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Pricing Exotic Options

European put and call options are valued according to the expected price of the
underlying on the expiration date of the option. This makes it easy all around
to price the option at any time. The Black-Scholes formula does exactly that.
The history of prices of the underlying plays no role in determining the option
value.

But this is the exception as far as options go. Already the American option
has an associated exercise boundary; the option is exercised if the path of prices
touches it. And there are even more exotic options yet. Most of them are path
dependent.

In this chapter we review some of these exotic options and show how they
can be priced by Monte Carlo methods. Pricing options that depend on the price
history of the underlying is a major theoretical challenge for analytical methods.
In many cases Monte Carlo is the only practical solution.

The following is a partial list of exotic options along with their brief
descriptions. The options marked by an asterisk have analytical pricing formulas
(at least for their European version). The reference for the analysis is given in
parentheses.

Asian the payoff is determined by the average price of the underlying over some
pre-set period of time.

Barrier∗ if a trigger price is crossed it causes a pre-determined option to come
into existence (knock-in) or go out of existence (knock-out) [Hull11].

Basket the underlying is a weighted average of several assets.
Bermuda the buyer has the right to exercise at a discrete set of times.
Binary∗ the payoff is a fixed amount of some asset or nothing at all, also called

a digital option [Hull11].
Chooser∗ gives the holder a fixed period of time in which to decide whether

the option will be a European put or call [Hull11].
Compound∗ an option on an option; the exercise payoff of a compound option

is determined by the value of another option [Hull11].
Exchange∗ the holder gets the best performing out of two underlying assets at

expiration [Mar78].
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118 4 Pricing Exotic Options

Extendible∗ allows the holder or writer to choose, on the expiration date, to
extend the life of the option by a specified amount [Lon90].

Lookback∗ the holder has the right to buy (sell) the underlying at its lowest
(highest) price over some preceding period [Hull11].

Shout during the life of the option the holder can, at any time, “shout” to the
seller that he or she is locking-in the current price, if this gives a better deal
than the payoff at maturity the asset price on the shout date may be used
instead of that on the expiration date.

Spread∗ its underlying is the difference between two specific assets [CD03].

We will discuss some of these in the following sections in terms of their Monte
Carlo solutions. Even for those having analytical formulas, that solution requires
their financial parameters be constant, such as the risk-free rate. But they can
be solved as well by Monte Carlo under less stringent, non-constant, conditions.

In pricing exotic options by Monte Carlo, the random number generator must
be of high quality.

4.1 Asian Options

In place of the price of the underlying at exercise, an Asian option uses the
average price of the underlying over some pre-set period of time. For example
the entire life of the option or perhaps the last 30 days before expiration. A
reason for preferring Asian options in certain cases is to provide protection from
price manipulation as the option nears expiration. This is a risk for thinly traded
assets. Asian options also avoid the vagaries of volatility in the market. And they
are cheaper than their European counterparts because, by averaging the price
of the underlying, the effective volatility is much less.

The algorithm for pricing an Asian option is only mildly different from our
standard pricing algorithm, Algorithm 13 on page 108. It is noteworthy that
to obtain accurate results, dt must be taken to be a very small increment of
time, on the order of one one-hundredth of a day or about dt = 2.74 × 10−5 in
years. This greatly increases the run time of the GRW. The following algorithm
takes about 90 seconds for N = 100,000 trials on contemporary equipment. For
techniques that reduce the run time see Chapter D.

Algorithm 16. Pricing algorithm for Asian options

inputs: S0, K, T, Δt, r, σ, N
E = 0 �expected option value
n = T/Δt �number of walk steps
A = 0 �A = average price over entire walk
for i = 1, . . . , N

S = S0 �starting price
for t = 1, . . . , n

Z ∼ N(0, 1)

dS = S(rΔt+ σ
√
ΔtZ)

S = S + dS
A = A+ S
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endfor
A = A/n �average price
E = E + G(A)

endfor
E = E/N
option price = e−rTE

Option payoffs are as usual,

for calls G(A) = max(A−K, 0), for puts G(A) = max(K −A, 0).

