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Preface

The aim of this text is to introduce the reader to the core topics that consti-
tute an introductory course in finance and financial engineering. Our particular
emphasis is on illustrating principles and modeling through the Monte Carlo
method. Monte Carlo is the uniquely appropriate tool for this purpose because
the driving factors underlying the market are primarily random in nature. And
just as the random dynamics works its way through the system and into fi-
nancial observables, we may track the chain of influence every step of the way
computationally.

The intended audience for the book is upper division undergraduates or be-
ginning graduate students in mathematics, finance or economics. The reader is
assumed to have knowledge of calculus through partial derivatives, Taylor series
and LaGrange optimization, probability through an understanding of random
variables, expectation, distribution and density functions including the normal
distrubution, and basic matrix algebra through the solution of linear systems.
A refresher for these topics is presented in the Appendices.

For additional background on probability with Monte Carlo methods, it may
be useful to read through Explorations in Monte Carlo Methods, a textbook that I
co-authored with Franklin Mendivil, published in Springer’s Undergraduate Texts
in Mathematics series c©2009.

In keeping with our presentation of the material in parallel with the Monte
Carlo method, a majority of the exercises are primarily programming in nature.
Hopefully this is where the real understanding takes place. A great enjoyment
can derive from experimenting with parameters and seeing the results unfold,
sometimes surprisingly, always in an interesting way.

Regarding programming, I prefer allowing students to use whatever language
with which they are familiar; many use MatlabTM, Maple R©, R, C, and Java.
However, some of the results can only be appreciated if presented graphically,
for example as histograms or x-y plots. In the case of the first three, graphics is
built-in; otherwise there is ample public domain software for rendering numerical
output.

The programming background needed is quite modest, basically, branching,
loops, and subroutines. In many cases, other than the boiler plate, programs
span fewer than a dozen lines. Furthermore, programming code, given in a
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vi Preface

mathematical format, is presented in line with the text as encountered. I treat
these in exactly the same way as displayed equations. Like equations, they are
condensed and must be read with care.

Organization of the Book

Two fundamental systems for analyzing market prices are presented in
Chapter 1, the geometric Brownian motion (GBM) model and the binomial
lattice model. GBM is preceded by a first principles introduction to Wiener
processes. A more in-depth treatment is given in the Appendices if needed.
Thus a rationale is provided for the Monte Carlo method and price simulation
by the geometric random walk. In a kind of turn-about, we use the numerical
method of the geometric random walk to derive the theoretical distribution for
maturity stock prices, the lognormal distribution.

Starting out in this way allows for the implementation of the Monte Carlo
method immediately. We take advantage of that by investigating one of the
tenets of modern finance, the efficient market hypothesis (EMH). More generally
we show that Monte Carlo can be used to test the antithesis of EMH, namely
technical analysis (TA).

But in order to do that, we must have access to a database of historical prices.
One of the best free sources of historical price information can be found at http://
finance.yahoo.com. However this text must be independent of that lest its access
change in the future. Therefore a database of prices, the FIMCOM prices, is
supplied at the following URL:

http://people.math.gatech.edu/∼shenk.

The FIMCOM database is in exactly the same format as that of finance.yahoo.
Either can be used to test programs and to answer TA queries. Additionally, I
have placed utility programs for working with the FIMCOM database or the fi-
nance.yahoo prices, on the aforementioned website. Further, any eventual errata
to this text will also be found there.

Chapter 2 is devoted to basic investment science and to the important mean-
variance theory of portfolio management. The central tenet of this theory is
that diversification ameliorates risk. But, equally important, it is a completely
quantitative theory providing for an exact measurement of risk. Strikingly spe-
cific investment policy, widely implemented in practice, derives from the theory.
With regard to risk, the GBM model for stock prices lends itself to a natural
explanation of the value at risk (VAR) and its Monte Carlo calculation.

Chapter 3 introduces forward contracts and options as tools for the allevia-
tion of risk. This leads to the important topic of option pricing and its solution
by the fundamental principle of no-arbitrage and the risk-neutral probability. In
the interest of pedagogy, our approach builds on the binomial lattice model.
Using it we derive techniques for pricing both European and American op-
tions. Separately, we obtain the Black–Scholes formulas for European options

http://finance.yahoo.com.
http://finance.yahoo.com.
http://people.math.gatech.edu/~shenk
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by straightforward integration of the maturity distribution. As a Monte Carlo
technique for American puts, we introduce the notion of the exercise boundary.

Chapter 4 exhibits the power of the Monte Carlo method for it is here that we
introduce exotic options and use the method to price them. Often these options
require knowledge of the path prices take to maturity and some even require
future knowledge in order to price. For some of these options Monte Carlo is
the only applicable method. Moreover, the techniques illustrated here are not
restricted to the GBM model for prices. They work just as well, for example,
with Lévy models, the main topic of Chapter 6.

Chapter 5 deals with financial engineering and some practical aspects of op-
tions, namely option trading. Many of the most popular option strategies are
investigated, among them are: covered calls, spreads, butterflies, straddles and
condors. Here we introduce a novel use of Monte Carlo as a tool for the pre-
diction of expected outcomes of these strategies under differing market condi-
tions. Here also the option “greeks” are defined and studied. Their practical use
for insulating a portfolio against market fluctuations in price and volatility is
demonstrated.

In Chapter 6 we delve into more advanced processes for market prices, ex-
ponential Lévy processes. These are recent developments that include models
allowing for discontinuities in prices and models that support “heavytailed”
phenomena. The latter refers to market collapses that occur too frequently as
predicted by the Gaussian model upon which Black–Scholes is based. Although
a rigorous treatment of this material is beyond the scope of this text, we nev-
ertheless strive to convey the essentials of the relevant mathematics without
getting too involved in technicalities. Instead we focus on the application of
these processes to financial modeling and the implications for option pricing.

Chapter 7 addresses the problem of optimally allocating resources among
risky ventures. The solution, as formulated in a 1950s paper out of Bell Labo-
ratory, and its application to finance has been controversial. Still the method is
sound, interesting and valid in its claims.

Ronald W. ShonkwilerAtlanta, GA, USA
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B.1 The Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
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1

Geometric Brownian Motion and the Efficient

Market Hypothesis

1.1 Stock Prices as a Random Walk

This book is about the nature of stock prices and its attendant consequences in
terms of risk and money management. What we know today is the culmination of
many years of observation and profound insight by many influential thinkers. It is
rightfully so that there should be such devotion to the subject for understanding
the mysteries of the ups and downs of stock prices has far reaching consequences.
We will encounter many such examples in this text.

It is also a book about how to use the nature of stock prices to deliver
verifiable answers to financial questions. As we will see, stock prices appear
to follow a geometric random walk (GRW) and it follows that Monte Carlo
methods are the appropriate scientific tool for the job. So in tandem with the
goal of studying the workings of financial systems, we also aim to demonstrate
the use of the computer to derive and develop the consequences of the financial
models.

We start with an examination of our chief object of study, a typical chart
of stock prices. In Fig. 1.1 we show prices for the Southern Copper Corporation
(compensated for dividend disbursements).1 It is for the period from Jan. 1st,
2007 to Feb. 26th, 2010.

Probably the most striking feature of the chart is that stock prices are un-
predictable. On a short term basis, for example day-to-day, they seem to go up
and down in a random, jittery fashion. Besides this fine scale structure, there
appears to be large scale structure as well. The prices experience big up and
down moves over periods of time on the order of months or even years. This
chart is very typical of stock price charts generally.

Although the random walk model for prices can generate charts similar to
Fig. 1.1 all by itself, without the need for multiple levels of randomness, never-
theless the market for a particular stock is affected both by its own contemporary
news and by the economic environment which tends to operate on a longer time
scale.

1 The amount of a dividend is subtracted from the close price. See the discussion on page 25.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 1,
© Springer Science+Business Media New York 2013
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2 1 Geometric Brownian Motion and the Efficient Market Hypothesis

Fig. 1.1. Adjusted closing prices for SCCO from 2007 to 2010. Its features are typical
for stock prices

Fig. 1.2. Prices for the S&P-500 from 2007 to 2010. It shows how the market in general
behaved over that period

A chart of the S&P-500 over the same time period is shown in Fig. 1.2. The
S&P-500 data consists of a weighted average of a basket of 500 stocks and
so represents the market as a whole more accurately than any single stock.
(For an up-to-date list of the S&P stocks, visit http://www.indexarb.com/
indexComponentWtsSP500.html.) It shows similar large scale trends as in the
SCCO figure above indicating, at least, that individual stocks are correlated to
a degree with the market as a whole. We discuss this point further in Chapter 2.

In this chapter we want to understand the fine scale structure. As mentioned,
the day-to-day price seems to jitter about with no particular direction. It is
prudent to ask what good can come of such a study if the price of a stock

http://www.indexarb.com/indexComponentWtsSP500.html.
http://www.indexarb.com/indexComponentWtsSP500.html.
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in the future, say 1 month ahead, is random anyway? The answer is that the
future stock price, while random, nevertheless obeys constraints; it follows a
probability distribution, there is more chance of ending at some values and less
at other values. For better or worse, financial decisions must be worked out on
the basis of the future price probability distribution if it can be determined.

1.2 Brownian Motion

In 1900 the jittery motion of stock prices reminded mathematics student Louis
Bachelier of a phenomenon reported by a botanist three quarters of a century
earlier. In 1827 Robert Brown described observing the jittery motion of pollen
grains in water as viewed in a microscope. The pollen grains seemingly moved
by themselves, but how?

Brownian motion, as it is called, is now known to be the result of random
impacts on the pollen grains by water molecules. The water molecules are them-
selves invisible. This explanation was worked out rigorously by Albert Einstein
in 1905 who showed that, statistically, Brownian motion particles must satisfy
the partial differential equation

∂p

∂t
= D

∂2p

∂x2
(1.1)

where p is the distribution of the particles over space and time and D is a
physical constant. Equation (1.1) is called the Diffusion equation.2

Bachelier went on to pioneer several fundamental advancements in finance
in his Ph.D. thesis, The Theory of Speculation, based on the analogy between
Brownian motion and stock prices.

In Fig. 1.3 we show the graph of an approximation to a one dimensional
Brownian motion. (This is an approximation because the “events” in our figure
occur at regular time intervals while those of true Brownian motion are not
regular.) The exact sequence of movements a particle experiences over a period
of time is called a world state or scenario. A photographic record can show the
scenario that actually took place. But looking to the future, literally infinitely
many scenarios are possible. A simulation such as that of the figure depicts one
of the possibilities.

At this point Brownian motion looks like a good candidate for the movement
of market prices. But before making that commitment, we continue to analyze
the motion of Brownian particles

A crude approximation to one-dimensional Brownian motion along the real
line (x-axis) may be made by means of a simple coin toss experiment. Remark-
ably, by varying the conditions of the approximation carefully, accurate Brown-
ian motion emerges in the limit.

Assume time is divided into discrete periods Δt and in each such period the
Brownian particle moves a step right or left by one unit Δx, the choice being

2 On the basis of his derivation, Einstein was able to predict the size of water molecules. At
the time the existence of atoms and molecules was still in doubt.
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Fig. 1.3. An instance of a simulated arithmetic random walk

random. We refer to this as a random walk. Assume the particle’s initial position
along the line is x0 = 0. After n time periods the walk has taken n steps. The
particle’s new position along the x-axis at that time will be between −n(Δx)
and n(Δx).

For example, suppose n = 4. If all 4 choices are to the left, the particle will
be at −4(Δx); if 3 are left and 1 right, it will be at −2(Δx). The other possible
outcomes are, omitting the Δx, 0, 2, and 4. Notice the outcomes are separated
by 2 steps. Also notice there are several ways most of the outcomes can arise,
the outcome 2 for instance. We can see this as follows. Let R denote a step right
and L a step left. Then a path of 4 steps can be coded as a string of 4 choices of
the symbols R or L. For example, LRRR means the first step is to the left and
the next three are to the right. In order that the outcome of 4 steps be a net 2
to the right, 3 steps must be taken to the right and one to the left but the order
doesn’t matter. There are four possibilities that do it, they are LRRR, RLRR,
RRLR, or RRRL.

In general, let p(X, t) denote the probability that the particle is at position
X = m(Δx), m steps to the right of the origin, after n time periods, t = n(Δt).3

We wish to calculate p(X, t). It will help to recognize that our random walk with
n steps is like tossing n coins. For every coin that lands heads we step right and
for tails we step left. Let r be the number of steps taken to the right and l the
number left, then to be at position m(Δx) it must be that their difference is m,

m = r − l where n = r + l.

Som and n are given in terms of r and l. But these two equations can be inverted
to find r and l in terms of m and n. To find r, add the two and for l, subtract.

3 It is customary to use upper case letters to denote random variables and lower case letters
to denote an instance of the random variable.
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r =
1

2
(n+m) and l =

1

2
(n−m). (1.2)

Now the number of ways of selecting r moves to the right out of n possibilities
is the problem of counting combinations and is given by

C(n, r) =
n!

r! (n− r)!
. (1.3)

C(n, r) is referred to as “n choose r” and is often denoted as well by
(n
r

)
. For

example, 3 moves right out of 4 possible moves can happen in 4!/(3! 1!) = 4
ways in agreement with the explicitly written L R possibilities noted above.
Therefore, if the probabilities of going left or right are equally likely, then

p(X, t) = (probability of ending at X = mΔx) =
C(n, r)

2n
, (1.4)

where
r =

1

2
(n+m).

The solid curve in Fig. 1.4 is a graph of p(x, t) for n = 24 and Δx = 1. If the
random walk experiment with n = 24 steps were conducted 224 times, then a
frequency chart of the end points of the walk will closely approximate this curve.
The result of such an experiment is in fact shown as an overlay in the figure.

Fig. 1.4. A graph of p(m, 24), showing the end point distribution of a 24 step coin toss
random walk

Next we calculate the mean and variance of the ending position. The mean
or average position, E(X), after a random walk of n steps is 0 when the prob-
abilities of stepping left or right are equal. In this notation, E is a mnemonic
for “expected” or “expectation.” To show that the expectation is 0, start with
a walk of just 1 step; the expectation of X is
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(−Δx)
1

2
+ (+Δx)

1

2
= 0,

because with probability 1/2 the step is to −Δx and with probability 1/2 the
step is to +Δx. For a walk of n independent steps the expectation is just n times
this or 0.

But knowing that the average end point is 0 is not the whole story. It does
not tell us how far from 0 the ending position is likely to be. Walks that go to
the left cancel their distance with those that go to the right.

We can avoid the left versus right cancellation by using the squares of the
positions. The mean square position, E(X2), for a single step is

(−Δx)2
1

2
+ (+Δx)2

1

2
= Δx2.

Again because the steps are independent, the mean square position for n such
steps is the sum, nΔx2. Therefore the square root of this is a measure of how
far the price averagely moves from the start point, it is referred to as the root
mean square position. For a walk of n steps

root mean square position =
√

E(X2) =
√
nΔx. (1.5)

In summary, a random walk moves away from its start point in proportion to
the square root of time, at least statistically it does.4

In fact, n(Δx)2 is the variance of the position and
√
nΔx the standard devi-

ation since E(X) = 0.5

The exact equation for p(X, t), equation (1.4), has a simple approximation.
There is a genuine need for such an approximation because it is difficult to
compute the combinatorial factor C(n, r) for large values of n. Moreover, the
approximation improves with an error that tends to 0 as n → ∞. One may
notice in Fig. 1.4 that the graph of p(X, t) looks very much like that of a normal
distribution. The probability density of a normal distribution with mean μ and
variance σ2 is given by

φ(x) =
1√
2πσ2

e−
(x−μ)2

2σ2 , (1.6)

see Section A.3. It is customary to refer to this distribution notationally as
N(μ, σ2). The square root of variance, σ, is the standard deviation. By the
Central Limit Theorem (CLT) of probability, the distribution of the random walk
particles will in fact tend in the limit to a normal distribution, see Section A.6.

To obtain the approximation, we match up the means and variances of the
two distributions. Recall t = nΔt, x = mΔx, μ = 0, and σ2 = nΔx2. Therefore

4 Note that
√

E(X2) is not necessarily equal to E(|X|) and usually they are not equal. More
generally, for a given function f , f(E(X)) is not necessarily equal to E(f(X)). A simple
demonstration is provided by the function f(x) = x2 in the present case since (E(X))2 = 0
but E(X2) = n(Δx)2.

5 By definition the variance is var(X) = E((X − E(X))2); see Section A.4.
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p(x, t) ≈ 1√
2πnΔx2

e−
x2

2nΔx2

≈ 1
√

2πtΔx2

Δt

e
− x2

2tΔx2
Δt . (1.7)

By putting D = Δx2/(2Δt) we get

p(x, t) ≈ 1√
4πtD

e−
x2

4tD . (1.8)

Now let n and m tend to ∞ while at the same time letting Δx and Δt
tend to 0, so that t and x remain fixed and so that the ratio D = Δx2/(2Δt)
remains constant. (This is the sameD of the Diffusion equation (1.1).) The result
is (1.8). We leave it to the reader to show that p(x, t) given by this equation
indeed satisfies (1.1).

By comparing (1.4) and (1.8) it is possible to work out an approximation for
C(n, r),

C(n, r) ≈ 2n
√

2

πn
e−(2r−n)2/(2n).

However Stirling’s formula6 leads to a better approximation, especially for r
near 0 or n,

C(n, r) ≈
√

n

2πr(n − r)

nn

rr(n− r)n−r
(1.9)

The meaning of 1.8 is this: the probability that the Brownian particle will lie
between two values, say X = a and X = b after time t has passed is equal to

Pr(a < X < b) =

∫ b

a

1√
4πtD

e−
x2

4tD dx.

1.3 Wiener Processes

The mathematical theory of Brownian Motion was developed by Norbert Wiener
and is often referred to as a Wiener process. Let Wt, t ≥ 0, denote the position
of a Brownian particle at time t with W0 = 0. The axioms of a Wiener process
are:

1. Every increment Wt+h−Wt is normally distributed with mean 0 and variance
σ2h where σ is a fixed parameter.

2. For every pair of disjoint time intervals [t1, t2] and [t3, t4], the increments
Wt4−Wt3 andWt2−Wt1 are independent random variables with distributions
as in Axiom (1).

3. Wt is continuous at t = 0.

6 Stirling’s formula is n! ≈ √
2πnn+ 1

2 e−n.



8 1 Geometric Brownian Motion and the Efficient Market Hypothesis

By standard Brownian motion we mean a Wiener process with parameter
σ = 1.

An immediate consequence of Axiom (2) is that a Wiener process satisfies
the Markov property. It means that for any time t, the future realization of the
process, Wt+h, only depends on Wt, the present state, and not on the path the
process took to Wt. This is because Wt+h −Wt is independent of Wt −W0.

Likewise it follows from Axiom (1) that, since the expectation of the incre-
ment ΔWt = Wt+h − Wt is zero, the future expectation of the process equals
the present value Wt. Given the process is at Wt at time t, then

E(Wt+h |Wt) = Wt + E(ΔWt) = Wt. (1.10)

This is the martingale property.
It is perhaps remarkable that the Axioms of a Wiener process hold for finite

increments h as well as infinitesimal ones dt. With respect to an infinitesimal
increment, we write

dWt = Wt+dt −Wt. (1.11)

An entire differential and integral calculus can be built upon such increments
including the ability to integrate functions against the Wiener process. This
matter is discussed further in appendix Section B.

According to Axiom (1) we may write

Wt = σ
√
tZ (1.12)

where Z ∼ N(0, 1).7 Among other uses, this equation shows that as the incre-
ments of time between jumps tend to zero, so also does the size of the jumps and
they do so according to the square root of the time increments. For this reason,
a Brownian motion path is continuous. Within every visible jump there are a
large number of jumps of much smaller size including infinitesimal ones. In fact,
although it is beyond our scope to prove it here, while continuous, Brownian
paths are nowhere differentiable. Moreover, the total length of a Brownian path
Wt, 0 ≤ t ≤ T , adding both the increments to the left and to the right, is infinite
for all T . Such a path is said to have infinite variation.

1.3.1 Simulating Brownian Motion End Points

Simulating the end point WT of a Wiener process is just a matter of generating
standard normal samples. Computer installations usually provide a means for
this.8 Such samples are readily converted to a normal sample of any desired
variance by multiplying by the standard deviation. That is, if Z ∼ N(0, 1) is a
sample from the standard normal, then σ

√
TZ is a sample from N(0, σ2T ). If

in addition, one adds the constant μT , then X = μT + σ
√
TZ is a sample from

N(μT, σ2T ).

7 The notation Z ∼ N(0, 1) means that the random variable Z is a sample from the density
indicated, here, the normal density with mean 0 and variance 1.

8 If only uniform samples U ∼ U(0, 1) are available, normal samples can be generated from
them, see Section A.9.
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1.3.2 Simulating Brownian Motion Paths

We will frequently need to simulate a Brownian motion path leading to the end
point WT . Of course only a crude approximation is possible since, as a Wiener
process, such a path has infinite variation as noted above. Instead we simulate
the value of the process at a sequence of discrete times, for example at Δt, 2Δt,
. . ., nΔt = T . We have

W0 = 0, WiΔt = W(i−1)Δt +ΔWi

= W(i−1)Δt + σ
√
ΔtZi, i = 1, . . . , n

where Zi ∼ N(0, 1) for each i.

1.3.3 Wiener Processes with Drift

The Wiener process described above has mean displacement 0; this is because
for every path allowed by the process, its negative is also an admissible path
with the same chance of occurring. Or more directly, mean displacement 0 is
explicitly stated in Axiom (1). But a directional bias can be introduced to the
process. Letting Wt denote a Wiener process with parameter σ, define Xt by

Xt = μt+Wt. (1.13)

The constant parameter μ is called the drift. Its effect is to shift the mean
position of the Brownian particle from 0 to μt at time t,

E(Xt) = E(μt+Wt) = μt+ E(Wt) = μt.

The variance of Xt however is the same as that of Wt,

var(Xt) = var(μt+Wt) = var(μt) + var(Wt) = 0 + σ2t.

In this way the probability density of the walk at time t becomes N(μt, σ2t).

1.4 Arithmetical Random Walk

Combining the foregoing, we define an arithmetical random walk (ARW) as the
simulation {X0,XΔt,X2Δt, . . . ,XnΔt} of Brownian motion with drift. We allow
the walk to start at an arbitrary point, X0, not necessarily at zero. The term
arithmetical is used because the steps sizes are all the same in the sense of
having the same mean and the same standard deviation. In the algorithm these
are μΔt, and σ

√
Δt respectively.

To implement an ARW, begin by dividing the interval 0 to T into a succession
of subintervals of some desired length, Δt. Let n denote the number of subin-
tervals required, T = nΔt. The inputs of the algorithm are the time periods T
and Δt, the starting point X0, and the walk parameters μ and σ.
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Algorithm 1. Arithmetic random walk algorithm

inputs: X0, T, Δt, μ, σ
�signifies a comment

n = T/Δt �number of Δt steps in time T
for t = 1, . . . , n

Zt ∼ N(0, 1) �Zt is a N(0, 1) sample
ΔXt = μΔt+ σ

√
ΔtZt

Xt = Xt−1 +ΔXt

endfor

�the last Xt is XT

The output is one possible path that could be taken by the particle over the
given period. Starting from X0 at t = 0, the simulation predicts X1 at t = Δt,
X2 at t = 2Δt, . . ., and Xn at t = nΔt = T . This is one realization or instance
of an infinity of possible paths. Figure 1.3 was created using this algorithm.

1.5 Geometric Brownian Motion

There are two shortcomings with the use of an ARW for modeling stock prices.
Even if started from a positive value,X0 > 0, the walk can attain negative values;
this is undesirable for stock prices. Secondly, stocks selling at small prices tend
to have small increments in price while stocks selling at high prices tend to have
much larger increments in price.

By happy circumstance, both problems are easily fixed by the same solution
originally proposed by the MIT economist Paul Samuelson in 1965. The solution
is that a stock’s price increment should be proportional to the present price. In
other words, if St is the current stock price, then an infinitesimal change in price,
dS, will be given by

dS = St(μdt+ dWt) (1.14)

where the dWt are increments of a Wiener process. With this change, a stock’s
price can never go below 0 because when St = 0, the jump size is also 0 (recall,
a Wiener process is continuous).

1.5.1 Price Volatility

By its definition a Wiener process has a parameter σ. Further the variance of
Wt is σ

2t showing that σ controls the degree of dispersement of the process. It
plays the same role in its application to stock prices where it is called volatil-
ity. It measures the tendency of a stock’s price to oscillate or otherwise depart
from a constant value. Each stock has its own volatility which can be estimated
statistically using its recent price data. This is called the stock’s historical or
statistical volatility.

Henceforth we will use the notation Wt to refer to the standard Wiener
process and the notation σWt for the process with parameter σ. With this mod-
ification, (1.14) can be written as
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dS

St
= μdt+ σdWt

= μdt+ σ
√
dtZt, Zt ∼ N(0, 1). (1.15)

This is called the geometric Brownian motion (GBM) model for stock prices. It
is also referred to as a drift-diffusion model.

In the GBM model, two parameters characterize any given stock, its drift
and its volatility. Both can be estimated from a sequence of recent prices,
{S0, SΔt, S2Δt, . . . , SnΔt}.9

Calculate the sequence of returns

ci =
ΔSi

Si
=

Si+1 − Si

Si
, i = 0, 1, . . . , n− 1. (1.16)

From (1.15) the mean of the ci is μΔt and the variance is σ2Δt, so

μ ≈ 1

nΔt

n−1∑

0

ci

σ2 ≈ 1

(n− 1)Δt

n−1∑

0

(ci − μΔt)2. (1.17)

Drifts and volatilities are reported on an annual basis. While an “annual ba-
sis” in finance often means 252 days/year because there are that many trading
days,10 we will use 365 days/year in order to be consistent across several appli-
cations. The conversion to trading day years is usually a straightforward matter
of dividing by 365 and multiplying by 252. For example in the drift calculation
above, if Δt = 5 days, the sum is divided by nΔt = 5n as indicated and then
multiplied by 365 days/year to get a calendar year drift or 252 days/year for a
financial year drift.

The second calculation generates volatility squared, which has units per time
same as the drift. A square root must be taken to get volatility. Thus its units
are per square root time (and this must be taken into account when converting
a volatility). Volatilities are normally quoted in percentages on a annual basis,
for example one speaks of a 40% volatility (annually).

Recall that (1.8) was derived as the end point probability density of the ran-
dom walk on the line. By puttingD = σ2/2 this density is N(0, σ2t). From (1.12)
it is the same as that of Wt. This shows the connection between volatility and
the diffusion process of a Brownian motion.

In the GBM model the drift term leads to exponential growth of the mean
with growth rate μ. For, in the absence of the diffusion process, the differential
equation is dS/S = μdt. And its solution is

9 Theoretically this is so. But estimating the drift encounters a fundamental problem known
as statistical blur. Error in the drift is given by the standard deviation. As Δt is reduced,
the per period value of μ decreases by the same factor, but the per period value of standard
deviation decreases by the square root of Δt. Hence for small periods, the error in drift
exceeds the value of the drift itself.

10 Approximately, it depends on the year.
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S = S0e
μt

where S0 is the initial value of S. See also (1.28).

An instance of a GRW.

a b

Another instance.

Fig. 1.5. Two instances of a geometric random walk (GRW) using all the same param-
eters showing the variety possible

In Fig. 1.5 we show the resulting path of two simulations of (1.15). The time
scale is the same as in Fig. 1.1, 1,152 days. The starting value is S0 = 100 and
volatility is σ = 40%. The figure shows that the geometric Brownian motion
model is capable of a great deal of variety in terms of price paths.

The simulations depicted were generated by the following algorithm. Inputs
are: starting price S0 in units of currency, period of time of the study T in
years (number of days divided by 365), volatility σ in per square root year, and
drift μ in per year. We will refer to this as the geometric random walk (GRW)
algorithm.

Algorithm 2. Simulating GBM

inputs: S0, T, μ, σ
Δt = 1/365.0 �1 day time increments in years
n = T/Δt �number of Δt steps in time T
for t = 1, . . . , n

Zt ∼ N(0, 1)
ΔSt = St−1(μΔt+ σ

√
ΔtZt)

St = St−1 +ΔSt;

endfor

�the last St is ST

1.5.2 Geometric Brownian Motion End Point Distribution

While individual realizations can give some idea of how stock prices behave,
more important information for making inferences from the model derives from
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the distribution of the ending price, ST , over all possible realizations. We call
this the maturity distribution.

We can get a sense of that by running a large number of simulations and
graphing the results. Figure 1.6 is a histogram of 100,000 trials of Algorithm 2.
We see that the distribution is not a normal distribution; the tail on the upside
is longer than on the downside. This is because downside prices are restricted
to non-negative values.

To determine the maturity distribution, let the interval [0, T ] be divided into
n subdivisions of equal length Δt, T = nΔt. From the algorithm above

Si = Si−1(1 + μΔt+ σ
√
ΔtZi)

for i = 1, 2, . . . , n. To find the ending price Sn, just multiply the factors to-
gether11

Fig. 1.6. Geometric random walk using the parameters S0 = 100, T = 60 days, σ = 0.4.
The solid lines gives the exact lognormal distribution

Sn = S0

n∏

i=1

(
1 + μΔt+ σ

√
ΔtZi

)
. (1.18)

The Zi are independent N(0, 1) random variables. The starting price is S0 at
i = 0. The exact ending price ST is the limit of this as n → ∞ or as Δt → 0
with T = nΔt constant.

Start by dividing the equation by S0 and take the logarithm of both sides.
Since the logarithm of a product is the sum of the logarithms of its factors, we get

log
Sn

S0
=

n∑

i=1

log
(
1 + μΔt+ σ

√
ΔtZi

)
. (1.19)

11 The symbol
∏n

i ai means the product of the ai from i = 1 to i = n.
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Recall the Taylor series expansion of the logarithm,12

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . . .

Expanding logarithms, (1.19) becomes

log
Sn

S0
=

n∑

i=1

(
(μΔt+ σ

√
ΔtZi)− 1

2
(μΔt+ σ

√
ΔtZi)

2

+
1

3
(μΔt+ σ

√
ΔtZi)

3 + . . .

)
(1.20)

By expanding out the right hand side and taking the limit as n → ∞ we
arrive at the following

log
ST

S0
∼ μT − 1

2
σ2T + σ

√
TZ. (1.21)

The details are given in the box on the next page. This shows that the logarithm
of ST /S0 is normally distributed. Since S0 is a constant and log(ST /S0) =
log ST − log S0, (1.21) can be written as

logST ∼ log S0 + μT − 1

2
σ2T + σ

√
TZ, (1.22)

From this equation we can read off the mean and variance,13

E(log ST ) = logS0 + μT − 1

2
σ2T

var(log ST ) = σ2T (1.23)

Knowing that log(ST ) is normally distributed allows us to find the distribu-
tion of ST itself. In general suppose X is normally distributed, X ∼ N(α, β2),
and let FR(y) be the cumulative distribution function of R = eX (so that
logR = X).14 We have

FR(y) = Pr(R < y) = Pr(logR < log y)

= Pr(X < log y) =

∫ log y

−∞

1

β
√
2π

e
− (u−α)2

2β2 du.

The density function fR(y) of R is the derivative of this; so from calculus

fR(y) = F ′
R(y) =

1

β
√
2π

e
− (log y−α)2

2β2

(
d log y

dy

)

=
1

yβ
√
2π

e
− (log y−α)2

2β2 . (1.24)

12 See Section A.1.
13 The mean of a constant is the constant itself, the variance of a constant is zero. Of course

the mean and variance of Z is 0 and 1 respectively.
14 See Section A.3.
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In summary, (1.24) gives the probability density function of a lognormally
distributed random variable R having parameters α and β2. We denote this
distribution as R ∼ LN(α, β2).

The first term of the expansion (1.20) equals μT since the n-fold sum of that term is
μnΔt. The second term can be written as

σ
√
T

1√
n

n∑

i=1

Zi.

But E(Zi) = 0 and var(Zi) = 1, so the Central Limit theorem applies here and in the
limit as n → ∞ this term tends, in distribution, to

σ
√
TZ

where Z ∼ N(0, 1).
For the next series of terms we first calculate the square,

−1

2

n∑

i=1

(μ2Δt2 + 2μσ(Δt)3/2Zi + σ2ΔtZ2
i ).

This time the sum of μ2Δt2 is μ2T (Δt). Hence this term will go to 0 as Δt → 0. For
the next term we invoke the Central Limit theorem just as above. But this time the
limiting random variable is multiplied by Δt, so the whole term tends to 0 at n → ∞,

− (Δt)μσ
√
T

1√
n

n∑

i=1

Zi → 0. (1.25)

For the last term we have to deal with sums of Z2
i where each is an independent

N(0, 1) random variable, say Z. Now the mean of Z2 is also the variance of Z and so
is 1. The variance of Z2 itself is given by

var(Z2) = E(Z4)− E
2(Z2) = 3− 1 = 2.

Here we have used the fact that the 4th moment of Z is 3 as can be verified by direct
integration∗. Therefore by the Central Limit theorem

−1

2
σ2Δt

n∑

i=1

Z2
i = −1

2
σ2Δt

(
n∑

i=1

Z2
i − n

)

− 1

2
σ2Δtn

= −1

2
σ2

√
2

n
T

(∑n
i=1 Z

2
i − n√

2n

)
− 1

2
σ2T

→ −1

2
σ2T as n → ∞.
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This is as far as we need to go in the series, the remaining terms tend to 0 as
n tends to infinity. Therefore we have shown that

log
ST

S0
∼ μT + σ

√
TZ − 1

2
σ2T.

∗
E(Z4) =

∫∞
−∞

x4√
2π

e−
x2

2 dx = 3. Use integration by parts with u = x3 and dv = xe−
x2

2 dx.

The mean, E(R) and variance, E(R2)−E(R)2 of the lognormal follow directly
from some lengthy integrations against the density just derived, the result is

E(R) = eα+
1
2
β2

var(R) = (eβ
2 − 1)e2α+β2

. (1.26)

We may now apply the above to R = ST . Since X ∼ N(α, β2), from (1.23),
it follows directly that

α = log S0 + μT − 1

2
σ2T

β2 = σ2T. (1.27)

And so from (1.26)

E(ST ) = elogS0+μT− 1
2
σ2T+ 1

2
σ2T = S0e

μT (1.28)

and

var(ST ) = (eσ
2T − 1)e2 logS0+2μT−σ2T+σ2T

= S2
0(e

σ2T − 1)e2μT . (1.29)

The curve in Fig. 1.6 was drawn using these values for α and β in (1.24).
We have shown that ST ∼ LN(α, β2) with α and β as in (1.27). Equivalently

by taking R = ST /S0 we have that

ST

S0
∼ LN(μT − 1

2
σ2T, σ2T ), (1.30)

that is, α = μT−1
2σ

2T here.15 Log normal samples may be computed by choosing

X ∼ N(α, β2) and putting R = eX ,

R = eX , X = α+ βZ, Z ∼ N(0, 1). (1.31)

For future reference we note that the median of the lognormal distribution is
given by

median(S) = eα.

This is the value for which a sample from the lognormal is equally likely to be
smaller than as larger than. As applied to the GBM ending price, we have

median(ST ) = S0e
(μ− 1

2
σ2)T . (1.32)

Hence the median ending price is less than the mean ending price. This is due
to the asymmetry or skew of the distribution.
15 The density may be plotted either as y(x) = f(x) with α as in (1.27) or y(x) = (1/S0)f(x/S0)

with α = (μ− 1
2
σ2)T .
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Better Models for Stock Prices

Do stock prices really follow GBM? Later on in this chapter we examine one
implication of the axioms on page 7 in the light of this question – the Markov
property. More generally the answer seems to be not exactly but good enough
for most work. Further GBM is a starting point for more complicated models
known as Lévy processes. This is a topic we take up in Chapter 6.

1.6 Binomial Lattice Approximation

The random walk technique we have explored in the previous sections gives an
accurate computational tool for stock price realizations and we will have many
occasions to use it throughout this text. But it is computationally intensive.
Several thousands of realizations must be run in order to achieve good results.
(Fortunately, today, even personal computers can do the required calculations
in a few seconds.)

By contrast, there is a very simple approximate technique that also gives
good results and does so quickly because it is a deterministic method. It is the
binomial model due to Cox, Ross, and Rubinstein. The binomial model consists of
a lattice structure representing prices evolving in time. It is simple to construct,
easy to understand, and provides answers in virtually all cases. Moreover, as
the binomial lattice is refined, its results improve. In the limit, binomial lattice
prices agree with those of GBM.16

1.6.1 Binomial Pricing Model

In the binomial pricing model, the time horizon interval [0, T ] is divided into
discrete periods Δt called levels. The number of such periods is n = T/Δt. We
will construct a binomial lattice graph with vertices or nodes at each of the times
0, Δt, 2Δt, . . ., nΔt = T .17 At the first level, level 0, time equal 0 (= 0Δt), and
the graph has only one node, N0, with price S0 as usual. From here the model
postulates that the price can go up by some factor, u ≥ 1, or down by a factor,
0 < d ≤ 1. Hence at time 1 (= 1Δt) there are two nodes, designated as N1(1)
and N1(0), with the prices

for N1(1): S0u, and for N1(0): S0d.

The construction now repeats at every level to carry prices over to the next
time period. Thus at time 2 there are three nodes N2(2), N2(1) and N2(0) with
corresponding prices

N2(2) : S1(u)u = S0u
2

N2(1) : S1(u)d = S0du

N2(0) : S1(d)d = S0d
2.

16 See Appendix C.
17 A binomial tree graph is a directed graph with two outward edges at every node or none for

leaf nodes. If the tree re-connects as here, it is called a binomial lattice.
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Notice that the up price from N1(0) is u(S0d) = S0ud and so equals the down
price from N1(1); in other words the graph reconnects so that there are just 3
nodes at time 2 and not 4. This is one of the keys to success of the binomial
model, as more levels are added, the lattice grows arithmetically, not geometri-
cally. See Fig. 1.7.

Fig. 1.7. A four step binomial tree

Along with the up and down price factors there is also the probability that
the price will go up and the complementary probability that the price will go
down. These are the statistical probabilities of the stock gotten from its recent
price data as developed in Section 1.5.1. Consequently, attached to each node of
the graph is a probability as well as a price. Let p be the probability of an up
move and q = 1− p the probability of a down move. The probability of reaching
node N1(1) is p and of reaching N1(0) is q. At the end of the second period
we have that node N2(2) occurs with probability p2 and N2(0) with probability
q2. But the probability of N2(1) is 2pq. This is because there are two paths to
N2(1). In general, at the end of the kth period

Nk(i) occurs with probability

(
k

i

)
piqk−i (1.33)

In this model the up and down factors u and d as well as their probabilities
p and q are constant over the entire time horizon.

1.6.2 Calculating the Binomial Factors

Of course the ending prices and probabilities depend crucially on u, d and p. We
must fix them as appropriate for the given application, depending on μ, and σ.
On the one hand, the expectation of S1 as given by the binomial model is

E(S1) = puS0 + (1− p)dS0.

On the other hand, from (1.28)

E(S1) = S0e
μΔt
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Equating these two we get

pu+ (1− p)d = eμΔt. (1.34)

Now match variances. From the binomial model

var(S1) = p(uS0)
2 + (1− p)(dS0)

2 − E
2(S1)

= S2
0

(
pu2 + (1− p)d2 − e2μΔt

)
.

From the continuous approach we have, using (1.29),

var(S1) = S2
0(e

σ2Δt − 1)e2μΔt.

Equating we get

pu2 + (1− p)d2 = e(2μ+σ2)Δt. (1.35)

Satisfying these two equations for the three parameters u, d, and p will match
the statistical characteristics of the two approaches. We are thus left with an
arbitrary choice for the third equation. The customary ones are either: u = 1/d
or p = 1/2. We take up both cases.

The u = 1/d Case

First suppose u = 1/d. We start by eliminating p. Solve for p in (1.34)

p =
eμΔt − d

u− d
. (1.36)

Do the same in (1.35)

p =
e(2μ+σ2)Δt − d2

u2 − d2

and equate

eμΔt − d

u− d
=

e(2μ+σ2)Δt − d2

(u− d)(u+ d)
.

Multiply out the common factor u − d and solve for u + d remembering that
u = 1/d,

1

d
+ d =

e(2μ+σ2)Δt − d2

eμΔt − d
.

Multiplying through by the denominators and, doing some algebra, we arrive at
a quadratic equation in d,

d2 −
(
e−μΔt + e(μ+σ2)Δt

)
d+ 1 = 0.

Designate the coefficient of the linear term as 2A,

2A = e−μΔt + e(μ+σ2)Δt, (1.37)

and solve the quadratic d2 − 2Ad+ 1 = 0. We find that
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d = A−
√

A2 − 1,

u = A+
√

A2 − 1,

p =
eμΔt − d

u− d
, (1.38)

where the second equation follows since u = 1/d and the third is (1.36) repeated
here for convenience. The parameter A is given in (1.37). If it works out that
either p ≤ 0 or p ≥ 1, then this method cannot be used; try the p = 1/2 method
instead.

The p = 1/2 Case

Now suppose p = 1/2. From (1.34) we get

u+ d = 2eμΔt,

and from (1.35) we get
u2 + d2 = 2e(2μ+σ2)Δt.

