed subspace of L?(B) and thus a Hilbert space.

Next we define bounded linear transformations or operators. These mappings
are the continuous functions between Hilbert spaces that preserve the vector space
structure.

DEFINITION 2.6. Let H and H’ be Hilbert spaces. A function L : H — H' is
called linear if it satisfies properties (1) and (2). Also, L is called a bounded linear
transformation from H to H' if L satisfies all three of the following properties:

(1) L(z1 + 22) = L(21) 4+ L(22) for all z; and 25 in H.
(2) L(cz) =cL(z) for all z € H and all ¢ € C.
(3) There is a constant C such that ||L(2)|| < C||z|| for all z € H.

We write L(H,H') for the collection of bounded linear transformations from #H
to H' and L(H) for the important special case when H = H’. In this case, I denotes
the identity linear transformation, given by I(z) = z. Elements of L(H) are often
called bounded operators on H. The collection of bounded operators is an algebra,
where composition plays the role of multiplication.

Properties (1) and (2) define the linearity of L. Property (3) guarantees the
continuity of L; see Lemma 2.1 below. The infimum of the set of constants C'
that work in (3) provides a measurement of the size of the transformation L; it is
called the norm of L and is written ||L||. Exercise 2.9 justifies the terminology. An
equivalent way to define ||L]|| is the formula

L)
IIL|| = sup :
{z#0} [ 2]]
The set L(H,H') becomes a complete normed vector space. See Exercise 2.9.
We next discuss the relationship between boundedness and continuity for linear
transformations.

LEMMA 2.1. Assume L : H — H’ is linear. The following three statements are
equivalent:
(1) There is a constant C > 0 such that, for all z,
[1Lz2]| < Cll=]l.
(2) L is continuous at the origin.

(3) L is continuous at every point.

ProOOF. It follows from the e-0 definition of continuity at a point and the linear-
ity of L that statements (1) and (2) are equivalent. Statement (3) implies statement
(2). Statement (1) and the linearity of L imply statement (3) because

ILz = Lwl| = [|L(z = w)[| < C]z — w|.

We associate two natural subspaces with a linear mapping.

DEFINITION 2.7. For L € L(H,H’), the nullspace N'(L) is the set of v € H for
which L(v) = 0. The range R(L) is the set of w € H’ for which there is a v € H
with L(v) = w.
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DEFINITION 2.8. An operator P € L(H) is a projection if P? = P.

Observe (see Exercise 2.11) that P? = P if and only if (I — P)? = I — P. Thus
I — P is also a projection if P is. Furthermore, in this case, R(P) = N(I — P) and
H =R(P)+ N(P).

Bounded linear functionals, that is, elements of £(H, C), are especially impor-
tant. The vector space of bounded linear functionals on H is called the dual space
of H. We characterize this space in Theorem 2.4 below.

DEFINITION 2.9. A bounded linear functional on a Hilbert space H is a bounded
linear transformation from A to C.

One of the major results in pure and applied analysis is the Riesz lemma,
Theorem 2.4 below. A bounded linear functional on a Hilbert space is always given
by an inner product. In order to prove this basic result, we develop material on
orthogonality that also particularly illuminates our work on Fourier series.

EXERCISE 2.8. For L € L(H,H'), verify that N'(L) is a subspace of H and
R(L) is a subspace of H'.

EXERCISE 2.9. With ||L|| defined as above, show that L(H) is a complete
normed vector space.

EXERCISE 2.10. Show by using a basis that a linear functional on C" is given
by an inner product.

EXERCISE 2.11. Let P be a projection. Verify that I — P is a projection, that
R(P) =N(I — P), and that H = R(P) + N (P).

4. Orthogonality

Let H be a Hilbert space, and suppose z,w € H. We say that z and w are
orthogonal if (z,w) = 0. The Pythagorean theorem indicates that orthogonality
generalizes perpendicularity and provides geometric insight in the general Hilbert
space setting. The term “orthogonal” applies also for subspaces. Subspaces V' and
W of H are orthogonal if (v,w) = 0 for all v € V and w € W. We say that z is
orthogonal to V if (z,v) = 0 for all v in V, or equivalently, if the one-dimensional
subspace generated by z is orthogonal to V.

Let V and W be orthogonal closed subspaces of a Hilbert space; V & W denotes
their orthogonal sum. It is the subspace of H consisting of those z that can be
written z = v4+w, where v € V and w € W. We sometimes write z = v @ w in order
to emphasize orthogonality. By the Pythagorean theorem, |[v@®w||? = ||v]|> +||w]||?.
Thus v & w = 0 if and only if both v = 0 and w = 0.

We now study the geometric notion of orthogonal projection onto a closed
subspace. The next theorem guarantees that we can project a vector w in a Hilbert
space onto a closed subspace. This existence and uniqueness theorem has diverse
corollaries.

THEOREM 2.3. Let V' be a closed subspace of a Hilbert space H. For each w
in M, there is a unique z € V' that minimizes ||z — w||. This z is the orthogonal
projection of w onto V.
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o F4

FI1GURE 2.3. Orthogonal projection

ProoF. Fix w. If w € V, then the conclusion holds with z = w. In general,
let d = inf,ev||z — w||. Choose a sequence {z,} such that z, € V for all n and
[|zn, — w]|| tends to d. We will show that {z,} is a Cauchy sequence, and hence
it converges to some z. Since V is closed, z is in V. By continuity of the norm
(Proposition 2.1), ||z — w|| = d.

By the parallelogram law, we express ||z, — 2 ||? as follows:
|20 = 2l [*=1| (20 —w) + (w—2n) [|* =2 | 20— w][* +2| [ — 2| [* = || (20— 0) = (w2 ) ||*.
The last term on the right-hand side is
I )

2
Since V is a subspace, the midpoint Z"Jr% lies in V' as well. Therefore, this term
is at least 4d?, and we obtain

0 < ||2n = 2ml||* < 2||2n — w||* + 2||w — 2| |* — 4d°. (10)

As m and n tend to infinity, the right-hand side of (10) tends to 2d?+2d? —4d? = 0.
Thus, {z,} is a Cauchy sequence in H and hence converges to some z in V.

It remains only to show uniqueness. Given a pair of minimizers z and ¢, let d2,
denote the squared distance from their midpoint to w. By the parallelogram law,
we may write

Al

z+¢ z—¢ z—¢
2d% = ||z — wl|* + |I¢ — w|]* = 2|~ —wlf? +2||T||2 = 2d;, +2||T||2'

Thus d? > dfn. But d is minimal. Hence d,,, = d and thus { = z. O

COROLLARY 2.1. Let V be a closed subspace of a Hilbert space H. For each
w € H, there is a unique way to write w = v+ (¢ = v @ (, wherev € V and ( is
orthogonal to V.

PROOF. Let v be the projection of w onto V' guaranteed by Theorem 2.3. Since
w = v+ (w—v), the existence result follows if we can show that w — v is orthogonal
to V. To see the orthogonality, choose u € V. Then consider the function f of one
complex variable defined by

FO) = 1lv+ Au—w||*.
By Theorem 2.3, f achieves its minimum at A = 0. Therefore, for all A,

0 < f(N) = f(0) = 2Re(v — w, ) + |A]?||ul*. (11)
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We claim that (11) forces (v — w,u) = 0. Granted the claim, we note that v is an
arbitrary element of V. Therefore, v — w is orthogonal to V, as required.

To prove the claim, thereby completing the proof of existence, we note that
(v —w,u) is the (partial) derivative of f with respect to X at 0 and hence vanishes
at a minimum of f.

The uniqueness assertion is easy; we use the notation for orthogonal sum. Sup-
pose w =v® ¢ =v" @, as in the statement of the Corollary. Then

0=w—w=(w—v)& ()
from which we obtain v = v’ and ¢ = (. O

COROLLARY 2.2. Let V be a closed subspace of a Hilbert space H. For each
w € H, let Pw denote the unique z € V guaranteed by Theorem 2.3; Pw is also the
v guaranteed by Corollary 2.1. Then the mapping w — P(w) is a bounded linear
transformation satisfying P?> = P. Thus P is a projection.

PROOF. Both the existence and uniqueness assertions in Corollary 2.1 matter
in this proof. Given w; and ws in H, by existence, we may write w; = Pw; & (4
and wy = Pws @ (2. Adding gives

w1+ wy = (Pw1 & (1) + (Pw2 ® G2) = (Pwy + Pws) © (G + ¢2). (12)

The uniqueness assertion and (12) show that Pw; + Pws is the unique element of
V' corresponding to wy + wy guaranteed by Corollary 2.1; by definition this element
is P(wy + wsy). By uniqueness Pwy + Pwy = P(w; + w2), and P is additive. In a
similar fashion, we write w = Pw & ¢ and hence

cw = ¢(Pw) @ (.

Again by uniqueness, ¢(Pw) must be the unique element corresponding to cw guar-
anteed by Corollary 2.1; by definition this element is P(cw). Hence cP(w) = P(cw).
We have now shown that P is linear.

To show that P is bounded, we note from the Pythagorean theorem that ||w||? =
[|Pwl|? + [IC][?, and hence || Pw|| < [Jw]].

Finally we show that P2 = P. For z = v @ (, we have P(z) = v = v® 0. Hence

P%(2) = P(P(2)) = P(v®0) =v = P(z).
O

Theorem 2.3 and its consequences are among the most powerful results in the
book. The theorem guarantees that we can solve a minimization problem in diverse
infinite-dimensional settings, and it implies the Riesz representation lemma.

Fix w € H, and consider the function from H to C defined by Lz = (z, w).
Then L is a bounded linear functional. The linearity is evident. The boundedness
follows from the Cauchy—Schwarz inequality; setting C' = ||w|| yields |L(z)| < C||z||
for all z € H.

The following fundamental result of F. Riesz characterizes bounded linear func-
tionals on a Hilbert space; a bounded linear functional must be given by an inner
product. The proof relies on projection onto a closed subspace.
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THEOREM 2.4 (Riesz lemma). Let H be a Hilbert space and suppose that L €
L(H,C). Then there is a unique w € H such that

L(2) = (z,w)

for all z € H. The norm ||L|| of the linear transformation L equals ||w]|.

PROOF. Since L is bounded, its nullspace N (L) is closed. If N (L) = H, we
take w = 0, and the result is true.

Suppose that A(L) is not H. Theorem 2.3 implies that there is a nonzero
element wq orthogonal to N(L). To find such a wp, choose any nonzero element
not in N'(L) and subtract its orthogonal projection onto N (L).

Let z be an arbitrary element of H. For a complex number «, we can write

z = (z — awp) + awy.

Note that L(z — awg) = 0 if and only if o = % For each z, we therefore let

_ L
¥ = Tluyy-
Since wy is orthogonal to N'(L), computing the inner product with wy yields

L(2)

Frug ol (13)

(2, wo) = azwo||* =
From (13) we see that

L(z) = (z, WZU#—L(U)O»

and the existence result is proved. An explicit formula for w holds:

wy ——
w = ———L(wp).
[[wol[?
The uniqueness for w is immediate from the test we mentioned earlier. If
(¢, w — w'") vanishes for all ¢, then w — w’ = 0.

It remains to show that ||L|| = |Jw]||. The Cauchy—Schwarz inequality yields

1L = sup [{z,w)] < |Jw]].
I1z[]=1

Choosing HTwH for z yields

{w, w)

)Izmzllwll-

w
LI = [ L(5—
[l

Combining the two inequalities shows that ||L|| = ||w]]. O

EXERCISE 2.12. Fix w with w # 0. Define P(v) by

B (v, w)
PO = e

Verify that P? = P.
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EXERCISE 2.13. Let H = L?[—1,1]. Recall that f is even if f(—z) = f(x) and
fis odd if f(—x) = —f(x). Let V. be the subspace of even functions and V, the
subspace of odd functions. Show that V, is orthogonal to V.

EXERCISE 2.14. A hyperplane in H is a level set of a nontrivial linear functional.
Assume that w # 0. Find the distance between the parallel hyperplanes given by
(z,w) = ¢1 and (z,w) = ca.

EXERCISE 2.15. Let b = {b;} be a sequence of complex numbers, and suppose
there is a positive number C' such that

oo _ oo N
> abi| < CO a2
=1 =1

for all a € I2. Show that b € [? and that > [b;|? < C?. Suggestion: Consider the
map that sends a to " a;b;.

5. Orthonormal Expansion

We continue our general discussion of Hilbert spaces by studying orthonormal
expansions. The simplest example comes from basic physics. Let v = (a,b,¢) be a
point or vector in R3. Physicists write v = ai + bj + ck, where i, j, k are mutually
perpendicular vectors of unit length. Mathematicians write the same equation as
v = aey + bes + ces; here e; = (1,0,0) =i, e2 = (0,1,0) = j, and e3 = (0,0,1) = k.
This equation expresses v in terms of an orthonormal expansion:

aej + bes + ces = (a,b,¢) = v = (v,e1)e1 + (v,ea)es + (v, e3)es.

Orthonormal expansion in a Hilbert space abstracts this idea. Fourier series
provide the basic example, where the functions z — ™ are analogous to mutually
perpendicular unit vectors.

We assume here that a Hilbert space is separable. This term means that the
Hilbert space has a countable dense set; separability implies that the orthonormal
systems we are about to define are either finite or countably infinite sets. All the
specific Hilbert spaces mentioned or used in this book are separable. Some of the
proofs given tacitly use separability even when the result holds more generally.

DEFINITION 2.10. Let S = {z,} be a finite or countably infinite collection of
elements in a Hilbert space H. We say that S is an orthonormal system in H if, for
each n we have ||z,||? = 1, and for each n,m with n # m, we have (2, z,) = 0.
We say that S is a complete orthonormal system if, in addition, (z, z,) = 0 for all
n implies z = 0.

PROPOSITION 2.2 (Bessel’s inequality). Let S = {z,} be a countably infinite
orthonormal system in H. For each z € H, we have

Dz z)l® < Il (14)
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PrOOF. Choose z € H. By orthonormality, for each positive integer IV, we
have

N N
0< Iz =Y (2 z)zall? = |I21* = D [z, 20) [ (15)
n=1 n=1

Define a sequence of real numbers ry = ry(z) by

N
v =3 [z )
n=1

By (15), ry is bounded above by ||z||> and nondecreasing. Therefore, it has a limit
r = r(z). Bessel’s inequality follows. (]

PROPOSITION 2.3 (Best approximation lemma). Let S = {z,} be an orthonor-
mal system (finite or countable) in H. Let V be the span of S. Then, for each
z € H and each w €V,

Iz =D {2 z0) 2l < |12 = wl].

PROOF. The expression Y (z,z,)z, equals the orthogonal projection of z
onto V. Hence the result follows from Theorem 2.3. O

The limit 7(z) of the sequence in the proof of Bessel’s inequality equals ||z|[?
for each z if and only if the orthonormal system S is complete. This statement is
the content of the following fundamental theorem. In general, r(z) is the squared
norm of the projection of z onto the span of the z;.

THEOREM 2.5 (Orthonormal expansion). An orthonormal system S = {z,} is
complete if and only if, for each z € H, we have

z= Z(z,zn>zn (16)

PROOF. The cases where S is a finite set or where # is finite-dimensional are
evident. Assume then that H is infinite dimensional and S is a countably infinite
set. We first verify that the series in (16) converges. Fix z € H, and put

N
Tn = Z(z, Zn)Zn.
n=1
Define 7y as in the proof of Bessel’s inequality. For N > M, observe that
N N
ITn =TulP =1l D (mzzllP= Y szl =rv—ru.  (17)
n=M+1 n=M+1

Since {rxy} converges, it is a Cauchy sequence of real numbers. By (17), {Tn} is a
Cauchy sequence in H. Since H is complete, Ty converges to some element w of
H, and w =Y (z, 2, )2y, the right-hand side of (16). Note that (w, z,,) = (z, z,,) for
each n, so z — w is orthogonal to each z,.

We can now establish both implications. Suppose first that S is a complete
system. Since z — w is orthogonal to each z,, we have z — w = 0. Thus (16)
holds. Conversely, suppose that (16) holds. To show that S is a complete system,
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we assume that (z, z,) = 0 for all n and hope to show that z = 0. This conclusion
follows immediately from (16). O

EXERCISE 2.16. Verify (15).

EXERCISE 2.17. Let H = L?([0,1]) with the usual inner product. Let V be
the span of 1 and z. Find the orthogonal projection of 2 onto V. Do the same
problem if H = L*([-1,1]).

EXERCISE 2.18. Let H = L%([—1,1]) with the usual inner product. Apply the

Gram-—Schmidt process (see [G]) to orthonormalize the polynomials 1, z, 2%, z3.

EXERCISE 2.19. A sequence {f,} in a Hilbert space H converges weakly to f
if, for each g € H, the sequence {(f,,g)} converges to (f,g). Put H = L*([0,27]).
Put fn(x) = sin(nz). Show that {f,} converges weakly to 0, but does not converge
to 0.

EXERCISE 2.20. Assume H is infinite dimensional. Show that a sequence of
orthonormal vectors does not converge, but does converge weakly to 0.

6. Polarization

In a Hilbert space, we can recover the Hermitian inner product from the squared
norm. In addition, for each linear operator L, we can recover (Lz,w) for all z,w
from knowing (Lz, z) for all z. See Theorem 2.6. The corresponding result for real
vector spaces with inner products fails.

To introduce these ideas, let m be an integer with m > 2. Recall, for a complex
number a # 1, the sum of the finite geometric series:

1—a™
1—a’
When a is an m-th root of unity, the sum is zero. A primitive m-th root of unity
is a complex number w such that w™ = 1, but no smaller positive power equals 1.
The set of powers w’ for j =0,1,...,m — 1 forms a cyclic group I' of order m.

Let z,( be elements of a Hilbert space H. Let w be a primitive m-th root of
unity and consider averaging the m complex numbers 7||z + v(||? as 7 varies over
I". Since each group element is a power of w, this average equals

l+a+a®+ - +a™ =

1 m—1
- J Jol12
=3 Wl + i
j=0
The next proposition gives a simple expression for the average.
PROPOSITION 2.4 (Polarization identities). Let w be a primitive m-th root of

unity. For m > 3, we have

m—1

(50 = 3 wllz + i (18)

Jj=0

For m = 2, the right-hand side of (18) equals 2Re(z,().
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PROOF. We prove (18) below when m = 4, leaving the general case to the
reader. g

For m > 3, each identity in (18) expresses the inner product in terms of squared
norms. It is both beautiful and useful to recover the inner product from the squared
norm. The special case of (18) where m = 4, and thus w = 4, arises often. We state
it explicitly and prove it:

Az, C) = Iz + (I +illz +iCl]? =[]z = ¢II* — ]| — ic[[*. (19)
To verify (19), observe that expanding the squared norms gives both equations:
4Re(z,¢) = [lz + | ]z = ¢I]?

4Re(z,iC) = ||2 + i¢|[* — || — ic][*.
Observe for a € C that Re(—ia) = Im(a). Thus, multiplying the second equation
by i, using i(—¢) = 1, and then adding the two equations give (19).
In addition to polarizing the inner product, we often polarize expressions in-
volving linear transformations.

THEOREM 2.6 (Polarization identities for operators). Let L € L(H). Let w be
a primitive m-th root of unity.

(1) For m > 3, we have

% WH(L(z +wi¢), 2z 4+ wiC). (20)
7=0
(2) Form =2, we have
(Lz,¢) + (L(, 2) = %(<L(z +0,z2+¢) = (L(z=(),2 = Q). (21)

(3) Suppose in addition that (Lv,v) is real for allv € H. Then, for all z and ¢,

(Lz, () = (LG, 2).
(4) Suppose (Lz,z) =0 for all z. Then L =0.

PRrOOF. To prove (20) and (21), expand each (L(z + w’(),z + w’/() using the
linearity of L and the defining properties of the inner product. Collect similar terms,
and use the above comment about roots of unity. For m > 3, all terms inside the
sum cancel except for m copies of (Lz,(). The result gives (20). For m = 2, the
coefficient of (L(, z) does not vanish, and we obtain (21). Thus statements (1) and
(2) hold.

To prove the third statement, we apply the first for some m with m > 3 and
w™ = 1; the result is

,_.

m—

m—1
1 1 . .
il i J I\ = — I (W™ m—j
_m WH{L(z+ W),z +wi¢) = -~ g w 24 C), w724+ ().
Jj=0 J=0
(22)
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Change the index of summation by setting [ = m — j. Also observe that

w™! =w. Combining gives the first equality in (23) below. Finally, because (Lv,v)

is real and w® = w™, we obtain the second equality in (23):

Z L(¢ +w'2),( + w'z) = (I¢, ). (23)

We have now proved the third statement.

The fourth statement follows from (20); each term in the sum on the right-hand
side of (20) vanishes if (Lw,w) = 0 for all w. Thus (Lz,{) = 0 for all {. Hence
Lz =0 for all z, and thus L = 0. O

The reader should compare these results about polarization with our earlier
results about Hermitian symmetric polynomials.

EXERCISE 2.21. Give an example of a linear map of R? such that (Lu,u) =0
for all u but L is not 0.

7. Adjoints and Unitary Operators

Let I denote the identity linear transformation on a Hilbert space H. Let
L € L(H). Then L is called invertible if there is a bounded linear mapping 7" such
that LT = TL = I. If such a T exists, then T is unique and written L~!. We
warn the reader (see the exercises) that, in infinite dimensions, LT = I does not
imply that L is invertible. When L is bounded, injective, and surjective, the usual
set-theoretic inverse is also linear and bounded.

Given a bounded linear mapping L, the adjoint of L is written L*. It is defined
as follows. Fix v € H. Consider the map v — (Lu,v) = ¢,(u). It is obviously a
linear functional. It is also continuous because

|60 ()| = [(Lu, 0)| < [[Lul| [[o]| < [[ul[ [[L]] [Jo]| = e||u]l, (24)

where the constant c is independent of u. By Theorem 2.4, there is a unique w, € H
for which ¢,(u) = (u,w,). We denote w, by L*v. It is easy to prove that L* is
itself a bounded linear mapping on H, called the adjoint of L.

The following properties of adjoints are left as exercises:

PROPOSITION 2.5. Let L, T € L(H). The following hold:

(1) L* : H — H is linear.

(2) L* is bounded. (In fact ||L*|| = ||L]|.)

(3) (L*)* = L.

(4) (Lu,v) = (u, L*v) for all u,v.

(5) (LT)" =T"L".
PRrROOF. See Exercise 2.22. O
EXERCISE 2.22. Prove Proposition 2.5.

DEFINITION 2.11. A bounded linear transformation L on a Hilbert space H is

called Hermitian or self-adjoint if L = L*. It is called unitary if it is invertible and
L*=L""
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The following simple but beautiful result characterizes unitary transformations:

PROPOSITION 2.6. The following are equivalent for L € L(H):
(1) L is surjective and preserves norms: ||Lul|> = ||u]|* for all u.

(2) L is surjective and preserves inner products: (Lu, Lv) = (u,v) for all u,v.
(3) L is unitary: L* = L1,

Proor. If L € L(H), then (Lu,Lv) = (u,v) for all u,v if and only if
(u, L*Lv) = (u,v) for all u,v and thus if and only if (u,(L*L — I)v) = 0 for
all w,v. This last statement holds if and only if (L*L — I)v = 0 for all v. Thus
L*L = I. If L is also surjective, then L* = L~', and therefore the second and third
statements are equivalent.

The second statement obviously implies the first. It remains to prove the subtle
point that the first statement implies the second or third statement. We are given
(L*Lz,z) = (z,2) for all z. Hence ((L*L —I)z,z) = 0. By part 4 of Theorem 2.6,
L*L — I = 0, and the second statement holds. If L is also surjective, then L is
invertible and hence unitary. O

The equivalence of the first two statements does not require L to be surjective.
See the exercises for examples where L preserves inner products, but L is not
surjective and hence not unitary.

PROPOSITION 2.7. Let L € L(H). Then
N(L) =R(L")*
N(L*) = R(L)*.
PRrOOF. Note that L*(z) = 0 if and only if (L*z,w) = 0 for all w, if and only
if (z, Lw) = 0 for all w, and if and only if z 1 R(L). Thus, the second statement

holds. When L € L(H), it is easy to check that (L*)* = L. See Exercise 2.22. The
first statement then follows from the second statement by replacing L with L*. O

EXERCISE 2.23. If L : C™" — C" and L = L*, what can we conclude about the
matrix of L with respect to the usual basis (1,0,...,0), ..., (0,0,...,1)?

EXERCISE 2.24. Suppose U is unitary and Uz = Az for z # 0. Prove that
|A| = 1. Suppose L is Hermitian and Lz = Az for z # 0. Prove that X is real.

EXERCISE 2.25. Let L : {2 — [? be defined by
L(Zl,ZQ,. ) = (0721722,. )
Show that ||Lz||2 = ||z||2 for all z but that L is not unitary.

EXERCISE 2.26. Give an example of a bounded linear L : H — H that is
injective but not surjective and an example that is surjective but not injective.

EXERCISE 2.27. Let V' be the vector space of all polynomials in one variable.
Let D denote differentiation and J denote integration (with integration constant
0). Show that DJ = I but that JD # I. Explain.

EXERCISE 2.28. Give an example of an operator L for which ||L?|| # ||L||*.
Suppose L = L*; show that ||L?|| = ||L||*.
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We close this section with an interesting difference between real and complex
vector spaces, related to inverses, polarization, and Exercise 2.21. The formula (*)
below interests the author partly because, although no real numbers satisfy the
equation, teachers often see it on exams.

DEFINITION 2.12. A real vector space V' admits a complex structure if there is
a linear map J : V' — V such that J? = —1.

It is easy to show (Exercise 2.30) that a finite-dimensional real vector space
admits a complex structure if and only if its dimension is even. The linear trans-
formation J : R? — R? corresponding to the complex structure is given by the

matrix
0 -1
J= (1 . ) |
PROPOSITION 2.8. Let V' be a vector space over R. Then there are invertible
linear transformations A, B on 'V satisfying

(A+B)t=A"14B? (*)
if and only if V' admits a complex structure.
PRrROOF. Invertible A, B satisfying (*) exist if and only if
I=(A+B) A '+B Y)Y=I4+BA'+1+AB L.

Put C = BA™!. The condition (*) is therefore equivalent to finding C' such that
0 =1+ C+ C~', which is equivalent to 0 = I + C + C2%. Suppose such C' exists.
Put J = \%(I—i— 2C'). Then we have
1 1 1
J? = S+ 20)* = §(1+40+402) = g(—3I+4(I+ C+0C?)=-1I.

Hence V' admits a complex structure. Conversely, if V' admits a complex structure,
then J exists with J2 = —I. Put C = =123 then [ 4 C + C2 = 0. O

COROLLARY 2.3. There exist n by n matrices satisfying (*) if and only if n is
even.

EXERCISE 2.29. Explain the proof of Proposition 2.8 in terms of cube roots of
unity.

EXERCISE 2.30. Prove that a finite-dimensional real vector space with a com-
plex structure must have even dimension. Hint: Consider the determinant of J.

8. A Return to Fourier Series

The specific topic of Fourier series motivated many of the abstract results about
Hilbert spaces, and it provides one of the best examples of the general theory. In
return, the general theory clarifies the subject of Fourier series.

Let h be (Riemann) integrable on the circle and consider its Fourier series
S h(n)e™*. Recall that its symmetric partial sums Sy are given by

N
Sn(h)(x) = Z h(n)ei®.
n=—N
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When h is sufficiently smooth, Sy (h) converges to h. See, for example, Theorem 2.8.
We show next that Sy (h) converges to h in L?. Rather than attempting to prove
convergence at each point, this result considers an integrated form of convergence.

THEOREM 2.7. Suppose [ is integrable on the circle. Then ||Sn(f)— f|lzz — 0.

PRrROOF. Given ¢ > 0 and an integrable f, we first approximate f to within
5 in the L? norm by a continuous function g. Then we approximate g by a trig
polynomial p to within §. See below for details. These approximations yield

1 =pllze <11 = gllee +llg =plle < 5 + 5 =< (25)
Once we have found this p, we use orthogonality as in Theorem 2.3. Let N be
at least as large as the degree of p. Let Vv denote the (2N + 1)-dimensional (hence
closed) subspace spanned by the functions e?® for |n| < N. By Theorem 2.3, there
is a unique element w of Vy minimizing ||f — w||z2. That w is the partial sum
SN (f), namely, the orthogonal projection of f onto V.
By Proposition 2.3, we have

Lf = Sn(Hllz> < IIf = pllz- (26)

for all elements p of Viy. Take p to be the polynomial in (25) and take N at least
the degree of p. Combining (26) and (25) then gives

f = Sn(Ollzz < If = pllzz < (If = gllzz + [lg — pllrz <€ (27)

It therefore suffices to verify that the two above approximations are valid.

Given f integrable, by Lemma 1.6 we can find a continuous g such that sup(|g|) <
sup(|f]) = M and such that ||f — g||1: is as small as we wish. Since

1 27 sup f_g 2
1=l = 5= [ 1r—gPar < U= [T gjar < ontjp—glin, 9
T Jo ™ 0

we may choose g to bound the expression in (28) by §.
Now g is given and continuous on the circle. By Corollary 1.8, there is a trig
polynomial p such that ||g — p|[z~ < §. Therefore,

1 27
or [ l9ta) = pl@)Pdz <lg = ol
T Jo
Hence [|g—p||z2 < § as well. We have established both approximations used in (25)
and hence the conclusion of the theorem. g

llg—pll7. =

COROLLARY 2.4 (Parseval’s formula). If f is integrable on the circle, then
Do = 11£117=- (29)

PROOF. By the orthonormality properties of the functions x — €%, f —Sn(f)
is orthogonal to Viy. By the Pythagorean theorem, we have

N
1£172 = 1If = Sn(DIIF2 + ISv (D72 = 1 = Sn(H)l[72 + D_IF ). (30)
—N

Letting N tend to infinity in (30) and using Theorem 2.7 give (29). O
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COROLLARY 2.5 (Riemann—Lebesgue lemma). If f is integrable on the circle,
then limy,| o f(n) = 0.

PROOF. The series in (29) converges; hence its terms tend to 0. O
Polarization has several applications to Fourier series. By (29), if f and g are

integrable on the circle S1, then S7|f|? = ||f]]2. and similarly for g. It follows by
polarization that

Foe =3 Fnim) == [ f@)g@de = {f,q)z (31)

T o 0
COROLLARY 2.6. If f and g are integrable on the circle, then (31) holds.
COROLLARY 2.7. The map f — F(f) from L*(SY) to I? satisfies the relation

<]:f7]:g>2 = <fag>L2'

The analogue of this corollary holds for Fourier transforms on R, R"”, or in even
more abstract settings. Such results, called Plancherel theorems, play a crucial role
in extending the definition of Fourier transform to objects (called distributions)
more general than functions. See Chap. 3.

THEOREM 2.8. Suppose f is continuously differentiable on the circle. Then its
Fourier series converges absolutely to f.

PROOF. By Lemma 1.8, we have f(n) = I'0) for # 0. We first apply the

in

Parseval identity to the Fourier series for f’, getting

or [ 1@z = ST 1F ) = S f), (32)

Then we use the Cauchy-Schwarz inequality on S| f(n)| to get

. A 1 A A 1.1 A 1
Y 1) = 1f(0)] +ZE nlfn) < If )1+ —3)? O i)z, (33)
By (32), the second sum on the right-hand side of (33) converges. The sum }_, £
also converges and can be determined exactly using Fourier series. See Exercise 2.31.
Since each partial sum is continuous and the partial sums converge uniformly,

the limit is continuous. By Corollary 1.10, the Fourier series converges absolutely
to f. O

EXERCISE 2.31. Compute the Fourier series for the function f defined by f(z) =

(m —x)? on (0,2m). Use this series to show that > | 1 = %2.

EXERCISE 2.32. Find > 7 | (:112)71. Suggestion: Find the Fourier series for x?
on (—m, 7).
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9. Bernstein’s Theorem

We continue by proving a fairly difficult result. We include it to illustrate
circumstances more general than Theorem 2.8 in which Fourier series converge
absolutely and uniformly.

DEFINITION 2.13. Let f : S' — C be a function and suppose o > 0. We say
that f satisfies a Holder condition of order « if there is a constant C such that

|f(z) = f(y)] < Clz —y|* (34)
for all ,y. Sometimes we say f is Holder continuous of order a.
By the mean value theorem from calculus, a differentiable function satisfies the

inequality

[f(x) = f(y)] < suplf'(H)] |2 —yl.
Hence, if f’ is bounded, f satisfies a Holder condition with « = 1. Note also that
a function satisfying (34) must be uniformly continuous.

THEOREM 2.9. Suppose f is Hélder continuous on the circle of order a and
o> % Then the Fourier series for f converges absolutely and uniformly.

Proor. The Holder condition means that there is a constant C such that
inequality (34) holds. We must somehow use this condition to study

> Ifm)l.
neZz

The remarkable idea here is to break up this sum into dyadic parts and estimate
differently in different parts. For p a natural number, let R, denote the set of n € Z
for which 2P~! <'|n| < 2P. Note that there are 2” integers in R,. We have

DI =1fO)1+)> > 1)l (35)
neZz P neR,

In each R,, we can use the Cauchy-Schwarz inequality to write

2

SimI< | D FmlP ] @) (36)

neRr, neR,

At first glance the factor 2% looks troublesome, but we will nonetheless verify con-
vergence of the Fourier series.
Let g be defined by gp(z) = f(z 4+ h) — f(z — h). The Holder condition gives

lgn(@)|* < C?|20]** = C'[n|*?,

and integrating we obtain

llgnllz= < C'Inf*.
By the Parseval-Plancherel theorem (Corollary 2.7), for any h, we have

S g () = llgnll3e < >, (37)
nez
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Now we compute the Fourier coefficients of g, relating them to f. Using the
definition directly, we get

~ 1 o —inT
o) = o= [ () = flo =) e
T Jo
Changing variables in each term and recollecting give
~ 1 o —zny inh 1 o —iny ,—inh - £
gn(n) = o— | flye dy — o= [ fly)e”" e ""dy = 2isin(nh) f(n).
7 Jo 27

Hence, we have

|G (n)]? = dsin®(nh)| f(n)[*.
Putting things together, we obtain, with a new constant c,

sin®(nh)|f(n)|* = Igh <7 Z |G (n)]* < clh|*. (38)

Also we have

> 1FmE = 3 (f)sin? = Y i e (9

neR, neR, sm neR,
Put h = . Then Z < |n|h < % and hence § < sin %(nh) < 1. Using sin®(nh) > z
n (39), we get
A 1 R
S e <t S g (40)
neR, neR,
For h = 54+, we have
~ ™ e —2a
lgn(n)]* < Crl g [ < G272 (41)

Combining (40), (41), and (36) (note the exponent % there) gives

Y@= £+ > [f ) <|f0) +C ) 27725, (42)

nez P nER, p
The series on the right-hand side of (42) is of the form ) 2P, where z = 2 =
If « > 1, then |z| < 1, and this series converges. O

The conclusion of the theorem fails if f satisfies a Holder condition of order %
See [K].

10. Compact Hermitian Operators

Fourier series give but one of many examples of orthonormal expansions. In
this section, we establish the spectral theorem for compact Hermitian operators.
Such operators determine complete orthonormal systems consisting of eigenvectors.
In the next section, we apply this result to Sturm—Liouville equations. These second-
order ordinary differential equations with homogeneous boundary conditions played
a major role in the historical development of operator theory and remain significant
in current applied mathematics, engineering, and physics.
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An operator on a Hilbert space is compact if it can be approximated (in norm)
arbitrarily well by operators with finite-dimensional range. We mention this char-
acterization for the intuition it provides. The precise definition, which also applies
in the context of complete normed vector spaces, involves subsequences. In older
literature, compact operators are called completely continuous.

DEFINITION 2.14. Suppose L € L(H). Then L is compact if whenever {z,} is
a bounded sequence in H, then {L(z,)} has a convergent subsequence.

By the Bolzano—Weierstrass theorem (see Theorem 5.2), each bounded sequence
in C? has a convergent subsequence. Hence an operator with finite-dimensional
range must be compact. A constant multiple of a compact operator is compact.
The sum of two compact operators is compact. We check in Proposition 2.10 that
the composition (on either side) of a compact operator with a bounded operator
is compact. On the other hand, the identity operator is compact only when the
Hilbert space is finite dimensional. Proposition 2.13 gives one of many possible
proofs of this last statement.

We will use the following simple characterization of compact operators. See
[D1] for many uses of the method. The two statements in the proof are equivalent,
with different values of €. In the statement, we write f for an element of H to
remind us that we are typically working on function spaces.

PROPOSITION 2.9. Suppose L € L(H). Then L is compact if (and only if), for
each € > 0, there are compact operators K. and T, such that either of the following
(equivalent) statements holds:

LI < ell £l + K]
LA < ell 1P + 1 TefI>-

PRrROOF. Assuming the first inequality, we prove that L is compact. The proof
assuming the second inequality is similar. Let {f,} be a bounded sequence; we may
assume that ||f,|| < 1. For each positive integer m, we set ¢ = L in the inequality.
We obtain a sequence {L,,} of compact operators. Thus each sequence {L,,(f.)}
has a convergent subsequence. By the Cantor diagonalization trick, there is a single
subsequence { fp, } such that {L,,(fn,)} converges for all m. By the inequality, for
each m, we have

L(fri) = LUl = 1L (fri = fa)l] < (%)ank = full + 1B (Faie = fr)I

Given ¢ > 0, we can bound the first term by g by choosing - < %. Since { Ly, (fn, )}
converges, it is Cauchy; we can therefore bound the second term by g by picking
ny, and n; sufficiently large. Therefore, the sequence {L(f,,)} is also Cauchy in H.
Since H is complete, {L(fy,)} converges, and thus L is compact. O

If we know that L is compact, then we may choose K. or T, equal to L. The
point of Proposition 2.9 is the converse statement. We can often prove compactness
by proving an inequality, instead of dealing with subsequences. We illustrate with
several examples, which can of course also be proved using subsequences.

PROPOSITION 2.10. Suppose L € L(H) and L is compact. If M,T € L(H),
then ML and LT are compact.
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Proor. That LT is compact follows directly from the definition of compactness.
If {z,} is a bounded sequence, then {T'z,} also is, and hence {L(T'z,)} has a con-
vergent subsequence. Similarly, M L is compact.

That M L is compact can also be proved using Proposition 2.9 as follows. Given
€> 0, put ¢ = e Put K = [|M]|| L; then K is compact. We have

IMLz|| < [[M]] [|L2]] < [[MI(e|l2]] + || L2]]) < ell2l] + [ K 2]
By Proposition 2.9, M L is also compact. (]

PROPOSITION 2.11. Let {L,} be a sequence of operators with lim, ||L,—L|| = 0.
If each L,, is compact, then L is also compact.

PROOF. Given € > 0, we can find an n such that ||L — L,|| < e. Then we write
LA < L = La) I+ [ Ln (I < €l 1]+ L (H)]]-
The result therefore follows from Proposition 2.9. O

A converse of Proposition 2.11 also holds; each compact operator is the limit
in norm of a sequence of operators with finite-dimensional ranges. We can also use
Proposition 2.9 to prove the following result.

THEOREM 2.10. Assume L € L(H). If L is compact, then L* is compact.
Furthermore, L is compact if and only if L*L is compact.

PRrROOF. See Exercise 2.35. O

EXERCISE 2.33 (Small constant large constant trick). Given e > 0, prove that
there is a C¢. > 0 such that

(@, 9)] < ellz]|* + CellylI*.

EXERCISE 2.34. Prove that the second inequality in Proposition 2.9 implies
compactness.

EXERCISE 2.35. Prove Theorem 2.10. Use Proposition 2.9 and Exercise 2.23 to
verify the if part of the implication.

Before turning to the spectral theorem for compact Hermitian operators, we
give one of the classical types of examples. The function K in this example is called
the integral kernel of the operator T'. Such integral operators arise in the solutions
of differential equations such as the Sturm-Liouville equation.

PROPOSITION 2.12. Let H = L*([a,b]). Assume that (z,t) — K(x,t) is con-
tinuous on [a,b] X [a,b]. Define an operator T on H by

b
1) = [ KG.0f@d
Then T is compact. (The conclusion holds under weaker assumptions on K.)