The algorithm relies on discrete arithmetical averaging

A =
1

n

n∑

i=1

Si,

but other types of averaging are also used. These include continuous (in analyt-
ical calculations) and geometric averaging, respectively

A =
1

T

∫ T

0
S(t)dt

A = exp

(
1

T

∫ T

0
log(S(t))dt

)

There are analytical formulas for calculating Asian options under geometric
averaging.

In Table 4.1 we compare various Asian option prices with their European
counterparts. One immediate observation is that as the averaging period be-
comes shorter at the end of the life of the option, the Asian price increases up
to that of the European.

Table 4.1 Asian versus European option prices

S0 = 100, rf = 3%, σ = 20%, Δt(days) = 0.01

Type Strike Expiry(days) Avg. period Asian European

Call 100 60 Entire 1.99 3.48
Call 100 60 Last 30 days 2.82 3.48
Call 100 60 Last 15 days 3.16 3.48
Call 95 60 Entire 5.50 6.61
Call 105 60 Entire 0.41 1.54
Put 100 60 Entire 1.75 2.99



120 4 Pricing Exotic Options

4.1.1 Floating Strike Asian Option

The option described above is known as the fixed strike Asian option. There is
also a variant in which it is the strike price that is averaged. In this case the put
and call payoffs are, respectively,

max(A− ST , 0), and max(ST −A, 0).

As usual, ST is the underlying price at expiration while A is the average under-
lying price over the designated period. We leave it to the reader to explore this
case.

4.2 Barrier Options

In addition to the strike price, a barrier option specifies a second price as well, the
barrier. The barrier can function to engage the option or to nullify it depending
on the type. In the case of a “knock-out” barrier, if the barrier price is crossed,
the option becomes valueless. The opposite occurs for a “knock-in” barrier, the
option comes into existence.

Evidently the price of a knock-out type plus the price of a knock-in type
equals the price of a plain vanilla European option. This implies that the price
of a barrier option is always less than that of its European counterpart. Their
reduced cost is one attraction of a barrier option.

It also implies that given the price of one of the options, say the knock-out
variant, then the price of the knock-in can be easily calculated by subtracting
from the price of the vanilla option as determined by the Black-Scholes formula.

In calculating the value of a knock-out barrier option by simulation there is
a fundamental problem. We may and do simulate the stock price at the nodes,
ti = iΔt, i = 1, . . . , n and therefore know if the barrier is crossed at those points,
but what about between the nodes? Fortunately there is a way to decide, prob-
abilistically, whether the barrier has been crossed in this manner. The technique
is called Brownian bridges. Let Xt = μt + σWt be a Wiener process with drift
which has the value xi−1 at ti−1 and xi at ti both less than the barrier B. Then
the probability the process does not cross the barrier between these bridge points
is given by, see [BS02]

Pr(Xτ < B, ti−1 < τ < ti) = 1− e−2(B−xi)(B−xi−1)/(σ2Δt). (4.1)

One sees from (4.1) that in the limit as xi → B (or xi−1 → B) the probability
of not crossing tends to 0.

The following algorithm runs the simulation, reports the ending stock price
and whether the barrier was crossed or not. From (4.1), the barrier is crossed
between end points with probability

e−2(B−xi)(B−xi−1)/(σ
2Δt). (4.2)
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But if the barrier is crossed at one of the end points, then the product (B −
xi)(B−xi−1) is negative

1 and the exponential (4.2) is greater than 1. Hence the
Brownian bridge check may be combined with the end-point check.

Algorithm 17. Pricing algorithm for a barrier option

inputs: S0, K, B, T, r, σ, N, dt
E = 0; n = T/dt;
for i = 1, . . . , N

S = S0; barrierCrossed = false;
diff1= B − S0;
for t = 1, . . . , n

Z ∼ N(0, 1)

dS = S(rdt+ σ
√
dtZ)

S = S + dS
diff2 = B − S
U ∼ U(0, 1)

if( U < e−2diff1·diff2/σ2·dt ) �barrier crossed
barrierCrossed = true

endif
diff1 = diff2;

endfor
if( barrierCrossed == false )

E = E + G(S) �knock out type
endif

endfor
E = E/N
option price = e−rTE

Again, to obtain accurate results, dt must be taken to be a very small increment
of time.

