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Alternatives to GBM Prices

The developments of the previous chapters have built a financial edifice upon
the normal distribution, the Gaussian, primarily through the Wiener process.
But there is much evidence that the world is not Gaussian, that Gaussian is
only an approximation to reality. Some evidence that it is not is seen in Fig. 6.1.
These depictions should be compared with Fig. 1.1 on page 2. The earlier graph
portrays a stock’s price through time as being continuous. But by magnifying
the time scale and viewing prices over a few months we see that stock prices are
occasionally discontinuous, they can suddenly change from one value to another
without going through the values in-between. This often occurs between days as
seen in Fig. 6.1a. By expanding the scale to the level of hours, one sees that the
prices are possibly nothing but jumps, many of them small as in panel (b).

Other evidence comes from the phenomenon of volatility smile. According to
Black-Scholes theory, for a fixed time to maturity T , the price of all options on
a given stock as a function of strike price, should be calculated using the same
volatility. Namely, it should be the volatility that prevails over the time horizon
of the option (or at least the average of such). But this is not what is observed.
Implied volatilities for puts are greater than those for calls; and the lower the
strike, the greater the volatility.

And there is more. Events that should happen only rarely or, practically
speaking, never, instead occur two or three times a generation. This indicates
that the Gaussian is the wrong distribution, that rare events should have a
higher probability of occurring. It indicates that the tails of a more accurate
distribution should have more probability mass than does the Gaussian.

In this chapter we study price processes that are not Gaussian; processes that
have jumps and “heavy tails.” However there is a concomitant downside, namely
that options can no longer be hedged, and therefore have no unique price. The
term used is incomplete market, and it is here that we start.
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daily open and close

a b

intraday prices

Fig. 6.1. Stock price history for SCCO over short periods of time. In (a) 4 months of
prices are illustrated. Each candle’s top is the day’s high while the bottom is the day’s
low. If the price fell during the day, the candle is shown in red. It can be seen that
frequently 1 day’s candle does not overlap the next; thus the price jumped by at least
the gap between the two. The lower part of the figure shows the volume or the number
of stocks traded during the day. In (b) SCCO’s intra day’s prices are shown over a 3 h
period during an afternoon. It is clearly seen that the price jumps almost minute by
minute

6.1 Martingale Measures

Up to now we have lived in a discrete time world. Our techniques have exploited
binomial lattices and GBM implemented discretely over finite increments in
time. But a Wiener process is a continuous time theory. Its major accomplish-
ment lies in showing how to define a probability or measure to Brownian motion
paths; the object our random walks attempt to simulate. Of course, any single
path has probability 0; there are, for any finite interval of time 0 ≤ t ≤ T , an
uncountable infinity of continuous paths Xt. But it makes sense to talk about
the probability of sets of paths. For example, all paths whose Brownian particle
lies between x = 0 and x = 1 when t = T , or in another example, all paths that
were less than x = −1 at some time t < T but finished bigger than x = 5 when
t = T . And there are sets of paths for which we can assign a probability from
first principles, those determined by their position at any fixed time t. We can
do so because, by axiom, Wt is normally distributed with mean 0 and variance
t at this time.

As we noted in Section 1.3, a Wiener process is a martingale. In this chapter
we consider price processes which are not based on the Wiener process. The
paths X = {Xt, t ≥ 0} of such a process must belong to some universal set Ω.
And there must also be a measure or probability function defined for subsets of
Ω as discussed above; the class of subsets must be closed under countable set
operations (set complement, countable unions, countable intersections). And as
we have seen earlier, there can be more than one probability function defined
on paths. For example, for price paths there can be a historical or real-world
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probability P and there can be a risk-neutral probability Q. Two probabilities
are said to be equivalent if their sets of probability zero are identical (hence also
their sets of probability one).

A stochastic process X = {Xt, t ≥ 0} in such a space Ω is a martingale with
respect to a given measureQ if the expected future value ofX at any time s isXs,

EQ(Xs+t|the information about X up to time s) = Xs. (6.1)

A measure for which the process is a martingale is called a martingale measure.
A martingale process is something like a fair game in that a players expected for-
tune at the end of the game is the same as his fortune at the start, see Chapter 7.

The importance of martingale measures is made clear in the Fundamental
Theorem of Asset Pricing. In order to state it we need to define a few terms. A
financial derivative or contingent claim is a security whose value depends on the
value of other more basic underlying securities. Options and forwards are two
examples of derivatives. A complete market is one for which every contingent
claim has a self-financing replicating portfolio.

Theorem (Fundamental Theorem of Asset Pricing) A discrete time pricing
model has no arbitrage opportunities if and only if it has a measure for which
discounted prices are a martingale. Further, the model is complete if and only if
the martingale measure is unique.

For a proof see [Rom12]. For continuous time pricing models, the theorem breaks
down in that the conditions are no longer if and only if. It is still true however
that the existence of a martingale measure implies there are no arbitrage oppor-
tunities and the uniqueness of the measure implies market completeness.

6.2 Incomplete Markets

In Section 3.4 we began our study of option pricing by applying the principle of
no-arbitrage to a one-step price tree. Suppose now there had been three possible
prices of the stock at expiry instead of just two, see Fig. 6.2.

Fig. 6.2. A one step price tree with three possible prices at expiry

As before, consider a portfolio consisting of Δ shares of stock and short 1
call option struck at K = 51 costing C. To simplify the calculation, assume
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the risk-free rate is 0; this just means money can be borrowed with no interest
but still has to be paid back. From the previous analysis the number of shares
to hold in the portfolio is Δ = 1/4 and from (3.11) the value of the call is
12.50 − 12e−rf = 0.50. So the initial value of the portfolio is (14 )50− 0.50 = 12.