PROOF. Let {f,} be a bounded sequence in L?([a,b]). The following estimate
follows from the Cauchy—-Schwarz inequality:

T(fa)(x) = T(fa)(y)]* < sup|K (2, t) — K(y,1)]?|| ful[72-
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Since K is continuous on the compact set [a,b] X [a, b], it is uniformly continuous.
It follows that the sequence {T'(f,)} is equi-continuous and uniformly bounded.
By the Arzela—Ascoli theorem, there is a subsequence of {T'(f,)} that converges
uniformly. In particular, this subsequence converges in L?. Hence, {T(f,)} has a
convergent subsequence, and thus 7' is compact.

EXERCISE 2.36. Suppose that the integral kernel in Proposition 2.12 satisfies
[P 1K (2, t)|dt < Cand [ |K(z,t)|dz < C. Show that T € £(#) and that ||T]| < C.

A compact operator need not have any eigenvalues or eigenvectors.

EXAMPLE 2.3. Let L : I — [? be defined by
Z9 Z3

L(Zlsza"') = (052173535"

).

Think of L as given by an infinite matrix with sub-diagonal entries 1, %, %, .... Then
L is compact but has no eigenvalues.

EXERCISE 2.37. Verify the conclusions of Example 2.3.

Compact Hermitian operators, however, have many eigenvectors. In fact, by
the spectral theorem, there is a complete orthonormal system of eigenvectors.
Before proving the spectral theorem, we note two easy results about eigenvectors
and eigenvalues.

PROPOSITION 2.13. An eigenspace of a compact operator corresponding to a
nonzero eigenvalue must be finite dimensional.

PROOF. Assume that L is compact and L(z;) = Az; for a sequence of orthogo-
nal unit vectors z;. Since L is compact, L(z;) = Az; has a convergent subsequence.
If XA # 0, then z; has a convergent subsequence. But no sequence of orthogonal unit
vectors can converge. Thus A = 0. 0

PROPOSITION 2.14. The eigenvalues of a Hermitian operator are real, and the
etgenvectors corresponding to distinct eigenvalues are orthogonal.

PRrROOF. Assume Lf = Af and f # 0. We then have

MNP = (Lff) = (£ L7 f) = (f, L) = (f. M) = AlIfIP.

Since || f||> # 0, we conclude that A = \.
The proof of the second statement amounts to polarizing the first. Thus we
suppose Lf = Af and Lg = pug where A # p. We have, as pu is real,

My g) = (Lf,9) = (f, Lg) = u(f, 9)-
Hence 0 = (A — p)(f, g) and the second conclusion follows. O
PROPOSITION 2.15. Suppose L € L(H) is Hermitian. Then
IL|| = sup [(Lz,z)|. (43)

[1z]|=1
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PROOF. Let a equal the right-hand side of (43). We prove both inequalities:
a < ||L|| and ||L|| < a. Since |(Lz, z)| < ||Lz|| ||2||, we see that
o= sup (L2, 2)] < Sup |[Lz]] = ||L]].
z||=1 z||=1
The opposite inequality is harder. It uses the polarization identity (21) and the
parallelogram law (9). We first note, by Theorem 2.6, that o = 0 implies L = 0.
Hence we may assume « # 0. Since L is Hermitian, it follows that

(Lz,w) = (z, Lw) = (Lw, z).
Applying this equality in (21), we obtain, for all z, w,
4Re(Lz,w) = (L(z + w), z + w) — (L(z — w), z — w).
Using (L, ¢) < a|[¢||* and the parallelogram law, we obtain
ARe(Lz,w) < ofllz +wl|* + |1z — wl[*) = 2a(][][* + [Jw]]). (44)
Set w = £2 in (44) to get

AP IILZII
(0%

20(|l2l1* + —5—).

Simplifying shows that this inequality is equivalent to 2HLZH < 2al|z||?, which
implies ||Lz||?> < o?||z||>. Hence ||L]| < a. O

THEOREM 2.11 (Spectral theorem). Suppose L € L(H) is compact and Her-
mitian. Then there is a complete orthonormal system consisting of eigenvectors of
L. FEach eigenspace corresponding to a nonzero eigenvalue is finite dimensional.

PROOF. The conclusion holds if L is the zero operator; we therefore ignore this
case and assume ||L|| > 0.

The first fact needed is that there is an eigenvalue A with |A| = ||L||. Note also,
since L is Hermitian, that in this case A is real and thus A = %||L||. In the proof,
we write « for £||L|[; in general only one of the two values works.

Because L is Hermitian, the subtle formula (43) for the norm of L holds. We
let {2, } be a sequence on the unit sphere such that |(Lz,, z,)| converges to ||L||.
Since L is compact, we can find a subsequence (still labeled {z,}) such that L(z,)
converges to some w.

We will show that ||w|| = ||L|| and also that az, converges to w. It follows that
2, converges to z = £. Then we have a unit vector z for which Lz = w = a2, and
hence the first required fact will hold.

To see that ||w|| = ||L||, we prove both inequalities. Since the norm is contin-
uous and ||z,|| = 1, we obtain

[|wl| = Tim || Lz, || < [|L]].

To see the other inequality, note that |(Lz,, z,)| is converging to ||L|| and L(z,) is
converging to w. Hence |(w, z,)| is converging to ||L|| as well. We then have

L[| = lim [(w, z,)| < [|w]].

Thus [w]] = ||L].
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Next we show that az, converges to w. Consider the squared norm
1L(20) — oz||* = [|L(2)|* — a2Re(Lz,, z) + [IL]*.

The right-hand side converges to ||w||> — 2||L||* + ||L||* = 0. Therefore, the left-
hand side converges to 0 as well, and hence w = lim(az, ). Thus z, itself converges
to z = . Finally

L(z) =lim(L(z,)) = w = az.
We have found an eigenvector z with eigenvalue a = +||L||. By Proposition 2.13, the
eigenspace F, corresponding to « is finite dimensional and thus a closed subspace
of H.

Once we have found one eigenvalue A\, we consider the orthogonal complement
Ei‘l of the eigenspace Ey,. Then E/t is invariant under L, and the restriction
of L to this subspace remains compact and Hermitian. We repeat the procedure,
obtaining an eigenvalue Ao. The eigenspaces Fy, and E), are orthogonal. Con-
tinuing in this fashion, we obtain a nonincreasing sequence of (absolute values of)
eigenvalues and corresponding eigenvectors. Each eigenspace is finite dimensional,
and the eigenspaces are orthogonal. We normalize the eigenvectors to have norm 1;
hence there is a bounded sequence {z;} of eigenvectors. By compactness, {L(z;)}
has a convergent subsequence. Since L(z;) = A;z;, also {);z;} has a convergent
subsequence. A sequence of orthonormal vectors cannot converge; the subsequence
cannot be eventually constant because each eigenspace is of finite dimension. The
only possibilities are that there are only finitely many nonzero eigenvalues, or that
the eigenvalues A; tend to 0.

Finally we establish completeness. Let M denote a maximal collection of or-
thonormal eigenvectors, including those with eigenvalue 0. Since we are assuming H
is separable, we may assume the eigenvectors are indexed by the positive integers.
Let P, denote the projection onto the span of the first n eigenvectors. We obtain

n

Pn(C) = Z<C7 Zj>2j'
j=1
Therefore
IL(Pn(C)) = L(OI < max(jzni1) | Az] [[C]]- (45)
Since the eigenvalues tend to zero, (45) shows that L(P,({)) converges to L(().
Hence we obtain the orthonormal expansion for w in the range R(L) of L:
w=L(¢) = (¢, 2)\z. (46)
j=1
The nullspace N (L) is the eigenspace corresponding to eigenvalue 0, and hence
any element of A/(L) has an expansion in terms of vectors in M. Finally, for any
bounded linear map L, Proposition 2.7 guarantees that N'(L) & R(L*) = H. If also
L = L*, then N(L) ® R(L) = H. Therefore, 0 is the only vector orthogonal to M,
and M is complete. O

EXERCISE 2.38. Try to give a different proof of (43). (In finite dimensions, one
can use Lagrange multipliers.)

EXERCISE 2.39. Show that L*L is compact and Hermitian if L is compact.
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REMARK 2.1. The next several exercises concern commutators of operators.

DEFINITION 2.15. Let A, B be bounded operators. Their commutator [A, B] is
defined by AB — BA.

EXERCISE 2.40. Let A, B, C be bounded operators, and assume that [C, A] and
[C, B] are compact. Prove that [C, AB] is also compact. Suggestion: Do some easy
algebra and then use Proposition 2.10.

EXERCISE 2.41. For a positive integer n, express [A, B"] as a sum of n terms
involving [A, B]. What is the result when [A, B] = I?

EXERCISE 2.42. Use the previous exercise to show that there are no bounded
operators satisfying [A, B] = I. Suggestion: Compute the norm of [4, B"] in two
ways and let n tend to infinity.

EXERCISE 2.43. Suppose that (Lz,z) > 0 for all z and that ||L]| < 1. Show
that ||[I — L|| < 1.

EXERCISE 2.44. Assume L € £(#). Show that L is a linear combination of two
Hermitian operators.

EXERCISE 2.45. Fill in the following outline to show that a Hermitian operator
A is a linear combination of two unitary operators. Without loss of generality, we
may assume |[A|| < 1. If =1 < a <1, put b = 1 —a? Then a = $((a +ib) +
(a — b)) is the average of two points on the unit circle. We can analogously write
the operator A as the average of unitary operators A + ¢B and A — iB, if we can
find a square root of I — A2, Put L = I — A?. We can find a square root of L as
follows. We consider the power series expansion for /1 — z and replace z by AZ.
In other words, v/I — C' makes sense if ||C|| < 1. You will need to know the sign of
the coefficients in the expansion to verify convergence. Hence VI = /T — (I — L)
makes sense.

We close this section with a few words about unbounded operators. This term
refers to linear mappings, defined on dense subsets of a Hilbert space, but not
continuous.

Suppose D is a dense subset of a Hilbert space H and L is defined and linear
on D. If L were continuous, then L would extend to a linear mapping on H. Many

important operators are not continuous. Differentiation % is defined and linear on

in

a dense set in L2([0,27]), but it is certainly not continuous. For example, {<—}

mn

inw
€

converges to 0 in L?, but %( —) = e"® whose L? norm equals 1 for each n. To
apply Hilbert space methods to differential operators, we must be careful.

Let L : D(L) C H — H be an unbounded operator. The domain D(L*) of
the adjoint of L is the set of v € H such that the mapping v — (Lu,v) is a
continuous linear functional. By the Riesz lemma, there is then a unique w such
that (Lu,v) = (u,w). We then put L*(v) = w. It can happen that the domain of
L* is not dense in H.

We say that an unbounded (but densely defined) operator L is Hermitian if
(Lz,w) = (2, Lw)
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for all z and w in the domain of L. We say that L is self-adjoint if D(L) = D(L*)
and the two maps agree there. Thus, L is Hermitian if Lz = L*z when both are
defined and self-adjoint if also D(L) = D(L*). Tt often happens, with a given
definition of D(L), that L* agrees with L on D(L), but L is not self-adjoint. One
must increase the domain of L, thereby decreasing the domain of L*, until these
domains are equal, before one can use without qualification the term self-adjoint.

EXERCISE 2.46 (Subtle). Put L = i-L on the subspace of differentiable func-
tions f in L2([0,1]) for which f(0) = f(1) = 0. Show that (Lf g) = (f,Lg),
but that L is not self-adjoint. Can you state precisely a domain for L making it
self-adjoint? Comment: Look up the term absolutely continuous and weaken the

boundary condition.

11. Sturm—Liouville Theory

Fourier series provide the most famous example of orthonormal expansion, but
many other orthonormal systems arise in applied mathematics and engineering. We
illustrate by considering certain differential equations known as Sturm—Liouville
equations. Mathematicians from the nineteenth century were well aware that many
properties of the functions sine and cosine have analogues when these functions
are replaced by linearly independent solutions of a second-order linear ordinary
differential equation. In addition to orthonormal expansions, certain oscillation
issues generalize as well. We prove the Sturm separation theorem, an easy result,
to illustrate this sort of generalization, before we turn to the more difficult matter
of orthonormal expansion.

Consider a second-order linear ordinary differential equation y” + qy’ +ry = 0.
Here ¢ and r are continuous functions of x. What can we say about the zeroes of
solutions? Figure 2.4 illustrates the situation for cosine and sine. Theorem 2.12
provides a general result.

y y" +y=0

—-1.0F

FIGURE 2.4. Sturm separation
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THEOREM 2.12 (Sturm separation theorem). Let y1 and ys be linearly
independent (twice differentiable) solutions of y" + qy’ + ry = 0. Suppose that
a < B and «a,B are consecutive zeroes of y1. Then there is a unique x in the
interval (o, B) with y2(x) = 0. Hence the zeroes of y1 and y2 alternate.

PRroOF. Consider the expression W (z) = yi(x)yh(z) — y2(z)y; (z), called the
Wronskian. We claim that it does not vanish. Assuming the claim, W has only one
sign. We evaluate W at « and S, obtaining —y2(a)y; (a) and —y2(5)y;(5); these
expressions must have the same sign. In particular, ¥} does not vanish at these
points. Also, the values y](a) and yj(8) must have opposite signs because « and
B are consecutive zeroes of y;. Hence the values of y2(a) and y2(8) have opposite
signs. By the intermediate value theorem, there is an x in between o and § with
y2(x) = 0. This = must be unique, because otherwise the same reasoning would
find a zero of y; in between the two zeroes of y3. Since o and [ are consecutive
zeroes of y;, we would get a contradiction.

It remains to show that W is of one sign. We show more in Lemma 2.2. [l

LEMMA 2.2. Suppose y1 and yo both solve L(y) = y" + qy’ + ry = 0. Then y;
and yo are linearly dependent if and only if W vanishes identically. Also y1 and yo
are linearly independent if and only if W vanishes nowhere.

PROOF. Suppose first that W (zg) = 0. Since W (zy) is the determinant of the
matrix of coefficients, the system of equations

(e ) (1) = (0)

has a nontrivial solution (c1, ¢2). Since L is linear, the function y = ¢;y1 + cays also
satisfies L(y) = 0. Since y(z9) = 3/(x0) = 0, this solution y is identically 0. (See
the paragraph after the proof.) Therefore, the matrix equation holds at all z, the
functions y; and yo are linearly dependent, and W is identically 0.

Suppose next that W is never zero. Consider a linear combination c1y1 + cay2
that vanishes identically. Then also ¢1y] + coy) vanishes identically, and hence

Y1 Y2\ (e _ (O

vi va) \c2 0/
Since W is the determinant of the matrix here and W(x) # 0 for all z, the only
solution is ¢; = ¢o = 0. Therefore, y; and y- are linearly independent. O

In the proof of Lemma 2.2, we used the following standard fact. The second-
order linear equation Ly = 0, together with initial conditions y(x¢) and y'(zo), has
a unique solution. This result can be proved by reducing the second-order equation
to a first-order system. Uniqueness for the first-order system can be proved using
the contraction mapping principle in metric spaces. See [Ro].

We now turn to the more sophisticated Sturm-Liouville theory. Consider the
following second-order differential equation on a real interval [a,b]. Here y is the
unknown function; p, ¢, w are fixed real-valued functions, and the o; and 3; are
real constants. These constants are subject only to the constraint that both (SL.1)
and (SL.2) are nontrivial. In other words, neither o + o nor 3?2 + 33 is 0. This
condition makes the equation into a boundary value problem. Both endpoints of the
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interval [a, b] matter. The functions p’, ¢, w are assumed to be continuous, and the
functions p and w are assumed positive:

(py') + qy+ dwy =0 (SL)
ary(a) + azy’(a) =0 (SL.1)
Bry(b) + Bay' (b) = 0. (SL.2)

REMARK 2.2. It is natural to ask how general the Sturm—Liouville equation is
among second-order linear equations. Consider any second-order ODE of the form
Py’ +Qy' + Ry =0, where P # 0. We can always put it into the Sturm-Liouville
form by the following typical trick from ODE, called an integrating factor. We
multiply the equation by an unknown function v and figure out what « must be to
put the equation in Sturm—Liouville form:

0 =uPy" +uQy' +uRy = (py') +ry.

To make this equation hold, we need uP = p and u() = p’. Hence we require

)
b=
putting the equation in the form (SL).

. . Q . Q .
which yields p = e/ 7. Hence, if we choose u = %ef P, we succeed in

The following lemma involving the Wronskian gets used in an important inte-
gration by parts below, and it also implies that each eigenspace is one dimensional.
Note that the conclusion also holds if we replace g by g, because all the parameters
in (SL), (SL.1), and (SL.2) are real.

LEMMA 2.3. If f and g both satisfy (SL.1) and (SL.2), then
f(a)g'(a) = f'(a)g(a) = f(b)g'(b) — f'(b)g(b) = 0. (47)
PROOF. Assume both f and g satisfy the conditions in (SL). We then can write
f) ) (Br) _ (0
G o) () =) (48)

and similarly for the values at a and the ;. Equations (SL.1) and (SL.2) are
nontrivial; hence (48) and its analogue for a have nontrivial solutions, and each of

the matrices /
(o 7o)
) S

)
(f (b ' b)>
g(b)  g'(b)
has a nontrivial nullspace. Hence, each determinant vanishes. O

COROLLARY 2.8. Suppose f and g both solve the same (SL) equation. Then f
and g are linearly dependent.

PROOF. By Lemma 2.3, the two expressions in (47) vanish. But these expres-
sions are Wronskian determinants. By Lemma 2.2, the two solutions are linearly
independent if and only if their Wronskian determinant is (everywhere) nonzero. [
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Later we use one more fact about the Wronskian.

LEMMA 2.4. Assume u,v both solve the Sturm—Liouville equation (py') +qy =0.
Let W = wv' —u'v. Then pW is constant. If u,v are linearly independent, then this
constant s nonzero.

PRrROOF. We want to show that (p(uv’ —u'v))’ = 0. Computing the expression,
without any assumptions on w, v, gives

pluv” —u"v) + p'(uwv’ — u'v).
Since u and v satisfy the equation, we also have
pu” +p'u 4+ qu=0
pv” 4+ p'v' 4+ qu = 0.
Multiply the first equation by v, the second by u, and then subtract. We get
p(u v —uw") +p'(u'v —uw') =0,

which is what we need. The last statement follows immediately from Lemma 2.2.
O

Each A for which (SL) admits a nonzero solution is called an eigenvalue of the
problem, and each nonzero solution is called an eigenfunction corresponding to this
eigenvalue. The terminology is consistent with the standard notions of eigenvalue
and eigenvector, as noted in Lemma 2.5 below. In general, when the elements of
a vector space are functions, one often says eigenfunction instead of eigenvector.
Corollary 2.8 thus says that the eigenspace corresponding to each eigenvalue is one
dimensional.

To connect the Sturm—Liouville setting with Fourier series, take p = 1, ¢ = 0,
and w = 1. We get the familiar equation

Y+ Ay =0,

whose solutions are sines and cosines. For example, if the interval is [0, 7], and we
assume that (SL.1) and (SL.2) give y(0) = y(7) = 0, then the eigenvalues are m?
for positive integers m. The solutions are y,,(x) = sin(mz).

Sturm-Liouville theory uses the Hilbert space H = (L?([a, b]), w), consisting of
(equivalence classes of) square-integrable measurable functions with respect to the
weight function w. The inner product is defined by

b [R—
(. G)w = / F@)g@w(z)ds.

Although the Sturm-Liouville situation is much more general than the equation
y" 4+ Ay = 0, the conclusions in the following theorem are remarkably similar to the
results we have proved about Fourier series:

THEOREM 2.13. Consider the Sturm—Liouville equation (SL) with boundary
conditions (SL.1) and (SL.2). There is a countable collection of real eigenvalues
Aj tending to oo with Ay < Ay < .... For each eigenvalue, the corresponding
eigenspace is one dimensional. The corresponding eigenfunctions ¢; are orthog-
onal. After dividing each ¢; by a constant, we assume that these eigenfunctions
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are orthonormal. These eigenfunctions form a complete orthonormal system for H.
If f is continuously differentiable on [a,b], then the series

oo

> (Fr bi)ws(x) (49)

j=1
converges to f(x) at each point of (a,b).

Proving this theorem is not easy, but we will give a fairly complete proof. We
begin by rephrasing everything in terms of an unbounded operator L on H. On an
appropriate domain, L is defined by

b= (2 (o) 1) -

The domain D(L) contains all twice continuously differentiable functions satisfying
the (SL) boundary conditions. Eigenvalues of the Sturm-Liouville problem corre-
spond to eigenvalues of this operator L.

LEMMA 2.5. Equation (SL) is equivalent to Ly = Ay.
PROOF. Left to the reader. O

PROPOSITION 2.16. The operator L is Hermitian. In other words, if f and g are
twice continuously differentiable functions on [a,b] and satisfy (SL.1) and (SL.2),
then

<qug>w = <f7 Lg>w~ (51)

ProOOF. The proof amounts to integrating by parts twice and using the bound-
ary conditions. One integration by parts gives

b —
whaho = [ o (o 0 @) + )] @) ) gua)ds

w(x)

b
—— [ (505 @) + a1 (@)) ey
‘ b - b -
0@ @@ [ @@ G2)

We integrate the middle term by parts, and stop writing the variable z, to obtain

o b d o b
Lhgl=-p fal 40 17~ [ 1508 do- [ argdn. (3)

After multiplying and dividing by w, the integrals in (53) become

- e il + [

a

b J—
[ (5 o)+ ) was = .29 (54)
The boundary terms in (53) become
p(@) (@) @)~ f'(@)g(@)) |- (55)

Since both f and g satisfy the homogeneous boundary conditions, the term in (55)
vanishes by Lemma 2.3 (using g instead of g). Hence (Lf, g)w = {f, Lg)w- O
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In order to proceed with Sturm-Liouville theory, we must introduce some
standard ideas in operator theory. These ideas are needed because differential oper-
ators such as L are defined on only a dense subspace of the Hilbert space and they
cannot be extended continuously to the whole space.

Let H be a Hilbert space and let L : D(L) C H — H be a densely defined linear
operator. For each complex number z, consider the operator L — zI.

DEFINITION 2.16. The complex number z is said to be in the spectrum of L if
(L — 2I)~! does not exist as a bounded linear operator. Otherwise z is said to be
in the resolvent set of L, and (L — 2I)~! is called the resolvent of L at z.

Thus, when z is in the resolvent set, (L — zI)~! exists and is bounded. The
equation (L — 2I)71f = uf is then equivalent to f = (L — 2I)(uf) and hence also
to Lf = (2 + %)f Thus, to find the eigenvalues of L, we can study the resolvent
(L — zI)~!. If L is Hermitian and we choose a real k in the resolvent set for L,
then (L — kI)~! is Hermitian. For L as in the Sturm-Liouville setup, the resolvent
is a compact operator. In general, an unbounded operator L on a Hilbert space has
compact resolvent if there is a z for which (L — zI)~! is compact. A generalization
of Theorem 2.13 holds when L is self-adjoint and has compact resolvent.

In order to prove Theorem 2.13, we need to know that the resolvent (L —kI)~!
is compact. We will use Green’s functions.

11.1. The Green’s Function. In this subsection, we construct the Green’s
function G in a fashion often used in physics and engineering. It will follow that a
complete orthonormal system exists in the Sturm—Liouville setting. Let L be the
operator defined in (50).

First we find a solution u to Lu = 0 that satisfies the boundary condition at
a. Then we find a solution v to Lv = 0 that satisfies the boundary condition at b.
We put

¢ =p(@)W(z) = p(a)(u(z)'(z) — ' (z)v(z)). (56)
By Lemma 2.4, when v and v are linearly independent, ¢ is a nonzero constant.

We then define the Green’s function as follows. Put G(z,t) = Lu(t)v(z) for
t <z and G(z,t) = Lu(z)v(t) for t > z. Then G extends to be continuous when
x =t. Thus Lu = 0 and Lv = 0. The following important theorem and its proof
illustrate the importance of the Green’s function:

THEOREM 2.14. Consider the Sturm—Liouville equation (SL). Let L be the Her-
mitian operator defined by (50). Let u be a solution to Lu = 0 satisfying boundary
condition (SL.1) and v a solution to Lv = 0 with boundary condition (SL.2). As-
sume u and v are linearly independent, and define ¢ by (56). Given f continuous,

define y by

x b b
y(x):% / u(:z:)(vfw)(t)dt—l—% / o(@) (wfw)(t)dt = / Gl () dt.  (57)

Then y is twice differentiable and Ly = f.
PROOF. We start with (57) and the formula (58) for L:

_ /
Ly="2y Ly 1, (58)
w w w
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We apply L to (57) using the fundamental theorem of calculus and compute.
The collection of terms obtained where we differentiate past the integral must van-
ish because u,v satisfy Lu = Lv = 0. The remaining terms arise because of the
fundamental theorem of calculus. The first time we differentiate we get

 (wop)(2) — = (wop)(x) = 0.

The minus sign arises because the second integral goes from x to b, rather than
from b to x.
The next time we differentiate we obtain the term

%(uzv — uvg) fw,

with all terms evaluated at x. The term in parentheses is minus the Wronskian.
By Lemma 2.4, the entire expression simplifies to —(fw)(z). When we multiply by
=1, from formula (58) of L, this expression becomes f(z). We conclude, as desired,
that Ly = f. Since u, v are twice differentiable, p is continuously differentiable, and
w, f are continuous, it follows that y is twice differentiable. O

Things break down when we cannot find linearly independent u and v, and the
Green’s function need not exist. In that case, we must replace L by L — kI for a
suitable constant k. The following example illustrates several crucial points:

EXAMPLE 2.4. Consider the equation Ly = y” = 0 with 3/(0) = ¢/(1) = 0.
The only solutions to Lu = 0 are constants and hence linearly dependent. If ¢
satisfies (56), then ¢ = 0. We cannot solve Ly = f for general f. Suppose that
y'(0) =¢'(1) = 0 and that y” = f. Integrating twice, we then must have

y(z) —y(0)+[ /tf(s)dsdt.

By the fundamental theorem of calculus, 3(0) = 0 and /( fo s)ds. If fo fis
not 0, then we cannot solve the equation Ly = f. In this case 0is an e1genvalue for
L, and hence, L~! does not exist. The condition fol f = 0 means that the function
f must be orthogonal to the constants.

To finish the proof of the Sturm—Liouville theorem, we need to show that there is
areal k such that (L—kI)~! exists as a bounded operator. This statement holds for
all k sufficiently negative, but we omit the proof. Assuming this point, we can find
linearly independent u and v satisfying the equation, with u satisfying the boundary
condition at a and v satisfying it at b. We conbtruct the Green’s function for L — kI
as above. We write (L —kI)~ f f(#)G(z,t)dt. Since G is continuous on the
rectangle [a,b] X [a,b], (L — kI) is compact, by Proposmon 2.12. Theorem 2.11
then yields the desired conclusions.

We can express things in terms of orthonormal expansion. Let L be the operator
defined in (50). Given f, we wish to solve the equation Lg = f. Let {¢;} be the
complete orthonormal system of eigenfunctions for (L — kI)~!. This system exists
because (L — kI)~! is compact and Hermitian. We expand ¢ in an orthonormal
series as in (49), obtaining

Z/ w(t)dt 6().
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Differentiating term by term yields
o0 b
(Lg)(x) = f(x) =) (/ g(t)¢j(f)w(t)df> Ajdi(@).
j=1 \’e

The function f also has an orthonormal expansion:

=) b _
fa) =3 ( / f<t>¢j<t>w<t>dt> 6;(a).

a

We equate coefficients to obtain

b2 4 (VDD b
o) = | 2%?3@10@)1‘@) at= [ G@oroun @ (o)

We summarize the story. Assume that (L — kI)~! has a continuous Green’s
function. Then (L — kI)~! is compact and Hermitian, and a complete orthonormal
system of eigenfunctions exists. Decompose the Hilbert space into eigenspaces Ey ;.
If h € Ey, we have (L — kI)h = A\jh. Note that no \; equals 0. Thus, restricted to
E);, we can invert L — kI by

(L —kI)"Y(h) = /\ih.

j
We invert in general by inverting on each eigenspace and adding up the results.
Things are essentially the same as in Sect.4 of Chap. 1, where we solved a linear
system when there was an orthonormal basis of eigenvectors. In this setting, we see
that the Green’s function is given by

j=1 J

We consider the simple special case where Ly = —y” on the interval [0, 1] with
boundary conditions y(0) = y(1) = 0. For each positive integer m, there is an
eigenvalue m2m?, corresponding to the normalized eigenfunction ﬁsin(mmc). In

this case, G(x,t) has the following expression:

G(%t):{:z:(l—t) a:<t}' (60)

t(l—x) x>t

We can check this formula directly by differentiating twice the relation
1

y(:z:)_(l—:zr)/owtf(t) dt—i—a:/ (1—1)f(t) dt.

Of course, we discovered this formula by the prescription from Theorem 2.14. The
function x is the solution vanishing at 0. The function 1—x is the solution vanishing

at 1. See Fig.2.5. Using orthonormal expansion, we have another expression for
G(z,1):

Gla,t) =2 i sin(mmz) sin(mwt)'

m2m?2

m=1
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x(1-t) t(1-x)

G(x,t)
FIGURE 2.5. Green’s function for the second derivative

See [F2, G] for many computational exercises involving Green’s functions for
Sturm-Liouville equations and generalizations. See also [GS] for excellent intuitive
discussion concerning the construction of the Green’s function and its connections
with the Dirac delta function.

EXERCISE 2.47. Assume 0 < z < . Put L = —(:£)2 on [0, 1] with boundary
conditions y(0) = y(1) = 0. Equate the two expressions for the Green’s function to
establish the identity

4 = (—D)sin((2r + 1)7)
] Z;) (2r + 1)

Prove that this identity remains true at x = %

EXERCISE 2.48. Consider the equation y” + Ay = 0 with boundary conditions
y(0) —y(1) = 0 and 3'(0) + ¢'(1) = 0. Show that every A is an eigenvalue. Why
doesn’t this example contradict Theorem 2.137 Hint: Look carefully at (SL.I)

and (SL.2).

EXERCISE 2.49. Suppose L € £(H) is Hermitian. Find lim,, . ||L"||%. Sug-
gestion: If L = L*, then ||L?|| = ||L]|*.

EXERCISE 2.50. Put the Bessel equation x2y” + xy’ + (A\22% — v?)y = 0 into
Sturm—Liouville form.

EXERCISE 2.51. Find the Green’s function for the equation Ly = z%y” — 2xy’ +
2y = f on the interval [1,2] with y(1) = y(2) = 0. (First put the equation in
Sturm-Liouville form.) How does the answer change if the boundary condition is
replaced by y'(1) = ¢'(2) = 0?7

11.2. Exercises on Legendre Polynomials. The next several exercises in-
volve the Legendre polynomials. These polynomials arise throughout pure and
applied mathematics. We will return to them in Sect. 13.

We first remind the reader of a method for finding solutions to linear ordinary
differential equations, called reduction of order. Consider a linear differential op-
erator L of order m. Suppose we know one solution f to Ly = g. We then seek
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a solution of the form y = wf for some unknown function u. The function «" will
then satisfy a homogeneous linear differential equation of order m — 1. We used a
similar idea in Sect.4.1 of Chap. 1, where we replaced a constant ¢ with a function
c(x) when solving an inhomogeneous equation. We note, when m = 2, that the
method of reduction of order yields a first-order equation for u’ which can often be
solved explicitly.

EXERCISE 2.52. Verify that the method of reduction of order works as described
above.

EXERCISE 2.53. The Legendre equation (in Sturm—Liouville form) is
(1 —2*)y) +n(n+1)y =0. (61)
Find all solutions to (61) when n = 0 and when n = 1. Comment: When n = 1,

finding one solution is easy. The method of reduction of order can be used to find
an independent solution.

EXERCISE 2.54. Let n be a nonnegative integer. Show that there is a polynomial
solution P, to (61) of degree n. Normalize to make P,(1) = 1. This P, is called
the n-th Legendre polynomial. Show that an alternative definition of P, is given
for |z| <1 and [¢| < 1 by the generating function

V1 —2xt + V1—2zt+ 12 Z

Show that the collection of these polynomlals forms a complete orthogonal system

for L?([-1,1],dz). Show that ||P,||*> = 2n2+1. If needed, look ahead to the next

section for one method to compute these norms.

EXERCISE 2.55. Obtain the first few Legendre polynomials by applying the

Gram-Schmidt process to the monomials 1, z, 2%, 23, 2.

ExAMPLE 2.5. The first few Legendre polynomials (See Fig. 2.6):

o Py(z) =1.

o Pi(x) =u.

o Py(x) = 31“’2—1

o Py(z) = 52’ sz

o Py(z) = 359047301 +3

EXERCISE 2.56. Let P, be the n-th Legendre polynomial. Show that
(n+1)Pyy1(x) — (2n+ DzP,(x) + nP,_1(z) = 0.

Use the method of difference equations to find constants aj, such that

z) =Y ar(l+z)F 1 —a)"*
k=0

EXERCISE 2.57. Here is an alternative proof that the Legendre polynomials are
orthogonal. First show that P, = c,(4)"(z> — 1)". Then integrate by parts to

show that p
(Pas £) = eal=1)"{(@ = 1", ()" D)

In other words, f is orthogonal to P, if f is a polynomial of degree less than n.
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EXERCISE 2.58. Let P, denote a Legendre polynomial. Define the associated
Legendre functions with parameters [ and m by

PIMw) = (1= 2)F ()" i(z).
e Show when m is even that P/™ is a polynomial.
e Obtain a differential equation satisfied by F/™ by differentiating m-times
the Sturm-Liouville equation (61) defining F.
e Show that P/™(x) is a constant times a power of (1—2?) times a derivative
of a power of (1 — 2?).

The associated Legendre functions arise in Sect. 13 on spherical harmonics.

0
- Py(x)
Py(x)
0.5
-1.0 .5 L 0, 1.0
= Px) Py P P
-1.0F

FIGURE 2.6. Legendre polynomials

12. Generating Functions and Orthonormal Systems

Many of the complete orthonormal systems used in physics and engineering
are defined via the Gram-Schmidt process. Consider an interval I in R and the
Hilbert space L?(I,w(x)dz) of square-integrable functions with respect to some
weight function w. Starting with a nice class of functions, such as the monomials,
and then orthonormalizing them, one obtains various special functions. The Gram—
Schmidt process often leads to tedious computation.

Following the method of Exercise 2.54, we use generating functions to investi-
gate orthonormal systems. In addition to the Legendre polynomials, we give two
examples of importance in physics, the Laguerre polynomials and the Hermite poly-
nomials. We return to the Hermite polynomials in Chap. 3, where we relate them
to eigenfunctions of the Fourier transform.
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We will use a simple proposition relating orthonormal systems and generating
functions. We then show how the technique works for the Laguerre and Hermite
polynomials.

Before stating and proving this proposition, we discuss vector-valued convergent
power series. Let B denote the open unit disk in C. Let H be a Hilbert space; it is
often useful to consider complex analytic functions f: B — H.

Consider a power series A(z) = Y A, 2", where the coefficients A4, lie in H.
This series converges at the complex number z if its partial sums there form a
Cauchy sequence in H. We define a function A : B — H to be complex analytic if
there is a sequence {4, } in H such that the series

[o ]
g A, z"
n=0

converges to A(z) for all z in B. On compact subsets of B, the series converges in
norm, and we may therefore rearrange the order of summation at will.

PrOPOSITION 2.17. Let ‘H be a Hilbert space, and suppose A : B — H is
complex analytic with A(t) = Y7 Ant™. Then the collection of vectors {A,}
forms an orthonormal system in H if and only if, for all t € B,

1
AD|)P? = ——.
IAGIP = 77

Proor. Using the absolute convergence on compact subsets to order the sum-

mation as we wish, we obtain

o0

JA@P = D {(An, At (62)

m,n=0

Comparison with the geometric series yields the result: the right-hand side of (62)
equals 17—1‘”2 if and only if (A,,, A,,) equals 0 for n # m and equals 1 forn =m. O

DEFINITION 2.17. The formal series
o0
S L
n=0
is the ordinary generating function for the sequence {L,}. The formal series
o0
tn
> Lnsg
n!
n=0
is the exponential generating function for the sequence {L,}.

Explicit formulas for these generating functions often provide powerful insight
as well as simple proofs of orthogonality relations.

ExAMPLE 2.6 (Laguerre polynomials). Let H = L?([0,00),e %dz) be the
Hilbert space of square-integrable functions on [0, c0) with respect to the measure
e *dz. Consider functions L,, defined via their generating function by

Alz,t) = 3 La(@)t" = (1 — )V exp (fﬁ) .
n=0
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Note that > 0 and [¢t| < 1. In order to study the inner products (L, L,,),
we compute ||A(z,t)||>. We will find an explicit formula for this squared norm;
Proposition 2.17 implies that the L,, form an orthonormal system.
We have
—at - —xt
|A(z,8)[2 = (1 — t) L exp <1—”3t) (1-%)Lexp < i ) .

1—t

Multiplying by the weight function e™ and integrating, we obtain

Az, ]2 = (1— )11 — 7)1 /OOO exp (—x(l T i)) de.

1—¢t 1-—%
Computing the integral on the right-hand side and simplifying shows that
1 1 1
Az, )| = - — = :
el = i 1r o & 1P

From Proposition 2.17, we see that {L,,} forms an orthonormal system in H.

The series defining the generating function converges for [¢| < 1, and each L,
is real valued. In Exercise 2.60, we ask the reader to show that the functions L,
satisfy the Rodrigues formula

e’ d " n_—x
L,(x) = o (E) (x"e™®) (63)
and hence are polynomials of degree n. They are called the Laguerre polynomials,
and they form a complete orthonormal system for L2([0,00),e %dz). Laguerre
polynomials arise in solving the Schrodinger equation for a hydrogen atom (Fig.
2.7).

Li®)  Lyx)

FIGURE 2.7. Laguerre polynomials
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A similar technique works for the Hermite polynomials, which arise in many
problems in physics, such as the quantum harmonic oscillator. See pp. 120-122 in
[GS]. We discuss these polynomials at the end of Chap.3. One way to define the
Hermite polynomials is via the exponential generating function

exp(2zt —17) = > Hp(x (64)

The functions H,, are polynomials and form an orthogonal set for H=L2(R, e~*" dx).
With this normalization, the norms are not equal to unity. In Exercise 2.62, the
reader is asked to study the Hermite polynomials by mimicking the computations
for the Laguerre polynomials. Other normalizations of these polynomials are also

common. Sometimes the weight function used is e2 . The advantage of our
normalization is Theorem 3.9.

The technique of generating functions can also be used to find normalizing
coefficients. Suppose, such as in the Sturm—Liouville setting, that the collection
{fn} for n > 0 forms a complete orthogonal system. We wish to find ||f,||L2.
Assume that we have found the generating function

= Z fu(x)t"
n=0

explicitly. We may assume ¢ is real. Taking L2 norms (in z), we discover that || f,,
must be the coefficient of t*" in the series expansion of ||B(z, t)||%..

We illustrate this result by solving part of Exercise 2.54. The generating func-
tion for the Legendre polynomials is known to be

1
V1—2at+ 12

By elementary calculus, its L? norm on [—1,1] is found to satisfy

12

B(z,t) =

1B )3 = 1 (log(1 +1) ~log(1 — ).

Expanding log(1 £ ¢) in a Taylor series shows that

t2n

1B, 0|3 = 22 —

Hence ||P,[|3. = ﬁ
EXERCISE 2.59. Fill in the details from the previous paragraph.

EXERCISE 2.60.

(1) With L,, as in Example 2.6, verify the Rodrigues formula (63). Suggestion:
Write the power series of the exponential on the right-hand side of (63)
and interchange the order of summation.

(2) Show that each L, is a polynomial in z. Hint: The easiest way is to
use (1).

(3) Prove that {L,,} forms a complete system in L ([0,00), e %dx).



13. SPHERICAL HARMONICS 87
EXERCISE 2.61. For x > 0, verify that

I

"0 n+ 0 +
Suggestion: Integrate the relation

—xIs

1—s

Z Ly (x)s™ = (1 —s)"" exp( )
n=0

over the interval [0, 1] and then change variables in the integral.