Some example barrier prices are presented in Table 4.2.

Table 4.2 Barrier versus European option prices

S0 = 100, K = 100, rf = 3%

Type Barrier Expiry(days) Vol.(%) Δt(days) Barrier price European

Call 95 60 20 0.05 3.09 3.48
Call 95 60 40 0.005 4.04 6.70
Call 95 90 20 0.005 3.53 3.32
Call 90 60 20 0.05 3.48 3.48
Put 105 60 20 0.05 2.57 2.99

1 Only one is negative the first time.
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4.3 Basket Options

The payoff of a basket option is the weighted average of two or more underlying
assets – what would be called a “basket” of assets. For example, a European
style basket option has a specified strike price K and an expiration date T . The
payoff is (ST −K)+ for a call or (K − ST )

+ for a put where

St =
n∑

k=1

wkS
k
t , 0 ≤ t ≤ T ;

S1
t , . . ., S

n
t are the prices of the underlying assets, n of them in this case, and

w1, . . ., wn are the weights,
∑

wk = 1.
The complication in evaluating a basket option is that the underlying assets

are almost always correlated. Fortunately correlation is no problem for the Monte
Carlo method. Refer back to Section 2.3.4 for a discussion on the matter.

To illustrate, we will work through a three basket problem. Let ρ12 be the
correlation coefficient between assets 1 and 2. Similarly let ρ13 and ρ23 be the
correlations between assets 1 and 3 and 2 and 3 respectively. According to (2.36)
and (2.37) we may use the lower triangular matrix

H =

⎡

⎣
1 0 0
ρ12

√
1− ρ212 0

ρ13 h32
√

σ2
3 − ρ213 − h232

⎤

⎦ (4.3)

where

h32 =
ρ23 − ρ12ρ13√

1− ρ212

to generate the required correlated standard normal random variables. Let Z1,
Z2, and Z3 be independent N(0, 1) samples, then X1, X2, and X3 given by

⎡

⎣
X1

X2

X3

⎤

⎦ = H

⎡

⎣
Z1

Z2

Z3

⎤

⎦ (4.4)

serve as the increments to the GRW.
Note that perfect correlations ρ = 1 or perfect anti-correlations, ρ = −1

must be worked out as special cases. For example, if ρ12 = 1, then ρ13 = ρ23.
The terms of matrix H will be h11 = h21 = 1, h31 = ρ13, h32 =

√
1− ρ213, and

h22 = h33 = 0 in this case.

Algorithm 18. Pricing algorithm for a 3-basket option

inputs: Sk
0, wk, σk, k = 1, 2, 3,

H, K, T, r, N, Δt
E = 0; n = T/Δt;
for i = 1, . . . , N

Sk = Sk
0, k = 1, 2, 3
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for t = 1, . . . , n
Zk ∼ N(0, 1), k = 1, 2, 3

[X1 X2 X3 ]
T = H [Z1 Z2 Z3 ]

T �eqn. (4.4)

dSk = Sk(rΔt+ σk
√
ΔtXk), k = 1, 2, 3

Sk = Sk + dSk, k = 1, 2, 3
endfor

ST = w1S
1 + w2S

2 + w3S
3

E = E + G(ST )
endfor

E = E/N

option price = e−rTE

In Table 4.3 we give some basket option values. There are many possible com-
binations to explore; only a small subset can be undertaken here. In the last
column of the table we give the Black-Scholes value of an option having volatil-
ity equal to the weighted average of that of the three assets. This is for reference
purposes only, the basket option is not expected to equal it.

An exception is the first table entry. Here two perfectly correlated assets
with the same volatility constituting the entire portfolio should behave as a
single underlying, and does. In the next row, the two assets are perfectly anti-
correlated. The result is that the option value is very small. This is because
the volatility of the portfolio is now nearly zero, when one asset is heading up,
the other is heading down. But the reverse directions of the two do not cancel
because both have positive drift, the risk-free rate. This example shows that
options over portfolios of assets should cost less. And the next row shows this
for arbitrary correlations.