Solve the first for u and substitute into the second,

u = 2eμΔt − d, (1.39)

and so
4e2μΔt − 4eμΔtd+ 2d2 = 2e2μΔteσ

2Δt.

Again we have a quadratic in d. With some algebra we can put it into the form

d2 − 2eμΔtd+ e2μΔt(2− eσ
2Δt) = 0.

By the quadratic formula we get two possibilities for d; the one we want is
given by choosing the minus sign. Knowing d, use (1.39) to find u. The resulting
solution for this case is

d = eμΔt
(
1−

√
eσ2Δt − 1

)
,

u = eμΔt
(
1 +

√
eσ2Δt − 1

)
,

p =
1

2
. (1.40)

In implementing this solution, d must remain positive.
The histogram in Fig. 1.8 shows the resulting distribution of ST using the

values of u, d, and p given by (1.40) with the same parameters for S0, μ, and σ
as in Fig. 1.6. Thus the two can be compared.

Besides providing the ending probabilities, the lattice can also be used to
calculate the probability that a specific path is taken through the lattice. It is
just the product of the probabilities along each edge of the path. For each up
edge taken multiply by p and for each down edge multiply by q. For example,
in Fig. 1.7, the path from node N0 (with price S0) to node N4(2) (with price
S0u

2d2) by way of nodes: N1(1), N2(1), and N3(2) has probability p2q2 of being
taken as it includes 2 up edges and 2 down edges. But this is also seen in the
specification of the ending price, S0u

2d2. In this way, a binomial lattice can be
used to calculate path dependent financial instruments such as certain options.
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Fig. 1.8. Ending prices and probabilities for the binomial model using parameters
S0 = 100, T = 60 days, σ = 0.4. The solid line gives the exact lognormal distribution

1.7 Efficient Market Hypothesis

In Section 1.5 we saw that the GBM model, equation (1.15), predicts how a
stock’s price will behave in the future. Certainly the particular realization that
will occur is not known, to this extent the future path of the price is random.
But it is not without structure. The model predicts the future price will be a
sample from a lognormal distribution. But to what extent is the model correct?
That is the subject of this section.

The geometric random walk model asserts that from moment to moment the
price will increase (or decrease depending on the sign of the drift) by a determin-
istic increment and that will be combined with a random increment, StσdWt,
normally distributed. While the former could be impacted by factors such as
the financial sector in which the company operates, management decisions, and
other external factors, the latter is almost literally a coin toss. The random
component has no memory. It could be up or down equally likely.

In the application of the model to real stock prices, not unlike the application
of the arithmetic random walk model to real particles, moment to moment is
only an approximation. It could mean minute to minute, day to day, or even
week to week. In these periods of time, drift does not have much of an effect,
even 10% per year is less than 0.03% per day. Thus over the short term, stock
price movements are just . . . random.

This feature of the model was known to Bachelier. Today it is one of the many
assertions of the more broadly conceived efficient market hypothesis (EMH).
Broader in that EMH applies to longer time frames than just moment to moment.
The efficient market hypothesis states that financial markets are “efficient” in
that prices already reflect all known information concerning a stock. Information
includes not only what is currently known, but also future expectations, such as
earnings and dividends.
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Only new information will move stock prices significantly, and since new
information is presently unknown and occurs at random, good or bad, future
movements in stock prices are also unknown and thus, random.

The basis of the efficient market hypothesis is that the market consists of
many rational investors who are constantly reading the news and reacting quickly
to any new significant information about a security.

The EMH implies that investors cannot gain advantage by interpreting stock
charts. It is no more possible to do so than to observe the past sequence of tails
and heads of a fair coin toss and predict the next outcome. It is also not possible
to gain advantage by scrutinizing earnings reports or other company information.
Any information that might predict the future direction of the stock price is
already incorporated into the current stock price. Nor can seasonal variation or
other periodicity be taken advantage of because other investors know what to
expect and have already tuned the current price to correct for it.

Nevertheless many investors, both professional and non-professional alike,
believe there is predictive information in the charts, These investors are called
chartists and the reasoning they use is called technical analysis (TA).

The several implications of the EMH are often broken out by type. The
assertion that no prediction of future prices can be inferred from past prices is
referred to as the weak form of the efficient market hypothesis. It is this form that
denies the possibility of making excess profits in the market using, for example,
price and volume charts, that is, from technical analysis. We will investigate this
aspect of EMH in the balance of this section.

But first we mention the other forms of the EMH. The semi-strong form
maintains that no prediction of future prices can be inferred from any public
information whatsoever. This means not only that technical analysis cannot
predict future prices, but also that a company’s fundamental information cannot
either. Fundamental information includes such things as market capitalization,
price to earnings ratio, price to sales ratio, revenue per share, debt to equity
ratio, and so on.

Finally the strong form of the EMH asserts that, along with the public in-
formation, not even insider information can give an investor an advantage. This
is strong indeed!

1.7.1 Simple Moving Average

Armed with a model for calculating future price scenarios, it should be possible
to test the weak form of efficiency, or, equally, the validity of technical analysis,
by Monte Carlo. We first take a brief look at TA. In fact there is a vast literature
on the subject.

Technical analysis is precisely the art of using historical price and volume
data in an attempt to predict future price trends barring major economic news.
Technical analysts attempt to identify archetypal patterns in charts such as
support, resistance, channels, head and shoulders, double tops or bottoms and
many others. Having identified such a pattern, a future price prediction is thereby
implied, although not necessarily with certainty.
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The most basic tool of TA is the moving average or sometimes called the sim-
ple moving average. It is an attempt to smooth out the short term fluctuations
inherent in market prices and reveal their underlying trend. The n-day moving
average is the sum of the last n days period of prices divided by n. Let Si denote
the stock price on day i relative to some start date; i could be negative, this
would be the case if S0 is today’s price. The moving average on day t is

mat =
1

n

n−1∑

i=0

St−i =
St + St−1 + . . .+ St−n+1

n
(1.41)

The moving average is a weighted average with the weight 1/n applied to each
price. The parameter n is the window period of the moving average because only
prices appearing in a window of length n affect the average. As time moves for-
ward, the window moves with it. The recursion equation for the moving average
is obtaining by adding in the new term at the front and subtracting the last
term of the old,

Fig. 1.9. SCCO prices with their 12 and 26 day moving averages

mat+1 = mat +
1

n
(St+1 − St−n+1). (1.42)

In Fig. 1.9 we plot 3 months of stock prices along with their 12-day and 26-
day moving averages. The 12-day average more closely tracks the raw prices
while the 26-day average shows much less up and down movement. Both moving
averages noticeably lag the raw prices, the 26-day more so.

An algorithm for computing a time series of n-day moving averages should
take into consideration that stock prices, Pi, are usually given in reverse chrono-
logical order. Thus P0 is today’s price, P1 is yesterday’s, and so on up to PR,
the last price of the range occurring R days ago where R > n. It is helpful to



24 1 Geometric Brownian Motion and the Efficient Market Hypothesis

time n prices
−→ acquired today
PR PR−1 . . . PR−n+1 PR−n . . . P1 P0

S0 S1 . . . Sn−1 Sn . . . SR−1 SR

man−1 man . . . maR−1 maR

first put them into forward chronological order so that S0 = PR, S1 = PR−1, . . .,
and SR = P0 is today’s price.

The first moving average that can be computed using a full complement of n
prices is man−1; it is based on the prices S0 through Sn−1. From that point the
average can be computed up to today, maR.

Algorithm 3. Running Simple Moving Average Calculation

for i = 0, . . . , R
Si = PR−i

endfor

for t = n− 1, n, n + 1, . . . , R
a = 0
for i = 0, 1, . . . , n− 1

a = a+ St−i

endfor

mat = a/n
endfor

Strictly speaking the n-day moving average cannot be computed until n days
after the starting date of the prices. At the penalty of accepting a slightly less
smooth result initially, this is easily overcome by averaging over whatever num-
ber of terms are available until reaching the full complement of n.

1.7.2 Exponential Moving Average

As noted above, the simple moving average weights all terms in its sum equally.
But it may be desirable to more heavily weight recent prices. The exponential
moving average does just that. As time moves forward, more distant prices have
less and less effect on the average. Instead of a window period, the parameter
of the exponential moving average is the current price weight fraction f . To
compute it, let emat denote today’s exponential moving average, then

ema0 = S0

emat = fSt + (1− f)emat−1, t = 1, 2, . . . (1.43)

This equation is the recursion for the exponential moving average. Writing it
out explicitly gives

eman = fSn + f(1− f)Sn−1 + f(1− f)2Sn−2 + . . .+ f(1− f)n−1 + (1− f)nS0.
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It shows that the exponential moving average includes a contribution from all
prices from the beginning up to the current price. However the weight allocated
to early prices falls off exponentially. In total the sum of weights is 1,18

f + f(1− f) + f(1− f)2 + . . .+ f(1− f)n−1 + (1− f)n

= f
(
1 + (1− f) + . . .+ (1− f)n−1

)
+ (1− f)n

= f
1− (1− f)n

1− (1− f)
+ (1− f)n

= (1− (1− f)n) + (1− f)n = 1.

To relate a simple moving average with an exponential one, the following
conversion between window period and weighting fraction is customarily used:

fraction =
2

window + 1

window =
2

fraction
− 1. (1.44)

For example, a 5 day window simple moving average corresponds approximately
to a 1/3 fraction exponential moving average.

1.7.3 Testing the EMH

Our first test of the weak form of the EMH is whether or not a stock price moves
up or down equally likely from moment-to-moment. We take this to mean day-
to-day. The test consists of performing a large number of the following trials:

• Select an equity at random from the list of those under test,
• Select a date at random from the period of time under test,
• Observe the closing price of the equity on that date,
• Observe the closing price of the equity on the next trading day,
• If the price increased, note that; if the price decreased, note that; otherwise

discard this trial.

Results showing that the number of up days are about equal to the number of
down days lend confidence in the random walk model. Contrary results would
motivate a search for an explanation and further testing.

A complication in the test procedure is that for dividend paying stocks, the
closing price decreases by the amount of the dividend on the ex-dividend date
(independently of the normal price movement). Fortunately databases compen-
sate for this by issuing an “adjusted closing price.” This price gives the true
change across an ex-dividend day. (Note however that over extended periods
of time the adjustments accumulate and an adjusted closing price several years
back might be only a fraction of the actual closing price.)

18 See Section A.1 for a refresher on the sum of geometric series.
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The FIMCOM Database

Of course a central ingredient of the algorithm is access to a database of historical
stock prices. At the time of this writing, historical prices are available on the
internet, for example at finance.yahoo.com. However, as discussed in the preface,
the FInance with Monte CarlO Methods (FIMCOM) database is also provided
at the web page for this text, www.math.gatech.edu/∼shenk; At the very least
it can be used for testing our algorithm if not the EMH itself.

The FIMCOM data consists of daily prices and volume for 822 hypothetical
symbols or tickers. The prices for each market day are: open, high, low, close,
and adjusted close as discussed above. The data is available either as a zip file,
fimcom.zip, or broken out into the individual price tables as comma separated
values (csv) files.

The web page also provides two computer programs in the java program-
ming language for downloading or accessing the database, getWebPrices.java
and getZipFile.java.

A third program, nextDayPrices.java, makes use of the database to test the
hypothesis that tomorrow’s price is randomly up or down from today’s as is
presently under discussion. This program is also presented in the Appendix as
a realization of the program sketch given above.

In the Fig. 1.10 we show the results for FIMCOM stocks over the dates 1/1990
through 6/2008, Altogether 600,000 trials, as outlined above, were performed.
The chart depicts 600 batches of size 100 trials each. The mean is 50.39 and
batch standard deviation is 5.20.19

The same test can be applied to various categories of companies, various date
ranges, even days of the week. Some results of the test applied to the NYSE and
NASDAQ are given in Table 1.1. Since the probabilities that the market will be

Fig. 1.10. Next day up for FIMCOM prices

19 See Section A.8 for the rationale for batching statistical data.

finance.yahoo.com
www.math.gatech.edu/~shenk
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up tomorrow as presented in the table are the result of Monte Carlo simulation,
they are only statistical approximations to the true values as represented in
the historical data. The table gives 95% confidence intervals for the values. As
can be seen, some of the values stray from 50% somewhat. Evidently further
investigation is warranted in these cases.

1.7.4 Testing an Advanced Indicator

So far we have only tested a very simple property of market prices. But the same
technique can be used to test more elaborate technical analysis claims. As there
are literally dozens of them, we restrict ourselves to just one for demonstration
purposes and to provide an example from which others may be tested.

The Direction Movement Indicator (DMI) is defined as follows. The amount
by which today’s high price is higher than yesterday’s is dm+(or 0 if not higher).
Conversely, the amount by which today’s low price is below yesterday’s is (nu-
merically) dm−. Whichever is smallest on a given day is reset to 0. Denote their
14 day (exponential) moving averages by MA(dm+) and MA(dm−) respectively.

Next calculate the 14 day moving average of the true range. The true range
on a given day, tri, is the maximum of

Hi − Li or Hi −Ci−1 or Ci−1 − Li

Table 1.1. Probability that tomorrow’s price is up from today’s

Exchange Sector Dates Up tomorrow (%) 95% conf. interval

NYSE All 1971–1990 50.60 ±0.32

NYSE All 1990–2008 50.02 ±0.41
NYSE Basic materials 1990–2008 50.44 ±0.16
NYSE Conglomerates 1990–2008 50.48 ±0.32
NYSE Consumer goods 1990–2008 49.91 ±0.32
NYSE Financial 1990–2008 50.62 ±0.31
NYSE Healthcare 1990–2008 48.69 ±0.31
NYSE Industrial goods 1990–2008 49.80 ±0.41
NYSE Services 1990–2008 49.35 ±0.32
NYSE Technology 1990–2008 48.62 ±0.31
NYSE Utilities 1990–2008 51.50 ±0.32

NYSE All 1996–2000 49.64 ±0.16
NYSE Basic materials 1996–2000 48.86 ±0.31
NYSE Conglomerates 1996–2000 50.66 ±0.31
NYSE Consumer goods 1996–2000 49.23 ±0.32
NYSE Financial 1996–2000 50.38 ±0.32
NYSE Healthcare 1996–2000 47.94 ±0.31
NYSE Industrial goods 1996–2000 49.46 ±0.41
NYSE Services 1996–2000 49.01 ±0.32
NYSE Technology 1996–2000 47.11 ±0.32
NYSE Utilities 1996–2000 50.85 ±0.33

NASDAQ All 1990–2008 48.86 ±0.16
NASDAQ All 1996–2000 47.75 ±0.16
NASDAQ All 2001–2003 48.74 ±0.23
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where Hi is today’s high, Li is today’s low, and Ci−1 is yesterday’s close. If one
thinks of yesterday’s closing price as part of today’s range of prices, then true
range is just the difference between the day’s high and low.

Finally today’s dmi+ and dmi− are the ratios

dmi+ =
MA(dm+)

MA(tr)

dmi− =
MA(dm−)
MA(tr)

. (1.45)

A signal is generated when dmi+and dmi−cross, that is, when the difference
crosses 0 either from below or from above. If dmi+ crosses above dmi−the pre-
diction is that the stock price will trend up; conversely if dmi+ crosses below
dmi− the price is predicted to trend down.

Mathematically, begin with

dm+ = max(0,Hi −Hi−1)
dm− = max(0, Li−1 − Li), (1.46)

followed by resetting the smallest to 0

dm+ = (1ldm+≥dm−)dm+

dm− = (1ldm−≥dm+)dm− (1.47)

Here the indicator function 1lA is 1 when condition A is satisfied and 0 otherwise.
The 14 day moving averages are given by

MAi(dm
+) = fdm+ + (1− f)MAi−1(dm

+)
MAi(dm

−) = fdm− + (1− f)MAi−1(dm
−) (1.48)

where f = 2/15. True range and its moving average are calculated as

tri = max(Hi − Li,Hi − Ci−1, Ci−1 − Li)
MAi(tr) = ftri + (1− f)MAi−1(tr). (1.49)

Then dmi+ and dmi− are given by equation (1.45).
A sketch of the algorithm for testing dmi follows.

Algorithm 4. Testing the DMI Indicator

inputs: dmi moving average parameter f , date range to be
tested R, day following signal for assessment (1 for
tomorrow), exchange, sector

for batchIndex = 1, . . . , 600
trialresult = 0 �initialize trialresult
for trials = 1, . . . , 100

• choose a stock ticker TKR at random
• read price and date data for TKR over R
• compute dmi+, dmi− and
dmiIndicator = dmi+ − dmi− over R
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Fig. 1.11. Predictive success of DMI for FIMCOM prices

• calculate the list of signal dates C when
dmiIndicator crosses 0 and the prediction:

up if up crossing
down if down crossing

• choose a signal date in C at random
• compare prices on the predicted and signal dates
• record a hit or miss in trialresult

endfor
• increment the histogram cell for trialresult

endfor

In Fig. 1.11 we show the results of using dmi to predict tomorrow’s trend for
FIMCOM stocks over the dates 1/1990 through 6/2008. The trials were batched
with batch size 100 as above. The mean is 46.11 and batch standard deviation
is 4.92. This would seem to make dmi an anti-predictor.

In Table 1.2 we show the predictive success of dmi on NYSE and NASDAQ
stocks under various conditions as specified. In the predicted day column a +1
means the prediction is whether tomorrow’s price is up or down while +7 means
the prediction is whether the price 7 days hence is up or down.

For more on the efficiency of the market with respect to technical analysis
see [PI07].

Problems: Chapter 1

1. The following technique exploits the Central Limit Theorem20 to create approximate
samples Z from the standard normal distribution. (An exact method is given in
Section A.9.) The mean of a uniformly distributed random variable U on [0, 1],

20 See Section A.6.



30 1 Geometric Brownian Motion and the Efficient Market Hypothesis

Table 1.2. Probability that DMI can predict a trend

Exchange Sector Dates Pred. day Predicted (%) 95% conf. interval

NYSE Basic materials 2001–2003 +1 47.11 ±0.41
NYSE Conglomerates 2001–2003 +1 48.50 ±0.41
NYSE Consumer goods 2001–2003 +1 48.94 ±0.41
NYSE Financial 2001–2003 +1 48.61 ±0.41
NYSE Healthcare 2001–2003 +1 49.31 ±0.41
NYSE Industrial goods 2001–2003 +1 47.56 ±0.41
NYSE Services 2001–2003 +1 48.60 ±0.41
NYSE Technology 2001–2003 +1 50.00 ±0.40
NYSE Utilities 2001–2003 +1 49.13 ±0.40

NYSE All 1990–2008 +1 50.11 ±0.42
NYSE All 1990–2008 +7 50.13 ±0.39

NASDAQ All 1990–2008 +1 49.21 ±0.43
NASDAQ All 1990–2008 +7 49.39 ±0.41

denoted U ∼ U(0, 1), is μU = 1/2 and the variance is σ2
U = 1/12. Therefore by the

CLT

Z =

∑n
i=1 Ui − n/2
√
n/12

(1.50)

is approximately N(0, 1).

Algorithm 5. Approximate N(0, 1) Samples

inputs: n

Z = 0

for i = 1, . . . , n

U ∼ U(0, 1)

Z = Z + U

endfor

Z = (Z − n/2)/
√
n/12

Generate a histogram from this algorithm with n = 12 and compare it with the
standard normal density, (1.6) with μ = 0 and σ = 1. Do the same for n = 48, and
n = 108.

2. Let Xt describe a Brownian particle with parameter σ = 4 starting at X = 0
when t = 0 and moving for a time t = T/4. Now let Ys, for s = 0 to s = 3T/4,
describe the motion of the same particle from time T/4 until time T . How is XT/4

distributed? How is Y3T/4 distributed? How is XT/4 + Y3T/4 distributed? Work this
out either analytically or via simulation, for T = 12. This problem illustrates the
inifinite divisibility property of the Wiener process.

3. (a) Suppose Brownian motion is used to model stock prices (instead of geometric
Brownian motion). If S0 = 10, μ = 0 per year, volatility= 1 per square root
year, and T = 1/12 years (about 30 days), what is the probability a stock’s
price ST will be less than 0? less than 1? less than 9? less than 10?
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(b) What is the probability the price went below 0 at some time before t = T
and ended above 0? Estimate this by simulation using several difference choices
for Δt.

4. Same question as in Problem 3 but assume prices follow GBM with the same
parameters. Compare the less than 10 values.

5. Starting from S0 = 100, run 10,000 trials of a GRW with the following parameter
sets (take Δt = 1/365 in every case). What fraction of outcomes are greater than
S0? less than S0? equal to S0?

(a) μ = 0, σ = 1, nDays = 30 (b) μ = 0, σ = 1, nDays = 180
(c) μ = 0, σ = 0.2, nDays = 30 (d) μ = 0, σ = 0.2, nDays = 180
(e) μ = 0.1, σ = 0.2, nDays = 30 (f) μ = 0.1, σ = 0.2, nDays = 180

6. Run 10,000 trials of a GRWwith the following parameters:Δt = 1/365, T = 60 days,
σ = 40%, μ = 3%. What fraction of outcomes: (a) end between 105 and 115? (b)
end between 95 and 100? (c) fall below 95 at some point but finish above 110? (d)
rise above 105 at some point but finish below 100?

7. Answer the questions in Problem 5 by constructing a 6-step binomial tree. As in the
text, Δt must equal T/n where n is the number of steps. Then all the parameters
must be converted to use the same time units.

8. Answer the questions in Problem 6 by constructing a 6-step binomial tree. Again,
Δt must equal T/n where n is the number of steps, so Δt = 10 days here. All the
parameters must be converted to use the same time units.

9. If Z is distributed as N(0, 1), how is X = 3 + 6Z distributed? How is S = eX

distributed? What is the mean and variance of S?

10. Let St, 0 ≤ t ≤ T be a Geometric Brownian Motion (GBM) random variable with
drift μ and volatility parameter σ. Suppose S0 = 1 and σ2/2 = μ. What is the mean
of logST ? What is the mean of ST itself? Is this sensible?

11. (a) Write a program to test the hypothesis that stock prices are up just as likely as
down from one trading day to the next. Test that hypothesis on a database of
stock prices of your choice.

(b) Test the hypothesis that if prices are down 2 days in a row, then they are up
the third day.

12. MACD is the difference between a short term moving average and a long term
moving average,

MACD = maShort−maLong.

Typically the short term average is 12 days and the long term is 26 days. When the
short term exceeds the long term by the certain amount, the “overbought-oversold
limit,” then it is maintained that the stock is overbought and it is predicted that
the stock price will fall. Conversely when the short term is less than the long term
by more than the overbought-oversold limit, then the stock is oversold and the price
is predicted to rise. Write a program to test this hypothesis. (Exponential moving
averages are permissible here.)

13. Research another technical analysis indicator and test it. See [Ach00] for an extensive
list.
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Return and Risk

This chapter is about the fundamentals of investment growth. It introduces im-
portant calculations with interest rates, returns, and discounting. These ideas
will be needed in later chapters. It is also about investment risk, how it can be
measured and how it can be minimized in the formation and maintenance of an
investment portfolio. This is possible through one of the great financial break-
throughs, the mean-variance theory and CAPM, the capital asset and pricing
model, due to Markowitz and his followers. In the 50 years since its introduc-
tion and subsequent development shortcomings of the theory have surfaced and
improvements offered. Yet it is a starting point for these advanced theories and
basic to a financial course of study.

Since most of the content of this chapter is deterministic, opportunities for
Monte Carlo analysis are limited.

Market risk refers to the possibility of suffering a loss or even a less-than-
expected return as a result of unexpected movements in some market, for exam-
ple the currency, or real estate, or commodities market. However in this book
our primary focus is on the stock market.

With few exceptions risk is ever present. A blue chip equity can go along
smoothly for years issuing dividends on a regular basis only to succumb to
unforeseen events.1 Market prices for stocks, real estate, currencies, and precious
metals rise and fall, for the most part, according to models we investigated in
the last chapter. At the point of sale, which may not be at a propitious moment
for the investor, a position is subject to the market price prevailing at that time.
This very concrete “mark-to-market” valuation often results in a loss.

Over time risk has become better understood. Especially so upon the advent
of the science of probability (see [Ber96]). Quantifying risk entails two compo-
nents: fixing the amount of loss and second, its probability. Once risk became
quantifiable, the investment community invented instruments for managing risk.
This includes portfolio diversification, which we take up in this chapter, but also
futures and option contracts which we take up in the sequel.

1 GM was declared bankrupt in 2009.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 2,
© Springer Science+Business Media New York 2013
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2.1 The Risk-Free Rate

As already noted, in general all investment entails some risk. One exception to
the rule, as near as possible, is an investment in government bonds. So much
so that certain government securities are referred to as a risk-free investment.2

U.S. bonds are one form of treasury securities; treasury bills and notes are two
others.

Unlike a hard asset, a financial instrument is a item that derives its value
from a promise to pay. If there is a well-developed market for them, then it is
called a security. A fixed-income security is a security whose promise to pay is a
definite amount to the holder over a given span of time. An equity is a security
in which the investor has an ownership share, for example as in stock.

A bond is a fixed-income security representing the debt of the issuer, a com-
pany or government, to the holder of the bond. A bond has a stated face or par
value which the issuer promises to pay the holder on the stated maturity date.
In addition to that, a bond can have coupons, stated as a percentage of the
face value, which the issuer pays the holder on an annual basis. (In some cases
half the coupon payment is made semi-annually.) The final payment at maturity
includes both the face value and the last coupon payment. A zero-coupon bond
is one that has no coupons and just pays the face value at maturity. Originally
the issuer sold the bond to borrow money. In short, a bond is an IOU for a loan
with explicit payback terms.

U.S. Treasury bills are zero-coupon bonds. They pay no interest but sell at
a discount of par value. U.S. Treasury notes have maturities between 2 and
10 years and have a coupon payment every 6 months. U.S. Treasury bonds have
maturities between 20 and 30 years and a coupon payment every 6 months.
These, and other, risk-free investments are centrally important throughout
finance. The rate of return on a risk-free investment is called the risk-free rate,
rf . For investments in U.S. dollars, this is often taken as the yield rate on
short-term treasury bills. These rates can be found at www.ustreas.gov/offices/
domestic-finance/debt-management/interest-rate/yield.shtml.

The risk-free rate is a very important tool in use throughout finance. As we
will see, it serves as a basis of comparison for all other investments. One of
these is the determination of “fair” prices for many financial instruments such
as futures and options. We will take up this dependence in a later chapter. It
is important to understand that any rate of return exceeding the risk-free rate
is considered to have risk, for example, dividend yields exceeding the risk-free
rate.

The risk-free rate impacts many other investment rates throughout the finan-
cial system, for example interest rates on insured bank deposits, home mortgage
rates, and corporate bond rates.

2 This is so for US government bonds. A financial crisis was precipitated in 1998 when the
Russian government defaulted on its debt.

www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml.
www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yield.shtml.
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2.2 Fixed-Income Securities Calculations

When return rates are predictable future payments can be calculated exactly.
A zero-coupon bond is an example. It has a face value F and a maturity date T .
The holder of the bond may exchange the bond for its face value on the maturity
date. The original cost of the bond, P , is the investment. This fixes the rate of
return.

Conversely, at the end of a financial transaction, when all the payments are
known after the fact, then an analysis can be made as to the true return of the
investment.

2.2.1 Simple Interest

Let P dollars be the value of an original investment, or bank deposit, and let
ΔP be the gain (or loss if negative) after a period of time t in years. The value
of the investment at that time is

At = P +ΔP. (2.1)

The return is the relative gain,
ΔP

P
. (2.2)

It is usually expressed in percent. By logarithmic return, in brief log-return, we
mean

log(
At

P
) = log(1 +

ΔP

P
). (2.3)

From the Taylor series for the logarithm, see (A.4), we have

log(1 +
ΔP

P
) =

ΔP

P
− (ΔP

P )2

2
+ . . . .

Thus, to first order, logarithmic returns and returns are the same.
The rate of return, or interest rate in the case of bank deposits, is

r =
ΔP

Pt
(2.4)

expressed in percent per year.3 If the time period is 1 year, then the return and
the rate of return are numerically the same.

Turning this equation around, after t years, an investment of P dollars earns
the gain

ΔP = Prt, (2.5)

and the value at that time is

At = P (1 + rt). (2.6)

3 Some authors define the rate of return as ΔP
P

, [CZ03, Lun98]; others as we have done here,
[Sch03]. As in most science and engineering applications, we prefer to reserve the term rate
for changes per unit time.
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The time t need not be a multiple of a year. If it is not, the amount earned
is still proportional to the time invested. For example, if t is 3/2 years, then the
investment returns one full years’ amount and half of another.

Example 2.1. Two hundred dollars are deposited in an account paying 2% per
quarter. After 3 and 1/4th quarters the account is closed. The interest earned
is $200(0.02)(3 + 1/4)= $13. This calculation could be put on an annual basis:
2% per quarter is 8% per year and 3 and 1/4 quarters is 13/16th years. Thus
we have 0.02(13/4) = 0.02(4)(13/4)(1/4) = 13. The amount of the investment
when closed is $213. �

2.2.2 Compounding

The rate r above is a simple earnings rate meaning the amounts accrued were
not reinvested over the period; there is no interest on interest. But if accrued
amounts are reinvested, the situation becomes quite different, it is called com-
pounding.

Let the earnings be calculated annually, t = 1 year. The value of the invest-
ment after 1 year is

A1 = P (1 + r).

If that money is reinvested, then P (1+r) plays the role of the original investment
and after 2 years it grows to

A2 = P (1 + r)(1 + r) = P (1 + r)2.

Continuing, after t years it becomes

At = P (1 + r)t.

Compare this with (2.6).
Suppose an investment offers more frequent compounding periods. If r is the

annual rate of return but compounding is quarterly, then the quarterly rate is
r/4. Now quarterly periods play the role of years in the previous equations,
hence after n quarters, or t = n/4 years, we have

At = P (1 +
r

4
)n = P (1 +

r

4
)4t.

In particular, at the end of 1 year, the amount becomes

A1 = P (1 +
r

4
)4.

The earnings are ΔP = A1 − P and the return rate is (since t = 1)

R =
A1 − P

P
= (1 +

r

4
)4 − 1

= 4(
r

4
) + 6(

r

4
)2 + 4(

r

4
)3 + (

r

4
)4.

It is evident that R > r. For example, if r is 10%, then R is 10.38%. In other
words, an annual rate of 10% compounded quarterly earns the same as 10.38%
compounded annually. To distinguish between them, r is called the nominal rate
and R is the effective rate.
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Example 2.2. Two hundred dollars are deposited in an account paying 8% per
year compounded quarterly (2% per quarter). After 3 and 1/4th quarters the
account is closed. The interest earned in the first quarter is 200∗0.02 and this is
added to the account making the value equal to 200(1 + 0.02). This repeats for
the second quarter and third. The account value at that time is 200(1 + 0.02)3.
Over the next 1/4 of a quarter the interest earned is this amount as principal
times the interest rate for that fractional time, 200(1 + 0.02)3(1/4)0.02. This is
3 periods of compounding plus one-fourth period of simple interest. Hence the
closing value is

200(1 + 0.02)3(1 + (1/4)0.02) = 212.24(1 + 0.005) = 213.30.

Since
(
1 + (14)0.02

) �= (1 + 0.02)1/4, the exponent 3.25 does not give the exact
answer.4 This problem disappears under continuous compounding as we discuss
next. �

As the number of compounding periods increases, so does the effective rate.
If there are m compounding periods per year, the effective rate is given by

R =
(
1 +

r

m

)m − 1. (2.7)

The right-hand side is an increasing function of m, see Table 2.1.

Table 2.1 Effective rates at 10% nominal for various compounding periods

Times/year 1 2 4 6 12 365 730

Rate 10.000 10.250 10.381 10.463 10.471 10.515 10.516

With m compounding periods per year, in t years there are n = tm com-
pounding periods. It follows that the value of the investment after t years is

At = P
(
1 +

r

m

)mt
. (2.8)

As the number of compounding periods tends to infinity the expression on the
right-hand side tends to a limit,

At = lim
m→∞P

(
1 +

r

m

)mt
= Pert (2.9)

where e is a mathematical constant equal to 2.71828 accurate to 5 decimal
places. This then is the accrued value for continuous compounding at a nominal
annual rate of r. In this equation t does not have to be an exact number of years.
Since compounding occurs continuously, t can be any non-negative real number.

From (2.6) the effective rate R satisfies the equation 1+R = er, and therefore

R = er − 1 = r +
r2

2!
+

r3

3!
+ . . . ;

4 The exponent 3.25186 . . . = 3 + log(1 + 0.02/4)/ log(1 + 0.02) is required.
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the second equality follows from the power series expansion of the exponential
function (A.3). For example, for a nominal rate of 10%, the effective rate is
10.517% under continuous compounding.

Fig. 2.1 shows in a dramatic way the effect of compounding. One unit of
currency on deposit for 40 years at 8% earns about 4 times the original value
under simple interest, but compounded continuous earns about 25 times its
original value.

Doubling Time

An alternate way of characterizing the return rate is specifying the time required
for an investment to double in value. Under continuous compounding we seek
the time t2 for which Pert2 = 2P . Solving gives,

t2 =
log 2

r
≈ .7

r
. (2.10)

For example when r is 10% it takes about 7 years for an investment to double.
This equation is the origin of the Seven-Ten Rule: Money invested at 7%

doubles in approximately 10 years and money invested at 10% doubles in ap-
proximately 7 years.

For discrete compounding we may use (2.8),

t2 =
1

m

log(2)

log(1 + r
m )

.

Recall m is the number of compounding periods per year. By using the effective
rate R, m can be taken as 1, compare (2.7),

t2 =
log(2)

log(1 +R)
. (2.11)

Average Rates

As a rule return rates vary from time to time. Then the average rate becomes
important. Suppose r1 is the (simple) rate over the first compounding period,
r2 the rate over the second and so on through rn, the nth. The amount of an
investment P after this time is

A = P (1 + r1)(1 + r2) . . . (1 + rn).

Therefore the average rate r̄ over these n periods satisfies the equation A =
P (1 + r̄)n; it follows that the average is given by the nth root,

r̄ = ((1 + r1)(1 + r2) . . . (1 + rn))
1/n − 1. (2.12)

This is the geometric average of the several rates.
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Fig. 2.1. A comparison of the growth of $1 over 40 years at the annual rate of 8%.
Under simple interest the principal grows by about 4 times, under annual compounding,
by about 22 times, and under continuous compounding by about 25 times

If compounding is continuous, the calculation is even simpler. Let r1 be the
rate for an arbitrary period of time t1. That amount is then reinvested at the rate
of r2 over time t2 and so on for n periods of time. Then the accrued amount is

A = Per1t1er2t2 . . . erntn = Per1t1+r2t2+...+rntn .

Let T = t1 + t2 + . . . + tn be the total time; since the average rate satisfies
A = Per̄T , we get

r̄ =
1

T
(r1t1 + r2t2 + . . .+ rntn) , (2.13)

the arithmetic average rate.

Example 2.3. What is the average rate of compounded return over four quarters
if the first quarter rate is 0.01, the second is 0.02, the third is 0.03, and the
fourth is 0.04?

Under discrete compounding the average quarterly rate is

r̄ = 4
√

(1 + 0.01)(1 + 0.02)(1 + 0.03)(1 + 0.04) − 1 = 0.0249 . . . .

Under continuous compounding it is

r̄ =
0.01 + 0.02 + 0.03 + 0.04

4
= 0.025.

Note that the geometric average is less than the arithmetic average (slightly so
here). This is always the case.5 �
5 Because the log function is concave down, for positive arguments, 1

2
(log x1 + log x2) <

log( 1
2
(x1 + x2)) unless x1 = x2. So ((1 + x1)(1 + x2))

1/2 − 1 < exp( 1
2
(log(1 + x1) + log(1 +

x2)))− 1 < exp(log( 1
2
((1 + x1) + (1 + x2))))− 1 = 1

2
(x1 + x2); same argument for n terms.
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Example 2.4. An amount P is put into savings certificates. The first year it
earned 6% interest and in the second 5%. In the third year it was to have
earned 8% but the account was closed at mid-year (at no penalty). What was
the average annual rate earned?

We want to find r̄ solving the following equation

P (1.06)(1.05)(1 +
1

2
0.08) = P (1 + r̄)2(1 +

1

2
r̄).

Numerical methods are required to discover that the answer is 6.0077%. The
approximate answer of 6.025% can be gotten by approximating (1 + r̄/2) by
(1 + r̄)1/2.

If compounding were continuous the problem is much easier. The total time
is T = 1 + 1 + 0.5 = 2.5, thus solving

Pe0.05+0.06+ 1
2
0.08 = Per̄2.5

gives r̄ = 6%.
This example shows why continuous compounding is often used in financial

transactions. �

2.2.3 Discounting

Having P dollars today is worth more than having P dollars next week, or next
month, or next year. For one thing, one could invest it at the risk-free rate rf .
Then in time t, those dollars will become

V = Perf t

in the case of continuous compounding. This demonstrates the time value of
money.

Turning the argument around, it shows that P is today’s value of a payment
of V dollars at time t,

P = V e−rf t. (2.14)

This is called discounting future money to the present time. One must discount
in this way when dealing with future payments. It then becomes possible to place
transactions occurring at different times on an equal basis to compare them. We
refer to P in (2.14) as the present value of V .

It is easier to discount under the assumption of continuous compounding as
there is no need to interpolate but sometimes discrete compounding is called
for. From (2.8) we get that

P =
V

(
1 + r

m

)tm = V
(
1 +

r

m

)−tm
(2.15)

when t is an exact multiple of the compounding period 1/m. It has the correct
value when tm is an integer and interpolates for the other values of t,
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Mortgages

As an example of a more intricate calculation with interest rates let us work
through the problem of periodic mortgage payments. A loan of A dollars is
to be paid back in n equal installments of Y dollars each. Assume the rate of
interest is r per payment period (for example, if payments are monthly, then r
is the annual rate divided by 12).

Let Ai be the remaining balance on the loan just after the ith payment,
A0 = A. At the end of the first period the balance has grown to A(1 + r); the
payment reduces that by Y , hence the balance remaining is

A1 = A(1 + r)− Y.

For the second period, A1 acts as the loan amount, and so

A2 = A1(1 + r)− Y = A(1 + r)2 − Y (1 + r)− Y.

Continuing, after n payments the balance is

An = A(1 + r)n − Y
(
(1 + r)n−1 + . . .+ (1− r) + 1

)

= A(1 + r)n − Y

(
(1 + r)n − 1

r

)
. (2.16)

But this final amount is zero, An = 0. Solving for Y we get

Y =
Ar

1− 1
(1+r)n

per period. The term

a =
1− (1 + r)−n

r

is called the annuity-immediate factor; in this notation, Y = A/a.
The equation derived in (2.16) can be used to construct a table of remaining

balances, see Table 2.2. These are of considerable interest to the homeowner.

Table 2.2 Remaining mortgage balance
$200,000 at 6% for 15 years, monthly payment: $1,687.71

Month Interest Towards principal Principal remaining

1 1,000 687.71 199,312.29
2 996.56 691.15 198,621.13
3 993.11 694.60 197,926.53
4 989.63 698.08 197,228.45
5 986.14 701.57 196,526.87
6 982.63 705.08 195,821.79
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Example 2.5. Consider financing A = $200, 000 over 15 years (n = 180 months)
at a rate of 6% annually (r = 1/2% monthly). From above, this requires a
monthly payment of

Y =
200,000 ∗ .005
1− 1

1.005180

= $1, 687.71.

�

Example 2.6. As a second example we will solve the same problem in an entirely
different way using the principle of discounting. The lender receives a stream of
payments each in the amount of Y . The present value of the first is Y/(1 + r).
The present value of the second is, following (2.15), Y/(1 + r)2. Continuing in
this fashion, the present value of all the payments equals the amount of the loan,
and so

A =
Y

1 + r
+

Y

(1 + r)2
+ . . .+

Y

(1 + r)n

=
Y

(1 + r)n
(
(1 + r)n−1 + . . .+ (1 + r) + 1

)

=
Y

r

(
1− 1

(1 + r)n

)
.

This gives the same solution as above. �

Annuities

An annuity is a series of payments to a beneficiary made at fixed intervals of
time. If the number of payments is known in advanced, it is an ordinary annuity.
A perpetuity is an annuity in which the payments continue forever.

The cost of an annuity can be derived by calculating its present value. Let Y
denote the payments and r the per period discount rate. Upon reflection one sees
that this problem is exactly like the mortgage calculation above. Indeed, from
the lender’s position, it is an annuity. The present value of the first payment
made at the end of the first period is Y/(1 + r), the present value of the second
payment is Y/(1 + r)2 and so on. Therefore for an ordinary annuity having n
payments

PV =

n∑

k=1

Y

(1 + r)k
=

Y

r

(
1− 1

(1 + r)n

)
. (2.17)

And for a perpetuity

PV =

n∑

k=1

Y

(1 + r)k
=

Y

r

(
1− 1

(1 + r)n

)

→n→∞
Y

r
. (2.18)
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Yield

The annual rate of return of a bond over its lifetime is called its yield to maturity
(YTM). Suppose a bond with a face value of F makes m coupon payments per
year in the amount C/m and there are n payments remaining until its maturity.
If the bond costs P , what is its YTM?