And in the present case this is the value of the portfolio if the stock goes up
to 52 or down to 48 as before (recall rf = 0). But if the final price is 50, the
value of the portfolio is 12.50. Now an arbitrage is possible: borrow $12 to set up
the portfolio, pay it back if the price goes up or down, but if the price stays the
same, the portfolio makes $0.50 after retiring the loan. Thus with some positive
probability, the probability of the middle branch of the tree, the portfolio makes
a positive profit with no chance of losing money.

This happens because no value of Δ makes the expiry value of the portfolio
equal for all three branches of the tree. So there is no one value to discount back
to time 0 in order to find C.

Suppose the call is $0.40 instead of $0.50. Now to set up the portfolio $12.10
will have to be borrowed. If the price goes up to 52 the stock will be worth 13,
satisfying the call will cost 1 leaving only 12 to pay back the loan. Therefore the
portfolio loses $0.10. Likewise it loses the same if the price goes down to 48. If
the expiry price is 50, then the stock is worth 12.50 and, after repaying the loan,
the portfolio makes $0.40. So if the call price is $0.40 the portfolio’s expectation,
positive or negative, depends on the probabilities of the three outcomes.

What are those probabilities? Perhaps we can proceed by calculating the
risk-neutral probability, from that find the expected payoff and discount back
to get C.

Since there are three branches, the risk-neural probability will in fact be a
probability density: q1 that the price rises, q2 that it stays the same, and q3 that
it falls. We must have q1 + q2 + q3 = 1 and no probability can be zero. Recall
that the risk-neutral density is the one for which the expected growth of the
underlying equals the risk-free rate, see page 90. Combining this expectation
balance with the total density summing to 1, we have the system

52q1 + 50q2 + 48q3 = 50
q1 + q2 + q3 = 1. (6.2)

There is no one solution; solving in terms of q3 we have

q1 = q3, q2 = 1− 2q3, 0 < q3 <
1

2
. (6.3)

The bounds on q3 assure that all three probabilities will be positive. To say
that the expected price grows according to the risk-free rate is equivalent to
saying the discounted expectation of St is a martingale; in this example, it will
be so for any q3 between 0 and 1/2.

For example, choosing q3 = 0.4, entails q1 = 0.4 and q2 = 0.2. This
makes the expected call payoff equal to $0.40, and, discounting back with rf = 0,
puts the price of the call at $0.40. As analyzed above, there is no risk free profit
for this value of the call.
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Thus we have encountered an example of an incomplete market.

6.2.1 Pricing in an Incomplete Market

In an incomplete market there is no unique no-arbitrage price; instead there are
many. In the example above, q1 and q2 given by (6.3) along with any choice
0 < q3 < 1/2 produces a martingale and with it, a no-arbitrage price for the
call. The decision as to which value of q3 to use becomes a subjective matter; a
risk-averse investor would want the real-world payoff to exceed the martingale
payoff.

Finally, what is the point of pricing vanilla options by a mathematical model
anyway; the market already prices them. Instead, the prevailing thought is to
use the price of vanilla options to determine what measure the market is using
and apply those parameters in the models to calculate prices for exotic options
which are only thinly traded.

The choice of measure also impacts hedging. In a complete market, continuous
delta-hedging is perfect at all times and the variance of the hedge is 0. In an
incomplete market, zero variance is not possible. Two possible choices are to
hedge to minimize final variance or to minimize the day-to-day variance, see
[Jos03] Section 15.5.

6.3 Lévy Processes

As was the case in Section 1.2, it makes sense to start with arithmetic random
walks and define price processes as their geometric counterparts. In order for an
arithmetic processX = {Xt} to serve it must satisfy a very special condition, one
we have used repeatedly for Brownian motion. Namely, we must be able to: (1)
divide the fundamental interval, [0, T ] into arbitrary subintervals Δt = T/n, (2)
simulate identical and independent random increments ΔXi on each subinterval,
and (3) add the increments together, X =

∑n
i=1ΔXi, and get the same result

statistically, that is in terms of probability density, as for any other subdivision.
Such a process is said to be infinitely divisible.

Lévy processes are exactly those that are infinitely divisible. A Wiener
process is an example of a Lévy process. Like a Wiener process, a Lévy pro-
cess L = {Lt} satisfies L0 = 0 and the axioms of independent and stationary
increments:

1. Every increment Lt+h −Lt depends only on Lt and not on L = {Ls, 0≤s≤t}.
2. The distribution of Lt+h−Lt does not depend on t, it has the same distribution

as Lh.
1

As we will see, a Lévy process can have jumps. By a jump we mean ΔLt =
limε↓0 Lt+ε − limε↓0 Lt−ε. But the probability of a jump at any given value of t
is 0. Note that one can always assume that a Lévy process is right continuous

1 These conditions imply the infinite divisibility property since Lt = L t
n
+ (L 2t

n
− L t

n
) +

(L 3t
n

− L 2t
n
) + . . .+ (Lt − L (n−1)

n
t
).
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and has left limits at every point, Lt = limε↓0Lt+ε and limε↓0 Lt−ε exists, the
latter may be denoted as Lt−. Sometimes this requirement is called the cadlag
property.2 The reason for this choice is that, given a specific time in the future,
say t1, the value of the process at t1 cannot be predicted with complete confidence
from its values at times t < t1 leading up to t1, the process might undergo a
jump at that time. If left continuity were made the choice, it would be possible
to make the stated prediction.