In the next row we see that if the assets are perfectly correlated then they give
the same as Black-Scholes even if they have different volatilities. On the other
hand, if the assets are uncorrelated, then their option cost is suitably reduced
from Black-Scholes.

Table 4.3 A sampling of basket option prices

Call, S1
0 = S2

0 = S3
0 = 100, K = 100, rf = 3%, T = 60days

σ1 σ2 σ3 ρ12 ρ13 ρ23 w1 w2 w3 Basket BlkSch.

0.2 0.2 0.2 1 0 0 0.5 0.5 0.0 3.48 3.48
0.2 0.2 0.2 −1 0 0 0.5 0.5 0.0 0.49 3.48
0.2 0.2 0.2 0.7 0.3 −0.1 0.33 0.33 0.33 2.62 3.48
0.2 0.3 0.4 1 1 1 0.33 0.33 0.33 5.09 5.09
0.2 0.3 0.4 0 0 0 0.33 0.33 0.33 3.14 5.09
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4.4 Exchange Options

The payoff of an exchange option is the amount by which one asset outperforms
another. If the contract matches asset A versus B, then at expiration the payoff is

max(AT −BT , 0). (4.5)

Another way of thinking about it is that the holder is allowed to exchange one
share of asset B for one share of A at expiration if A is worth more (otherwise
B is retained).

Exchange options are also called Margrabe options after the person who first
studied them or outperformance options.

From the standpoint of asset A, the option is a European call with exercise
price equal to BT . But from the standpoint of B, it is a European put with
exercise price AT . From the first interpretation it is not surprising that during
the life of the option it never has value 0 and therefore the price of an American
exchange option is the same as the European one.

The payoff of an exchange option does not depend on the path of prices of
the underlying giving rise to the hope that an analytical expression can be found
to price them. One elegant way to proceed is by change of numeraire. Numeraire
refers to the basis for measuring the value of things. Normally currency is used
for this purpose, but here, following [Der96], we will use shares of B.

Let C$ be the value of the exchange option in terms of dollars and CB the
value in terms of shares of B. Similarly let A$(0) = A(0) denote the value of one
share of A in dollars at the time the contract is made and let AB(0) denote the
value of one share of A in terms of shares of B at that time. The exchange rate
between B-shares and dollars is B$ = B(0), that is B$ is dollars per share of B.
To convert a value in B-shares to dollars, multiply by B$.

In terms of B-shares, the option contract is to exchange 1 share of B for 1
share of A at expiration, in other words the payoff is

max(AB(T )− 1, 0).

Therefore the value of the contract denominated in B-shares is given by the
Black-Scholes call formula, a function of S0, K, T , rf , and σ, see Section 3.6,

C = BS(S0,K, T, rf , σ) = S0Φ(d1)−Ke−rf TΦ(d2).

In terms of B-shares the parameters are as follows: the starting value of A is
AB(0), and the strike price is 1. Let the time to expiration be T as usual. The
risk-free rate must be taken in terms of B-shares – it is the dividend yield for B,
denote it qB. Finally, for the volatility, we must use the volatility of A in terms
of B-shares, denote it by σB(A). We will calculate this below.

From Black-Scholes then

CB = BS(AB(0), 1, T, qB , σB(A)) = AB(0)Φ(d1)− e−qBTΦ(d2). (4.6)

and in terms of dollars
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C$ = B$CB = B$AB(0)Φ(d1)−B$e
−qBTΦ(d2)

= A(0)Φ(d1)−B(0)e−qBTΦ(d2).

It remains only to accommodate the dividend yield of A by replacing A(0) by
A(0)e−qAT throughout (here and in d1 and d2 below), see Section 3.6.5. Thus

C$ = A(0)e−qATΦ(d1)−B(0)e−qBTΦ(d2). (4.7)

The combination of terms comprising d1 and d2 refer to B-shares as the nu-
meraire, for example

d1 =
log(AB(0)/1) + (qB + 1

2σB(A)
2)T

σB(A)
√
T

.