EXERCISE 2.62 (Hermite polynomials). Here H,, is defined by (64).
(1) Use (64) to find a simple expression for

Z Hy,(z)t" Z H,,(z)s™.
n=0 m=0

(2) Integrate the result in (1) over R with respect to the measure e~ da.
se to show that the Hermite polynomials form an orthogonal system
3) U 2 h h he H ite poly ials fi hog 1 sy
with

||Hal? = 27nly/7.
(4) Prove that the system of Hermite polynomials is complete in L?(R, e‘w2dx).

EXERCISE 2.63. Replace the generating function used for the Legendre polyno-
mials by (1 — 2zt +2)~* for A > —% and carry out the same steps. The resulting
polynomials are the wultraspherical or Gegenbauer polynomials. Note that the Le-
gendre polynomials are the special case when \ = % See how many properties of

the Legendre polynomials you can generalize.

13. Spherical Harmonics

We close this chapter by discussing spherical harmonics. This topic provides
one method to generalize Fourier series on the unit circle to orthonormal expansions
on the unit sphere. One approach to spherical harmonics follows a thread of history,
based on the work of Legendre. This approach relates the exercises from Sect. 11
on Legendre polynomials to elementary physics and relies on spherical coordinates
from calculus. Perhaps the most elegant approach, given in Theorems 2.15 and 2.16,
uses spaces of homogeneous polynomials. We discuss both approaches.

Let S? denote the unit sphere in real Euclidean space R?. Let A denote the
Laplace operator Z?:l a%zj." We would like to find a complete orthonormal system
for L?(S?) whose properties are analogous to those of the exponentials e
unit circle. Doing so is not simple.

Recall that Newton’s law of gravitation and Coulomb’s law of electric charge
both begin with a potential function. Imagine a mass or charge placed at a single
point p in real Euclidean space R3. The potential at x due to this mass or charge
is then a constant times the reciprocal of the distance from x to p. Let us suppose

nT

on the
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that the mass or charge is located at the point (0,0,1). The potential at the point
x = (21, x2,23) is then (See Fig. 2.8)
c c

=2l V@t + (@12

(65)

FI1GURE 2.8. The colatitude ¢

We wish to express (65) in spherical coordinates. We write

x = (21, x2,x3) = (pcos(#)sin(¢), psin(0)sin(¢), pcos(¢))

where p is the distance to the origin, 6 is the usual polar coordinate angle in the
(x1,x2) plane measuring longitude, and ¢ is the colatitude. Thus, 0 < 6§ < 2,
whereas 0 < ¢ < w. These conventions are common in calculus books, but the
physics literature often interchanges 6 and ¢. Also, sometimes r is used instead of
p. In many sources, however, r is reserved for its role in cylindrical coordinates,
and thus 72 = 22 + y2.
Writing (65) in spherical coordinates we obtain
c c

I[x — pl| - V14 p2 —2pcos(¢)

The denominator in (66) is the same expression as in the generating function for the
Legendre polynomials P, from Exercise 2.54, with ¢ replaced by p and x replaced
by cos(@). Therefore, we can rewrite (66) as follows:

(66)

CZP cos(9))]|x|["™. (67)

IX—pII

The potential function from (65) is harmonic away from p. We leave the com-
putation to Exercise 2.64. We write the Laplace operator in spherical coordinates:

AU = Ggn 1) + s SL ) + oo, (69

We attempt to solve the Laplace equation A(f) = 0 using separation of vari-
ables, generalizing Exercise 1.57. Thus we assume that

f(p,0,9) = A(p)B(¢)C(0). (69)
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Plugging (69) into the Laplace equation yields the equation

1 1
0= (p*A’'BC), + ——(sin(¢)AB'C)y + ——ABC". 70
(p )P sm(gb) (Sln(¢) )¢ sin2 ((b) ( )
After dividing by ABC, we obtain
2 1 i 1 I 1
pe A" +2pA B B 1 C
0=(— )+ — +cot(¢p) = + —5——. 71
( Y )+B+CO(¢)B+sin2(¢)O (71)

The first fraction in (71) depends on p; the other terms do not. Hence there is a
constant A such that

PP A" +2pA = \A. (72)
Furthermore, we also have
B/I B/ .9 Cl/ .9
(§ + cot(¢)§> sin®(¢) + = —Asin® (o). (73)

The only solutions to the (72) for A that are continuous at zero are A(p) = cp' for
nonnegative integers [. It follows that A = (I 4 1).

Now we look at (73). Again by grouping the 6 and ¢ terms separately, we
obtain two equations:

O = (74)
sin?(¢) (f + cot(¢)% + )\) = L. (75)

Now (74) must be periodic in 6. Hence p is the square of an integer k. We see
that C(6) = ce’™™®. Also (75) becomes

B// B/
. 2 b= b _ 2
sin®(¢) ( B + cot(¢) B —l—)\) k°. (76)
Simplifying (76) leads to the equation
2
B" +cot(¢)B" + (I(1+1) — #)B =0. (77)
2(9)

Equation (77) evokes the differential equation defining the Legendre polynomials.
In fact, if we make the substitution z = cos(¢), then (77) is precisely equivalent
(See Exercise 2.66) to the equation

(1 —2*)By, — 228, + <l(l +1) — &) B =0. (78)

The solutions PF to (78) are the associated Legendre functions from Ex-
ercise 2.58 when k£ > 0 and related expressions when k£ < 0. The function
e PF(cos(¢)) is the spherical harmonic Y}*(6, ). The integer parameter k varies
from — to [, yielding 2/ + 1 independent functions. The functions p'e®*® PF(cos(¢))
are harmonic. The functions Y;* are not themselves harmonic in general; on the
sphere each Y/C is an eigenfunction of the Laplacian with eigenvalue —I(I + 1).

A Wikipedia page called Table of spherical harmonics lists these Ylk, including
the normalizing constants, for 0 <[ < 10 and all corresponding k£ . The functions
Y} and Y are orthogonal, on L?(S?), unless k = a and [ = b. These functions
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form a complete orthogonal system for L?(S?). Remarkable additional properties
whose discussion is beyond the scope of this book hold as well.

We next approach spherical harmonics via homogeneous polynomials. Things
are simpler this way but perhaps less useful in applied mathematics.

We will work in R, although we will write some formulas explicitly when n = 3.
Let x = (x1,...,2,) denote the variables. A polynomial p(x) is homogeneous of
degree k if p(tx) = t*p(x). Homogeneous polynomials are therefore determined
by their values on the unit sphere. It is often useful to identify a homogeneous
polynomial p(x) with the function

p(x)
P6I = e

which is defined in the complement of the origin, agrees with p on the sphere, and
is homogeneous of degree 0. See Proposition 2.18. For each m, we write H,, for the
vector space of homogeneous harmonic polynomials of degree m. In Theorem 2.16,
we will compute the dimension of H,,. When n = 3, its dimension turns out
be 2m + 1. We obtain spherical harmonics by restricting harmonic homogeneous
polynomials to the unit sphere.

ExaMpLE 2.7. Put n = 3. When m = 1, the harmonic polynomials z, y, z form
a basis for H;. For m = 2, the following five polynomials form a basis for Ho:

.,Ty
e 12
° Yz
o 22 4 y? — 222
o 12 —2y% + 22

Note that the harmonic polynomial —2x2 +y2 + 22 is linearly dependent on the last
two items in the list.

It will be as easy to work in R” as it is in R3. We write v - w for the usual
inner product of v, w in R™. We assume n > 2.

Let V,,, denote the vector space of homogeneous polynomials of degree m in
the variable x in R". We regard H,,, as a subspace of V;,. The dimension of V,
is the binomial coefficient (m:fl_ 1). We have a map M : V,;, — V12 given by
multiplication by ||x||?>. The Laplace operator A maps the other direction. These
operators turn out to be adjoints. See Theorem 2.16.

We begin with a remarkable formula involving the Laplacian on harmonic, ho-
mogeneous polynomials on R™. The function P in Proposition 2.18 below is homo-
geneous of degree 0, and hence its Laplacian is homogeneous of degree —2. This
observation explains why we must divide by ||x||? in (79).

PROPOSITION 2.18. Let p be a harmonic, homogeneous polynomial of degree |
on R™. Qutside the origin, consider the function P defined by

Plx) = p(x)

BN

Then we have

A(P) = —I(l+n—2)—=. (79)

P(x)
[l I?
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Restricted to the sphere, P defines an eigenfunction of the Laplacian with eigenvalue
—l(l4+n—2). When n = 3, P is therefore a linear combination of the spherical
harmonics Ylk with =1 < k <.

PROOF. See Exercise 2.72 for the computation yielding (79). The second state-
ment follows from (79) by putting ||x||? equal to 1. The last statement follows from
the discussion just after (78). O

Consider the Hilbert space L?(S™" 1), where S"~! is the unit sphere in n-
dimensions, and n > 2. In order to integrate over the unit sphere, we use n-
dimensional spherical coordinates. We put x = pv, where p = ||x|| and v lies on
the unit sphere. We then can write the volume form dV on R" as

dV(x) = p"tdp do(v).

Let f be a function on R"™. Away from 0, we define a function F' by
X
F(x) = f(57) = f(v).
[l

The function F' satisfies F(tx) = F(x) when ¢ > 0. Such a function is called
positive homogeneous of degree 0. We note a special case of Euler’s formula for such
functions, when F' is differentiable. See Exercise 2.71 for a more general statement.

PROPOSITION 2.19. Assume F is differentiable and F(tx) = F(x) for t > 0
and all x. Then dF (x)-x = 0.

PROOF. Apply 4 to the equation F(tx) = F(x) and set ¢ = 1. O

Let x be a smooth function on R with the following properties:
(1) x(0) =0.
(2) x(t) tends to 0 as t tends to infinity.
(3) ;7 x(t*)t"~'dt = 1. (Here n is the dimension.)
Given a smooth function w, we wish to compute f gn—1 wdo. Because of prop-
erty (3) of x, the integration formula (80) holds. It allows us to express integrals
over the sphere as integrals over Euclidean space:

b4 ° ne
[ xtiPoEav = [ [T e wwydot) = [ wdo. (50
Rn ||| sn=1Jo Sn—1
The other two properties of y will be useful in an integration by parts.

THEOREM 2.15. For k # 1, the subspaces Hy and H; are orthogonal in
L2(Sm 1.

PRrROOF. Given harmonic homogeneous polynomials f of degree k and g of de-
gree [, let F' and G be the corresponding homogeneous functions of degree 0 defined
above. By Proposition 2.18, these functions are eigenfunctions of the Laplacian on
the sphere, with distinct eigenvalues. We claim that the Laplacian is Hermitian:

AF G do = F AG do. (81)
Sn—1 Sn—1

Given the claim, eigenfunctions corresponding to distinct eigenvalues are orthogo-
nal. Thus harmonic, homogeneous polynomials of different degrees are orthogonal
on the unit sphere.
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It remains to prove (81). We may assume that G is real. Let
"0
W=AFG—-F AG = Z(E)(F%G ~ FG,,).
j=1

We integrate by parts in (80), moving each -2-. Note that a%(||x||2) = 2x;.

Ox j

X
W do = / X(XIPW (S av
Snfl Rn

- _/n Z(FIJ’G_ FGI]‘)X/(||X||2)2IJ' dav. (82)

The last term in (82) is zero by Proposition 2.19, because F and G are positive
homogeneous of degree 0. Thus A is Hermitian. O

It is convenient to define particular inner products on the spaces V,,, which
differ from the usual inner product given by integration. By linearity, to define
the inner product on V,,, it suffices to define the inner product of monomials. We
illustrate for n = 3. Put

(xy2¢, 2P 2%y, =0 (83)
unless a = A, b = B, and ¢ = C. In this case, we put [[z%y°2¢[[7, = alble!. The
generalization to other dimensions is evident:

n n
T =515, = ]t
j=1 j=1

Thus distinct monomials are decreed to be orthogonal.

THEOREM 2.16. The mapping M : V,, — V4o is the adjoint of the mapping
A Vipo — Vi In other words,

<Mfug>Vm+2 = <f7 Ag>Vm (84)

Hence the image of M is orthogonal to the harmonic space H,,12 and

Vinta = M(Vin) © Hppp.

m+n71) _ (m+n73

Furthermore, H,, is of dimension ( A A

is 2m + 1.

). When n = 3, this dimension

PROOF. To be concrete, we write out the proof when n = 3. By linearity, it
suffices to check (84) on monomials f = x%y?2¢ and g = 24y5 2%, where it follows
by computing both sides of (84) in terms of factorials. There are three possible
circumstances in which the inner product is not zero:

e (a,b,c)=(A-2,B,C)

e (a,b,c)=(A4,B-2,C)

e (a,b,c)=(A,B,C —2).
In the first case, we must check that (a + 2)lble! = A(A — 1)(A — 2)!BIC!, which
holds. The other two cases are similarly easy, and hence (84) holds.

Next, suppose that h is in the image of M and that ¢ is in the nullspace of A.
Then (84) gives

<hvg>Vm+2 = <Mf7 g>Vm+2 = <fa Ag>Vm = 0.
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The desired orthogonality thus holds and the direct sum decomposition follows.
Finally, the dimension of V,, is (m:;fl_ 1). Since M is injective, the dimension of the
image of M is the dimension of V,,,. The dimension of H,, 2 is therefore

m+n+1 m-+n-—1
n—1 n—1 '
When n = 3, the dimension of H,,, o therefore is

(m+4)(m+3) (m+2)(m+1)
5 — 5 = 2m + 5,

and hence the dimension of H,,, is 2m + 1. O

REMARK 2.3. The formula in Theorem 2.16 for the dimension of H,,, defines a
polynomial of degree n — 2 in m. See Exercise 2.75.

COROLLARY 2.9. On the sphere, we have V,, =H,, ®H,,, 2P ....

PROOF. The formula follows by iterating the equality V,,, = M (V,,—2) ® H,,
and noting that ||x||*> = 1 on the sphere. O

COROLLARY 2.10. Suppose f is continuous on the unit sphere. Then there is a
sequence of harmonic polynomials converging uniformly to f.

PROOF. This proof assumes the Stone—Weierstrass theorem to the effect that
a continuous function on a compact subset S of R" is the uniform limit on S of a
sequence of polynomials. We proved this result in Corollary 1.8 when S is the circle.
Given this theorem, the result follows from Corollary 2.9, because each polynomial
can be decomposed on the sphere in terms of harmonic polynomials. O

COROLLARY 2.11. The spherical harmonics form a complete orthogonal system
for L2(S?).

We illustrate Corollary 2.11 for m = 0 and m = 1, when n = 3. Of course 1}
is the span of the constant 1. Its image under M is the span of x? + % 4+ 22. The
space Hy is spanned by the five functions zy, zz, vz, x> + y? — 222, 2% — 292 + 2.
Each of these is orthogonal to 2% 4+ 32 + 22, which spans the orthogonal complement
of Hy. Next, V; is spanned by z,y, z. Its image under M is the span of x(x? +
y? + 22),y(2? + y% + 22),2(2% + y? + 2%). The space V3 has dimension ten. The
seven-dimensional space Hj is the orthogonal complement of the span of M (V7).

EXERCISE 2.64. Show that (65) defines a harmonic function away from (0,0, 1).
Use both Euclidean coordinates and spherical coordinates.

EXERCISE 2.65. Verify formula (68).

EXERCISE 2.66. Use the chain rule (and some computation) to show that (77)
and (78) are equivalent. Suggestion: First show that

Bgy = Buatl + Bags.

EXERCISE 2.67. For n = 3, express the harmonic polynomials of degree two
using spherical coordinates.

EXERCISE 2.68. For n = 3, find seven linearly independent harmonic polyno-
mials of degree three.
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EXERCISE 2.69 (Difficult). Analyze (78) fully in terms of Legendre polynomials.

EXERCISE 2.70. Verify (79) if p(z,y, 2) = 2% — y°.

EXERCISE 2.71. Verify Euler’s identity: If f is differentiable and homogeneous
of degree k£ on R"”, then
df (x) - x = kf(x).
Proposition 2.19 was the case k = 0. What is the geometric interpretation of the
result in this case?

EXERCISE 2.72. Verify (79). Euler’s identity is useful.

EXERCISE 2.73. Take n = 2, and regard R? as C. Consider the harmonic
polynomial Re(2?™). Give a much simpler proof of the analogue of formula (79)
using the formula A(u) = 4u,z from Sect. 11 of Chap. 1.

EXERCISE 2.74. Again regard R? as C. Write down a basis for the homogeneous
harmonic polynomials of degree m in terms of z and Z. Comment: The answer is
obvious!

EXERCISE 2.75. For n > 2, simplify the formula in Theorem 2.16 to show that
dim(H,,) is a polynomial of degree n — 2 in m.



CHAPTER 3

Fourier Transform on R

1. Introduction

We define and study the Fourier transform in this chapter. Rather than working
with functions defined on the circle, we consider functions defined on the real line
R. Among many books, the reader can consult [E, G] and [GS] for applications of
Fourier transforms to applied mathematics, physics, and engineering. See [F'1] for
an advanced mathematical treatment.

When |f] is integrable on R, we will define the Fourier transform of f by

FN©O =10 == [ st o

In (1), the variable ¢ is real. Thus, f will be another function defined on the real
line. We will then extend the definition of the Fourier transform by using methods
of functional analysis.

Along the way, we will develop a deeper understanding of approximate identities
and the Dirac delta function. We will define distributions or generalized functions
and thereby place the Dirac function on firm theoretical ground. For nice functions
f, we have the Fourier inversion formula

1 * i€
f@)= 7= /_ et (2)

Our abstract approach leads to a definition of f for f € L*(R) or even when it
is a distribution. We prove the fundamental result (Plancherel theorem) that the
Fourier transform is unitary on L?*(R), and hence,

1£172 = Il f1[7- (3)

We combine the Plancherel theorem and the Cauchy-Schwarz inequality to
establish the famous inequality which yields the Heisenberg uncertainty principle
from quantum mechanics. We include a brief introduction to pseudo-differential
operators which includes the Sobolev lemma in one dimension. We close this chapter
with a section on inequalities.

For functions defined on the circle, we observed that the more differentiable
the function, the faster its Fourier coefficients decay at infinity. An analogous
phenomenon happens for functions on R. It therefore makes sense to begin our
study of the Fourier transform by restricting to smooth functions of rapid decay at
infinity.

J.P. D’Angelo, Hermitian Analysis: From Fourier Series to Cauchy-Riemann 95
Geometry, Cornerstones, DOI 10.1007/978-1-4614-8526-1_3,
© Springer Science+Business Media New York 2013
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2. The Fourier Transform on the Schwartz Space

The Schwartz space S consists of the smooth functions of rapid decay at infin-
ity. This space is named for Laurent Schwartz, a different person from Hermann
Schwarz, whose name is associated with the Cauchy—Schwarz inequality. Here is
the precise definition:

DEFINITION 3.1. The Schwartz space S consists of those infinitely differentiable
complex-valued functions f on R such that, for all nonnegative integers a, b,

d
lim |z|*(—)"f(z) = 0.
Jim el (5)"F @)

Functions in the Schwartz space decay so rapidly at infinity that, even after
differentiating or multiplying by 2 an arbitrary (finite) number of times, the re-
sulting functions still decay at infinity. For any € > 0, the Gaussian e~ isin S.
Smooth functions of compact support provide additional examples. For convenience

we recall the existence of such functions (Fig. 3.1).

EXAMPLE 3.1. First we define a function h on R by h(t) = 0 for ¢ < 0 and by
h(t) = exp(=*) for t > 0. This function is infinitely differentiable on all of R, and
all of its derivatives vanish at 0. Put g(¢) = h(t)h(1 —t). Then g is also infinitely
differentiable. Furthermore, g(t) > 0 for 0 < ¢ < 1 and g(¢) = 0 otherwise. Thus, g
is a smooth function with compact support.

The technique from Example 3.1 can be extended to prove the stronger result
stated in Theorem 3.1. Exercise 3.19 suggests the standard proof using convolution
integrals.

THEOREM 3.1. Let I denote any closed bounded interval on R and let J denote
any open interval containing I. Then there is an infinitely differentiable function
X : R —[0,1] such that x =1 on I and x =0 off J.

FIGURE 3.1. Cutoff function

PROPOSITION 3.1. The Schwartz space S is a complex vector space. It is closed
under differentiation and under multiplication by x.

PROOF. Left to the reader. O

DEFINITION 3.2. We define the Fourier transform for f € S as an integral:

FN©O =10 == [ s (@
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Sometimes the Fourier transform is defined without the factor —=, and
sometimes it is defined with a factor of 27 in the exponent. The Wolfram Mathe-
matica 9 web page on the Fourier transform allows the user to set two parameters,
thereby obtaining whichever convention the user wishes to employ.

The definition of S regards differentiation and multiplication on an equal foot-
ing. Let D = d% denote differentiation and let M = M;¢ denote multiplication by
i€. Working on S is convenient for several reasons; in particular, the Fourier trans-
form exchanges these operations. Furthermore, as we will show in Theorem 3.2, the
Fourier transform maps S to itself bijectively. We can interpret the last two items
of the following proposition as saying that F diagonalizes differentiation.

PROPOSITION 3.2. The following elementary properties hold for Fourier trans-
forms defined on S.

1) F is linear.
2) [1fll= < Z=llflle-

(
(
(3) F(&) = f(-). o
(4) Put fu(x) = f(x +h). Then fu(&) = e f(&).
( a

(

(

Ut

) &F(€) = ~iF(M.f). That is, DicF = FM,.
6) f/(€) = i€f(€). That is, FDs = M F.
7) D=F'MF and M = FDF~ .

PrROOF. The first six items are left to the reader. The last item follows from
the penultimate item and Theorem 3.2 below. O

The reader should compare Proposition 3.2 with Lemma 1.7.
PROPOSITION 3.3. The Fourier transform maps S to itself.

Proor. Differentiating Eq. (4) from Definition 3.2 under the integral sign,
justified by the rapid decay of f at infinity, shows that f is infinitely differentiable.
Since FD = MJF, it follows for each positive integer k£ and integration by parts
that

FD" = M F.

All boundary terms vanish since we are working in S. Tt follows that f decays
rapidly if and only if f does. Hence, 7 : S — S. (]

PROPOSITION 3.4. Let G, denote the Gaussian: G,(x) =

a2

\}2—6?7. Then:
f Gy(z)dx =1 for o > 0. Thus, G, is a probability density.

(2) The Fourzer transform is another Gaussian:

o2¢2

F(G)(E) = — G (0).

o
e
V2
PROOF. The proofs are computational, with three main techniques. We provide
a sketch, asking the reader (Exercise 3.3) to fill in the details. The first technique
used in proving (2) is completing the square in the exponential. After changing
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variables with z = to, we must compute \/;27 I e~ "7¢ . By completing the
square, we see that
o oitot _ i (tioe)? 25

2
Next, one must show (Exercise 3.3), for z,y real, that ffOOO67 5= dz s inde-
pendent of y. A careful proof here requires some knowledge of complex analytic
function theory. The last technique, which also establishes the first property, is the
evaluation of this integral when y = 0. The computation, a standard example in
two-variable calculus, illustrates the power of polar coordinates:

0o
I:/ e 2 dzx.
00 00 _ 2 .2 27 © o
:/ / eTer:vdyz/ / e 2 rdrdf = 2.
—00 J —o0 0 0

We next prove several lemmas which get used in establishing the fundamental
properties of the Fourier transform. The proofs of Lemma 3.2 and Theorem 1.5 use
the same basic idea. When the function g in Lemma 3.2 is nonnegative, it is the
density function of a random variable with finite expectation. First we establish a
fundamental symmetry property of the Fourier transform, leading to Theorem 3.5.

Then

O

LEMMA 3.1. For f,g € S, we have

/ 7 f@)g(a)de = / T ©)a(©)de (5)

PROOF. Because of the rapid decay of f and g, we can write either side of (5)
as a double integral and integrate in either order. Then each side of (5) equals the

double integral
= | 1@ e

LEMMA 3.2. Assume [ is differentiable on R and that [’ is bounded. Let g
satisfy the followmg'

of dy—l
o [ Iyl lg9(y)|dy < oo

O

Then

oo

lim [ f(z+ey)g(y) dy = f(z). (6.1)

— 00

PROOF. Since f is differentiable and f’ is bounded, the mean-value theorem of
calculus implies the following inequality:

[£(0) = f(a)] < sup | f'(B)] [b—a = M|b—al. (mut)
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Since ¢ integrates to 1, we can write f(x f f(x)g(y)dy. Using (mvt) we get

‘/O;f(:vﬂy)()dy i

’/ f@+ey) — f(2)) g(y) dy

<3 [ Jeyllgtlay. (62)
Since |yg(y)| is integrable, the expression in (6.2) is bounded by a constant times e.
The desired conclusion (6.1) then follows by the definition of a limit. O

LEMMA 3.3. Suppose h € S. Then

00 2.2 00
lim h(t)e 2 = / h(t)dt
e—0 o 00

PRrROOF. Given € > 0, we must show that

/mhmu_efﬂm4<a

— 00

for sufficiently small e. Since h decays rapidly at oo, there is an R such that

—e242 €
/ W) = =3 g/ h(b))dt < <.
t|>R >R 2

Once this R is determined, we can choose € sufficiently small such that

)dt

R _242 —e2R? €
/ h(t)(1 —e~ 2 )dt| <2Rsup(|h)(1—e"2 )< 3
-R
The needed inequality follows. O

REMARK 3.1. It is tempting to plug € = 0 into the left-hand side of (6.1) or
into the limit in Lemma 3.3. Doing so is not valid without some assumptions; the
limit of an integral is not necessarily the integral of the limit. The reason is that an
integral is itself a limit and one cannot in general interchange the order of limits. See
Exercise 3.8. This simple issue recurs throughout analysis; one needs appropriate
hypotheses before one can interchange the order when taking limits.

REMARK 3.2. Even if a continuous (or smooth) function is integrable on R, it
need not vanish at infinity. See Exercise 3.10.

EXERCISE 3.1. Prove that e~ € S.
EXERCISE 3.2. Prove Propositions 3.1 and 3.2.

EXERCISE 3.3. Fill in the details of the computations in Proposition 3.4. In
(t+zy)

particular, prove that ffooo dzx is independent of y. Use the Cauchy integral
theorem on a rectangle with vertices at =R, +R + iy; then let R tend to infinity.

EXERCISE 3.4. Compute the Fourier transform of e~ W* for a > 0 and
1 € R. Comment: This result is of fundamental importance in probability theory.
We use it in the proofs of Theorem 3.2 and Theorem 3.9.
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EXERCISE 3.5. Compute the Fourier transform of ﬁ using residues. Note
that the residue calculation depends on the sign of .

EXERCISE 3.6. Verify the assertions in Example 3.1.

.2
EXERCISE 3.7. Put g(n) = \/%eTn for n € R. Show that g satisfies the

hypotheses of Lemma 3.2.
EXERCISE 3.8. Put f(z,y) = |z|/¥! for (z,3) # (0,0). Show that

lim hm flz,y) # hm hm f(z,y).

z—0y

EXERCISE 3.9. It is not necessary that h be in S for the proof of Lemma 3.3
to work. Give a weaker condition on h for which Lemma 3.3 remains valid.

EXERCISE 3.10. Show that there is continuous, nonnegative function f on R
such that f(n) = n for all positive integers n and [g f(x)dz = 1. One can even
make f infinitely differentiable.

We have now understood the Schwartz space and developed some computational
facility with Fourier transforms. We are therefore in a position to prove the Fourier
inversion formula; this theorem is one of the most important results in pure and
applied analysis. Nearly all the rest of this chapter depends upon the inversion
formula.

THEOREM 3.2. F is a bijective map of S to itself. Furthermore, for f € S, we
have the Fourier inversion formula

1 * 2 i€
f@)= = /_ e (7)

PROOF. We use the Gaussian (with ¢ = 1) as an approximate identity and

apply Lemma 3.2. Put . .
=<

g(n) = N ER

By Exercise 3.7, g satisfies the hypotheses of Lemma 3.2, and we obtain

o0

f@) =tim [ty =tm—— [ ferarFa.  ©

e—0 |

By Proposition 2.4, the Gaussian is its own Fourier transform. We exploit this fact
in (8) to obtain

o0 .2 .
f(z) = lim e 2 e Wdn dy. (9.1)

| e ]

In (9.1) we make the change of variables t = z + ey, obtaining

(z) = hm/ / ;72 e it-o)2 ! dn dt. (9.2)
e—0 00 27‘( €V 2T

_e2¢2
Now we change variables by putting n = €£; doing so introduces the factor e e

and enables us to interchange the order of integration The result gives

dg
= lim _”gdt e '€ 9.3
=0 / / oo 27T NoTS (93)

oo

flz+ey
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The inner integral is simply f(¢). Hence, we obtain

1 (e o)

. R QT 76252
f(z) = lim NN f&)e™te dg. (10)

To finally obtain the inversion formula, we use Lemma 3.3 to interchange the limit
and integral in (10). O

The reader should note the extent to which the proof of Theorem 3.2 resembles
the proofs of results such as Theorem 1.5.

The inversion formula has the following consequence: For f € S, we have
(F2f)(x) = f(—=z). Hence, F* is the identity operator.

EXERCISE 3.11. Compute the Fourier transform of y, if x(z) = 1 for |z| < 1
and x(z) = 0 otherwise. (Note that y is not smooth, but that it is integrable.)

The next exercise is a bit akin to opening Pandora’s box. Taking functions
of operations such as differentiation is natural (see, e.g., Sect. 6 of Chap. 1) but
somewhat hard to justify. Doing so without great care can lead to delicate logical
issues.

EXERCISE 3.12. Use the property D = F~!MF to give a plausible definition of
the ath derivative of a nice function, where 0 < a < 1. Check that D8 = D*D#.
More generally, try to define g(D) for various functions g. What technical difficulties
arise?

3. The Dual Space

The Schwartz space S is not a normed space, but we nonetheless require a notion
of convergence. This notion is achieved via semi-norms. We define measurements
of a function f in S as follows:

DEFINITION 3.3. Let a,b be nonnegative integers. We define || f||q.» by

151k =sup (Jol* ()% )

These measurements are not norms because ||f]l,,» can be zero without f
being 0. If || f||a,0 vanishes for some a, however, then f is the zero function. Note
that we could replace supremum by maximum in the definition of the semi-norm,
because functions in & are continuous and decay rapidly at infinity. The number
of semi-norms is countable, and hence we can make § into a metric space. The
distance between two functions is given by the formula

LS = gllap

dist(f,g) = 3 capttd —Ilab
(£:9)= D car i 7~ gl

a,b

where ¢,y > 0 and is chosen to make the sum converge. For example, ¢, = g—a—b
is often used. With this distance function, S is a complete metric space. See
Exercise 3.16. It is adequate to state the notion of convergence in terms of the
semi-norms rather than in an equivalent manner using this distance function.
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DEFINITION 3.4. A sequence {f,} converges to f in S if, for all a, b,
||fn - f||a,b — 0.

Since S is a vector space, it would have sufficed to give the notion of convergence
to 0. To say that a sequence { f,,} converges to 0 means that any derivative of any
polynomial multiple of f,, tends to 0 uniformly.

DEFINITION 3.5. Let L : & — C be a linear functional. Then L is called
continuous if whenever f,, converges to f in S, then L(f,) converges to L(f) in C.

DEFINITION 3.6. The dual space S’ is the vector space consisting of all con-
tinuous linear functionals on S. Elements of S’ are called tempered distributions.

It is often convenient to write the action of a linear functional using inner
product notation:

o(f) = (£ 9).

There is no complex conjugate used here.
Each element g of S can be regarded as a distribution by the formula

o =0 = [ " f@)g(a)dr. (1)

The integral in (11) defines a distribution more generally. For example, when ¢
is bounded and continuous, (11) makes sense and defines g as an element of S’
When ¢ is any function such that (11) makes sense for all f € S, we regard g as
the element of S’ defined by (11). Distributions are more general than functions.

ExAMPLE 3.2 (Distributions). The most famous example of a distribution is
the Dirac delta function, henceforth called the Dirac delta distribution. We define
0 €S8 by

3(f) = (f,9) = £(0).

Another example is given by its derivative:
3'(f) = (f,0") = (=f,0) = = f(0).

More generally, if ¢ is a tempered distribution, we define its kth derivative ¢*) by
o () = (f.0M) = (1" (f P, 9). (12)

By Exercise 3.13, (12) defines a continuous linear functional on S, and hence
o) € §'. Formula (12) is the natural definition of distribution derivative. If ¢ were
itself k& times differentiable, then (12) would hold; we integrate by parts k times and
all boundary terms vanish.

Let us clarify these definitions. Let V' be a topological vector space with dual
space V'. As above, we use the notation (f, ¢) for the action of ¢ € V' on f € V.
When L :V — V is linear, we define its transpose L, mapping V' to V', by

(6, Lf) = (L'¢, f).

It is consistent with standard practice not to introduce a complex conjugation when
using the inner product notation for the action of a distribution on a function.
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Let D denote differentiation. By integration by parts, and because all boundary
terms vanish when we are working on the Schwartz space, (D)! = —D. We extend
differentiation to the dual space by preserving this property. It follows that (D¥)?,
the transpose of differentiating & times, is (—1)*DF.

By Lemma 3.1, the transpose of the Fourier transform, when acting on functions
in S, is itself. In Definition 3.7, we will define the Fourier transform of a distribution
by setting Ft = F.

Let us give another example of a distribution and its derivative. Define a
function u by u(z) = z for z > 0 and u(z) = 0 for + < 0. This function is
sometimes called the ramp function. Then u’, which is not defined at 0 as a function,
nonetheless defines a distribution. We have

() =—ulf) == [Ca p@y o= [7 ) do (13)

In (13) the first equality is the definition of distribution derivative, the next equality
holds because u is a function, and the last equality holds via integration by parts.
We also can compute the second derivative of u:

o0
Wlo) = =lg) = = [ (0) de = g00).
Thus, v = §. The Dirac delta distribution is thus the second distribution derivative
of the ramp function u. The distribution H = u’ is known as the Heawviside function.
It is named after Oliver Heaviside, rather than for the following reason. Note that
H =1 on the positive axis and H = 0 on the negative axis. Thus, H is “heavy” on
the right side. See [H] for a fascinating discussion of Heaviside’s life.

EXERCISE 3.13. Verify that 6 € §’. If ¢ € S’, show that ¢, as defined by (12),
also is in &'.
If f is a continuous function, and ¢ is a distribution, then we naturally define

f-oby (f-9)(g) = ¢(fg). It is not possible to define the product of distributions
in general. See [SR] and its references for discussion of this issue.

EXERCISE 3.14. Let f be continuous and let § be the Dirac delta distribution.
Find the distribution derivative (f-§)’. Assuming f is differentiable, find f’-§4 f-0’.

DEFINITION 3.7 (The generalized Fourier transform). Let ¢ € &’. We define
its Fourier transform JF(¢) by duality as follows. For each f € S, we decree that

(F(o), f) = (¢, F(f))-

Definition 3.7 is justified by Lemma 3.1. In our current notation, this Lemma
states that (F(f),g) = (f, F(g)) for functions f,g in S.

The Fourier transform F(¢) is itself a distribution. It is obviously linear. We
verify continuity. If f,, converges to 0 in S, then fn also converges to 0 in S. Hence,
(¢, F(fn)) converges to 0 in C.

EXAMPLE 3.3. What is the Fourier transform of the Dirac delta? We have

6.5 =607y =FO) = = [ fa)e = (=),

Thus, § is the constant function T
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EXERCISE 3.15. Compute the Fourier transforms H and 4.

EXERCISE 3.16. Fill in the discussion between Definitions 3.3 and 3.4 as follows.
Verify that the given alleged distance function is in fact a distance function. Then
use the Arzela—Ascoli theorem to show that S is a complete metric space.

EXERCISE 3.17. Let ¢ be a linear functional on S. Show that ¢ € &’ if and
only if there is a constant M and an integer N such that

lp(f)] < Mmax{||f|lap:a+b< N}
4. Convolutions

We have already observed the power of convolution in understanding Fourier
series. We extend the notion of convolution to R and obtain similarly powerful
results.

DEFINITION 3.8. Suppose f and ¢ are integrable functions on R. We define
f*g by

(fxg)(z) = /_OO flx—y)g(y)dy = /_OO fW)g(z —y)dy. (14)

The equality of the two integrals follows by change of variables and also implies
that f*g = g* f. We also can easily check that if f € L' and g € L?, then
f*ge L%

THEOREM 3.3. If f and g are in L*, then (f * g = V27 f§.

ProOF. We write out (f *¢)(€) as a double integral and interchange the order
of integration, obtaining v27 fg. O

We wish to extend our work on approximate identities to this setting. First let
x denote any integrable smooth function such that ffooo x(x)dz = 1. For € > 0, we
then define y. by
x(%)
Xe(z) = ; . (15)
Then, by change of variables, ffooo Xe(x)dz =1 also.

DEFINITION 3.9. For x. as in (15), put J.(f) = xe * f. We call J. a mollifier.

THEOREM 3.4. If f € LY, then J.f converges to f in L' as € tends to 0. If
f € L2, then J.f converges to f in L* as € tends to 0. If f is uniformly continuous
near x, then J.f converges uniformly to f near x. If f is integrable and x is
infinitely differentiable, then J.f is infinitely differentiable.

PROOF. We refer the reader to Chap. 8 of [F2]. O

EXERCISE 3.18. Show that the function f defined by f(z) = e= for z > 0 and
by f(z) = 0 otherwise is infinitely differentiable. Sketch the graph of the function

EXERCISE 3.19. Prove Theorem 3.1. Suggestion: First find a continuous func-

tion that is 1 on I and 0 off J. Mollify it, using a function y as constructed in the
previous exercise.
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EXERCISE 3.20. The support of a function f is the smallest closed set outside
of which f is identically zero. Suppose f is supported in [a,b] and g is supported
in [¢c,d]. What can you say about the support of f * g?

5. Plancherel Theorem

The Parseval formula equates the [2-norm of the Fourier coefficients of a func-
tion with the L? norm of the function. Its polarized form, Corollary 2.7, states
that .

<f7g>2 = <f7 g>L2'
The Plancherel theorem (which holds both in higher dimensions and in more ab-
stract settings) extends the Parseval result by establishing that the Fourier trans-
form is a unitary operator on L?(R).

Recall that the Fourier transform is defined on L? in a subtle manner; the
integral in (1) need not converge for f € L?. We define F on the Schwartz space
via integration as in (1), and then we extend F to S’ by duality. We then regard an
element of L? as an element of S’. It would also be possible to define F on L' N L2
by the integral (1) and proceed by limiting arguments.

THEOREM 3.5. The Fourier transform F : L>(R) — L*(R) is unitary.

PRrROOF. By Proposition 2.6, it suffices to check that ||[Ff||7. = ||f]|3. for all
f in L2. The norm is continuous, and hence it suffices to check this equality on
the dense set S. Put ¢ = f in Lemma 3.1. Then g = f and Lemma 3.1 gives

A1 = 11172 O
EXERCISE 3.21. First note that 7+ = I. Use this fact and Proposition 3.4 to
find all eigenvalues of F. Harder: Find all eigenfunctions. Suggestion: Apply % -

to e and use formula (64) from Chap. 2.

EXERCISE 3.22. Put x(z) =1 for |2| <1 and x(z) = 0 otherwise. Find %.

EXIZ;JRCISE 3.23. Use Exercise 3.22 and the Plancherel Theorem to find

ffooo %z(m)dm Also use contour integration to check your answer.

EXERCISE 3.24. Assume b > 0. Compute the integrals:

/ eu(+e?) gy
0
00 —ibx
/ e—dz.
oo L2

/oo et _p2
—e 3t dt.
o Vi

Suggestion: Use the first, the second, and the Fourier transform of a Gaussian to
compute the third. The answer to the third is v/ exp(—b).

EXERCISE 3.25. Put f(z) = e %221 for x > 0 and f(z) = 0 otherwise. Find
the condition on a for which f € L'(R). Under this condition, find f. Comment:
One can use contour integrals from complex analysis here.
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6. Heisenberg Uncertainty Principle

The famous Heisenberg uncertainty principle from quantum mechanics states
something to the effect that it is not possible to determine precisely both the posi-
tion and momentum of a moving particle. This principle can be formulated as an
inequality involving the Fourier transform. After giving an intuitive explanation,
we state and prove this inequality.

Let |f|? denote the probability density on R determined by the position of a
moving particle. By definition, the probability that this particle is found in the
interval [a,b] is the integral f: |f(z)|?dz and of course [~ |[f(z)[*dz = 1 (the
particle is somewhere).