6.3.1 The Poisson Process

Besides Wiener processes there are several known Lévy processes. The simplest
is pure drift, Lt = μt. This and the Wiener process are the only two that are
continuous, all others have jumps. The simplest non-continuous Lévy process
is the Poisson process Po(λ) (here we have put t = 1, because of the infinite
divisibility condition the Poisson parameter for an arbitrary time t is λt). The
Poisson random variable Nt ∼ Po(λt) denotes the number of events, in our
case jumps, which occur in the interval [0, t]. Nt is non-negative integer valued,
Nt = 0, 1, . . .; λ is called the intensity parameter.

The probability density for Nt is given by

Pr(Nt = k) =
(λt)ke−λt

k!
(6.4)

where k is the number of jumps. The expectation, that is mean, of the Poisson
random variable is λt. The variance is also λt.

The events themselves arrive at increments of time Δt according to the ex-
ponential distribution E(λ) where λ, the same λ as above, is the event rate. The
cumulative distribution function of E(λ) is

F (t) = 1− e−λt. (6.5)

In fact Nt can be simulated by sampling E(λ) until the time increments sum to
t, a sample Nt = k is returned as the greatest integer k such that

k∑

i=1

Δti < t where Δti ∼ E(λ). (6.6)

The Δti are called the inter-arrival times. The event arrival times themselves,
ti, are given by

ti =

i∑

j=1

Δtj, i = 1, 2, . . . , k. (6.7)

2 From the French for the same phrase, ‘continue à droite et limites à gauche’. In French the
spelling is càdlàg.
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A sample Δti ∼ E(λ) is obtained as follows, (see (A.16))

Δti =
−1

λ
log(1− U) where U ∼ U(0, 1).3

With these preliminaries in hand, the Poisson process with drift μ is de-
fined by

Lt = μt+

Nt∑

k=1

J (6.8)

where J is the fixed jump size. This is an infinitely divisible process because if
X ∼ Po(λ1) and Y ∼ Po(λ2), then X + Y ∼ Po(λ1 + λ2), (see the Exercises).
The Poisson process is always nondecreasing (if J > 0), that is, stays the same
value or increases. In order to make the drift meaningful, one can subtract the
jump size times the expected number of jumps; this gives rise to the compensated
Poisson process with drift,

Lt = μt+

Nt∑

k=1

J − λJt. (6.9)

In Fig. 6.3a we show an instance of a compensated Poisson process. This is
an event-to-event simulation in that time moves forward from one event to the
next thus highlighting the jumps. The events are generated according to (6.7),
see Algorithm 24.

Algorithm 24. Compensated Event-to-Event Simulation

inputs: t, λ, J (jumpsize)

X = 0;

simTime = 0;

plot(simTime,X);

arrivalArray = poissonArrivals(λt); �use (6.7)

Nt = arrivalArray length; �number of jumps

j = 0; �Nt could be 0

for . . . �infinite loop

j = j+1; �update event index

if j > Nt break out of loop

�increment simTime

ΔsT = arrivalArray[j] - simTime;

simTime = simTime + ΔsT; �move to next jump

ΔX = −JλΔsT; �pro-rated compensation

X = X +ΔX;

plot(simTime,X) �before jump

X = X+J; �add in the jump

3 Note that U < 1 for uniform random number generators, but U = 0 is possible. Since 1−U
is uniform if U is, it is tempting to save an operation and use the latter; but this comes with
the risk of computer overflow in the middle of a calculation.
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plot(simTime,X) �vertical gap

endfor

ΔsT = t - simTime; �since final jump

X = X − JλΔsT;
simTime = t; �final time

plot(simTime,X);

compensated Poisson process

a b

inverse Gaussian process

Fig. 6.3. Event to event simulations of Lévy pure jump processes

6.3.2 The Inverse Gaussian Process

The inverse Gaussian distribution has two parameters denoted by a and b. The
first is a shifting parameter and has units of reciprocal time; larger a shifts the
density to the right. The second is a spreading parameter, smaller b widens the
density. The density itself is given by

fIG(x; a, b) =
aeab√
2πx3

e−
1
2
(a2

x
+b2x), x > 0. (6.10)

Figure 6.4 shows the density function for two sets of parameters. The mean and
variance of an inverse Gaussian are

μIG =
a

b
varIG =

a

b3
. (6.11)

Since the density is only defined on the positive real line, the IG process is
always nondecreasing; such a process is called a subordinator. However a process
may be defined by differences of two independent inverse Gaussians to have both
positive and negative jumps. We investigate this possibility in Section 6.8.

The Lévy process defined by the inverse Gaussian is a pure jump process, see
Fig. 6.3b. We discuss this in the next section.
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a b

Fig. 6.4. The inverse Gaussian density for two parameter sets. Parameter a shifts the
density to the right, parameter b narrows the density (for larger b). Note that the density
is only defined for x > 0. It follows that an ARW based on this density can only move
to the right

The density (6.10) gives the distribution of the end points of the process,
that is at the end of the random walk, much as the normal distribution gives
the end point distribution of a Brownian motion.

A random walk based on the inverse Gaussian is simulated exactly as before:
the interval [0, T ] is subdivided into, say, n subintervals, and the update goes
subinterval by subinterval, see Algorithm 25. This is a point-to-point simulation;
a point-to-point path will not show jumps as they occur between the steps of
the walk. Example runs of the algorithm are shown in Fig. 6.5.