This can be calculated by discounting to the present time all the future
payments of the bond at the yield rate. Denote this annual rate by r. Again
invoking (2.15), the discount factor for the kth coupon payment is (1+(r/m))−k.
The discounted amount for each is C/m; over the lifetime there will be n such
payments. It remains to discount the face value F . If there were an exact number
of years y remaining it would be appropriate to use (1+ r)−y as if compounding
were annually. Or, since there are exactly n coupon periods remaining, one could
use (1+(r/m))−n and thereby invoke per period compounding. The two are not
the same, (1+ r)−n/m �= (1+ (r/m))−n. The custom is to use the latter. And so
we have

P =
F

(1 + (r/m))n
+

n∑

k=1

C/m

(1 + (r/m))k
;

upon summing the series we obtain

P =
F

(1 + (r/m))n
+

C

r

(
1− 1

(1 + (r/m))n

)
. (2.19)

For given values of P , F , C, m, and n, this must be solved for r. Since r
cannot be solved in closed form in (2.19), numerical methods have to be used.
For example the bisection method discussed in Section A.14.

Example 2.7. Find the YTM of a 10 year $10,000 bond with coupon payments
of $400 annually. The bond costs $9,500.

We must solve

9,500 =
10,000

(1 + r)10
+

400

r

(
1− 1

(1 + r)10

)
.

The value r = 0.01 is too low and r = 0.06 is too high so they can be starting
points for the bisection method. The method quickly gives r = 0.04636. �

2.3 Risk for a Single Investment

Let us suppose an investment of S0 dollars is initiated by the purchase of stock
in a particular company. To avoid certain complications, assume the company
does not pay dividends. Let us also suppose that at some time in the future,
t = T , we sell the stock (or at least assess whether we have made a profit or a
loss to date).

If we assume the dynamics of the last chapter, then at the end of the invest-
ment period the value of the asset, ST , will be lognormally distributed. We can
calculate the investment’s probability that ST < S0, the probability of losing
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Fig. 2.2. Lognormal ending prices for: S0 = 100, μ = 0.06, σ = 0.4, T = 1 year

money, by integrating over the lognormal distribution from zero up to S0, see
Fig. 2.2.

But an easier method is available. Since ST is lognormally distributed, Y =
log(ST ) is normally distributed. From (1.23),

Z =
1

σ
√
t

(
Y − log(S0)− (μ− 1

2
σ2)T

)

is standard normal. It follows that for any x > 0,

Pr(ST < x) = Pr(log(ST ) < log(x))

= Pr

(
log(ST )− log(S0)− (μ− 1

2σ
2)T

σ
√
T

) < d

)

= Pr(Z < d) (2.20)

where

d =
log(x)− log(S0)− (μ− 1

2σ
2)T

σ
√
T

. (2.21)

The probability can now be looked up in the cumulative normal table or, more
conveniently, calculated from the cumulative normal rational approximation
given in Section A.5 (or looked up online).

Example 2.8. Using the parameters as in Fig. 2.2: S0 = 100, drift μ = 0.06,
volatility σ = 0.4, and T = 1 year and taking x = S0 in (2.21), we get

d =
log(100) − log(100) − (0.06 − 1

20.4
2)1

0.4
√
1

= 0.05.

For this argument a cumulative normal table puts the loss probability
at 52%. �
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In the example it is perhaps surprising that the probability exceeds 50%
even though the drift is positive. The explanation lies in the asymmetry of the
lognormal distribution; recall equation (1.32) for the median of a lognormal.
While the lognormal mean is calculated to be 106.18 according to (1.28), the
probability mass extending far upscale must be compensated for by greater
probabilities on the downside.

An added complication in figuring the probability of loss is accounting for the
possibility that the company goes bankrupt and our investment devaluates to
zero. Suppose this probability is B. From www.bloomberg.com6 over the years
2000–2008 an average of 2.1% of NYSE companies are delisted per year, so a
value of B = 0.02 is a natural guess. The above calculation is now effected by
scaling down the curve by 1−B, and then adding B to the result,

Pr(ST < S0) = Pr(St < S0 | bankrupt)Pr(bankrupt)
+Pr(ST < S0 | not bankrupt)Pr(not bankrupt)

= B + (1−B)

∫ S0

0
f(s) ds. (2.22)

Here f is the lognormal density function with the appropriate parameter values.
It is as though a histogram bar of probability B is placed at ST = 0 and the
rest of the histogram is scaled by (1−B).

Example 2.9. To include the probability of bankruptcy in our previous example
make use of (2.22); we get

Pr(loss) = 0.02 + 0.98 ∗ 0.52 = 0.523. (2.23)

�

2.3.1 The Solution by Simulation

We may also calculate the result through simulation. The algorithm is quite
simple: run the geometric random walk algorithm on page 12 and count a hit if
the end point ST < S0. Repeat this for a large number of times N (the results
below are for N = 90,000) and use the number of hits divided by N as the
estimate.

Example 2.10. Carrying out such a simulation with the parameters in Fig. 2.2
we get the risk of loss to be 52.2% agreeing with the analytical calculation of
Example 2.8. �

With such an algorithm in hand, we can pose and answer many relevant
questions about our investment. How does the risk vary with volatility? with
drift? with the time horizon? These involve making simple parameter changes
in the algorithm and re-running the simulation.

6 Search “NYSE Companies Delisted for Noncompliance” for this lengthy reference. See also
www.moneycontrol.com/stocks/marketinfo/delisting/index.php

www.bloomberg.com
www.moneycontrol.com/stocks/marketinfo/delisting/index.php
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2.3.2 The Effect of Dividends

An important advantage of simulation is that more complicated situations can
be easily accommodated. Such a complication is gaging the effect that issuing
dividends has on the ending price distribution. The dividend payments can be
fixed amounts at fixed times or amounts tied to the current stock price, or
virtually any scheme.

When dividend payments are made, usually on a per share basis, the price
of the stock immediately drops by the same amount. This is the result of the
reduction in value of the company.

The book value of a company is the net worth of its tangible assets, for example
the property it owns and its cash. (In particular, the talents and ideas of its
employees are excluded.) Book per share is, theoretically, what a shareholder
would get if the company liquidated and its proceeds were distributed to the
shareholders.

While a stock’s price can trade at several times its book per share value,
often there is a close relationship between the two. When a company issues a
dividend, its book value drops by the total amount dispersed. And so the book
per share drops by that amount divided by the number of shares outstanding.
This is exactly equal to a drop in price by the dividend per share.

There is a second reason why the share price must drop by the amount of the
dividend. Suppose an investor buys the stock just prior to ex-dividend day7 and
thereby joins the rolls of those receiving a dividend. Later, maybe even the next
day, the investor now sells the stock. Assuming the price does not fall by the
dividend amount, this sale price will be about the same as the purchase price
(possibly higher) thereby earning the investor the dividend as free money. Such
a practice cannot last long. Many others will want to get in on it. The result
will be to cause the stock price prior to going ex-dividend to escalate and then
fall back afterwards.

To make a simulation of the problem treated above, but now with dividends,
assume dividend payments are made quarterly (so the number of days between
dividends is 91) with a yield of 8% per year or 2% per quarterly period. Assume
dividends are not reinvested (otherwise there is no dividend essentially).

The modification to the algorithm consists in calculating the dividend amount
on the last day of each quarter, adding this to the accumulated dividend pay-
out, reducing the stock by the same amount and continuing. The accumulated
dividends are assumed to be reinvested at the risk-free rate. At the end of the
time frame, record a “hit” if the stock price plus accumulated dividends is less
than S0.

Algorithm 6. Ending Value with Dividends

inputs: S0, nDays (T in days), μ, σ, daysBtwnDiv

accumDiv, periodYield, periodRFR

dt=1/365 �1-day walk resolution

7 The ex-dividend day and afterward is when a stock purchase does not qualify for the current
dividend. Buying prior to ex-dividend day is required.
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S = S0 �initialize stock price

accumDiv = 0 �initialize accumulated dividends

j = 0 �initialize days since last dividend

for i = 1, . . . , nDays

Z ∼ N(0, 1) �N(0, 1) sample

S = S ∗ (1 + μΔt+ σ
√
ΔtZ)

j = j + 1
if( j == daysBtwnDiv )

�grow accumulated dividends

accumDiv = accumDiv∗(1+periodRFR)
divAmt = S∗periodYield �dividend this period

accumDiv = accumDiv + divAmt

S = S − divAmt �decrease by amount of the dividend

j = 0 �reset j

endif

endfor

�dividend growth over partial period

accumDiv = accumDiv∗(1+periodRFR∗j/daysBtwnDiv)
endValue = S + accumDiv

Example 2.11. Such a simulation applied to the problem of Example 2.8 with
quarterly dividends at 8% yield gives the result that the risk of losing money is
the slightly reduced value 51.8%. �

2.3.3 Stocks Follow the Market

In Chapter 1 we mentioned that a stock’s price is subject to general market
influences as well as the random walk fine structure. Let us now take that into
account. Our goal is to calculate the risk for a particular stock under different
market scenarios given the degree to which the stock follows the market. For
this purpose we must learn how to generate market prices, possibly engineered
to have specified characteristics, and how to generate individual stock prices in
relation to the market.

Generating Market Prices

Start with the former. Of course we could generate market prices in the usual
way using the algorithm on page 12. We could obtain markets with specified
volatilities and drifts as desired in this way. But suppose we want more; for
example we might want to specify trends, an improving market or a declining
one or an oscillating one. In fact this is possible as we demonstrate by example.

Assume we want to simulate daily prices over 1 year but we want the market
to have a given price each quarter, (0,m0), (91,m1), (182,m2), (173,m3) and
(364,m4). We will see that in generating the stock prices, only the day to day
market increments matter and therefore we take m0 to be some convenient value
such as m0 = 100.
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Now generate a GRW, P [i], i = 0, . . . , 364 with P [0] = m0 and having the
desired volatility, σM (and 0 drift for convenience).

Next let �(·) be the piecewise linear curve passing through the points
(0,m0 − P [0]), (91,m1 − P [91]), (182,m2 − P [182]), (273,m3 − P [273]), and
(364,m4 − P [364]). The array of t-coordinates is

tPts: 0, 91, 182, 273, 364

and the array of y-coordinates is

yPts: m0 − P [0],m1 − P [91],m2 − P [182],m3 − P [273],m4 − P [364].

Generically, the straight line through two points (a,A) and (b,B) is given by

y =
1

b− a

(
B(t− a)−A(t− b)

)
. (2.24)

Letting 1l[a,b](t) denote the indicator function of the interval [a, b] which is 1 for
a ≤ t ≤ b and 0 otherwise, put

�(t; a, b) =
1

b− a

(
B(t− a)−A(t− b)

)
1l[a,b](t). (2.25)

This is the line segment we want for t between a and b. Then �(·) is their sum
�(t) = �(t; 0, 91) + �(t; 91, 182) + �(t; 182, 273) + �(t; 273, 364). (2.26)

Finally the array of market prices having the desired properties is just the
sum

M [t] = P [t] + �(t), t = 0, 1, . . . , 364.

Figure 2.3 portrays an example market scenario.
The function �(·) above can be implemented via the following code.

Algorithm 7. Generating piecewise linear ordinates

inputs: tPts, yPts

t �tPts[0] ≤ t ≤ tPts[4]

output: y = �(t)
a = tPts[0]; A= yPts[0]

for i = 1, . . . , 4
b=tPts[i]; B=yPts[i]

if( a ≤ t and t ≤ b )

y=(B(t-a)-A(t-b))/(b-a)

return y

endif

a=b; A=B

endfor

In the next section we will want to generate stock prices that correlate with
the market. For this purpose we need the equivalent random increments Wi,
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Fig. 2.3. Market prices passing through (0,100),(91,110), (182,113), (273,102) and
(364,105). The volatility is 10%

i = 1, 2, . . ., from which the market could be regenerated.8 Since Mi = Mi−1 +
Mi−1σM

√
dtWi,

Wi =
Mi −Mi−1

Mi−1σM
√
dt
. (2.27)

2.3.4 Correlated Stock Prices

Given market behavior, now we want to generate the prices of individual stocks
that are influenced by the market. We consider stocks whose prices follow the
market to an extent but not completely and not all the time. Specifically, let ρ,
a number between −1 and 1, quantify the degree to which the stock’s movement
tracks the market’s movement. If ρ = 1 then it tracks exactly in the sense of rising
when the market rises and falls when the market falls. If ρ = 1/2 then it follows
the general market about one half the time otherwise it moves independently of
the market. If ρ = 0 then the stock moves independently all the time. A stock
might even move contrary to the market, in this case ρ is negative.

Such a parameter is exemplified by the correlation coefficient defined next.
First the covariance between two random variables X and Y is defined to be

covar(X,Y ) = E((X − μX)(Y − μY )), (2.28)

where μX = E(X) and μY = E(Y ). The correlation coefficient is its
normalization,

ρXY =
covar(X,Y )

√
var(X)var(Y )

=
covar(X,Y )

σXσY
. (2.29)

8 The calculated market path is a possible realization of a geometric random walk.
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Notice from (2.28) that if X and Y both tend to be greater than their means
at the same time and likewise lesser than their means at the same time, then
their covariance will be a large positive value. It follows that ρXY will be near
1.9 Conversely if Y tends to be below its mean when X is above and vice-versa,
then their covariance will be a large negative value, and ρXY will be near −1. If
X and Y are independent, then their correlation is 0, ρXY = 0.

The covariance matrix C for two random variables X and Y is defined as

C =

[
var(X) covar(X,Y )

covar(Y,X) var(Y )

]

=

[
σ2
X ρXY σXσY

ρY XσXσY σ2
Y

]
. (2.30)

We have used (2.29) to obtain the off-diagonal elements. Since ρY X = ρXY , the
covariance matrix is symmetric meaning CT = C where superscript T designates
matrix transpose.

Let V denote the 2×1 matrix, that is column vector, consisting of X and Y ,

V =

[
X
Y

]
.

If μV is the column vector of their means μX and μY , and letting the expectation
of a matrix mean the expectation of each of its elements, then the covariance
matrix is given by

C =

[
E((X − μX)(X − μX)) E((X − μX)(Y − μY ))
E((Y − μY )(X − μX)) E((Y − μY )(Y − μY ))

]

= E((V − μV)(V − μV)T ). (2.31)

Since a covariance matrix is symmetric10 it has a Cholesky decomposition,

C = HHT (2.32)

where H is lower triangular. For example a 2 × 2 covariance matrix has the
decomposition

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
σ1 0
ρσ2

√
1− ρ2σ2

] [
σ1 ρσ2
0

√
1− ρ2σ2

]
.

9 By its definition, −1 ≤ ρXY ≤ 1. This follows from the well-known Cauchy-Schwarz inequal-
ity as indicated by the following. If xi and yi for i = 1, . . . , n are empirical values of X and
Y , then statistically

covar(X,Y ) =
1

n

∑

i

(xi − μX)(yi − μY )

≤
√

1

n

∑

i

(xi − μX)2

√
1

n

∑

i

(yi − μY )2 =
√
varX

√
varY .

10 It is also positive semi-definite but that is not needed for a Cholesky decomposition.



2.3 Risk for a Single Investment 51

Now let Z and Z ′ be two independent, mean 0, unit variance random variables;
their covariance matrix is therefore the identity matrix I. Put

[
X
Y

]
= H

[
Z
Z ′

]
, (2.33)

then X and Y have covariance matrix C and therefore are correlated with coef-
ficient ρ. The reason is that X and Y are mean 0 and, from (2.31),

E(

[
X
Y

] [
X
Y

]T
) = E(H

[
Z
Z ′

]
(H

[
Z
Z ′

]
)T )

= E(H

[
Z
Z ′

] [
Z
Z ′

]T
HT ) = HE(

[
Z
Z ′

] [
Z
Z ′

]T
)HT

= HIHT = C. (2.34)

Since H is constant it can be moved outside the expectation operation.
Finally (2.33) shows how to construct correlated Gaussian random variables.

Let Z and Z ′ be independent N(0, 1) random variables and put

X = σ1Z
Y = ρσ2Z +

√
1− ρ2σ2Z

′, (2.35)

then X and Y are correlated and normally distributed with variances σ1 and σ2
respectively and correlation coefficient ρ. Note that Z and Y are also correlated
with coefficient ρ.

With correlated N(0, 1) samples in hand, to obtain correlated random walks,
we simply generate them in the usual way using these samples. Let Xi and X ′

i,
i = 1, 2, . . ., be correlated N(0, 1) samples and set

Si = Si−1(1 + μdt+ σ
√
dtXi)

S′
i = S′

i−1(1 + μ′dt+ σ′√dtX ′
i).

Note that it is not the prices themselves that are correlated but rather the price
increments. Correlating the increments is preferable because, for one thing, it is
the day-to-day increments that are market correlated and, for a another, price
increments are stationary in the sense of having constant means and variances,
see [Mar78].

To obtain equity prices that follow the market we put the two constructions
together. First construct a market scenario, Mi, engineered as desired using the
techniques earlier in this section. Back out the equivalent price increments Wi,
i = 1, 2, . . ., given by (2.27). Finally, using a sequence of independent N(0, 1)
samples Zi, i = 1, 2, . . ., put

Yi = ρWi +
√
1− ρ2Zi

and then generate the prices as usual using the Yi,

Si = Si−1(1 + μdt+ σ
√
dtYi).
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The technique is outlined in the following algorithm. Figure 2.4 shows an exam-
ple run of the algorithm.

Algorithm 8. Stock prices correlated with the market

inputs: ρ, σm (market volatility)

μs, σs (equity parameters)

• generate a market scenario:

m0, m1, . . . �e.g. quarterly prices manually assigned

�generate preliminary market prices

Pi = Pi−1(1 + σm
√
dtZi) �Zi ∼ N(0, 1)

• calculate the piecewise linear correction �(t) (pp 48)

• calculate the market prices Mi = Pi + �(i)
�back out the market increments

Wi = (Mi −Mi−1)/(σm
√
dtMi−1)

label AA:

�generate correlated N(0, 1) increments

Yi = ρWi +
√

1− ρ2Zi �Zi ∼ N(0, 1)
�generate the correlated stock prices using the Yi

Si = Si−1(1 + μsdt+ σs
√
dtYi)

A falling market trend

a b

Correlated price changes, ρ =0.7

Fig. 2.4. Example prices of a stock whose price movements are correlated with a market
trend

It may become necessary to generate a large number of stock price histories
all correlated with the same market; this is possible. In the algorithm, simply
repeat starting from label AA, as many times as desired, to generate a new
history.

Extension to More Variables

The technique for correlated samples given here extends to any number of
random variables. For example to generate three pairwise correlated Gaussian
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random variables, let C be the desired covariance matrix and let HHT be its
Cholesky decomposition. If

C =

⎡

⎣
σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

⎤

⎦

Then

H =

⎡

⎢
⎣

σ1 0 0
ρ12σ2

√
1− ρ212σ2 0

ρ13σ3 σ3
ρ23−ρ12ρ13√

1−ρ212

√
σ2
3 − h231 − h232

⎤

⎥
⎦ (2.36)

where h31 and h32 are the 31 and 32 elements of H,

h31 = ρ13σ3 h32 = σ3
ρ23 − ρ12ρ13√

1− ρ212
.

If the h33 square root should result in an imaginary number, it means C is not
positive semi-definite and therefore not a valid covariance matrix.11

Put ⎡

⎣
X1

X2

X3

⎤

⎦ = H

⎡

⎣
Z1

Z2

Z3

⎤

⎦ (2.37)

where Z1, Z2, and Z3 are independent N(0, 1) Gaussians. Then X1 and X2 have
correlation coefficient ρ12, X1 and X3 have correlation coefficient ρ13 and X2

and X3 have correlation coefficient ρ23.

2.4 Risk for Two Investments

Most portfolios consist of more than one investment. The interplay between sev-
eral investments has a profound effect on risk. If the components of the portfolio
are oppositely correlated, then the portfolio’s prices tend to be more constant,
avoiding large swings either way.

To see this, suppose an investment consists of equal positions in two stocks
trading at about the same price. Suppose one is positively correlated and the
other is negatively correlated with the market, see Fig. 2.5a and b. The day-to-
day value of a 50–50 mix of these two stocks is shown in (c). Since the portfolio is
the day-to-day average of the two, its value must necessarily lie halfway between
them.

11 An arbitrarily constructed real symmetric matrix is not necessarily positive-semi-definite. A
little algebra shows that

h2
33 =

σ2
3

(1− ρ212)

(
1− ρ212 − ρ213 − ρ223 + ρ12ρ13ρ23

)
.

This can be negative for the choices ρ12 = ρ13 = −ρ23 = 3
4
. Of course if 1 and 2 are highly

correlated then 1 and 3 can’t be highly correlated while 2 and 3 highly uncorrelated.
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Stock 1 prices

a b

c
Stock 2 prices

Fig. 2.5. The market for this example is that of Fig. 2.4a. The equity in (a) is positively
correlated with the market while (b) is negatively correlated with the market. The indi-
vidual stocks are subject to large swings but the portfolio remains between 90 and 125

The figure shows what can happen in one particular scenario of market and
stock prices. To gauge the effect on the risk of such a portfolio, we must run a
simulation as before over many such scenarios and count how often the result
is a loss. Effectively we are integrating over the distribution of portfolio prices
under the constraint of the assigned correlations.

Algorithmically the new simulation goes as follows.

Algorithm 9. Correlated Portfolio Risk

for i = 1, 2, . . . , N
• generate a random market scenario
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• generate stock 1 prices with ρ = ρ1 (pp. 52)

• generate stock 2 prices with ρ = ρ2
• average to generate the portfolio prices

• record a ‘hit’ if the ST < S0

endfor

• output (number of hits)/N

In this algorithm the market trend is random, therefore any difference be-
tween the risk predicted by simulations of this algorithm and that of the one-
stock portfolio is due to the attributes of the portfolio.

Example 2.12. Consider the problem of Example 2.8 on page 44. Let a portfolio
consist of two stocks having exactly the same financial parameters as in that
example, S0 = 100, μ = 0.06, σ = 0.4, and T = 1. But let the first have
correlation ρ1 = 0.7 and the second have correlation ρ2 = −0.5 with respect to
the market. Let the market itself have drift 8% and volatility 20%. Then the
risk of loss predicted by simulation is 41.9%, an improvement of about 10%
from that of a stock by itself. Even if the two stocks are uncorrelated with the
market or to each other there is still an improvement of about 5%. This is due
to the fact that the average of two or more values is less extreme than any of
the values individually. �

Referring to Algorithm 9, shifting the market scenario generation outside the
loop allows for testing portfolios under specific types of markets.

2.5 Value at Risk

The value at risk (VaR) is a measure that attempts to capture in a single number
the total risk of a portfolio. The value at risk V is the maximum loss that can
be expected with a given confidence over a specified period of time. For example
one might assert “We are 99% sure that over the next 30 days the portfolio will
not lose more than $10,000.”

Of course the prediction is made on the basis of a model for stock prices,
for example the GBM model. The prediction can also be made drawing on the
pattern of historical prices for the portfolio. In this case, the model is that
the economic conditions of the past and the underlying basis for stock price
movement are projected to hold in the future.

For a portfolio consisting of a single stock, the GBMmodel predicts the future
price will be lognormally distributed as in Fig. 2.2 which shows the ending price
distribution after 1 year. As worked out in Section 2.3, the probability δ that
the ending price will be less than S0 − V is given by the integral

δ =

∫ S0−V

0
f(s) ds (2.38)

where f is the lognormal density function with the appropriate parameter values.
According to the model then, with probability 1− δ the stock price will not be
less than S0 − V .
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Example 2.13. For a VaR confidence level of 99%, take δ = 0.01 and solve for
x = S0 − V . Using the parameters as shown in Fig. 2.2, from (2.20) we have

0.01 = Pr(ST < x) = Pr(log(ST ) < log(x))

= Pr

(
log(ST )− log(S0)− (μ − 1

2σ
2)T

σ
√
T

< dT

)

= Pr(Z < dT ) (2.39)

where

dT =
log(x)− log(S0)− (μ − 1

2σ
2)T

σ
√
T

. (2.40)

Hence we want to find dT = Φ−1(0.01). From the cumulative normal table, or the
rational interpolation of it, (A.9), find that dT = −2.3263 and hence, from (2.40),

log(x/S0) = −2.3263 ∗ 0.4 + 0.06 − 1

2
(.42) = −0.95052;

consequently x = 38.65. This gives V = 100 − 38.65 = 61.35. Therefore with
probability 99%, the single stock portfolio is predicted to lose at most $61.35
over the course of 1 year. (Keep in mind this is worst case (at the 99% level);
the portfolio might in fact gain in value over the year.) �

In more complex situations one can compute the VaR by Monte Carlo. We
can see how it works by applying the technique to the single stock portfolio
above. One simulates the price history a large number of times and notes the
final price. A histogram of these produces the approximate price density but this
is not what we want here.

Instead we want the cumulative price distribution. Recall that the cumulative
distribution for an argument x is the integral of the density up to x. Statistically
this means the sum of the number of prices that come in less than x (divided by
the size of the sample). By sorting the ending prices low to high and plotting the
sum of the number of sorted prices against price, the cumulative distribution is
approximated, see Fig. 2.6.12

Having the sorted prices makes it easy to solve cdf(x) = δ for x given any δ.
For example, for δ = 0.2 = 1/5, the solution x is the sorted price one-fifth the
way up the list, see Fig. 2.6. Let ST [i], i = 1, . . ., n, be the sorted ending prices.
Then the kth sorted price, ST [k], for

k = (integer part)δn

gives the simulated solution x = ST [k], and in turn V = S0 − x.

Example 2.14. For the problem in Example 2.13, a simulation gives x = 38.87
closely agreeing with the analytical value obtained there. �

The advantage of the Monte Carlo method is that it is easily implemented
against any portfolio so long as there is a joint price model accounting for each
constituent.
12 A sorting subroutine is given in Appendix E.
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Fig. 2.6. Cumulative price distribution, S0 = 100, drift= 0.06, σ = 0.4, T = 1 year.
The calculation for the 20th percentile point is shown

Example 2.15. To apply the method to the two-stock portfolio in Example 2.12
of page 55 it is just a matter of sorting the price outcomes instead of recording
hits. The sorted price for δ = 0.01 is x = 60.42; hence the value at risk at the
99% level is V =$39.58; significantly less than the $61.35 obtained above. This
is due to the negative correlation among the constituents of the portfolio. �

2.5.1 Historical Simulation Method

In the technique of historical simulation one needs historical data for every
market variable that affects the portfolio. For our simple portfolio of two equities,
this means their price histories. For more complicated portfolios it could include
interest rates, real estate values, exchange rates and so on.

The period of time in days, n, over which the VaR applies is called the time
horizon. Ideally, we would like to have historical data covering several n-day
periods. Usually there is not enough data for this purpose. Furthermore, the
more time between the data observations and the present means the less likely
it is that the economic conditions are the same. As a result, the n-day time
horizon is estimated using 1-day data and the assumption that

n-day VaR = 1-day Var ×√
n. (2.41)

This assumption is correct for an arithmetical random walk (a Wiener process,
see page 7) implying the data over disjoint time periods of equal length are
independent and have identical normal distributions.13

13 An extension formula for a portfolio consisting of a single GBM constituent can be derived
from (2.40). But the day-to-day value of a portfolio consisting of several GBM constituents
does not itself follow a GBM. Thus an accurate n-day VaR for such a portfolio requires a
direct n-day simulation as above.
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To see why, let the random variable Yn be the portfolio value after n days
starting from an initial value of Y0. The assumption is that Zn = Yn − Y0 is
distributed as N(0, σ2n). Further the 1-day VaR, V1, is defined as Pr(Y1 − Y0 <
−V1) = δ and the n-day VaR, Vn, is Pr(Yn − Y0 < −Vn) = δ. Since Zn =

√
nZ1,

δ = Pr(Zn < −Vn) = Pr(
√
nZ1 < −Vn) = Pr(Z1 < − Vn√

n
)

= Pr(Z1 < −V1),

provided Vn =
√
nV1.

To illustrate the historical simulation method for the 360-day VaR, assume
that Table 2.3 is the record of the stock prices for the two-equity portfolio over
the last 360 days.14 The historical record should include about the same number
of days as the VaR to be predicted in order that the normally distributed data
have approximately the same variation as expected over the VaR period.

Day 0 in the first column of the table is 360 days ago, day 360 of the table
gives today’s values. The relative change in the value of each market constituent
is computed between each successive day; these values are calculated in columns
4 and 7 of the table. This provides 360 “experimental” observations for the
change in value of each constituent.

Then, one-by-one, each observed percentage change is applied to today’s con-
stituent value to produce a possible future value for that constituent. This is
shown in columns three and six of Table 2.4. Each such predicted constituent
value is a possible future scenario and gives rise to a corresponding value of the
portfolio, this is shown in column eight.

Table 2.3. Historical prices for the two-stock portfolio and their relative day-to-day
changes

Day c1 Δc1 Δc1/c1 c2 Δc2 Δc2/c2

364 116.80 2.225 0.01905 80.25 −1.827 −0.02276
363 114.57 −0.828 −0.00723 82.08 3.051 0.03717
362 115.40 −2.187 −0.01895 79.03 −0.259 −0.00328
361 117.59 0.944 0.00803 79.29 −4.031 −0.05084
360 116.64 −0.459 −0.00393 83.32 1.965 0.02358
...

...
...

...
...

...
...

4 103.96 1.948 0.01873 100.18 −0.340 −0.00339
3 102.02 −0.150 −0.00147 100.52 1.621 0.01612
2 102.17 −0.481 −0.00471 98.90 −0.412 −0.00416
1 102.65 2.648 0.02579 99.31 −0.687 −0.00692
0 100.00 100.00

14 We use 360 days here for illustrative and comparison purposes. In actual practice 252 “trad-
ing day” years is more likely to be used by company management. Further, the international
Basel regulations specify the following VaR parameters: 10 day horizon, 99% confidence
level, and at least 1 year of historical data.
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Then, as above, the 360 possible portfolio values are sorted low to high and
the δ-th percentile noted. The 1-day VaR is calculated from this value and the
360-day VaR is calculated from (2.41).

Example 2.16. These particular tables were generated based upon the problem
described in Example 2.15 above. From the tables we calculate that the 1-day
VaR is $3.05 and the 360-day VaR is $58.16 by the historical method. The
actual 1-day VaR from the simulation is $2.65 which extends to a 360-day VaR
of $50.61.

Contrast these numbers with the direct 360 day simulation value of $39.58
calculated above. �

2.6 Mean-Variance Portfolio Theory

The breakthrough that enabled mean-variance theory was the mathematical
definition of risk and the attempt to deal with it through portfolio diversification.
The treatment of risk is sufficiently precise that a rich theory may be developed,
a theory that has proved to be useful in practice and remains the workhorse of
analytical portfolio management.

Table 2.4. Three hundred and sixty 1-day price change scenarios; the third smallest
portfolio value is the 1-percentile point

Scenario Base c1 % change c1 Base c2 % change c2 Portfolio

1 116.80 1.905 119.02 80.25 −2.276 78.43 98.72
2 116.80 −0.723 115.95 80.25 3.717 83.24 99.59
3 116.80 −1.895 114.58 80.25 −0.328 79.99 97.29
4 116.80 0.803 117.73 80.25 −5.084 76.17 96.95
5 116.80 −0.393 116.34 80.25 2.358 82.15 99.24
...

...
...

...
...

...
...

...
361 116.80 1.873 118.98 80.25 −0.339 79.98 99.48
362 116.80 −0.147 116.62 80.25 1.612 81.55 99.09
363 116.80 −0.471 116.25 80.25 −0.416 79.92 98.08
364 116.80 2.579 119.81 80.25 −0.692 79.70 99.75

The assumptions of the mean-variance analysis are:

• A single period model
• At a given risk, investors prefer higher returns
• At a given return, investors prefer lower risk
• Markets are frictionless, meaning

– Assets trade at any price and quantity
– There are no transaction costs
– There are no taxes

The single period model assumption means the investment is not dynamic,
it does not adjust over time. All parameters of the model are fixed in advance
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(via estimates) and are applied as constants over the investment period. (The
parameters being means, variances, and co-variances.) For example, dividends
that occur over the investment period are only taken into account if incorporated
into the parameters in advance. It also means that the investors preferences
remain fixed over the investment period.

As mentioned, risk is central to the mean-variance analysis. The risk of the
previous section is that of the actual loss of money. In his Ph.D. thesis of
1952, H. Markowitz introduced a definition of risk applicable to the potential
for losing money. It also has the virtue of being mathematically quantifiable.
For Markowitz, the risk of an investment is the variability of its returns; pre-
cisely, the standard deviation of its sequence of returns through time. (Often
variance is used interchangeably with standard deviation in this context.)

A rationale for this definition stems from the fact that the greater the variance
of an investment’s return, the greater the uncertainty about future returns.

Using the techniques of the previous section, we can show that greater price
variance aggravates the risk of actual loss as well. With parameters as in Fig. 2.2,
we calculated the probability of loss to be 52%, see page 45. If we now increase
the volatility to 60%, the probability of loss grows to 57.8%.

2.6.1 A Two Scenario Example

The following simple example shows how effective reducing variability in a port-
folio works to improve returns.

Consider a hypothetical situation in which the future value of an investment
has two possible outcomes depending on which of two scenarios occur. The first
scenario, ω1, has probability 1/4 of occurring, and in this case the return on the
investment will be 20%. In the second scenario, ω2, with probability 3/4, the
return will be 5%.15 Under these conditions what is the risk of the investment
and is it a good one?

To answer the first question we calculate the mathematically expected return.
This is the sum of the possible outcomes each weighted by its probability. We get

μA = E(return) =
1

4
20 +

3

4
5 = 8.75%.

The answer to the second question could depend on the other investment
opportunities available. Suppose the money could be deposited in a bank account
instead for a return of 8%. The bank account is assumed safe and therefore has
an expectation of 8% as well.

From the standpoint of expected payoff the risky investment is better.
But what is the risk? As remarked above, we use the standard deviation (or

variance) of the return to quantify it. For the bank account the variance of the
return is 0. In the other it is

15 Throughout this section we will measure returns in percent.
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var =
1

4
(20− 8.75)2 +

3

4
(5− 8.75)2 = 42.1875

and the standard deviation is 6.5 approximately. (The standard deviation puts
the value on the same numerical footing as the returns themselves.)

Risk Aversion

We have encountered a key element of investment science, risk aversion. Is it
better to accept 8% with certainty or take a chance on earning 20% but with
the prospect of having to settle for 5% instead, even given that the expectation
is favorable? The choice is personal and depends on one’s level of willingness to
gamble or not. The question of risk aversion will occur often in the sequel. In
particular, if two investment returns have the same expectation, an investor is
said to be risk-neutral upon being completely indifferent about the choice.

Aside from the question of risk aversion, a point to be made here is that the
standard deviation of a return has merit as a measure of risk.

Example 2.17. It may seem that one should always choose the investment that
has the biggest expected payoff. And this is a good choice if that opportunity
presents itself over and over a large number of times. We will take up this topic
in some detail in Chapter 7. But what if it presents itself just once?

Offered a one-time chance to win an amount of money equal in value to one’s
house or to lose the house altogether equally likely is not a bet most people
would take.

As previously mentioned, risk-neutral means making decisions based on the
best expected outcome and, if both have the same expectation, choose equally
likely. For the home owner behaving in a risk neutral manner, either choice is
just as good. �

Now consider another situation. Let the original investment choice, 20% re-
turn with probability 1/4 and 5% return with probability 3/4, be designated
investment A. Suppose there is a second choice, investment B, with particulars:
2% return under scenario 1 and 10% return under scenario 2. These are spelled
out in the following table.

Table 2.5 Two scenario risks and returns

ω1 ω2 μ Var σ
1/4 3/4

Bank 8 8 8 0 0
A 20 5 8.75 42.18 6.50
B 2 10 8 12 3.46

I50−50 11 7.5 8.375 2.3 1.52

Investment B has the same expectation, μB = 8, as the bank account but
its risk is larger and hence is inferior (as judged by the risk averse investor who
measures risk by variance). Also, if an investor chooses A over the bank account,
then B is likewise unattractive since B is already inferior to the bank account.
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But what about a 50–50 mix of A and B? Under scenario 1 the return on
such an investment is 11% and in scenario 2 it is 7.5%. The expectation under
50–50 can be computed as the scenario weighting of these 50–50 averaged per
scenario returns,

μ50−50 =
1

4
11 +

3

4
7.5 = 8.375.

For future reference we note here that it can also be calculated as the 50–50
weighted per individual returns

μ50−50 =
1

2
8.75 +

1

2
8 = 8.375.

Likewise the variance can be computed as the scenario weighting of the 50–50
variances

var50−50 =
1

4
(11− 8.375)2 +

3

4
(7.5− 8.375)2 = 2.2968.

We see that the 50–50 variance is unexpectedly low, only 2.3; much lower than
either A or B alone

To see why, we calculate the variance by another method. In general, for
random variables X and Y with means μX and μY respectively, and weights α
and β, we have

var(αX + βY ) = E

(
[(αX + βY )− (αμX + βμY )]

2
)

= E

(
[α(X − μX) + β(Y − μY )]

2
)

=E
(
α2(X − μX)2+2αβ(X − μX)(Y − μY )+β2(Y−y)2

)

=α2varX + 2αβE ((X − μX)(Y − μY )) + β2varY . (2.42)

The middle term (of the last line) is the covariance of X and Y we encountered
in the previous section, see equation (2.28).

For these two investments the covariance is negative,

covar =
1

4
(20 − 8.75)(2 − 8) +

3

4
(5− 8.75)(10 − 8) = −22.5

because when one is greater than its mean, the other is less. These investments
are negatively correlated. The negative covariance subtracts from the positive
variances. From (2.42) with α = β = .5, X = A, and Y = B, we have

σ2
50-50 =

(
1

2

)2

(42.18) + 2

(
1

2

)(
1

2

)
(−22.5) +

(
1

2

)2

12 = 2.30. (2.43)

The 50–50 investment is attractive because it has better expected return
than the bank account but at the same time it has nearly zero risk (in terms of
variance).

Moreover, a 50–50 split might not be the optimal split from the stand point
of variance. Let wA be the fraction of resources allocated to investment A and
hence wB = 1−wA is allocated to B. Then as a function of wA, return is given by
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μwA
= wAμA + (1− wA)μB = 8.75wA + 8(1− wA),

and variance by

σ2
wA

= w2
Aσ

2
A + 2wA(1− wA)covar + (1−wA)

2σ2
B

= 42.18w2
A + 2wA(1− wA)(−22.5) + 12(1 − wA)

2. (2.44)

In Fig. 2.7 we plot return vs risk as a function of wA. The figure encompasses
all the (return, risk) pairs calculated above (wA = 0 for B only, wA = 1 for A
only, and wA = 1/2 for I50−50). It also shows that for a certain value of wA the
variance can actually be brought to zero. We can find the minimum variance,
be it zero or not, by differentiating the risk function with respect to wA, setting
the derivative to 0 and solving.

Example 2.18. Differentiating (2.44) gives

dσ2
wA

dwA
= 2wAσ

2
A + 2covar − 4wAcovar − 2(1− wA)σ

2
B

0 = (2σ2
A − 4covar + 2σ2

B)wA + 2covar − 2σ2
B

wA =
σ2
B − covar

σ2
A − 2covar + σ2

B

. (2.45)

For σ2
A = 42.18, covar = −22.5, and σ2

B = 12, the minimum risk occurs for
wA = 0.348. As shown in the figure, the risk then is 0 for a return of 8.26%.
This is a strategy that is superior to the bank account. �

Fig. 2.7. Return vs. risk pairs (μ,σ) for two investments plotted as a function of wA in
the range 0 ≤ wA ≤ 1

Clearly investment B added an element of beneficial possibilities. Using
Fig. 2.7, an investor can pick the allocation split satisfying his or her personal
comfort of return versus risk.
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In the next section we extend these ideas to portfolios of arbitrary size. But
first we make the observation that two-investment portfolios generated as above
are degenerate in a certain way: the product of the variances equals the covari-
ance squared,

σ2
Aσ

2
B = covar2. (2.46)

Here
42.1875 ∗ 12 = 22.52.

Since covar = σAσBρ, it means that either ρ = 1 or ρ = −1. In this case it is
the latter since the covariance is negative.

Substituting (2.46) into (2.44) yields

σ2
wA

= w2
Aσ

2
A ± 2wA(1− wA)σAσB + (1− wA)

2σ2
B

=

(
wAσA ± (1− wA)σB

)2

. (2.47)

This explains why the (return, risk) plot is a straight line (broken at 0 if ρ = −1).
It is straightforward to show that (2.46) holds for any any assignment of

returns in this two investment, two scenario example.

2.6.2 Portfolio Risk

Let V be the value of a portfolio B consisting of two equities with initial prices
S1(0) and S2(0). The initial capital invested in the portfolio is V (0). Let weights
w1 and w2 be the allocation of capital to these equities respectively. The amount
allocated to the first is w1V (0) and the number of shares of this equity is

x1 =
w1V (0)

S1(0)
.

Similarly the number of shares of the second is

x2 =
w2V (0)

S2(0)
.

At any time t, the value of the portfolio depends on the prices of the equities at
that time and is given by

V (t) = x1S1(t) + x2S2(t).

Note that the weights change as the equity prices change but the number of
shares do not.

Next let K1 and K2 be the returns of the two securities at t = 1,

K1 =
S1(1) − S1(0)

S1(0)
and K2 =

S2(1)− S2(0)

S2(0)
.