Since B$AB(0) = A(0), it follows that AB(0) = A(0)/B(0). Then, accounting
for the A dividend rate, we have

d1 =
log(A(0)/B(0)) + (qB − qA + 1

2σB(A)
2)T

σB(A)
√
T

d2 =
log(A(0)/B(0)) + (qB − qA − 1

2σB(A)
2)T

σB(A)
√
T

. (4.8)

As mentioned above, σB(A) is the volatility of A with respect to B; it is the
square root of the variance of A/B. It can be shown that this is given by2

σB(A) =
√

σ2
A + σ2

B − 2ρABσAσB. (4.9)

Notice that the calculation of the exchange option price does not make use of
the risk-free rate. This is because the risk-neutral requirement has both equities
growing at that rate and therefore the effect cancels out.

4.4.1 Non-constant Correlation

Equation (4.7) assumes the correlation coefficient ρAB is constant. When this is
not expected to be a valid assumption, Monte Carlo can be used. For example it
may be anticipated that the two assets will become less correlated over the time
horizon of the option. An arbitrary dependence on time, ρAB = ρAB(t) can be
accommodated or even a dependence on relative prices. The following algorithm
incorporates a time profile.

Algorithm 19. Pricing algorithm for an Exchange Option

inputs: A0, qA, σA, B0, qB, σB
ρ(t), T, r, N, Δt

E = 0; n = T/Δt;
for i = 1, . . . , N

2 Expand the function f(a, b) = a/b in a Taylor series through first order terms about the
means µA and µB and take expectation.
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A = A0; B = B0;
for j = 1, . . . , n

ρ = ρ(j Δt)
Z1 ∼ N(0, 1); Z2 ∼ N(0, 1);

XA = Z1; XB = ρZ1 +
√

1− ρ2Z2;

dA = A((r − qA)Δt+ σA
√
ΔtXA)

dB = B((r − qB)Δt+ σB
√
ΔtXB)

A = A+ dA; B = B + dB;
endfor
E = E + max(A−B, 0)

endfor
E = E/N
option price = e−rTE

In Table 4.4 we show the results of a few runs of the algorithm. The first three
use a constant correlation profile and hence, for them, the solution derived above
should equal that of the simulation, and it does. We notice that as the assets are
more correlated, the smaller is the option value. In the third case, the value of B
starts out greater than that of A, thus A does not often exceed B at expiration
and the option cost is low. In the fourth run the correlation decreases over the
life of the option (from 0.8 down to 0.2). The result is that the option price
behaves more like the correlation was the lower value than the upper one. In the
last run the correlation increases over the life of the option. Again the result is
that the option price is more like that for the higher correlation.

Table 4.4 Sample exchange option prices

qA = 8%, qB = 6%, r = 3%, T = 90 days

A0 B0 σA σB Correlation Exchange BlkSch.

100 100 0.2 0.2 Const. at 0.6 3.24 3.24
100 100 0.2 0.2 Const. at 0.0 5.27 5.26
100 102 0.2 0.2 Const. at 0.6 1.88 1.88
100 100 0.2 0.2 Decr. 0.8 to 0.2 2.52 2.70
100 100 0.2 0.2 Incr. 0.2 to 0.8 3.47 2.70

4.5 Bermudan Options

A Bermudan option is one that can be exercised at any one of a set of specified
times, the last one being the expiration date of the option. A Bermudan option
is in this sense in-between an American and a European option.

A Bermudan option can be priced by either of the methods used for Amer-
ican options: the binomial tree method or maximization over a parameter set
controlling an exercise boundary. Refer to Sections 3.5.4 and 3.7.2 respectively.
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4.5.1 The Binomial Tree Method

The only change in the binomial method for a Bermudan option from its appli-
cation in the American case is that the test for early exercise is only made at
the designated exercise times, for all other nodes the tree is valued exactly as a
European option. Of course the early exercise times should be among the nodes
of the tree.

In Fig. 4.1 we show the binomial tree for a 20 day put option with possible
exercise on days 10 and 20. The time between nodes on the tree is 5 days so the
early exercise test must be made at nodal step 2. The Bermudan value of this
option is $1.788; the European is $1.785. To get this kind of accuracy the step
period for the binomial method must be on the order of 0.02 days or 500 steps per
exercise period. The example as shown was chosen for illustration purposes only.