Algorithm 25. Arithmetic Random Walk IG

inputs: X0 = 0, T, Δt, a, b
n = T/Δt �number of iterations in time T
for t = 1, . . . , n

I ∼ IG(aΔt, b) �an IG sample, see A.10

ΔXt = I
Xt = Xt−1 +ΔXt

endfor

�the last Xt is an outcome of IG(aT, b)

6.4 Lévy Measures

Associated with each Lévy process is a unique set valued function ν(A) called
the Lévy measure. The meaning of the measure is

ν(A) is the intensity (arrival rate) of the Poisson process for jumps of sizes in A
for the path Lt, 0 ≤ t ≤ 1.
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a b

Fig. 6.5. These figures demonstrate the infinite divisibility property of the inverse
Gaussian density. In (a) a T = 30 process is simulated in one step using Algorithm 25.
In (b) the process is simulated adding six steps of size dt = 5. In each case the density
fIG(x; 30a, b) is overlaid on the histogram, a = 1, b = 0.7

In particular if the measure is given by a density

ν(dx) = h(x) dx (6.12)

then h(x) is the intensity for jumps of size x.
A Lévy measure has the same properties as a probability distribution except

that it must have zero mass at the origin and its total mass may be infinite. The
latter would be due to having a countable infinity of jumps of very small size. If
the total mass is infinite,

ν(R) =

∫ ∞

−∞
ν(dx) = ∞,

the Lévy process has infinite activity. In this case there are infinitely many jumps
on every interval (closed and bounded). Even if the process has infinite activity,
it is always the case that it is square summable in the following sense

∫

R

min(1, |x|2)ν(dx) < ∞. (6.13)

The Lévy measure for the pure drift process and the Wiener process is null.
For the Poisson process it is given by

ν(A) =
{
λ if J ∈ A,
0 otherwise

= λ1lA(J). (6.14)

The Lévy measure for the inverse Gaussian process is given by a density

νIG(dx) =
a√
2πx3

e−
1
2
b2xdx. (6.15)
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In Fig. 6.3b we show an instance of an inverse Gaussian process. This is an
event-to-event simulation and is somewhat complicated. An approximation can
be made as follows. Given ε > 0, chose positive numbers

ε = c0 < c1 < . . . < cd+1. (6.16)

For each interval [ci, ci+1), i = 0. . . . , d, let Poi(λi) be an independent Poisson
process with intensity given by the Lévy measure of the interval,

λi = ν([ci, ci+1)) =

∫ ci+1

ci

h(x) dx. (6.17)

The jump size Ji should be chosen so that the variance of the Poisson process
Poi matches that part of the variance of the Lévy process for that interval,

J2
i λi =

∫ ci+1

ci

x2ν(dx). (6.18)

To carry out the simulation, the event times for all d processes are sampled in
advance. They are then combined but with each identified to its corresponding
jump size, and sorted from early to late.4 Then the simulation may proceed
event-to-event as in Algorithm 24. When each event comes due, increment the
process Xt using that event’s corresponding jump size.

The above does not account for jumps of smaller size than ε. They may be
handled, if necessary, by approximating all the small jumps by a Wiener process
with drift. The parameter σ(ε) is given by

σ2(ε) =

∫ ε

0
x2ν(dx) (6.19)

and the drift is given by

μ(ε) =

∫ ε

0
xν(dx). (6.20)

6.5 Jump-Diffusion Processes

By combining a Wiener process with a jump process we have what is called a
jump-diffusion process. Let F (·) be a probability distribution (not necessarily a
Lévy process) and let J ∼ F denote its samples. We may define a Lévy process by

Lt = μt+

Nt∑

k=1

Jk − tλE(J). (6.21)

This is called a (compensated) compound Poisson process with drift. Just as in
the compensated Poisson process of (6.9), the arrival times of the jump events

4 A simple technique is to maintain two arrays, one with times, t and the other with jump
size, J . Now sort the times array via a rank permutation ri so that tr1 < tr2 < . . ., see
Chapter E. Then jump size Jri corresponds to time tri .
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are exponential; the only difference here is that the jumps can vary in size
according to F . Since the jump sizes may vary, the compensation is determined
by the average or expected jump size as shown in (6.21). The Lévy measure for
a compound Poisson process is λF (dx).

In financial applications F is often taken to be the normal distribution. Such
an example is shown in Fig. 6.6a (uncompensated in this example).

compound Poisson/Normal process

a b

jump-diffusion process

Fig. 6.6. (a) Shows an instance of an uncompensated compound Poisson process with
normally distributed jump sizes. A jump-diffusion process is shown in (b), the jump
sizes are random normal variates (with independent mean and variance from that of the
diffusion process)

The most general Lévy process is obtained by combining all four types of
processes into one: drift, diffusion (Wiener), compensated compound Poisson,
and an infinite activity pure jump. The combination of the first three of these
is called a jump-diffusion process.

Lt = μt+ σWt +

( Nt∑

k=1

Jk − tλE(Jk)

)

. (6.22)

A jump-diffusion process always has finite activity. Further it is a martingale if
and only if μ = 0.

A jump-diffusion path is simulated from event-to-event exactly as in
Algorithm 24. However, there is the additional step that the jump size be
drawn from F before adding the jump to X,

J ∼ F

X = X + J.