The mean (expected value) of position is by definition the integral

= / 2| f (z) P,

when this integral converges (which we assume in this section). After a translation,
we may assume without loss of generality that p = 0.

The picture for momentum looks the same, except that we use | f |2 to define
the density for momentum. By the Plancherel theorem, | f |2 also defines a density.
Again, without loss of generality, we may assume (after multiplying f by a function
€% of modulus 1) that the mean of momentum is 0. See Exercise 3.26.

The wvariance of the position of a particle of mean 0 equals

1 22| (2) P = |[of (@),

and the variance of its momentum is
| et =gl

Again we assume these integrals converge.
The following famous inequality gives a positive lower bound on the product of
the two variances.

THEOREM 3.6 (Heisenberg’s inequality). Assume both f and f' are square-
integrable on R. Then

e f @22 I€F©I = S I1F%. (16)

PRrOOF. We assume that f € S. The general case follows because S is dense
in L?. Consider the integral

1= [ a(f@F @+ 1@ @) dn
Using integration by parts, we obtain

I=alf@P - [ lePde == [ i@
because the boundary terms are zero. By the Cauchy—Schwarz inequality and the
Plancherel theorem, we also have

1 < 2|z f @)z [1f 1|2 = 2llaf@)|e2 [1€FE)]] 22 (17)
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Putting the two formulas together gives

1 N
Iz < llzf@)llez [1EF Iz, (18)
which yields (16) upon squaring both sides. O

COROLLARY 3.1. The following inequality holds:
/1122 < [lef @)l1Z2 + IEFONF2 = llaf@)IF: + 1 (2)][7-

PROOF. For nonnegative real numbers s,t, we always have st < # (The
arithmetic—geometric mean inequality or the Cauchy—Schwarz inequality!). Apply-
ing this simple fact to the product on the right-hand side of (18) yields the inequality.
The equality follows by Proposition 3.2. O

EXERCISE 3.26. What is the effect on the mean of position if we replace f(x)
by " f(2)? What is the effect on the mean of momentum in doing so?

EXERCISE 3.27. When does equality hold in (16)?

A less precise form of the Heisenberg uncertainty formula says the following.
Unless f is identically 0, then f and f cannot both vanish outside of a bounded set.
We prove this result next.

THEOREM 3.7. Suppose f is integrable on [—r,r] and f(x) =0 for |x| > r. If
there is an R such that f(§) =0 for || > R, then f is identically 0.

PRrROOF. We start with
R 1 T
IO=75 L

In (19), we let € be a complex variable. Since we may differentiate under the integral
as often as we wish (introducing factors of —iz) and the integral still converges,
& — f (£) is an entire complex analytic function. If an R exists as in the theorem,
then this complex analytic function vanishes on an interval in R. By basic complex
variable theory, a complex analytic function vanishing on an interval of the real axis
must be identically 0. Thus, both f and f vanish identically.

One can also prove the theorem as follows. Expand e~ %*¢ in a Taylor series
about any point and interchange the order of integration and summation. We see
that f is an entire analytic function with a zero of infinite order, and hence it is
identically 0. O

(z)e~ ¢ dx. (19)

7. Differential Equations

The Fourier transform plays a major role in partial differential equations. Al-
though most of this material is beyond the scope of this book, we can glimpse some
of the ideas in simple settings. The key point is that the Fourier transformation
diagonalizes differentiation. When we have diagonalized an operation, we can take
functions of the operation.
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We first consider diagonalization in a simple but interesting context. Consider
an affine function z — mz + w = f(z) on C. We write f*" for the iteration of f a
total of n times. Thus, f*! = f and f*"+*1) = fo f**. Using diagonalization, we
can compute f*" easily.

There are two cases. When f(z) = z + w (thus f is a translation), we obtain
[*(z) = z+ nw. When f(z) = mz + w for m # 1, we can write

f(z) =mz+w=m(z+() -

where m( — ¢ = w. We see that f = T"'MT, where T is translation by ¢ and M
is multiplication by m. Thus, f** = T-1M"T or

7 (z) =m"(z+ () = ¢

The simplicity of these formulas is evident. Furthermore, the formulas make
sense when n is replaced by an arbitrary real number « as long as we are careful
in our definition of the multi-valued function m — m®. The crucial point is that
we can take functions of operators. Often we simply want to find f~!, but we can
do more, such as composing f with itself a times, where « is not necessarily an
integer.

This technique of diagonalization applies to differential equations via the Fourier
transform. The starting point is the inversion formula (7). When differentiating
underneath the integral sign is valid, we obtain

f(k) \/_ / Zg zxfdé-

Thus, the process of differentiating k times can be expressed as follows: first take
the Fourier transform. Then multiply by (i€)*. Then take the inverse Fourier
transform. The reader should compare this process with the discussion in Sect. 4
of Chap. 1 as well as with the above paragraphs.

Let p be a monic polynomial of degree k. Consider a linear differential equation
of the form

k—1
p(D)y =y® = ey = 1. (20)
J=1

Taking Fourier transforms of both sides, we obtain a relation

N

-1

(i) 9(&) = Y i (i€)5(€) = p(i€)5(6) = f(), (21)

1

<.
Il

which is an algebraic equation for §. Thus, §(§) = % for the polynomial p which

defines the differential equation. To solve (20), we take the Fourier transform of f,
divide by this polynomial in i£, and recover y by finally taking the inverse Fourier
transform. The problem of integrating a differential equation gets replaced by the
problem of dividing by a polynomial and taking the inverse Fourier transform of
the result.
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EXAMPLE 3.4. Consider y”" —y = f. We obtain §(§) = _f g) . Using the Fourier

inversion formula, we get
zf(m t) ety
t
“ 5 | [0 e

For nice f, we can invert the order of integration and obtain a formula y(x) =

J Gz, t)f(t)dt.

EXAMPLE 3.5. We return to the wave equation g, = uy. Assume u(z,0) =
f(z) and wi(x,0) = g(z). We apply the Fourier transform in z, regarding ¢ as
a parameter. The wave equation becomes a second-order ODE with two initial
conditions:

au(&,1) = —€2a(€, 1)
a(&,0) = f(§)
(&, 0) = g(&).
Solving this second-order ODE is easy, as it has constant coefficients when ¢ is
regarded as the variable. We get
sin(|[t)

a(€,t) = f(€)eos(€]t) + () ]

Exercise 3.29 asks for the simple details. Now we can find u by applying the Fourier
inversion formula, obtaining the same result as in Theorem 1.4.

(22)

EXERCISE 3.28. Suppose the f in Example 3.4 lies in the Schwartz space. Find
G(z,t). Be careful about the sign of « — t.

EXERCISE 3.29. Fill in the details in Example 3.5, including the use of the
inversion formula.

EXERCISE 3.30. Let V be a complex vector space. Put f(z) = Mz + b, for
M € L(V,V). Under what condition does f = T~ MT for some translation 77

8. Pseudo-Differential Operators

This section indicates how the Fourier transform has been used in modern
analysis. Let us repeat the idea from the previous section, by differentiating the
Fourier inversion formula for a Schwartz function u:

() hule) = o= [ eieyaceyas. 23)

Let py(z) be a smooth function of z and let (Lu)(z) = >, pe(z)u® (z) define a
differential operator of order m. By (23) we have

Zpk u™ (z \/ﬂ/ ”EZ i) " pr () A (€)de.

As before, Lu is computed by a three-step process. We find 4; we multiply by
a polynomial in ¢ with coefficients in x, namely, >°, py(z)(i€)*; and finally we take
the inverse Fourier transform. To invert L, we proceed in a similar fashion, with
multiplication replaced by division.
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A pseudo-differential operator P is a linear operator, defined on a space of
functions or distributions, obtained in the following fashion. Given u, we compute
Pu as follows. We find 4(§); we multiply by a smooth function p(x,&) satisfying
appropriate smoothness conditions in (z, ) and growth restrictions in &; and finally
we take the inverse Fourier transform. The function p(z,§) is called the symbol of
P.

One of the most useful pseudo-differential operators is written A®. Its symbol
is (14¢2)2. The operator A? is the same as 1 — ()2, Note that A~ is its inverse.
Hence, we can solve the differential equation (1— (-1)?)u = f by writing f = A~ u.
The operator A~2 is certainly not a differential operator, although it is the inverse
of one.

Pseudo-differential operators are useful into both ordinary and partial linear dif-
ferential equations. The key idea is to perform algebraic operations (multiplication
and division) on the symbols rather than to differentiate and integrate.

What functions are allowed as symbols? Perhaps the most basic class of sym-
bols, but not the only one, is defined as follows. For m € R, we let S™ denote the
space of infinitely differentiable functions w in (z,§) such that, for all a,b, there is
a constant Cyp such that

()" () uCe )] < Cnl1+ €

Elements of S™ are called symbols of order m. A pseudo-differential operator has
order m if its symbol has order m. In particular, a differential operator gives an
example of a pseudo-differential operator of the same order. For each real number
s, the operator A® has order s.

We obviously have St C 8™ if | < m. We therefore naturally define S = US™
and ST°° = NS™. The reader might wonder what an operator of order —oo might
be. Mollifiers as we defined earlier provide nice examples. These operators smooth
things out, as we indicate below.

These ideas are part of a sophisticated theory including Sobolev spaces. See
[SR]. For us the key point to mention extends our earlier remark to the effect that
the smoothness of a function on the circle is related to the rate of decay of its
Fourier coefficients at co. Sobolev spaces measure the rate of decay at oo of the
Fourier transform of a function. We give the following definition of the Sobolev
space W*(R). Henceforth we drop the R from the notation.

m—b
2.

(24)

DEFINITION 3.10. Assume u € S’. Then u € W* if and only if A*u € L2(R).

This definition is equivalent to demanding that @ be a function for which

i = [+ €lae s < o en

— 00

Note that W* C Wt if s > t. We naturally put W=> = U,W* and W™ =
NsW#. We then have the obvious additional containments, each of which is strict:

SCW®¥cw>cdS.

EXERCISE 3.31. Show that 14-% is in W but not in S.
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LEMMA 3.4. Suppose |g| is integrable on R. Then both the Fourier transform
of g and the inverse Fourier transform of g are continuous.

PRrROOF. See Exercise 3.32. O

The significance of Lemma 3.4 arises from the following crucial idea. To prove
that a function or distribution u has k continuous derivatives, we take Fourier
transforms and prove that £¥4(¢) is integrable. This method clarifies the relation-
ship between smoothness of a function and the behavior of its Fourier transform at
infinity.

EXERCISE 3.32. Prove that the Fourier transform of an L' function is contin-
uous. Be careful in your proof, as the real line is not compact.

THEOREM 3.8. Assume u € L*(R) and let k be a nonnegative integer. Then:

o u € WF if and only if u® € L*(R).
e (Sobolev lemma, special case) If w € W* for s > k + 3, then u has k
continuous derivatives.

Hence, uw € W if and only if all derivatives of u are in L*(R.).
ProOF. First we note two obvious estimates.
€17 < (1 +[gf*)" <2* if ¢ <1 (25.1)

6P < (L4 [6P)r < 24t 1< e (25.2)

The inequalities in (25.1) and (25.2) show that u € W* is equivalent to u¥) being
square-integrable and the first statement holds. To prove the second statement, we
estimate using the Cauchy—Schwarz inequality:

k 2k 3
J1etiacen = [ 5o +1en? < - ([ ) oo

The integral on the far right in (26) is convergent if and only if 2k — 2s < —1.
Hence, if u € W* and s > k+ 3, then the expression |¢[¥(€) is integrable. Since we
recover the kth derivative of u by taking the inverse Fourier transform, the second
statement now follows from Lemma 3.4. O

COROLLARY 3.2. Suppose u € S’ and u'® € L? for all k. Then u agrees with
an infinitely differentiable function almost everywhere.

EXERCISE 3.33. For what s is the Dirac delta distribution in W*s?

EXERCISE 3.34. Consider the analogue of the integral in (26) in n dimensions:

€11
——————dV.
/R" (1 +11&lPP)

What is the condition on k£, s,n such that this integral converges?
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9. Hermite Polynomials

We saw in Chap. 2 that the Hermite polynomials H, (x) have the exponential
generating function exp(2zt — t2). In other words,

exp(2xt — %) = Z H,( —. (27)

These polynomials are closely related to the Fourler transform.

.2
THEOREM 3.9. For each nonnegative integer n, the function e 2 H,(x) is an

eigenfunction of the Fourier transform with eigenvalue (—i)™.

a2
PrOOF. We start with (27) and multiply both sides by e 2 . We then take
Fourier transforms. Doing so yields

F <exp(—%2 + 20t — t2)> (€) = zn:]-' (e =

We will simplify the left-hand side of (28) and use (27) again to obtain the result.
Note that

(28)

exp(% + 22t — t?) = exp(%l(x —2t)%) exp(t?). (29)

Plugging (29) into (28) replaces the left-hand side with

()7 (xp( G (o - 20 ) (© (30)

The second factor in (30) is the Fourier transform of a Gaussian with mean 2¢ and
variance 1. By Exercise 3.4, the Fourier transform of the Gaussian with mean p
and variance 1 is exp(—iug) times itself. The expression in (30) therefore becomes

exp(t? - 2i€t) exp(—o-). (31)

The first factor in (31) is the left-hand side of (27) with ¢ replaced by (—it) and «
replaced by . Using the generating function expansion from (27) with ¢ replaced
by —it, and equating coeflicients of ¢", yields the conclusion:

F (exp( S () ) (€ = ()" expl =5 ) (6)

2

EXAMPLE 3.6. The first few Hermite polynomials:

= 120z — 16023 + 322°
—120 + 72022 — 480x* + 6425
—1680z + 3360x3 — 134425 + 12827

z) =

( )=

Hy(z) =

Hj(z) = —12x + 82°
Hy(z) =12 — 4822 + 162*
Hs(z) =

Hg(z) =

Hz(z) =
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Figure 3.2 shows the polynomials H, (x)/2" for 0 <n < 5. We divide by 2" to
make the leading coefficient equal to 1, and the graphs become nicer.

EXERCISE 3.35. Write simple code to get Mathematica or something similar to
print out the first twenty Hermite polynomials. Observe some patterns and then
prove them.

2

EXERCISE 3.36. For each n, find (z — )" exp (=£-).

EXERCISE 3.37. Prove that H) (z) = 2aH,(z) — Hy+1(x).

EXERCISE 3.38. Prove for each n that H,(z) has integer coefficients.

EXERCISE 3.39. Let M denote multiplication by exp(—x?) and let T' denote
x — %. Express M~ 'T™M in terms of Hermite polynomials.

EXERCISE 3.40. We saw in Chap. 2 that the Hermite polynomials form a com-
plete orthogonal system for H = L?(R, exp(—x?)). Show that ||H,||? = 2"n!\/7.

EXERCISE 3.41. Find a combinatorial interpretation of the sequence of (absolute
values of) coefficients 0,0, 0,2, 12,48, 160,480, ... of the second highest power of
in H,(x).

10. More on Sobolev Spaces

We begin by proving the following theorem. Its proof is quite similar to several
proofs from Chap. 1. The analogues in higher dimensions of this result and the
subsequent proposition are important tools in partial differential equations. See
[F1] and [Ra].

THEOREM 3.10. Assume s < t. Let {f,} be a sequence of functions such that:

o There is a constant C such that || fnllwe < C for all n.
° fn(g) converges uniformly to 0 on compact subsets of R.

Then || fn|lws converges to 0.

Proor. We start with
1 fal By = / (1+ 1€2)°1fu (6) de. (32)

As in many proofs in this book, we estimate the integral by breaking it into two
parts. First consider the set where || > R. On this set, and remembering that
s < t, we have

L+1EP)" = A+ [P TA+[EP) < @ +R) (1 + g (33)
Using (33) in (32), we obtain
1 fnllive < / (L+ €)1 £a(©)F dE + (14 R®)* || ful - (34)
I€I<R

Suppose € > 0 is given. Since the terms ||f,|. are bounded, and s < ¢, we may
choose R large enough to guarantee that the second term on the right-hand side
of (34) is at most 5. Fix this R. Now consider the first term on the right-hand side



114 3. FOURIER TRANSFORM ON R
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FIGURE 3.2. Scaled Hermite polynomials

of (34). It is bounded by a constant (independent of n) times sup|f,,(€)[2. Since
the set where |£| < R is compact, the assumption of uniform convergence allows us
to bound this term by 5, by choosing n large enough. O

PROPOSITION 3.5. Suppose s < t < u and € > 0. Then there is a constant C.
such that

113 < ellF e + Cell 11 (35)

PRrROOF. For any positive z, we have 1 < z%~¢ + z5~*

already at least 1. Plug in (1 + [€[2)e for z. We get

since one of x and 1 is

1< el €)™ 4 = (L [eP) .
Then multiply this inequality by (1+]€)[2)|f(€)|? and integrate. The result is that
1 IRve < ell Iy + Cell fIl-,

where C, = e%. Note that C. is a negative power of €. O

One can also write this proof using the operators A" where r = u — ¢t and
r = s —t. Equivalently, put g = A’f in (35). We obtain an estimate of the L? norm
of g in terms of a small constant times a Sobolev norm with a positive index and a
large constant times a Sobolev norm with negative index.

These results are closely related to the Rellich Lemma. See [F1]. Often one
considers Sobolev spaces W*(2) on a bounded domain or compact manifold (2.
The Rellich Lemma then states that the inclusion map of W*(£2) into W*(Q) is a
compact operator when s < t. If we work with Sobolev spaces on R, we may state
the Rellich Lemma as follows:
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THEOREM 3.11 (Rellich lemma). Assume that {gn} is a bounded sequence in
Wt and each g, vanishes outside a fized compact set K. Then, whenever s < t,
there is a subsequence {gn, } converging in W*.

The proof is similar to that of Theorem 3.10. Under the hypotheses of the
Rellich lemma, and using the Arzela—Ascoli theorem, one can find a subsequence
{gn, } which converges uniformly on compact sets. Then one applies Theorem 3.10
to show that ¢,, is Cauchy in W*.

11. Inequalities

We close this chapter with several standard inequalities for functions defined
on subsets of the real line. These inequalities hold more generally. Again see [F1].
We begin with a result from elementary calculus.

LEMMA 3.5. Let f be continuous and increasing on [0, a], with f(0) = 0. Then

a f(a)
of@= [ f@de+ [ wan (36)
Suppose 0 < b < f(a). Then

a b
ab < / f(x)dz + / F (y)dy. (37)

PRroOOF. Both sides of (36) represent the area of the rectangle with vertices at
(0,0), (a,0), (a, f(a)), (0, f(a)), and hence (36) holds. If 0 < b < f(a), then the
right-hand side of (37) represents the area of a set strictly containing the rectangle
with vertices (0, 0), (a,0), (a,b), (0,b). See Fig. 3.3. O

REMARK 3.3. Lemma 3.5 has an amusing corollary. Assume f is a monotone,
elementary function whose indefinite integral is also an elementary function. Then
the indefinite integral of f~! is also an elementary function. Changing variables
by putting y = f(x) in the right-hand integral in (36) shows that one can find the
indefinite integral of f~! by using integration by parts and Lemma 3.5.

PROPOSITION 3.6 (Young’s inequality). For 1 < p, set ¢ = p%l. For positive
numbers a,b, we then have

ab < — + —. 38
’ (38)

PROOF. Take f(z) = 2P~! in Lemma 3.5. We obtain

a b P prtT P B
abﬁ/x”‘ld:c+/yﬁdy=a—+ =L 4
0 0 p p—1 p q

O

The condition that ¢ = p%l is often written as * + X = 1. These numbers are
called conjugate exponents. Proposition 3.6 still holds when p = 1, if we set ¢ = oo.
See Exercise 3.42.

REMARK 3.4. Inequality (37), used to prove Proposition 3.6, is sometimes also
known as Young’s inequality.
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FiGURE 3.3. Lemma 3.5

To state and prove several additional inequalities, we use the notation of
Lebesgue integration. Let S be a (measurable) subset of R. Assume |f] is inte-
grable on S. For 1 < p < 0o, we write (not including S in the notation)

11, = [ If@Pds.

In order to regard L”(S) as a normed vector space, we must first remember that
elements of LP are equivalence classes of functions. The set of these equivalence
classes forms a vector space. The zero vector is the equivalence class consisting of
all functions that vanish except on a set of measure 0. We add equivalence classes
by selecting representatives and adding as usual, and we multiply an equivalence
class by a scalar by selecting a representative and multiplying it by the scalar. As
usual, one needs to verify the trivial assertions that the results are independent of
the representatives chosen. We omit this pedantic point.

We must also verify that || - ||r» defines a norm. Property (2) from Defini-
tion 2.1 is clear; property (1) of a norm is clear once we realize we are working with
equivalence classes. Property (3), the triangle inequality, is Theorem 3.12 below. It
is known as Minkowski’s inequality and is a subtle point. In order to prove it, we
first prove Holder’s inequality. See [S] both for additional versions of this inequality
and for some interesting historical discussion.

PROPOSITION 3.7 (Holder’s inequality). Again assume 1 < p and ¢ = ﬁ.
Assume | f|P is integrable on S and |g|? is integrable on S. Then |fg| is integrable

on S and
gl < I fllellgllza- (39)

PROOF. The result is obvious if either || f||z» or ||g]|ra is zero. Otherwise, after
dividing f by ||f||z» and g by ||g||re, we may assume in (39) that each of these
norms equals 1. For each x € S, Young’s inequality implies

@ gl
@9 (@) < = . (40)
Integrating (40) shows that
P q
||fg||L1§ ||f||LP + |g||Lq :1_'_1:1
p q p q O
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Holder’s inequality remains true when p = 1, in which case it is obvious.
(Exercise 3.42)

EXERCISE 3.42. Verify Young’s inequality and Hoélder’s inequality when p = 1.

EXERCISE 3.43. Verify the statements from Remark 3.3.
EXERCISE 3.44. Suppose ¢ = -£—. Show that |||z« = ||h[[}

THEOREM 3.12 (Mlnkowskl). Assume 1 < p < oo. The triangle inequality holds
in LP. In other words, if |f|P and |g|P are integrable, then |f + g|P is integrable and

1f +gllee < Ifllze + [lgllLe- (41)

ProOOF. First we note that the statement is immediate if f 4+ ¢ = 0 and is
easy when p = 1. We thus assume p > 1 and that f 4 ¢ is not the zero function
(equivalence class). The following string of statements is elementary:

1F gl < [Us1+ gD 1 +g0 = [1f115 49+ [lglls 490 (02)

Now use Holder’s inequality in (42) to get

I +9lle < (Ifllze +llgllze) [11f + 9P~ za. (43)
Since ¢ = %5, the last term in (43) becomes || |f + g] 25", (See Exercise 3.44)
Dividing both sides by this term gives the triangle inequality (41). O

REMARK 3.5. The LP spaces are complete; the proof requires results from the
theory of the Lebesgue integral.

By Theorem 3.12, the LP norm of a sum is at most the sum of the L? norms.
That result suggests that the LP norm of an integral should be at most the integral
of the LP norms. Such a result holds; it is often called Minkowski’s inequality for
integrals. See [F1].

Next we use Holder’s inequality to establish the integral versions of Hilbert’s
inequality and Hardy’s inequality, formulas (57.1) and (57.2) of Chap. 1. Note
that (44) is obvious when p = 1, as the right-hand side is infinite.

THEOREM 3.13 (Hilbert’s inequality revisited). Let p,q be conjugate exponents
with p > 1. Assume that f € LP([0,00)) and that g € L1([0,00)). Then

//ng_ drdy SI()HfHLPHg”Lq (44)

PRrOOF. Change variables in the integral in (44) by replacmg x by yt. We get

I—//fx+ydd //f Y iy, (45)

Let F; denote the function given by Fi(y) = f(yt). Interchange the order of
integration in (45). Then apply Holder’s inequality to the inner integral, obtaining

o0 dt
i s/ 1Bl 15 oo
0
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By changing variables, note that ||F¢||r» = %L—p Plugging in this result gives
tp

< dt
r< [ Wllsslgle ()
o (IL+41t)tr
The integral on the right-hand side of (46) equals (=), which gives (44). We
discuss the evaluation of the integral after the proof. ’ O

For p>1, put C),= fooo —4t__ This integral can be evaluated by using contour
(t+1)tP
integrals and complex analysis. See page 133 in [D2] or pages 157-158 in [A]. The
contour used is pictured in Fig. 3.4, where the positive real axis is a branch cut.
One can also reduce the computation of C,, (Exercise 3.45) to the Euler Beta

function discussed in Exercise 4.57 and the formula (Exercise 4.61)

T(:)(1 - 2) = —0 (47)

sin(mz)’
The best way to establish (47), however, uses contour integrals to evaluate C),.

EXERCISE 3.45. For p > 1, put C, = [;° —%—. Verify that

(t+1)t7
1 1 1 -1
Cp :/ s? (1 —8)P ds. (48)
0
If you are familiar with the Gamma and Beta functions (See Chap. 4), show that
1 1 T
Cp=T(=)T1-=)=—_.
P =TI~ ) = 5

The next exercise provides another generalization of Hilbert’s inequality. For
simplicity we work in L2. To solve it, mimic the proof of Theorem 3.13.

EXERCISE 3.46. Consider a continuous function K : (0,00) x (0,00) — [0, 00)
such that K (Az, \y) = M Show that

/0 / K (2, y)f (2)g(y)dzdy < C||f||zIlg]l 2.

where C' satisfies o K1
O / (Ly) dy.
o VY

The following beautiful exercise also fits into this general discussion, providing
a bound from the other direction.

EXERCISE 3.47. Let {z,} be a sequence of distinct positive numbers. Consider
the infinite matrix A whose entries are Flmk Prove that
J

ZjZk
0< J
- Z Tj+ xg
J.k

for all sequences {z;}, and that equality holds only if z is the zero sequence. Thus,
A is nonnegative definite. Suggestion: Write

! :/ e~ @itan)t gy
Tj+ Tk 0
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FIGURE 3.4. Contour used to evaluate C),

EXERCISE 3.48. Suppose f = g, where ¢ > 0. Show that the matrix with
entries f(x; — %) is nonnegative definite. Comment: The converse assertion is a
special case of a general result in harmonic analysis known as Bochner’s theorem.
On the real line, Bochner’s theorem states that a continuous function f satisfies
this matrix nonnegativity condition if and only if it is the Fourier transform of
a positive measure. The one-dimensional result can be derived from Herglotz’s
theorem, mentioned in Sect. 13 of Chap. 1. See [K].

EXERCISE 3.49. The Laplace transform of a function f is defined by
€ha = [ s,
whenever the improper integral converges. Show that

2 _ [T
(L2f)(z) = ; e



CHAPTER 4

Geometric Considerations

The purpose of this chapter is to discuss various geometric problems which are
informed by orthogonality and related considerations. We begin with Hurwitz’s
proof of the isoperimetric inequality using Fourier series. We prove Wirtinger’s
inequality, both by Fourier series and by compact operators. We continue with a
theorem comparing areas of the images of the unit disk under complex analytic
mappings. We again give two proofs, one using power series and one using Green'’s
(Stokes’) theorem. The maps z + 2% from the circle to itself play a prominent
part in our story. We naturally seek the higher-dimensional versions of some of
these results. It turns out, not surprisingly, that one can develop the ideas in many
directions. We limit ourselves here to a small number of possible paths, focusing
on the unit sphere in C", and we travel only a small distance along each of them.

Complex analytic mappings sending the unit sphere in C” to the unit sphere
in some C¥ play a major role in this chapter. For example, we study polynomial
mappings that are also invariant under finite subgroups of the unitary group, and
we discover a surprising connection to Chebyshev polynomials. We also compute
many explicit integrals. The author’s technique of orthogonal homogenization is
introduced and is used to prove a sharp inequality about volumes (with multiplicity
accounted for) of complex analytic images of the unit ball. To prove this inequality
we develop needed information about differential forms and complex vector fields.
This material leads us to the Cauchy—Riemann (CR) geometry of the unit sphere.
We close with a generalization of the Riesz—Fejer theorem on nonnegative trig poly-
nomials to a result on Hermitian polynomials that are positive on the unit sphere.
This chapter thus provides many ways to extend results from the unit circle to
higher dimensions, all informed by orthogonality and Hermitian analysis.

We do not consider the Fourier transform in higher dimensions. Many books
on partial differential equations and harmonic analysis tell that story well.

1. The Isoperimetric Inequality

Geometric inequalities range from easy observations to deep assertions. One of
the easiest such inequalities is that the rectangle of a given perimeter with maximum
area is a square. The proof follows from (z+y)(z —y) = 2% —y? < 22, with equality
when y = 0. One of the most famous inequalities solves the isoperimetric problem;
given a closed curve in the plane of length L, the area A enclosed satisfies A < 4L—j.
Equality happens only if the curve is a circle. We use Fourier series to prove this
isoperimetric inequality, assuming that the curve is smooth.

J.P. D’Angelo, Hermitian Analysis: From Fourier Series to Cauchy-Riemann 121
Geometry, Cornerstones, DOI 10.1007/978-1-4614-8526-1_4,
© Springer Science+Business Media New York 2013
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Recall from calculus that a smooth planar curve is a smooth function v : [a, b] —
R? for which 7/(t) does not vanish. Officially speaking, the curve is the function,
but it is natural to think also of the curve as the image of the function traced out in
some order. The curve is called closed if y(a) = v(b) and simple if v(t1) # (t2) for
t1 # to unless t1 = a,ts = b or t; = b, to = a. This complicated sounding condition
is clear in geometric terms; if one thinks of the curve as its image, then the curve is
simple if it neither crosses itself nor covers itself multiple times. Note, for example,
that the curve « : [0,27] — C given by v(¢) = " is closed but not simple, because
it covers the circle twice.

The length of «y is the integral f,y ds, where ds is the arc-length form. In terms of

the function ¢ — v(t), we have the equivalent formula L = f: [|7/(t)||dt; this value
is unchanged if we reparametrize the curve. It is often convenient to parametrize
using arc length; in this case [|7/(s)|| = [|7/(s)||* = 1.

We can integrate 1-forms along nice curves v. We give a precise definition of
1-form in Sect. 5. For now we assume the reader knows the meaning of the line
integral f,y Pdx + Qdy, assuming P and @) are continuous functions on ~y. This
integral measures the work done in moving along v against a force given by (P, Q).
We also assume Green’s theorem from calculus. In Green’s theorem, the curve 7 is
assumed to be positively oriented. Intuitively, this condition means the (image of
the) curve is traversed counterclockwise as the parameter ¢ increases from a to b.

PROPOSITION 4.1 (Green’s theorem). Let v be a piecewise-smooth, positively
oriented, simple closed curve in R2, bounding a region Q. Assume that P and Q
are continuously differentiable on Q0 and continuous on Q U~y. Then

/Pdw + Qdy = / (ﬁ — 8_P> dxdy.
- o \0x Oy

The area A enclosed by -« is of course given by a double integral. Assume that
v is positively oriented. Using Green’s theorem, we see that A is also given by a
line integral:

1 I
A= / drdy = — / xdy — ydx = —/ (x(t)y'(t) — 2’ (t)y(t)) dt. (1)
Q 2 ¥ 2 a
Notice the appearance of the Wronskian.

EXERCISE 4.1. Graph the set of points where 23 +4% = 3zy. Use a line integral
to find the area enclosed by the loop. Solve the same problem when the defining
equation is z2F*1 4 y2*+1 = (2k + 1)aFy*. Comment: Set y = tz to parametrize

the curve. Then zdy — ydx = x(tdx + xdt) — tedz = 2%dt.

EXERCISE 4.2. Verify Green’s theorem when 2 is a rectangle. Explain how to
extend Green’s theorem to a region whose boundary consists of finitely many sides,
each parallel to one of the coordinate axes.

THEOREM 4.1 (Isoperimetric inequality, smooth version). Let v be a smooth
simple closed curve in R? of length L and enclosing a region of area A. Then
A< 4L—j and equality holds only when ~y defines a circle.
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Proor. This proof goes back to Hurwitz in 1901. After a change of scale,
we may assume that the length L of v is 2w. After mapping [a,b] to [0, 27], we
parametrize by arc length s and thus assume 7 : [0,27] — R? and ||7/(s)|| = 1.

Since the curve is closed, v may be thought of as periodic of period 27. In
terms of Fourier series we may therefore write:

V() = (2(s), y(s)) = (Z ane™, Y bnei’”) (2)

o0 oo
v (s) = (2(s),y'(s)) = (Z ina,e™, Zinbnems> ) (3)
— 00 — 00
Since (2/(s),y’(s)) is a unit vector, we have 2w = 02ﬂ—($l(8))2 + (y/(s))?ds. The
only term that matters in computing the integral of a trigonometric series is the
constant term. Constant terms in 2’(s)? and y/(s)? arise precisely when the term
with index n is multiplied by the term with index —n. It therefore follows that

> n¥(janf? + [ouf?) = 1. (4)
We do a similar computation of zy’ — y2’ to find the area A. We have
1 27 1 ) _ .
A=5| [ o) = (6l ds| = 52m] Y in(anby ~ bu)
0

=7 Y in(anby — bntn)| <27y nlan|[bnl. (5)

Next we use |n| < n? and

1
|anby| < §(|an|2 + [bn]?) (6)
in the last term in (5). These inequalities and (4) yield
L2
A< 2(lanl? + by |?) = 7 = —
<7 Y n (a4 fhaf?) = 7=

where we have also used the value L = 2.

We check when equality holds in the inequality. It must be that the only nonzero
terms are those with |n| = n?, that is, n = 0, &1. We must also have equality in (6),
and hence |a,| = [b,|. By (4) we then must have |ai| = |b1| = 3. Put a; = e
and by = %ei”. Since z(s) and y(s) are real, a_; = a7 and b_; = b;. In other words
we must have

(2(s),y(s)) = (a0 + are’™ +are ", by + bye’ + bre™ ™).

Under these conditions we get (v — ag,y — bg) = (cos(s + p),cos(s + v)). Finally,
remembering that (2/)? + (y')? = 1, we conclude that cos(s + v) = +sin(s + ).
Hence, v defines a circle of radius 1. O

EXERCISE 4.3. Given an ellipse E, create a family F, of ellipses such that the
following all hold:
(1) E = Ey.
(2) Each E; has the same perimeter.
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(3) The area enclosed by E; is nondecreasing as a function of ¢.
(4) E; is a circle.

EXERCISE 4.4. A region € in the plane is convez if, whenever p, ¢ € €2, the line
segment connecting p and ¢ also lies in . Assume that €2 is bounded, has a nice
boundary, but is not convex. Find, by a simple geometric construction, a region €’
with the same perimeter as {0 but with a larger area. (Reflect a dent across a line

segment. See Fig. 4.1.)

FI1GURE 4.1. Convexity and the isoperimetric inequality

REMARK 4.1. The isoperimetric inequality holds in higher dimensions. For
example, of all simple closed surfaces in R? with a given surface area, the sphere
encloses the maximum volume.

2. Elementary L? Inequalities

In this section we prove several inequalities relating L? norms of functions and
their derivatives. The setting for the first example is an interval on the real line,
whereas the setting for the second example is the unit disk in C.

We begin with the Wirtinger inequality, an easy one-dimensional version of
various higher-dimensional inequalities relating functions and their derivatives. We
give two proofs to help unify topics in this book.

THEOREM 4.2 (Wirtinger inequality). Assume f is continuously differentiable
on [0,1] and f(0) = f(1) = 0. The following inequality holds and is sharp:

1
1112 < 5 I111Ze
™

PROOF. First we show that there is a function for which equality occurs. Put
f(z) = sin(mz). Then ||f'||3. = 2| f||3- because

1
1F122 = / sin (rz)dz =

N | =

7T2

1
11132 :/ ncos? (mx)dr = 5

0
Next we use Fourier series to prove the inequality. By putting f(—z) = —f(z),
we extend f to be an odd function (still called f) on the interval [—1,1]. The ex-
tended f is still continuously differentiable, even at 0. Then f equals its Fourier se-
ries, which involves only the functions sin(nwz). Put f(z) = > epsin(nmz). Since f



2. ELEMENTARY L2 INEQUALITIES 125

is odd, ¢ = f(0) = 0. Let L? continue to denote L2([0,1]). By either the Parseval
formula or by orthonormality, we get

1 o0 o0
If11Z2 = 3 Doleal? =" lenl?
—00 n=1

oo oo
11132 =Y n’rlenl =72 n?leal®.
n=1 n=1
Since 1 < n? for all n > 1, we obtain

Iz < [1£]]7--

The proof also tells us when equality occurs! Put ¢, = 0 unless n = 1; that is, put

f(z) = sin(rz) (Fig.4.2). O
1.0
I Sin(nx)
0.5F
1 " " " " 1 " " " " " " " " 1 " " " "
-0 -0.5 s 0.5 1.0
\ /
\ /
\ /
\ /
\ /
\\ // _0.5 -
\ /
\ /
N /
\ ’
N /
\\ //
S 1ot

FIGURE 4.2. Wirtinger inequality

PRrROOF. We sketch a different proof using compact operators. Define a linear
operator T on the continuous functions in L2([0,1]) by T'f(z) = [ f(t)dt. We
work on the subspace where f(0) = f(1) = 0. Computation (see Exercise 4.5)
shows that T*f(x) = fml f(uw)du. The operator T*T is compact and self-adjoint.
It is easy to check that each eigenvalue of T*T is nonnegative. By the first part
of the proof of the spectral theorem, the maximal eigenvalue \j; of T*T satisfies
Ay = ||[T*T|| = ||T||?. We find all eigenvalues.

Set T*Tf = \f to get
1 gt
/ / f(uw)dudt = X f(z).
xz JO
Differentiating twice and using the fundamental theorem of calculus gives

—f(x) = Af"(2).
Since f(0) = f(1) = 0, we conclude that f(z) = ¢ sin(%), where %
A = —3—. The maximum happens when n = 1. We get ||T|]* =

nm. Thus,

2>, which is
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equivalent to saying that [|Tg||rz < %Hg”Lz for all g. Setting g = f’ gives the
desired conclusion. O

COROLLARY 4.1. Assume f is continuously differentiable with f(a) = f(b) = 0.

Then
/If Id:c< /lf ) d.
PROOF. The result follows from changing variables (Exercise 4.6). O
EXERCISE 4.5. Put Tf(z f K(z,y)f(y)dy. Express T* as an integral

operator. Check your answer When T is as in the second proof of Theorem 4.2.
EXERCISE 4.6. Prove Corollary 4.1.

Higher-dimensional analogues of the Wirtinger inequality are called Poincaré
inequalities. Given a region ) in R", a Poincaré inequality is an estimate of the
form (for some constant C')

2
|wmgmﬂ/u
Q

Let A denote the volume of Q and let u0:% fQu denote the average value of u
on 2. We can rewrite (P) in the form

llu = wollZ2 < [[VullZ. (P.1)

+ IIWII%Q> : (P)

By expanding the squared norm on the left-hand side of (P.1) and doing some
simple manipulations, we can also rewrite (P) in the form

/f

The technique of subtracting the average value and expanding the squared norm
appears, in various guises, many times in this book. This reasoning is standard
in elementary probability, as used in Proposition 5.4. Observe also, for f, fy in a
Hilbert space, that

+ C?||Vul|2,. (P.2)

1
lullf < &

1 = foll* = II£11* = llfoll*

whenever f — fo L fo. This version of the Pythagorean theorem was used in the
proof of Bessel’s inequality, where fy was the orthogonal projection of f onto the
subspace spanned by a finite orthonormal system.

Poincaré estimates do not hold for all domains. When such an inequality does
hold, the smallest value of C' that works is called the Poincaré constant for the
domain.

We make one additional observation. In our proof of the Wirtinger inequality,
we assumed that f vanished at both endpoints. We could have assumed that f
vanished at only one endpoint, or instead that the average value of f was 0, and in
each case proved similar results. The condition that the average value of f vanishes
means that f is orthogonal to the one-dimensional subspace of constant functions.
The condition that f vanish at the endpoints means that f lies in a subspace of
codimension two.
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EXERCISE 4.7. Find the Poincaré constant for the interval [—A, A]. (The func-
tion sin(Z%) achieves the bound. The answer is 22.)