The portfolio’s return is
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KB =
V (1)− V (0)

V (0)
=

x1(S1(1)− S1(0)) + x2(S2(1)− S2(0))

V (0)

=

w1V (0)
S1(0)

(S1(1) − S1(0) +
w2V (0)
S2(0)

(S2(1)− S2(0))

V (0)
= w1K1 + w2K2. (2.48)

Thus the portfolio return is linear with respect to the weights.
To calculate portfolio variance, let σ2

1 and σ2
2 be the variances of K1 and K2

respectively and let ρ12 be the correlation coefficient between them, see (2.29);
then from (2.42),

σ2
B = w2

1σ
2
1 + 2w1w2σ1σ2ρ12 + w2

2σ
2
2 . (2.49)

since σ1σ2ρ12 = covar(K1,K2).
As above, the minimum risk for the portfolio is found by minimizing this

equation under the constraint w1 + w2 = 1. Put s = w2, then w1 = 1 − s and
(2.49) becomes

σ2
B = (1− s)2σ2

1 + 2s(1− s)σ1σ2ρ12 + s2σ2
2. (2.50)

Differentiating with respect to s gives

dσ2
B

ds
= −2(1− s)σ2

1 + 2(1− 2s)σ1σ2ρ12 + 2sσ2
2 .

Setting the derivative to zero and solving for s we get

s0 =
σ2
1 − σ1σ2ρ12

σ2
1 − 2σ1σ2ρ12 + σ2

2

(2.51)

provided the denominator is not zero.
In fact, the minimum value the denominator can have is when ρ12 = 1, then

σ2
1 − 2σ1σ2ρ12 + σ2

2 ≥ σ2
1 − 2σ1σ2 + σ2

2 = (σ1 − σ2)
2.

Hence the denominator is either positive or zero. The latter occurring when
ρ12 = 1 and σ2 = σ1. In this case, from (2.49), we have σB = σ1. This case is
not essentially different from that in which the two stocks are the same.

The zero derivative value of s given by (2.51) can be bigger than 1 or less
than 0. To see this, divide the equation, numerator and denominator by σ1σ2
and let r = σ1/σ2, we get

s0 =
r − ρ12

(r + 1
r )− 2ρ12

=
r − ρ12

r − ρ12 + (1r − ρ12)
. (2.52)

Here we see that the denominator can be made arbitrarily small by choosing
both r and ρ12 near 1. But the numerator is positive or negative depending on
whether r > ρ12 or r < ρ12.
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Example 2.19. Let σ1 = 1.04, σ2 = 1, and ρ12 = 0.98. Then r = 1.04 and,
from (2.52),

s0 =
1.04 − 0.98

1.04 − 0.98 + (0.9615 − 0.98)
= 1.44.

�

Recall that s is the weight w2. Solutions for which s0 is not between 0 and 1
correspond to going short, either in stock 2 if s0 < 0 or stock 1 if s0 > 1.

2.6.3 Efficient Frontier

The considerations of the previous section are a prototype of the general situa-
tion in which a portfolio consists of several stocks and the scenarios are the re-
turns resulting from the infinity of possible price histories over the time horizon.
While actual expected returns and variances can only be estimated, neverthe-
less the following theory, with its heavy emphasis on diversification, forms the
bedrock of guiding principles for managing a portfolio.

Assume then a portfolio B of several equities, i = 1, . . . , n, whose expected
returns μi = E(Ki) and return variances σ2

i and covariances covarij are known.
Each point (σi, μi) may be plotted in the risk-return plane introduced in the
previous section.16

For a given set of weights, wi, i = 1, . . . , n, a portfolio is constructed with wi

fraction of the total investment allocated to equity i. The portfolio return KB

is given by

KB = w1K1 + . . .+ wnKn =
∑

i

wiKi.

It follows that the expected return is

μB =
∑

i

wiμi. (2.53)

And the risk is given by

σ2
B = E

(
(
∑

i

wi(Ki − μi))
2

)
= E

(∑

i

∑

j

wiwj(Ki − μi)(Kj − μj)

)

=
∑

i

w2
iE((Ki − μi)

2) +
∑

i

∑

j �=i

wiwjE((Ki − μi)(Kj − μj))

=
∑

i

w2
i σ

2
i + 2

∑

i

∑

j>i

wiwjcovarij. (2.54)

By letting C be the covariance matrix,

16 In this section and the next we are, more exactly, plotting the rate of return versus risk.
Since the time period is fixed, the two only differ by a constant factor. In the next section
we will add the risk-free rate to the diagram.
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C =

⎡

⎢⎢
⎣

σ2
1 covar12 . . . covar1n

covar21 σ2
2 . . . covar2n

...
...

. . .
...

covarn1 covarn2 . . . σ2
n

⎤

⎥⎥
⎦

we can write
σ2
B = w · Cw (2.55)

where w is the vector of weights and the dot means the dot product of the two
vectors.17

When there are only two investments, the subset of the risk-return plane
spanned by (σB , μB) over the set of all possible weights is a curve as in Fig. 2.7.
(A parabola except in degenerate cases.) But here the subset spanned is an entire
region. In Fig. 2.8 we show the risk-return region spanned by three investments.
The three two-investment curves are visible as parabolas within or marking the
edge of the region. It can be seen that the optimal mix, for instance point MP, is
a mix of all three investments.

The risk-return region in this figure was obtained by a very simple Monte
Carlo calculation as follows:

Algorithm 10. Calculating Risk-Return Points

inputs: N, μ1, μ2, μ3, σ2
1, σ2

2, σ2
3

covar12, covar13, covar23
for i = 1, . . ., N
sum=0

for j = 1, 2, 3
wj ∼ U(0,1) �wj is a uniform [0,1) sample

sum = sum + wj

endfor

for j = 1, 2, 3
wj = wj/sum �the weights are now normalized

endfor

• compute μB by (2.53)

• compute σB using (2.54)

• plot

endfor

The risk-return calculation induces a partial order on the set of investment
mixtures. An investment that has the same risk as another but greater return
dominates the latter. That is, up is better.

Likewise, an investment that has the same return as another but less risk
also dominates the other. So leftwards is better. More generally, if μA ≥ μB and
σA ≤ σB , then investment A dominates investment B. Therefore the boundary
of the risk-return region from the vertex of the abc-mno parabola running up to
xyz consists of undominated portfolios; all others are dominated by these.

17 x · y = ( x1 x2 . . . xn ) · ( y1 y2 . . . yn ) =
∑n

1 xiyi = xTy.
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Fig. 2.8. Return vs. risk for three investments: μabc = 0.08, σabc = 0.2, μmno = 0.10,
σmno = 0.25, μxyz = 0.14, σxyz = 0.4, ρabc−mno = −0.6, ρabc−xyz = 0.5, ρmno−xyz =
−0.1. Each dot is the (σ, μ) point for a mix of the three investments. The parabolas are
the points for which one of the weights is zero

A portfolio is efficient if no other portfolio dominates it. A set of efficient
portfolios among all attainable portfolios is called the efficient frontier. The
efficient frontier of a set of individual investments is the upper left boundary
of the risk-return region spanned by the set of all possible weights of those
investments.

2.7 Capital Asset Pricing Model

Previously we assumed all investors are rational meaning they are risk averse and
mean-variance optimizers. We now assume that all have the same information
and therefore obtain the same estimates of returns, variances, and covariances.
It then follows that all investors will have the same mix of stocks in the same
proportion. This common portfolio is called the market portfolio. It is indicated
as the point MP in Fig. 2.8.

The assumptions above are called the equilibrium assumptions. One of the
implications of equilibrium is that the market portfolio consists of all the stocks
in the market and in proportion to each stock’s capitalization, that is, according
to the total value of its shares relative to the total value of the entire market.
This is because either all investors will own it or none will. If none own it, its
price will be zero (or near zero). Then it will be undervalued, so now it is an
attractive buy.

The next step in the CAPM development is to add the risk-free asset to
the mix.
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2.7.1 The Market Portfolio

Now allow portfolios to include a risk-free asset earning the risk-free return rf .
This asset appears in the risk-return plane at the point RF with coordinates (0, rf )
in Fig. 2.8. Consider the line through (0, rf ) and tangent to the efficient frontier
of the risk-return region. This is called the capital market line. Let its point of
tangency with the frontier be the point MP with coordinates (σM , μM ). The mix
of securities that gives this point on the efficient frontier is called the market
portfolio. As mentioned, the market portfolio consists of all stocks in the market
and in proportion to each stock’s capitalization. In actual practice, various stock
indexes such as the S&P-500 and the Russell 2000 try to approximate the market
portfolio.

The slope of the line between RF and MP is

μM − rf
σM

(2.56)

and its intercept on the y-axis is rf ; therefore the capital market line has the
equation

μ = rf +
μM − rf

σM
σ. (2.57)

Example 2.20. Normally the capital market line must be determined numerically.
But in the case of two investments simple calculus suffices.

Let A and B have mean returns μA and μB respectively, variances σ2
A and

σ2
B and covariance covar. Let the risk-free rate be rf and the market point be

(σM , μM ). The slope of the capital market line is given by (2.56). The plan is to
equate this to the slope of the tangent to the risk-return curve. Let s play the
role of wB . The parameterization of the risk-return curve is, from (2.53)

μ = (1− s)μA + sμB = μA + (μB − μA)s, (2.58)

hence
dμ

ds
= μB − μA.

And from (2.54)

σ2 = (1− s)2σ2
A + 2s(1− s)covar + s2σ2

B
= θs2 − 2λs + σ2

A (2.59)

where θ = σ2
A − 2covar + σ2

B and λ = σ2
A − covar. Differentiate both sides and

substitute σ = σM at the point of tangency

2σ
dσ

ds
=2θs− 2λ

dσ

ds
=σ−1

M (θs− λ).

Therefore the slope of the tangent line is
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dμ

dσ
=

dμ/ds

dσ/ds
=

(μB − μA)σM
θs− λ

.

Equating slopes gives
μM − rf

σM
=

(μB − μA)σM
θs− λ

. (2.60)

Substituting for μM , (2.58), and σM , (2.59), gives

(θs− λ) ((μA − rf ) + (μB − μA)s) = (μB − μA)
(
σ2
A + (θs− λ)s − λs

)

The quadratic terms in s cancel; the resulting linear equation is solved for s to
give

s =
(μB − μA)σ

2
A + (μA − rf )(σ

2
A − covar)

(μA − rf )(σ
2
A − 2covar + σ2

B) + (μB − μA)(σ2
A − covar)

(2.61)

for the location of the market point.
As a numerical example, let the two-investment pair above be the equities

mno and xyz in Fig. 2.8. If the portfolio consisted of these two only and the risk-
free rate were 8%, then, from the parameters given in the figure, the covariance is

(0.25)(0.4)(−0.1) = 0.01

and from (2.61)

s =
(0.14 − 0.1)0.252 + (0.1 − 0.08)(0.252 + 0.01)

(0.1 − 0.08)(0.252 + 0.02 + 0.42) + (0.14 − 0.1)(0.252 + 0.01)

= 0.51.

Therefore μM = 0.49(0.1) + 0.51(0.14) = 0.12 and

σM =
√

0.4920.252 + 0.02(0.49)(0.51) + 0.5120.42 = 0.23.

�

Since the capital market line is above and to the left of the risk-return re-
gion spanned by the risky securities, it becomes the new efficient frontier. It
follows that rational investors will select a position along this line according to
their personal level of risk tolerance. Hence all rational investors will have the
same mix of risky securities, namely the market portfolio, differing only in their
proportion as allocated between the market portfolio and a risk-free investment.

But investors may also go short. By doing so, their position on the capital
market line need not be constrained between RF and MP. By going short on the
risk-free asset and transferring the capital to the market portfolio, an investor’s
market weight will be greater than 1. The return for such a mix will exceed μM

but at the same time, the risk will exceed σM .
The slope of the capital market line (2.56) is a very important investment

parameter. It gives the rate at which one’s level of return rises for taking on
increments in the level of risk. It is called the price of risk or the risk premium.
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2.7.2 Beta Factor of a Portfolio

A major result of CAPM, and perhaps a surprising one, is that the expected
returns of any particular stock bears a simple relationship to that of the market
portfolio.

Theorem (Capital Assets Pricing Theorem) The expected rate of return of a
portfolio, μB, (or an individual stock considered as a portfolio of one item) is
given by

μB = rf + β(μM − rf ) (2.62)

where μM is the market portfolio rate of return and β is given by

β =
covar(B,M)

σ2
M

. (2.63)

Here covar(B,M) is the covariance of the portfolios sequence of periodic returns
versus those of the market portfolio.

Equation (2.62) is known as the security market line. We will have more say
about it in the next section. Beta as given by (2.63) is the beta factor of the
portfolio or of an individual stock; it is unique to each portfolio.

The difference μB − rf in (2.62) is the excess rate of return of the portfolio
above the risk-free rate. The theorem says that it is proportional to the excess
rate of return of the market portfolio itself with proportionality factor equal to
β. Moreover, since β is directly proportional to its covariance with the market
portfolio, the theorem says the excess rate of return of a portfolio is proportional
to its covariance with the market.

This last statement may sound surprising with respect to portfolios that are
uncorrelated to the market and thus whose covariance is zero. But for a large
portfolio of equities each uncorrelated with the market, and each other, their
combined variance will be small and therefore their combined rate of return will
be the risk-free rate.

The proof of (2.62) follows along the lines of the two investment example
above, Example 2.20. Let asset A of that example be the market portfolio, M .
From (2.58) and (2.59), the risk-return curve for pair M and B is

μ = sμB + (1− s)μM

σ2 = (1− s)2σ2
M + 2s(1− s)covar + s2σ2

B

= θs2 − 2λs+ σ2
M .

Note that for s = 0 the two investments degenerate into just the market portfolio.
Further, it must be that the risk-return curve for M,B is tangent to the efficient
frontier at that point since it cannot cross the efficient frontier. Therefore its
slope at s = 0 equals (μM − rf )/σM . Hence we have, using (2.60),

μM − rf
σM

=
dμ

dσ
=

(μB − μM )σM
θs− λ

∣
∣∣
∣
s=0

=
(μB − μM )σM
covar − σ2

M

.
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Solving for μB we get

μB = μM +
(μM − rf )(covar − σ2

M )

σ2
M

= μM +
covar

σ2
M

(μM − rf )− (μM − rf )

= rf + β(μM − rf ),

where β is as in (2.63).

Beta and the Line of Best Fit

In Fig. 2.9 we plot the monthly returns of two securities versus the S&P-500
over a 1 year period. Let x1, x2, . . ., xn be the sequence of S&P-500 returns and
y1, y2, . . ., yn be those for the security. Each graph plots the pairs (xi, yi) for
i = 1, 2, . . . , n; here n = 12.

We wish to calculate the straight line, y = mx+ b, that best fits these data.
This line is shown superimposed on each graph.

By the method of least-squares, the well-known equations for m and b are
derived in appendix Section A.7. From (A.13) we find that

m =
n
∑

xiyi −
∑

xi
∑

yi

n
∑

x2i − (
∑

xi)
2

=
1
n

∑
xiyi −

(
1
n

∑
xi

) (
1
n

∑
yi
)

1
n

∑
x2i −

(
1
n

∑
xi

)2

=
covar(x, y)

var(x)
. (2.64)

Thus the slope of the best fit line is β

Example 2.21. The data points for MSP in Fig. 2.9 are the following

(−1.8,−1.8), (−.9,−.25), (−.7,−.45), (.09, .44), (.08, .5), (.2, .45),

(.3, .2), (.6, .35), (.68, .45), (.65, .7), (.9, .6), (1.35, 1.52).

First calculate the means:

x̄ =
1

12
(−1.8 +−0.9 +−0.7 + . . .+ 0.9 + 1.35) = 0.12

ȳ =
1

12
(−1.8 +−0.25 +−0.45 + . . .+ 0.6 + 1.52) = 0.23.

Then the variance and covariance

var(x) =
1

12

(−1.82 +−0.92 + . . .+ 1.352
)− 0.122 = 0.6989

covar(x, y) =
1

12

(
(−1.8)(−1.8) + (−.9)(−.25)+

. . .+ (1.35)(1.52)
)
− (0.12)(0.23) = 0.6038.

Finally β = 0.6038/0.6989 = 0.86. �
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A positively correlated security

a b

A negatively correlated security

Fig. 2.9. A plot of monthly returns ΔS/S over 1 year for two securities versus those of
the S&P-500 – a proxy for the entire market; MSP in (a) and GG in (b). The straight
lines are the best least squares fit and the slope is beta in each case. Using the equations
derived in the text, MSP has a beta of 0.86 and GG a beta of −0.10

2.7.3 The Security Market Line

Let y1, y2, . . ., yn be a sequence of returns for an asset B and x1, x2, . . ., xn those
for the market portfolio. For each i let εi be the difference between the empirical
return yi and that predicted by the security market line, equation (2.62), so we
can write

yi = rf + β(xi − rf ) + εi.

By the CAPM theorem, the expectation E(εi) = 0. So is the covariance,

covar(εi, xi) = covar(yi − rf − βxi + βrf , xi)

= covar(yi, xi)− βcovar(xi, xi)

= covar(yi, xi)− covar(yi, xi)

var(xi)
var(xi) = 0.

It follows that the variance of the yi is given by

var(yi) = var(rf + βxi − βrf + εi)

= β2var(xi) + var(εi).

We obtain the important relationship

σ2
B = β2σ2

M + var(εi). (2.65)

Equation (2.65) shows that the risk in a portfolio has two sources. The first,
β2σ2

M , is unavoidable and is called the systemic risk. This risk is that of the
market as a whole. This is the risk alluded to in the first chapter due to macro
economic shocks arising from, for example, government policy, international eco-
nomic forces, acts of nature. It cannot be diversified away.

The second source of risk is that specific to the portfolio itself. It is called
specific risk or diversifiable risk. By adding more and more securities to the
portfolio, this risk can be reduced to zero in the limit as the portfolio tends to
the market portfolio.
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Problems: Chapter 2

1. What should be the price of a 2 year $100 zero coupon bond in order that the
investment earns 6% per year? (No compounding.)

2. An annuity starts with $501,692 and pays out $10,000 per month. If the remaining
principle earns 4% annual interest compounded continuously, for how many months
will the annuity pay?
(Answer 55.)

3. Algorithm 6 assumes that the equity is purchased at the beginning of the dividend
period. If the stock is held for an exact multiple of the dividend period, then the
annualized return should be exactly the dividend yield. But what if the stock is
bought or sold at mid-term intervals? For example shortly before ex-dividend day?
Explore the annual return under various ownership periods with respect to the
ex-dividend date.

4. Write a program to display a piecewise linear approximation of a price path as
follows. Let S0, S1, S2, . . ., S365 be a 1 year sequence of prices. Select a subset
of these, for example monthly S0, S30, . . ., S364, and generate the piecewise linear
graph through these points, (0, S0), (30, S30), . . ., (364, S364). Such an approxima-
tion could serve as an alternative to the moving average of the prices.

5. Use Algorithm 8 to construct several figures such as Fig. 2.4 and observe the extent
to which correlated prices trend together (recall that it is the increments that
are correlated, not the prices themselves). For each run, calculate the correlation
between the prices.

6. Investigate the probability of losing money for the investment of Example 2.8
(pp. 44) if the stock is correlated with the market and, variously, ρ = 0.8, ρ = 0,
ρ = −0.5. Do this for various market scenarios: a rising market, a falling market, a
sideways market.

7. Run Algorithm 9 (pp. 54) with various correlations between the two stocks and the
market. What is the risk of loss when: (a) ρ1 = 1, ρ2 = 1?, (b) ρ1 = 1, ρ2 = −1?,
(c) ρ1 = 0, ρ2 = 0?, (d) ρ1 = −1, ρ2 = −1?, (e) ρ1 = 0.6, ρ2 = −0.6?

8. Calculate the VaR at the 99% level over, variously, 1 month, 3 months, and
6 months, for a stock whose initial price is $45, whose drift is 2%, and whose
volatility is 23%.

9. Find the VaR at the 99% level over 2 months by simulation for a portfolio of two
stocks with parameters: for the first: S0 = 20, μ =3%, volatility= 26%, for the
second: S0 = 40, μ =1%, volatility= 33%. Assume that the stocks are correlated,
variously, ρ = 0.9, ρ = 0.2, ρ = −0.8.

10. Find the VaR for the stocks in Problem 9 by the historical method. For their price
histories, use the GBM model to generate 2 months worth of prices for the equities.
Only treat the ρ = 0.2 case.
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11. Investigate how the probability of loss in Example 2.8 (pp. 44) varies as a function
of volatility. Make a graph of loss vs. volatility.

12. An investor has a choice between two ventures A and B. As the investor sees it,
the future holds three possibilities: (bull) A returns 12%, B returns 3%, (bear) A
return −4%, B returns 4%, or (static) A returns 6%, B returns 0%. Assume the
probabilities are: bull 0.2, bear 0.3, static 0.5. What are the expected returns and
risks (standard deviations) for each venture? Same question for a 50–50 allocation
of the investor’s resources. What is the allocation giving least risk?
(Answer 0.1788 : 0.8212.)

13. If the risk-free rate is 3% in Problem 12, what is the market point?
(Answer (μ = 1.9411, σ = 1.914).)

14. Obtain recent price data for some security from among the list: AAPL, MON, KO,
F, MCD, FDX. Along with data for the S&P-500, use it to calculate daily returns
over the last month and to calculate beta for the stock.

15. Use the results of Problem 14 to calculate the risk premium for that stock.
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Forward and Option Contracts and Their Pricing

The ultimate tool for coping with risk is what we call today an option. The first
to realize this was Bachelier. In his thesis of 1900 he introduced options for just
this purpose. To see how it works, suppose a bank holds a few thousand shares
in a security trading for $50 per share at the present time. The bank’s plan is to
sell the stock in 3 months but it must receive at least $45 per share at that time.
To deal with its risk, the bank enters into a contract with a second party that
agrees to buy its shares at $45 in 3 months no matter what the market price is
then. As a further stipulation of the contract, the bank is not obligated to sell
at $45; if the market price in 3 months happens to exceed this, the bank is free
to sell at the market price.

The bank has entered into a put option contract (or just a put) with the
shares of stock serving as the basis or underlying of the contract.

By means of it the bank has completely laid off its risk. Of course the party
underwriting the contract charges for its service. The main topic of this chapter
is deciding what the fair price of such a contract should be. This price is the
exact quantification of the risk. The first to solve the problem were Fischer Black
and Myron Scholes in their paper of 1973 and we will review their solution. First
we look more closely at option contracts.

In another example, suppose a cookie manufacturer will have to buy a few
thousand bushels of wheat after the fall harvest 6 months from now. Currently
the price per bushel for fall wheat is $8.41 but many factors could intervene and
escalate the price. The company would like to guarantee it pay no more than
$9.50. It can do so by entering into a call option contract (or just a call). A
second party agrees to sell wheat at $9.50 no matter the market price. Again,
the option does not require the cookie company to buy at 9.50 if it can do better
in the market. And, as above, the underwriter of the contract charges for its
service.

In this example the underlying is a commodity. Option contracts have grown
in popularity over the years and are now traded on a wide variety of underlyings.
In a novel example, one of these is the weather. Certainly the weather is a major
risk factor in many enterprises. However in this text we will confine ourselves to
options on stocks.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 3,
© Springer Science+Business Media New York 2013
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The call and put options are basic. From combinations of these many others
of widely varying characteristics can be constructed. We will learn about the
possibilities a little later.

3.1 Option Payoff Diagrams

A put option is a contract between two parties, the holder or buyer of the contract
and the writer or seller. The buyer has the right, but not the obligation, to sell an
asset, known as the underlying, for a specified price, called the strike price, on a
specified date, the expiration date or expiry. The seller guarantees the contract,
that is, if requested, buys the asset at the strike price on the expiration date.

Specifically this is a European put. An American put differs in that the
holder has the right to exercise the option at any time up to and including the
expiration date. For the time being, we will work exclusively with European
options

In most cases the buyer and seller never meet. Instead the transaction is
handled by a third party, an exchange. The exchange sets the rules for the
contract, offers the products, that is the specific stocks on which it trades puts
and calls and their strike prices, maintains the minute by minute trading prices,
records the sale, and enforces the contract upon expiration. Option contracts
bought and sold through an exchange in this way are standardized to pertain to
100 shares of the underlying and to expire on the third Friday of the expiration
month. (Recent changes now offer more frequent expiration dates.)

In Fig. 3.1, as the solid graph, we show a payoff chart for the value of a
put option on its expiration date. The strike price in this chart is $100. At
expiration, if the stock price exceeds $100, for example $102, then the holder
will not exercise the option. By exercising the holder receives $100 per share,
but by selling in the market, the holder receives $102 per share. Therefore the
option has no value if the stock price exceeds the strike price at expiration; it
is out-of-the-money (OTM) and expires worthless. This is also true if the stock
price is at-the-money (ATM), that is, exactly $100 at expiration. Thus the solid
line segment extends to the right along the x-axis from 100 in the figure.

But the situation is reversed if the stock price is less than the strike price.
For example, if the stock price is $94 per share at expiration, then the holder
can buy stock at that price, exercise the put and sell it for $100 per share. So
the option has an intrinsic value of $6 per share here. In general, the value of
the option increases by $1 for each $1 the stock price is below the strike price.
When an option has intrinsic value this way it is said to be in-the-money (ITM).
For a put option this occurs when the stock price is below the strike price. A
mathematical expression for the payoff value of a put option is

V = max(K − S, 0) = (K − S)+ (3.1)

where K is the strike price and S is the stock price at expiration. The third
member of this equation is an alternate notation for the second. This is what is
plotted as the solid line in the figure.



3.1 Option Payoff Diagrams 79

Fig. 3.1. Expiration payoff and gain for a put option with strike price $100

When an option expires in-the-money the holder rarely buys stock and puts
it to the writer via the contract. This would entail commissions and unfavorable
bid-ask price spreads. Instead the holder just sells the option as it has intrinsic
value. On expiration day these contracts have little risk and are bought by, for
example, market makers who can transact them at little cost.

The dashed line in Fig. 3.1 is the profit curve. It takes into account the fact
that the buyer had to pay a cost for the contract; as shown in the figure this is
$4. Hence the buyer breaks even when the stock price drops to $96; this is where
the profit curve line crosses the x-axis.

3.1.1 Call Options

A call option is a contract between two parties, the holder or buyer of the contract
and the writer or seller. The buyer has the right, but not the obligation, to buy an
asset, the underlying, for a specified price, called the strike price, on a specified
date, the expiration date. The seller guarantees the contract; if requested, the
seller must sell the asset at the strike price on the expiration date. This is a
European call. An American call differs in that the holder has the right to
exercise the option at any time up to and including the expiration date.

In Fig. 3.2 we show a payoff chart, as the solid line segments, for the value
of a call option on its expiration date. The strike price in this chart is $100. At
expiration, if the stock price is less than $100, for example $96, then the holder
will not exercise the option. The holder will prefer to buy stock at the market
price of $96 than to call it in at the strike price of $100. Therefore the option
has no value in this case; it is out-of-the-money and expires worthless. This is
also true if the stock price is exactly $100 at expiration.

But if the stock price at expiration exceeds $100 then the call is in-the-money.
It is in-the-money by $1 for every $1 over the strike price. This is clearly shown
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in the figure as a line with slope 1 starting at the strike price. A mathematical
expression for the payoff value of a call option is

V = max(S −K, 0) = (S −K)+ (3.2)

where K is the strike price and S is the stock price at expiration. Again the
third member of the equation is an alternate notation for the second.

The dashed line in Fig. 3.2 is the profit curve and takes into account the fact
that the buyer had to pay a cost for the contract; as shown in the figure, this is
$4. Hence the buyer breaks even when the stock price reaches $104 and this is
where the profit curve line crosses the x-axis.

Fig. 3.2. Expiration payoff and gain for a call option with strike price $100

3.2 Basic Assumptions

To see how to price options we must first review the fundamental assumptions
upon which financial pricing mathematics rests. The most far-reaching of these
is the no-arbitrage assumption.

Assumptions of Financial Mathematics

1. Random prices: future stock prices are random with no value having proba-
bility 1.

2. Positivity: all stock prices are strictly positive (a technical assumption to
avoid division by zero in some derivations). This assumption does not pre-
clude bankruptcy; such results can be obtained as limiting values.

3. Divisibility: an investor may hold fractional shares. This is not as restrictive
as it may seem; mainly it allows arguments to assume a unit value for one or
more items in a portfolio such as an option on one stock. In reality, options
are usually on multiples of 100 stocks.
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4. Liquidity: an asset can be bought or sold at any time in any amount; there
is always a market.

5. Short selling: any asset may be sold, or shorted at any time, even if the
investor does not have the asset to sell. Such a sale creates a short position.
The shorted asset will be delivered at some future time. Buying an asset
creates a long position.

6. No-arbitrage: a portfolio having zero value at some time cannot later have
positive value with positive probability and negative value with zero proba-
bility. In other words it is not possible to make money with zero cost and no
risk.

These assumptions are not perfectly implemented in practice, for example
divisibility and short selling. But the unit price of most assets is small compared
to the holdings of large investors such as institutions, and even many individuals,
consistent with the divisibility assumption. With regard to the latter, short
selling is widely available but may be restricted in some cases, for example some
equities are not available for short sale or amounts may be limited. But by in
large, the assumptions are approximately fulfilled in practice.

An immediate consequence of the no-arbitrage assumption is the following
Monotonicity Theorem.

Theorem (Monotonicity) If portfolios A and B are such that at every possible
state of the market at time T , portfolio A is worth at least as much as portfolio
B, then at any prior time t < T portfolio A is worth at least as much as portfolio
B. Moreover, if portfolio A is worth more than B in some states of the world at
time T , then at any prior time t < T , portfolio A is worth more than B.

Proof. For the first statement, suppose at some time t < T portfolio B is worth
more than A by the amount V . Let portfolio C be long portfolio A, long an
amount of cash equal to V , and short portfolio B. By the hypothesis C= 0 at
time t but has strictly positive value at time T . This is in violation of the no-
arbitrage assumption, so there can be no time when B is worth more than A. A
simple modification of the above argument proves the second statement as well.

3.2.1 Replication Principle

Another immediate consequence of the basic assumptions is the replication
principle.

A portfolio is self-financing if, after it is initially established, no money is
injected or extracted from the portfolio. Therefore all changes to the portfolio
are financed by selling assets within the portfolio.

Consider two portfolios A and B over a time horizon t = 0 to t = T and
suppose the value of the two are exactly the same at time T over all eventualities
at that time. Suppose also that both portfolios are self-financing and that the
initial price or set-up cost of B is known and equal to V . Then the price of A
must also equal V . Portfolio B is said to replicate portfolio A.

If this were not so, then there is an arbitrage opportunity. The more expensive
could be sold and, with the proceeds, the cheaper bought with money left over.
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At time T , the payoff of the portfolio bought is used to settle the payoff of the
one sold. By the no-arbitrage principle, it follows that the initial price of both
must be the same.

3.2.2 Put-Call Parity

Let Ct be the value of a European call option at time t with strike price K and
expiry T . Thus the remaining time to expiration is T − t. Let Pt be the value of
a European put with the same strike and expiry and over the same underlying
and St be the price of the underlying at time t. Let rf be the risk-free investment
rate. Then put-call parity is the relationship

St + Pt = Ct +Ke−rf (T−t). (3.3)

This follows from the Monotonicity Theorem. At time t let portfolio A consist
of one share of stock and one put option and B consist of one call option and
a risk-free investment in the amount of Ke−rf (T−t). At time T A is worth ST if
ST ≥ K and worth K otherwise. But at time T this is what B is worth as well.
So their values must be equal at all times t < T .

3.3 Forward Contracts

A forward contract is an agreement between two parties to buy/sell an asset
on a fixed date in the future for a price specified in advance. (The date can be
approximate in the case of farm products.) The party obliged to buy is said to
be long the contract and the party obliged to sell is short. Note that no money
is exchanged until the delivery date. The question is, what should be the price
of the contract?

The cookie maker of the first section might have made a forward contract
instead of buying a call. Through past experience, with a current price of $8.41
for wheat, the fall price might be expected to come in at $9.00. Going long a
forward contract at this price, the cookie maker knows exactly what to expect in
the fall and can make plans accordingly, the uncertainty is completely removed.

3.3.1 Pricing an Investment Forward Contract

Assets underlying forward contracts must be divided into investment assets or
consumption assets. A consumption asset is one used primarily for consump-
tion, for example commodities, wheat included. Investment assets are those held
primarily for investment purposes. Generally speaking investment assets entail
little or no storage or upkeep costs; stocks and bonds are examples. They are
the easiest to price requiring only knowledge of the current market price and
possibly other market variables such as the risk-free rate. In the following we
confine ourselves to this kind of asset.
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To price a forward contract, let t = 0 be the time the contract is signed and
t = T the delivery date. Let St be the price of the asset, a stock to be definite,
at any time 0 ≤ t ≤ T and let FT be the contracted forward price. Finally let rf
be the risk-free interest rate.

By the no-arbitrage principle we show that the forward price of a non-
dividend paying stock must be

FT = S0e
rf T . (3.4)

For suppose the price were higher. To invoke arbitrage, buy the under priced
asset and sell the overpriced one. At time 0

• Borrow the amount S0 at the risk-free rate;
• Buy one share for S0;
• Short the forward position, that is agree to sell one share for FT at time T .

At time T clear the portfolio,

• Sell the stock for FT ;
• Pay S0e

rf T to retire the loan.

This will bring a risk-free profit, at zero cost, of

FT − S0e
rf T > 0.

By no-arbitrage then FT cannot be greater than S0e
rf T .

On the other hand, if the forward price is less than S0e
rf T , once again buy

the under priced and sell the overpriced. At time 0

• Sell short one share of stock for S0, that is, sell one share of stock now with
the stock to be delivered in the future;

• Invest the proceeds at the risk-free rate;
• Buy the forward contract, that is agree to buy one share of stock for FT at

time T .

At time T settle the position

• Cash out the risk-free investment for S0e
rf T ;

• Exercise the forward contract and buy one share for FT ;
• Deliver the one share of shorted stock.

This will bring a risk-free profit, at zero cost, of

S0e
rf T − FT > 0.

Again, by no-arbitrage FT cannot be less than S0e
rf T . So the price must be as

given by (3.4).
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3.3.2 Forward Contracts on a Stock Awarding Dividends

Assume that during the life of a forward contract the stock earns a dividend
payment of D coming at the time tD from the beginning of the contract. Then
the correct price of the forward contract is

FT = (S0 −De−rf tD)erf T . (3.5)

Observe that S0 −De−rf tD is the present value of the stock at time 0. It plays
the role of S0 in the argument above.

To argue arbitrage here, first suppose FT is bigger than the right-hand side
of (3.5). Hence short the forward contract and buy the stock. To accomplish the
latter, borrow S0.

At time tD we receive a dividend payment of D; use this to partially pay back
the loan. The loan value at this time has grown to S0e

rf tD . And, after paying D
on it, the new amount continuing forward is S0e

rf tD −D.
At time T hand over the stock to satisfy the contract and receive FT . Finally

pay the balance of the loan which is now

(S0e
rf tD −D)erf (T−tD) = (S0 −De−rf tD)erf T .

Since FT is bigger than this, we have made a risk-free profit.
We leave it to the reader to argue the case if FT is less than the right-hand

side of (3.5).
The interpretation of (3.5) is that the initial value of the stock is reduced

by the discounted dividends which occur during the life of the option. This
interpretation holds for any number of dividend payments.

Example 3.1. What should be the price of an 8 month forward contract for
100 shares of a stock whose price today is $43.44? The company has already
announced it will give a $0.77 per share dividend 3 and 6 months from now. The
risk-free rate is 3%.
Directly substituting into (3.5) we have

FT =

(
43.44 − 0.77e−0.03∗3/12 − 0.77e−0.03∗6/12

)
e0.03∗(8/12)

= (43.44 − 1.52)1.02 = 42.76

per share; so $4,276 for 100 shares. �

Continuous Dividend Payments

Normally dividends are paid periodically with the return rate specified annu-
ally for comparison purposes. For example a company may have the reputation
of paying dividends quarterly at the annual rate, or yield, of 8%. Thus the
company’s dividend in a given quarter is S(q/4) where S is the stock price on
ex-dividend day and q = 8%. Despite this, dividends are often assumed to be
continuous as a simplification just as the risk-free rate is treated this way.
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In Section 2.3 we saw that dividends paid out on an equity have the effect
of reducing its price by the same amount. But if the dividends are reinvested
in additional stock, the effects are self canceling. That is the reduction in the
stock’s value is exactly offset by the increase in value for having more shares.
Here is the calculation. Let S0 be the original stock price per share and let D be
the dividend paid per share. The new stock price is S0 −D, so the new number
of shares is

1 +
D

S0 −D
=

S0

S0 −D
. (3.6)

The new value is the product of the new price per share times the new number
of shares

(S0 −D)
S0

S0 −D
= S0.

Now assume dividends are paid continuously at the annual rate q. Divide the
interval [0, t] into n equal subdivisions Δt = t/n where n is large. Over such
an interval, the dividend paid is approximately D = SqΔt where S is the stock
price at that time. From (3.6), if this is reinvested, the new number of shares is

1

1− qΔt
≈ 1

e−qΔt
= eqΔt.

Notice that this expression is independent of the stock price; even though the
stock price may vary over the increments, the amount of the dividend paid is
exactly the right amount to buy the additional stock as stated. After time t, n
such re-investments have occurred and the number shares at that time is

n∏

i=1

eqΔt = eqnΔt = eqt. (3.7)

Since this expression is independent of n, it is also its own limit as n → ∞. This
shows how 1 share of stock grows under continuous dividend reinvestment.

With these preliminaries we are prepared to show that the fair price of a
forward contract on a stock giving continuous dividends with yield q is

FT = S0e
−qT erf T . (3.8)

Again we use a no-arbitrage argument.
If FT > S0e

(rf −q)T , go short the forward contract and buy the stock as follows.
Borrow the amount S0e

−qT at the risk-free rate and buy e−qT shares. As we’ve
just seen, by continuously reinvesting the dividends on the stock, the number of
shares will grow to 1 at time T . Settle the forward contract collecting FT . Finally
pay the original loan with interest for S0e

−qT erf T . The difference FT −S0e
(rf −q)T

is risk-free profit. Hence FT cannot be bigger than the right-hand side in (3.8).
Now suppose it to be smaller. In this case, go long the contract and sell short

e−qT shares of the stock investing the proceeds S0e
−qT at the risk-free rate.

Because we have shorted the stock, we must pay the owner the dividends as
they accrue. We do this by continuously shorting additional stock. The argument
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used to prove (3.7) applies here except that the increment in shares resulting
from the dividend is now the increment shorted with the proceeds used to pay
the dividend. At time T our short position has grown to 1 share.

And at that time settle the forward contract by buying one share of stock for
FT . Clear the short position with this share. Finally collect the invested made at
time 0 now in the amount of S0e

−qT erf T . Since FT < S0e
(rf −q)T we have made

a risk-free profit. This shows that (3.8) gives the correct contract value.

3.3.3 Valuing a Forward Contract

On the date that a forward contract is negotiated, t = 0, we have derived above
that its contract price should be FT ; this is the price to be paid upon delivery on
the forward date, when t = T . Let us call this the contract or delivery price and
denote it by C. At this time, t = 0, the contract has no value because anyone
could also negotiate the same forward contract for C.

But suppose the price of the stock on delivery date exceeds C. Then the party
long the contract (receiving the stock) can, theoretically, sell it for the difference
ST −C. The contract now has value. (Of course if ST < C then the party short
has the value C − ST .)

Similarly, suppose that at time t < T , the stock price is St, what is the
contract’s value now?

The time remaining to the contract date is T − t, therefore the delivery price
of a new contact is

FT−t = Ste
rf (T−t)

if there are no further dividends, otherwise use (3.5) or (3.8) as appropriate. On
delivery date the value of the old contract versus the new one is FT−t − C. By
discounting this back to time t we get the value at that time,

Vt = (FT−t −C)e−rf (T−t). (3.9)

Expected Winners

As we have just seen, upon maturity of the contract, if ST > FT then the party
long can sell it for an immediate profit of the difference. On the other hand, if
ST < FT , then the party short can buy the asset for the lower price and fulfill
the contract for the higher price. Can either party expect to make a profit (in
the mathematical sense)?

From Section 1.1 and in particular, equation (1.28), we have that

E(ST − FT ) = E(ST )− FT = S0e
μT − S0e

rf T

where μ is the drift of the stock. So if the drift exceeds the risk-free rate, then

the buyer can expect to do better through the forward contract than waiting to
pay the market price at time T .
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Alternatively we could use Monte Carlo to calculate the answer. In a similar
manner to what was done in Section 2.3, run the algorithm on page 12 but this
time observe the buyers winnings

ST − FT .

If the sum of the winnings over a large number of trials is 0, then the no-arbitrage
price is also the expected ending price. The Monte Carlo advantage is that it
will still work even if prices do not follow a geometric random walk. The basic
step by step calculation would have to be modified to adhere to an alternative
model. In fact we will take up these ideas in a later chapter.

3.4 Option Pricing: Binomial Lattice Model

In this section we want to see how to fairly price basic put and call options. To
simplify matters at this point, we restrict ourselves to options over non-dividend
paying stocks. From what we have learned in pricing forward contracts we expect
that the price will be determined by the no-arbitrage principle. This is correct. To
see why, we first consider the binomial pricing approximation model introduced
in Section 1.6. Initially we will be more interested in pricing principles and for
this reason we start with the simple one-step binomial tree. From there we will
be able to treat the general case and formulate specific pricing solutions for both
European and American options.