The additional difference from the cited algorithm is that, if compensation is
used, the jump size to use for it is the constant expected jump size, EF (J).
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6.6 Application to Asset Pricing

As we learned in Chapter 1, an arithmetic random walk is an inadequate model
for asset prices; a geometric walk is required. Therefore it is the log returns of
the asset that must be modeled by the Lévy process

dSt

St−
= dLt, (6.23)

(St− is the left limit of S at t; by the cadlag property it always exists). By
conducting simulations of Lt, 0 ≤ t ≤ T , as described in the previous sections,
and using (6.23) we obtain a histogram approximation of the maturity price
distribution and statistical information on the paths of the process leading to
maturity. Of considerable importance in this regard is the Martingale preserving
Property stating that if (Lt)t≥0 is a martingale, then so is (St)t≥0.

Generating asset prices via (6.23) is called the stochastic exponential method.
It is the method we will use. An alternative is the exponential-Lévy model
given by

St = S0e
Lt .

The two approaches are equivalent and are related by the Itô Lemma (B.11).
As was the case for diffusion increments, jump increments are taken pro-

portional to the current asset price S. For example, Snew = SoldJ . Then
ΔS = Snew − Sold = Sold(J − 1). If J > 1 then the increment is positive.
If 0 < J < 1 then the increment is negative. And if J < 0 then the new price
is negative; downward jumps must not exceed the current stock price. An alter-
native is to put ΔS = Sold(e

J − 1). Since eJ > 0 for all J , the non-negativity
requirement is automatically fulfilled. By the series expansion for the exponen-
tial function, to first order, eJ−1 = J . In this section we follow Merton, [Mer76],
and put ΔS = S(J − 1).

Recall that, for the drift-diffusion process of Chapter 1, we were able to derive
the maturity distribution analytically, see (1.18). In that case ST is distributed
lognormally. However things are not so easy for an arbitrary Lévy processes.
In general the maturity distribution is the solution of the stochastic differential
equation (SDE) for log(St) where St is as in (6.23). The differential of log(St) is
given by Itô’s Lemma, see (B.11), page 227. In appendix Section B.2 we solve
this for the drift-diffusion process (Wiener process with drift) obtaining the
lognormal as its solution. Solving it for the several processes described in the
previous sections is beyond the scope of this text. Thus we will content ourselves
with the simulation of the end point via small steps. In that way we generate
the paths too; as we have seen, they are needed in any case for several of the
exotic options.

6.6.1 Merton’s Model

Besides drift-diffusion there is another process for which the end point distri-
bution may be determined, namely for jump-diffusion processes. Let Lt be an
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uncompensated jump-diffusion process and consider the product S dLt term by
term. The drift and diffusion terms are Sμdt and σSdWt as usual. If there is no
jump at t, then the contribution from the jump term is 0. If t = tk is one of the
jump event times then S jumps to SJ so the increment is dS = SJ−S = S(J−1).
Therefore we have

dSt = Stμdt+ σStdWt + St

Nt∑

k=1

(Jk − 1)δtk (dt) (6.24)

where the singular measure δtk (dt) is equal to 1 if t = tk and 0 otherwise. Only
one term of the sum will be non-zero for any t. Note that the value of St used
as the multiplier for the jumps in (6.24) is the limiting value of S from the left,
St−; at an event time tk itself, S jumps to Stk .

By an extended version of Itô’s Lemma, (B.11), the differential of log St is
given by

d(log St) = (μ− 1

2
σ2)dt+ σdWt + d

( Nt∑

k=1

log Jk1ltk(t)

)

. (6.25)

The last term signifies the following: it calculates that a difference in the sum,
which can not be infinitesimal, at t is log Jk if t = tk and 0 otherwise. Again,
only one term is non-zero for any value of t. Integrating (6.25) we get

log St − log S0 = (μ − 1

2
σ2)t+ σWt +

Nt∑

k=1

log Jk. (6.26)

Upon exponentiation we arrive at the exponential-Lévy formulation

St = S0e
(μ− 1

2
σ2)t+σWt+

∑Nt
k=1 log Jk

= S0e
(μ− 1

2
σ2)t+σWt

Nt∏

k=1

Jk. (6.27)

In Fig. 6.7a we show a typical path for a jump-diffusion simulation using
lognormally distributed jump sizes, (b) depicts the maturity distribution. These
figures were made using Algorithm 26.

Algorithm 26. Jump-Diffusion GRW, Point-to-Point Simulation

inputs: T, dt, λ, F (·) (jumpsize distribution)

S0, μ, σ
S = S0;

n = T/dt; �number of steps

simTime = 0;

arrivalArray = poissonArrivals(λT); �use (6.6)

NT = arrivalArray length; �number of jumps

sDX=1; �step index, point at next step

jDX = 1; �jump index, point at next jump
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jump diffusion path

a b

jump diffusion maturity distribution

Fig. 6.7. Characteristics of a jump-diffusion geometric random walk. A typical path
is shown in (a) and the end-point distribution is shown in (b). The drift-diffusion pa-
rameters are: μ = 3% and σ = 40%. The jumps are distributed as LN(−0.0032, 0.082)
with event rate λ = 0.1 per day

for . . . �infinite loop

if( jDX > NT or sDX ∗ dt < arrivals[jDX] )

dst = sDX*dt - simTime; //increment in simtime

�do a diffusion

dS = S(μ ∗ dst+ σ
√
dstZ); �Z ∼ N(0, 1)

S = S + dS;

simTime = simTime+dst; �update simTime

sDX = sDX+1; �point at next step

else �jump event

�do a diffusion since last step

dst = arrivals[jDX]-simTime; �increment in simTime

dS = S(μ ∗ dst+ σ
√
dstZ); �Z ∼ N(0, 1)