REMARK 4.2. The Wirtinger inequality provides a bound on the L? norm of a
function in terms of the L? norm of its derivative. Various inequalities that bound
the maximum of the derivative p’ of a polynomial in terms of the maximum of p
(thus going in the other direction) and its degree are called Bernstein inequalities
and Markov inequalities. We do not consider such results in this book.

We next prove a simple geometric inequality in one complex dimension. It
motivates a more difficult higher-dimensional analogue which we prove in Sect. 9.
The orthogonality of the functions ¢™? again features prominently.

Let f be a complex analytic function on the unit disk By. Let A; denote the
area of the image, with multiplicity counted. For example, if f(z) = 2™, then f
covers the disk m times and Ay = mm. The formula for Af involves the L? norm
of the derivative. We make the concept of counting multiplicity precise by defining
Ay as follows:

DEFINITION 4.1. Let  be open in C. Assume f : 2 — C is complex analytic.
The area, written Af(2) or Ay, of the image of f, with multiplicity counted, is
defined by

2
Af = ||f/||L2(Q)' (7)
We next note that this concept agrees with what we expect when f is injective.

LEMMA 4.1. Let f : Q — C be complex analytic and injective. Then the area
of F(9) equals [|f'|21c,-

PROOF. Let A(f) denote the area of the image of f. Write f = u+iv and define
F(z,y) = (u(z,y),v(z,y)). The Cauchy-Riemann equations and the definition of
[/ imply det(F') = uzvy — uyv, = u2 + u72J = |f'|?. Since F is injective, the change
of variables formula for double integrals applies and gives

A = du v = (1 FI X = /Z 2 X = ! 22.
(f) /F(Q) d /Q| et(F")|dzdy /Q|J (2)|"dzdy = || f'[I7,
[l

Versions of the change of variables formula hold more generally. Suppose that
f is m to one for some fixed m. The change of variables formula gives

m dudv = [ |det(F')|dxdy = / |f'(2)|Pdxdy = ||f'|]32.
F(Q) Q Q

In general, the multiplicity varies from point to point. For complex analytic func-
tions, things are nonetheless quite nice. See [A] for the following result. Suppose
that f is complex analytic near zy and the function z — f(z) — f(20) has a zero of
order m. Then, for w sufficiently close to f(zo), there is a (deleted) neighborhood
of zp on which the equation f(z) = w has precisely m solutions. By breaking ¢
into sets on which f has constant multiplicity, we justify the definition of Aj.
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We return to the unit disk. The natural Hilbert space here is the set A? of
square-integrable complex analytic functions f on the unit disk. The inner product
on A? is given by

(f.9) = /B (2 dady.

The subspace A? is closed in L? and hence is itself a Hilbert space. See, for example,
pages 70-71 in [D1] for a proof. The main point of the proof is that, on any compact
subset K of the disk, we can estimate (the L° norm) sup|f| by a constant times
(the L? norm) ||f||. Hence, if {f,} is Cauchy in L?, then {f,} converges uniformly
on compact subsets. By a standard fact in complex analysis (see [A]), the limit
function is also complex analytic.

We are also concerned with the subspace of A2 consisting of those f for which
f’ is square-integrable.

LEMMA 4.2. The functions z" for n = 0,1,2,... form a complete orthogonal
system for A2.

Proor. Using polar coordinates we have

1 21
(2", 2™) = / / prmALgin=m)0 4o . (8)
0 0

By (8), the inner product vanishes unless m = n. To check completeness, we observe
that a complex analytic function in the unit disk has a power series based at 0 that
converges in the open unit disk. If f is orthogonal to each monomial, then each
Taylor coefficient of f vanishes and f is identically 0. O

Lemma 4.2 illustrates a beautiful aspect of Hilbert spaces of complex analytic
functions. Let f be complex analytic in the unit disk, with power series 3 a,z".
By basic analysis, the partial sums Sy of this series converge uniformly to f on
compact subsets of the unit disk. By Lemma 4.2, the partial sum Sy can also be
interpreted as the orthogonal projection of f onto the subspace of polynomials of
degree at most N. Hence the partial sums also converge to f in the Hilbert space
sense.

In Proposition 4.2 we relate || f]|2. to the [ norm of the Taylor coefficients of f.

|6s |
n+1

By (9) below we can identify elements of A? with sequences {b,} such that
converges.

Consider the effect on the area of the image if we multiply f by z. Since |z| < 1,
the inequality |zf(z)] < |f(z)] is immediate. But the area of the image under zf
exceeds the area of the image under f, unless f is identically 0. In fact we can
explain and determine precisely how the area grows.

PROPOSITION 4.2. Let f(z) = Yo" obnz" be a complex analytic function on
the unit disk B1. We assume that both f and f' are in L*(By). Then

2 N P
Il =73 ©)
1112 =7 20+ Dbl (10)

n=0
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N2 = [1F1172+7 Y bal® (11.1)
n=0
Thus A.r > Ay and equality occurs only when f vanishes identically.

PROOF. The proof of (9) is an easy calculation in polar coordinates, using the
orthogonality of ¢™?. Namely, we have

1 2m
I1fl|32 = /B | Z bp2"|?dady = /0 /0 Z by, Dyt (M=) g,
1

The only terms that matter are those for which m = n and we see that

1 e 2
2 _ 2 2n+1 _ |bn|
17122 =203 bl /O P = a3

Formula (10) follows immediately from (9). To prove (11.1), observe that (zf)'(z) =
S o(n+1)b,2". By (10), we have

NG 72 =7Y (4 Dbl =7 > nlbal> + 7Y [bal®
n=0 n=0 n=0

= [|f]172 +7 Y [bal®.
n=0
O

We express (11.1) in operator-theoretic language. Let D = diz with domain
{f € A2 : f' € A%}. Then D is an unbounded linear operator. Let M denote
the bounded operator of multiplication by z. When f extends continuously to the
circle, we write S f for its restriction to the circle, that is, its boundary values. Thus

IISfII? = & 02 " |f|%. The excess area has a simple geometric interpretation:

COROLLARY 4.2. Suppose M f is in the domain of D. Then Sf is square
integrable on the circle and

1 27 i
IDM f|IZ2 = [IDfIIZ> = 5/0 |f(e?)[?d0 = =[|SfI. (11.2)
PROOF. The result is immediate from (11.1). O

Corollary 4.2 suggests an alternate way to view (11.1) and (11.2). We can
use Green’s theorem to relate the integral over the unit disk to the integral over
the circle. The computation uses the notation of differential forms. We discuss
differential forms in detail in Sects. 5 and 6. For now we need to know less. In
particular dz = dx+idy and dz = dx —1idy. We can differentiate in these directions.
See Sect. 1 for detailed discussion. For any differentiable function f, we write 0 f for
%dz and Of for %d?. If f is complex analytic, then 9f = 0 (the Cauchy-Riemann
equations), and we have

df =(0+09)f =0f = f'(2)dz.

The area form in the plane becomes

d:zc/\dszdz/\dE:%dz/\dE.
1
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Finally, we use Green’s theorem, expressed in complex notation, in formula (12) of
the geometric proof below. We generalize this proof in Sect. 9.

EXERCISE 4.8. Express Green’s theorem in complex notation: express the line
integral of Adz + Bdz around -y as an area integral over the region bounded by ~.

EXERCISE 4.9. Use Exercise 4.8 to show that fv f(2)dz =0 when f is complex
analytic and 7 is a closed curve as in Green’s theorem. (This result is an easy form
of the Cauchy integral theorem.)

Here is a beautiful geometric proof of (11.2), assuming [’ extends continuously
to the circle:

PROOF. For any complex analytic f, we have
2 i 57 _ ¢ a7
Ap=|lf'llL2=5 [ 0fNOf=5 [ d(fOf).
2 Jp, 2 /g,

We apply this formula also to (zf)’. The difference in areas satisfies
1

A= A= N0V 1715 = 5 [ (25960 - 127).

Assuming f’ extends continuously to the circle, we may use Green’s theorem to
rewrite this integral as an integral over the circle:

A=y =g [ 20D - (D). (12)

By the product rule, d(zf) = fdz 4+ z0f. We plug this formula into (12) and
simplify, getting

Ay=ay =g [ =R -07+5 [ AP

FIGURE 4.3. Injective image of unit disk
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The first integral vanishes because |22 = 1 on the circle. We rewrite the second
integral by putting z = € to obtain
i i i N =i 1 i L i
5 [P ts = 5 [ 15enPdo =y [ Ife)Pas = allssP
S1 St ™ Js1
O

FIGURE 4.4. Overlapping image of unit disk

EXERCISE 4.10. Show that Corollary 4.2 can be stated as M*D*DM — D*D =
wS*S.

EXERCISE 4.11. What are the eigenfunctions and eigenvalues of DM and of
MD? Show that the commutator [D,M] = DM — MD is the identity. This
example arises in quantum mechanics.

|21

EXERCISE 4.12. Find a closed formula for Y2

i=0 “o—» Where ¢; = ||27]]? is the
J

squared norm in A2. The answer is the Bergman kernel function of the unit disk.

EXERCISE 4.13. For 0 < a < 1 and for |z| < 1, put f,(2) = V1 — a2z + az>.
Find ||f}||2. in terms of a. For several values of a, graph the image of the unit disk
under f. For what values of a is f injective? See Figs. 4.3 and 4.4.

EXERCISE 4.14. Put f(2) = 2z + 2% +23. Describe or graph the image of the set
|z| = r under f for several values of r. Suggestion: Use polar coordinates.

3. Unitary Groups

We now begin studying geometric problems in several complex variables. Recall
that (z,w) denotes the Hermitian inner product of points in complex Euclidean
space C™. The unitary group U(n) consists of the linear transformations 7" which
preserve the inner product; (Tz,Tw) = (z,w). Setting z = w shows that such
transformations also preserve norms. The converse is also true: if ||Tz|> = ||z||?
for all z, then (Tz, Tw) = (z,w) for all z and w, by Proposition 2.6.
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The group law in U(n) is composition. Let U,V be unitary transformations on

C/. Then the composition UV is also unitary, because

UV =v*Uur=viu-t=Uv) .
It follows that the collection U (NN) of unitary transformations on C¥ is a subgroup
of the group of invertible linear transformations.

We will often deal with complex FEuclidean spaces of different dimensions. It
is convenient to omit the dimension in the notation for the inner products and
norms. When doing so, we must be careful. Suppose L : C* — C"*! is given by
L(z) = (#,0). Then L is linear and ||L(2)|| = ||z||, but L is not unitary. Distance
preserving maps are called isometries. In this setting, when N > n, we often
identify C™ with the subspace C* @& 0 C CV.

Our first result (which holds much more generally than we state here) provides
a polarization technique and gets used several times in the sequel. We use it several
times in the special case when f and ¢ are polynomial mappings.

THEOREM 4.3. Let B be a ball centered at 0 in C™. Suppose f : B — CM
and g : B — CN2 are complex analytic mappings and ||f(2)||*> = ||g(2)||? for all
z € B. Assume that the image of g lies in no lower-dimensional subspace and that
N1 > No. Then there is an isometry U : CN2 — CM such that f(z) = Ug(z) for
all z. When f and g are as above and also No = Ny, then U is unitary.

PROOF. We expand f and g as convergent power series about 0, writing f(z) =
Yoo Aaz® and g(z) = ), Baz®; the coefficient A, lies in CMt and the coefficient
B, lies in CN2. Equating the Taylor coefficients in ||f(2)||* = ||g(2)||? leads, for
each pair a and 8 of multi-indices, to

(Aa, Ag) = (Ba, Bg). (13)

It follows from (13) that A,,,..., Asx is a linearly independent set if and only if
Ba,, - .., Bag is a linearly independent set. We then define U by U(B,) = A, for a
maximal linearly independent set of the B,. If B, is a linear combination of some
By, then we define U(B,,) as the same linear combination of the A,. The relations
(13) guarantee that U is well defined. Furthermore, these relationships imply that
U preserves inner products. Hence, U is an isometry on the span of the B,. When
Ny = N, an isometry U must be unitary. O

EXAMPLE 4.1. The parallelogram law provides an example of Theorem 4.3.
Suppose g(z1,22) = (V/221,V22) and f(21, 20) = (21 + 22,21 — 22). Then

lg(@)II* = 2lz1]* + 2lz2|* = |21 + 22f* + |21 — 22]* = [IF(2)]]*.
In this case f = Ug, where U is given by

1 1
U=|vw V2.
V2 V2
Our next example illustrates the situation when N; > Ny in Theorem 4.3.

EXAMPLE 4.2. Put f(2) = (27, 2120, 2122, 23) and g(2) = (2%, V22120, 23). Then
f:C? = C*andg:C?— C3. Also,

1P = 1al* + 20z |22 + |22f* = (|21 + [22*)* = [lg(2)]]*.
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The map U : C* — C* for which f = Ug is given by the matrix (with respect to
the usual bases)

U =

SR

0
0
0
1

oS O O

If ¢ = (C1, €2, G3), then [|UC]|? = [G1* +[¢2|* +|¢s[* = [IC]]*. Thus, U is an isometry,
but U is not unitary.

Observe that each of the maps f and g from Example 4.2 sends the unit sphere
in the domain to the unit sphere in the target. We will now consider such mappings
in detail.

We begin with some examples of symmetries of the unit sphere. If ¥ lies on
the unit circle S*, and z lies on the unit sphere S?"~!, the scalar multiple €?z lies
on S?"~1 as well. Thus, S acts on S?"~!. We can replace S' with the n-torus
St x ... x S In this case we map z = (21, 22, . .., 2n) to (€012, 225, ... €fnz,).
Furthermore, for z € $?"~! and U € U(n), we have of course that Uz € S?"~1.

The next example of a symmetry is a bit more complicated. Choose a point a
in the open unit ball B,,. First define a linear mapping L : C* — C™ by

L(z) =sz+ L<z, a)a,

s+1
where s = /1 — ||a||2. Then define ¢, by
_a— La(2)
9a(2) = 1—(z,a)’

The mapping ¢, is a complex analytic automorphism of the unit ball, and it maps
the unit sphere to itself. See Exercise 4.15, Exercise 4.16, and the discussion in
Sect. 4 for more information.

EXERCISE 4.15. Verify the following properties of the mapping ¢,:
o $,(0) =a.
o ¢q(a)=0.
° Qba . S2n71 — S2n71.
e ¢, 0 ¢, is the identity.

EXERCISE 4.16. Carefully compute ¢p 0 ¢,. The result is not of the form ¢, for
any ¢ with ||¢|]| < 1. Show, however, that the result can be written U¢, for some
unitary U. Suggestion: First do the computation when n = 1.

REMARK 4.3. In complex analysis or harmonic analysis, it is natural to con-
sider the group of all complex analytic automorphisms preserving the sphere. Each
element of this group can be written as U o ¢, for some unitary U and some ¢,.
Rather than considering the full group, we will focus on the unitary group U (n) and
its finite subgroups. Various interesting combinatorial and number-theoretic issues
arise in this setting.

We start in one dimension with an elementary identity (Lemma 4.3) involving
roots of unity. The proof given reveals the power of geometric reasoning; one can
also prove this identity by factoring 1 — ¢ over the complex numbers.
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DEFINITION 4.2. A complex number w is called a primitive m-th root of unity
if w™ =1 and m is the smallest such positive integer.

The imaginary unit ¢ is a primitive fourth root of unity. Given a primitive m-th
root of unity w, the powers w’ for j = 0,1,...,m — 1 are equally spaced on the unit
circle S1. These m points define a cyclic subgroup of S of order m. Note that the
inverse of w is w™ ™!, which also equals @. Note also that S = (1).

LEMMA 4.3. Let w be a primitive m-th root of unity. Then
m—1
1= JJ—wit)=tm (14)
7=0

PROOF. The expression on the left-hand side is a polynomial in ¢ of degree m.
It is invariant under the map ¢ — wt. The only invariant monomials of degree at
most m are constants and constants times ¢t"*. Hence, this expression must be of
the form a + Bt™. Setting ¢ = 0 shows that o = 0 and setting ¢ = 1 shows that
B =1 O

This proof relies on the cyclic subgroup I', of the unit circle, or of (1), gen-
erated by w. We will generalize this lemma and related ideas to higher dimensions,
where things become more interesting.

We extend the notion of Hermitian symmetry (Definition 1.2) to higher dimen-
sions in the natural way. A polynomial R(z,() on C™ x C™ is Hermitian symmetric
if R(z,{) = R((,%). The higher-dimensional version of Lemma 1.3 holds; it is useful
in the solution of Exercise 4.19.

Let I" be a finite subgroup of U(n). The analogue of the left-hand side of (14)
is the following Hermitian polynomial:

yel
One can show (we do not use the result, and hence, we omit the proof) that ®r is
uniquely determined by the following properties:

(1) ®r is Hermitian symmetric.

(2) ®r(0,0) = 0.

(3) ®r is -invariant.

(4) ®r(z,%) is of degree in z at most the order of T'.
(5) @r(z,%z) =1 for z on the unit sphere.

In the special case when I' is the group generated by a primitive m-th root of
unity times the identity operator, (14) generalizes to the identity (16):

(R )50

In this case the multinomial coefficients (Z‘) make an appearance:

m m!
« arl. . ap!
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See Sects. 4 and 8 for more information about multi-index notation and the
multinomial theorem, which is the far right equality in (16).

Interesting generalizations of (16) result from more complicated representations
of cyclic groups. The product in (17) gives one collection of nontrivial examples:

m—1 n
1— ]1 <1 —kakjtk>. (17)

The coeflicients of the expansion are integers with many interesting properties.
EXERCISE 4.17. Prove Lemma 4.3 by factoring 1 — ¢™.
EXERCISE 4.18. Prove that ®r(z,w) is Hermitian symmetric.

EXERCISE 4.19. Let R(2,2) =), 5 Ca.p2°Z? be a Hermitian symmetric poly-
nomial. Prove that there are linearly independent polynomials A;(z) and By(z)
such that

R(z,7) =Y _|4;(2)]* = > [B(2)[* = [|A(2)]1* - [|B(2)|I.
j k

EXERCISE 4.20. Write ®r = ||A]|? — ||B||? as in the previous exercise. Show
that we may choose A and B to be I'-invariant.

In the rest of this section, we consider several cyclic subgroups of U(2). Write
(z,w) for a point in C2. Let 1 be a primitive p-th root of unity. We next study the
mapping & when I' = ['(p, q) is the cyclic group of U(2) of order p generated by

the matrix
n 0
0 n?)"

REMARK 4.4. The quotient space S3/I'(p,q) is called a lens space.  These
spaces are important in topology.

The definition of ®r(, 4 yields

p—1
Orpg = 1= [J(1 =7 |21* = 0¥ w]?).
3=0
This expression depends only upon the expressions |z|? and |w|?; we simplify nota-
tion by defining the polynomial f, ,(x,y) by
p—1
Fpa(@,y) =1= 1[0 =0z —nYy). (18)
3=0
By taking j = 0 in the product, it follows that f, 4(z,y) =1 on the line z +y = 1.
LEMMA 4.4. f,1(z,y) = (z+ y)P.
PROOF. The result follows by replacing ¢ by x + y in Lemma 4.3. O

The (binomial) coeflicients of f, 1 are integers which satisfy an astonishing num-
ber of identities and properties. More is true. For each g, the coeflicients of f, , are
also integers, and they satisfy many interesting combinatorial and number-theoretic
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properties as well. We mention one of the properties now. Most people know the
so-called freshman’s dream that (x + y)? = aP + y? modulo p if and only if p is
prime. The same result holds for each f, ,, although we omit the proof here.

The polynomials f, 2 are more complicated than f,1 = (z 4+ y)?. When p is
odd, all the coefficients of f,, » are nonnegative. Here are the first few f, o:

fre(z,y) =2 +y
foo(z,y) = a* + 2y —y°
fap(z,y) =a® + 3xy +y°
frola,y) = 2" + 2%y + 2% — y*
foo(a,y) = 2° + 52’y + 5ay® + 7. (19)
We can find all these polynomials by solving a single difference equation. We
offer two proofs of the following explicit formula for f;, 2. The key idea in the first

proof is to interchange the order in a double product. See [D5] and its references
for general results about group-invariant polynomials, proved by similar methods.

PROPOSITION 4.3. For all nonnegative integers p, we have

(VT By )

fp,Q(Ia y) =

PROOF. Set ¢ = 2 in (18). Each factor in the product is a quadratic in 77,
which we also factor. We obtain

1= f(z,y) = [Ja =z —nPy) = T[]0 = er(a,y)n’)(1 = o, y)r)
j=0 j=0
p—1 ‘ p—1 ‘
=[] =@ yn’) [ - ol p)r).
j=0 Jj=0

Here c; and ¢ are the reciprocals of the roots of the quadratic 1 — xn — yn?. Each
of the two products is familiar from Lemma 4.3. Using that result we obtain

L= f(a,y) = (L= ez, 9)")(1 = ca(z, y)").

It follows that f has the following expression in terms of the c;:

f((E, y) = Cl(xu y)p + C2($7 y)p - (Cl ((E, y)Cg(LL', y))p
The product ¢; (z, y)ca(z, y) equals —y. The sum ¢; (z, y)+ca (2, y) equals 2. Solving
this system for ¢; and co using the quadratic formula determines the expressions
arising in (20). O

We sketch a second proof based on recurrence relations.

ProoFr. (Sketch). It follows by setting z = 0 in formula (18) that the term
—(—y)P appearsin fp, 2. Let g,(z, y) denote the other terms. The recurrence relation
Ip+2(x,y) = zgpt1(x,y) +ygp(z, y) also follows from (18). To solve this recurrence,
we use the standard method. The characteristic equation is A2—zA—y = 0. Its roots

are L2V HY Vf“‘y. Using the initial conditions that g;(x,y) = x and ga(x,y) = 22 +2y,
we determine g,(z,y). Adding in the term —(—y)? yields (20). O
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These polynomials are related to some classical mathematics.
DEFINITION 4.3. The n-th Chebyshev polynomial 7}, is defined by
T,.(z) = cos(n cos™(x)).

Although it is not instantly obvious, the n-th Chebyshev polynomial is a poly-
nomial of degree n. Hence these polynomials are linearly independent.

ExXaMPLE 4.3. The first few Chebyshev polynomials:

L] To( ) 1.

o Ty(x) =ux.

o To(z) = 222 — 1.

o T3(x) = 423 — 3x.

o Ty(z) =8zt — 8z% + 1.

o T5(z) = 162° — 2023 + 5.

EXERCISE 4.21. Verify that T),(z) is a polynomial. (See Exercise 4.23 for one
approach.) Verify the formulas for T;(z) for j = 1,2,3,4,5.

REMARK 4.5. The polynomials T},(x) are eigenfunctions of a Sturm-Liouville
problem. The differential equation, (SL) from Chap. 2, is (1 —z2)y” —xy’ + Xy = 0.
The T, are orthogonal on the interval [—1, 1] with respect to the weight function

w(z) = \/1+7 By Theorem 2.13, they form a complete orthogonal system for
L2([-1,1],w).

EXERCISE 4.22. Verify that T}, is an eigenfunction as described in the remark;
what is the corresponding eigenvalue \?

PRrRoOPOSITION 4.4. The f,2 have the following relationship to the Chebyshev
polynomials Tp(x):
-1 1
Foalr, S0+ ()7 = 277 (cos(p cos™ () = 2P, (a)
PRrROOF. See Exercise 4.23. O

REMARK 4.6. Evaluating the f,, » at other points also leads to interesting things.
For example, let ¢ denote the golden ratio. Then

oot 1) = (B Aoy e

The first two terms give the p-th Lucas number, and hence, fp2(1,1) differs from
the p-th Lucas number by £1. The p-th Fibonacci number F), has a similar formula:

_ 1 1+\/gp_ 1_\/gp _i P _ (1 _ H\P
a—%<<2> <2>>—ﬁ«@ (1= 6)).

It is remarkable that our considerations of group-invariant mappings connect
so closely with classical mathematics. The polynomials f, o arise for additional

¢ + (1= o) + (1)
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reasons in several complex variables. When p is odd, all the coefficients of f, o are
nonnegative. Put x = |2|? and y = |w|? and write p = 2r + 1. Then

Jorsra(2 wf2) = 3 eyl P wf? = Jlg(z,w)][%
b
Since far4+12(z,y) =1 on z+y =1, we see that ||g(z,w)||> = 1 on the unit sphere.
Hence, g(z,w) maps the unit sphere S® to the unit sphere S*¥ =1 where N = r+2.
Thus, g provides a far from obvious example of a group-invariant mapping between
spheres.

The functions f, 2 satisfy an extremal property. If a polynomial f of degree d
in z,y has N terms, all nonnegative coefficients, and f(z,y) =1 on z +y = 1, then
the inequality d < 2N — 3 holds and is sharp. We omit the proof of this difficult
result. Equality holds for the fo,41 .

EXERCISE 4.23. Prove Proposition 4.4. Suggestion: First find a formula for
cos~1(s) using cos(t) = # = s and solving a quadratic equation for e®.

EXERCISE 4.24. Show that T, (2) = T (T (z)).

EXERCISE 4.25. Find a formula for the generating function Y, T,,(z)t". Do
the same for > 0 | fn2(z,y)t".

The next exercise is intentionally a bit vague. See [D3] and the references there
for considerably more information.

EXERCISE 4.26. Use Mathematica or something similar to find f), 3 and f, 4 for
1 < p < 11. See what you can discover about these polynomials.

4. Proper Mappings

Consider the group-invariant polynomial (15) above when ¢ = z. The factor
1 — (yz,z) vanishes on the sphere when 7 is the identity of the group. Hence
®r(z,Z) = 1 when z is on the sphere. By Exercises 4.19 and 4.20, we may write

Or(z,2) = ) 14;(2)1F = Y |Br(=)]* = |AR)|1* ~ |1B(2)I?
J k

, where the polynomials A; and By, are invariant. If B = 0, (thus ®r is a squared
norm), then ®r will be an invariant polynomial mapping between spheres. If B # 0,
then the target is a hyperquadric.

The group-invariant situation, where the target is a sphere, is completely un-
derstood and beautiful. It is too restrictive for our current aims. In this section we
therefore consider polynomial mappings between spheres, without the assumption
of group invariance.

In one dimension, the functions z — 2™ have played an important part in our
story. On the circle, of course, 2™ = ¢"?. The function z — 2™ is complex analytic
and maps the unit circle S* to itself. One of many generalizations of these functions
to higher dimensions results from considering complex analytic functions sending
the unit sphere $2"~! into some unit sphere, perhaps in a different dimension. We
discuss these ideas here and relate them to the combinatorial considerations from
the previous section.
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DEFINITION 4.4. Let © and €’ be open, connected subsets of complex Euclidean
spaces. Suppose [ : Q — Q' is continuous. Then f is called proper if whenever
K C ' is compact, then f~!(K) is compact in .

LEMMA 4.5. A continuous map f : Q — ' between bounded domains is proper
if and only if the following holds: whenever {z,} is a sequence tending to the bound-

ary bQY, then {f(z,)} tends to bSY'.

PRrOOF. We prove both statements by proving their contrapositives. First let
{z,} tend to b2 If {f(z,)} does not tend to b€Y', then it has a subsequence which
stays in a compact subset K of €. But then f~!(K) is not compact, and f is
not proper. Thus properness implies the sequence property. Now suppose f is not
proper. Find a compact set K such that f~!(K) is not compact in . Then there
is a sequence {z,} in f~1(K) tending to b(2, but the image sequence stays within a
compact subset K. O

Lemma 4.5 states informally that f is proper if whenever z is close to bS2, then
f(z) is close to bSY. Hence, it has an € — ¢ version which we state and use only
when  and ' are open unit balls.

COROLLARY 4.3. A continuous map [ : B, — By is proper if and only if for
all € > 0, there is a § > 0 such that 1 — § < ||z|| < 1 implies 1 —e < ||f(2)|| < 1.

Our main interest is complex analytic mappings, especially such polynomial
mappings, sending the unit sphere in C” to the unit sphere in some CV. Consider
mappings that are complex analytic on the open ball and continuous on the closed
ball. The maximum principle implies that if such a mapping sends the unit sphere
in the domain to some unit sphere, then it must actually be a proper mapping from
ball to ball. On the other hand, a (complex analytic) polynomial mapping between
balls is also defined on the boundary sphere, and Lemma 4.5 implies that such
mappings send the boundary to the boundary. It would thus be possible never to
mention the term proper map, and we could still do everything we are going to do.
We continue to work with proper mappings because of the intuition they provide.

REMARK 4.7. Proper complex analytic mappings must be finite-to-one, al-
though not all points in the image must have the same number of inverse images.
By definition of proper, the inverse image of a point must be a compact set. Because
of complex analyticity, the inverse image of a point must also be a complex variety.
Together these facts show that no point in the target can have more than a finite
number of inverse images.

EXERCISE 4.27. Which of the following maps are proper from R? — R?
(1) f(z,y) =2 +y%
(2) g(z,y) =2" -y
(3) h(z,y) ==

EXERCISE 4.28. Under what circumstances is a linear map L : C* — CV
proper?

Our primary concern will be complex analytic proper mappings between balls.
We start with the unit disk B; contained in C. Let us recall a simple version of the
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mazximum principle. Suppose f is complex analytic in the open unit disk B; and
|f(2)] < M on the boundary of a closed set K. Then the same estimate holds in
the interior of K.

PROPOSITION 4.5. Suppose [ : By — By is complex analytic and proper. Then
f is a finite Blaschke product: there are points a1, ...,aq in the unit disk, possibly
repeated, and a point €' on the circle, such that

a; — 2
_eZGH e e
1—(1]

If also either f=1(0) =0 or f is a polynomzal, then f(z) = e2z™ for some positive
mteger m.

PROOF. Because f is proper, the set f~!(0) is compact. We first show that
it is not empty. If it were empty, then both f and % would be complex analytic
on the unit disk, and the values of le” would tend to 1 as z tends to the circle.
The maximum principle would then force |ﬁ| < 1 on the disk, which contradicts

|f(2)] <1 there.
Thus, the compact set f~1(0) is not empty. Because f is complex analytic,

this set must be discrete. Therefore, it is finite, say ai,...,aq (with multiplicity
allowed). Let B(z) denote the product [] %= . We show that z ~— % is a

constant map of modulus one. Then f = e“gB.

By Corollary 4.3, applied to both f and B, for each ¢ > 0 we can find a § > 0
such that 1 —e < |f(2)] < 1 and 1 —€ < |B(2)] <1 for |z] > 1 —¢. It follows
by the maximum principle that these estimates hold for all z with |z] <1 — 4 as
well. The function g = é is complex analytic in the disk, as the zeros of B and
of f correspond and thus cancel in g. By the maximum principle applied to g, we
have for all z that 1 — e < |g(z)| < 1. Since € is arbitrary, we may let € tend to
0 and conclude that |g(z)| = 1. It follows (by either Theorem 4.3 or the maximum
principle) that g is a constant e’ of modulus one. Thus f(z) = ¢ B(z). O

EXERCISE 4.29. Suppose f : By — Bj is complex analytic and proper. Find
another proof that there is a z with f(z) = 0. One possible proof composes f with
an automorphism of the disk, preserving properness while creating a zero.

Consider next the proper complex analytic self-mappings of the unit ball B,, in
C" for n > 2. We do not prove the following well-known result in several complex
variables: the only proper complex analytic maps from the unit ball B, to itself
(when n > 2) are automorphisms. These mappings are analogues of the individual
factors in Proposition 4.5. They have the form

z— Lq(2)
f(Z)—U 1—<Z,CL>'
Here U is unitary, and L, is a linear transformation depending on a, for a an
arbitrary point in B,. These rational maps were mentioned in Sect. 3; see the
discussion near Exercises 4.15 and 4.16. The only polynomial proper self-mappings
of a ball are the unitary mappings f(z) = Uz. In order to obtain analogues of
2+ 2%, we must increase the target dimension.
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The analogue of z +—+ z¢ in one dimension will be the tensor product z s 2z®¢
We will make things concrete, but completely rigorous, by first identifying CM @ CV
with CVM | The reader may simply regard the symbol ® as notation.

DEFINITION 4.5. Let f = (f1,..., fm) and g = (g1, ..., gn) be mappings taking
values in C™ and C¥. Their tensor product f ® g is the mapping taking values in

CMN defined by (fig1,-- -, [iGks- -+ [MIN)-

In Definition 4.5 we did not precisely indicate the order in which the terms f;gs
are listed. The reason is that we do not care; nearly everything we do in this section
does not distinguish between h and Lh when ||Lh|| = ||h||. The following formula
suggests why the tensor product is relevant to proper mappings between balls:

1 @ gll* = [1£1Pllgl1*. (21)
To verify (21), simply note that

A1 [lgl* = ZI%FZI%I2 > gl
j.k

Let m be a positive integer. We write 2™ for the tensor product of the identity
map with itself m times. We show momentarily that ||z™||? = ||z||*™; in particular
the polynomial map z — 2®™ takes the unit sphere in its domain to the unit sphere
in its target. It exhibits many of the properties satisfied by the mapping z — 2™
in one dimension. The main difference is that the target dimension is much larger
than the domain dimension when n > 2 and m # 1.

In much of what we do, the mapping z — f(2) is less important than the real-
valued function z ~ || f(z)||?. It is therefore sometimes worthwhile to introduce the
concept, of norm equivalence. Consider two maps f, g with the same domain, but
with possibly different dimensional complex Euclidean spaces as targets. We say
that f and g are norm-equivalent if the functions || f||? and ||g||* are identical.

We are particularly interested in the norm equivalence class of the mapping
z = 2®™. One member of this equivalence class is the monomial mapping described
n (22), and henceforth, we define 2™ by the formula in (22). The target dimension
is (”*gfl), and the components are the monomials of degree m in n variables. Thus
we put

Hp(2) = 2% = (..., cq2®,...). (22)
In (22), 2* is multi-index notation for [7_,(2;)*; each a = (a1,...,ay) is an
n-tuple of nonnegative integers which sum to m, and all such « appear. There are
(n+$71) such multi-indices; see Exercise 4.30. For each «, ¢, is the positive square
|2a

root of the multinomial coefficient (”'). We write |2|** as an abbreviation for the

product
[T 12507

See Sect. 8 for more information about multi-index notation and for additional
properties of this mapping.
By the multinomial expansion we see that

m
1571 = e P = 32 (7)1 = (3l =
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The crucial formula [|z®™]|? = ||z||*™ explains why c, was defined as above.

Furthermore, by Theorem 4.4 below, ("+z_1) is the smallest possible dimension k
for which there is a polynomial mapping f : C™ — C* such that ||f(2)||? = ||z]*™.

In other words, if f is norm-equivalent to 2™, then the target dimension must be
at least (n+$71)'

EXAMPLE 4.4. Put n = 2 and m = 3. We identify the map z®™ with the map
Hj defined by

(21,22) — Hs(z1, 20) = (23, \/ngzg, \/52123,23)
Note that ||Hz(z1, 22)||2 = (|z1|* + |22|?)3.

DEFINITION 4.6. Let p: C* — C¥ be a polynomial mapping. Then p is called
homogeneous of degree m if, for all t € C, p(tz) = t"p(z).

Homogeneity is useful for many reasons. For example, a homogeneous polyno-
mial is determined by its values on the unit sphere. Unless the degree of homogeneity
is zero, in which case p is a constant, we have p(0) = 0. For z # 0, we have

z

p(z) = p(||2]] ﬁ) = Il=lI"p ()

This simple fact leads to the next lemma, which we use in proving Theorem 4.6.

LEMMA 4.6. Let p; and py, denote homogeneous polynomial mappings, of the
indicated degrees, from C™ to CN. Assume that (pj(2),pr(2)) =0 for all z on the
unit sphere. Then this inner product vanishes for all z € C™.

PROOF. The statement is trivial if j = k = 0, as pg is a constant. Otherwise

the inner product vanishes at z = 0. For z # 0, put w = Izll' Homogeneity yields

(p;(2), pi(2)) = |27 (p; (w), pr(w)),

which vanishes by our assumption, because w is on the sphere. O

EXERCISE 4.30. Show that the dimension of the vector space of homogeneous
(complex-valued) polynomials of degree m in n variables equals ("+:Z_1).

EXERCISE 4.31. Give an example of a polynomial r(z,%) that vanishes on the
sphere, also vanishes at 0, but does not vanish everywhere.

Recall formula (22) defining the mapping ™. In particular, 2™ : C" —
CY. where N is the binomial coefficient N = (n+$71)7 the number of linearly
independent monomials of degree m in n variables. This integer is the minimum

possible dimension for any map f for which ||f(2)||* = ||z|[*™.

THEOREM 4.4. Let h,, : C" — CV be a homogeneous polynomial mapping of
degree m which maps S?"~1 to S?N=1. Then 2™ and h,, are norm-equivalent.
Assume in addition that the components of h,, are linearly independent. Then
N = (n+$71)7 and there is a unitary transformation U such that

B (2) = Uz9™,
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PRrROOF. By linear independence of the components of h,,, the target dimension
N of hy, is at most ("+$_1). We claim that N = ("+:Z_1). We are given that
[|hm(2)|| = ||2|] = 1 on the sphere. Hence ||h.,(2)|]? = ||z||*™ = ||2®™||? on the
sphere as well. By homogeneity, this equality holds everywhere, and the maps are
norm-equivalent. Theorem 4.3 then implies the existence of an isometry V such
that 2™ = Vh,,(z). Since 2®™ includes all the monomials of degree m, so does
hyn. Hence the dimensions are equal, and V is unitary. Put U = V1. O

A variant of the tensor product operation allows us to construct more examples
of polynomial mappings between spheres. By also allowing an inverse operation,
we will find all polynomial mappings between spheres.

Let A be a subspace of CV, and let w4 be orthogonal projection onto A. Then
we have ||f||> = ||raf||* + ||(1 — 74) f]|* by the Pythagorean theorem. Combining
this fact with (21) leads to the following:

PROPOSITION 4.6. Suppose f : C* — CM and g : C* — CV satisfy ||f||* =
ll9]> = 1 on some set S. Then, for any subspace A of CM, the map Ea,f =
(1 —7a)f ® (maf ® g) satisfies | EagfIP =1 on 5.

ProOF. By definition of orthogonal sum and (21), we have

1BagfII? =110 —7ma)f & (maf @ g)lIP = 11— wa) FI* + [ImafIPllgl*. (23)

If [|g]|?> = 1 on S, then formula (23) becomes |[(1 — 7a)f||? + |[|7afl|> = ||f]|? =1
onS. g

When g(z) = z, we can write the computation in (23) as follows:

IBANIZ = AP + (=] = Dllma (I

This tensor operation evokes our discussion of spherical harmonics, where we multi-
plied polynomials by the squared norm in R™. The operation F 4 is more subtle for
several reasons; first of all, our map f is vector valued. Second of all, we perform
the multiplication (now a tensor product) on a proper subspace A of the target.

We will begin studying nonconstant (complex-analytic) polynomial mappings
taking S2"~1 to S?N~1. By Proposition 4.5, when n = N = 1, the only possibilities
are z — €92™. When n = N > 2, the only nonconstant examples are unitary maps.
When N < n, the only polynomial maps are constants. The proofs of these facts
use several standard ideas in the theory of analytic functions of several complex
variables, but we omit them here to maintain our focus and because we do not
use them to prove any of our results. We therefore summarize these facts without
proof. We also include a simple consequence of Proposition 4.5 in this collection of
statements about polynomial mappings between spheres.

THEOREM 4.5. Assume that p : C* — CV is a polynomial mapping with
p(S?n—1)y € §2N-1 [f N = n = 1, then p(z) = €P2™ for some m. If N < n,
then p is a constant. If n < N < 2n—2, then p is either a constant or an isometry.

When N is much larger than n, there are many maps. We can understand them
via a process of orthogonal homogenization.
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Let p : C* — C¥ be a polynomial mapping. Let || || denote the Euclidean norm
in either the domain or target. We expand p in terms of homogeneous parts. Thus
p= ZZ:O pr, where each py, : C* — C» and py is homogeneous of degree k. That
is, pr(tz) = t*pp(2) for all t € C. Suppose in addition that p : §?n—1 — §2N—-1,
Then, if ||z]|? = 1, we have

P = 1Y oI = Y (pil2),p4(2)) = 1. (24)

k,j

Replacing z by €%z and using the homogeneity yields

1= "D pi(z),p(2))- (25)

k.j

But the right-hand side of (25) is a trig polynomial; hence, all its coefficients vanish
except for the constant term. We conclude that p must satisfy certain identities
when ||z]| = 1:

D el =1, (26)
> proprit) =0. (1#£0). (27)

k
Let d be the degree of p. When | = d in (27), the only term in the sum is
when k£ = 0, and we conclude that py and p,; are orthogonal. Let m4 denote the
projection of CV onto the span A of p;. We can write

p=(1—ma)p® map. (28)
Consider a new map ¢, defined by
g=FEalp) =1 -7a)p® (map @ 2).