Fig. 3.3. Stock prices and call option values for a one-step binomial tree

3.4.1 Pricing for a One-Step Binomial Tree

The simplest case is that of one time step as in Fig. 3.3. Today, t = 0, the stock
price is, say, $50. At expiration, t = 1, the stock price will be either $52 if the
price goes up or $48 if it goes down. We wish to sell a call option on the stock
with strike price $51. What should be the price C of the option?
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Since we may have to deliver stock at expiration, we buy a quantity, Δ, of
stock today to help cover the delivery; Δ could be fractional. Our portfolio is
therefore long Δ shares of stock and short one call option; its value is

50Δ − C. (3.10)

At expiration, if the price went up, the portfolio’s value is 52Δ − 1, $1 being
the difference between the stock price and the strike price. And if the price went
down, it is 48Δ. By setting these equal and solving for Δ we can remove the
uncertainty of our position. We get

52Δ − 1 = 48Δ, so Δ =
1

4
.

To find C, note that with Δ given as above, the portfolio’s value at t = 1 is
$12; in fact 52(1/4) − 1 = 12 and 48(1/4) = 12. Following our familiarity with
forward contracts we presume the t = 0 value should be this discounted by the
risk-free rate rf . Hence

1,2

50Δ −C = 12e−rf

which gives

C = 12.50 − 12e−rf . (3.11)

In fact this is the no-arbitrage price. We show that C cannot be bigger than the
right-hand side of (3.11) and leave it to reader to show it cannot be smaller.

Suppose C > 12.50− 12e−rf . As always, we sell the more expensive and buy
the cheaper. At t = 0

• Borrow $12.50 and buy 1/4 share of stock;
• Sell 1 call option for C and invest the proceeds.

At t = 1, if the price is up

• 3/4 share may be purchased from the market for $39, along with our 1/4
share deliver the stock for the strike price, $51;

• Pay off the loan for $12.50erf .

Our net value will be

Cerf + 51− 39− 12.50erf = (C − (12.50 − 12e−rf ))erf > 0.

On the other hand, if the price is down

• Sell 1/4 share for $12.

The net position in this case will be

Cerf + 12− 12.50erf = (C − (12.50 − 12e−rf ))erf > 0

as in the first case. Thus C cannot be larger than the right-hand side of (3.11).
Similarly it cannot be smaller; hence (3.11) gives the no-arbitrage price.

1 Throughout we assume rf is given in terms of the time units used for t.
2 For discrete discounting replace e−rf by (1+rf )

−1. More generally, replace e−krf by (1+rf )
−k.
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The Method of Replication

The call option can also be priced by the replication principle of Section 3.2.1.
Consider a portfolio consisting of 1/4th share of stock and a loan of 12e−rf

where rf is the risk-free rate. At payoff, if the stock price has gone up to 52,
then the value of the portfolio is 1

452 − 12 = 1. On the other hand, if the stock

price has gone down to 48, then the value is 1
448− 12 = 0. These payoffs match

that of the option exactly. Since the initial value of the replicating portfolio is
1
450− 12e−rf = 12.50 − 12e−rf , this must also be the value of the call.

Notice that the “delta” of the option, meaning its change in value with respect
to a change is the stock price is 1

4 ,

ΔC

ΔS
=

1− 0

52− 48
=

1

4
, (3.12)

and this is how much stock to buy.

Risk-Neutral Valuation

A notable aspect of the derivation above is that probability played no role.3

Let p be the statistical probability of an up move as generated by the recent
price history of the stock. This is called the statistical distribution or statistical
measure of the stock’s prices. One would think that if the probability of an up
move were high, then the option should cost more. But as we have seen, a call
premium different than that given by (3.11) results in an arbitrage opportunity.
But arbitrage cannot be sustained for very long. Prices will quickly adjust so as
to eliminate it.

Instead, a high up move probability results in a high profit expectation for
the option holder. But there is a probability for which the expectation is zero.

Let q be the probability of an up move; then the option holder makes $1 with
probability q or $0 with probability 1− q. The earnings expectation is therefore
q. For this, the buyer pays 12.50−12e−rf at time 0, or, equivalently, 12.50erf −12
at time 1 (when the payoff occurs). The break-even probability is therefore

q = 12.50erf − 12. (3.13)

This is called the risk-neutral probability. For example, if the risk-free rate were
0 the risk-neutral probability would be q = 1/2 in this example (from (3.13)).

If the risk-neutral probability of an up move were the actual probability of
an up move, then the buyer of the option has the same earnings expectations as
having invested risk free at the risk-free rate.

Another characterization of the risk-neural probability is that it makes the
payoff fair in the sense of expectation (for both sides of the option contract).

3 More exactly, almost no role; that there are two possibilities for the future tacitly assures that
neither the up branch nor down branch occurs with probability 1. Such would be a violation
of financial assumption 1 (page 81). Further, if the up branch occurred with probability
1, and the time period sufficiently short, then the guaranteed $2 return could exceed the
risk-free rate; indeed, it would become the risk-free rate.
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Stated differently, the expected discounted change in the portfolio value from
t = 0 to t = T is 0,

Eq(discounted change in portfolio value) = 0. (3.14)

The expectation is taken with respect to q. A probability having the property
that the expected future value of a random variable is equal to it’s present value
is called a martingale.

The martingale probability provides another way to price an option. It is one
of the most important principles in pricing assets that derive their value from
that of an another, underlying, security

Risk-neutral option valuation principle

An option’s price is equal to the discounted expected payoff of the option,
the expectation taken with respect to the risk-neutral probability.

And from above

Risk-neutral probability

The risk-neutral probability is the probability for which the expected
growth of the underlying is at the risk-free rate.

We now have 3 ways of pricing options: no-arbitrage (directly calculated),
replication, and risk-neutral. However, in fact they all are based on the no-
arbitrage principle.

Option Pricing Winners and Losers

As we saw in pricing forward contracts, one or the other side of the contract
may enjoy an expectation advantage for making a profit. The same is true with
regard to option pricing. In fact the risk-neutral pricing alternative spells it out
explicitly since it assumes the underlying grows at the risk-free rate. But this
is rarely the case. A given equity’s prices grow at their own rate determined by
factors including management decisions, the fortunes of the equity’s sector and
many others. An equity’s market growth rate is quantified by the drift μ of its
prices.

Again let p be the historical probability of an up move in Fig. 3.3; as before,
the expected price of the stock at t = 1 is given by 52p + 48(1 − p). Using the
stock’s actual growth rate, 50eμ given by its drift, the historical probability can
be determined,

52p+ 48(1 − p) = 50eμ,

giving the actual up move probability as

p = 12.50eμ − 12. (3.15)

Since the cost of the option is C, the buyers profit is 1− C in case of an up
move and −C for a down move. Hence
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expected profit = (1− C)p+ (−C)(1− p) = p− C

= (12.50eμ − 12)− (12.50erf − 12) = 12.50(eμ − erf )

=
1

4
S(0)(eμ − erf ); (3.16)

recall (1/4)S(0) is the buyers initial investment.
Even though this looks promising for the holder of a call option on a high

growth stock, there are elements that tend to counter the advantage. As we will
see in the next section, option prices depend on the volatility of the underlying;
as the volatility changes, the option price changes correspondingly. The result is
that volatilities at any moment become market determined and, as such, vary
as any other market element. VIX is the ticker symbol for the market volatility
index.

3.4.2 Pricing for a Multi-step Binomial Lattice

In this section we extend the development of the one-step binomial model to
an arbitrary number of steps. We continue to treat options over non-dividend
paying stocks.

The development here is based on the construction in Section 1.6. As in
that section, the lattice is extended by means of up and down factors u ≥ 1
and 0 < d ≤ 1. These factors as well as their up versus down probabilities are
assumed constant throughout the lattice.

As we learned in the previous section, one possibility for calculating the
option price invokes the no-arbitrage principle directly. In this approach prob-
abilities play no role. The other uses the risk-neutral principle with the lattice
probabilities equal to the risk-neutral probabilities q and 1− q. In order to con-
trast the two with the least distraction we first apply them to a two-step lattice.

Calculating the Call Price for a Two-Step Lattice

The starting equity price is S0. Over the first time period Δt the price could
go up to S0u or down to S0d. In the next time period the same thing occurs,
as a result the prices at time t = 2 (2Δt) are S0u

2, S0ud, and S0d
2, and the

probabilities are, respectively q2, 2q(1− q) and (1− q)2, see Fig. 3.4. And to be
definite, we assume the strike price K lies between S0ud < K < S0u

2. Therefore
the call payoff values at t = 2 are 0 except at the top node for which it is
S0u

2 −K.

Calculating C from the No-Arbitrage Principle Directly

We can find the option cost C using the no-arbitrage principle by analyzing all
one-step two-branch subtrees in Fig. 3.4 in reverse order; that is from the right
hand side of the figure to the left. Applying the techniques of the previous section
to the subtree with root node N1(1) (having stock price S0u) and branches to
S0u

2 and S0ud calculates the value C ′ of the call at that root. The value at node
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Fig. 3.4. Stock prices as the upper numbers and call option values the lower ones for
a two-step binomial lattice. The strike price lies between S0ud and S0u

2

N1(0) (having stock price S0d) is 0 as indicated because both its branches lead
to zero payoffs. Finally, knowing C ′, the analysis of the one-step tree at the root
node N0 gives the call value C at time t = 0.

To begin, from (3.12) we find the amount of stock to buy at N1(1) to be

Δ =
S0u

2 −K

S0u2 − S0ud
.

Thus the value of the portfolio at N2(1) is

S0ud
S0u

2 −K

S0u2 − S0ud
=

d

u− d
(S0u

2 −K).

Now discount this back and solve for C ′,

S0u

(
S0u

2 −K

S0u2 − S0ud

)
− C ′ =

de−rf Δt

u− d
(S0u

2 −K).

We obtain

C ′ = (S0u
2 −K)

(
1− de−rf Δt

u− d

)
.

We leave it to the reader to repeat this program for node N0 to derive

C = C ′
(
1− de−rf Δt

u− d

)
= (S0u

2 −K)

(
1− de−rf Δt

u− d

)2

. (3.17)

Calculating C from the Risk-Neutral Principle

But there is a much easier calculation using the risk-neutral principle. Further-
more, the technique extends just as easily to lattices having any number of steps.

The risk-neutral probability is easily determined by equating means as was
done in Section 1.6.2. However here we must assume risk-free growth,

qu+ (1− q)d = e−rf Δt
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so

q =
e−rf Δt − d

u− d
. (3.18)

Knowing q, at expiration the expected value of the call is

(S0u
2 −K)× q2 + 0× 2q(1− q) + 0× (1− q)2.

Discounting this back to t = 0 gives the call price4

C = (S0u
2 −K)q2e−2rf Δt = (S0u

2 −K)

(
erf Δt − d

u− d

)2

e−2rf Δt,

and we get the same as before, (3.17).

3.5 Pricing Put and Call Options Over Non-dividend
Paying Stocks by the Binomial Method

3.5.1 Extension to an n-Step Lattice

Now consider a binomial lattice with n time steps, t = n representing expiry.
From Section 1.6, at any time t = k, 0 ≤ k ≤ n, there are k + 1 nodes Nk(i) for
0 ≤ i ≤ k. And the stock prices and probabilities are given in (1.33),

price at node Nk(i) is S0u
idk−i, (3.19)

and the probability of reaching this node is
(
k

i

)
qi(1− q)k−i. (3.20)

Again there are two ways to proceed. In the first, set k = n in the equations
above and generate the prices and probabilities at expiration. From the prices,
the payoffs are calculated,

(S0u
idn−i −K)+ for calls or (K − S0u

idn−i)+ for puts.

Finally the sum of the probability weighted payoffs are discounted back to time
t = 0.

In the other, again starting with the expiration payoffs on the right, one
works back node by node to the root N0 generating the option values at each
intermediate node along the way. The option cost is the value calculated at N0.

We detail both starting with the risk-neutral calculation. As we have seen,
the risk-neutral calculation is more direct and computationally simpler. On the
other hand the step-by-step approach has the advantage that it can be used
to price other types of options such as those that are path dependent, that is,
dependent on the price of the underlying over the course of the contract. An
American option is such an example and we will illustrate this application.

4 For discrete discounting, replace e−krf Δt by (1 + rfΔt)−k throughout.
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3.5.2 Risk-Neutral Binomial Pricing of Options

Let the strike price of a call option lie between the t = n nodes for i = m − 1
and i = m,

S0u
m−1dn−m+1 ≤ K < S0u

mdn−m. (3.21)

(This observation only serves to save some computational effort by summing
only over those terms having a positive payoff; one could otherwise sum over
all the binomial terms and use the payoff evaluation function (S0u

idn−i −K)+

instead.) Then the call payoff is the sum over those nodes i ≥ m of the payoff
S0u

idn−i −K times the probability of reaching Nn(i),
(
n

i

)
qi(1− q)n−i(S0u

idn−i −K).

The call price is this sum discounted back n time steps to t = 0. In summary, we
have the following for a European call option whose underlying is a non-dividend
paying stock

Price for a European Call Option

C = e−rf nΔt
n∑

i=m

(
n

i

)
qi(1− q)n−i(S0u

idn−i −K). (3.22)

Example 3.2. By the binomial method calculate the call option price 3 weeks
before expiration for the following: current stock price: S0 = 26, strike price:
K = 26, risk-free rate: rf = 3%, volatility: σ = 23%.

We will use a 3-step, u = 1/d type lattice, therefore Δt = 7/365 = 0.019178.
Equations (1.38) may be used to find the lattice’s parameters provided the drift is
replaced by the risk-free rate. Then A = 1.00050798, d = 0.968630, u = 1.032386,
and q = 0.50106. From (3.19) and (3.20) we calculate the ending prices as:

N3(0) : 23.63 N3(1) : 25.18 N3(2) : 26.84 N3(3) : 28.61

and ending probabilities as:

N3(0) : 0.124 N3(1) : 0.374 N3(2) : 0.376 N3(3) : 0.126.

See Fig. 3.5. The strike price K = 26 lies between nodes N3(1) and N3(2). So
the sum in (3.22) extends over the two upper nodes in the figure. We have

C = e−3(0.03∗7/365)
(
0.376(26.84 − 26) + 0.126(28.61 − 26)

)

= 0.6436.

�
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Example 3.3. Work the same problem as above but use the p = 1/2 type lattice.

This time equations (1.40) calculate the lattice parameters. First
√

eσ2Δt − 1 =
0.031859, then d = 0.968697, and u = 1.032453. The risk-neutral probability as
calculated by (3.18) is q = 0.5. Of course, this shows that in the p = 1/2 type
lattice, p still satisfies (3.18).

To finish the example, from (3.19) the ending prices are:

N3(0) : 23.63 N3(1) : 25.19 N3(2) : 26.85 N3(3) : 28.61

the ending probabilities are:

N3(0) : 0.125 N3(1) : 0.375 N3(2) : 0.375 N3(3) : 0.125.

As before, the sum extends over the two upper nodes in the figure. We have

C = e−3(0.03∗7/365)
(
0.375(26.85 − 26) + 0.125(28.61 − 26)

)

= 0.6438.

�

Fig. 3.5. Pricing lattice for Example 3.2. The upper numbers are the nodal prices and
the lower are the nodal probabilities

It is just as easy to price put options. Just as for calls, the price is given
by the discounted expected payoff. Therefore the only change is to replace the
payoff function by (K − S0u

idk−i)+, or, with m as defined above in equation
(3.21), sum from 0 up to m− 1. For a non-dividend paying underlying we have

Price for a European Put Option

P = e−rf nΔt
m−1∑

i=0

(
n

i

)
qi(1− q)n−i(K − S0u

idn−i). (3.23)
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3.5.3 Node-by-Node Binomial Option Pricing

Again start with the prices at t = n, equation (3.19). For every pair of adjacent
nodes Nn(i) and Nn(i+1), back calculate the option value to their root Nn−1(i).
Having calculated all the option values at t = n − 1, repeat the procedure for
the nodes at t = n− 2. Continuing in this way inductively from right to left we
finally calculate the option value at N0.

Fig. 3.6. A generic two branch subtree. The option values V+(i) and V+(i + 1) are
known as is the probability q. The root value V− can be inferred from them. See the text

In Fig. 3.6 we show a generic two branch subtree. Between the node on the
left and those on the right is a single time increment Δt. The option values V+(i)
and V+(i+ 1) are known. To backcalculate the option value V− we will use the
risk-neutral principle. In this way we do not have to maintain the stock price at
each node.

To calculate the expected option value over these two + nodes we must use
the probabilities q and (1−q) and not their absolute probabilities. This is because
reaching either of these nodes is conditioned on first reaching their root node
N−(i). The conditional expected value of the option is therefore qV+(i + 1) +
(1 − q)V+(i). By the risk-neutral principle the option value at the root is this
discounted at the risk-free rate, hence

V− = e−rf Δt (qV+(i+ 1) + (1− q)V+(i)) . (3.24)

Example 3.4. To illustrate the foregoing techniques, we work through the put
price calculation example shown in Fig. 3.7.

Assume the current stock price is $50, expiration is in 4 days, the strike price
is $49, the risk-free rate is 26% and the volatility is 40%. We will use the q = 1/2
system. In terms of years, Δt = 1/365 = 0.002740. From (1.40) we find that

d = erf Δt
(
1−

√
eσ2Δt − 1

)

= 1.00071
(
1−√

1.000438 − 1
)
= .97976.
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Fig. 3.7. Back calculation method for a put option. Stock prices are the upper numbers
and option values the lower ones for a four-step binomial lattice

Similarly
u = 1.02167.

We may now calculate the expiration prices: S0u
4 = 54.476, S0u

3d = 52.242,
S0u

2d2 = 50.100, S0ud
3 = 48.044, and S0d

4 = 46.073. Since the strike price is
49, the put payoffs are, respectively: 0, 0, 0, 0.956, and 2.927.

Using (3.24), for the first back calculation at node N3(0) we get

V = e−0.26∗0.002740
(
1

2
0.956 +

1

2
2.927

)
= 1.940.

In a similar fashion work back through the other 9 nodes. The last two-branch
subtree gives the price of the option

V = e−0.26∗0.002740
(
1

2
0.119 +

1

2
0.723

)
= 0.421.

We can corroborate our answer with the risk-neutral method, equation (3.23).
Since the branch probabilities are q = 1/2, the expiry probabilities are easily
seen to be: 1/16, 4/16, 6/16, 4/16, and 1/16. Hence the expected payoff is

1

16
2.927 +

4

16
0.956 = 0.4219

Discounting this 4 days gives

e−4rf Δt0.4219 = 0.9971 ∗ 0.4219 = 0.421.

Monte Carlo Solution

The risk-neutral method discussed above can also be implemented via Monte
Carlo by simulating paths through the binomial lattice. As usual the Monte Carlo
calculation will take more computational time than its deterministic counterpart
but, by its very nature, it can be applied when other methods fail. Recall the
assumptions on the binomial lattice method are that volatility and the risk-
free rate remain constant. If they are not, then neither are the up and down
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factors. When that happens the lattice does not reconnect, even in the second
time step S0u0d1 �= S0u1d0 where uk and dk are the up and down factors at step
k. Then, technically, it becomes a binomial tree and the the number of nodes
grows exponentially with the number of steps. The method becomes untenable
at some point.

In contrast the Monte Carlo method can allow the up and down factors and
the branch probabilities to be nodal dependent with no appreciable computa-
tional cost.

Starting at the root node with S = S0, simulate a path through the tree by
selecting up or down at each subsequent node according to the up probability
q. Upon reaching the right hand side of the lattice, S holds the price of the
underlying at expiration for the particular path taken. The option payoff for
this path is V = (S−K)+ for a call or V = (K−S)+ for a put as usual. Repeat
this calculation N times accumulating the payoffs, for example, let E be their
sum. Then the estimate for the expected payoff is E/N and the option price is
this discounted back to time 0.

Algorithm 11. Monte Carlo Method for Traversing a Binomial lattice

inputs: S0, K, nDays, r, σ, N
�calculate u, d, q according to (1.38) or(1.40)

Δt = 1/365.0 �one day time increments
E = 0
for i = 1, . . . , N

S = S0
for t = 1, . . . , nDays

U ∼ U(0, 1)
if( U < q ) S = Su else S = Sd

endfor
V = (S −K)+ for calls or V = (K − S)+ for puts
E = E+V

endfor
E = E/N
price = e−nDays∗rf ∗ΔtE

3.5.4 American Options

An American option works exactly like its European counterpart with the ex-
ception that the option can be exercised at any time up to and including the
expiration date. Thus the American option bestows more privileges than its
European counterpart and so its value at any time must be at least as great.

To price an American option consider the binomial pricing technique as im-
plemented node-by-node. The value of the option is calculated at each node as
for a European option. But since the option can be exercised at any time, this
value must be compared to the payoff if the option were to be exercised at that
moment. If the early exercise value is larger, then it becomes the true value at
that node. This is the only modification required. Referring to Fig. 3.6,
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the value at node V− is the greater of

V− as given by discounting its child nodes, (3.24), or
the in-the-money value of the option.

To illustrate these considerations, we rework the previous example but now
for an American put. See Fig. 3.8.

Fig. 3.8. Node-by-node calculation method for an American put option. Stock prices
are the upper numbers and option values the lower ones for a four-step binomial lattice.
The nodal option values increased by early exercise are shown in red

Example 3.5. As before the current stock price is $50, expiration is in 4 days, the
strike price is $49, the risk-free rate is 26% and the volatility is 40%. And as be-
fore, the back calculated option value at nodeN3(0) is $1.940. But since the stock
price is S0d

3 = 47.025 at that node, the intrinsic value is 49 − 47.025 = 1.975,
thus exceeding the European option value. Hence the holder should exercise the
option. For our calculation, we must replace 1.940 by 1.975 and continue with
this larger number. Note that this 35 cent difference is propagated along but
by approximately half at each new step. In the end, the cost of the American
version of the option is a modest 4 cents higher in this example. �

An American Call Has No Excess Value for Non-dividend
Paying Stocks

As we have just seen by example, the price of an American put can be larger
than that of its European counterpart. But this is not the case for an American
call on a non-dividend paying stock. The reason is that, prior to expiration, the
value of such a call always exceeds its intrinsic value. To see this, let Ct, Pt,
and St be the time t values of a call option, a put option with the same strike
and expiry, and the underlying. Obviously if St ≤ K there is no incentive to
exercise at time t; so we may assume St > K. Since K > Ke−rf (T−t), we have
the following from put-call parity at time t (the remaining time to expiry is
T − t)

St −K < St −Ke−rf (T−t) = Ct − Pt < Ct.

The difference Ct− (St−K) is the time value of call. In other words, it is better
to sell the option and capture the time value than to exercise early.
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3.6 Option Pricing: Integrating the Lognormal

The binomial lattice pricing methodology is very powerful, simple to understand
and implement, and usually adequately accurate given a sufficient subdivision
of the time horizon. However it does have its shortcomings. The ending prices
for the underlying are discrete and only an approximation to the continuous
nature of actual prices. Further the ending price distribution is binomial, only
an approximation to the lognormal distribution of actual prices. Perhaps its
biggest shortcoming is that it does not provide a simple formula for computing
an option price, only a recursive process.

Knowing that under the GBM model, a stock’s future price is lognormal,
it should be possible to exploit that knowledge for the purpose of generating
option prices. In this section we show how to do so.

3.6.1 Black–Scholes Pricing Formula

Recall from Section 1.5 that the logarithm of the ending price ST is normally
distributed with mean α = log S0 + (μ − 1

2σ
2)T and variance β2 = σ2T . See

equations (1.22) and (1.23). By replacing the drift μ with the risk-free rate rf
we have the distribution for the risk-free growth of the asset. The ending price
itself is lognormally distributed with density g(y) given by (1.24),

g(y) =
1

yβ
√
2π

e
− (log y−α)2

2β2 .

The expected payoff is the integral of the payoff function G() against this density,

E(payoff) =

∫ ∞

0
G(y)g(y)dy. (3.25)

Black–Scholes Price of a European Call

For a call option with strike priceK the payoff function is G(S) = max(S−K, 0).
Thus

E(payoff) =

∫ ∞

0
max(y −K, 0)g(y)dy =

∫ ∞

K
(y −K)g(y)dy

=

∫ ∞

K
yg(y)dy −K

∫ ∞

K
g(y)dy. (3.26)

We see the integral can be done in two parts. The first simplifies to

S0e
rf TΦ(d1)

where Φ(·) is the cumulative distribution function of the standard normal and

d1 =
log(S0/K) + (rf +

1
2σ

2)T

σ
√
T

. (3.27)
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The derivation is given in the details box on the next page. The second integral
simplifies to

KΦ(d2)

where

d2 =
log(S0/K) + (rf − 1

2σ
2)T

σ
√
T

. (3.28)

Altogether the expected payoff is

E(payoff) = S0e
rf TΦ(d1)−KΦ(d2).

Discounting back to time 0 gives the call price

C = S0Φ(d1)−Ke−rf TΦ(d2). (3.29)

Black–Scholes Price of a European Put

Similarly, replacing G(S) by max(K−S, 0) and integrating we get the put price.
First the expected payoff,

E(payoff) =

∫ ∞

0
max(K − y, 0)g(y)dy =

∫ K

0
(K − y)g(y)dy

= K

∫ K

0
g(y)dy −

∫ K

0
yg(y)dy. (3.30)

For the first integral in (3.26) make the change of variable

z =
log y − (α+ β2)

β

where α and β are as above. Then

y = eβz+(α+β2), and dy = yβdz. (3.31)

Hence the first integral becomes

∫ ∞

K

y
1

yβ
√
2π

e
− (log y−α)2

2β2 dy =

∫ ∞

d

eβz+(α+β2) 1√
2π

e
− 1

2β2 (zβ+β2)2
dz

= eα+β2

∫ ∞

d

eβz√
2π

e−
1
2 (z+β)2dz.

The lower limit of integration was y = K; under the change of variable it becomes

d =
logK − (α+ β2)

β
.

Combining the exponentials under the integral we have

eα+β2

e−
1
2β

2

∫ ∞

d

1√
2π

e−
1
2 z

2

dz = eα+
1
2β

2

(1− Φ(d)). (3.32)
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Since α + 1
2β

2 = logS0 + rf T and noting that 1 − Φ(d) = Φ(−d), the first term in
(3.26) becomes

S0e
rfTΦ(d1)

where

d1 = −d =
log(S0/K) + (rf +

1
2σ

2)T

σ
√
T

.

For the second integral in (3.26) use the change of variable

z =
log y − α

β
, so dz =

1

yβ
dy.

The integral becomes

K

∫ ∞

K

1

yβ
√
2π

e
− (log y−α)2

2β2 dy = K

∫ ∞

d′

1√
2π

e−
1
2 z

2

dz

= K(1− Φ(d′)) = KΦ(d2) (3.33)

where

d2 = −d′ = − logK − α

β
=

log(S0/K) + (rf − 1
2σ

2)T

σ
√
T

.

Notice that these integrals are just the complementary probabilities of those
above for a call (3.26). Hence we can just read off the values. From (3.33) the
first integral is ∫ K

0
g(y)dy = Φ(d′).

And from (3.32) the second is

∫ K

0
yg(y)dy = eα+

1
2
β2
Φ(d) = S0e

rf TΦ(d).

Therefore from (3.27) and (3.28) the put price is

P = Ke−rf TΦ(−d2)− S0Φ(−d1). (3.34)

3.6.2 Probability the Option Ends ITM

In reviewing the derivation of these price we note that the second integral in the
call price (3.26) is exactly the probability that the ending price ST is above K,
that is, in-the-money. Hence

Pr(call finishes ITM) = Φ(d2). (3.35)
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Similarly the first integral in (3.30) is the probability that ST comes in below
K and so is the probability that the put is in-the-money,

Pr(put finishes ITM) = Φ(−d2). (3.36)

In either case it is the coefficient of the discounted K term in the option price.

put value 30 days to expiry

a b

call value 30 days to expiry.

Fig. 3.9. Black-Scholes put and call values as a function of the price of the underlying,
parameters: strike 100, volatility 40%, risk-free rate 26%

In Fig. 3.9 we show the values of a put and a call 30 days prior to expiration
as determined by the Black-Scholes formulas above. The dashed curve is the
payoff at expiration in both cases. These figures are quite informative.

The call price as seen in (b) lies entirely above the payoff showing that a
call always has positive time value illustrating what we previously proved. By
contrast, as shown in (a), a put can have negative time value. If this were an
American option, the point at which the put value crosses the payoff curve
indicates when the option should be exercised. The high risk-free rate of 26%
used in the figure is mainly responsible for causing the negative time value;
a high rate makes an early payoff with reinvestment more advantageous than
sticking with the option.

Graphically it is clear that the greatest time value for both puts and calls is
at-the-money.

Figure 3.10 shows how options behave as time to expiration decays away.
Three different and constant values of stock price are depicted, 5% ITM, 5%
OTM, and ATM.

3.6.3 Interpretation of d1 and d2

All formulas deriving from the Black-Scholes analysis make use of the collection
of terms d1 and d2 defined in (3.27) and (3.28). First we notice by straightforward
substitution that

d2 = d1 − σ
√
T . (3.37)
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change of put with time to expiry

a b

change of call with time to expiry.

Fig. 3.10. Black-Scholes put and call values as a function of the time to expiration.
Time runs down from 60 days on the right to 0 on the left

Next, among the terms for d1 and d2, the term rf T is the deterministic
growth in the value of the stock with time (assumed to be at the risk-free rate).
Similarly the term 1

2σ
2T can be interpreted as the maximum stochastic growth

in time while −1
2σ

2T is the maximum stochastic decline in value. Thus the terms

(rf +
1
2σ

2)T and (rf − 1
2σ

2)T are the upper and lower envelopes for the growth in
the value of the stock in some sense. On the other hand the term log(S0/K) is
the amount by which a call is initially in-the-money in geometric terms. Hence
we may interpret d1 as the upper envelope for the projected amount by which a
call is ITM normalized by standard deviation. In the same way, d2 is the lower
envelope.

For a put, −d1 and −d2 play the same roles.

3.6.4 Implied Volatility

The volatility used in the Black-Scholes formula should be the volatility of the
underlying over the interval [0, T ] which is assumed to be constant in the deriva-
tion. Of course this is unknown and, equally important, is unlikely to remain
constant. The latter problem can be treated by using the average volatility over
the time horizon. Even so, the volatility to use is generally unavailable.

One possibility is to compute the volatility of the underlying over a recent
period of time, see (1.17). This is called historical volatility. With historical
volatility in hand, the initial price of an option can be established. However,
after its introduction, an option is traded through an exchange and the price is
determined by the market. It then becomes possible to ask what volatility gives
the current market price? This is a kind of instantaneous volatility; it is called
the implied volatility (IV). It is the market’s prediction of the volatility over the
time horizon.

While there is no closed form for inverting Black-Scholes to solve for volatility
in terms of the other variables, including the option’s price, the formula can easily
be solved numerically. A simple and adequate method is bisection; it is discussed
in Section A.14. The method starts with an estimate of volatility that is too low,
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σ1, and an estimate that is too high, σ2. The computed option price for σ1 is less
than the actual price but for σ2 it is greater. In this way the root we are seeking,
σ0, is bracketed. Next the option price is calculated for the mid-volatility

σm =
1

2
(σ1 + σ2).

Then either σ1 or σ2 is set equal to σm depending on whichever brackets the
root. The process is now iterated until the desired accuracy is attained.

3.6.5 Option Prices for Dividend Paying Stocks

In Section 2.3 we saw that dividends paid out on an equity have the effect of
reducing its price by the same amount. For the holder of an option, this tends to
lower the price of the stock at expiration with the result that call options should
be less expensive and put options more expensive than otherwise.

Consider the case of an option over an underlying that pays dividends con-
tinuously at the fixed rate of q percent per year, see Section 3.3.2. The annual
dividend rate for an equity is called the dividend yield. If the underlying is an
index, continuous payment is a good approximation. Even if dividends are paid
at discrete times, for example quarterly, assuming continuous dividends is a
reasonable first order approximation, especially if the time horizon is fairly long.

To price the option we can appeal to simulation. Along these lines see Sec-
tion 2.3.2 and in particular Algorithm 6. In performing the simulation we must
reduce the stock’s price by the amount q dt on each time step. In fact it works
the same as negative drift. But, over the entire time horizon 0 to T , reducing
the price by this amount on each step has the same result as reducing the value
of the stock at the start by e−qT once and for all.

In both cases the ending price distribution is lognormal. From (1.28) and
(1.29) we can calculate the mean and variance in each case. For a drift of −q
and a starting value of S0,

E(ST ) = S0e
−qT , var(ST ) = S2

0(e
σ2T − 1)e−2qT .

For a drift of 0 but a starting value of S0e
−qT we have

E(ST ) = (S0e
−qT )e0T = S0e

−qT

var(ST ) = (S0e
−qT )2(eσ

2T − 1)e0T = S2
0(e

σ2T − 1)e−2qT .

Hence their means and variances are the same.
This means we can use the Black-Scholes equations simply by replacing S0

with S0e
−qT . We have, from (3.29) for a call,

C = S0e
−qTΦ(d1)−Ke−rf TΦ(d2). (3.38)

and, from (3.34) for a put,

P = Ke−rf TΦ(−d2)− S0e
−qTΦ(−d1). (3.39)
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Since

log(
S0e

−qT

K
) = log(

S0

K
)− qT,

we have for d1 and d2,

d1 =
log(S0/K) + (rf − q + 1

2σ
2)T

σ
√
T

,

d2 =
log(S0/K) + (rf − q − 1

2σ
2)T

σ
√
T

= d1 − σ
√
T . (3.40)

Put-Call Parity with Dividends

These ideas also allow us to upgrade put-call parity to account for dividends.
From (3.3) we have, for a non-dividend paying stock,

St + Pt = Ct +Ke−rf (T−t).

To account for dividends it is a matter of substituting for St as above

Ste
−q(T−t) + Pt = Ct +Ke−rf (T−t). (3.41)

This equation can be interpreted as saying that at time t portfolio A consisting
of e−q(T−t) shares of stock and 1 put option is replicated by portfolio B consisting
of 1 call option and Ke−rf (T−t) cash invested at the risk-free rate. By reinvesting
the dividends continuously as they accrue in additional shares of stock, at time T
portfolio A will consist of 1 share of stock and 1 put contract. As in Section 3.2.2,
A will be worth K if ST < K and ST if ST ≥ K, same as portfolio B.

3.7 The Monte Carlo Method for Option Pricing

The analytical solutions derived in the previous section only apply to the sim-
plest cases, European puts and calls. These are often called vanilla options. Since
these equations are easily invoked, they are the first and most often to be used,
sometimes under conditions at the fringe of their applicability.

By contrast, Monte Carlo is always applicable notwithstanding that in some
cases its solution demands a degree of cleverness. One of these occurs when
knowledge of the future is required in order to make decisions at the present
time. This is the case for American options which we encounter in this section
and shout options of Chapter 4. We will see how simulation can overcome the
problem of advanced knowledge.

However most non-vanilla options are merely path-dependent, not requiring
advanced knowledge, and can be handled straightforwardly. Before taking up
exotic options, as they are called, we first consider the plain vanilla case.

If the option’s price is not path dependent then it is just a matter of simu-
lating an ending price ST , valuing the option for that price, and discounting the
value back to time 0. This being one sample, the option’s price is the average of
such values over a sufficiently large number of samples.
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3.7.1 European Options

In fact there are two techniques for doing so: numerical integration and
simulation.

Numerical Integration

From first principles, the no-arbitrage price of an option is equal to the
discounted expected payoff value of the option. In turn, the expected payoff
is the integral of the expiration value of the option, G(·), integrated against
the expiration density, recall (3.25). By definition, the empirical expectation of
a function G(y) with respect to a random variable Y is the sum

∑
iG(Yi)/N

over N samples of Y . By the Law of Large Numbers, this calculation is exact as
N → ∞.

To carry out this calculation for the option price, start with α and β;
repeating (1.27)

α = log S0 + μT − 1

2
σ2T

β2 = σ2T. (3.42)

Recall that μ here is taken as the risk-free rate and σ is the volatility. Now let
Z ∼ N(0, 1) be a standard normal sample and let Y be given by

Y = eβZ+α; (3.43)

then Y is the required lognormal sample. It is also an instance of the expiration
stock price ST . For a call option with strike price K the payoff function is
G(Y ) = (Y −K)+ and for a put it is (K − Y )+. Altogether the algorithm is as
follows.

Algorithm 12. Numerical integration pricing algorithm

inputs: S0, μ, σ, T, r, N
α = logS0 + μT − 1

2σ
2T �see (3.42)

β2 = σ2T
E = 0
for i = 1, . . . , N

Z ∼ N(0, 1)
Y = eβZ+α �see (3.43)
E = E +G(Y )

end for
E = E/N
option price = e−rTE
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Simulation

The difference between this method and that above is that we use the GRW to
generate the ending stock price ST . Starting with the price at S0, generate a
GRW over the time horizon to calculate an instance of ST . Recall that we must
assume the drift of the equity is the risk-free rate. Apply the payoff function to
ST to obtain the payoff for that instance. Sum these payoffs over a statistically
large number of trials N and divide by N to get the expected payoff. The option
price is the expected payoff discounted back to the present. As above, the payoff
function is given by, G(ST ) = (ST −K)+ for a call and G(ST ) = (K − ST )

+ for
a put.

Algorithm 13. Monte Carlo continuous pricing algorithm

inputs: S0, K, T, r, σ, N
E = 0
for i = 1, . . . , N

S = S0
�use Algo.2 page 12 to generate ST
E = E +G(ST )

end for
option price = e−rTE/N

Fig. 3.11. The distribution of 10,000 price evaluations for an American put in conjunc-
tion with an optimized exercise boundary. The mean and standard deviation of these
prices is 4.9479 and 0.0563 respectively. The option is the same as in Fig. 3.12. The
exercise boundary parameters are also the same as in that figure

As usual, the Monte Carlo method is computationally slower than analytical
methods, but it is easy to program and can be used when other methods can not.
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An additional complication is that, being a stochastic method, the computed
price is also stochastic. The calculated option price will depend on the exact
random choices made throughout the run. A second price calculation will most
likely be different. In fact, a single run of the price calculation is a sample from
some probability distribution. By the Central Limit Theorem the distribution is
approximately normal, see Fig. 3.11. The price we want is the mean of this price
distribution. By performing several runs and reporting the average, a better
estimate is provided. In addition, by calculating the variance of the trials, a
confidence interval for the option prices can be worked out. These matters are
treated in Section A.8.

3.7.2 The Monte Carlo Method for American Options

As we have seen, the basic binomial method requires only a straightforward and
modest modification to enable it to calculate American option prices. This is
because it is a backward method, option prices are first determined at expiration
and then worked backwards to the starting date. Therefore at every point where
an early exercise is possible, the choice is easy to make because the future value
of the option is known if the option is not exercised. Further the future value in
question is only between two possibilities.

However a forward method has no such future information. Consider the
problem confronting a GRW at some point in the walk where the option is deep
in the money. Even if the discounted expiration value of the option were known
at that point, for example by using the Black-Scholes formula, the information
would be insufficient since there could be further early exercise opportunities
prior to expiration. Thus the value of the option at the point in question is not
given accurately by its discounted expiration value.

Nevertheless, there is a region in which, if the option were sufficiently deep
in the money, depending on the remaining time to expiry, then it should be
exercised early. This idea gives rise to the concept of an exercise boundary.
Figure 3.12 shows the exercise boundary for a American put option. On the
ordinate is plotted the relative extent to which the option is in the money,

K − St

K
, (3.44)

against the time to expiration, τ , along the abscissa. At expiration itself, τ = 0,
the boundary point is the strike price. That is, if K − ST ≥ 0 the option should
be exercised. As time to expiration increases, the boundary point tends to have
a logarithmic character. (Although no analytical formula for it is known.) A
forward method could be made to work if the exercise boundary were known or
even well approximated.

If the exercise boundary were known, then a Monte Carlo method for pricing
an American option would go just as for its European counterpart with the
exception that the option is exercised any time the walk touches or crosses
the exercise boundary. The contribution to the option price expectation is the
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Fig. 3.12. Calculated exercise boundary for an American put option with parameters:
S = 100, K = 100, T = 90 days, σ = 30%, rf = 10%; option price= 5.00 (cf. European
option price= 4.73). The boundary parameters for the figure are: a1 = 0.0243, b1 =
0.6336, c1 = 0.9960, a2 = 0.0181, b2 = 3.3632, c2 = 0.4120. See the text

exercise value discounted back to t = 0. The sum of such calculations over N
trials divided by N is the estimated price. Note that in this calculation the
discounting is applied in each trial rather than for all trials at the end.