S = dS + S;

simTime = arrivals[jDX]; �update simTime

S = S*J; �J ∼ F (·), after jump price

jDX= jDX + 1; �point to next jump time

endif

�check if done

if sDX > n break out of loop

endfor

ST = S;

6.6.2 Jump-Diffusion Risk-Free Growth

In order to use a Lévy process for market predictions, the process must be a
martingale. It is possible to achieve this by adjusting the drift of the process,
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this is a consequence of the Girsarnov Theorem, [Bjo04]. However, except for the
Poisson pure jump and Wiener processes, the martingale measure is not unique.
From the discussion in Section 6.1, this means the market is incomplete and
there is no one no-arbitrage price. Notwithstanding uniqueness, next we show
how to calculate a no-arbitrage drift for the jump-diffusion process.

The infinitesimal growth rate of the jump-diffusion model may be calculated
from (6.24). The drift term being constant, its expected value is itself μStdt,
and the expected value of the diffusion term is 0 because the expected value of
a Wiener process is that. With regard to the jump term, the expected value is
the expected jump size times the expected arrival rate of the jumps. Since the
latter arise according to a Poisson distribution with intensity λ, we may write

E

(

St

Nt∑

k=1

(Jk − 1)δtk (dt)

)

= StE(J − 1) (λdt) . (6.28)

For example, if the jumps are distributed according to N(μJ , σ
2
J), then

E(dSt) = μSdt+ (μJ − 1)Stλdt. (6.29)

And if they are distributed according to LN(α, β2), then

E(dSt) = μSdt+ (eα+
1
2
β2 − 1)Stλdt. (6.30)

On the other hand, in order to be risk-neutral, the expected growth rate
should be Strdt where r is the risk-free rate. Hence in the case of normally
distributed jumps

r = μ+ λ(μJ − 1)

so that
μ = r − λ(μJ − 1). (6.31)

And in the case of lognormally distributed jumps,

μ = r − λ(eα+
1
2
β2 − 1). (6.32)

Using these drifts in the price simulations for these jump diffusion processes is
the equivalent of using the risk-free rate in the GBM simulations. One still has
to discount back the option payoffs.

6.6.3 Calculating Prices for Vanilla Options

We will use the Monte Carlo method to obtain option prices by simulating the
jump-diffusion model. The only change to Algorithm 26 is to add the option
payoff function G(ST ) (for path independent options) at the end of the loop and
then discount this back to t = 0, see Algorithm 27.

If the jump sizes are to be normally or lognormally distributed, use (6.31) or
(6.32) as appropriate for the drift.

In Fig. 6.8 we compare jump-diffusion ending price distributions for both
normal and lognormal jump sizes against that of geometric Brownian motion.
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normal jumps

a b

lognormal jumps

Fig. 6.8. Comparisons between GBM maturity distribution (in red) and a jump dif-
fusion maturity histogram. For the GBM r = 3%, vol= 40%, T=100 days. The Pois-
son process is λ = 0.1 per day. In (a) the jumps are N(1, 0.062); in (b) they are
LN(−0.0032, 0.082)

In each case the jump-diffusion prices show greater spread and so we can expect
higher option prices as if the volatility were greater.

Algorithm 27. Monte Carlo Jump-Diffusion Pricing Algorithm

inputs: S0, K, T, r, σ, nTrials
E = 0
for i = 1, . . . , nTrials

S = S0

�use Algorithm 26 to generate ST

E = E +G(ST )
end for

option price = e−rTE/nTrials

Figure 6.9 illustrates a comparison between option prices under the Black-
Scholes model and those of a jump diffusion model. As previously mentioned, the
jump diffusion model is incomplete and therefore there is no unique no-arbitrage
price. In the figure the risk-neutral value of (6.31) was used.

Exotic Options

Many of the exotic options go just as discussed in Chapter 4 since we are able to
simulate instances of the price paths for Lévy processes. However others require
some care in the use of Lévy jump process. In the case of a barrier option, a jump
can carry the underlying’s price across the barrier triggering the corresponding
action. And again, in our shout boundary approach to shout options, a jump



182 6 Alternatives to GBM Prices

vanilla put

a b

vanilla call

Fig. 6.9. Black-Scholes put and call values (black) as compared with those for the
jump diffusion model (red) using normal distribution jumps plotted against stock price
S. The option characteristics are: K = 100, T = 60 (days), rf = 3%, vol= 40%. The
jump parameters are as indicated. The jump diffusion ATM put costs 6.75 vs 6.20
for Black-Scholes, a 9% increase. The jump diffusion ATM call costs 7.21 vs 6.70 for
Black-Scholes, an 8% increase

can carry the price across the boundary calling for a shout. These options must
be simulated event-to-event and Brownian bridges must be considered between
events (4.1), see [CT04].

As previously reported, simulation prices of vanilla options for a range of pa-
rameter values, for example, drifts in the jump-diffusion model, when compared
to their market prices can be used to determine the exact (current) parameter
values applicable. Then these values are used to calculate exotic option prices.