Fig. 4.1. Binomial pricing tree for a 2-exercise period put option. The 20 day Bermudan
option can be exercised on the 10th day or otherwise at expiration. The binomial step
size is 5 days. Those nodes for which early exercise is advantageous expresses the option’s
value in red. Superimposed on the graph is the early exercise boundary

4.5.2 The Exercise Boundary Method

As above, the only difference here from the American option case is that the test
for early exercise is only made on the permissible exercise days. Additionally
there are some special considerations that come into play in the Bermudan case.

Since there are only a finite number of exercise opportunities, and usually
a small number, the parametrized analytical formula for the exercise boundary
can be replaced by parameters giving the early exercise prices directly on the
exercise days, either relativized (i.e. in the form (K − S)/K) or absolute. Thus
for the problem in Fig. 4.1 there will be only one optimization parameter, the
early exercise price on the 10th day.

Another consideration relates to the accuracy of the expectation estimates.
Recall that, having fixed a trial set of parameters, whether or not they produce
the maximum option value is determined by simulating a large number of random
walks in order to calculate the expected payoff based on those parameters. But
as these are only Monte Carlo estimates, there is inherent variance in them. Since
the prices of the European versus the Bermudan options can be fairly close, it
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is desirable that the variance be of a smaller order of magnitude. Fortunately
there are some simple remedies.

First, the random walk should not be carried out in small steps. Instead,
the walk should jump from exercise day to exercise day by sampling from the
appropriate lognormal distribution. This modification speeds up the simulation
by many orders of magnitude. As a result, many more trials can be included
toward determining the payoff expectation.

Secondly, a more discriminating objective can be used in place of the expected
payoff, namely the expected payoff raised to some power. As mentioned above,
in the example of Fig. 4.1 the (discounted) expected payoff is $1.79. But the
difference between 1.76 and 1.79, for example, does not discriminate between
parameters sufficiently well to drive a simulated annealer or a genetic algorithm
toward optimization. On the other hand 1.7610 = 285 versus 1.7910 = 337 has
better effect.

Algorithm 20. Pricing a Bermudan Option Given an Exercise Boundary

inputs: S0, K, T, r, σ, N, exercise dates tj and the
exercise boundary on those dates Bj, j = 1, . . . , n

E = 0
for i = 1, . . . , N

for j = 1, 2, . . . , n �tn = T
�jump to next price Sj (cf. Algo. 12 page 107)
Δt = tj − tj−1

β = σ
√
Δt

α = log(Sj−1) + (r − σ2

2 )Δt
Z ∼ N(0, 1)
Sj = eβZ+α

if K − Sj ≥ K ∗Bj

E = E + e−rtj (K − Sj) �exercise
go to next i

endif
endfor j

endfor i
E = E/N
option price = E

In conjunction with the algorithm, as in the American case, we may use a
simulated annealer or genetic algorithm to optimize the Bj’s.

In Table 4.5 we make a comparison between a European, an American, and
a Bermudan option; the latter calculated by both methods discussed above. The
option is a 90 day 5 exercise opportunity put. With an exercise opportunity every
18 days the value is closer to that of an American versus a European option.

Table 4.5 Bermudan option comparison prices

S0 = 100, K = 100, rf = 6%, σ = 40%, #periods= 5, T = 90 days

European American Bermudan (binomial) Bermudan (optimization)

7.14 7.28 7.23 7.23
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4.6 Shout Options

During the life of a shout option the holder may lock in the current stock price
for the purpose of recalculating the payoff value of the option at expiration. This
is called shouting and the associated price is the shout price. At one time the
shout price SH was used in place of the expiration price ST if it led to a bigger
payoff. In such a case the payoff value for a call is

max(SH −K,ST −K, 0).

Thus the holder attempts to shout at the maximum price of the underlying over
the option’s life.

In recent times it is more common to use the shout price to replace the strike
price. This is called a reset strike shout option. In this case the payoff value of a
call is

payoff =

{
max(ST − SH , 0), if shouting occurs
max(ST −K, 0), if no shouting occurs.

(4.10)

Now the holder of the option attempts to shout at the lowest price of the un-
derlying for a call. The holder does not shout when the asset price is above the
original strike price.