By Proposition 4.6, E4(p) also takes the sphere to the sphere in a larger target
dimension. The map g = F4(p) has no constant term and is of degree d. Thus
go = 0. Now we apply (27) to g, obtaining the following conclusion. Either g
is homogeneous of degree 1 or its first-order part g; is orthogonal to its highest
order part gq. We apply the same reasoning to g, letting mp denote the orthogonal
projection onto the span of the homogeneous part g;. We obtain a map Eg(Fa(p)),
still of degree d, whose homogeneous expansion now has no terms of order 0 or 1.

Proceeding in this fashion, we increase the order of vanishing without increasing
the degree, stopping when the result is homogeneous. Thus we obtain a sequence of
subspaces Ay, ..., Ag—1 such that composing these tensor product operations yields
something homogeneous of degree d. As the last step, we compose with a linear map
to guarantee that the components are linearly independent. Applying Theorem 4.3,
we obtain the following result about orthogonal homogenization.

THEOREM 4.6. Let p be a polynomial mapping such that p(S*"~1) C §2N-1
and p is of degree d. Then there is a linear L and a finite sequence of subspaces and
tensor products such that

2 = L(Ba,_, (. (Eay())..)). (29)

Here L = qU, where U is unitary and q is a projection.
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PROOF. We repeat the previous discussion in more concise language. If p is
homogeneous, then the conclusion follows from Theorem 4.3. Otherwise, let v
denote the order of vanishing of p. Thus v < d and p = Z?:U pj, where p; is
homogeneous of degree j. By (27), p, is orthogonal to pg on the sphere. By
Lemma 4.6, they are orthogonal everywhere. Let A denote the span of the coefficient
vectors in p,. By Proposition 4.2, the polynomial mapping E4(p) sends the unit
sphere in its domain C" to the unit sphere in its target. This mapping is also of
degree d, but its order of vanishing exceeds v. After finitely many steps of this sort,
we reach a homogeneous mapping of degree d. We then apply Theorem 4.3. O

In the next section we will use this result to prove a geometric inequality con-
cerning the maximum volume (with multiplicity counted) of the image of the ball
under a proper polynomial map, given its degree.

Next we illustrate Theorem 4.6 by way of a polynomial mapping S° to S7.

EXAMPLE 4.5. Put 2z = (w,¢) and p(w,() = (w?, w?¢,w(,¢). Then Ay = 0.
Also Aj is the span of (0,0,0,1), and Ey, (p) = (w?,w?¢,w¢,w¢,¢?). Now Ay is
the span of the three standard basis vectors es, e4, and e5 in C®. Tensoring on the
subspace As yields

f = E2 (El (p)) = (w37 w2<7 w2<7 ’U)CQ, ’LUQC, ’LUCQ, ’LUCQ, 4-3)

The image of f is contained in a 4-dimensional subspace of C8. We can apply a
unitary map U to f to get

Uf = (w?,V3w?¢, V3w(?, ¢3,0,0,0,0).

Finally we project onto C* and identify the result with the map 2®3. In the notation
(29), L = qU is the composition of the unitary map U and the projection q.

5. Vector Fields and Differential Forms

Our second proof of Corollary 4.2 used the differential forms dz and dz in one
dimension. In order to extend the result to higher dimensions, we must discuss
complex vector fields and complex differential forms. We begin by reviewing the
real case. See [Dar] for an alternative treatment of the basics of differential forms
and interesting applications.

As a first step, we clarify one of the most subtle points in elementary calculus.
What do we mean by dx in the first place? High school teachers often say that dx
means an infinitesimal change in the z direction, but these words are too vague to
have any meaning. We proceed in the standard manner.

A wvector fieldon R"™ is simply a function V' : R™ — R". We think geometrically
of placing the vector V(z) at the point 2. We make a conceptual leap by regarding
the two copies of R™ as different spaces. (Doing so is analogous to regarding the x
and y axes as different copies of the real line.) For j =1,...,n, we let e; denote the
j-th standard basis element of the first copy of R™. We write % for the indicated

partial differential operator; % will be the j-th standard basis vector of the second
J
copy of R™.
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Thus, at each point © = (x1,...,2,) of R™, we consider a real vector
space T,(R™) called the tangent space at x. The vector space T,(R™) is also
n-dimensional. Here is the precise definition of %:

J

9 _of L flattey) — flx)
aTj(f)(iﬂ —%j(x)—}g% . :

The %, for j =1,...,n, form a basis for T,,(R™). Thus an element of T, (R") is

a vector of the form 77, Cj%'
J

Partial derivatives are special cases of directional derivatives. We could there-
fore avoid (30) and instead start with (31), the definition of the directional derivative
of f in the direction v = (v1,...,v,):

O () _ iy Tt 0) = J () _

ov t—0 t

(30)

Suge@ = Vi G

In this definition (31) of directional derivative, we do not assume that v is a
unit vector. Given a vector field V', we write V =" v; %. Then V can be applied
to a differentiable function f, and V[f] means the directional derivative of f in the
direction v, as suggested by the notation. Thus, T, (R") is the set of directions in

which we can take a directional derivative at .

REMARK 4.8. The viewpoint expressed by the previous sentence is useful when
we replace R™ by a smooth submanifold M. The tangent space T, (M) is then
precisely the set of such directions. See [Dar].

REMARK 4.9. The expression % is defined such that %( f) equals the direc-
J J

tional derivative of f in the j-th coordinate direction. Warning! The expression

% depends on the full choice of basis. We cannot define 6%1 until we have chosen

all n coordinate directions. See Exercise 4.33.

The beauty of these ideas becomes apparent when we allow the base point x
to vary. A vector field becomes a function whose value at each z is an element of
T, (R™). Thus a vector field is a function

x—=Viz) = Zv(gc)i
- J 8.Ij ’
=1
A vector field is called smooth if each v; is a smooth function.

We pause to restate the definition of vector field in modern language. Let
T(R™), called the tangent bundle, denote the disjoint union over x of all the spaces
T.(R™). (To be precise, the definition of T(R™) includes additional information,
but we can safely ignore this point here.) A point in T'(R") is a pair (z,v,), where
x is the base point and v, is a vector at x. A vector field is a map V : R" — T(R")
such that V(z) € T,(R") for all . In other words, V(z) = (z,v;). In modern
language, a vector field is a section of the tangent bundle T(R™). At each z, we
regard V(z) as a direction in which we can differentiate functions defined near .

Now what is a differential 1-form? We begin by defining df for a smooth
function f. Here smooth means infinitely differentiable.
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Let f: R™ — R be a smooth function. Let V' be a vector field; v = V(z) is a
vector based at x; thus V(z) € T,(R"™). We define df as follows:

of Sz +tv) — fz)

& (@)le] = (@ (@), v) = 5 (@) = limg HELL =S

The formula on the far right-hand side of (32) is the definition. The other expres-

sions are different notations for the same quantity. In the first formula, df (z) is

a function, seeking a vector v as the input and producing a real number as the

output. In the second formula, df(z) and v appear on equal footing. The third

formula means the rate of change of f in the direction v at z. In coordinates, we

(32)

have V(z) = Z”ja%jv where v = (v1,...,v,) and
F@)l = D vy(@) 5 (a). (33)
=1 ’

Formula (32) gives a precise, invariant definition of df for any smooth function f.
In particular we can finally say what dxj; means. Let f = zp be the function that
assigns to a point x in R™ its k-th coordinate, and consider df. The equation
dxy, = df gives a precise meaning to dzy. (Confusion can arise because zj denotes
both the k-th coordinate and the function whose value is the k-th coordinate.)

The expression df is called the exterior derivative or total differential of f. We
discuss the exterior derivative in detail in the next section. We can regard df as a
function. Its domain consists of pairs (z,v), where z € R™ and v € T,(R"™). By
(32), df (z)[v] is the directional derivative of f in the direction v at x. Since taking
directional derivatives depends linearly on the direction, the object df (x) is a linear
functional on T, (R™). It is natural to call the space T, (R™) of linear functionals
on T, (R™) the cotangent space at x. The cotangent space also has dimension n, but
it is distinct both from the domain R"™ and from the tangent space. The disjoint
union of all the cotangent spaces is called the cotangent bundle and written T*(R™).
A point in T*(R™) is a pair (z,&;), where x is the base point and &, is a co-vector
at x. A differential 1-form is a section of the cotangent bundle. Not all 1-forms
can be written in the form df for some function f. See the discussion after Stokes’
theorem.

REMARK 4.10. Assume f is defined near x, for some z € R™. Then f is
differentiable at x if it is approximately linear there. In other words, we can write
f(z+h) = f(x) + df (z)(h) + error, where the error tends to 0 faster than ||h|| as
h — 0. The same definition makes sense if f is vector valued. In that case we write
D f(x) for the linear approximation. In this setting, D f(x) is a linear map from the
tangent space at 2 to the tangent space at f(z).

We summarize the discussion, expressing things in an efficient order. For each
x € R" we presume the existence of a vector space T, (R"), also of dimension n. The
union T (R™) over z of the spaces T,,(R™) is called the tangent bundle. A vector field
is a section of the tangent bundle. For each smooth real-valued function f, defined
near x, we define df by (32). In particular, when f is the coordinate function z;, we
obtain a definition of dz;. For each smooth f and each x, df (z) is an element of the
dual space T}(R™). The union of these spaces is the cotangent bundle. A 1-form
is a section of the cotangent bundle.
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We define the operators 6 - by duality. Thus the differentials dz; precede the

operators % in the logical development. A 1-form is a combination ) b;(z)dz;

and a vector field is a combination ) a, (x)%

5.1. Complex Differential Forms and Vector Fields. Our work requires
complex vector fields and complex differential forms. In terms of real coordinates, a
complex vector field on R is an expression Z;nzl gj (x)a%j where the functions g;
are smooth and complex valued. Similarly, a complex 1-form on R™ is an expression
Z;”:l hj(x)dz; where the functions h; are smooth and complex valued.

We can identify complex Euclidean space C™ with R?". Write z = (z1,...,25),
and put z; = x; + iy] (where i is the imaginary unit). We can express vector fields
in terms of the Tj and 8j and differential forms in terms of the dzr; and dy;.
Complex geometry is magic; things simplify by working with complex (note the
double entendre) objects. Everything follows easily from one obvious definition.

DEFINITION 4.7. Suppose () is an open set in C™ and f : 2 — C is smooth.
Write f = u + iv where u and v are real valued. We define df by df = du + idv.

COROLLARY 4.4. Let z; = x; + 1y; denote the j-th coordinate function on C™.
Then dz; = dx;j + idy; and dz; = dx; — idy;.

We define complex differentiation by duality as follows in Definition 4.8. We
could also use the formulas in Corollary 4.5 as definitions.

DEFINITION 4.8. For j = 1,...n, let {%, %} denote the dual basis to the
basis {dzj,d—»} Thus ai is defined by dzk[aizj] =0if j # k and by dzk[%] =1.
Also is defined by dzj[5Z ] = 0 for all j,k and d?k[a%] = 0 for j # k, but
dzp[-2] = 1.

) 8T
Oz ]

Differentiable functions g, ..., gmn form a coordinate system on an open set €2
in R™ if their differentials are linearly independent on  and the mapping g =
(g1, ---,gm) is injective there. This concept makes sense when these functions are
either real or complex valued. For example, the functions z and Z define a coordinate
system on R?, because dz + idy and dx — idy are linearly independent and the map
(z,9) — (2 + iy, — iy), embedding R? into C?, is injective.

We can regard the 2n functions z1,...,2,,%1,...,%, as complex-valued coor-
dinates on R?". The exterior derivative df is invariantly defined, independent of
coordinate system, by (32) and Definition 4.7. Hence, the following equality holds:

Jj=1 7j=1
The following formulas then follow by equating coefficients. See Exercise 4.32.

COROLLARY 4.5. 5 1 5 5
— _— 35.1
(?zj (8% 8y3) ( )

0 1/ 0 0
8Ej 2 <a$] +Z¢9yj> (35 )
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Suppose f is differentiable on an open set in C™. By (34), we can decompose
its exterior derivative df into two parts:

df =0f +0f = Z d +Z (36)

Formula (36) defines the splitting of the 1-form df into the sum of a (1,0)-form and
a (0,1)-form. The important thing for us is the definition of complex analyticity in
this language.

DEFINITION 4.9. Let {2 be an open subset of C". Assume that f: Q — C and
f is continuously differentiable. Then f is complex analytic if and only if 0f = 0.
Equivalently, if and only if 3 j =0 for all j.

The differential equatlons in Definition 4.9 are called the Cauchy-Riemann
equations. Thus complex analytic functions are the solutions to a first-order system
of partial differential equations. As in one variable, complex analytic functions are
given locally by convergent power series. In Theorem 4.3 we used the power series
expansion of a complex analytic mapping in a ball. For most of what we do, the
crucial point is that the Cauchy—Riemann equations have the simple expression
Jf = 0. By (36), f = 0 means that f is independent of each Z;. Part of the magic
of complex analysis stems from regarding z and its conjugate Z as independent
variables.

COROLLARY 4.6. A continuously differentiable function, defined on an open set
in C™, is complex analytic if and only if df = 0f.

In the rest of this chapter most of the complex analytic functions we will en-
counter are polynomials. We emphasize the intuitive statement: f is complex
analytic if and only if f is independent of the conjugate variable Z = (Z1,...,Zn).

EXERCISE 4.32. Use (34) to verify (35.1) and (35.2).

EXERCISE 4.33. This exercise asks you to explain Remark 4.9. Consider the
functions x and y as coordinates on R?. Then by definition, @i = 0. Suppose
instead we choose u = x and v = x+y as coordinates. Then we Would have a” =0.

But ($+y) = 1. Explain!

6. Differential Forms of Higher Degree

Our work in higher dimensions relies on differential forms of higher degree. This
discussion presumes that the reader has had some exposure to the wedge product
of differential forms and therefore knows intuitively what we mean by a k-form. We
also use the modern Stokes’ theorem, which in our setting expresses an integral of a
2n-form over the unit ball as an integral of a (2n — 1)-form over the unit sphere. We
develop enough of this material to enable us to do various volume computations.

DEFINITION 4.10. Let V be a (real or) complex vector space of finite dimension.
A function F: V x --- x V — C (with k factors) is called a multi-linear form if F
is linear in each variable when the other variables are held fixed. We often say I is
k-linear. It is called alternating if F'(vy,...,v;) = 0 whenever v; = v; for some 4, j
with 7 # j.
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EXAMPLE 4.6. Consider a k-by-k matrix M of (real or) complex numbers.
Think of the rows (or columns) of M as elements of C*. The determinant function
is an alternating k-linear form on C* x .. x CF.

EXAMPLE 4.7. Given vectors a = (ay, az,a3) and b = (b1, be, b3) in R?, define
F(a,b) = a1bs — azb;. Then F is an alternating 2-linear form.

LEMMA 4.7. A multi-linear form F (over R™ or C™) is alternating if and only if
the following holds. For each pairi,j of distinct indices, the value of F' is multiplied
by —1 if we interchange the i-th and j-th slots:

F(ui,...,v,...,05,...vp) = —F(v1,..., 05, ... 05y ..., Ug). (37)

PROOF. It suffices to ignore all but two of the slots and then verify the result
when F' is 2-linear. By multi-linearity we have

Fv+w,v4+w)=F(v,v) + F(v,w) + F(w,v) + F(w,w). (38)

If F is alternating, then all terms in (38) vanish except F(v,w) + F(w,v). Hence
this term must vanish as well. Conversely, if this term always vanishes, then (38)
gives F(v + w,v + w) = F(v,v) + F(w,w). Put w = —v. We get

0= F(0,0) = F(v,v) + F(—v,—v) = F(v,v) + (—=1)?*F(v,v) = 2F (v, v).
Hence F(v,v) =0 for all v. O

REMARK 4.11. The reader might wonder why we chose the definition of alter-
nating to be the vanishing condition rather than the change of sign condition. The
reason is suggested by the proof. Over R or C, the conditions are the same. If we
were working over more general fields, however, we could not rule out the possibility
that 1+ 1 = 0. In this case the two conditions are not equivalent.

We note that 0 is the only alternating k-linear form on V if k exceeds the
dimension of V. When k equals the dimension of V| the only alternating k-linear
form is a multiple of the determinant.

EXERCISE 4.34. Verify the statements in the previous paragraph.
We can now introduce differential forms of higher degree.

DEFINITION 4.11. Let V be a (real or) complex vector space of finite dimension
n with dual space V*. The collection A¥(V*) of all k-linear alternating forms on V'
is itself a vector space of dimension (Z) It is called the k-th exterior power of V*.

Note that A'(V*) consists of all 1-linear forms on V; thus, it is the dual space
of V and A'(V*) = V*. By convention, A°(V*) equals the ground field R or C.

DEFINITION 4.12. Let €2 be an open subset of R™. A differential form of degree
k on Q (or a differential k-form) is a (smooth) section of the k-th exterior power of
the cotangent bundle T*(R™).

At each point € Q, we have the vector space T,(R™) and its dual space
T*(R™). A differential k-form assigns to each z an element of A¥(7;(R™)). The
value of the k-form at x is an alternating k-linear form.

By convention, a O-form is a function. A 1-form assigns to each z a linear
functional on T,(R"™), as we have seen already. The value of a 2-form at x is a
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machine which seeks two vectors at x as inputs and returns a number. If we switch
the order of the two inputs, we multiply the output by —1.

Forms of all degrees can be generated from 1-forms using the wedge product.
Before giving the definition of the wedge product, we express the idea informally

using bases. Suppose eq,...,e, form a basis for the 1-forms at a point x. For each
k with 1 < k < n, and each increasing sequence of indices i1 < ig < --- < ig, We
define a formal expression ey, written

er =€, Nejy, A+ Aej,. (39)

Note that there are exactly (:) such expressions. We decree that the collection of
these objects form a basis for the space of k-forms. Thus the space of k-forms on
an n-dimensional space has dimension (Z)

We can regard ey as an alternating k-linear form. As written, the index [
satisfies 41 < --- < 4. We extend the notation by demanding the alternating
property. For example, when k = 2 and [, m are either 1 or 2, we put

(er New)(v,w) = ej(v)em(w) — ef(w)em, (v).
Then ex A e = —eq A es. More generally we put
(ex A=+ Aeg)(vr,. .. vp) = det(e;(vy)). (40)

EXAMPLE 4.8. Consider R? with basis e, es, e3. The zero forms are spanned
by the constant 1. The 1-forms are spanned by e, eo, e3. The 2-forms are spanned
by e1 A ea, e1 Aes, and ez A e3. The 3-forms are spanned by e; A e A es.

EXERCISE 4.35. For 0 < k < 4, list bases for the k-forms on a 4-dimensional
space.

A relationship between wedge products and determinants is evident. It is there-
fore no surprise that we define the wedge product in a manner similar to the Laplace
expansion of a determinant.

First we recall the algebraic definition of the determinant. The motivation is
geometric; det(vy,...,v,) measures the oriented volume of the n-dimensional box
spanned by these vectors. We normalize by assuming that the volume of the unit
n-cube is 1.

DEFINITION 4.13. Let V be either R™ or C™. The determinant, written det, is
the unique alternating n-linear form whose value on ey, ..., e, is 1.

The Laplace expansion of the determinant follows from the definition. Suppose
vj = > cjrer. We compute det(vq,...,v,) by the definition. Multi-linearity yields

det(vy,..., v, Z Z Z chk det(eg,, ..., ek, )-

k1=1ko=1 n=1j=1

Next we apply the alternating property to rewrite the determinant of each

(eky,---€k,). If indices are repeated, we get 0. Otherwise we get +1, depending

on the signum of the permutation of the indices. We obtain the standard Laplace
expansion of the determinant

det( CJk ngn H Cj r(5)- (41)

Jj=1
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A permutation 7 on n objects is a bijection on the set of these objects. The
expression sgn(7) is either 1 or —1; it equals 1 when 7 is an even permutation and
—1 when 7 is an odd permutation. Thus sgn(7) is the parity of the number of
interchanges (of pairs of indices) required to put the indices in the order 1,2, ..., n.

EXERCISE 4.36. Show that sgn(7) = [[,<, <, r@)=r)

ij
EXERCISE 4.37. Show that sgn(m; o 7o) = sgn(r1)sgn(m2). Suggestion: Use the
previous exercise.

The wedge product is defined in a similar fashion:

DEFINITION 4.14. The wedge product of a k-form « and an [-form 3 is the
(k + I)-form a A 8 defined by

(@A B)(vr,. . Vkgt) Z sen(T)a(Vr(1ys - -5 Vr (k) B(Ur(kg1)s - 5 Vr(itr))- (42)

The sum in (42) is taken over all permutations 7 on k + [ objects.

PROPOSITION 4.7 (Properties of the wedge product). Let a, 8, 51, B2 be differ-
ential forms. Then:

(1) @A (Br+B2) = (@A Br) + (A Ba).
(2) aA(BrAB2) = (aNB1)ABa.
(3) anB=(—DMBAaifaisak-form and B is an I-form.

PRrROOF. Left to the reader as Exercise 4.38. O

The exterior derivative d is one of the most important and elegant operations
in mathematics. When 7 is a k-form, dn is a (k + 1)-form. When 7 is a function
(a 0-form), dn agrees with our definition from (32). We can extend d to forms
of all degrees by proceeding inductively on the degree of the form. After stating
Theorem 4.7, we mention a more elegant approach.

If f is a function, then df is defined as in (32) by df[v] = i In coordinates,

af =3 aj dr;. When g = 3 g;dx; is an arbitrary 1-form, we deﬁne dg by
3] 3]
dg = ngj Adz; = ZZ gJ L A day = Z(ai - 8z’“_)d R Adzy.  (43)
j

On the far right-hand side of (43), we have rewritten dg using dey Adx; = —da; Adzy,
to make the indices increase. The terms dx; A dzr; drop out. For example,
d(Pdx + Qdy) = %dy/\dm—l— Z—Sda:/\dy (Z—Cj - g—];)d A dy. (44)

Suppose in (44) that Pdx + Qdy = df for some smooth function f. Then
the equality of mixed second partial derivatives and (44) show that d(df) =
This statement in the language of differential forms is equivalent to the classical
statement “the curl of a gradient is 0.” In fact d? = 0 in general; see Theorem 4.7
and Exercise 4.38.

Let n be a k-form. We wish to define dn in coordinates. To simplify the
notation, write

dx’ = dxj, Ndxj, N--- Ndxj, .
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Then we can write n = ) ; nsdx? where the 1y are functions and each .J is a k-tuple
of indices. We proceed as we did for 1-forms and put

dn:ZdnJ/\dx Zzan]dx Adx? .
J

Thus dn = 3" gr.dx’, where now L is a (k + 1)-tuple of indices.

The following standard result, which applies in the setting of smooth manifolds,
characterizes d. We omit the simple proof, which can be summarized as follows.
Choose coordinates, use the properties to check the result in that coordinate system,
and then use the chain rule to see that d is defined invariantly.

THEOREM 4.7. There is a unique operator d mapping smooth k-forms to smooth
(k + 1)-forms satisfying the following properties:
(1) If f is a function, then df is defined by (32).
(2) d(a+ B) = da+ dg.
(3) (a/\ﬂ) =da A+ (—1)PaAdf if a is a p-form.
(4) d* =

It is possible to define d without resorting to a coordinate system. The definition
on O-forms is as in (32). We give the definition only for 1-forms. Let ) be a 1-form;
the 2-form dn requires two vector fields as inputs; it must be alternating and multi-
linear. Thus we will define dn(v, w) for vector fields v and w.

We regard v and w as differential operators by recalling that v(f) = df (v) for
smooth functions f. Earlier we wrote df [v], but henceforth we will use the symbol
[,] in another manner. We therefore use parentheses for the application of a 1-form
on a vector field and for the action of a vector field on a function. We wish to define
the expression dn(v, w).

DEFINITION 4.15. Let v and w be vector fields. Their Lie bracket , or com-
mutator, is the vector field [v,w] defined by [v, w|(f) = v(w(f)) — w(v(f)). Here
f is a smooth function, and we regard a vector field as a differential operator.
(Exercise 4.39 asks you to check that the commutator is a vector field.)

We can now define dn. Given vector fields v and w, we put

dn(v, w) = v(n(w)) = w(n(v)) — 0o, w).

The notation v(n(w)) here means the derivative of the function n(w) in the
direction v. The full expression is alternating in v and w. The term involving
commutators is required to make certain that dn is linear over the functions. See
Exercise 4.40. This formula (and its generalization to forms of all degrees) is known
as the Cartan formula for the exterior derivative.

EXERCISE 4.38. Show that d? = 0. Recall, for smooth functions f, we have
o*f  9f
Ox;0x  Oxplxj’

EXERCISE 4.39. Verify that the commutator of two vector fields is a vector
field. Suggestion: Use coordinates.
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EXERCISE 4.40. Suppose we tried to define a 2-form ¢ by ((v,w) = v(n(w))
—w(n(v)). Show that ((gv,w) # g{(v,w) in general, and thus linearity fails. Then
show that the commutator term in the definition of dn enables linearity to hold.

Equation (44) fits nicely with Green’s theorem. The line integral of the 1-form
n = Pdzx + Qdy around a simple closed curve equals the double integral of dn over
the curve’s interior. The generalization of this result to forms of all degrees is known
as the modern Stokes’ theorem. This theorem subsumes many results, including the
fundamental theorem of calculus, Green’s theorem, Gauss’s divergence theorem, and
the classical Stokes’ theorem, and it illuminates results such as Maxwell’s equations
from the theory of electricity and magnetism. We state it only for domains in RY,
but it holds much more generally. We will apply Stokes’ theorem only when the
surface in question is the unit sphere, which is oriented by the outward normal
vector.

THEOREM 4.8 (Stokes’ theorem). Let S = b§) be a piecewise-smooth-oriented
(N —1)-dimensional surface bounding an open subset Q of RN . Letn be an (N —1)-
form that is smooth on 0 and continuous on QLU bSY. Then

Jur= L
[29] Q

COROLLARY 4.7. If dn =0, then be n=0.

Theorem 4.8 holds whether or not b€} is connected, as long as one is careful
with orientation. If € is the region between concentric spheres, for example, then
the spheres must be oppositely oriented.

Each 1-form 7 on an open subset of RY can be written n = Zjvzl g;dx;, where
the g; are smooth functions. A 1-form 7 is called ezact if there is a smooth function
f such that n = df; thus g; = %. Readers who are familiar with using line integrals

J
to compute work will recognize that exact 1-forms correspond to conservative force
fields. More generally, a k-form 7 is exact if there is a (k — 1)-form « with da = 1.
A necessary condition for being exact arises from the equality of mixed partial
derivatives. A form 7 is called closed if dn = 0. That ezact implies closed follows
directly from d? = 0.

If a form is closed on an open set, it need not be ezact there. The standard

examples are of course
—ydx + xdy
=— 45.1
=g (45.1)
rdyNdz+y dz Ndx+ z de ANdy
(a2 +y? +22)2 '

(45.2)

These are defined on the complement of the origin in R? and R3, respectively.
The form in (45.2) provides essentially the same information as the electrical or
gravitational field due to a charge or mass at the origin.

Such forms lead to the subject of deRham cohomology. One relates the existence
and number of holes in a space to whether closed forms are exact.
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EXERCISE 4.41. Prove Proposition 4.7.

EXERCISE 4.42. For 0 < r < coand 0 < 6 < 27, put (z,y) = (r cos(), r sin(0)).
Show that dx A dy = rdr A df.

EXERCISE 4.43. For 0 < p < oo, for 0 < 6 < 27, and for 0 < ¢ < 7, put

(x,y,2) = (pcos(9) sin(¢), psin(0) sin(p), p cos()).
Compute dx A dy A dz in terms of p, 0, ¢, dp, df, do.

EXERCISE 4.44. Express the complex 1-form % in terms of z, y, dx, dy. Express
the form in (45.1) in terms of dz and dz.

EXERCISE 4.45. Show that dz A dzZ = —2idx A dy.
EXERCISE 4.46. Put z = re*?. Compute dz A dz.

EXERCISE 4.47. Put n = dx1 A dve + dzs A dxy. Find n A n. The answer is
not 0. Explain.

EXERCISE 4.48. Verify that the forms in (45.1) and (45.2) are closed but not
exact. (To show they are not exact, use Stokes’ theorem on concentric circles or
concentric spheres.) For n > 3, what is the analogue of (45.2) for the complement
of the origin in R™?

EXERCISE 4.49. Use wedge products to give a test for deciding whether a col-
lection of 1-forms is linearly independent.

EXERCISE 4.50. For n > k > 2, let rq,...7r; be smooth real-valued functions
on C™. Show that it is possible for drq,...,dry to be linearly independent while
Or1,...,0r are linearly dependent. Here Or = > g—;dzj. This problem is even
easier if we drop the assumption that the r; are real valued. Why?

7. Volumes of Parametrized Sets

Our next geometric inequality extends the ideas of Proposition 4.2 to higher
dimensions. Things are more complicated for several reasons, but we obtain a sharp
inequality on volumes of images of proper polynomial mappings between balls. We
will also perform some computations from multivariable calculus which are useful
in many contexts.

We begin with a quick review of higher-dimensional volume. Let 2 be an open
subset of R*. Let uy,...,u; be coordinates on R¥. The ordering of the Uj, Or
equivalently the du;, defines the orientation on RF. We write

dV =dVy, = de(u) =dui A+ ANduy,

for the Euclidean volume form. When u = F(z) is a change of variables, preserving
the orientation, we obtain

dV (u) = det(DF(x))dV (z).
Suppose F :  — RY is continuously differentiable and injective, except per-
haps on a small set. Let us also assume that the derivative map DF : R¥ — RN

is injective, again except perhaps on a small set. At each z, DF(z) is a linear
map from T, (R*) — Tp(,)(RY). Let (DF)(z)* denote the transpose of DF(x).
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Then (DF)(x)* : Tp(z)(RY) = Ti(RF). The composition (DF)*(z)DF () is then
a linear mapping from the space T,(RF) to itself, and hence, its determinant is
defined. The k-dimensional volume of the set F'(2) is then given by an integral

Vol(F / Vdet((DF)*DF)dV. (46)

EXAMPLE 4.9. Let Q denote the unit disk in R2. Define F, : Q@ — R* by

2

Fo(x,y) = (cos(a)x, cos(a)y, sin(a)(z? — y?), sin(a)2xy).

Computation shows that

cos(a) 0
B 0 cos(a)
DFa = 2zxsin(a) —2ysin(«a) (47)
2ysin(a) 2zsin(«)
Matrix multiplication shows that DF}(x,y)DF,(z,y) is the matrix in (48):
cos?(ar) + 4(x? + y?)sin?(a) 0 (48)
0 cos? () + 4(x? + y?)sin?(a) )

Hence, \/det(DFE*DF,) = cos?(a) +4(x? +y?)sin®(«). Thus, the area of the image
of the unit disk B; under Fj, is the integral

/B (cos?(a) + 4(x? + y?)sin?(a))dzdy = 7(1 + sin?(a)). (49)

ExXAMPLE 4.10. To anticipate a later development, we find the 3-dimensional
volume of S3. Let Q denote the open subset of R3 defined by the inequalities
0<r<1,0<6<2m 0< ¢ <2r. We parametrize (most of) S3 by

(r,0,0) — F(r,0,¢) = (r cos(f),r sin(6), s cos(p), s sin(e)).

Here s = v/1 — 2. Note that both 6 and ¢ range from 0 to 27; they are not the
usual spherical coordinates on S2. Computing DF and DF* gives

cos(0) sin(0) —rcos(¢) —sin(¢)
(DF)* = [ —r sin(0) r cos(f) 0 0
0 0 —s sin(¢) s cos(¢).

Multiplying (DF)* by DF and computing determinants yields the 3-dimensional
volume form rdrdfd¢ on the sphere. Thus

2 27 1
Vol(S?) = / / / rdrdfdg = (27r)21 = 2n°
0 0 0 2

We are interested in images of sets in C” under complex analytic mappings.
When f is a complex-analytic and equi-dimensional mapping, we write f’ for its
derivative and J f for its Jacobian determinant. Thus

(25
Jf =det (a—zi)

Volume computations simplify in the complex-analytic case, even when f is not
equi-dimensional. We could express Example 4.9 using the complex analytic map
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fao defined by fo(2) = (cos(a)z,sin(a)z?), and we easily obtain (49). The following
result in the equi-dimensional case explains why:

LEMMA 4.8. Suppose f : Q C C* — C™ is complex analytic. Define F: R*® —
R by F(x,y) = (Re(f(z +iy)), Im(f(z + iy))). Then det(DF) = |det(f")|* =
|Jf)%. In particular, F preserves orientation.

PROOF. When u = F(x) is a change of variables on R¥, then dV(u) =
+det((DF)(x))dV (x). The proof amounts to rewriting this equality using complex
variables and their conjugates and using the relationship between wedge products
and determinants.

Put w = f(z), where both z and w are in C". Put w = u + iv and z = = + iy.
In real variables we have

dVan (u,v) = dug Advy A~ - Aduy, Advy, = det(DF)dxy Adys A+ - - Adxy, Adyy,. (50)

We will write the volume forms in the z,Z variables in the domain and the w,w
variables in the target. Note that

dw; = Z 6fj dzp.

Hence dwi A -+ A dw,, —det( ) dzi AN+ Ndzp = (Jf) dzy A+ AN dzy,.
Recall from Exercise 4.45 that dzj NdZ; = (—2i)dz; A dy; and similarly for the
w variables. Putting everything together we get

AV (1, 0) = duy Advi A+ A dun A dvy = (%)"dwlAdwlA---AdwnAdmn

= |det(f’(z))|2(%)"dz1 ANdZL A Adzy AdZn
= |[det(f'(2))|?dzy Adyy A -+ Aday Ady, = |det(f'(2)2dVan (2, ). (51)
Comparing (50) and (51) finishes the proof. O

EXERCISE 4.51. Prove (51) using the real form of the Cauchy—Riemann equa-
tions. The computation is somewhat punishing; do it only in two complex variables
where you will deal with four-by-four matrices.

We continue discussing higher-dimensional volumes of complex analytic images.
Let ¥ denote the differential form on CV defined by

. N
7 _
=3 > d¢; A dC;.
j=1

The factor % arises because dzAdz = —2idxAdy in one dimension. See Exercise 4.45.
The form U*, where we wedge ¥ with itself k times, is used to define 2k-dimensional
volume. As before we take multiplicity into account.

DEFINITION 4.16. (2k-dimensional volume) Let Q be an open subset in CF,
and suppose that f : Q — C¥ is complex analytic. We define Vay(f, ), the (2k)-
dimensional volume with multiplicity counted, by (52)'

v = [ - Ly [ Zan@fJ . (52)
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REMARK 4.12. Equation (52) is the natural definition based on our L2
perspective. When f is not injective, the formula takes multiplicity into account.
For w € CV, let #(f,w) denote the number of points in QN f~!(w). Then we
could define Vai(f,Q2) by

Var (£, / #(f, w)dh? (w).

Here dh?*(w) is the 2k-dimensional Hausdorff measure. The so-called area formula
from geometric measure theory shows under rather general hypotheses, met in our
context, that this computation agrees with (52).

We are primarily interested in the case when €2 is the unit ball By; in this case
we abbreviate Vai(f, Q) by V. In (52) the upper star notation denotes pullback,
and the k! arises because there are k! ways to permute the indices from 1 to k.

* k
The form % is rdV, where dV = dVs is the Euclidean volume form in k
complex dimensions, for some function r depending on f. The next section provides
techniques for evaluating the resulting integrals.

REMARK 4.13. Caution! In the complex 2-dimensional case, the volume form
is h dVy, where h = EG — |F|? and

of
E= ||—||27

—|| ||2

<3f o

0z’ Ow
No square root appears here. By contrast, in the real case, the classical formula for
the surface area form is vV EG — F2, where E, G, F have analogous definitions.

EXAMPLE 4.11. We consider several maps from Bs to C?. Using (52) and the
methods of the next section, we obtain the following values:

(1) Put g(z,w) = (2,0, w). Then V, = %2

(2) For 0 <\ <2, put f(z,w) = (22, \zw,w?). Then V; = ww?
The first map is injective, and V; gives the volume of the image. For A # 0, the
second map is generically two to one. If (a, b, ¢) is in the image of f, and (a, b, ¢) is
not the origin, then f~'(a,b,c) has precisely two points. When \? = 2, we obtain
4 times the volume of the unit ball. See Theorem 4.9. When A = 0, the answer is
% times the volume of the unit ball.

EXAMPLE 4.12. Define h : C? — C3 by h(z,w) = (z, zw,w?). This map and
its generalization to higher dimensions will play an important role in our work,
because h maps the unit sphere in C? into the unit sphere in C3. Here it illustrates
the subtleties involved in computing multiplicities. Let p = (a,b,¢) be a point in
C3. Suppose first that a # 0. Then h~!(p) is empty unless b*> = ca?, in which
case h™1(p) is a single point. When a = 0, things change. If b # 0, then h~!(p) is
empty. If @ = b = 0, then h~!(p) consists of two points for ¢ # 0 and one point
with multiplicity two if ¢ = 0.
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We will use the expanded version of the far right-hand side of (53) to compute
volumes. Let Q be an open set in C*, and assume that f : Q@ — C¥ is complex
analytic. Here we allow the target dimension to differ from the domain dimension.
We define the pointwise squared Jacobian ||.J f||* by

WTFIP =D 1T (i F) P =D 1T (53)

The sum in (53) is taken over all increasing k-tuples. Equivalently, we form all
possible Jacobian determinants of k£ of the component functions and sum their
squared moduli. Recall, in the equi-dimensional case, that

g,
=d 21 )
Jg et <sz>

EXERCISE 4.52. Let a = Z?Zl df; ANOf;. Find a A a A a by expanding and
compare with (53).

The next lemma provides another method for finding V. Let r be a twice
differentiable function of several complex variables. The complex Hessian of r is

the matrix (r.7) = ( a‘?ZL). Lemma 4.9 relates the determinant of the Hessian
J 2;0%k
of ||f||? to the Jacobian Jf, when f is a complex analytic mapping. This lemma

allows us to compute one determinant, rather than many, even when N > n.

LEMMA 4.9. If f : C¥ — CN is complex analytic, then ||.J f||* = det ((||f||2)ﬁ)
PROOF. See Exercise 4.53. O

To find the volume (with multiplicity accounted for) of the image of a complex
analytic mapping f : Q2 C C* — CV, we must either integrate the determinant of

the Hessian of ||f]|> or sum the L? norms of each Jacobian J(fj,, ..., fj.) formed
from the components of f:
Van(£.9) = [ 1751PaVe = [ et ((151),5) Vs (54)

EXERCISE 4.53. Put r(2,z) = Zjvzl |£;(2)|? = ||f(2)||?. Use differential forms
to prove Lemma 4.9.

8. Volume Computations

Our next goal is to compute the 2n-dimensional volume of the image of the
unit ball in C" under the mapping z — z®™. As a warm-up, suppose n = 1. Then
the map z +— 2" covers the ball m times, and hence the area of the image with
multiplicity counted is m7m. We get the same answer using integrals:

2m 1
2
A= |mzm"2dV = m2/ / P2 1drdd = m2 =~ = rm. (55)
B 0 0 2m

In order to help us do computations and to simplify the notation, we recall
and extend our discussion of multi-index notation from Sect. 4. A multi-index «
is an n-tuple « = (aq,...,q,) of nonnegative numbers, not necessarily integers.
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. . n n
. = . | = |
When the «; are integers, we write |¢| Ej:l a; and ol HFl a;!l. In case
d = |a|, we write multinomial coefficients using multi-indices:

dy d d!
a) ol agl.ap!