6.7 Time Shifted Processes

In Section 6.3 we encountered an example of a subordinator, a process that is
either constant or increasing. One of the main uses of such a process is to replace
the smoothly moving calendar time by the subordinator process. In this way an
entirely new class of Lévy processes can be generated. In finance such a process
is used to simulate business time since businesses tend to operate from event
to event. If τt is a subordinator and Xt an overlying Lévy process, then the
subordinated or time changed process is

Lt = Xτt . (6.33)

Often a Wiener process is used as the overlying process.
Figure 6.10 shows a typical Gaussian subordinator path in (a) and the end

point histogram in (b). The simulation, done via Algorithm 28, proceeds in reg-
ular time increments Δt as usual. But the Wiener process is based on an inverse
Gaussian time step. The path of such a process often has large movement as
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shown but they are not exactly jumps since they occur Δt time units apart.
These can occur when there is a long time period commanded by the subordina-
tor, then the Gaussian step has a chance to be large. The end point distribution
is depicted in (b). It shows a narrow peak but a very wide base. A small number
of large jumps in the same direction can account for this phenomenon.

subordinator path subordinator density

a b

Fig. 6.10. Illustrated in (a) is a typical Gaussian subordinator path. Illustrated in (b)
is an end point histogram. It shows a narrow peak but a very wide base. A small number
of large jumps in the same direction can account for this phenomenon

Algorithm 28. Gaussian Subordinator Simulation

inputs: T, dt, X0, μ, σ, a, b
X = X0;

n = T/dt; �number of steps

for i = 1, 2, . . . , n
τ ∼ IG(a ∗ dt, b) �incr. in time via subordinator

ΔX = μτ + σ
√
τZ; �Z ∼ N(0, 1)

X = X +ΔX;

endfor

XT = X;

6.8 Heavytailed Distributions

The normal distribution is widely used in finance, but often it is only an approx-
imation to the actual distribution of the circumstance. One piece of evidence for
this is that events which should only occur once in thousands of years, instead
occur 2 or 3 times in 40. Some have labeled these as “six-sigma events” since, if
the normal distribution applied, their probability of occurring would be that in
the upper tail six standard deviations from the mean. It can be inferred that the
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actual distribution governing, for example price movements, has greater proba-
bility for extreme events than is accounted for by the normal distribution. That
is to say, the tails of the distribution should be fatter.

It is for this reason that financial mathematicians study heavytailed distri-
butions, densities decaying more slowly in the tails than the normal. In this
section we examine two examples. The first is the widely known family of t dis-
tributions, sometimes known as the Student t. For the second example, we show
that a heavytailed distribution can be constructed as the difference between two
independent subordinators.

6.8.1 Student’s t-Distribution

The t distribution has a single parameter, ν > 0, known as the degrees of freedom
(dof). Some members of the family are shown in Fig. 6.11.

The t probability density function is given by

fν(x) =
Γ (ν+1

2 )√
νπΓ (ν2 )

(

1 +
x2

ν

)− 1
2
(ν+1)

. (6.34)

In this Γ (·) is the gamma function defined by the integral

Γ (z) =

∫ ∞

0
tz−1e−t dt.

In (6.34) the gamma terms are just constants contributing to normalization.
The gamma function is an extension of the factorial function. Using integra-

tion by parts, it is easy to see that it satisfies the recursion

Γ (z + 1) = zΓ (z).

And by direct integration we get

Γ (1) = 1.

Fig. 6.11. Student t densities for degrees of freedom equal to 1, 2, 3, and infinity (the
standard normal)
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From these two facts it is easy to see that, for integers, gamma is the factorial
function,

Γ (n) = (n− 1)! n a positive integer. (6.35)

The only other commonly needed value of gamma is for z = 1/2 and that value
is well-known,

Γ (
1

2
) =

√
π. (6.36)

With these preparations, we may write the first five members of the tν family
(for integral ν)

f1(x) =
1

π(1 + x2)

f2(x) =
1

2
√
2
(1 + x2/2)−3/2

f3(x) =
2

π
√
3
(1 + x2/3)−2

f4(x) =
3

8
(1 + x2/4)−5/2

f5(x) =
8

3π
√
5
(1 + x2/5)−3.

The ν = 1 density is also known as Cauchy’s density. As ν → ∞ the tν
distribution tends to the standard normal density. As seen in Fig. 6.11 the tails
become less heavy as ν increases.

The t densities are symmetric about x = 0 and hence have mean equal to 0.
The ν = 1 and ν = 2 densities do not have bounded square integrals and
therefore their variances are infinite. But for ν > 2 the variances are finite,

var(tν) =
ν

ν − 2
ν = 3, 4, . . . . (6.37)

Sampling from the Student-t

The most widely used method for sampling from the tν distribution is due to
Baily [Bai94]. It is valid for all ν > 0 The Baily algorithm is a simple modification
of the Marsaglia-Bray algorithm, Algorithm 2, for the standard normal.

Algorithm 29. Baily’s Algorithm for tν Samples

repeat

U ∼ U(0,1); U = 2U-1; �uniform on -1 to 1

V ∼ U(0,1); V = 2V-1; �a point in the sqr.

until W=U2+V2<= 1
C=U2/W; R = ν(W−2/ν − 1)
T =

√
RC;

if( U∼ U(0,1) <.5 )

return T

else

return -T
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6.8.2 Difference Subordinator Densities

Although we have only studied two Lévy densities besides the normal, namely
the Poisson and the inverse Gaussian, there are many known. And we have
shown how Lévy processes can be constructed as compound Poisson processes
or by time change. Many of the Lévy process densities are heavytailed. Here we
show another method for constructing a heavytailed density guaranteed to be
infinitely divisible.

Let Xt and Yt be subordinators and put Zt equal to their difference,

Zt = Xt − Yt. (6.38)

Then Zt is infinitely divisible and therefore a Lévy process. For example, X and
Y can be the same subordinator.