Of course the ST and SH or K are reversed in (4.10) for a put as usual. For
a reset strike put, the holder tries to shout at the maximum underlying price
over the life of the option and does not shout when the asset price is below the
strike price.

In the following we shall address the problem of pricing the reset strike version
of the option. This is a very difficult problem for exact solution by analytical
methods because a forward method can not specify a condition for shouting since
the ending price of the stock is not known, and a backward method must know if
shouting occurred earlier in the course of the price history in order to calculate
the ending value of the option. The author knows of no such analytical method.
Instead we will solve the problem by a two phase technique similar to that of
the American put option: by estimating a “shout boundary” and subsequent
simulation. The boundary calculation is lengthy and we make no attempt here
to shorten it, but the subsequent option valuation is very fast.

4.6.1 Maximizing Over a Shout Boundary

Once again, let the time from inception to expiration, 0 to T, be divided into n
equal time steps of interval Δt. At each time step ti = iΔt, i = 0, . . . , n, let bi be
the relativized boundary point at that time (3.44). Then the actual boundary
point, Bi, is given by

Bi = K(1± bi)

where the plus sign applies for a put because the boundary is above the strike
price in this case, and the minus sign applies for a call, because the boundary is
below the strike for a call. To simplify the subsequent discussion assume we are
pricing a put option.
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As was the case for an American option, we proceed in reverse order and
first consider the conditional boundary point at tn−1, meaning the boundary
point given that shouting has not previously occurred. It is easy to see that here
the boundary point must be the strike price K. If the stock price at this step
exceeds K, shouting resets the strike to a higher value which can only increase
the payoff and make a positive payoff more likely. Further there is no penalty for
doing so here. At earlier times, the restraint for shouting is that the stock price
might go higher before expiration; that does not apply on this penultimate time
step. Hence the relativized boundary point at i = n− 1 is bn−1 = 0.

Now consider the next time step proceeding in reverse order and again we
assume shouting has not yet occurred. The higher the stock price, the more
valuable to shout; if shouting at the price S leads to an improved expected
payoff and S′ > S, then shouting at S′ leads to a bigger one. Hence the minimum
(technically infinimum) of all those points where shouting leads to an improved
expected payoff is the boundary point.

Finding this point is a straightforward one variable unimodal optimization
problem. If the boundary point is set too low, then, stochastically, subsequent
stock prices can allow for a later shout with an even better expected payoff.
Similarly if the boundary point is set too high then the stock price might reach
this level too infrequently to have a larger expected payoff than a lower value.
The effect is shown in Fig. 4.2. This is a plot of expected payoff as a function
of various trial locations of the boundary point all at the same time before
expiration. Although the data has considerable stochastic variability, it clearly
shows a unimodal maximum in the vicinity of S = 102.

Finding the maximum of such data numerically is problematic. It becomes
much easier if the data is smoothed as shown in Fig. 4.3. The smoothing used in
the figure is a 11 window central moving average, each smoothed value mi is the
sum of 5 prior values, the current value, and 5 future values all divided by 11,3

mi =
1

11
(pi−5 + . . .+ pi−1 + pi + pi+1 + . . .+ pi+5).

The simulation of stock prices from the present step to expiration uses the
boundary points that have already been calculated. The objective calculation is
shown in Algorithm 21. Note that in the algorithm we use the absolute boundary
values Bi. Further the order of the boundary values is reversed from that in the
discussion above; B0 is the boundary value at expiration and Bn is the value
at t = 0. The algorithm first calculates the number of steps m to expiration; τ
is the remaining time to expiration. Lognormal samples will be used to assign
stock prices from step to step and the parameters α and β are calculated; α
must remain a function of stock price and be recalculated from step to step.