Multi-indices are especially useful for writing polynomials and power series. If

z € C™, we write
n
o Y7
2= H(ZJ) !
j=1

n
oo = T Iz
j=1

The multinomial theorem gives the following result from Sect. 4:
n d N
el = (=) = 3 ()1
j=1

|a]=d
In order to help us find volumes in higher dimensions, we introduce the I'-
function. For x > 0, we let I'(z) denote the Gamma function:

F(:C)Z/ ettt
0

The integral is improper at ¢t = 0 for x < 1, but it converges there for z > 0. When n
is an integer and n > 0, then I'(n+1) = n!. More generally, I'(x+ 1) = 2T'(z). This
property enables one to extend the definition of the I'-function. The integral defining
['(z) converges when z is complex and Re(z) > 0. The formula I'(x + 1) = 2['(z)
provides a definition when —1 < Re(z) < 0 and, by induction, a definition whenever
Re(x) is not a negative integer or zero (Fig. 4.5).

FIGURE 4.5. The Gamma function

It is useful to know that I'(3) = /7. Exercise 4.55 asks for a proof; the result
is equivalent to the evaluation of the Gaussian integral from Proposition 3.4. One
squares the integral and changes variables appropriately.
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Let K1 denote the part of the unit ball in R" lying in the first orthant; that
Ky ={z:Y x7 <1land x; >0 for all j}. Let o be an n-tuple of positive real
numbers. We define an n-dimensional analogue of the Euler Beta function by

1T ()

B(a) = . 56
The expression (56) is the value of a certain integral
B(a) = 2"|al 2 1av(r). (57)

Ky
Note the use of multi-index notation in (57); 2« — 1 means the multi-index whose
j-th entry is 2a;; — 1. Thus r**~! means
n
2a; 71
r;
j=1
The notation r = (r1,...,r,) has a specific purpose. Certain integrals over balls in
C" (See Lemma 4.10) reduce to integrals such as (57) when we use polar coordinates
in each variable separately; that is, z; = r;e'%.
F( )’Vl

COROLLARY 4.8. The volume of the unit ball in R™ is INEES)) +1)

PROOF. Put a = (3,3,...,1) in (57) and use (56). O

303
EXERCISE 4.54. Verify that T'(z + 1) = 2I'(z) and T'(n + 1) = nl.
EXERCISE 4.55. Show that I'(3) = /7.

EXERCISE 4.56. Express the formula for the volume of the unit ball in R™ in
the form ¢, ™. (Use the previous two exercises.)

EXERCISE 4.57. Put 3(a,b) fo to=1(1 — t)>='dt for a,b > 0. This integral is
the classical Euler Beta functlon By first computmg I'(a )F(b), evaluate it in terms
of the I'-function. Explain the relationship with (57).

EXERCISE 4.58. Prove that (56) and (57) are equivalent.

REMARK 4.14. Integrals of the form f027r cos®(0)sin’ (0)dh (for integer exponents)
are easily evaluated by using the complex form of the exponential. Integrals of the

form fog cos¥(0)sin' (0)df are harder. Such integrals reduce to Beta functions:

s

1 3
B(a,b) = / t27 11 — ) dt = 2/ sin?*~1(0)cos? 1 (6)d#,
0

0
even when a and b are not integers.

EXERCISE 4.59. Use the Euler Beta function to verify the following duplication
formula for the I' function.

I'(x) _9l-2z L'(3)

I'(2z) D(z+3)
Suggestion: First multiply both sides by I'(z). The left-hand side of the result is
then S(z,z). Write it as a single integral over [0, 1] as in Exercise 4.57. Rewrite by

(58)

+
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symmetry as twice the integral over [0, %] Then change variables by 2t =1 — /5.
You will obtain 2'7273(z, ) and (58) follows.

EXERCISE 4.60. Put ¢(x,y) = FoHE). Find ¢(x, §) and ¢(x, 3). Show that

5. 1_0.(1+22)(3 + 2x)
¢($7§)_21 ° f

EXERCISE 4.61. (Difficult) Verify the following formula for I'(z)T'(1 — z):
D)1 —2) = —

sin(rz)
Suggestion: First obtain a Beta function integral. Convert it to an integral over

[0,00). Then use contour integration. The computation is valid for all complex
numbers except the integers. See also Exercise 3.45.

The T" function also arises naturally in the following exercise.

EXERCISE 4.62 (For those who know probability). Let X be a Gaussian random

variable with mean 0 and variance o2. Use the fundamental theorem of calculus

to find the density of the random variable X2. The answer is called the I'-density
with parameters § and 5-5. Use this method to show that I'(3) = /7.

We will evaluate several integrals using the n-dimensional Beta function. Recall
the notation |z|** =[] |2;]** used in (60).

LEMMA 4.10. Let d be a nonnegative integer, and let o be a multi-index of
nonnegative real numbers. Let B, denote the unit ball in C™. Then

n

2d _ ™
/Bnnzn W = (59)
/ oV = Bl 1) (60)

n

PROOF. We use polar coordinates in each variable separately; to evaluate (59),

we have
1:/ ||z||2ddV2n:(2ﬂ-)”/ x4 rjdVa
By Ky

We then expand ||r||?? using the multinomial theorem to obtain (61)
d
I=na"2">" ( ) / ray,. (61)
yl=a N1/ K+
Using formulas (56) and (57) for the Beta function in (61) we obtain

o d Bv—i—l 11 . d!
f=n Z() e Zm Tt~ " @) 2!

lv|=d [v]=d " lyl=d
(62)
By Exercise 4.30, the number of independent homogeneous monomials of degree

d in n variables is ("‘Lg*l). We replace the sum in the last term in (62) with this

number to obtain the desired result:
d (n+d-1)! B T

I:Wn(d—i—n)! (n=1td — (n—=1ln+d)

(63)
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The calculation of (60) is similar but easier as there is no summation to compute

B 1
[ lePeave, = o [ atiay, - mBletl)
" K, laf +n
O
For convenience we write (60) when n = 2 and a, b are integers:
2q1b!
2a 2 T=a-0:
[ teehav = o (64)

We return to the homogeneous mapping H.,,(z). We consider H,, : By — C¥|
where N = (k*,;"fl_ 1), the dimension of the space of homogeneous polynomials of
degree m in k variables. We use the following lemma to find (Theorem 4.9) an
explicit formula for the 2k-dimensional volume (with multiplicity counted) of the

image of the unit ball under H,,.
LEMMA 4.11. The pullback k-th power (H},(V))* satisfies the following:
(Hyp (0))F = m TR 2] PR D d V. (65)

Proor. Note first that (H (¥))* is a smooth (2k)-form, and hence a multiple
7 of dVa,. Note next that H,, is invariant under unitary transformations, and
therefore 7 must be a function of ||z||%. Since H,, is homogeneous of degree m, each
first derivative is homogeneous of degree m — 1. The (1, 1) form H},(¥) must then
have coefficients that are bihomogeneous of degree (m — 1, m — 1). The coefficient
7 of its k-th power must be homogeneous of degree 2k(m — 1). Combining the
homogeneity with the dependence on ||z||? gives the desired expression, except for
evaluating the constant m**1k!.

For simplicity we write |dz;|? for dz; A dZ;. To evaluate the constant it suffices
to compute the coefficient of |z;|?*(™=1. To do so, we compute dH,, and then work
modulo 2y, . .., z,. Thus, in the formula for (H},(¥))*, we set all variables equal to
zero except the first. Doing so yields

k
H;,(0) = m?|a P2 da? + mlaa 72 Y [z (66)
j=2
From (66) it suffices to compute
k
(m?|dz1* +my  |dz;[*). (67)

j=2
Expanding (67) yields
Km*ldzy Adzy AL Adzi A dZy,
and (65) follows by putting the factor |z,|?”~2* from (66) back in. O
THEOREM 4.9. Let f : B, — Bk be a proper complex analytic homogeneous

polynomial mapping of degree m. The 2n-dimensional volume Vi (with multiplicity
counted) is given by

nnl
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ProoF. Consider the function ||f||?. Since

IF P =1=l2|P™ = [[Hu ()]
on the unit sphere, and both f and H,, are homogeneous, this equality holds ev-

erywhere. Hence, ||f||?> = ||H.||?, and these two functions have the same complex
Hessian determinant. By Lemma 4.9 they determine the same volume form:

ZIsz )P = Zu

and hence by Lemma 4.11

H (¢)"
Vf:/ ( m( )) _ mn+1||zl|2n(m—l)dv'2n'

|
n n: B,

Lemma 4.10 yields

Vi = m"t1 il -
P am—1) +n) (n—l)! !
As a check we observe, when m = 1, that Vy = 75, which is the volume of B,,.
When n =1, we obtain Vy = mm, also the correct result as noted in (55). (]

The factor of m™ in (68) arises because the image of the unit sphere in C"
covers m times a subset of the unit sphere in the target. Compare with item (2) of
Example 4.11.

9. Inequalities

We are now ready to state a sharp inequality in Theorem 4.10. The proof of this
volume comparison result combines Theorems 4.6, 4.9, and Theorem 4.11 (proved
below). Theorem 4.11 generalizes Proposition 4.2 to higher dimensions. Our proof
here uses differential forms; the result can also be proved by elaborate computation.
See [D4] for the computational proof.

THEOREM 4.10. Let p : C* — CN be a polynomial mapping of degree m.
Assume that p(S*~1) C S2N=L1. Then V, < m™x" - BEquality happens if and only if
p is homogeneous of degree m.

PROOF. If p is a constant mapping, then m = 0 and the conclusion holds.
When p is homogeneous of degree m, the result is Theorem 4.9. When p is not ho-
mogeneous, we apply the process from Theorem 4.6 until we obtain a homogeneous
mapping. The key point is that the operation of tensoring with z on a subspace A
increases the volume of the image, in analogy with Proposition 4.2. Since tensoring
on a k-dimensional subspace gives the same result as tensoring k times on one-
dimensional subspaces, we need only show that the volume of the image increases
if we tensor on a one-dimensional space.

We must therefore establish the following statement, which we state and prove
as Theorem 4.11 below. Put f = (f1,..., fn). Put

g:(Zlfh---,anlvaa---;fN)- (69)
Then Vy <V, with equality only if f; = 0.
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Each tensor operation from Theorem 4.6 then increases the volume. We stop
when we reach a homogeneous map. Theorem 4.9 then gives the volume ©——, the
stated upper bound. O

With g as in (69), we need to verify that Vy < V,. We proved this result
(Corollary 4.2) when n = N = 1, in two ways. As noted above, one can prove the
general result in both fashions. We give the proof involving a boundary integral.

Let us first recall what we mean by the volume form on the unit sphere in RV,
It is convenient to introduce the notion of interior multiplication. Assume 7 is a
k-form, and write

n=dxr; NT+ L,

where 1 does not contain dx;. The contraction in the j-th direction, or interior
product with %, is the (k — 1)-form I;(n), defined by I;(n) = 7. Informally
speaking, we are eliminating dz; from n. More precisely, we define I;(n) by its
action on vectors v, ..., vg:

Lim)(ve,...,v5) = 77(i Ve, UE).

) ) 6xj ) 3 )

We use this notation to write a standard expression from calculus. The Euclidean
(N — 1)-dimensional volume form on the sphere is given by

ON— 1—2:17 J+1I (dzy A+ Ndxy).

For example, when N = 2 (and x,y are the variables), we have o1 = zdy — ydzx.
When N = 3 (and x,y, z are the variables), we have

oo =x dyNdz —y dx Ndz + z dx A dy.

Note that doy_1 = N dVy, where dVy is the volume form on Euclidean space. It
follows immediately from Stokes’ theorem that the (N — 1)-dimensional volume of
the unit sphere is IV times the N-dimensional volume of the unit ball.

REMARK 4.15. In the previous paragraph, oy_1 is a differential form, and
don—_1 is its exterior derivative. Calculus books often write do for the surface area
form (and ds for the arc-length form), even though these objects are not differential
forms. The symbol d is simply irresistible.

EXERCISE 4.63. Verify the following formulas for the (N — 1)-dimensional vol-
ume Wy of the unit sphere in RV:

[ ] W1=2.
° W2:27T.
[ W3:47T.
® W4:27T2.

o Wy =572

Put p(z) = ||z]|>. The unit sphere S?"~! is the set of points where p = 1.
The differential form dp is orthogonal to the sphere at each point, and the cotan-
gent space to the sphere is the orthogonal complement to dp. The decomposition
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dp = dp + Op will be crucial to our proof. Since dp is orthogonal to the sphere, we
may use the relation dp = —9p when doing integrals over the sphere.

We can express the form o9, _1 in terms of complex variables. Let Wﬁ denote
the (2n — 2)-form defined by eliminating dz; A dz; from dz; AdzZ1 A -+ Adz, A dZ,.
For 1 < j <, put z; = x; + iy;. Write z; = zjgzj and y; = 274 Substituting
in the form 05,1 and collecting terms, we obtain

(Zjdzj - Edej) AW =, (70)

n
29
=1

v
Ozt = (5)"

J

As a check, we note when n = 1 that this expression equals %(zdi — Zdz). Putting
2z = € then yields df, as expected. As a second check, we compute d of the
right-hand side of (70), using dz; A dz; = —2i dz; A dy;, obtaining

i
5
as expected (since we are in 2n real dimensions).

With these preparations we can finally show that the tensor product operation
increases volumes; in other words, Vg > Vy (unless f; = 0).

) (2n)(—28)"dVay, = 2n dVay,,

THEOREM 4.11. Assume that f = (f1,..., fn) is complex analytic on the unit
ball By, in C™. Define the partial tensor product Ef by

Ef =(z1fi,22f1, - 2 f1s fo, oo I
Then Vey > Vi unless f = 0.

PROOF. We prove the result assuming f has a continuously differentiable ex-
tension to the boundary sphere. [D4] has a proof without this assumption.

Recall that Vy = [, [|Jf][*dV. Here, as in (53), Jf denotes all possible
Jacobians formed by selecting n of the components of f. In case f is an equi-
dimensional mapping, we also have

Vf:Cn/B Ofy NOFL NOfa NOfa A+ NOf AN fn. (71)

In general V; is a sum of integrals, as in (71), over all choices of n components. The
constant ¢, equals (4)"; see the discussion near Definition 4.16.

We want to compute Vgy = [||J(Ef)||>. Many terms arise. We partition
these terms into three types. Type I terms are those for which the n functions
selected among the components of Ff include none of the functions z;f; for 1 <
j < n. These terms also arise when computing Vy. Hence terms of type I drop
out when computing the difference Vs — V¢, and we may ignore them. Type
IT terms are those for which we select at least two of the functions z;f;. These
terms arise in the computation of Vgy, but not in the computation of V. All
of these terms thus contribute nonnegatively. The type III terms remain. They
are of the form (z; f1, fiy,---, fi,). We will show, for each choice (fi,,..., fi,) of
n — 1 of the functions fs,..., fn, that the sum on j of the volumes of the images
of (2jf1, fins--- fi,) is at least as large as the volume of the image of the map
(f1, fizs- -+, fin). Combining these conclusions shows that Vg > V7.
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For simplicity of notation, let us write the (n — 1)-tuple as (fa,..., fn). By
the above paragraph, it suffices to prove the result when f = (f1,..., fn) is an
equi-dimensional mapping. In the rest of the proof, we let f denote this n-tuple.

Since f is complex analytic, df; = 0f;. We can therefore write the form in
(71) as an exact form and then apply Stokes’ theorem to get

Vf:cn/B A(fy AT N OS2 AT A A O fu A DT)

n

:cn/ FINOfL ANOfa NOfa A=~ ANOfp ANOfn. (72)
S2n—1

For 1 < j < n we replace f; in (72) with z; f; and sum, obtaining

VEf > CnZ/ ngl A\ 8 ijl) /\8f2 A\ 8f2 VANEERWAN 8fn /\8_fn. (73)

Note that d(z; fi1) = fidz; + z;df1 by the product rule. Using this formula in
(73) and then subtracting (72) from (73) shows that the excess is at least

Ver = Vi 2 cn/ legl D) f10fi NOfa NOf2 A NOfn NOfn
+cn/ 111120 2dZ) NOf2 NOFa A+ NOfn A Dfn. (74)
Sanl j:l

Since Y |zj|* = 1 on the sphere, the expression in the top line of (74) vanishes. We
claim that the other term is nonnegative. We will show that the form
n
enl 1P 2dZ;) NOfa NOF2 A+ NOfn N
j=1
arising in (74) is a nonnegative multiple of the real (2n — 1)-dimensional volume
form on the sphere, and hence, its integral is nonnegative.
It suffices to prove that the form

n:Cngp/\an/\a_fz/\"'/\afn/\m (75)

is a nonnegative multiple of the volume form on the sphere.

Note that df; = df;, because f; is complex analytic. We wish to write df; in
terms of a particular basis of 1-forms. We would like to find independent differential
1-forms wy,...,w,—1, with the following properties. Each of these forms involves
only the dz; (not the dz;). Each w; is in the cotangent space to the sphere. Finally,
these forms, their conjugates, and the additional forms dp and Op are linearly
independent at each point. Doing so is not generally possible, but we can always
find w1,...,wy—1 such that linear independence holds except on a small set. After
the proof (Remark 4.17), we explain how to do so.

Given these forms, we work on the set U where linear independence holds. We
compute the exterior derivatives of the f; for 2 < j < n in terms of this basis:

n—1

dfj = 0f; =Y Bjwr + B;dp.
k=1
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On the intersection of U and the sphere, we obtain

n—1 n—1
dfj = 8fj = Z Bjkwk + Bjap = Z Bjkwk — ngp.
k=1 k=1
0f; =Y _ Bjwx + B;0p.
k=1

In these formulas, Bji denotes the coefficient function; Bj; can be written Ly (f;)
for complex vector fields L dual to the wy.

These formulas allow us compute the wedge product in (75) very easily. We
can ignore all the functions B;, because the wedge product of Op with itself is 0.
We obtain

n= cn|det(Bjk)|25p AW ADLA - AWpo1 AWp_1. (76)
In (76), the index k runs from 1 to n — 1, and the index j runs from 2 to n. Hence,
it makes sense to take the determinant of the square matrix Bj;, of functions. Since
the wy, and their conjugates are orthogonal to the normal direction dp, the form in

(76) is a nonnegative multiple of og,,_1.
We have verified that Vg — V¢ > 0. O

REMARK 4.16. Let f and E'f be as in Theorem 4.11. Assume f; is not identi-
cally 0. For all z in the ball, |[(Ef)(2)||? < ||f(2)||?, with strict inequality except

where f1(z) = 0. There is no pointwise inequality relating det ((||Ef||2)ﬂ) and
det ((||f||2)ﬂ) But, Theorem 4.11 and Lemma 4.9 yield

et (enipye) av > [ e ((151P),z) av.

Thus [|Ef||* is (pointwise) smaller than ||f]|?, there is no pointwise inequality
between their Hessian determinants, but the average value (integral) of the Hessian
determinant of ||Ef||? is larger than the average value of the Hessian determinant

of || f1.

REMARK 4.17. We show how to construct the 1-forms used in the proof. First
consider S C C2?. We can put w; = z dw — w dz. Then, except at the origin,
the four 1-forms wy,@1,dp, dp do the job. The three 1-forms wy,@;,dp — dp form
a basis for the cotangent space at each point of the unit sphere.

In the higher-dimensional case, we work on the set U where z, # 0. The
complement of U in the sphere is a lower-dimensional sphere, and hence, a small
set as far as integration is concerned. For 1 < j < n — 1, we define w; by

zn dzj — zj dzp
Wj=—F—5—7"—"5—

12517 + |zn]?
The forms w; are linearly independent on U, and each is orthogonal to dp. See the
next section and Exercise 4.71 for their role in CR geometry.

We now discuss in more detail why 7 is a nonnegative multiple of the (2n — 1)-
dimensional volume form on the sphere. One way to verify this fact is to introduce
polar coordinates in each variable separately and compute. Thus, z; =r; e where
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each r; is nonnegative. On the unit sphere we have the relation ) r? = 1; it follows
that ) rjdr; = 0 on the sphere. We therefore use all the 6, as coordinates, but we
use only rq,...,r,—1. The (2n — 1)-dimensional volume form on the sphere turns
out to be (where the product is a wedge product)

n—1
H I‘de’j A\ ij A db,,.
j=1
We continue this geometric approach by noting the following simple Lemma,
expressing the Cauchy—Riemann equations in polar coordinates.
LEMMA 4.12. Assume h is complex analytic in one variable. Use polar coordi-
nates z = re'?. Then % = m'%.
PRrROOF. We will use subscripts to denote partial derivatives in this proof. Since
h is complex analytic, hz = % = 0. It follows that
oh  0OhO ;
hy =20 = TROZ e,
dor 0z Or
Similarly,
Oh  0h 0z

90~ 9200

= h,rie’” = rih,.

ho =
O

REMARK 4.18. One can also prove Lemma 4.12 by observing that it suffices to
check it for h(z) = 2*, for each k.

EXERCISE 4.64. Prove Lemma 4.12 as suggested in the Remark.

A continuously differentiable function of several complex variables is complex
analytic if and only if it is complex analytic in each variable separately. (The
same conclusion holds without the hypothesis of continuous differentiability, but
this result, which we do not need, is much harder to prove.) The geometry of the
sphere suggests, and the easier implication justifies, working in polar coordinates in
each variable separately.

Put z; = r;e% for 1 < j <n. Computation yields

de = eiej dI‘j “+ ’L'I‘jewj dﬁj

Note that Y " r;dr; = 0 on the sphere. We compute dp = > z;dz; as follows:
n n n n
5/) = Z zjdEj = Z I‘de‘j — ZZ I‘?d@j = —Z(Z r?dGJ)
j=1 j=1 j=1 j=1
We can express the form 7 from (75) in terms of these new variables. We
provide the details only when n = 2. For ease of notation, we write z = e’ and
w = se'?. We obtain
2dZ + wdw = —i(r*df + s*dg). (77)
We compute dg Adg, where g = f5 in (75). Now that we do not have subscripts
on the functions, we can use subscripts to denote partial derivatives. Since g is
complex analytic, we have

0g = dg = grdr + godf + gsds + gdo.
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The Cauchy-Riemann equations in polar coordinates give gg = rig, and g4 = sigs.
From these equations we find

dg = g, (dr +irdf) + g.(ds + isdg). (78)
We need to compute dg A dg. We obtain
g A Og = |g,|*(—2irdr A df) + |gs|*(—2isds A de)
49,75 (—isdr A dp + irdfds + rsdf A dep)

+ gsGr(—isdr A d + irdfds — rsdf A de). (79)
We wedge (77) with (79) and collect terms in the order drdfd¢. The result is
(2dZ 4+ wdw) A dg A Dg = —2r|sg, — 7g,|>drdfde. (80)

The form 7 in question is ()% times the expression in (80). Hence, we see that
n=|sgr — rgs|2gdrd9dqb, (81)

which is a nonnegative multiple of the volume form rdrdfd¢ for the sphere.
We gain considerable insight by expressing sg, — rgs in terms of g, and g,.
Using the chain rule and some manipulation, we get

|5gr = 19s|” = [5922, — rguws|? = |seg. —re'?g,|* = [Wg. — Zgu[>.  (82)
We can interpret (82) geometrically. Define a complex vector field L by
0 9]
L=w——Z—. 83
Yoz T “ow (83)

Then L is tangent to the unit sphere, and (81) and (82) yield n = 1|L(g)|* 3. In
the next section, we will interpret L in the context of CR Geometry.

EXERCISE 4.65. Use polar coordinates to compute the form » from (75) in 3
complex dimensions.

EXERCISE 4.66. Show that {2%}, as « ranges over all nonnegative integer multi-
indices, is a complete orthogonal system for A%. Here A? denotes the complex
analytic functions in L?(B,,).

EXERCISE 4.67. Let ¢ = |[2%]|22 for the unit ball B,. Find a simple formula
for the Bergman kernel B(z, %) for the ball, defined by
|20c

B(z,7) = Z%.

EXERCISE 4.68. Compute V; if f(z,w) = (2%, w’). Also compute Vj, if g(z) =
(2%, zw?, wbtl).

EXERCISE 4.69. Express the (2n — 1)-dimensional volume of the unit sphere
S$27=1in terms of the 2n-dimensional volume of B,,. Suggestion: Use (71) and (72)
when f(2) = z.

EXERCISE 4.70. Consider the Hilbert space H consisting of complex analytic
functions on C™ that are square-integrable with respect to the Gaussian weight

function exp(—||z||?). Show that the monomials form a complete orthogonal system
for H.
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10. CR Geometry

CR Geometry considers the geometry of real objects in complex spaces. The
name itself has an interesting history, which we do not discuss here, other than to
say that CR stands both for Cauchy—Riemann and for Complex—Real. See [DT] for
a survey of CR Geometry and its connections with other branches of mathematics.
See [BER] for a definitive treatment of the subject. In this section we mostly
consider simple aspects of the CR Geometry of the unit sphere in C”.

Let S2"~! denote the unit sphere in R?>". Consider a point p in S2"~1. If
we regard p as a unit vector v (from 0 to p) in R?", then v is orthogonal to the
sphere at p. Hence, any vector w orthogonal to v is tangent to the sphere. Put
r(x) = Zle x? — 1. Then the unit sphere is the zero-set of r, and furthermore,
dr(z) # 0 for z on the sphere. We call such a function a defining function for the
sphere. The 1-form dr annihilates the tangent space T,,(S?"~!) at each point. It
defines the normal direction to the sphere.

In this section we write (n, L) for the contraction of a 1-form n with a vector

field L. Previously we have been writing n(L). A vector field L = Zle ajﬁ on
J

R2" is tangent to S2*~! if and only if
2 or
0= {dr,L) =dr(L) = L(r) = —
(@ ) =arll) = 1) = 3 s

on the sphere.

Given the focus of this book, we regard R?" as C" and express these geometric
ideas using complex vector fields. A new phenomenon arises. Not all directions in
the tangent space behave the same, from the complex variable point of view.

Let X be a complex vector field on C”. We can write

- 0 - 0
X = Zaja_zj +ij8_3j
=1 =1

where the coefficient functions a;, b; are smooth and complex valued. Each complex
vector field is the sum of two vector fields, one of which involves differentiations in
only the unbarred directions, the other involves differentiations in only the barred
directions. Let TH%(C™) denote the bundle whose sections are vector fields of the
first kind and 7%!(C™) the bundle whose sections are of the second kind. The only
vector field of both kinds is the 0 vector field. We therefore write

T(C" ®C =T"°(C") @ T%(C™). (84)

The tensor product on the left-hand side of (84) arises because we are considering
complex (rather than real) vector fields. The left-hand side of (84) means the
bundle whose sections are the complex vector fields on C". We next study how the
decomposition in (84) applies to vector fields tangent to S2"~1.

Let TH9(5?"~1) denote the bundle whose sections are complex vector fields of
type (1,0) and tangent to S?"~!. Then T%!(5?"~1) denotes the complex conjugate
bundle. For p on the sphere, each of the vector spaces T,°(S**~') and T"' (5%~ 1)
has complex dimension n—1. But 7,,(5?"~!)®C has dimension 2n—1. Hence, there
is a missing direction. How can we describe and interpret this missing direction?
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Observe first that the commutator [L, K] of vector fields L, K, each of type
(1,0) and tangent to S?"~! also satisfies these properties. That [L, K] is of type
(1,0) follows easily from the formula [L, K] = LK — KL. That [L, K] is tangent
follows by applying this formula to a defining function r:

[L,K](r) = L(K(r)) = K(L(r)) =0—-0=0.

Since K is tangent, K(r) = 0 on the sphere. Since L is tangent, L(K(r)) = 0
there. By symmetry, K(L(r)) = 0 as well. Note Remark 4.19. By symmetry
considerations, the commutator of two (0,1) tangent vector fields is also of type
(0,1) and tangent. On the sphere, however, the commutator of each nonzero (1, 0)
vector field L with its conjugate L will have a nonvanishing component in the
missing direction.

REMARK 4.19. Warning! Is the derivative of a constant zero? The function
R(z,y) = 2% +y? —1 equals 0 everywhere on the unit circle, but ‘g—f = 22 and hence
is NOT zero at most points. The problem is that the differentiation with respect
to x is not tangent to the unit circle.

We can abstract the geometry of the sphere as follows:

DEFINITION 4.17. The CR structure on S?>"~! is given by the subbundle V =
TH9(S?"=1) which has the following properties:
(1) VNV ={0}.
(2) The set of smooth sections of V' is closed under the Lie bracket.
(3) V @V has codimension one in T'(S?"!) @ C.

DEFINITION 4.18. A CR manifold of hypersurface type is a real manifold M
for which there is a subbundle V' C T'(M) ® C satisfying the three properties from
Definition 4.17.

Any real hypersurface M in C" is a CR manifold of hypersurface type. Since
V @V has codimension one in T'(M) ® C, there is a nonvanishing 1-form 7, defined
up to a multiple, annihilating V' @ V. By convention, we assume that this form is
purely imaginary. (See Exercise 4.76 for an explanation of this convention.) Thus,
(n, L) = 0 whenever L is a vector field of type (1,0) and similarly for vector fields
of type (0,1).

DEFINITION 4.19. Let M be a CR manifold of hypersurface type. The Levi
form X is the Hermitian form on sections of T19(M) defined by

/\(Laf) = <77a [vab

Let us return to the unit sphere. Near a point where z, # 0, for 1 < j <n—1,
we define n — 1 vector fields of type (1,0) by

0 0
Li=Z,— —Z;—. 85
= 0z; “ 0zn, (85)
A simple check shows that each L; is tangent to the sphere. Similarly the complex
conjugate vector fields fj are tangent. These vector fields are linearly independent
(as long as we are working where z,, # 0). There are 2n — 2 of them. The missing
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direction requires both unbarred and barred derivatives. We can fill out the complex
tangent space by setting

0 0
T=zng——Zn—. 86
: 0zn & 0z, (86)
Then Ly,...,Lp—1,L1,...,Ln_1, T span the complex tangent space to S?"~! at
each point where z, # 0.

EXERCISE 4.71. Verify that the L; from (85) and T from (86) are tangent to
the sphere. Let w; be as in Remark 4.17. Verify that (L;,w,) = 1.

EXERCISE 4.72. Find a purely imaginary 1-form annihilating 7*°®T%"! on the
sphere.

EXERCISE 4.73. Compute the commutator [L;, Ly].

EXERCISE 4.74. Use the previous two exercises to show that the Levi form on
the sphere is positive definite.
EXERCISE 4.75. Show that translating the sphere leads to the defining function

n—1

(¢, C) = D _1G + [¢al® + 2Re(Gn).- (87)

j=1
Show that a more elaborate change of variables leads to the defining function:

n—1
r(w,w) = Z lw;il® + 2Re(wy,). (88)

j=1
Suggestion: First do the case n = 1.
EXERCISE 4.76. Show that A(L, K) = A(K, L).

EXERCISE 4.77. Let r be a smooth real-valued function on C™. Assume that
dr does not vanish on M, the zero-set of r. Then M is a real hypersurface and
hence a CR manifold. Compute the Levi form A on M in terms of derivatives of r.
The answer, in terms of the basis {L;} given below for sections of T19(M), is the
following formula:

Ajk = rﬁ|rn|2 — Tty = TapTi T + Tnali Ty
Suggestion: Work near a point where 7., # 0. For 1 < j <n — 1, define L; by
0 ry 0

L;

- B_ZJ B T2, OZn
and define Ly, in a similar manner. Find the 1-form 7, and compute [L;, Ly].

REMARK 4.20. The answer to Exercise 4.77 is the restriction of the complex
Hessian of 7 to the space T1(M).

EXERCISE 4.78. Find the Levi form on the hyperplane defined by Re(z,) = 0.
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The zero-set of (88), a biholomorphic image of the sphere, is an unbounded
object H, commonly known as the Heisenberg group. Put n = 2 and define A by

0 0
A= a—u}l - wla—u}2.
Then A, A, and [A, A] form a basis for the sections of T'(H) ® C at each point. See
[DT] and its references for considerable information about the role of the Heisenberg
group in complex analysis, geometry, and PDE.

We next use the CR geometry of the unit sphere to briefly study harmonic
polynomials. For simplicity we work on S3, where the vector field L from (83)
defines the CR structure. Recall that (z,w) denotes the variable in C2. We also
recall from Sect. 11 of Chap. 1 that a smooth function is harmonic if its Laplacian
is 0. We can express the Laplace operator in terms of complex partial derivatives;
a (possibly complex-valued) smooth function u is harmonic on C? if and only if

Uz + Uyww = 0.

As in Sect. 13 from Chap. 2, it is natural to consider harmonic homogeneous
polynomials. Here we allow our harmonic functions to be complex valued. The
complex vector space Vy, consisting of homogeneous polynomials of degree d (with
complex coefficients) in the underlying 2n real variables, decomposes into a sum of
spaces V), 4. Here p 4+ ¢ = d and the elements of V}, ; are homogeneous of degree p
in z and of degree ¢ in Z. We obtain a decomposition Hq = ) H,, 4 of the space of
harmonic homogeneous polynomials.

ExaMPLE 4.13. Put n = 2 and d = 2. By our work in Chap. 2, the space Ha
is 9-dimensional. We have the following:
e H, is spanned by 22, 2w, w?.
e H; ; is spanned by 2w, Zw, |2]? — |w|?.
e Hj is spanned by Z2, 7w, W2,
As in Chap. 2, the sum of these three spaces is the orthogonal complement of the
(span of the) function |z|? 4+ |w|? in the space of polynomials of degree 2.

Interesting results about eigenvalues and the CR vector fields also hold. We
give a simple example. For each pair a, b of nonnegative integers, observe that the
monomials z°w" and Z%w" are harmonic. Elementary calculus yields

L(z°w") = az* '@ t!

L(zw") = —bz* b1,
Combining these results shows that

LL(zw") = —b(a + 1)2°w".

LL(zw") = —a(b+ 1)2°w"

Thus the harmonic monomials 2°W" are eigenfunctions of the differential opera-

tors LL and LL, with eigenvalues —b(a + 1) and —a(b + 1). Hence, they are also
eigenfunctions of the commutator T = [L, L], with eigenvalue a — b.
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11. Positivity Conditions for Hermitian Polynomials

This section aims to glimpse recent research directions along the lines of this
book. We state and discuss, but we do not prove, an analogue of the Riesz—Fejer
theorem for positive polynomials on the unit sphere. We offer an application of this
result to proper mappings between balls.

The Riesz—Fejer theorem (Theorem 1.1) characterizes nonnegative trig polyno-
mials; each such polynomial agrees on the circle with the squared absolute value of a
single polynomial in the complex variable z. We naturally seek to extend this result
from the unit circle to the unit sphere in C™. Things become more complicated but
also more interesting.

We start with a Hermitian symmetric polynomial r(2,z) = 3 5 Capz®Z” of
degree d in z € C™. We can always bihomogenize r by adding a variable as follows.
We put r(0,0) = 0. For z # 0 we put
z
T
Then ry is homogeneous of degree d in the variables z,¢ and also homogeneous of
degree d in their conjugates. The polynomial rp is thus determined by its values on
the unit sphere in C"*!. Conversely we can dehomogenize a bihomogeneous poly-
nomial in two or more variables by setting one of its variables (and its conjugate!)
equal to the number 1.

TH(Zu t727%) = |t|2dr(

SRS

EXAMPLE 4.14. Put n = 1 and put r(2,%) = 22 + z2. We compute rg:

_ z Zz _
ri(z, 2,8 = 1177+ (5)7) = T2 + 2

EXAMPLE 4.15. Put r = (|zw|? — 1)2+|2|%. Then r is positive everywhere, but
ri, while nonnegative, has many zeroes.

There is no loss in generality in our discussion if we restrict our attention to
the bihomogeneous case. Let R be a bihomogeneous polynomial in n variables (and
their conjugates). Assume R(z,Z) > 0 on the unit sphere. As a generalization of
the Riesz—Fejer theorem, we naturally ask if there exist homogeneous polynomials
f1(2),..., fx(z) such that

K
R(z,2) = lf ()" = Z |f5(2)]%.

We call R a Hermitian sum of squares or Hermitian squared norm. Of course we
cannot expect K to be any smaller than the dimension. For example, the polynomial
E?Zl |z;]* is positive on the sphere, but cannot be written as a Hermitian squared
norm with fewer terms. Furthermore, not every nonnegative R is a Hermitian
squared norm. Even restricted to the unit sphere, such a result fails in general, and
hence, the analogue of the Riesz—Fejer theorem is more subtle.

EXAMPLE 4.16. Put R(2,%) = (]z1|> — |22/?)%. Then R is bihomogeneous and
nonnegative. Its underlying matrix C,p of coeflicients is diagonal with eigenvalues
1,—2,1. Suppose for some f that R(z,%) = ||f(2)||>. Then f would vanish on the
subset of the unit sphere defined by [z1|? = |22|* = % (a torus), because R does.
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A complex analytic function vanishing there would also vanish for [21]? < % and
|22]? < % by the maximum principle. Hence f would have to be identically zero.
Thus R does not agree with a squared norm of any complex analytic mapping. The
zero-set of R does not satisfy appropriate necessary conditions here.

The following elaboration of Example 4.16 clarifies the matter. Consider the
family of polynomials R, defined by

Re(2,2) = (|21 — [22]*)? + €| z1]?| 22/

For each ¢ > 0, we have R.(z,%Z) > 0 on the sphere. By Theorem 4.12 below there
is a polynomial mapping f. such that R, = ||f.||* on the sphere. Both the degree
and the number of components of f. must tend to infinity as € tends to 0. See [D1]
for a lengthy discussion of this sort of issue.

From Example 4.15 we discover that nonnegativity is too weak of a condition
to imply that R agrees with a Hermitian squared norm. See also Example 4.18.
On the other hand, when R(z,Z) > 0 on the sphere, the conclusion does hold. See
[D1] for detailed proofs of Theorem 4.12 and Theorem 4.13 below. The proof of
Theorem 4.12 there uses the theory of compact operators, but other proofs have
been found.

THEOREM 4.12. Let r be a Hermitian symmetric bihomogeneous polynomial in
n variables and their conjugates. Suppose r(z,Z) > 0 on S?*"~1. Then there are
positive integers d and K, and a polynomial mapping g : C* — C¥, such that

[1212%r(2,2) = llg(2)II*.

We can remove the assumption of bihomogeneity if we want equality to hold
only on the unit sphere.

THEOREM 4.13. Let r be a Hermitian symmetric polynomial in n variables and
their conjugates. Assume that r(z,Z) > 0 on S?"~'. Then there are an integer N
and a polynomial mapping h such that, for z € S?"~1,

r(z,2) = [[h(2)|].
PROOF. We sketch the derivation of Theorem 4.13 from Theorem 4.12. First we
bihomogenize r to get rg(z,t,z,t), bihomogeneous of degree m in the z, ¢ variables.
We may assume m is even. The polynomial rg could have negative values on the

sphere ||z]|? + [t|? = 1. To correct for this possibility, we define a bihomogeneous
polynomial F by

FC(Zazvtaz) = TH(Z,t,E,Z) =+ C'(”Z||2 - |t|2)m

It is easy to show that we can choose C' large enough to make F¢ strictly positive
away from the origin. By Theorem 4.12, we can find an integer d such that

(217 + [t12) Fo (=, %,t,T) = [lg(2, )]
Setting ¢t = 1 and then ||z]|> = 1 shows, for z € S?"~1, that
2'r(2,7) = |lg(=, 1>
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The following Corollary of Theorem 4.13 connects these ideas with proper
complex analytic mappings between balls.

COROLLARY 4.9. Let f = § : C" — CV be a rational mapping. Assume that

the image of the closed unit ball under f lies in the open unit ball in CV. Then
there are an integer K and a polynomial mapping g : C* — CX such that %

maps the unit sphere S>*~' to the unit sphere S?(N+K)—1,

PROOF. The hypothesis implies that |q|?> — |[p||? is strictly positive on the
sphere. By Theorem 4.13 there is a polynomial map g such that |q|* —||p||? = ||g||?
on the sphere. Then % does the job. O

This corollary implies that there are many rational mappings taking the unit
sphere in the domain into the unit sphere in some target. We choose the first several
components to be anything we want, as long as the closed ball gets mapped to the
open ball. Then we can find additional components, using the same denominator,
such that the resulting map takes the sphere to the sphere. The following simple
example already indicates the depth of these ideas.