Algorithm 14. Monte Carlo pricing algorithm for an American put

inputs: S0, K, T, Δt, r, σ, N
and the exercise boundary B(t)

E = 0; n = T/Δt
for i = 1, . . . , N

S = S0
for t = Δt, 2Δt, . . ., nΔt = T

Z ∼ N(0, 1)

St = St−1(1 + rΔt+ σ
√
ΔtZ)

if K − St ≥ K ∗B(T − t)
E = E + e−rt(K − St)
go to next i

endif
endfor t
E = E + e−rT (K − St)

endfor i
E = E/N
option price = E

Although pricing the option is an easy matter once the exercise boundary
is known, finding the boundary itself is difficult. One approach is to treat it as
a free-boundary problem in the numerical solution of the Black-Scholes partial
differential equation (B.17), see [Mey98]. Sophisticated algorithms are required
for the solution but they do work well in plain vanilla cases (only one underlying
with no dividends). Even then, very fine meshes are needed in order to obtain
good accuracy of the boundary. One confounding aspect in the nature of the
problem is that good approximations of the option’s price can result from even
quite inaccurate boundaries.
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Alternatively the boundary can be computed by the Monte Carlo method.
One way to proceed is to observe that the boundary is the solution of a maximiza-
tion problem. This is because the option holder’s decision as when to exercise is
driven by attempting to maximizing the option’s value. Therefore the objective
of the maximization problem is maximizing the option’s value.

The method starts by proposing a parametrized form for the boundary and
proceeds by maximizing on the parameters. The algorithm above can be used to
calculate the option price for any choice of such parameters. The choice has to be
made carefully because, in addition to the fact, as noted above, that the objective
is nearly flat with respect to boundary perturbations, the Monte Carlo estimate
of the option’s price is stochastic. The number of paths used to calculate the
option’s price must be large in order that the variance of the calculation be small.
Therefore it is important to start with basis functions having approximately the
right shape to start with.

Fig. 3.13. The exercise boundary calculated by a genetic algorithm for finding the price
of an American put with particulars as in Fig. 3.12. The resulting exercise boundary is
the green curve superimposed on a 4-step binomial tree for the same problem. Early
exercise nodes, all of which lie below the curve, are shown in red

By doing a preliminary binomial lattice calculation, as shown in Fig. 3.13,
the general description of the boundary can be envisioned. It is seen to have
logarithmic character with a steep slope at τ = 0, followed by a sharp bend,
then a very slight, nearly constant slope.

Consistent with these attributes is the function

a log(btc + 1). (3.45)

The parameter a effects vertical scaling and parameters b and c stretch and
shrink horizontal scaling. The function of the 1 in the argument is so when
t = 0, the function value is zero.
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With the choice of two such basis functions, we try the following 6 parameter
exercise boundary function

B(τ) =
K − Sτ

K
= a1 log(b1τ

c1 + 1) + a2 log(b2τ
c2 + 1). 0 ≤ τ ≤ T (3.46)

Here τ is the time remaining to expiration.
In a splendid twist of synergy, the maximization problem itself can also be

done by Monte Carlo, for example using simulated annealing or genetic algo-
rithms. Figure 3.13 depicts the result obtained by a genetic algorithm for calcu-
lating the put price of a 90 day American option. Although the result is shown
overlaid on a 22.5 day binomial tree, the algorithm generated prices based on
continuous geometric random walks with daily increments. The $4.83 calculated
by the tree is an approximation to the $5.00 price calculated by the continuous
walk. Figure 3.14 shows that the estimated exercise boundary is accurate to the
resolution of one day increments.

Fig. 3.14. Successive points on either side of the exercise boundary as calculated by a
binomial lattice are shown in black for an American put. Shown in red is the interpolated
boundary calculated by optimizing parameterized logarithmic basis functions

A Brief Look at Simulated Annealing

A genetic algorithm for American puts is provided on the web page for this
text. We give here the outline of a simulated annealing algorithm. First a bit of
background.

A state of the system in this case is a 6–component vector of positive real
numbers,

x = ( a1 b1 c1 a1 b2 c2 ) . (3.47)

These components are used in (3.46) to form the exercise boundary. The energy
of the system is a function of x and can be, for example,

Ex = 1/option price. (3.48)
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The option price is calculated by the algorithm on page 110 using the exercise
boundary given by (3.46). The option price will be maximized by minimizing
the system’s energy.

An important parameter of an anneal is the system temperature T . The tem-
perature cools from some high value at the start of the algorithm to a low value
at the end. Thus T is a function of algorithm time t as measured by iterations
in the algorithm’s main loop. Two common cooling schedules are geometric

T = abt, a > 0, 0 < b < 1, (3.49)

and logarithmic

T =
c

log(1 + t)
c > 0. (3.50)

The parameters a and b or c are parameters of the anneal. Usually preliminary
trials of the algorithm are performed in order to get an idea as to the size
of ΔE and, working from there together with knowing how many trials will be
allocated, appropriate values for them are determined. For example, theoretically
c should be equal to the largest valueΔE can have. Knowing the number of trials
determines the size of p near the end of the run; p should be less than 5% at the
end. (If geometric cooling is used, b should be quite close to 1, e.g. b = 0.9999
or larger, otherwise p tends to zero too quickly.)

In addition, each state x must define a neighborhood N(x) about itself defin-
ing what it means to be “close” to x. New trials of the algorithm use points
close to the current trial. An appropriate neighborhood for this problem is the
set of vectors y = ( a′1 b′1 c′1 a′2 b′2 c′2 ) such that ‖y − x‖ < ε for some ε
and some vector norm, for example L1,

|a′1 − a1|+ |b′1 − b1|+ . . . + |c′2 − c2| < ε. (3.51)

With that background, we present an algorithm using geometric cooling.

Algorithm 15. Simulated Annealing Algorithm

inputs: a, b, neighborhoods N(x), and
the number of iterations to perform, n

initialize x randomly and evaluate Ex
initialize temperature T
for t = 1, . . . , n
from N(x) choose y at random and evaluate Ey
put ΔE = Ey − Ex

with probability p = e−ΔE/T replace x by y
otherwise keep x
update the temperature, T = abt

endfor
report the option price 1/Ex
(and the maximizing state x if desired)

The key step in the algorithm is the line in which the old state x is replaced
by the new one y with probability p (as achieved by drawing a computer random
number r and replacing if r < p). If the new energy Ey is less than the old, then
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p as calculated is greater than 1 and the new state is accepted. But the new
state can also be accepted even if the new state is worse. And this will happen
with greater probability at high temperature than low. In this way the algorithm
does not become trapped in local minima.

Another complication of the present application is that the energy calculation
(i.e. the price calculation) is stochastic, see Fig. 3.11. What we want to maximize
on is the mean of the option prices. A way to do so is to make the reported option
price an average over several individual runs. By calculating the variance of the
average, a confidence interval for the option prices can be worked out. For more
information on this, see Section A.8.

Problems: Chapter 3

1. Use the Monotonicity Theorem to show that all risk-free assets must have the same
return rate.

2. A portfolio consists of a long 55 put and a short 50 put. Show how to replicate
this portfolio using stocks and calls. Comparing the payoff graphs of the two puts,
which put has greater value no matter what the stock price (i.e. is more expensive
to buy)? Same question for the replicating calls.

3. In Example 3.1 on page 84 what is the value of the forward contract at 5 months if
the stock price at that time is $48?
(Ans. 4.79.)

4. A company whose current stock price is $43.44 has been paying a quarterly dividend
of $0.77 per quarter. What is the annual yield? What should be the price of an
8 month forward contract on this stock if it is now assumed that dividends will
accrue continuously at this yield? The risk-free rate is 3%. What is the value of
this forward contract after 5 months if the stock price is $48 then.

5. Let S0 = 20, σ = 0.3, r = 0.06 and Δt = 1 week. Construct a 2-week binomial tree
(2 steps), use the p = 1/2 method, and calculate the no-arbitrage call price C for
K = 21. If the market price CM were 3/2 times C, explain in detail how that could
be exploited to make a risk-free profit.

6. Simulate the tree in Problem 5. (Start with S = S0 and randomly choose “up” with
probability p or “down” with probability 1− p, do this twice. Note the ending price
ST and note the payoff (ST −K)+.) Answer the following by Monte Carlo. Letting
C′ denote the actual price of the call, what is the expected gain to the option holder
if C′ = C? If C′ = 3C/2? If C′ = C but p = 0.6?

7. (a) Use a 4-step binomial tree to price a call option with these particulars: S0 = 36,
K = 34, r = 0.02, σ = 0.3, T = 4 weeks (28 days).
(b) What is the Black-Scholes price? What is the probability the option finishes
in-the-money?
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8. (a) Price the option in Problem 7 by Monte Carlo. Use the Numerical Integration
algorithm on page 107.
(b) Same question using Algorithm 13. How many trials are required to get 3 correct
digits in both? What are the runs times for both?

9. (a) Price the call option of Problem 7 under the assumption that the volatility
increases by 10% each week.
(b) Same question under the assumption the volatility decreases by 10% each week.

10. (a) Price the option in Problem 7 if the company has announced it will give a $0.66
per share dividend in 7 days.
(b) Same question except the option is an index fund whose dividend yield is 7.3%.

11. A 90 day call option with strike price $100 is valued at $8.23. The stock price is
$102, and the risk-free rate is r = 3%. Write a bisection or other numerical solver
to find the implied volatility.

12. A 120 day put option with strike price $80 is selling for $5.33. The risk-free rate is
3% and the current stock price is $82. Presently the VIX shows volatility at 22.6%.
Is the option over priced? under priced? or just about right?

13. Use a 4-step binomial tree to price an American put option with these financial
parameters: S0 = 60, K = 60, r = 0.10, σ = 0.3, T = 90 days. Compare with the
Black-Scholes price. What is the probability that the option ends ITM (by Monte
Carlo calculation)?

14. This problem is for gaining experience with simulated annealing. Write an annealer
to find the minimum value of the following function defined for 0 < x < 10,

f(x) = 20− 1

3(x− 3)2 + 0.18
− 1

(x− 7)2 + .25
− 6

(x− 9)2 + 2
.

This is a 1 variable problem in x. Try both geometric and logarithmic cooling.
Experiment with neighborhood size ε

N(x) = {y : x− ε < y < x+ ε, 0 < y < 10}.
(Ans. the minimum occurs at x = 3.)

15. Use an annealer or a genetic algorithm or other stochastic optimizer to solve the
American put problem stated in the caption of Fig. 3.12 page 110. (A genetic algo-
rithm is available at the web page for this text, www.math.gatech.edu/∼shenk; it is
set up to use the pricing algorithm pp. 110 under the name amerputExerBoundary
(for the reader to supply)).

www.math.gatech.edu/~shenk


4

Pricing Exotic Options

European put and call options are valued according to the expected price of the
underlying on the expiration date of the option. This makes it easy all around
to price the option at any time. The Black-Scholes formula does exactly that.
The history of prices of the underlying plays no role in determining the option
value.

But this is the exception as far as options go. Already the American option
has an associated exercise boundary; the option is exercised if the path of prices
touches it. And there are even more exotic options yet. Most of them are path
dependent.

In this chapter we review some of these exotic options and show how they
can be priced by Monte Carlo methods. Pricing options that depend on the price
history of the underlying is a major theoretical challenge for analytical methods.
In many cases Monte Carlo is the only practical solution.

The following is a partial list of exotic options along with their brief
descriptions. The options marked by an asterisk have analytical pricing formulas
(at least for their European version). The reference for the analysis is given in
parentheses.

Asian the payoff is determined by the average price of the underlying over some
pre-set period of time.

Barrier∗ if a trigger price is crossed it causes a pre-determined option to come
into existence (knock-in) or go out of existence (knock-out) [Hull11].

Basket the underlying is a weighted average of several assets.
Bermuda the buyer has the right to exercise at a discrete set of times.
Binary∗ the payoff is a fixed amount of some asset or nothing at all, also called

a digital option [Hull11].
Chooser∗ gives the holder a fixed period of time in which to decide whether

the option will be a European put or call [Hull11].
Compound∗ an option on an option; the exercise payoff of a compound option

is determined by the value of another option [Hull11].
Exchange∗ the holder gets the best performing out of two underlying assets at

expiration [Mar78].

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 4,
© Springer Science+Business Media New York 2013
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Extendible∗ allows the holder or writer to choose, on the expiration date, to
extend the life of the option by a specified amount [Lon90].

Lookback∗ the holder has the right to buy (sell) the underlying at its lowest
(highest) price over some preceding period [Hull11].

Shout during the life of the option the holder can, at any time, “shout” to the
seller that he or she is locking-in the current price, if this gives a better deal
than the payoff at maturity the asset price on the shout date may be used
instead of that on the expiration date.

Spread∗ its underlying is the difference between two specific assets [CD03].

We will discuss some of these in the following sections in terms of their Monte
Carlo solutions. Even for those having analytical formulas, that solution requires
their financial parameters be constant, such as the risk-free rate. But they can
be solved as well by Monte Carlo under less stringent, non-constant, conditions.

In pricing exotic options by Monte Carlo, the random number generator must
be of high quality.

4.1 Asian Options

In place of the price of the underlying at exercise, an Asian option uses the
average price of the underlying over some pre-set period of time. For example
the entire life of the option or perhaps the last 30 days before expiration. A
reason for preferring Asian options in certain cases is to provide protection from
price manipulation as the option nears expiration. This is a risk for thinly traded
assets. Asian options also avoid the vagaries of volatility in the market. And they
are cheaper than their European counterparts because, by averaging the price
of the underlying, the effective volatility is much less.

The algorithm for pricing an Asian option is only mildly different from our
standard pricing algorithm, Algorithm 13 on page 108. It is noteworthy that
to obtain accurate results, dt must be taken to be a very small increment of
time, on the order of one one-hundredth of a day or about dt = 2.74 × 10−5 in
years. This greatly increases the run time of the GRW. The following algorithm
takes about 90 seconds for N = 100,000 trials on contemporary equipment. For
techniques that reduce the run time see Chapter D.

Algorithm 16. Pricing algorithm for Asian options

inputs: S0, K, T, Δt, r, σ, N
E = 0 �expected option value
n = T/Δt �number of walk steps
A = 0 �A = average price over entire walk
for i = 1, . . . , N

S = S0 �starting price
for t = 1, . . . , n

Z ∼ N(0, 1)

dS = S(rΔt+ σ
√
ΔtZ)

S = S + dS
A = A+ S
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endfor
A = A/n �average price
E = E + G(A)

endfor
E = E/N
option price = e−rTE

Option payoffs are as usual,

for calls G(A) = max(A−K, 0), for puts G(A) = max(K −A, 0).

The algorithm relies on discrete arithmetical averaging

A =
1

n

n∑

i=1

Si,

but other types of averaging are also used. These include continuous (in analyt-
ical calculations) and geometric averaging, respectively

A =
1

T

∫ T

0
S(t)dt

A = exp

(
1

T

∫ T

0
log(S(t))dt

)

There are analytical formulas for calculating Asian options under geometric
averaging.

In Table 4.1 we compare various Asian option prices with their European
counterparts. One immediate observation is that as the averaging period be-
comes shorter at the end of the life of the option, the Asian price increases up
to that of the European.

Table 4.1 Asian versus European option prices

S0 = 100, rf = 3%, σ = 20%, Δt(days) = 0.01

Type Strike Expiry(days) Avg. period Asian European

Call 100 60 Entire 1.99 3.48
Call 100 60 Last 30 days 2.82 3.48
Call 100 60 Last 15 days 3.16 3.48
Call 95 60 Entire 5.50 6.61
Call 105 60 Entire 0.41 1.54
Put 100 60 Entire 1.75 2.99
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4.1.1 Floating Strike Asian Option

The option described above is known as the fixed strike Asian option. There is
also a variant in which it is the strike price that is averaged. In this case the put
and call payoffs are, respectively,

max(A− ST , 0), and max(ST −A, 0).

As usual, ST is the underlying price at expiration while A is the average under-
lying price over the designated period. We leave it to the reader to explore this
case.

4.2 Barrier Options

In addition to the strike price, a barrier option specifies a second price as well, the
barrier. The barrier can function to engage the option or to nullify it depending
on the type. In the case of a “knock-out” barrier, if the barrier price is crossed,
the option becomes valueless. The opposite occurs for a “knock-in” barrier, the
option comes into existence.

Evidently the price of a knock-out type plus the price of a knock-in type
equals the price of a plain vanilla European option. This implies that the price
of a barrier option is always less than that of its European counterpart. Their
reduced cost is one attraction of a barrier option.

It also implies that given the price of one of the options, say the knock-out
variant, then the price of the knock-in can be easily calculated by subtracting
from the price of the vanilla option as determined by the Black-Scholes formula.

In calculating the value of a knock-out barrier option by simulation there is
a fundamental problem. We may and do simulate the stock price at the nodes,
ti = iΔt, i = 1, . . . , n and therefore know if the barrier is crossed at those points,
but what about between the nodes? Fortunately there is a way to decide, prob-
abilistically, whether the barrier has been crossed in this manner. The technique
is called Brownian bridges. Let Xt = μt + σWt be a Wiener process with drift
which has the value xi−1 at ti−1 and xi at ti both less than the barrier B. Then
the probability the process does not cross the barrier between these bridge points
is given by, see [BS02]

Pr(Xτ < B, ti−1 < τ < ti) = 1− e−2(B−xi)(B−xi−1)/(σ2Δt). (4.1)

One sees from (4.1) that in the limit as xi → B (or xi−1 → B) the probability
of not crossing tends to 0.

The following algorithm runs the simulation, reports the ending stock price
and whether the barrier was crossed or not. From (4.1), the barrier is crossed
between end points with probability

e−2(B−xi)(B−xi−1)/(σ
2Δt). (4.2)
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But if the barrier is crossed at one of the end points, then the product (B −
xi)(B−xi−1) is negative

1 and the exponential (4.2) is greater than 1. Hence the
Brownian bridge check may be combined with the end-point check.

Algorithm 17. Pricing algorithm for a barrier option

inputs: S0, K, B, T, r, σ, N, dt
E = 0; n = T/dt;
for i = 1, . . . , N

S = S0; barrierCrossed = false;
diff1= B − S0;
for t = 1, . . . , n

Z ∼ N(0, 1)

dS = S(rdt+ σ
√
dtZ)

S = S + dS
diff2 = B − S
U ∼ U(0, 1)

if( U < e−2diff1·diff2/σ2·dt ) �barrier crossed
barrierCrossed = true

endif
diff1 = diff2;

endfor
if( barrierCrossed == false )

E = E + G(S) �knock out type
endif

endfor
E = E/N
option price = e−rTE

Again, to obtain accurate results, dt must be taken to be a very small increment
of time.

Some example barrier prices are presented in Table 4.2.

Table 4.2 Barrier versus European option prices

S0 = 100, K = 100, rf = 3%

Type Barrier Expiry(days) Vol.(%) Δt(days) Barrier price European

Call 95 60 20 0.05 3.09 3.48
Call 95 60 40 0.005 4.04 6.70
Call 95 90 20 0.005 3.53 3.32
Call 90 60 20 0.05 3.48 3.48
Put 105 60 20 0.05 2.57 2.99

1 Only one is negative the first time.
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4.3 Basket Options

The payoff of a basket option is the weighted average of two or more underlying
assets – what would be called a “basket” of assets. For example, a European
style basket option has a specified strike price K and an expiration date T . The
payoff is (ST −K)+ for a call or (K − ST )

+ for a put where

St =
n∑

k=1

wkS
k
t , 0 ≤ t ≤ T ;

S1
t , . . ., S

n
t are the prices of the underlying assets, n of them in this case, and

w1, . . ., wn are the weights,
∑

wk = 1.
The complication in evaluating a basket option is that the underlying assets

are almost always correlated. Fortunately correlation is no problem for the Monte
Carlo method. Refer back to Section 2.3.4 for a discussion on the matter.

To illustrate, we will work through a three basket problem. Let ρ12 be the
correlation coefficient between assets 1 and 2. Similarly let ρ13 and ρ23 be the
correlations between assets 1 and 3 and 2 and 3 respectively. According to (2.36)
and (2.37) we may use the lower triangular matrix

H =

⎡

⎣
1 0 0
ρ12

√
1− ρ212 0

ρ13 h32
√

σ2
3 − ρ213 − h232

⎤

⎦ (4.3)

where

h32 =
ρ23 − ρ12ρ13√

1− ρ212

to generate the required correlated standard normal random variables. Let Z1,
Z2, and Z3 be independent N(0, 1) samples, then X1, X2, and X3 given by

⎡

⎣
X1

X2

X3

⎤

⎦ = H

⎡

⎣
Z1

Z2

Z3

⎤

⎦ (4.4)

serve as the increments to the GRW.
Note that perfect correlations ρ = 1 or perfect anti-correlations, ρ = −1

must be worked out as special cases. For example, if ρ12 = 1, then ρ13 = ρ23.
The terms of matrix H will be h11 = h21 = 1, h31 = ρ13, h32 =

√
1− ρ213, and

h22 = h33 = 0 in this case.

Algorithm 18. Pricing algorithm for a 3-basket option

inputs: Sk
0, wk, σk, k = 1, 2, 3,

H, K, T, r, N, Δt
E = 0; n = T/Δt;
for i = 1, . . . , N

Sk = Sk
0, k = 1, 2, 3
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for t = 1, . . . , n
Zk ∼ N(0, 1), k = 1, 2, 3

[X1 X2 X3 ]
T = H [Z1 Z2 Z3 ]

T �eqn. (4.4)

dSk = Sk(rΔt+ σk
√
ΔtXk), k = 1, 2, 3

Sk = Sk + dSk, k = 1, 2, 3
endfor

ST = w1S
1 + w2S

2 + w3S
3

E = E + G(ST )
endfor

E = E/N

option price = e−rTE

In Table 4.3 we give some basket option values. There are many possible com-
binations to explore; only a small subset can be undertaken here. In the last
column of the table we give the Black-Scholes value of an option having volatil-
ity equal to the weighted average of that of the three assets. This is for reference
purposes only, the basket option is not expected to equal it.

An exception is the first table entry. Here two perfectly correlated assets
with the same volatility constituting the entire portfolio should behave as a
single underlying, and does. In the next row, the two assets are perfectly anti-
correlated. The result is that the option value is very small. This is because
the volatility of the portfolio is now nearly zero, when one asset is heading up,
the other is heading down. But the reverse directions of the two do not cancel
because both have positive drift, the risk-free rate. This example shows that
options over portfolios of assets should cost less. And the next row shows this
for arbitrary correlations.

In the next row we see that if the assets are perfectly correlated then they give
the same as Black-Scholes even if they have different volatilities. On the other
hand, if the assets are uncorrelated, then their option cost is suitably reduced
from Black-Scholes.

Table 4.3 A sampling of basket option prices

Call, S1
0 = S2

0 = S3
0 = 100, K = 100, rf = 3%, T = 60days

σ1 σ2 σ3 ρ12 ρ13 ρ23 w1 w2 w3 Basket BlkSch.

0.2 0.2 0.2 1 0 0 0.5 0.5 0.0 3.48 3.48
0.2 0.2 0.2 −1 0 0 0.5 0.5 0.0 0.49 3.48
0.2 0.2 0.2 0.7 0.3 −0.1 0.33 0.33 0.33 2.62 3.48
0.2 0.3 0.4 1 1 1 0.33 0.33 0.33 5.09 5.09
0.2 0.3 0.4 0 0 0 0.33 0.33 0.33 3.14 5.09
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4.4 Exchange Options

The payoff of an exchange option is the amount by which one asset outperforms
another. If the contract matches asset A versus B, then at expiration the payoff is

max(AT −BT , 0). (4.5)

Another way of thinking about it is that the holder is allowed to exchange one
share of asset B for one share of A at expiration if A is worth more (otherwise
B is retained).

Exchange options are also called Margrabe options after the person who first
studied them or outperformance options.

From the standpoint of asset A, the option is a European call with exercise
price equal to BT . But from the standpoint of B, it is a European put with
exercise price AT . From the first interpretation it is not surprising that during
the life of the option it never has value 0 and therefore the price of an American
exchange option is the same as the European one.

The payoff of an exchange option does not depend on the path of prices of
the underlying giving rise to the hope that an analytical expression can be found
to price them. One elegant way to proceed is by change of numeraire. Numeraire
refers to the basis for measuring the value of things. Normally currency is used
for this purpose, but here, following [Der96], we will use shares of B.

Let C$ be the value of the exchange option in terms of dollars and CB the
value in terms of shares of B. Similarly let A$(0) = A(0) denote the value of one
share of A in dollars at the time the contract is made and let AB(0) denote the
value of one share of A in terms of shares of B at that time. The exchange rate
between B-shares and dollars is B$ = B(0), that is B$ is dollars per share of B.
To convert a value in B-shares to dollars, multiply by B$.

In terms of B-shares, the option contract is to exchange 1 share of B for 1
share of A at expiration, in other words the payoff is

max(AB(T )− 1, 0).

Therefore the value of the contract denominated in B-shares is given by the
Black-Scholes call formula, a function of S0, K, T , rf , and σ, see Section 3.6,

C = BS(S0,K, T, rf , σ) = S0Φ(d1)−Ke−rf TΦ(d2).

In terms of B-shares the parameters are as follows: the starting value of A is
AB(0), and the strike price is 1. Let the time to expiration be T as usual. The
risk-free rate must be taken in terms of B-shares – it is the dividend yield for B,
denote it qB. Finally, for the volatility, we must use the volatility of A in terms
of B-shares, denote it by σB(A). We will calculate this below.

From Black-Scholes then

CB = BS(AB(0), 1, T, qB , σB(A)) = AB(0)Φ(d1)− e−qBTΦ(d2). (4.6)

and in terms of dollars
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C$ = B$CB = B$AB(0)Φ(d1)−B$e
−qBTΦ(d2)

= A(0)Φ(d1)−B(0)e−qBTΦ(d2).

It remains only to accommodate the dividend yield of A by replacing A(0) by
A(0)e−qAT throughout (here and in d1 and d2 below), see Section 3.6.5. Thus

C$ = A(0)e−qATΦ(d1)−B(0)e−qBTΦ(d2). (4.7)

The combination of terms comprising d1 and d2 refer to B-shares as the nu-
meraire, for example

d1 =
log(AB(0)/1) + (qB + 1

2σB(A)
2)T

σB(A)
√
T

.

Since B$AB(0) = A(0), it follows that AB(0) = A(0)/B(0). Then, accounting
for the A dividend rate, we have

d1 =
log(A(0)/B(0)) + (qB − qA + 1

2σB(A)
2)T

σB(A)
√
T

d2 =
log(A(0)/B(0)) + (qB − qA − 1

2σB(A)
2)T

σB(A)
√
T

. (4.8)

As mentioned above, σB(A) is the volatility of A with respect to B; it is the
square root of the variance of A/B. It can be shown that this is given by2

σB(A) =
√

σ2
A + σ2

B − 2ρABσAσB. (4.9)

Notice that the calculation of the exchange option price does not make use of
the risk-free rate. This is because the risk-neutral requirement has both equities
growing at that rate and therefore the effect cancels out.

4.4.1 Non-constant Correlation

Equation (4.7) assumes the correlation coefficient ρAB is constant. When this is
not expected to be a valid assumption, Monte Carlo can be used. For example it
may be anticipated that the two assets will become less correlated over the time
horizon of the option. An arbitrary dependence on time, ρAB = ρAB(t) can be
accommodated or even a dependence on relative prices. The following algorithm
incorporates a time profile.

Algorithm 19. Pricing algorithm for an Exchange Option

inputs: A0, qA, σA, B0, qB, σB
ρ(t), T, r, N, Δt

E = 0; n = T/Δt;
for i = 1, . . . , N

2 Expand the function f(a, b) = a/b in a Taylor series through first order terms about the
means μA and μB and take expectation.
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A = A0; B = B0;
for j = 1, . . . , n

ρ = ρ(j Δt)
Z1 ∼ N(0, 1); Z2 ∼ N(0, 1);

XA = Z1; XB = ρZ1 +
√

1− ρ2Z2;

dA = A((r − qA)Δt+ σA
√
ΔtXA)

dB = B((r − qB)Δt+ σB
√
ΔtXB)

A = A+ dA; B = B + dB;
endfor
E = E + max(A−B, 0)

endfor
E = E/N
option price = e−rTE

In Table 4.4 we show the results of a few runs of the algorithm. The first three
use a constant correlation profile and hence, for them, the solution derived above
should equal that of the simulation, and it does. We notice that as the assets are
more correlated, the smaller is the option value. In the third case, the value of B
starts out greater than that of A, thus A does not often exceed B at expiration
and the option cost is low. In the fourth run the correlation decreases over the
life of the option (from 0.8 down to 0.2). The result is that the option price
behaves more like the correlation was the lower value than the upper one. In the
last run the correlation increases over the life of the option. Again the result is
that the option price is more like that for the higher correlation.

Table 4.4 Sample exchange option prices

qA = 8%, qB = 6%, r = 3%, T = 90 days

A0 B0 σA σB Correlation Exchange BlkSch.

100 100 0.2 0.2 Const. at 0.6 3.24 3.24
100 100 0.2 0.2 Const. at 0.0 5.27 5.26
100 102 0.2 0.2 Const. at 0.6 1.88 1.88
100 100 0.2 0.2 Decr. 0.8 to 0.2 2.52 2.70
100 100 0.2 0.2 Incr. 0.2 to 0.8 3.47 2.70

4.5 Bermudan Options

A Bermudan option is one that can be exercised at any one of a set of specified
times, the last one being the expiration date of the option. A Bermudan option
is in this sense in-between an American and a European option.

A Bermudan option can be priced by either of the methods used for Amer-
ican options: the binomial tree method or maximization over a parameter set
controlling an exercise boundary. Refer to Sections 3.5.4 and 3.7.2 respectively.
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4.5.1 The Binomial Tree Method

The only change in the binomial method for a Bermudan option from its appli-
cation in the American case is that the test for early exercise is only made at
the designated exercise times, for all other nodes the tree is valued exactly as a
European option. Of course the early exercise times should be among the nodes
of the tree.

In Fig. 4.1 we show the binomial tree for a 20 day put option with possible
exercise on days 10 and 20. The time between nodes on the tree is 5 days so the
early exercise test must be made at nodal step 2. The Bermudan value of this
option is $1.788; the European is $1.785. To get this kind of accuracy the step
period for the binomial method must be on the order of 0.02 days or 500 steps per
exercise period. The example as shown was chosen for illustration purposes only.

Fig. 4.1. Binomial pricing tree for a 2-exercise period put option. The 20 day Bermudan
option can be exercised on the 10th day or otherwise at expiration. The binomial step
size is 5 days. Those nodes for which early exercise is advantageous expresses the option’s
value in red. Superimposed on the graph is the early exercise boundary

4.5.2 The Exercise Boundary Method

As above, the only difference here from the American option case is that the test
for early exercise is only made on the permissible exercise days. Additionally
there are some special considerations that come into play in the Bermudan case.

Since there are only a finite number of exercise opportunities, and usually
a small number, the parametrized analytical formula for the exercise boundary
can be replaced by parameters giving the early exercise prices directly on the
exercise days, either relativized (i.e. in the form (K − S)/K) or absolute. Thus
for the problem in Fig. 4.1 there will be only one optimization parameter, the
early exercise price on the 10th day.

Another consideration relates to the accuracy of the expectation estimates.
Recall that, having fixed a trial set of parameters, whether or not they produce
the maximum option value is determined by simulating a large number of random
walks in order to calculate the expected payoff based on those parameters. But
as these are only Monte Carlo estimates, there is inherent variance in them. Since
the prices of the European versus the Bermudan options can be fairly close, it
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is desirable that the variance be of a smaller order of magnitude. Fortunately
there are some simple remedies.

First, the random walk should not be carried out in small steps. Instead,
the walk should jump from exercise day to exercise day by sampling from the
appropriate lognormal distribution. This modification speeds up the simulation
by many orders of magnitude. As a result, many more trials can be included
toward determining the payoff expectation.

Secondly, a more discriminating objective can be used in place of the expected
payoff, namely the expected payoff raised to some power. As mentioned above,
in the example of Fig. 4.1 the (discounted) expected payoff is $1.79. But the
difference between 1.76 and 1.79, for example, does not discriminate between
parameters sufficiently well to drive a simulated annealer or a genetic algorithm
toward optimization. On the other hand 1.7610 = 285 versus 1.7910 = 337 has
better effect.

Algorithm 20. Pricing a Bermudan Option Given an Exercise Boundary

inputs: S0, K, T, r, σ, N, exercise dates tj and the
exercise boundary on those dates Bj, j = 1, . . . , n

E = 0
for i = 1, . . . , N

for j = 1, 2, . . . , n �tn = T
�jump to next price Sj (cf. Algo. 12 page 107)
Δt = tj − tj−1

β = σ
√
Δt

α = log(Sj−1) + (r − σ2

2 )Δt
Z ∼ N(0, 1)
Sj = eβZ+α

if K − Sj ≥ K ∗Bj

E = E + e−rtj (K − Sj) �exercise
go to next i

endif
endfor j

endfor i
E = E/N
option price = E

In conjunction with the algorithm, as in the American case, we may use a
simulated annealer or genetic algorithm to optimize the Bj’s.

In Table 4.5 we make a comparison between a European, an American, and
a Bermudan option; the latter calculated by both methods discussed above. The
option is a 90 day 5 exercise opportunity put. With an exercise opportunity every
18 days the value is closer to that of an American versus a European option.

Table 4.5 Bermudan option comparison prices

S0 = 100, K = 100, rf = 6%, σ = 40%, #periods= 5, T = 90 days

European American Bermudan (binomial) Bermudan (optimization)

7.14 7.28 7.23 7.23
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4.6 Shout Options

During the life of a shout option the holder may lock in the current stock price
for the purpose of recalculating the payoff value of the option at expiration. This
is called shouting and the associated price is the shout price. At one time the
shout price SH was used in place of the expiration price ST if it led to a bigger
payoff. In such a case the payoff value for a call is

max(SH −K,ST −K, 0).

Thus the holder attempts to shout at the maximum price of the underlying over
the option’s life.

In recent times it is more common to use the shout price to replace the strike
price. This is called a reset strike shout option. In this case the payoff value of a
call is

payoff =

{
max(ST − SH , 0), if shouting occurs
max(ST −K, 0), if no shouting occurs.

(4.10)

Now the holder of the option attempts to shout at the lowest price of the un-
derlying for a call. The holder does not shout when the asset price is above the
original strike price.

Of course the ST and SH or K are reversed in (4.10) for a put as usual. For
a reset strike put, the holder tries to shout at the maximum underlying price
over the life of the option and does not shout when the asset price is below the
strike price.

In the following we shall address the problem of pricing the reset strike version
of the option. This is a very difficult problem for exact solution by analytical
methods because a forward method can not specify a condition for shouting since
the ending price of the stock is not known, and a backward method must know if
shouting occurred earlier in the course of the price history in order to calculate
the ending value of the option. The author knows of no such analytical method.
Instead we will solve the problem by a two phase technique similar to that of
the American put option: by estimating a “shout boundary” and subsequent
simulation. The boundary calculation is lengthy and we make no attempt here
to shorten it, but the subsequent option valuation is very fast.

4.6.1 Maximizing Over a Shout Boundary

Once again, let the time from inception to expiration, 0 to T, be divided into n
equal time steps of interval Δt. At each time step ti = iΔt, i = 0, . . . , n, let bi be
the relativized boundary point at that time (3.44). Then the actual boundary
point, Bi, is given by

Bi = K(1± bi)

where the plus sign applies for a put because the boundary is above the strike
price in this case, and the minus sign applies for a call, because the boundary is
below the strike for a call. To simplify the subsequent discussion assume we are
pricing a put option.
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As was the case for an American option, we proceed in reverse order and
first consider the conditional boundary point at tn−1, meaning the boundary
point given that shouting has not previously occurred. It is easy to see that here
the boundary point must be the strike price K. If the stock price at this step
exceeds K, shouting resets the strike to a higher value which can only increase
the payoff and make a positive payoff more likely. Further there is no penalty for
doing so here. At earlier times, the restraint for shouting is that the stock price
might go higher before expiration; that does not apply on this penultimate time
step. Hence the relativized boundary point at i = n− 1 is bn−1 = 0.

Now consider the next time step proceeding in reverse order and again we
assume shouting has not yet occurred. The higher the stock price, the more
valuable to shout; if shouting at the price S leads to an improved expected
payoff and S′ > S, then shouting at S′ leads to a bigger one. Hence the minimum
(technically infinimum) of all those points where shouting leads to an improved
expected payoff is the boundary point.

Finding this point is a straightforward one variable unimodal optimization
problem. If the boundary point is set too low, then, stochastically, subsequent
stock prices can allow for a later shout with an even better expected payoff.
Similarly if the boundary point is set too high then the stock price might reach
this level too infrequently to have a larger expected payoff than a lower value.
The effect is shown in Fig. 4.2. This is a plot of expected payoff as a function
of various trial locations of the boundary point all at the same time before
expiration. Although the data has considerable stochastic variability, it clearly
shows a unimodal maximum in the vicinity of S = 102.

Finding the maximum of such data numerically is problematic. It becomes
much easier if the data is smoothed as shown in Fig. 4.3. The smoothing used in
the figure is a 11 window central moving average, each smoothed value mi is the
sum of 5 prior values, the current value, and 5 future values all divided by 11,3

mi =
1

11
(pi−5 + . . .+ pi−1 + pi + pi+1 + . . .+ pi+5).

The simulation of stock prices from the present step to expiration uses the
boundary points that have already been calculated. The objective calculation is
shown in Algorithm 21. Note that in the algorithm we use the absolute boundary
values Bi. Further the order of the boundary values is reversed from that in the
discussion above; B0 is the boundary value at expiration and Bn is the value
at t = 0. The algorithm first calculates the number of steps m to expiration; τ
is the remaining time to expiration. Lognormal samples will be used to assign
stock prices from step to step and the parameters α and β are calculated; α
must remain a function of stock price and be recalculated from step to step.

In each trial, the starting stock price is drawn from a range of possibili-
ties above and below the strike price. More exactly, the range should extend

3 This is a discrete example of convolution smoothing. The general form is
m(t)=

∫∞
−∞ f(t−s)k(s)ds where f() is the function to be smoothed, m() is the smoothed

version and k() is the smoothing kernel. In the discrete analogy here k(s) = 1 for −5 ≤ s ≤ 5
and 0 otherwise.
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Fig. 4.2. Expected payoff as a function of increasing the conditional shout boundary
point at t = 18 days for a put option. The option’s particulars are: K = 100, T = 36,
r = 3% and σ = 20%. These are raw simulation results over the remaining 18 days to
expiry. Each plotted point represents 1,000,000 simulations

Fig. 4.3. This figure uses the same data as in Fig. 4.2 but here the raw data has been
smoothed using a 11 window central moving average. It is much easier to determine the
trial boundary value at which the maximum occurs

above and below the boundary point being tested. If paths do not encounter the
boundary, then their payoff will mimic that of a European put.

Each new trial also begins with a “noshoutyet” variable set to true and the
shout strike Ks set to K. Upon encountering the boundary, and only for the
first time, Ks is reset to the current stock price, otherwise it remains at K. In
either case the put payoff is calculated as max(Ks − ST , 0) as usual.

Having determined the maximizing boundary value at step m from expira-
tion, in like manner processing continues to step m + 1 and finally ends with
the boundary at t = 0. At this point the option value itself can be calculated.
Algorithm 21 can also be used for this provided the starting range is collapsed
to 0 around S0.
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Algorithm 21. Monte Carlo objective calculation for a shout put

inputs: K, τ, Δt, r, σ, nTrials
and the shout boundary Bi

m = τ/Δt �number of steps to expiry

β = σ
√
Δt �for lognormal samples

α(·) = log(·) + (r − 1
2σ

2)Δt �α = α(S)
V = 0;
for k = 1, . . . , nTrials �loop over trials

S ∼ uniform over a starting range
Ks = K �set the shouting strike equal to K initially
noShoutYet = true �keep track of shouting
for i = 0, 1, . . .

if noShoutYet
if S≥ Bm−i �reset the strike

Ks = S; noShoutYet = false;
endif

endif
�take the next step

S ∼ LN(α(S), β) �lognormal sample
i = i+ 1
if i == m, break out of loop �expiry stock price

endfor i
V = V + max(Ks − S, 0) �payoff for this trial

endfor
V = V/nTrials

Fig. 4.4. Shout boundary as calculated by two runs of the method described in the
text. The time horizon is divided into six periods

Two boundary calculation runs are shown in Fig. 4.4 for the S0 = K =
100, T = 36 day shout put option with six division periods. As seen there,
the calculated boundary points have considerable variance but despite that the
option value is stable and has low variance. This phenomenon was previously
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noted in Section 3.7.2. In Table 4.6 we give some shout option prices calculated
by the boundary method described above along with their statistical standard
deviations. These are compared with the Black-Scholes prices for their European
counterparts.

Table 4.6 Sample shout option prices

S0 = 100, K = 100, rf = 3%, σ = 20%, T = 36 days

Put/ Option value (standard deviation (10 trials))
call versus number of time steps

3 6 12 24 European

Put 2.986(0.005) 3.059(0.004) 3.091(0.003) 3.104(0.005) 2.36
Call 3.253(0.005) 3.329(0.006) 3.375(0.005) 3.374(0.005) 2.65

Problems: Chapter 4

1. Write a program to calculate Asian options. Try it out for a 60 day ATM call option
with S0 = 100, and r = 3%. Let the averaging take place over the last 30 days.
Plot the option price as a function of volatility.

2. Repeat Problem 1 for a floating strike Asian option.

3. Write a program to calculate correlated basket options. Extend the results of
Table 4.3 to T = 90 days.

4. Price a 90 day 100 strike Bermudian option with 15 day early exercise periods.
Assume r = 1% and σ = 20%. Use the binomial tree solution method. Plot the
price of the option versus originating stock price. Compare the graph with that of
its European counterpart.