By independence, the mean of Zt is just the difference of that of Xt and Yt,
and the variance is the sum var(Zt) = var(Xt) + var(Yt). In Fig. 6.12 we show
the difference between two inverse Gaussians for two different parameter sets.
Also shown is the normal density having the same mean and variance. At about
2σ the difference density exceeds the normal showing that its tails are heavy.

Application to Asset Prices

An alternate formulation of (6.23) derives from including the risk-free rate in
the stochastic exponential separately,

dSt = rf St−dt+ St−dZt. (6.39)

This formulation is completely general and holds for any Lévy process Zt. From
the martingale preserving property, in this formulation the process e−rf tSt is a
martingale if and only if E(Z1) = 0.

Fig. 6.12. Difference inverse Gaussian histograms for two quite different parameter sets.
Overlaying each figure is the normal distribution with the same mean and variance. Both
inverse Gaussians are heavytailed
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Problems: Chapter 6

1. Show that if X ∼ Po(λ1) and Y ∼ Po(λ2), then X + Y ∼ Po(λ1 + λ2). Hint:

Pr(X + Y ≤ z) =

z∑

y=0

Pr(X ≤ z − y|Y = y)Pr(Y = y)

=

z∑

y=0

λz−y
1 e−λ1

(z − y)!

λy
2e

−λ2

y!
.

2. The skew of a random variable X is defined as

skew = E
(
(X − μX)3

)
/std3X . (6.40)

Given data x1, x2, . . . , xn an estimator for skew is

skew =

∑n
1 (xi − x)3

ns3

where x and s are empirical mean and standard deviation. Being a symmetric
distribution the normal has 0 skew. Calculate the empirical skew of the log returns
(log Si+1

Si
), for 3 stock equities of your choice using daily prices over the last 2 years.

(Use the FIMCOM database or finance.yahoo for the prices, see Section 1.7.3
page 25.)

3. The kurtosis of a random variable X is defined as

kurtosis = E
(
(X − μX)4

)
/std4X . (6.41)

Given data x1, x2, . . . , xn an estimator for kurtosis is

kurtosis =

∑n
1 (xi − x)4

ns4

where x and s are empirical mean and standard deviation. The kurtosis of the nor-
mal distribution is 3, cf. the footnote on page 15. Calculate the empirical kurtosis
of the log returns (log Si+1

Si
), for 3 stock equities of your choice using daily prices

over the last 2 years. (Use the FIMCOM database or finance.yahoo for the prices,
see Section 1.7.3 page 25.)

4. (a) From market price data make a graph of implied volatility σ versus strike price
K for call options on the S&P-500 for expiration maturities of T on the order of
30 days (near as possible). Do the same for T = 60 and 90 days. You now have a
volatility surface, implied volatility versus strike and time.
(b) Do the same for put options.

5. The Gamma distribution, G(α, λ) has density given by

fG(x : α, λ) =
λα

Γ (α)
xα−1e−λx, x > 0. (6.42)

Here Γ (α) is the gamma function of Section 6.8 and equals (α−1)! if α is a positive
integer. Show that the Gamma is infinitely divisible (empirically) by showing that
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the histogram for the sum of six samples of G(1, λ) has the same density as G(6, λ).
Note that, for α a positive integer, then

W =
−1

λ
log(

α∏

1

Ui) Ui ∼ U(0, 1) (6.43)

is a sample from G(α, λ), [SM09].

6. (a) Make a chart similar to Fig. 6.9 showing the price of a put option using the jump
diffusion model with lognormal jumps for stock prices versus the GBM model. In
order to compare the results with jump diffusion using N(μJ , σ

2
J ) jumps, find α and

β to match the mean and variance,

μj = μLN = eα+
1
2β

2

, σ2
J = (eβ

2 − 1)μ2
LN .

(b) Do the same for calls.

7. (a) Make a chart similar to Fig. 6.9 showing the price of a put option using a
difference IG model for stock prices versus the GBM model. Use a− = a+ = 41
and b− = b+ = 8. What are the mean and variance of the difference IG process?
(b) Do the same for calls.

8. (a) Work the Bermuda option Problem 5 of Chapter 4 assuming prices follow a
jump diffusion with normal sized jumps. Be sure to report your jump parameters.
(b) Repeat (a) using lognormal sized jumps.

9. Work the Bermuda option Problem 5 of Chapter 4 assuming prices follow a sym-
metric differential IG model, use equation (6.39). Be sure to report your model’s
parameters.

10. Recalculate Table 4.2 page 121 for barrier options assuming prices follow a jump
diffusion model with normal sized jumps. Recall that the simulation must go event-
by-event.

11. Recalculate Table 4.1 page 119 for Asian options assuming prices follow a differen-
tial IG process.

12. A portfolio consists of 100 shares each of stock A: S0 = 60, μ = 8%, σ = 40%; and
B: S0 = 40, μ = 3%, σ = 20%. Their correlation is ρ = 0.3. After 6 months what is
the probability of losing money and the expected gain of the portfolio if (a) prices
follow a Gaussian GBM model? (b) a jump diffusion with normal jumps?

13. Work the VaR Problem 9 of Chapter 2 assuming prices follow jump diffusion with
normal sized jumps.

In the following assume a jump diffusion model for prices with normal jumps.

14. Analyze covered calls as in Table 5.2.
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15. Analyze creditspreads as in Table 5.5.

In the following assume a (symmetric) difference IG model for prices.

16. Analyze iron condors as in Table 5.9.

17. Analyze the straddle strategy as in Table 5.7.
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