EXAMPLE 4.17. Consider the maps py : C?> — C given by px(z,w) = Azw.
Then py maps the closed ball in C? inside the unit disk if |\|> < 4. If this condition
is met, then we can include additional components to make p, into a component of
a polynomial mapping sending S® to some unit sphere. In case A = /3, we obtain
the map (v/3zw, 2%, w?), which is one of the group-invariant examples from Sect. 3.
If V3 < A < 2, then we must map into a dimension higher than 3. As X\ approaches
2, the minimum possible target dimension approaches infinity.

We conclude with a surprising example that combines ideas from many parts
of this book.

EXAMPLE 4.18. ([D1]). There exists a bihomogeneous polynomial r(z,Zz), in

three variables, with the following properties:

e 1r(2,Z) >0 for all z.

e The zero set of 7 is a copy of C (a one-dimensional subspace of C?).

e 0 is the only polynomial s for which rs is a Hermitian squared norm.
We put 7(2,%) = (|2122]% — |23|*)? + |21/|®. The nonnegativity is evident. The zero-
set of r is the set of z of the form (0, 22,0) and hence a copy of C. Assume that
rs is a Hermitian squared norm ||A||?. Consider the map from C to C? given by
t e (2,1 +1t,t) = z(t). Pulling back yields the equation

T(Z(t)vxt)) S(Z(t)vxt)) = ||cmtm +o ||27

where - - - denotes higher-order terms. Hence, the product of the lowest order terms
in the pullback of s with the lowest order terms in the pullback of 7 is ||e, || [t*™.
A simple computation shows that the lowest order terms in the pullback of r are

20 4 20" + 5" = 20¢1°(1 + cos(26)). (89)

There is no trig polynomial p other than 0 for which multiplying the right-hand
side of (89) by an expression of the form [t|?*p(6) yields a result independent of 6.
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No such example is possible in one dimension, because the only bihomogeneous
polynomials are of the form c|t|?™. It is easy to find a nonnegative polynomial g(t, )
that does not divide any Hermitian squared norm (other than 0); for example,

242+ 12 + 7 = 2t2(1 + cos(20))
does the job. Our example is surprising because r is bihomogeneous.

The theorems, examples, and geometric considerations in this chapter illustrate
the following theme. When passing from analysis on the unit circle to analysis in
higher dimensions, the mathematics becomes both more complicated and more
beautiful. Ideas revolving around Hermitian symmetry appear throughout. This
perspective leads naturally to CR Geometry. We refer again to [DT] for an intro-
duction to CR Geometry and to its references for viewing the many directions in
which Hermitian analysis is developing.



CHAPTER 5
Appendix

1. The Real and Complex Number Systems

In this appendix, we organize some of the mathematical prerequisites for reading
this book. The reader must be thoroughly informed about basic real analysis (see
[Ro] and [F1]) and should know a bit of complex variable theory (see [A] and [D2]).

The real number system R is characterized by being a complete ordered field.
The field axioms enable the usual operations of addition, subtraction, multiplica-
tion, and division (except by 0). These operations satisfy familiar laws. The order
axioms allow us to manipulate inequalities as usual. The completeness axiom is
more subtle; this crucial property distinguishes R from the rational number sys-
tem Q. One standard way to state the completeness axiom uses the least upper
bound property:

DEFINITION 5.1. If S is a nonempty subset of R and S is bounded above, then
S has a least upper bound «, written sup(S), and called the supremum of S.

Recall that a sequence of real numbers is a function n — x,, from the natural
numbers to R. (Sometimes we also allow the indexing to begin with 0.) The
sequence {x,} converges to the real number L if, for all € > 0, there is an integer
N¢ such that n > N, implies |z, — L| < e.

The least upper bound property enables us to prove that a bounded monotone
nondecreasing sequence {z,} of real numbers converges to the supremum of the
values of the sequence. It also enables a proof of the fundamental result of basic
real analysis: a sequence of real numbers converges if and only if it is a Cauchy
sequence. Recall that a sequence is Cauchy if, for every € > 0, there is an N, such
that n,m > N, implies |z, — x,,| < e. Thus, a sequence has a limit L if the terms
are eventually as close to L as we wish, and a sequence is Cauchy if the terms are
eventually all as close to each other as we wish. The equivalence of the concepts
suggests that the real number system has no gaps.

For clarity we highlight these fundamental results as a theorem. The ability to
prove Theorem 5.1 should be regarded as a prerequisite for reading this book.

THEOREM 5.1. If a sequence {x,} of real numbers is bounded and monotone,
then {x,} converges. A sequence {x,} converges to a real number L if and only if
{zn} is Cauchy.

COROLLARY 5.1. A monotone sequence converges if and only if it is bounded.

REMARK 5.1. The first statement in Theorem 5.1 is considerably easier than
the second. It is possible to prove the difficult (if) part of the second statement
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by extracting a monotone subsequence and using the first part. It is also possible
to prove the second statement by using the Bolzano—Weierstrass property from
Theorem 5.2 below.

The complex number system C is a field, but it has no ordering. As a set, C is
simply the Euclidean plane R2. We make this set into a field by defining addition
and multiplication:

(z,y) + (a,0) = (z +a,y + )

(x,y)  (a,b) = (za — yb, xb + ya).
The additive identity 0 is then the ordered pair (0, 0), and the multiplicative identity
1 is the pair (1,0). Note that (0,1) % (0,1) = (—=1,0) = —(1,0). As usual we denote
(0,1) by ¢ and then write « + ¢y instead of (x,y). We then drop the * from the
notation for multiplication, and the law becomes obvious. Namely, we expand
(z +iy)(a +1ib) by the distributive law and set i*> = —1. These operations make R?
into a field called C.

Given z = z + iy, we write Z = x — iy and call Z the complex conjugate of
z. We define |z| to be the Euclidean distance of z to 0; thus, |z| = /22 + y? and
|2]? = 2Z.

The nonnegative real number |z — w| equals the Euclidean distance between
complex numbers z and w. The following properties of distance make C into a
complete metric space. (See the next section.)
|z — w| =0 if and only if z = w.
|z —w| >0 for all z and w.
|z —w| = |w — 2| for all z and w.
|z —w| < |z — (| +|¢ —w| for all z,w, (. (the triangle inequality)

Once we know that |z — w| defines a distance, we can repeat the definition of
convergence.

DEFINITION 5.2. Let {z,} be a sequence of complex numbers, and suppose
L € C. We say that z, converges to L if, for all ¢ > 0, there is an N, such that
n > N, implies |z, — L| < e.

Let {a,} be a sequence of complex numbers. We say that >~ | a, converges
to L if

N
lim E a, = L.
N —oc0

n=1

We say that Y | a, converges absolutely if Y~ | |ay| converges. It is often easy
to establish absolute convergence; a series of nonnegative numbers converges if
and only if the sequence of partial sums is bounded. The reason is simple: if the
terms of a series are nonnegative, then the partial sums form a monotone sequence,
and hence, the sequence of partial sums converges if and only if it is bounded. See
Corollary 5.1 above. We also use the following standard comparison test; we include
the proof because it beautifully illustrates the Cauchy convergence criterion.

PROPOSITION 5.1. Let {z,} be a sequence of complex numbers. Assume for all
n that |2,| < ¢, and that Y| ¢, converges. Then > o~ | z, converges.
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PROOF. Let Sy denote the Nth partial sum of the series > z,, and let T
denote the Nth partial sum of the series Y ¢,. For M > N, we have

M M M
[Sar = Sn| =Y 2l < Y7 Jenl < Y en = Tar — Ty, S

N+1 N+1 N+1

Since Y ¢y, is convergent, {Tn} is a Cauchy sequence of real numbers. By (1), {Sn}
is also Cauchy, and hence, Y~ | 2, converges by Theorem 5.1. O

We pause to recall and discuss the notion of equivalence class, which we presume
is familiar to the reader. Let S be a set. An equivalence relation on S is a relation
~ such that, for all a,b,c € S,

Reflexive property: a ~ a
Symmetric property: a ~ b if and only if b ~ a
Transitive property: a ~ b and b ~ ¢ implies a ~ c.

Given an equivalence relation on a set S, we can form a new set, sometimes
written S/ ~, as follows. We say that a and b are equivalent, or lie in the same
equivalence class, if a ~ b holds. The elements of S/ ~ are the equivalence classes;
the set S/ ~ is called the quotient space.

We mention three examples. The first is trivial, the second is easy but funda-
mental, and the third is profound.

EXAMPLE 5.1. Let S be the set of ordered pairs (a,b) of integers. We say that
(a,b) ~ (¢,d) if 100a 4+ b = 100¢c + d. If we regard the first element of the ordered
pair as the number of dollars, and the second element as the number of cents, then
two pairs are equivalent if they represent the same amount of money. (Note that
we allow negative money here.)

EXAMPLE 5.2. Let S be the set of ordered pairs (a,b) of integers, with b = 0.
We say that (a,b) ~ (A, B) if aB = Ab. The equivalence relation restates, without
mentioning division, the condition that 3 and % define the same rational number.
Then S/ ~ is the set of rational numbers. It becomes the system Q after we define
addition and multiplication of equivalence classes and verify the required properties.

EXAMPLE 5.3. The real number system R is sometimes defined to be the com-
pletion of the rational number system Q. In this definition, a real number is an
equivalence class of Cauchy sequences of rational numbers. Here we define a se-
quence of rational numbers {g,} to be Cauchy if, for each positive integer K, we
can find a positive integer N such that m,n > N implies |gm — ¢n| < %. (The
number % plays the role of €; we cannot use € because real numbers have not yet
been defined!) Two Cauchy sequences are equivalent if their difference converges
to 0. Thus, Cauchy sequences {p,} and {g,} of rational numbers are equivalent if,
for every M € N, there is an N € N such that |p, — ¢n| < A—14 whenever n > N.
Intuitively, we can regard a real number to be the collection of all sequences of
rational numbers which appear to have the same limit. We use the language of the
next section; as a set, R is the metric space completion of Q. As in Example 5.2,
we need to define addition, multiplication, and order and establish their properties
before we get the real number system R.
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We are also interested in convergence issues in higher dimensions. Let R"
denote real Euclidean space of dimension n and C" denote complex Euclidean
space of dimension n. In the next paragraph, we let F denote either R or C.

As a set, F" consists of all n-tuples of elements of the field F. We write
z=1(z1,...,2n) for a point in F™. This set has the structure of a real or complex
vector space with the usual operations of vector addition and scalar multiplication:

(21,22, -y 2n) + (W1, w2, ..., wy) = (21 + w1, 22 + Wwa, ...y 20 + Wy).
C(Zlv 2y« - ,Zn) = (Czlv Cz2, ... ,czn)
DEFINITION 5.3 (norm). A norm on a real or complex vector space V is a

function v — ||v|| satisfying the following three properties:

(1) |Jv]] > 0 for all nonzero v.
(2) |lev]| =|¢| ||v]| for all c€ C and all v € V.
(3) (The triangle inequality) ||v + w|| < ||v|| + ||w]| for all v,w € V.

We naturally say normed vector space for a vector space equipped with a norm.
We can make a normed vector space into a metric space by defining d(u, v) = |Ju—v||.

For us the notations R™ and C” include the vector space structure, and the
Euclidean squared norm defined by (2):

1217 = (2, 2). (2)

These norms come from the Fuclidean inner product. In the real case, we have
n
(@, y) = x5y, (3.1)
j=1
and in the complex case, we have
n
(z,w) = Z ZjWj. (3.2)
j=1
In both cases, ||z||? = (z, 2).

2. Metric Spaces

The definitions of convergent sequence in various settings are so similar that it
is natural to put these settings into one abstract framework. One such setting is
metric spaces.

We assume that the reader is somewhat familiar with metric spaces. We recall
the definition and some basic facts. Let Ry denote the nonnegative real numbers.

DEFINITION 5.4. Let X be a set. A distance function on X is a function
d: X x X — R satisfying the following properties:
(1) d(z,y) = 0 if and only if z = y.
(2) d(z,y) = d(y,x) for all z,y.
(3) d(x,z) < d(zx,y) + d(y, z) for all z,y, 2.
If d is a distance function on X, then the pair (X, d) is called a metric space and d
is called the metric.
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The real numbers, the complex numbers, real Euclidean space, and complex
Euclidean space are all metric spaces under the usual Euclidean distance function.
One can define other metrics, with very different properties, on these sets. For
example, on any set X, the function d : X x X — Ry, defined by d(z,y) = 1 if
x # y and d(x,x2) = 0, is a metric. In general sets admit many different useful
distance functions. When the metric is understood, one often says “Let X be a
metric space.” This statement is convenient but a bit imprecise.

Metric spaces provide a nice conceptual framework for convergence.

DEFINITION 5.5. Let {x,} be a sequence in a metric space (X,d). We say
that x,, converges to z if, for all ¢ > 0, there is an N such that n > N implies
d(xy,z) < e. We say that {x,} is Cauchy if, for all € > 0, there is an N such that
m,n > N implies d(z,, z,) < €.

DEFINITION 5.6. A metric space (M, d) is complete if every Cauchy sequence
converges.

If a metric space (M, d) is not complete, then we can form a new metric space
called its completion. The idea precisely parallels the construction of R given Q.
The completion consists of equivalence classes of Cauchy sequences of elements of
(M,d). The distance function extends to the larger set by taking limits.

Here are several additional examples of metric spaces. We omit the needed
verifications of the properties of the distance function, but we mention that in some
instances, proving the triangle inequality requires effort.

EXAMPLE 5.4. Let X be the space of continuous functions on [0,1]. Define

d(f,g) = fol |f(z) — g(z)|dx. Then (X,d) is a metric space. More generally, for
1 < p < oo, we define d,(f, g) by

a0 = (] @) g<x>|pdx);

We define d (f, g) by do(f,g) = sup|f — gl

Of these examples, only (X, dw) is complete. Completeness in this case follows
because the uniform limit of a sequence of continuous functions is itself continuous.

A subset €2 of a metric space is called open if, whenever p € €, there is a positive
e such that x € Q whenever d(p, ) < e. In particular the empty set is open and the
whole space X is open. A subset K is called closed if its complement is open.

PROPOSITION 5.2. Let (X,d) be a metric space. Let K C X. Then K is closed
if and only if, whenever {x,} is a sequence in K, and x, converges to x, then
ze K.

PROOF. Left to the reader. O

Let (M,d) and (M’,d") be metric spaces. The natural collection of maps be-
tween them is the set of continuous functions.

DEFINITION 5.7 (Continuity). f: (M,d) — (M’,d’) is continuous if whenever
U is open in M’, then f~(U) is open in M.
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PROPOSITION 5.3. Suppose f : (M,d) — (M’,d') is a map between metric
spaces. The following are equivalent:

(1) f is continuous.
(2) Whenever x,, converges to x in M, then f(z,) converges to f(z) in M’.
(3) For all e >0, there is a 0 > 0 such that

da,y) <6 = d(f(). f(y)) <e.

EXERCISE 5.1. Prove Propositions 5.1 and 5.2.

We next mention several standard and intuitive geometric terms. The interior
of a set S in a metric space is the union of all open sets contained in S. The closure
of a set S is the intersection of all closed sets containing S. Thus, a set is open if
and only if it equals its interior, and a set is closed if and only if it equals its closure.
The boundary b2 of a set 2 consists of all points in the closure of €2 but not in the
interior of Q2. Another way to define boundary is to note that = € b€ if and only if|
for every € > 0, the ball of radius € about = has a nonempty intersection with both
Q and its complement.

Continuity often gets used together with the notion of a dense subset of a metric
space M. A subset S is dense if each x € M is the limit of a sequence of points in
S. In other words, M is the closure of S. For example, the rational numbers are
dense in the real numbers. If f is continuous on M, then f(x) = lim,, f(x,), and
hence, f is determined by its values on a dense set.

One of the most important examples of a metric space is the collection C'(M)
of continuous complex-valued functions on a metric space M. Several times in
the book, we use compactness properties in C'(M). We define compactness in the
standard open cover fashion, called the Heine—Borel property. What matters most
for us is the Bolzano—Weierstrass property.

We quickly review some of the most beautiful results in basic analysis.

DEFINITION 5.8. Let M be a metric space and let K C M. K is compact
if whenever K is contained in an arbitrary union UA, of open sets, then K is
contained in a finite union UszlAak of these open sets. This condition is often
called the Heine—Borel property.

This definition of compact is often stated informally “every open cover has a
finite subcover,” but these words are a bit imprecise.

DEFINITION 5.9. Let (M, d) be a metric space. A subset K C M satisfies the
Bolzano—Weierstrass property if whenever {x,} is a sequence in K, then there is a
subsequence {z,, } converging to a limit in K.

THEOREM 5.2. Let (M,d) be a metric space and let K C M. Then K is
compact if and only if K satisfies the Bolzano—Weierstrass property.

THEOREM 5.3. A subset of Euclidean space is compact if and only if it is closed
and bounded.

EXERCISE 5.2. Prove Theorems 5.2 and 5.3.
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DEFINITION 5.10 (Equicontinuity). A collection K of complex-valued functions
on a metric space (M, d) is called equicontinuous if, for all z and for all € > 0, there
is a § > 0 such that

d(z,y) <0 = [f(z) = f(y)l <e
for all f € K.

DEFINITION 5.11 (Uniformly bounded). A collection K of complex-valued func-
tions on a metric space (M, d) is called uniformly bounded if there is a C' such that

|f(z)] < C for all x € M and for all f € K.

We refer to [F1] for a proof of the following major result in analysis. The
statement and proof in [F1] apply in the more general context of locally compact
Hausdorff topological spaces. In this book, we use Theorem 5.4 to show that certain
integral operators are compact. See Sects. 10 and 11 of Chap. 2.

THEOREM 5.4 (Arzela—Ascoli theorem). Let M be a compact metric space. Let
C(M) denote the continuous functions on M with d(f, g) = sup,|f(z) — g(x)|. Let
K be a subset of C(M). Then K is compact if and only if the following three items
are true:

(1) K is equicontinuous.

(2) K is uniformly bounded.
(3) K is closed.

COROLLARY 5.2. Let K be a closed, uniformly bounded, and equicontinuous sub-
set of C(M). Let {fn} be a sequence in KC. Then {f,} has a convergent subsequence.
That is, {fn,} converges uniformly to an element of K.

PROOF. By the theorem, K is compact; the result then follows from the
Bolzano—Weierstrass characterization of compactness. O

EXERCISE 5.3. Let M be a compact subset of Euclidean space. Fix a > 0. Let
H,, denote the subset of C(M) satisfying the following properties:

(1) [[fllee < 1.
(2) I fllz, < 1. Here

1 £ll. = sup LB =W
« x;éy |:L'_y|01
Show that H, is compact.

A function f for which ||f||z, is finite is said to satisfy a Holder condition of
order . See Definition 2.13.

3. Integrals

This book presumes that the reader knows the basic theory of the Riemann—
Darboux integral, which we summarize. See [Ro] among many possible texts.

Let [a,b] be a closed bounded interval on R, and suppose f : [a,b] — R is
a bounded function. We define f: f(®)dt by a standard but somewhat compli-
cated procedure. A partition P of [a,b] is a finite collection of points p; such that
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a=py<--<p; <---<pn=>b Given f and a partition P, we define the lower
and upper sums corresponding to the partition:

N
L(f.P) = (pj — pj-1)infp, , ,(f(z))
j=1
N
Z —Pj-1 Sup[py 1 p]](f($))
j=1

DEFINITION 5.12. A bounded function f : [a,b] — R is Riemann integrable if
suppL(f, P) = infpU(f, P). If so, we denote the common value by f; f(®)dt or

simply by f; f.

An equivalent way to state Definition 5.12 is that f is integrable if, for each
€ > 0, there is a partition P. such that U(f, P.) — L(f, P.) <€

In case f is complex valued, we define it to be integrable if its real and imaginary
parts are integrable, and we put

b b b b
/fz/u—l—iv:/u—i—i/v

The integral satisfies the usual properties:

(1) If f, g are Riemann integrable on [a, b], and ¢ is a constant, then f+ ¢ and
cf are Riemann integrable and

/abf+g—/abf+/abg,
/abcf_c/abf.

(2) If f is Riemann integrable and f(z) > 0 for z € [a, D], then f: f>0.
(3) If f is continuous on [a, ], then f is Riemann integrable.
(4) If f is monotone on [a,b], then f is Riemann integrable.

We assume various other basic results, such as the change of variables formula,
without further mention.

The collection of complex-valued integrable functions on [a, b] is a complex vec-
tor space. We would like to define the distance §(f, g) between integrable functions
fand g by

5(F.9) = If — gl = /|f (2)d,

but a slight problem arises. If f and g agree, for example, everywhere except at a
single point, and each is integrable, then §(f,g) = 0, but f and g are not the same
function. This point is resolved by working with equivalence classes of functions.
Two functions are called equivalent if they agree except on what is called a set of
measure zero. See Sect. 7 of Chap. 1. Even after working with equivalence classes,
this vector space is not complete (in the metric space sense). One needs to use the
Lebesgue integral to identify its completion.
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Often one requires so-called improper integrals. Two possible situations arise;
one is when f is unbounded on [a, b], the other is when the interval is unbounded.
Both situations can happen in the same example. The definitions are clear, and we
state them informally. If f is unbounded at a, for example, but Riemann integrable
on [a + €,b] for all positive €, then we define

/bf—hm/ f

if the limit exists. If f is Riemann integrable on [a, b] for all b, then we put

[

The other possibilities are handled in a similar fashion. Here are two simple exam-
ples of improper integraIS'

) folxo‘d:r— o ifa> -1
2) [ e de =1,

At several points in this book, whether an improper integral converges will
be significant. We mention specifically Sect. 8 of Chap. 3, where one shows that
a function has k continuous derivatives by showing that an improper integral is
convergent.

The following theorem is fundamental to all that we do in this book.

THEOREM 5.5 (Fundamental theorem of calculus). Assume f is continuous
on la,b]. For x € (a,b), put F(z) = [ f(t)dt. Then F is differentiable and
Fl(z) = f(x).

The final theorem in this section is somewhat more advanced. We state this
result in Sect. 7 of Chap. 1, but we never use it. It is important partly because its
statement is so definitive and partly because it suggests connections between the
Riemann and Lebesgue theories of integration.

THEOREM 5.6. A function on a closed interval [a,b] is Riemann integrable if
and only if the set of its discontinuities has measure zero.

EXERCISE 5.4. Establish the above properties of the Riemann integral.
EXERCISE 5.5. Verify that f; cf = cf; f when c is complex and f is complex

valued. Check that Re( f; f) = f; Re(f) and similarly with the imaginary part.
EXERCISE 5.6. Verify the improper integrals above.

The next three exercises involve finding sums. Doing so is generally much harder
than finding integrals.

EXERCISE 5.7. Show that E?:o (i) = (Z_ﬁ) Suggestion: Count the same
thing in two ways.

EXERCISE 5.8. For p a nonnegative integer, consider Z?:l 4P as a function of

oy = . . . . p+1
n. Show that it is a polynomial in n of degree p + 1 Wlth leading term ”T If
you want to work harder, show that the next term is Z-. Comment: The previous

exercise is useful in both cases.
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EXERCISE 5.9. For p a positive integer, prove that fol tPdt = z% by using
the definition of the Riemann integral. (Find upper and lower sums and use the

previous exercise. )

EXERCISE 5.10. Prove the fundamental theorem of calculus. The idea of its
proof recurs throughout this book.

EXERCISE 5.11. Put f(0) = 0 and f(z) = z sgn(sin(1)). Here sgn(t) = ﬁ for
t # 0 and sgn(0) = 0.

e Sketch the graph of f.

e Determine the points where f fails to be continuous.

e Show that f is Riemann integrable on [—1,1].

4. Exponentials and Trig Functions

The unit circle is the set of complex numbers of unit Euclidean distance from
0, that is, the set of z with |z| = 1.
The complex exponential function is defined by

0o
z E z"
e = —'
n.
n=0

The series converges absolutely for all complex z. Furthermore the resulting
function satisfies ¢’ = 1 and e*** = e%e™ for all z and w.
We define the complex trig functions by

eiz +e—iz

COS =
()= "2

) eiz _ e—iz
sin(z) = 57

When z is real, these functions agree with the usual trig functions. The reader who
needs convincing can express both sides as power series.

Note, by continuity of complex conjugation, we have e* = ¢#z. Combining this
property with the addition law gives (assuming ¢ is real)

1= eO _ eite—it _ |eit|2'

22 and its

imaginary part y is given by y = Z;f. Comparing with our definitions of cosine and

sine, we obtain the famous Euler identity (which holds even when ¢ is complex):

Thus, z = €' lies on the unit circle. Its real part x is given by x =

et = cos(t) + isin(t).
Complex logarithms are quite subtle. For a positive real number ¢, we define
log(t), sometimes written In(t), by the usual formula
b du
U

log(t) =

For a nonzero complex number z, written in the form z = |z|e??, we provisionally
define its logarithm by
log(z) = log(]z]) + 6. (4)
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The problem with this formula is that 6 is defined only up to multiples of 2.
We must therefore restrict § to an interval of length 27w. In order to define the
logarithm precisely, we must choose a branch cut. Thus, we first choose an open
interval of length 27, and then we define the logarithm only for 6 in that open
interval. Doing so yields a branch of the logarithm. For example, we often write
(4) for 0 # z = |z]e” and —7 < 6 < 7. Combining the identity e®*# = e®ef with
(4), we obtain e'°8(*) = |z|e? = 2. For a second example, suppose our branch cut
is the nonnegative real axis; then 0 < # < 27. Then log(—1) = im, but logs of
positive real numbers are not defined! To correct this difficulty, we could assume
0 < 0 < 27 and obtain the usual logarithm of a positive number. The logarithm,
as a function on the complement of the origin in C, is then discontinuous at points
on the positive real axis.

5. Complex Analytic Functions

The geometric series arises throughout mathematics. Suppose that z is a com-
plex number not equal to 1. Then we have the finite geometric series

n—1 n
, 1—-=2
J=0
When |z] < 1, we let n — oo and obtain the geometric series

[o ]

P —

= 1-2

The geometric series and the exponential series lie at the foundation of complex
analysis. We have seen how the exponential function informs trigonometry. The
geometric series enables the proof of Theorem 5.7 below; the famous Cauchy integral
formula (Theorem 5.8) combines with the geometric series to show that an arbitrary
complex analytic function has a local power series expansion.

A subset Q of C is called open if, for all p € €2, there is an open ball about p
contained in . In other words, there is a positive e such that |z — p| < € implies
z € . Suppose that 2 is open and f : 0 — C is a function. We say that f is
complez analytic on  if, for each z € Q, f is complex differentiable at z. (In other
words, if the limit in (5) exists).

. f(Z—i—h)—f(Z)i /
Jim —————— = f'(2) (5)
A continuously differentiable function f : 2 — C satisfies the Cauchy—Riemann
equations if g—g = 0 at all points of 2. The complex partial derivative is defined by

g 1.0 0

8_7 = 5(% + ’La—y)

In most elementary books on complex variables, one writes f = u + v in terms of
its real and imaginary parts and writes the Cauchy-Riemann equations as the pair

of equations

ou_ou
oxr Oy
ou v

dy o
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Perhaps the most fundamental theorem in basic complex analysis relates com-
plex analytic functions, convergent power series, and the Cauchy-Riemann equa-
tions. Here is the precise statement:

THEOREM 5.7. Assume that Q2 is open and f : Q@ — C is a function. The
following are equivalent:

(1) f is complex analytic on €.
(2) For all p in §, there is a ball about p on which f is given by a convergent
power series:

F(2) =) an(z—p)"™
n=0

(3) f is continuously differentiable and % =0 on Q.
The key step used in establishing Theorem 5.7 is the Cauchy integral formula.
Readers unfamiliar with complex line integrals should consult [A] or [D2] and should

read about Green’s theorem in Sect. 1 of Chap. 4 in this book.

THEOREM 5.8 (Cauchy integral theorem and Cauchy integral formula). Let f
be complex analytic on and inside a positively oriented, simple closed curve v. Then

/Yf(z)dz = 0.

For z in the interior of v, we have

We close this review of complex variable theory by recalling the fundamental
theorem of algebra. Many proofs are known, but all of them require the methods
of analysis. No purely algebraic proof can exist, because the completeness axiom
for the real numbers must be used in the proof.

THEOREM 5.9 (Fundamental theorem of algebra). Let p(z) be a nonconstant
polynomial with complex coefficients and of degree d. Then p factors into a product
of d linear factors:

d
p(z) =c]J(z - 2),
j=1
where the z; need not be distinct.

6. Probability

Many of the ideas in this book are closely connected with probability theory.
We barely glimpse these connections.

We begin by briefly discussing probability densities, and we restrict our consid-
eration to continuous densities. See a good text such as [HPS] for more information
and the relationship with Fourier transforms.

Let J be a closed interval on R; we allow the possibility of infinite endpoints.
Assume that f : J — [0, 00) is continuous. Then f is called a continuous probability
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density on J if f f = 1. Let a denote the left-hand endpoint of J. We define the
cumulative distribution function F' by

z) = / F(t)dt

For y < x, we interpret F'(x) f f(t)dt as the probability that a random
variable lies in the interval [z, y]

We do not attempt to say precisely what the phrase “Let X be a random
variable” means. In our setting, we are given the continuous density function f,
and we say “X is a random variable with continuous density f” to indicate the
situation we have described. The intuition for the term random variable X is the
following. Suppose X is a real-valued function defined on some set, and for each
x € R, the probability that X takes on a value at most z is well defined. We
write F(z) for this probability. Thus, F(z) — F(y) denotes the probability that
F takes on a value in the interval (y,z]. In the case of continuous densities, the
probability that X takes on any specific value is 0. This property is sometimes
taken as the definition of continuous random variable. Hence, F(x) — F(y) denotes
the probability that X takes on a value in the interval [y, x].

Let X denote a random variable on an interval J, with continuous density f.
We say that X has finite expectation if

/|t|f(t)dt < .
J

We say that X has finite variance if
/(t _ W2 f(8)dt < oo,
J

When these integrals are finite, we define the mean p and variance o2 of X by

= /th(t)dt

7 = [ = w2s o
J

The mean is also known as the expected value. More generally, if ¢g is any
function, we call [, g(t)f(t)dt the expected value of g. Thus, the variance is the
expected value of (t — )% and hence measures the deviation from the mean.

PROPOSITION 5.4. The variance satisfies o® = [, f(t)dt — p?

PRrROOF. Expanding the square in the definition of the variance gives:

— )2 — 2 _ 2
== [ 2pwa— [ erwasi [ o

Since = [, tf(t)dt and 1 = [, f(t)dt, the last two terms combine to give —p?. [

The computation in Proposition 5.4 arises in many contexts. It appears, for
example, in the proof of the parallel axis theorem for moments of inertia. The same
idea occurs in verifying the equivalence of two ways of stating Poincaré inequalities
in Chap. 4. Compare also with the proof of Bessel’s inequality, Proposition 2.2.
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EXAMPLE 5.5 (The normal, or Gaussian, random variable). For 0 < 02 < oo

and x € R, put g(z) = \/2L

a2
—ec207 . See Example 1.7. Then the mean of the random

variable with density g is 0 and the variance is o2.

EXAMPLE 5.6 (The uniform random variable). Let f(z) = 7= for a <z < b.
Then f is a probability density. Its cumulative distribution function F' is given on

R by F(z) =0if x <a, by F(z) =1if x > b, and by F(z) = =2 for z € [a,b].

EXERCISE 5.12. Show that the mean of the uniform random variable on [a, b]

is “T'H). Compute its variance.
Let X be a random variable with continuous density function f. The probability
that X < x is by definition the integral ffoo ft)dt. We write:

Prob(X <z) = /I ft)dte.

Let ¢ be a strictly monotone differentiable function of one real variable. We can use
the fundamental theorem of calculus to compute the density of ¢(X). Assuming
that ¢ is increasing, we have

o~ (@)

Prob(¢(X) < 2) = Prob(X < ¢~ (z)) = / f(t)dt.
Differentiating and using the fundamental theorem of calculus, we see that the
density of ¢(X) is given by fo¢ 1 (¢~1)". An example of this situation gets briefly
mentioned in Exercise 4.62, where X is the Gaussian and ¢(z) = 22 for > 0. In
case ¢ is decreasing, a similar calculation gives the answer —f o ¢~ 1(¢~!)’. Hence,
the answer in general is f o ¢~ 1|(¢71)'|.

We end this appendix by glimpsing the connection between the Fourier trans-
form and probability. Given a continuous random variable on R with density

f, we defined above the expected value of a function g by ffooo g(t)f(t)dt. Take

g(t) = \/%e_“g. Then the expected value of g is the Fourier transform of f. The

terminology used in probability theory often differs from that in other branches of
mathematics; for example, the expected value of e’ where X is a random vari-
able, equals ffooo e f(x)dz. This function is called the characteristic function of
the random variable X rather than (a constant times the inverse of) the Fourier
transform of f.

The central limit theorem is one of the major results in probability theory and
statistics. Most readers should have heard of the result, at least in an imprecise
fashion (“everything is asymptotically normal”), and we do not state it here. See
[F1] or [HPS] for precise statements of the central limit theorem. Its proof relies
on several things discussed in this book: the Fourier transform is injective on an
appropriate space, the Fourier transform of a Gaussian of mean zero and variance
one is itself, and the Gaussian defines an approximate identity as the variance tends
to 0.

EXERCISE 5.13. Show that there is a continuous probability density f on R,
with finite expectation, such that f(n) = n for all positive integers n.



Notation Used in This Book

Nearly all of the notation used in this book is standard. Occasionally a symbol
can be used to denote different things; we mention some of these ambiguities below.
In all cases the context should make the meaning clear. This summary is organized
roughly by topic.

Basic Notation

R is the real number system, C is the complex number system, and ¢ denotes
the imaginary unit with i = —1. Usually z,y denote real variables, and z,w,(
denote complex variables. Z denotes the complex conjugate of z, and Re(z) denotes
the real part of z.

{a,} denotes a sequence; the objects could be real numbers, complex numbers,
elements in a Hilbert space, etc.

When Y | a, is an infinite series, we let Ax denote the Nth partial sum.
(The small letter denotes the terms and the capital letter denotes the partial sums,
analogous to f denoting a function and F' denoting its integral.)

R”™ denotes n-dimensional real Euclidean space, and C™ denotes n-dimensional
complex Euclidean space. H denotes a Hilbert space.

[|v]| denotes the norm of a vector v in any of these spaces. We also use ||L|| to
denote the operator norm of a bounded linear mapping L.

We write || f||L» to denote the LP norm of a function, and ||f||z- to denote the
sup norm. We write ||z||2 to denote the [? norm of a sequence {z,}.

L?([a,b]) denotes the space (of equivalence classes of) square-integrable func-
tions on [a, b].

(z,w) denotes the Hermitian inner product of elements z,w in a Hilbert space.
In Chap. 3, Sect. 3, the same notation denotes the pairing of a distribution and a
function. In Chap. 4, Sect. 10 it denotes the pairing of a vector field and a 1-form.
In these pairings, there is no complex conjugation involved.

If w is a differentiable function of several variables, we sometimes denote the
partial derivative % by ug; or uj.

The letter § sometimes denotes the Dirac delta distribution, defined by §(f) =
f(0). Sometimes it denotes a positive real number.

S1 denotes the unit circle and S¥~1 the unit sphere in R*. Very often we use
52n=1 for the unit sphere in C”.
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B,, denotes the unit ball in C™. 2 denotes an open, connected set in C™. A2(£2)
denotes the Hilbert space of square-integrable holomorphic functions on €.
w often represents an mth root of unity. Briefly in Chap. 4, wy is a 1-form.
A denotes the Laplacian, or Laplace operator. On R",
n n
0% f
A(f) = ZW => i
j=1""1 =1
Several times the Laplacian is expressed in terms of complex derivatives. See
Sect. 11 of Chap. 1 and Sect. 10 of Chap. 4.

(Z) denotes the binomial coefficient k,(+lk),
m!
arl..an!”

(’(’;) denotes the multinomial coefficient See below for more information

on multi-indices.

Notations with Similar or Several Uses

The letter d often means the exterior derivative. We use it in other ways that
arise in calculus; for example, ds represents the arc-length element along a curve,
dV denotes the volume form, etc. In the appendix, d(z,y) denotes the distance
between points  and y in a metric space.

The letter D typically denotes some kind of derivative. It often means the linear
operator sending f to its derivative D f.

In Chap. 2, H,, denotes the space of harmonic homogeneous polynomials of
degree m on R".

In Chap. 2, Sect. 12, and in Chap. 3, Sect. 9, H,,(z) denotes the nth Hermite
polynomial.

In Chap. 4, H,, is used often to denote a certain polynomial mapping from
C" — CV, defined and discussed in detail in Sect. 4 of Chap. 4.

In Chap. 1, o denotes Cesaro means. In Chap. 4, ony_1 denotes the volume
form on SN~1. Also note that o denotes variance.

The symbol «a also has many uses; it can be a real number, a complex number,
a multi-index, or a differential form.

In Chap. 3, A® denotes the standard pseudo-differential operator of order s.

In Chap. 4, Sect. 6, A*(V*) denotes the space of k-linear alternating forms on
a vector space V.

Fourier Series and Fourier Transforms

f * g denotes the convolution of f and g, either on the circle or on the real line.
f(n) denotes the nth Fourier coefficient of a function on the circle; f(¢) denotes

the Fourier transform of a function on R. Sometimes we write F(f) instead of f.
Sn(f) denotes the symmetric partial sums ZZ_VN f(n)e™™® of a Fourier series.
Approximate identities:

e Fy denotes the Fejer kernel.
P, denotes the Poisson kernel.
In Chap. 1, G; denotes the Gaussian kernel.

We later use G, to denote the Gaussian with mean 0 and variance o2.

The relationship between the parameter ¢ in G; and o is given by ¢ = 51;.

[}
[}
[}
® 20
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on denotes the Nth Cesaro mean of a sequence {Aps}. Often Ay will itself
denote the Mth partial sum of )" a,,.

S denotes the Schwartz space of smooth functions of rapid decrease and S’
denotes its dual space.

S™ denotes the collection of symbols of order m.

W* denotes the L? Sobolev space of index s.

Hilbert Spaces and Linear Algebra

L(H) denotes the bounded linear transformations on H, and L(H,H') the
bounded linear transformations from H to H'.

I usually denotes the identity transformation.

L* denotes the adjoint of L.

N (L) denotes the nullspace of L and R(L) denotes the range of L.

V1 denotes the orthogonal complement of a subspace V.

V & W denotes the orthogonal sum of the subspaces V and W if v and w are
orthogonal vectors, the notation v ® w denotes their sum v 4 w, but emphasizes the
orthogonality.

det denotes the determinant.

A usually means an eigenvalue.

Functions of Several Variables

T, (R™) denotes the tangent space of R™ at x. T(R™) denotes the cotangent
space.

® denotes the tensor product; we often write 2™ with a particular meaning.
See Sect. 4 of Chap. 4.

U(n) denotes the group of unitary transformations on C™; often we write T" for
a finite subgroup of U(n).

Multi-index notation:

A multi-index « is an n-tuple @ = (aq, . .., a;,) of nonnegative integers.

2% is multi-index notation for [}, (2;)*.

When Y a; = m, we write (') for the multinomial coefficient i
« aq! ..

. Q!

We write |2|?® for the product
[T 1207
J

e () is the Beta function (of n indices) defined in Sect. 8 of Chap. 4.
Some special functions:

P, () is the nth Legendre polynomial.

T, (x) is the nth Chebyshev polynomial.

L, (x) is the nth Laguerre polynomial.

H, (z) is the nth Hermite polynomial (Chaps. 2 and 3).
H,,(2) denotes the polynomial map z — z®™ (Chap. 4).
I'(z) denotes the Gamma function of x.

As noted above, we also use I' to denote a finite subgroup of U(n).
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fp.q denotes a certain group-invariant polynomial, defined in formula (18) from
Chap. 4.

If n is a differential form, then dn denotes its exterior derivative.

a A B denotes the wedge product of differential forms « and .

¥ denotes the differential form Y dz; A dz; or Y. d¢; A d(;.

% denotes the complex partial derivative defined in Sect. 5.1 of Chap. 4. The

notations 9 and 0 are also defined there. The one-dimensional versions are defined
in Sect. 11 of Chap. 1.

[L, K] denotes the commutator LK — KL of operators L and K (their Lie
bracket when they are vector fields).
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