5. Same question as Problem 4 but use the exercise boundary method.

6. Find the price of a 365 day exchange option between equities A and B. Assume
r = 6%, σB = 20% and the current price of B is $60. Plot the price as a function
of the current price of A for σA = 15, 30, and 45%. Assume that neither A nor B
issues dividends.

In the following problems, create a calculator for the given exotic option and use it
to calculate a table of prices for various option parameters.

7. A barrier option.

8. A binary option.
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9. A chooser option.

10. A lookback option.

11. A spread option.
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Option Trading Strategies

Although originally conceived as a tool to alleviate risk, once introduced, options
quickly became a vehicle for speculative investment. For the trader who believes
himself or herself capable of predicting the direction of the market, either short
or long term, puts and calls offer financial leverage. For a fraction of the cost
of owning 100 shares of stock, an option contract bestows a kind of temporary
ownership suitable for profiting should the prediction prove out.

Moreover, combinations of the basic options provide various and unique
investment possibilities. For example, certain combinations take advantage of
changes in volatility independent of the direction of the market. In another
instance, known as delta hedging, by holding a carefully calculated balance of
stocks and options, the trader makes money by capturing the drift of the underly-
ing without risk (theoretically, unfortunately trading costs outpace the profits).
In fact we used delta hedging in Section 3.4 to derive the arbitrage free price of
a call for a one step binomial model.

Delta hedging shows the importance of the Greeks. These are the mathe-
matical derivatives of the value of a portfolio with respect to the Black-Scholes
variables: stock price S, time to expiration τ , volatility σ, and the risk-free rate r.
The Greeks are an important tool for trading in options.

Also important are the predictions as to: whether an option combination will
expire ITM, the expected profit, and the strategy’s risk. The answers can be
found by simulations based on the GBM model for stock prices.

5.1 Related Option Trades

As previously explained, an option is a trade between two parties. Except for
the commission (a payment to the broker) and the bid-ask spread (essentially a
payment to the market maker and the exchange), what one party makes from
the trade, the other party pays. Therefore related to every trade is the same
trade with the roles reversed. We refer to this as the reverse trade.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 5,
© Springer Science+Business Media New York 2013
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5.1.1 Reverse Trades

Even a complicated trade consisting of any number of puts and calls with arbi-
trary strikes and including the underlying can be easily reversed: simply inter-
change all buys and sells and, for the underlying, interchange long and short.

long side of the bull spread

a b

short side of the same trade

Fig. 5.1. Net payoff for a debit call spread with strikes $105 and $110. The price of the
$105 call is $2.74 and the price of the $110 call is $0.92

For example, a debit call spread is the trade in which one buys a call at
some strike price K	 and sells a call at a higher strike price Kh > K	. The
net payoff (including the net premium) at expiration for this trade is shown in
Fig. 5.1a. Notice that for ending prices less than $105, the graph is $1.82 below
the horizontal axis, the S-axis. And for ending prices above $110, the payoff is
−1.82+5.00 = 3.18. The reverse trade consists in selling a call at K	 and buying
one at Kh. This is the other side of the trade. In all likelihood it will not be
a single person taking the other side of a given trade, instead the broker puts
multiple trades together from multiple sources. But it is sometimes helpful to
imagine that a “virtual person” has done so. The payoff graph for the reverse
trade taken by the virtual person is shown in Fig. 5.1b. Notice that it is the
reflection of the original trade in the horizontal axis. For S < 105, the payoff is
$1.82 and for S > 110 the payoff is $−3.18.

This property is true in general: the payoff graph of the reverse trade is the
reflection in the horizontal axis (the S-axis) of the original payoff graph.

5.1.2 Dual Trades

Another possibility for a related trade is to swap puts and calls. With careful
handling of the strike prices, this leads to a payoff graph that is vertically sym-
metric with the original provided option costs are excluded and provided all
options expire at the same time. We call this the dual trade. (Option costs can
be included by using the overall cost of the trade. We leave it to the reader to
see how this is done.)
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Debit Call spread

a b

Debit Put Spread

Fig. 5.2. Payoff graphs for debit call and put spreads with strikes $105 and $110
(excluding option costs). The line of symmetry was taken at S = 107.5

Pick a point A on the S-axis and reflect all the strike prices across this point.
Thus the strike K is reflected to K ′ = 2A − K. A must be chosen so that all
reflected strikes are positive. The point S = 0 is reflected to 2A (and serves as
a value larger than any strike; this point is useful in proving the symmetry).
Now to create the dual, every call becomes a put with the reflected strike price
and conversely, every put becomes a call with the reflected strike price. For the
underlying, swap long for short and conversely and reflect S0 to S′

0. Then the
payoff graph of the dual trade is the reflection of the original in the vertical line
at S = A. In Fig. 5.2a, b we show the graphs of the debit call spread from above
and its dual.

Vertical symmetry is not possible under duality for option combinations with
differing expiration dates because calls always have positive time value but puts
can have negative time value. Nevertheless we extend the notion of duality to
include combinations with differing expiration dates.

5.2 The Greeks

The Black-Scholes formulas show that the arbitrage free value of a put or call
depends on: the price of the underlying S, the time remaining until expiration
τ , the volatility of the underlying σ, the risk-free rate r, and the strike price
K. Once an option contract has been made, all of those variables except the
strike price change from moment to moment. Consequently so does the value
of the option. The Greeks, collectively, are the mathematical derivatives of the
option price with respect to these variables. Therefore each Greek predicts how
strongly the option price will change for a unit change in its variable and in
which direction. In calculating each Greek, the position is assumed to be long
the option. If one’s position is short the option, then the Greek is oppositely
valued.
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5.2.1 Delta (Δ), the Derivative with Respect to S

Delta is the most important Greek partly because price changes in the underlying
are relatively larger and more frequent than for the other variables and partly
because its effect on the option price is greater. An analytical formula for delta
for a put follows directly by differentiating (3.34) to get

ΔP =
∂P

∂S
= −Φ(−d1) = Φ(d1)− 1 (5.1)

and (3.29) for a call

ΔC =
∂C

∂S
= Φ(d1) (5.2)

(Φ(·) is the normal cumulative distribution function and d1 is defined in (3.27)).
Note that delta is the partial derivative of the option price; thus its prediction
pertains when there is a change in stock price only, the other variables being
fixed.

It is immediately seen that

ΔP = ΔC − 1. (5.3)

This result also follows directly from put-call parity.

delta for a put

a b

delta for a call

Fig. 5.3. Delta as a function of stock price 30 days before expiration. The strike price
is K = 100 in both figures. Delta for the put is negative while for a call it is positive

From a traders point of view, the value of delta tells by how much the option
will change give a unit change in the underlying price; that is by a dollar if the
option price is given in dollars. Under the conditions pertaining in Fig. 5.3, when
the stock price is 100, the delta of a long call is 0.6; the call increases by 60 cents
for every dollar increase in the stock price, approximately.
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It is easy to get a good sense about delta since it is the slope of the option
payoff graph by definition. For example, delta for a put must be negative because
as the price of the underlying increases, the payoff of a put decreases. By contrast,
as the price of the underlying increases, the value of a call increases. Thus delta
for a call is positive.

Continuing along these lines, from Fig. 3.9a (page 103) we see that for a deep
ITM put, the slope is asymptotically equal to that of the expiration payoff graph,
namely −1. At the other end of the figure, for a deep OTM put the slope of the
graph is asymptotically 0. So as a function of S, delta for a put increases from
−1 to 0.

From Fig. 3.9b we see that for a deep ITM call the slope tends to +1 and for
a deep OTM call the slope tends to 0. Hence delta for a call increases from 0 to
+1. This is exactly what we see in the graphs of delta versus underlying price
shown in Fig. 5.3a, b.

Making a Portfolio Delta Neutral

The delta of a share of stock is 1 since ∂S/∂S = 1. But by adding an option,
delta of the portfolio can be adjusted. Since the Greeks are mathematical deriva-
tives, it follows that the delta of a portfolio is just the sum of the deltas of each
constituent weighted according to its numbers. For example, under the condi-
tions pertaining in Fig. 5.3, when the stock price is 100, a portfolio consisting of
1 long call contract (representing 100 shares of stock) and short 60 shares of the
underlying is delta neutral meaning its delta is 0.

The delta of even the most complicated portfolio can be calculated provided
the delta of each constituent is available. Then, as above, shares can be bought
or sold short as required to achieve delta neutrality.

Achieving delta neutrality is an important goal for many traders because
it insulates the portfolio against (small) changes in the price of the underlying
constituents in the same way that zero derivative points are the stationary points
of a graph. Recall that in Section 3.4 we derived the arbitrage free price of an
option by considering a simple delta neutral portfolio. After a single time step
the value of the portfolio was the same independent of whether the stock price
went up or down.

Example 5.1. The price of an ATM 30 day put contract with strike price 60 is
2.69 per share; this for a volatility of 40% and risk-free rate of 3%. To find delta
first figure d1,

d1 =
log(60/60) + (0.02 + 1

20.4
2)(30/365)

0.4
√

30/365
= 0.071673.

then from (5.1)

Φ(0.071673) − 1 = 0.5285 − 1 = −0.4714.

The purchase of 47 shares of stock will make this portfolio delta neutral.
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Suppose that after two days the stock price increases to $61. The value of the
option is now down to 2.16 from 2.69. Without the stock, this is a loss of 0.53
times 100 or $53. The stock has gained $1 per share or $47 for the portfolio, so
with the stock, the net position is a loss of $6.

Suppose instead the stock price decreases to $59. The option value becomes
3.11, a gain of 0.42 or $42 for the contract. Meanwhile the stock has lost $1 per
share or $47 to the portfolio. Together with the stock the portfolio’s net change
is −$5. (A loss in both cases because 2 days worth of time value slipped away.)
With the stock, the swing in price is about $5 instead of $50 in both cases. �

When stock prices change continuously, delta neutrality does not last very
long. It becomes necessary to re-balance the portfolio by buying or selling stock
until it is regained. This is called delta hedging. If it were possible to delta hedge
cost free, then, as we saw in Section 3.4, the portfolio would earn at the rate of
the drift of its constituents without risk.

5.2.2 Gamma (Γ ), the Second Derivative with Respect to S

The Greek parameter gamma is the second derivative of the portfolio value with
respect to S. Being the second derivative, gamma is therefore the first derivative
of delta with respect to S and predicts how delta will change with stock price.
Deriving the put and call formulas for gamma is a straightforward exercise; and
they are equal, both being the normal density function evaluated at d1 times
the derivative of d1,

Γ =
∂Δ

∂S
=

φ(d1)

Sσ
√
τ
=

e−d21/2

Sσ
√
2πτ

. (5.4)

It can be seen from this that gamma is always positive (if long the option,
negative if short the option). This means that if S increases, then delta also
increases for both puts and calls. This is seen in Fig. 5.3a, b in which the curves
have positive slopes at every point.

Although delta is dimensionless, gamma has units of reciprocal units of
currency.

Achieving Gamma and Delta Neutrality

The importance of gamma is that it predicts how quickly delta will change with
respect to stock price and therefore how frequently the portfolio will have to be
rebalanced to remain delta neutral. Best possible is if the portfolio is both delta
neutral and gamma neutral. It is possible to achieve such a thing but only by
adding a position in another option, either long or short as necessary, because
the gamma of a stock is 0 since a stock position has a constant delta of 1 (or −1
if short).

Denote by Γ and Δ the gamma and delta of the portfolio we want to bring
to delta–gamma neutrality. Let the gamma and delta of an option we will use to
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Fig. 5.4. Variation of gamma vs time to expiration depending on whether the under-
lying is in-the-money, out of-the-money, or at-the-money

achieve neutrality be ΓU and ΔU respectively. We will have to go long w units
of the option (or short if w is negative) where w solves the equation

wΓU + Γ = 0, thus w = −Γ/ΓU . (5.5)

But now the delta of our portfolio changes to Δ+wΔU . We can correct this by
going short this many shares of stock.

Example 5.2. In Example 5.1 above the gamma of the put option is, from (5.4),

ΓP =
e−0.0716732/2

60 ∗ 0.4√2π(30/365)
= 0.057832.

So the gamma of the portfolio is 5.78.
Let us add a short 60 day ATM call contract with strike price 60. Its gamma is

d1 =
0 + (0.02 + 1

20.4
2)(60/365)

0.4
√

60/365
= 0.1014

ΓC =
e−0.10142/2

60 ∗ 0.4√2π60/365
= 0.040789.

From (5.5)

w = −0.057832 × 100

0.040789
= 142;

the short call contract should be for 142 shares to create a gamma neutral
position.

Use (5.2) to figure the delta of the call.

ΔC = Φ(0.1014) = 0.5404.

Therefore the combined delta of the two options is

−0.4714 × 100 − 0.5404 × 142 = −128.88.

Going long 129 shares of stock will create a delta-gamma neutral portfolio.
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As above, suppose that after 2 days the stock price increases to $61. The
value of the put option falls to 2.16 from 2.69 or by 0.53. The value of a long
call increases by 0.49 to 4.46 from 3.97. Since the stock value increases by 129,
the net portfolio change is

−0.53× 100 − 0.49× 142 + 129 = 6.42.

If instead the stock price decreases to $59, the put option gains 0.42 per share
as before, the call option falls 0.59 to 3.38 from 3.97, and the stock has lost $1
per share; the portfolio’s change will be

0.42 × 100 + 0.59 × 142− 129 = −3.22.

�

Gamma Asymptotics

As expiration draws closer, gamma tends to 0 for ITM or OTM positions. This
is because delta tends to either ±1 or 0 in these cases. But for ATM options
gamma tends to infinity. This is because the delta of a put (call) option changes
from −1 (+1) ITM to 0 OTM very quickly near expiration for S ATM. See
Fig. 5.4.

5.2.3 Theta (Θ), the Derivative with Respect to τ

Theta is the derivative of the option price with respect to time to expiration.
Since expiration time runs down as real time moves forward, the convention is
to put theta equal to the negative of the derivative. Thus while the slopes in
Fig. 3.10 (page 104) are positive, theta itself is negative in those examples. This
is in line with the fact that most options lose value as expiration approaches
(via loss of time value).1 Thus theta expresses the time decay of a portfolio.

Time is usually measured in years when using the Black-Scholes formula.
For example the risk-free rate and the volatility are expressed in annual terms.
Therefore theta gives the change in portfolio value per year. To get a per day
value, the per year value must be divided by the number of days in a year. (A
calendar year is 365 days of course but sometimes the number of trading days
in a year is used, that number is approximately 252 depending on the year).

Theta may be calculated as follows: for a put

ΘP = −∂P

∂τ
= −Sσφ(d1)

2
√
τ

+ rKe−rτΦ(−d2) (5.6)

and for a call

ΘC = −∂C

∂τ
= −Sσφ(d1)

2
√
τ

− rKe−rτΦ(d2). (5.7)

1 As we saw in Section 3.5.4 and in Fig. 3.9 (page 103) a possible exception is in-the-money
put options whose time-value may actually be negative. Equation (5.6) shows exactly when
theta is positive.
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The differentiation to obtain these equations is somewhat involved and requires
use of the algebraic identity

Sφ(d1) = Ke−rτφ(d2). (5.8)

We leave this as an exercise for the reader.
In Fig. 5.5 we show the variation of theta with time to expiration. The most

important feature of the graphs is that, for ITM and OTM options, time decay
reaches a maximum about 5 days before expiration. For an option trader selling
options in order to capture time value, the trade should be made before this
critical time.

To understand these graphs, refer to Fig. 3.10 (page 104). As time to expira-
tion approaches zero, both ITM options and OTM options become unlikely of
finishing much differently than their current intrinsic value. As a result, their
time value rapidly tends to zero. Thus theta makes a large negative move. After
this, theta turns around and tends to its limiting value as τ → 0. For an OTM
option, this is 0. For a put (call), theta tends to rK (−rK).

To obtain these limits, first note that as τ → 0, d1 and d2 asymptotically
equal log(S/K)/(σ

√
τ). Since, for c > 0, limτ→0 e

−cτ/
√
τ = 0, it follows that

the term Sσφ(d1)/(2
√
τ) → 0 as τ → 0. The second term for theta in each case

tends to the limits noted above.
For ATM options the situation is much different. We notice from Fig. 3.10

that the graph becomes quite steep at 0. This is because even small changes in S
could move the option from expiring worthless to expiring with a positive value.
The steep slope of the option’s value is due to the as yet high probability of
ending in positive territory, but all the while the remaining time is nearly zero.
Analytically, since S = K if ATM, log(S/K) = 0, so both d1 and d2 tend to 0.
In turn φ(d1) and Φ(±d2) tend to the finite limits 1/

√
2π and 1/2 respectively.

theta vs τ for a put

a b

theta vs τ for a call

Fig. 5.5. The behavior of theta as time to expiration tends to zero for in-the-money,
out of-the money, and at-the-money puts and calls. The parameters here are the same
as those prevailing in Fig. 3.9 on page 103
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It follows that Sσφ(d1)/(2
√
τ) → ∞ in the limit at 0 while the second term for

theta remains bounded.

5.2.4 Vega (ν), the Derivative with Respect to σ

Vega is the derivative of the option price with respect to volatility. Actually
volatility rarely moves by one full point; therefore the convention is to express
vega as the change in option price for a 1% change in volatility. Hence vega is
usually reported as one one-hundredth times the derivative.

To get an expression for vega for a call, differentiate (3.29) with respect to σ

ν =
∂C

∂σ
= Sφ(d1)

∂d1
∂σ

−Ke−rτφ(d2)
∂d2
∂σ

.

From (3.27) we get
∂d1
∂σ

=
√
τ − d1

σ2
√
τ

and, since d2 = d1 − σ
√
τ ,

∂d2
∂σ

= − d1
σ2

√
τ
.

Substituting

ν =Sφ(d1)(
√
τ − d1

σ2
√
τ
)−Ke−rτφ(d2)(− d1

σ2
√
τ
)

=Sφ(d1)
√
τ − (

Sφ(d1)−Ke−rτφ(d2)
) d1
σ2

√
τ
.

But from the identity (5.8) the second term vanishes. Hence vega for a call is

ν = S
√
τφ(d1) = S

√
τ

2π
e−d21/2. (5.9)

By direct calculation, this is also vega for a put; the two are the same. Alterna-
tively it follows immediately from put-call parity that they are the same.

An immediate fact about vega is that it is always positive; thus all option
prices go up as volatility increases. In Fig. 5.6 we show how vega varies as time to
expiration tends to zero. The figure shows that vega is largest for ATM options
and falls off rapidly as the underlying falls away from the strike on either side.
The figure also shows that vega tends to zero in all cases with time to expiration.
In the case of an ATM option, a high vega value is maintained right to the end
and then drops off rapidly over the last few days.

Unsurprisingly, it can be desirable to guard a portfolio against adverse move-
ment in vega. Just as in the case of gamma neutrality, we can only change a
portfolio’s vega by buying or selling an option; the vega of the underlying is zero
since the stock price and volatility are independent variables; the stock price
does not vary as a function of volatility.
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Fig. 5.6. Variation of vega vs time to expiration for put and call options at-the-money,
10% in-the-money and 10% out of-the-money as labeled

Suppose our current portfolio has a vega of ν0 and we are willing to take a
negative position in another option whose per unit vega is νA. Shorting w units
of the addition makes the combined portfolio vega neutral if

w =
ν0
νA

.

But, as before, this addition will change the delta of our portfolio. Suppose
originally the portfolio was delta neutral. With the addition, the new portfolio
has a delta of

−wΔA

where ΔA is the delta of the added option (possibly negative). We could buy
wΔA shares of A (sell if ΔA is negative) to make the new portfolio both delta
and vega neutral.

Example 5.3. The vega of the put option in Example 5.1 is, from (5.9),

νP = 60

√
30/365

2π
e−0.0716732/2 = 6.844.

The reported vega is 0.068. This means that the value of the option will increase
by 6.8 cents for every 1% increase in volatility.

The vega of the call option in Example 5.2 is

νC = 60

√
60/365

2π
e−0.10142/2 = 9.655

for a reported value of 0.097. The number of these calls to short to achieve vega
neutrality is given by

−w(0.09655) + 0.06844 = 0, w = 0.709 per put.
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For the 100 puts this comes to 71 calls. The combined delta for these two op-
tions is

−0.4714 × 100− 0.5404 × 71 = −85.51.

So we should go long 86 shares to make delta zero too. �

5.2.5 Rho (ρ), the Derivative with Respect to r

Rho is the mathematical derivative of the option value with respect to the
risk-free rate. Thus rho measures option sensitivity to the interest rate. Nor-
mally rho is the least important of the Greeks.

Rho is typically expressed as the amount of money, per share, that the value
an option will gain as the risk-free rate rises by 1% so it too is divided by 100
for the reported value.

By differentiating the Black-Scholes equations for a put and call, and noting
the identity (5.8), we find that rho for a put is

∂P

∂r
= −τKe−rτΦ(−d2) (5.10)

and for a call is
∂C

∂r
= τKe−rτΦ(d2). (5.11)

We see that rho is negative for a put and positive for a call. To explain that,
we also note the equations show that rho impacts options through the discounted
strike price. Consider an at-the-money option and imagine that the risk-free rate
is 0. Under the no arbitrage requirement for figuring fair option prices, we must
assume the growth rate of the underlying is also zero. Hence the ending price is
purely random around the present price. The buyer of a put or call would not be
willing to pay much in this case. For the same reason the seller would be willing
to sell at a low price. Hence the value of such a call is small.

But things change if the risk-free rate is high. Now the stock would be
expected to gain considerable value over the time to expiry. For a call, this
means it will more likely end in-the-money; for a put is means it will more
likely end out of-the-money. Hence the value of a put decreases with increasing
risk-free rate and the value of a call rises.

It is evident from (5.10) and (5.11) that rho tends to 0 as expiration
approaches.

5.3 Setting Stops: Maximum Variables

Consider the following dilemma. A trader sells a 3 month call option struck at
$100. The underlying spot price is also currently at $100. At the same time the
trader sets an automatic stop to exit the trade if the spot price reaches $105.
What is the probability the stop will take out what would have been a profitable
trade? In other words, what is the probability the underlying price will rise to
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105 sometime during the life of the contract but still finish below 100? This is
sometimes called the problem of touching, in this case, touching 105.

In another case, suppose a 2 month put contract was bought with a strike
price of $97.50 when the underlying was at $100. The trader has an automatic
stop set to sell back the option and cut losses if the underlying price reaches
$103. What is the probability the spot price will rise to 103 but still fall back
below 97.50 before expiration?

Both of these questions can be easily answered by Monte Carlo methods but
at the same time there are approximating analytical formulas. These derive from
the theory of maximum variables for arithmetic random walks, see [KT75]. If Xt

is an Wiener process with no drift, diffusion parameter 1, and X(0) = 0 then

Pr( max
0≤t≤T

Xt > a and XT < b) = 1− Φ(
2a− b√

T
), (5.12)

where Φ(·) is the standard normal cumulative distribution function. Similarly

Pr( min
0≤t≤T

Xt < a and XT > b) = 1− Φ(
b− 2a√

T
). (5.13)

Now let St be GBM with starting value S0, no drift, and volatility σ. Then

Xt =
log(St)− log(S0)

σ
(5.14)

is an Wiener process as above. Working through the substitutions in (5.12) and
(5.13) yield the following

Pr( max
0<t<T

St > m and ST < x) = 1− Φ(
log(m2/(xS0))

σ
√
T

), (5.15)

and

Pr( min
0≤t≤T

St < m and ST > x) = 1− Φ(
log(xS0/m

2)

σ
√
T

). (5.16)

Let us apply (5.15) to the first dilemma above; S0 = 100, T = 3/12, m = 105,
and x = 100. Suppose the underlying has drift equal to 3% and volatility 20%.
The probability in question is calculated as

Pr(maxSt > 105, ST < 100) = 1− Φ(
log(1052/(1002))

0.2
√
0.25

)

= 1− Φ(0.9758) = 0.164.

The analytical calculation is an approximation because it assumes the un-
derlying has no drift – there is no exact formula when there is drift. But we can
get a numerical approximation in this case by Monte Carlo.

Algorithm 22. Maximum Variables

inputs: S0, T, μ, σ, m, x, N, Δt
hits=0; n = T/Δt;
for i = 1, . . . , N
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M = S = S0 �M = maximum price over this scenario
for t = 1, . . . , n

Z ∼ N(0, 1)

ΔS = S(μΔt+ σ
√
ΔtZ)

S = S +ΔS
M = max(M,S)

endfor
if M ≥ m and S ≤ x

hits = hits + 1
endif

endfor
P = hits/N

The time increment Δt must be taken very small for accuracy, on the order
of one five thousandth of T . Running the algorithm on the first dilemma gives
a probability of 0.160.

Using automatic stops is a static strategy. A dynamic strategy would be to
consider closing the position day by day. For example, suppose the stock’s price
rises to $105 with 1 month to go on the call contract. Now what is the probability
the contract will expire out of the money (and the seller keeps the premium)?
This has exactly the same answer as the question “what is the probability that
a put option struck at 100 with 1 month to go will finish ITM if the current
underlying is $105?” From Section 3.6 the answer is given by (3.36),

Φ(−d2) = Φ(− log(105/100) + (0.03 − 1
20.2

2) 1
12

0.2
√

1
12

) = 0.195.

5.4 Some Popular Option Trades

In this section we will investigate several well known option trade combinations.
They have differing characteristics to take advantage of rising, falling, or sta-
tionary markets, of high or low volatility markets and so on. Most importantly
we will introduce mathematical tools for assessing and comparing the various
trades.

Traders are attracted to options for several reasons. Among them are leverage,
limited loss, and flexibility. Leverage arises because one option contract controls
100 shares of stock but at just a fraction of the cost, often by a factor of 10
or more. In many cases the maximum loss of an option trade is limited to the
cost of the options themselves, which, via leverage, is small relative to ownership
of the underlying. In fact options enjoy the flexibility to tailor combinations of
option trades so as to pre-engineer costs, return expectations, and risks (but not
necessarily simultaneously).

Even the simplest trade such as buying a call entails choices: should the trade
be ITM, ATM, or OTM? How far out in time from expiration? How long should
it be held? The choices multiply with the complexity of the trade. In order to
make rational decisions about these trade-offs we must arm ourselves with facts.
We want to know:
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• What is the risk of the trade – how much can be lost?
• What is the probability of the maximum loss?
• What is the probability of finishing with a gain?
• What is the overall expected gain?

While the amount at risk in a trade is usually easy to assess, the other
questions are harder to figure. Fortunately they can be answered by simple
Monte Carlo. Below we present a generic program for computing these critical
variables. In the algorithm, the function G(·) is the payoff function dependent
on the ending price ST and is assumed to be supplied separately.

Algorithm 23. Trade Analysis Program

inputs: netProceeds of the trade (negative for a debit trade)
maxLoss

gainCount = 0;
lossCount = 0;
expectedPO = 0; �expected payoff
for i = 0, . . ., nTrials

using the GRW algo., page 12, generate ST
gain = G(ST ) + netProceeds
if gain > 0

gainCount = gainCount + 1;
else if gain == maxLoss

lossCount = lossCount + 1;
endif
expectedPO = expectedPO + gain;

endfor
maxlossProbability = lossCount/nTrials;
gainProbability = gainCount/nTrials;
gainExpectation = expectedPO/nTrials;

In the following we will use this algorithm to analyze the trades. Important
inputs to the GRW simulation itself are the option prices and the drift and
volatility parameters. For prices, one should use the ask price in buying an asset
and the bid price in selling. For volatility the implied volatility should be used.
This is the market’s assessment of the volatility of the equity at the present
moment. For drift, it seems that recent experience is the best possible. That
is, the drift over the past few months or few weeks or few days. Recall the US
Treasury web site for up-to-date rates was given on page 34.

A caveat of the methodology is that real markets entail changing attributes
from day to day. Optimal would be to program in the exact drift and volatility
rates the same way. But these future value are, of course, unknown. However
arbitrary scenarios can be programmed as desired.

For our demonstrations here we will use modest drifts and volatilities, usually
4–8% drift, plus or minus, and 20–40% volatility. We will also study the effect
of changing volatilities during the course of the simulation in some cases.

However, we will use parameters in the simulation that favor the trade under
study in order to demonstrate the strength of that particular type of trade and
because we will assume the trade was chosen because conditions are favorable
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for it. This cannot be over emphasized in interpreting the results, the GRW
parameters used in the simulations are not necessarily typical but instead favor
the trade under study. Also it should be remembered that the simulations are
for academic purposes only, meant to demonstrate techniques and should not be
interpreted as trade recommendations.

5.4.1 Buying Puts and Calls

The simplest option trade is buying a put or a call; these are dual trades. To
be definite, let us suppose a call. When making an option trade, the relevant
graph is somewhat the reverse of the usual one for now it is the stock price that
is fixed while the trader has the choice of strike price. For example, the stock
price might be $100 and the available strikes are $90, $95, $100, $105, and $110.
Figure 5.7 depicts a call option from this point of view. It shows that selecting
a higher strike price makes it an out-of-the-money call while choosing one of the
low strikes results in one in-the-money.

There are differing expectations among these choices. An OTM call is the
least expensive but has the lowest probability of yielding a payoff. An ATM call
improves the chances of a payoff, but it is the most expensive in terms of the
cost of its time value. Finally, an ITM call is the most expensive because it has
both intrinsic value and time value but it has the greatest chance of avoiding
total loss.

Holding a deep ITM call is something like temporary ownership of the un-
derlying itself. The deeper the call is in the money, the greater is its delta and
the more it moves up and down to the same degree as the stock, see Fig 5.3.
With respect to stock ownership, a deep ITM option has tremendous leverage.
For example, with FDX at $95.65, owning 100 shares of stock will cost $9,565.
But the 40 day 90 call might cost $6.95 per share or $695 for the contract; this
is substantially less than outright ownership. This call has a delta in the neigh-
borhood of 0.77. If the price of FDX rises by $1, then the stock gain is 1/95.65
or about 1%. But the option gain is 0.77/6.95 = 11%.

The downside is that the call earns no dividend and the “ownership” ends
on the expiration date whether desirable or not.

Fig. 5.7. The value of a call option from the point of view of a fixed stock price,
S = 100, as a function of the strike price. The solid graph is 30 days prior to expiration
while the dashed graph is at expiration
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The maximum loss for put or call buying is restricted to the cost of the option
itself.

Table 5.1 Gain expectation for put and call options

for the calls: S0 = $80, T = 20(days), μ = 8%, r = 1%, σ = 20%

Trade Strike Price Time Amt Prob. of Prob. of Ex- Gain
(strike vs value at total a gain pected rate
p/c) stock risk loss(%) (%) gain (%)

75 call ITM 5.18 0.18 5.18 8 51 0.283 100
80 call ATM 1.52 1.52 1.52 47 37 0.161 193
85 call OTM 0.18 0.18 0.18 89 10 0.034 344

for the puts: S0 = $80, T = 20(days), μ = −4%, r = 1%, σ = 20%

85 put ITM 5.14 0.14 5.14 9 51 0.188 67
80 put ATM 1.47 1.47 1.47 47 37 0.110 137
75 put OTM 0.14 0.14 0.14 91 9 0.019 249

In Table 5.1 we show the Monte Carlo analysis for typical put and call trades.
Note that the drift rates are different between the put and call runs. Buying a
call is a good strategy when the market is rising and we have used 8% for these
simulations. In contrast, buying a put is a strategy when the market is falling.
These simulations use −4%.

The greatest expected earnings is 28.3 cents for the ITM call but we must
risk $5.18 for it. Therefore the expected earnings rate is 0.283/5.18 = 5.46%
over 20 days or 5.46∗365/20 = 99.6% annually. By contrast, although the OTM
call only generates an expected 3.4 cents of income, it does so on an 18 cent
investment. Its annual earnings rate works out to 344%.

Although the OTM call has the greatest growth rate, that trade does expe-
rience total loss 89% of the time. As in the chapter on risk, it comes down to
individual preferences between higher return rates vs greater safety.

Finally we can use prices from actual market data to test put-call parity,
S+P = C+Ke−rT . As an actual example, with 16 days remaining to expiration,
APC stock sold between $75.32(bid) and $75.36(ask). The K = 77.50 calls sold
for $1.26(bid) to $1.30(ask) and the puts for $3.35(bid) to $3.50(ask). Using the
bid ask mid-points, and the 3 month Treasure rate of 0.03%, we calculate

75.34 + 3.43 ≈ 1.28 + 77.50e−0.0003(16/365)

78.77 ≈ 78.778,

so within 1 cent; very close agreement. It has to be so or else there are arbitrage
opportunities.

In passing we observe that put-call parity can be turned around to get the
market’s snapshot of the risk-free rate,

r = − log((S + P − C)/K)/T

as a kind of “implied risk-free rate.”
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5.4.2 Selling Naked Puts and Calls

The reverse strategy to that above is selling puts and calls. However these trades
entail great risk. In the case of a naked put, if the stock price goes to zero, the
amount at risk is equal to the strike price (less the premium received). This
could be quite substantial. The case for naked calls is even worse, the amount at
risk is theoretically unlimited since the stock price could rise to any level. Most
brokers do not allow these trades without approval.

Through put-call parity, at expiration, the payoff graph for a naked put is the
same as that of the trade consisting of selling the call and buying the underlying
stock, −P = −C + (S −K). This trade is called a covered call and we will take
it up next. The chart for a covered call is shown in Fig. 5.8b. In the same way,
put-call parity written as −C = −(S −K)− P shows that a naked call has the
same payoff as shorting the stock and selling the put. This is called a protective
put and is shown in Fig. 5.8a.

Selling a put can have its place in certain cases. If one is quite sure a particular
equity is not going bankrupt and is looking to buy the stock at a low price,
naked puts will do the job. If the price remains high, the option maker pockets
the premium. If the price falls below the strike, the maker buys stock at the
strike price, less the option premium.

5.4.3 Covered Calls and Protective Puts

The repair for naked put and call selling is covered calls and protective puts.
Covered call writing consists of selling a call on a stock and buying stock in the
amount to cover it, 100 shares per contract. Its dual is selling a put and shorting
stock to cover it. The payoff diagrams are shown in Fig. 5.8.

Although these trades have the same payoff charts as do naked puts and calls,
there is a very big difference – the stock purchase occurs up front. Consider the
covered call. First the stock is purchased and then the call is sold (or better
yet, the trade is made atomically, i.e. as one trade). If the stock experiences an
unexpected increase, the stock is already in hand to cover the exercise. If instead
the stock price dramatically falls, possibly even to zero, no additional monies
are required. This is not the case for a naked put where the money to fulfill the
exercise must be forthcoming at expiration.

Covered calls are widely used for generating income. If one already owns the
stock, and this is where the risk originates, then selling calls on it produces
an income stream so long as the stock price finishes below the strike price at
expiration. The downside to the strategy occurs when the stock makes a run up.
Then the trader only participates to the extent of the strike price and loses the
stock upon exercise. Therefore covered calls are a good strategy for generating
income on a stock very unlikely to lose value and not gain much in value either.
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short stock at 80,
sell put w/strike 75

buy stock at 80,
sell call w/strike 85

a b

Fig. 5.8. Payoff diagram for the dual trades, a protective put in (a) and a covered call
in (b). Through put-call parity these are the same as the graphs for a naked call and
naked put respectively

In Table 5.2 we show simulation results for some covered call trades.

Table 5.2 Gain expectation for covered call trades

S0 = $80.00, r = 1%, μ = 4%, σ = 20%

Trade Time Price Amt Total Gain Ex- Gain
to at loss prob pected rate

expir. risk prob(%) (%) gain (%)

82.50 call 15 0.43 79.57 0+ 56 0.110 4
82.50 call 30 0.89 79.11 0+ 59 0.200 3
82.50 call 45 1.27 78.73 0+ 61 0.295 3

85 call 15 0.10 79.90 0+ 52 0.121 4
85 call 30 0.36 79.64 0+ 54 0.242 4
85 call 45 0.64 79.36 0+ 56 0.337 3

Delta Hedging Case Study

In this paragraph we track the fate of a call delta hedged versus a straight covered
call. In this study, the stock price falls from $84.71 42 days from expiration to
$74.58 at expiration. The call cost $3.80 per share or $380 for 1 contract (by not
counting fees and by splitting the bid/ask).

For the covered call the initial outlay is $8,471 minus the $380 from the call
for a net position of $−8,091.00. At the end the option expired worthless so the
stocks were sold back for $74.58 per share. The final position is $−633.00.

For the delta hedge the initial delta is 0.5126, thus 51 shares are bought
for an initial outlay of $3,909.61. The hedge was rebalanced once a week until
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expiration. The result, presented in Table 5.3, shows that the covered call lost
$633 dollars while the hedge gained $49.97. This came from the call premium.

Table 5.3 A delta hedge case study

equity at $84.71, 85 call at $3.80, r = 0.01, v = 34%

Days to Stock Delta b/s Pro- Shares Net Covered
expiration price shares ceeds held proceeds call

42 84.71 0.5126 b 51 −4,289.61 51 −3,909.61 −8,091.00
35 80.42 0.3201 s 19 1,527.98 32 −2,381.63 −8,091.00
28 79.07 0.2377 s 8 632.56 24 −1,749.07 −8,091.00
21 78.54 0.1953 s 4 300.56 20 −1,448.51 −8,091.00
14 75.14 0.0355 s 16 1,202.24 4 −246.27 −8,091.00
7 74.06 0.0022 s 4 296.24 0 49.97 −8,091.00
0 74.58 0.0000 s 0 0 0 49.97 −633

5.4.4 Debit Spreads

A debit spread, either with puts or calls, is like buying a put or a call and
financing it, to an extent, by selling the same type further out-of-the-money.
For example, a debit call spread entails buying a call at one strike price K	 and
selling a call, on the same underlying, at a higher strike price, Kh > K	. Usually
the long option is at or near-the-money. From Fig. 5.7 we see that the higher
the strike of a call, the lesser is the option’s price. Therefore the option bought
costs more than the option sold and the trade is for a net debit.

put spread with strikes 80 and 75

a b

call spread with strikes 80 and 85

Fig. 5.9. Debit put and call spreads. The stock price was $80 when the trades were
executed

A debit put spread means buying a put at one strike, Kh and selling a second
put at a lower strike, K	 < Kh. This is the dual trade to the debit call spread.
Figure 5.9 shows the payoff graphs of both.



5.4 Some Popular Option Trades 155

As mentioned, selling the deeper OTM option brings in premium to offset the
main purchase. The downside is that it limits the possible gain to the difference
between the strikes minus the cost of the trade. For example, in the figure the
cost of the 80 call is $2.04 and the premium for the 85 call is $0.48; the net cost
for the trade is therefore $1.56. The holder of the trade loses this amount if the
stock comes in below $80 at expiration. From that point the trade gains 1 for 1
for each increase in expiration price ST . The trade breaks even at ST = 81.56.
And it continues to profit to a maximum of 5− 1.56 = 3.48 for any ending price
over $85.

The maximum loss of a debit spread is restricted to the net cost of the trade.

Table 5.4 Gain expectation for debit spreads

S0 = $80, r = 1%, T = 20(days), σ = 20% μ = 8% for calls, −4% for puts

Trade Net Amt Simu- Prob. of Gain Ex- Gain
buy strike/ price at lation total prob pected rate
sell strike (debit) risk drift loss (%) (%) gain (%)

80/85 calls (1.33) 1.33 0.08 47 39 0.129 177
82.50/85 calls (0.41) 0.41 0.08 72 25 0.054 240

82.50/87.50 calls (0.55) 0.55 0.08 72 23 0.079 263

80/75 puts (1.34) 1.34 −0.04 48 38 0.084 115
77.50/75 puts (0.40) 0.40 −0.04 73 24 0.036 165

77.50/72.50 puts (0.51) 0.51 −0.04 73 23 0.051 181

In Table 5.4 we show the Monte Carlo analysis for some debit spread trades.
In buying a debit spread, the holder is hoping the market moves “towards” the
trade, that prices increase for the call spread and decrease for the put spread.
For this reason a debit call spread is also known as a Bull call spread and a debit
put spread as a Bear put spread. Accordingly we have set the drift to 8% for
the call spreads and −4% for the puts spreads in these simulations.

5.4.5 Credit Spreads

The credit spreads are the reverse trades of their debit spread counterparts. A
credit call spread means selling a call with strike K	 and buying a call with strike
Kh > K	. The function of the call purchased is to provide protection against
an unexpectedly large rise in the price of the underlying. Without it, the trade
is a naked call. Similarly, to create a credit put spread, one buys a put at one
strike Kh and sells another at a lower strike K	 < Kh. Again the function of the
option purchased is protection.

As advertised, the trade is for a credit; it brings in income immediately.
However, if the market moves against the trade, the loss can be as large as the
distance between the strikes less the initial credit. See Fig. 5.10.

As opposed to the debit spreads, the holder of a credit spread is expecting
the stock to move away from the trade or at least not move toward it. For a
credit call spread this means anticipating the price to stay the same or fall. Thus
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put spread with strikes 80 and 75

a b

call spread with strikes 80 and 85

Fig. 5.10. Credit put and call spreads. With the stock price at $80 when the trades
were executed, the call spread brought in a net income of $1.35 while the put spread
brought in $1.32

a credit call spread is also known as a Bear call spread. Accordingly we use a
drift of −4% in the simulations. On the other hand the holder of a credit put
spread counts on the price staying the same or increasing. So it is called a Bull
put spread. We will use a drift of 8% in the analysis. The results are presented
in Table 5.5.