In each trial, the starting stock price is drawn from a range of possibili-
ties above and below the strike price. More exactly, the range should extend

3 This is a discrete example of convolution smoothing. The general form is
m(t)=

∫∞
−∞ f(t−s)k(s)ds where f() is the function to be smoothed, m() is the smoothed

version and k() is the smoothing kernel. In the discrete analogy here k(s) = 1 for −5 ≤ s ≤ 5
and 0 otherwise.
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Fig. 4.2. Expected payoff as a function of increasing the conditional shout boundary
point at t = 18 days for a put option. The option’s particulars are: K = 100, T = 36,
r = 3% and σ = 20%. These are raw simulation results over the remaining 18 days to
expiry. Each plotted point represents 1,000,000 simulations

Fig. 4.3. This figure uses the same data as in Fig. 4.2 but here the raw data has been
smoothed using a 11 window central moving average. It is much easier to determine the
trial boundary value at which the maximum occurs

above and below the boundary point being tested. If paths do not encounter the
boundary, then their payoff will mimic that of a European put.

Each new trial also begins with a “noshoutyet” variable set to true and the
shout strike Ks set to K. Upon encountering the boundary, and only for the
first time, Ks is reset to the current stock price, otherwise it remains at K. In
either case the put payoff is calculated as max(Ks − ST , 0) as usual.

Having determined the maximizing boundary value at step m from expira-
tion, in like manner processing continues to step m + 1 and finally ends with
the boundary at t = 0. At this point the option value itself can be calculated.
Algorithm 21 can also be used for this provided the starting range is collapsed
to 0 around S0.
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Algorithm 21. Monte Carlo objective calculation for a shout put

inputs: K, τ, Δt, r, σ, nTrials
and the shout boundary Bi

m = τ/Δt �number of steps to expiry

β = σ
√
Δt �for lognormal samples

α(·) = log(·) + (r − 1
2σ

2)Δt �α = α(S)
V = 0;
for k = 1, . . . , nTrials �loop over trials

S ∼ uniform over a starting range
Ks = K �set the shouting strike equal to K initially
noShoutYet = true �keep track of shouting
for i = 0, 1, . . .

if noShoutYet
if S≥ Bm−i �reset the strike

Ks = S; noShoutYet = false;
endif

endif
�take the next step

S ∼ LN(α(S), β) �lognormal sample
i = i+ 1
if i == m, break out of loop �expiry stock price

endfor i
V = V + max(Ks − S, 0) �payoff for this trial

endfor
V = V/nTrials

Fig. 4.4. Shout boundary as calculated by two runs of the method described in the
text. The time horizon is divided into six periods

Two boundary calculation runs are shown in Fig. 4.4 for the S0 = K =
100, T = 36 day shout put option with six division periods. As seen there,
the calculated boundary points have considerable variance but despite that the
option value is stable and has low variance. This phenomenon was previously
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noted in Section 3.7.2. In Table 4.6 we give some shout option prices calculated
by the boundary method described above along with their statistical standard
deviations. These are compared with the Black-Scholes prices for their European
counterparts.

Table 4.6 Sample shout option prices

S0 = 100, K = 100, rf = 3%, σ = 20%, T = 36 days

Put/ Option value (standard deviation (10 trials))
call versus number of time steps

3 6 12 24 European

Put 2.986(0.005) 3.059(0.004) 3.091(0.003) 3.104(0.005) 2.36
Call 3.253(0.005) 3.329(0.006) 3.375(0.005) 3.374(0.005) 2.65

Problems: Chapter 4

1. Write a program to calculate Asian options. Try it out for a 60 day ATM call option
with S0 = 100, and r = 3%. Let the averaging take place over the last 30 days.
Plot the option price as a function of volatility.

2. Repeat Problem 1 for a floating strike Asian option.

3. Write a program to calculate correlated basket options. Extend the results of
Table 4.3 to T = 90 days.

4. Price a 90 day 100 strike Bermudian option with 15 day early exercise periods.
Assume r = 1% and σ = 20%. Use the binomial tree solution method. Plot the
price of the option versus originating stock price. Compare the graph with that of
its European counterpart.

5. Same question as Problem 4 but use the exercise boundary method.

6. Find the price of a 365 day exchange option between equities A and B. Assume
r = 6%, σB = 20% and the current price of B is $60. Plot the price as a function
of the current price of A for σA = 15, 30, and 45%. Assume that neither A nor B
issues dividends.

In the following problems, create a calculator for the given exotic option and use it
to calculate a table of prices for various option parameters.

7. A barrier option.

8. A binary option.
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9. A chooser option.

10. A lookback option.

11. A spread option.
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