Table 5.5 Gain expectation for credit spreads

S0 = $80, r = 1%, T = 20(days), σ = 20%

Trade Net Amt Simu- Prob. of Gain Ex- Gain
sell strike/ price at lation total prob pected rate
buy strike (credit) risk drift loss (%) (%) gain (%)

80/85 calls 1.33 3.67 −0.04 9 66 0.083 41
82.50/85 calls 0.41 2.09 −0.04 9 80 0.034 29

82.50/87.50 calls 0.55 4.45 −0.04 2 81 0.049 20

80/75 puts 1.34 3.66 0.08 8 67 0.125 62
77.50/75 puts 0.40 2.10 0.08 8 80 0.045 39

77.50/72.50 puts 0.51 4.49 0.08 2 81 0.065 27

5.4.6 Calendar Spreads

The calendar spread is a trade in which a near term expiration option is sold and
a longer term option on the same stock and for the same strike price is bought.
With more time to expiration, the long term option is more expensive so the
trade is for a net debit. This is a trade that takes advantage of the behavior of
theta. If the stock remains about the same price, then the time value of the near
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term option will tend to zero more rapidly than that of the long term option.
In the optimal case the near term option expires worthless. At some point along
the way the trade becomes profitable.

In Fig. 5.11 we show the payoff picture of a calendar spread done with puts
in (a) and with calls in (b). These are dual trades.

With regard to panel (b), when created, the short call was ATM and had
39 days to expiration for a Black-Scholes price of $1.66. The long call was 67
days out and cost $2.21. The net debit was $0.55. Upon expiration of the near
term call, the long term call still has 28 days of time value. If the stock price
is $60 at that time, then the short option expires worthless and the long option
has a Black-Scholes value of $1.39. The net gain of the trade in that event is
$0.84 and this is the maximal gain. For lower ending prices of the underlying the
long term option becomes successively more out-of-the-money and loses value.
But for higher ending prices the near term option becomes successively more
in-the-money and again the trade loses net value.

A similar analysis holds for the calendar put spread.
The maximum loss of a calendar spread with calls is restricted to the net cost

of the options. But for puts the maximum loss can be bigger. This is due to the
fact that puts can have negative time value, see Fig. 3.9a (page 103).

60 puts, Tnear = 0, Tfar = 28 60 calls, Tnear = 0, Tfar = 28

a b

Fig. 5.11. Calendar spread with: (a) puts, (b) calls; strike price 60. Symmetry is broken
because calls always have positive intrinsic value, puts do not. As a result, the maximum
loss of a put calendar spread exceeds the net cost of the constituent options, here 55
cents vs 41 cents

As is seen in Fig 5.11 above, the gain region is rather narrow and centered
around the strike price of the two options. In establishing this trade, the trader
is expecting the underlying to stay relatively constant in price.
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The Monte Carlo analysis for this trade is presented in Table 5.6. For this
simulation we have added a column headed IV (implied volatility) and another
headed SV (simulation volatility). The first is the volatility used for calculating
the Black-Scholes price for the trade. The second is the volatility used for the
simulation.

Table 5.6 Gain expectation for calendar spreads

S0 = $60, r = 1%, IV = implied vol., SV = simulation vol.

Trade T (days) Price = Drift IV SV Total Gain Ex- Gain
near/ amt at (%) (%) (%) loss prob pected rate
far risk prob (%) gain (%)

60 call 10/38 0.89 4 23 23 0+ 51 0.001 4
60 call 10/38 1.52 0 40 40 0+ 51 0.001 3

62.50 call 10/38 1.41 6 40 40 0+ 50 0.012 31
60 call 10/38 0.77 4 20 23 0+ 60 0.114 537

From the first line of the table we see that under typical rates of drift and
volatility, the trade tends to finish with a small profit or loss. Even with 0
or slight drift and high volatility the trade essentially breaks even. The third
lines shows that if the drift is favorable, it might take the trade into the region
of maximum payoff. But the fourth line shows that the profitability of calendar
spreads is very sensitive to changes in volatility during the period of the contract.
The expected gain increases substantially as volatility increases. This shows the
effect of vega in a dramatic way.

5.4.7 Straddles

Fig. 5.12. The payoff graph of a straddle. The trade makes a gain if the underlying
moves sufficiently either way

A straddle entails buying both a put and a call on the same underlying at
the same strike price and with the same expiration. The payoff diagram for a
straddle is illustrated in Fig. 5.12. This trade is self dual.
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A straddle makes a gain if the underlying moves enough either up or down.
Evidently the trader believes that the underlying will make a big move in some
direction but does not know which. For example an important announcement
about the company is due out; it may be good news or bad news. The straddle
also is a winner if the volatility should increase over the duration of the option.
If volatility is high when the trade is placed, then the options are expensive to
start with. Rather it is an increase in volatility that is required. A profit is also
possible if the drift is high either positively or negatively.

Table 5.7 Gain expectation for straddles

S0 = $60, buy 60 call, buy 60 put

Trade Price = Drift IV SV Total Gain Ex- Gain
expiry amt at (%) (%) (%) loss prob pected rate
(days) risk prob (%) gain (%)

10 1.58 2 20 20 1 42 −0.002 −5
20 2.24 2 20 20 1 43 0.003 2

10 1.58 2 20 23 1 49 0.241 556
20 2.24 2 20 23 1 49 0.341 278

10 1.58 4 20 20 1 43 0.003 7
20 2.24 4 20 20 1 43 0.008 6

As with all long option trades, the risk is restricted to the option premiums.
In Table 5.7 we show the results of a Monte Carlo analysis. As was the case

with calendar spreads, straddles greatly benefit if the volatility increases over
the time period of the trade. As above, IV is the volatility when the option was
placed and SV is the volatility at which the simulation was conducted. The table
also shows that profitability improves as the stock’s drift rate increases.

The opposite trade, going short a straddle, is obviously very dangerous. It has
the danger of both a naked call and a naked put combined. Being the opposite
of a long straddle, a short straddle is profitable when the underlying stays at
about the same price over the duration of the option. But the risk is very high.
To garner the benefits of a short straddle but with limited risk, motivates our
next trade, the butterfly.

5.4.8 Butterflies

A butterfly is a 3 option trade, either with 3 calls or, for the dual, with 3 puts.
For the call butterfly, a call is bought at the low strike, K1, then two calls are
sold at the middle strike, K2, and finally, a call is bought at the high strike, K3,

K1 < K2 < K3.

In some ways the butterfly is the opposite of a straddle as is evident in
its payoff chart, graphs (c) Fig 5.13. The butterfly has a peak of profitability
centered around its middle strike and falls off in either direction from that.
Buying the options on the two sides lowers the income from the option sold,
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with puts, strikes: 80/75/65

a b

with calls, strikes: 80/85/95

Fig. 5.13. Black-Scholes values of a skip strike butterfly, (a) with puts, (b) with calls.
In each case curve (a) is 21 days from expiration, (b) is 7 days from expiration, and (c)
is at expiration

even to the point of a net debit, but provides crucial insurance limiting loss
should the stock make a large move up or down.

In the butterflies depicted in the figure, the first two strikes are sequential
as offered by the exchange, but the next strike is skipped; the final strike is the
next after that. This skip-strike butterfly, as it is called, can be designated 1:2::1.
Obviously there are lots of possibilities, e.g. 1:2:1 (traditional), 1:3::2, and so on.
The standard skip-strike call butterfly is often established when the stock price
is near the low strike expecting it to rise modestly. Conversely, the put butterfly
would be used when a slight decline in price is expected. Alternatively, in a
declining market the call butterfly can be set up with the current stock price
at the last strike expecting the negative drift to carry the stock price into the
profit region. Similar remarks apply to the put butterfly in a growing market.

A butterfly will generally be for a net debit because, if put on when the stock
price is near the first strike, the most expensive option will be that one. The
maximum gain of the trade occurs when the expiration stock price falls on the
middle strike. The maximum loss depends on how far the insurance options are,
in terms of their strikes, from the middle strike. Therefore it is case of reward
vs risk. (For the call butterfly in the figure, the maximum loss is $6.18.)

In Table 5.8 we give the results of a Monte Carlo analysis of some butterfly
trades. The table shows that the most favorable trade is at the high strike in a
declining market.

Note that these results do not include trading commissions or the bid-ask
bias. As option combinations involve more options, 3 for the butterfly, the trading
costs likewise escalate.
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Table 5.8 Gain expectation for butterflies

T = 21, r = 0.03

Trade: Stock Price Max Drift Total Gain Ex- Gain
calls at price (net loss (%) loss prob pected rate

80:85:90:95 S0 debt) prob (%) gain (%)

1:2:1: 80 (1.19) 1.19 4 50 37 0.019 28
1:2:1: 85 (2.18) 2.18 2 22 51 0.003 2
1:2:1: 90 (1.21) 1.21 −4 48 40 0.097 140

1:2::1 80 (1.18) 6.18 4 0+ 37 0.016 5
1:2::1 85 (1.94) 6.94 2 1 55 0.010 3
1:2::1 90 0.28 4.72 −4 12 55 0.228 84

1:3::2 80 (0.97) 15.97 4 0+ 37 0.013 1
1:3::2 85 (0.25) 15.25 2 1 60 0.034 4
1:3::2 90 5.34 9.66 −4 12 55 0.511 92

5.4.9 Iron Condors

An iron condor is a two spread trade with four strike prices, K1 < K2 < K3 <
K4. It’s payoff is depicted in Fig 5.14. The rationale for the trade is that it
consists of two spreads and at least one of them is guaranteed to finish in-the-
money; usually both.

The K1, K2 spread can be either a debit call spread or a credit put spread.
And the K3, K4 spread is either a credit call spread or a debit put spread. Mix
or match; thus there are four possible iron condors: (A) with credit spreads, (B)
with calls, (C) with puts, and (D) with debit spreads. For example, the maximum
up front net credit is (A), arranged by choosing a credit put spread at K1, K2

and a credit call spread at K3 and K4. In this case the trade consists of:

with the stock at 65

a b

with the stock at 61

Fig. 5.14. An iron condor with strikes 55/60/70/75. There is a broad region over which
it makes a small profit. But the amount at risk is large relative to it
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• Buying a put at K1

• Selling a put at K2

• Selling a call at K3

• Buying a call at K4

This trade is self-dual. So is trade (D). The dual of (B), with calls, is (C), with
puts and conversely.

The iron condor is attractive because: it is a non-directional, it has high
probability of finishing in-the-money, and it has limited risk. On the downside,
the strategy does involve trading four options.

The most striking feature of the iron condor’s payoff graph is its small reward
relative to its high potential loss. Since the trade is a combination of spreads, the
maximum gains and maximum losses are just the sum of those for the constituent
spreads.

In Fig. 5.14a the stock price is at 65, the credit put spread brings in a net 5
cents and the credit call spread brings in a net 8 cents. Therefore the maximum
gain is 13 cents. The maximum loss is that minus $5 or $4.87.

In panel (b) the stock price is at 61, the credit put spread brings in a net 65
cents and the credit call spread brings in less than 1 cent. Hence the maximum
gain is 65 cents and the maximum loss is 4.35. The difference in the gains and
losses between the trade with the stock at 65 versus the stock at 61 is due to
the non-linear nature of Black-Scholes pricing with respect to stock price S.

While the gains are small and the losses relatively big, the former comes
with high probability while the latter at a very small probability. These trade-
off situations are exactly where Monte Carlo expectation analysis excels. Some
results are presented in Table 5.9. As before, IV refers to the volatility at which
the options are purchased and SV is the simulation volatility.

In the first series of runs the initial stock price is in the middle of the range and
small or zero drifts are assumed. The results show that under these conditions
there are virtually no gains, even despite a wide range of volatilities.

In the second series of tests the initial stock price was set at the bottom
of the range and fair or large drifts are assumed. Under these conditions the
condor produces modest grow rates in step with drift. In the last of that series,
the symmetric condition was tested with the stock at the top of the range and
a small negative drift assumed. The results are about the same.

Next a series was tried using condors with calls instead of credit spreads.
There is virtually no difference in performance.

Lastly conditions of changing volatility were tested with dramatic results. If
volatility increases over the course of the contract as compared to the volatility
prevailing at its purchase (SV> IV), then the condor sustains big losses. If the
reverse holds, volatility decreases during the contract, then profits get a major
boost.

Once again this example shows the major effect that vega has on certain
option trades.
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Table 5.9 Gain expectation for iron condors

T = 20, r = 0.01, costs and losses as noted in the text

Trade: Stock Drift IV SV Total Gain Ex- Gain
strikes at price (%) (%) (%) loss prob pected rate
55:60:70:75 S0 prob (%) gain (%)

w/cred.spds 65 2 20 20 0+ 91 −0.002 −1
w/cred.spds 65 0 10 10 0+ 99.9 0.000 0
w/cred.spds 65 0 40 40 10 69 −0.002 −1

w/cred.spds 61 4 40 40 15 63 0.030 16
w/cred.spds 61 8 40 40 15 64 0.058 31
w/cred.spds 69 −2 40 40 18 63 0.019 10

w/calls 61 4 40 40 15 63 0.027 14
w/calls 61 8 40 40 15 64 0.057 30
w/calls 69 −2 40 40 18 63 0.021 11

w/cred.spds 63 6 20 40 11 59 −0.998 −382
w/cred.spds 63 6 40 20 0+ 93 1.035 503

Problems: Chapter 5

Many of the problems for this Chapter ask that you analyze option trades. For these,
please create a program similar to Algorithm 23 on page 149. Use the GBM and Black-
Scholes models in the simulations (e.g. for setting option prices).

1. At the present time BAC is selling for 9.52. Its 18 day 10 dollar calls have these
Greeks: Δ = 0.3366, Γ = 0.3509, ν = 0.0077 (directly from a brokers web site).
(a) What are the corresponding Greeks of the 18 day 10 dollar puts? The 46 day
10 dollar calls have these Greeks: Δ = 0.388, Γ = 0.277, ν = 0.0129. (b) Set
up a delta-gamma neutral portfolio in BAC. (c) Set up a delta-vega neutral port-
folio in BAC. (d) Can the implied volatility be calculated from these data? Explain.

2. In addition to the Greeks as in Problem 1, for the 46 day 7.50 puts delta is −0.0528,
gamma is 0.0738, and vega is 0.0036. Can you set up a delta-gamma-vega neutral
position? Do so if possible.
(Ans. long 843 stock, long 100 18 day calls, short 1,538 46 day calls, long 5,298
46 day puts.)

3. Conduct a delta hedge similar to that in Section 5.4.3. In one case assume the stock
price increases modestly over the 42 days until expiration. In another, generate a
GRW 42 day price sequence.

4. Analyze the strategy of selling covered calls 5 or 6 days before expiration. Exper-
iment with different volatilities, drifts, and stock/strike relationships (i.e. ITM,
ATM, etc.).

5. Answer the second “dilemma” in the section on maximum variables, Section 5.3. If
the volatility is 20% and the time to expiration is 2 months, what is the probability
that the stock price starting from 100 will rise above 103 over the term of the
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put option but nevertheless finish below 97.50? In the first case, assume the drift
is zero. Write a program to answer the question if the drift is 6%, if the drift is −4%.

6. Using the parameters in the header of Table 5.1, except for the drift, and analyze
the OTM call trade (85 strike) for various values of drift; for example μ = 0.02,
μ = 0.04, and μ = 0.06.

7. Using the parameters in Table 5.2 for the 45 day 82.50 covered call, analyze the
following stop outs: exit the trade if the stock price falls to 79, to 78, to 77. What
is the gain rate in each case?

8. Using the parameters in the header of Table 5.4 except for the starting stock price
S0, analyze the 80/75 put spread for various starting prices ITM; for example
S0 = 79, S0 = 77, S0 = 75.

9. Using the parameters in the header of Table 5.5, investigate the effect on the gain
rate of the 80/85 spread if the volatility: becomes 30% just after the trade is
established, becomes 10% under the same conditions. (The option prices are still
determined by the stated 20% volatility.)

10. Analyze the dual trade to the third butterfly trade in Table 5.8. Thus go long a put
at 80, short 2 puts at 75, and long a put at 70. Let the starting price be S0 = 70
and assume the drift is −2%.



6

Alternatives to GBM Prices

The developments of the previous chapters have built a financial edifice upon
the normal distribution, the Gaussian, primarily through the Wiener process.
But there is much evidence that the world is not Gaussian, that Gaussian is
only an approximation to reality. Some evidence that it is not is seen in Fig. 6.1.
These depictions should be compared with Fig. 1.1 on page 2. The earlier graph
portrays a stock’s price through time as being continuous. But by magnifying
the time scale and viewing prices over a few months we see that stock prices are
occasionally discontinuous, they can suddenly change from one value to another
without going through the values in-between. This often occurs between days as
seen in Fig. 6.1a. By expanding the scale to the level of hours, one sees that the
prices are possibly nothing but jumps, many of them small as in panel (b).

Other evidence comes from the phenomenon of volatility smile. According to
Black-Scholes theory, for a fixed time to maturity T , the price of all options on
a given stock as a function of strike price, should be calculated using the same
volatility. Namely, it should be the volatility that prevails over the time horizon
of the option (or at least the average of such). But this is not what is observed.
Implied volatilities for puts are greater than those for calls; and the lower the
strike, the greater the volatility.

And there is more. Events that should happen only rarely or, practically
speaking, never, instead occur two or three times a generation. This indicates
that the Gaussian is the wrong distribution, that rare events should have a
higher probability of occurring. It indicates that the tails of a more accurate
distribution should have more probability mass than does the Gaussian.

In this chapter we study price processes that are not Gaussian; processes that
have jumps and “heavy tails.” However there is a concomitant downside, namely
that options can no longer be hedged, and therefore have no unique price. The
term used is incomplete market, and it is here that we start.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 6,
© Springer Science+Business Media New York 2013
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daily open and close

a b

intraday prices

Fig. 6.1. Stock price history for SCCO over short periods of time. In (a) 4 months of
prices are illustrated. Each candle’s top is the day’s high while the bottom is the day’s
low. If the price fell during the day, the candle is shown in red. It can be seen that
frequently 1 day’s candle does not overlap the next; thus the price jumped by at least
the gap between the two. The lower part of the figure shows the volume or the number
of stocks traded during the day. In (b) SCCO’s intra day’s prices are shown over a 3 h
period during an afternoon. It is clearly seen that the price jumps almost minute by
minute

6.1 Martingale Measures

Up to now we have lived in a discrete time world. Our techniques have exploited
binomial lattices and GBM implemented discretely over finite increments in
time. But a Wiener process is a continuous time theory. Its major accomplish-
ment lies in showing how to define a probability or measure to Brownian motion
paths; the object our random walks attempt to simulate. Of course, any single
path has probability 0; there are, for any finite interval of time 0 ≤ t ≤ T , an
uncountable infinity of continuous paths Xt. But it makes sense to talk about
the probability of sets of paths. For example, all paths whose Brownian particle
lies between x = 0 and x = 1 when t = T , or in another example, all paths that
were less than x = −1 at some time t < T but finished bigger than x = 5 when
t = T . And there are sets of paths for which we can assign a probability from
first principles, those determined by their position at any fixed time t. We can
do so because, by axiom, Wt is normally distributed with mean 0 and variance
t at this time.

As we noted in Section 1.3, a Wiener process is a martingale. In this chapter
we consider price processes which are not based on the Wiener process. The
paths X = {Xt, t ≥ 0} of such a process must belong to some universal set Ω.
And there must also be a measure or probability function defined for subsets of
Ω as discussed above; the class of subsets must be closed under countable set
operations (set complement, countable unions, countable intersections). And as
we have seen earlier, there can be more than one probability function defined
on paths. For example, for price paths there can be a historical or real-world
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probability P and there can be a risk-neutral probability Q. Two probabilities
are said to be equivalent if their sets of probability zero are identical (hence also
their sets of probability one).

A stochastic process X = {Xt, t ≥ 0} in such a space Ω is a martingale with
respect to a given measureQ if the expected future value ofX at any time s isXs,

EQ(Xs+t|the information about X up to time s) = Xs. (6.1)

A measure for which the process is a martingale is called a martingale measure.
A martingale process is something like a fair game in that a players expected for-
tune at the end of the game is the same as his fortune at the start, see Chapter 7.

The importance of martingale measures is made clear in the Fundamental
Theorem of Asset Pricing. In order to state it we need to define a few terms. A
financial derivative or contingent claim is a security whose value depends on the
value of other more basic underlying securities. Options and forwards are two
examples of derivatives. A complete market is one for which every contingent
claim has a self-financing replicating portfolio.

Theorem (Fundamental Theorem of Asset Pricing) A discrete time pricing
model has no arbitrage opportunities if and only if it has a measure for which
discounted prices are a martingale. Further, the model is complete if and only if
the martingale measure is unique.

For a proof see [Rom12]. For continuous time pricing models, the theorem breaks
down in that the conditions are no longer if and only if. It is still true however
that the existence of a martingale measure implies there are no arbitrage oppor-
tunities and the uniqueness of the measure implies market completeness.

6.2 Incomplete Markets

In Section 3.4 we began our study of option pricing by applying the principle of
no-arbitrage to a one-step price tree. Suppose now there had been three possible
prices of the stock at expiry instead of just two, see Fig. 6.2.

Fig. 6.2. A one step price tree with three possible prices at expiry

As before, consider a portfolio consisting of Δ shares of stock and short 1
call option struck at K = 51 costing C. To simplify the calculation, assume
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the risk-free rate is 0; this just means money can be borrowed with no interest
but still has to be paid back. From the previous analysis the number of shares
to hold in the portfolio is Δ = 1/4 and from (3.11) the value of the call is
12.50 − 12e−rf = 0.50. So the initial value of the portfolio is (14 )50− 0.50 = 12.

And in the present case this is the value of the portfolio if the stock goes up
to 52 or down to 48 as before (recall rf = 0). But if the final price is 50, the
value of the portfolio is 12.50. Now an arbitrage is possible: borrow $12 to set up
the portfolio, pay it back if the price goes up or down, but if the price stays the
same, the portfolio makes $0.50 after retiring the loan. Thus with some positive
probability, the probability of the middle branch of the tree, the portfolio makes
a positive profit with no chance of losing money.

This happens because no value of Δ makes the expiry value of the portfolio
equal for all three branches of the tree. So there is no one value to discount back
to time 0 in order to find C.

Suppose the call is $0.40 instead of $0.50. Now to set up the portfolio $12.10
will have to be borrowed. If the price goes up to 52 the stock will be worth 13,
satisfying the call will cost 1 leaving only 12 to pay back the loan. Therefore the
portfolio loses $0.10. Likewise it loses the same if the price goes down to 48. If
the expiry price is 50, then the stock is worth 12.50 and, after repaying the loan,
the portfolio makes $0.40. So if the call price is $0.40 the portfolio’s expectation,
positive or negative, depends on the probabilities of the three outcomes.

What are those probabilities? Perhaps we can proceed by calculating the
risk-neutral probability, from that find the expected payoff and discount back
to get C.

Since there are three branches, the risk-neural probability will in fact be a
probability density: q1 that the price rises, q2 that it stays the same, and q3 that
it falls. We must have q1 + q2 + q3 = 1 and no probability can be zero. Recall
that the risk-neutral density is the one for which the expected growth of the
underlying equals the risk-free rate, see page 90. Combining this expectation
balance with the total density summing to 1, we have the system

52q1 + 50q2 + 48q3 = 50
q1 + q2 + q3 = 1. (6.2)

There is no one solution; solving in terms of q3 we have

q1 = q3, q2 = 1− 2q3, 0 < q3 <
1

2
. (6.3)

The bounds on q3 assure that all three probabilities will be positive. To say
that the expected price grows according to the risk-free rate is equivalent to
saying the discounted expectation of St is a martingale; in this example, it will
be so for any q3 between 0 and 1/2.

For example, choosing q3 = 0.4, entails q1 = 0.4 and q2 = 0.2. This
makes the expected call payoff equal to $0.40, and, discounting back with rf = 0,
puts the price of the call at $0.40. As analyzed above, there is no risk free profit
for this value of the call.
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Thus we have encountered an example of an incomplete market.

6.2.1 Pricing in an Incomplete Market

In an incomplete market there is no unique no-arbitrage price; instead there are
many. In the example above, q1 and q2 given by (6.3) along with any choice
0 < q3 < 1/2 produces a martingale and with it, a no-arbitrage price for the
call. The decision as to which value of q3 to use becomes a subjective matter; a
risk-averse investor would want the real-world payoff to exceed the martingale
payoff.

Finally, what is the point of pricing vanilla options by a mathematical model
anyway; the market already prices them. Instead, the prevailing thought is to
use the price of vanilla options to determine what measure the market is using
and apply those parameters in the models to calculate prices for exotic options
which are only thinly traded.

The choice of measure also impacts hedging. In a complete market, continuous
delta-hedging is perfect at all times and the variance of the hedge is 0. In an
incomplete market, zero variance is not possible. Two possible choices are to
hedge to minimize final variance or to minimize the day-to-day variance, see
[Jos03] Section 15.5.

6.3 Lévy Processes

As was the case in Section 1.2, it makes sense to start with arithmetic random
walks and define price processes as their geometric counterparts. In order for an
arithmetic processX = {Xt} to serve it must satisfy a very special condition, one
we have used repeatedly for Brownian motion. Namely, we must be able to: (1)
divide the fundamental interval, [0, T ] into arbitrary subintervals Δt = T/n, (2)
simulate identical and independent random increments ΔXi on each subinterval,
and (3) add the increments together, X =

∑n
i=1ΔXi, and get the same result

statistically, that is in terms of probability density, as for any other subdivision.
Such a process is said to be infinitely divisible.

Lévy processes are exactly those that are infinitely divisible. A Wiener
process is an example of a Lévy process. Like a Wiener process, a Lévy pro-
cess L = {Lt} satisfies L0 = 0 and the axioms of independent and stationary
increments:

1. Every increment Lt+h −Lt depends only on Lt and not on L = {Ls, 0≤s≤t}.
2. The distribution of Lt+h−Lt does not depend on t, it has the same distribution

as Lh.
1

As we will see, a Lévy process can have jumps. By a jump we mean ΔLt =
limε↓0 Lt+ε − limε↓0 Lt−ε. But the probability of a jump at any given value of t
is 0. Note that one can always assume that a Lévy process is right continuous

1 These conditions imply the infinite divisibility property since Lt = L t
n
+ (L 2t

n
− L t

n
) +

(L 3t
n

− L 2t
n
) + . . .+ (Lt − L (n−1)

n
t
).
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and has left limits at every point, Lt = limε↓0Lt+ε and limε↓0 Lt−ε exists, the
latter may be denoted as Lt−. Sometimes this requirement is called the cadlag
property.2 The reason for this choice is that, given a specific time in the future,
say t1, the value of the process at t1 cannot be predicted with complete confidence
from its values at times t < t1 leading up to t1, the process might undergo a
jump at that time. If left continuity were made the choice, it would be possible
to make the stated prediction.

6.3.1 The Poisson Process

Besides Wiener processes there are several known Lévy processes. The simplest
is pure drift, Lt = μt. This and the Wiener process are the only two that are
continuous, all others have jumps. The simplest non-continuous Lévy process
is the Poisson process Po(λ) (here we have put t = 1, because of the infinite
divisibility condition the Poisson parameter for an arbitrary time t is λt). The
Poisson random variable Nt ∼ Po(λt) denotes the number of events, in our
case jumps, which occur in the interval [0, t]. Nt is non-negative integer valued,
Nt = 0, 1, . . .; λ is called the intensity parameter.

The probability density for Nt is given by

Pr(Nt = k) =
(λt)ke−λt

k!
(6.4)

where k is the number of jumps. The expectation, that is mean, of the Poisson
random variable is λt. The variance is also λt.

The events themselves arrive at increments of time Δt according to the ex-
ponential distribution E(λ) where λ, the same λ as above, is the event rate. The
cumulative distribution function of E(λ) is

F (t) = 1− e−λt. (6.5)

In fact Nt can be simulated by sampling E(λ) until the time increments sum to
t, a sample Nt = k is returned as the greatest integer k such that

k∑

i=1

Δti < t where Δti ∼ E(λ). (6.6)

The Δti are called the inter-arrival times. The event arrival times themselves,
ti, are given by

ti =

i∑

j=1

Δtj, i = 1, 2, . . . , k. (6.7)

2 From the French for the same phrase, ‘continue à droite et limites à gauche’. In French the
spelling is càdlàg.
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A sample Δti ∼ E(λ) is obtained as follows, (see (A.16))

Δti =
−1

λ
log(1− U) where U ∼ U(0, 1).3

With these preliminaries in hand, the Poisson process with drift μ is de-
fined by

Lt = μt+

Nt∑

k=1

J (6.8)

where J is the fixed jump size. This is an infinitely divisible process because if
X ∼ Po(λ1) and Y ∼ Po(λ2), then X + Y ∼ Po(λ1 + λ2), (see the Exercises).
The Poisson process is always nondecreasing (if J > 0), that is, stays the same
value or increases. In order to make the drift meaningful, one can subtract the
jump size times the expected number of jumps; this gives rise to the compensated
Poisson process with drift,

Lt = μt+

Nt∑

k=1

J − λJt. (6.9)

In Fig. 6.3a we show an instance of a compensated Poisson process. This is
an event-to-event simulation in that time moves forward from one event to the
next thus highlighting the jumps. The events are generated according to (6.7),
see Algorithm 24.

Algorithm 24. Compensated Event-to-Event Simulation

inputs: t, λ, J (jumpsize)

X = 0;

simTime = 0;

plot(simTime,X);

arrivalArray = poissonArrivals(λt); �use (6.7)

Nt = arrivalArray length; �number of jumps

j = 0; �Nt could be 0

for . . . �infinite loop

j = j+1; �update event index

if j > Nt break out of loop

�increment simTime

ΔsT = arrivalArray[j] - simTime;

simTime = simTime + ΔsT; �move to next jump

ΔX = −JλΔsT; �pro-rated compensation

X = X +ΔX;

plot(simTime,X) �before jump

X = X+J; �add in the jump

3 Note that U < 1 for uniform random number generators, but U = 0 is possible. Since 1−U
is uniform if U is, it is tempting to save an operation and use the latter; but this comes with
the risk of computer overflow in the middle of a calculation.
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plot(simTime,X) �vertical gap

endfor

ΔsT = t - simTime; �since final jump

X = X − JλΔsT;
simTime = t; �final time

plot(simTime,X);

compensated Poisson process

a b

inverse Gaussian process

Fig. 6.3. Event to event simulations of Lévy pure jump processes

6.3.2 The Inverse Gaussian Process

The inverse Gaussian distribution has two parameters denoted by a and b. The
first is a shifting parameter and has units of reciprocal time; larger a shifts the
density to the right. The second is a spreading parameter, smaller b widens the
density. The density itself is given by

fIG(x; a, b) =
aeab√
2πx3

e−
1
2
(a2

x
+b2x), x > 0. (6.10)

Figure 6.4 shows the density function for two sets of parameters. The mean and
variance of an inverse Gaussian are

μIG =
a

b
varIG =

a

b3
. (6.11)

Since the density is only defined on the positive real line, the IG process is
always nondecreasing; such a process is called a subordinator. However a process
may be defined by differences of two independent inverse Gaussians to have both
positive and negative jumps. We investigate this possibility in Section 6.8.

The Lévy process defined by the inverse Gaussian is a pure jump process, see
Fig. 6.3b. We discuss this in the next section.
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a b

Fig. 6.4. The inverse Gaussian density for two parameter sets. Parameter a shifts the
density to the right, parameter b narrows the density (for larger b). Note that the density
is only defined for x > 0. It follows that an ARW based on this density can only move
to the right

The density (6.10) gives the distribution of the end points of the process,
that is at the end of the random walk, much as the normal distribution gives
the end point distribution of a Brownian motion.

A random walk based on the inverse Gaussian is simulated exactly as before:
the interval [0, T ] is subdivided into, say, n subintervals, and the update goes
subinterval by subinterval, see Algorithm 25. This is a point-to-point simulation;
a point-to-point path will not show jumps as they occur between the steps of
the walk. Example runs of the algorithm are shown in Fig. 6.5.

Algorithm 25. Arithmetic Random Walk IG

inputs: X0 = 0, T, Δt, a, b
n = T/Δt �number of iterations in time T
for t = 1, . . . , n

I ∼ IG(aΔt, b) �an IG sample, see A.10

ΔXt = I
Xt = Xt−1 +ΔXt

endfor

�the last Xt is an outcome of IG(aT, b)

6.4 Lévy Measures

Associated with each Lévy process is a unique set valued function ν(A) called
the Lévy measure. The meaning of the measure is

ν(A) is the intensity (arrival rate) of the Poisson process for jumps of sizes in A
for the path Lt, 0 ≤ t ≤ 1.
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a b

Fig. 6.5. These figures demonstrate the infinite divisibility property of the inverse
Gaussian density. In (a) a T = 30 process is simulated in one step using Algorithm 25.
In (b) the process is simulated adding six steps of size dt = 5. In each case the density
fIG(x; 30a, b) is overlaid on the histogram, a = 1, b = 0.7

In particular if the measure is given by a density

ν(dx) = h(x) dx (6.12)

then h(x) is the intensity for jumps of size x.
A Lévy measure has the same properties as a probability distribution except

that it must have zero mass at the origin and its total mass may be infinite. The
latter would be due to having a countable infinity of jumps of very small size. If
the total mass is infinite,

ν(R) =

∫ ∞

−∞
ν(dx) = ∞,

the Lévy process has infinite activity. In this case there are infinitely many jumps
on every interval (closed and bounded). Even if the process has infinite activity,
it is always the case that it is square summable in the following sense

∫

R

min(1, |x|2)ν(dx) < ∞. (6.13)

The Lévy measure for the pure drift process and the Wiener process is null.
For the Poisson process it is given by

ν(A) =
{
λ if J ∈ A,
0 otherwise

= λ1lA(J). (6.14)

The Lévy measure for the inverse Gaussian process is given by a density

νIG(dx) =
a√
2πx3

e−
1
2
b2xdx. (6.15)
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In Fig. 6.3b we show an instance of an inverse Gaussian process. This is an
event-to-event simulation and is somewhat complicated. An approximation can
be made as follows. Given ε > 0, chose positive numbers

ε = c0 < c1 < . . . < cd+1. (6.16)

For each interval [ci, ci+1), i = 0. . . . , d, let Poi(λi) be an independent Poisson
process with intensity given by the Lévy measure of the interval,

λi = ν([ci, ci+1)) =

∫ ci+1

ci

h(x) dx. (6.17)

The jump size Ji should be chosen so that the variance of the Poisson process
Poi matches that part of the variance of the Lévy process for that interval,

J2
i λi =

∫ ci+1

ci

x2ν(dx). (6.18)

To carry out the simulation, the event times for all d processes are sampled in
advance. They are then combined but with each identified to its corresponding
jump size, and sorted from early to late.4 Then the simulation may proceed
event-to-event as in Algorithm 24. When each event comes due, increment the
process Xt using that event’s corresponding jump size.

The above does not account for jumps of smaller size than ε. They may be
handled, if necessary, by approximating all the small jumps by a Wiener process
with drift. The parameter σ(ε) is given by

σ2(ε) =

∫ ε

0
x2ν(dx) (6.19)

and the drift is given by

μ(ε) =

∫ ε

0
xν(dx). (6.20)

6.5 Jump-Diffusion Processes

By combining a Wiener process with a jump process we have what is called a
jump-diffusion process. Let F (·) be a probability distribution (not necessarily a
Lévy process) and let J ∼ F denote its samples. We may define a Lévy process by

Lt = μt+

Nt∑

k=1

Jk − tλE(J). (6.21)

This is called a (compensated) compound Poisson process with drift. Just as in
the compensated Poisson process of (6.9), the arrival times of the jump events

4 A simple technique is to maintain two arrays, one with times, t and the other with jump
size, J . Now sort the times array via a rank permutation ri so that tr1 < tr2 < . . ., see
Chapter E. Then jump size Jri corresponds to time tri .
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are exponential; the only difference here is that the jumps can vary in size
according to F . Since the jump sizes may vary, the compensation is determined
by the average or expected jump size as shown in (6.21). The Lévy measure for
a compound Poisson process is λF (dx).

In financial applications F is often taken to be the normal distribution. Such
an example is shown in Fig. 6.6a (uncompensated in this example).

compound Poisson/Normal process

a b

jump-diffusion process

Fig. 6.6. (a) Shows an instance of an uncompensated compound Poisson process with
normally distributed jump sizes. A jump-diffusion process is shown in (b), the jump
sizes are random normal variates (with independent mean and variance from that of the
diffusion process)

The most general Lévy process is obtained by combining all four types of
processes into one: drift, diffusion (Wiener), compensated compound Poisson,
and an infinite activity pure jump. The combination of the first three of these
is called a jump-diffusion process.

Lt = μt+ σWt +

( Nt∑

k=1

Jk − tλE(Jk)

)
. (6.22)

A jump-diffusion process always has finite activity. Further it is a martingale if
and only if μ = 0.

A jump-diffusion path is simulated from event-to-event exactly as in
Algorithm 24. However, there is the additional step that the jump size be
drawn from F before adding the jump to X,

J ∼ F

X = X + J.

The additional difference from the cited algorithm is that, if compensation is
used, the jump size to use for it is the constant expected jump size, EF (J).
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6.6 Application to Asset Pricing

As we learned in Chapter 1, an arithmetic random walk is an inadequate model
for asset prices; a geometric walk is required. Therefore it is the log returns of
the asset that must be modeled by the Lévy process

dSt

St−
= dLt, (6.23)

(St− is the left limit of S at t; by the cadlag property it always exists). By
conducting simulations of Lt, 0 ≤ t ≤ T , as described in the previous sections,
and using (6.23) we obtain a histogram approximation of the maturity price
distribution and statistical information on the paths of the process leading to
maturity. Of considerable importance in this regard is the Martingale preserving
Property stating that if (Lt)t≥0 is a martingale, then so is (St)t≥0.

Generating asset prices via (6.23) is called the stochastic exponential method.
It is the method we will use. An alternative is the exponential-Lévy model
given by

St = S0e
Lt .

The two approaches are equivalent and are related by the Itô Lemma (B.11).
As was the case for diffusion increments, jump increments are taken pro-

portional to the current asset price S. For example, Snew = SoldJ . Then
ΔS = Snew − Sold = Sold(J − 1). If J > 1 then the increment is positive.
If 0 < J < 1 then the increment is negative. And if J < 0 then the new price
is negative; downward jumps must not exceed the current stock price. An alter-
native is to put ΔS = Sold(e

J − 1). Since eJ > 0 for all J , the non-negativity
requirement is automatically fulfilled. By the series expansion for the exponen-
tial function, to first order, eJ−1 = J . In this section we follow Merton, [Mer76],
and put ΔS = S(J − 1).

Recall that, for the drift-diffusion process of Chapter 1, we were able to derive
the maturity distribution analytically, see (1.18). In that case ST is distributed
lognormally. However things are not so easy for an arbitrary Lévy processes.
In general the maturity distribution is the solution of the stochastic differential
equation (SDE) for log(St) where St is as in (6.23). The differential of log(St) is
given by Itô’s Lemma, see (B.11), page 227. In appendix Section B.2 we solve
this for the drift-diffusion process (Wiener process with drift) obtaining the
lognormal as its solution. Solving it for the several processes described in the
previous sections is beyond the scope of this text. Thus we will content ourselves
with the simulation of the end point via small steps. In that way we generate
the paths too; as we have seen, they are needed in any case for several of the
exotic options.

6.6.1 Merton’s Model

Besides drift-diffusion there is another process for which the end point distri-
bution may be determined, namely for jump-diffusion processes. Let Lt be an
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uncompensated jump-diffusion process and consider the product S dLt term by
term. The drift and diffusion terms are Sμdt and σSdWt as usual. If there is no
jump at t, then the contribution from the jump term is 0. If t = tk is one of the
jump event times then S jumps to SJ so the increment is dS = SJ−S = S(J−1).
Therefore we have

dSt = Stμdt+ σStdWt + St

Nt∑

k=1

(Jk − 1)δtk (dt) (6.24)

where the singular measure δtk (dt) is equal to 1 if t = tk and 0 otherwise. Only
one term of the sum will be non-zero for any t. Note that the value of St used
as the multiplier for the jumps in (6.24) is the limiting value of S from the left,
St−; at an event time tk itself, S jumps to Stk .

By an extended version of Itô’s Lemma, (B.11), the differential of log St is
given by

d(log St) = (μ− 1

2
σ2)dt+ σdWt + d

( Nt∑

k=1

log Jk1ltk(t)

)
. (6.25)

The last term signifies the following: it calculates that a difference in the sum,
which can not be infinitesimal, at t is log Jk if t = tk and 0 otherwise. Again,
only one term is non-zero for any value of t. Integrating (6.25) we get

log St − log S0 = (μ − 1

2
σ2)t+ σWt +

Nt∑

k=1

log Jk. (6.26)

Upon exponentiation we arrive at the exponential-Lévy formulation

St = S0e
(μ− 1

2
σ2)t+σWt+

∑Nt
k=1 log Jk

= S0e
(μ− 1

2
σ2)t+σWt

Nt∏

k=1

Jk. (6.27)

In Fig. 6.7a we show a typical path for a jump-diffusion simulation using
lognormally distributed jump sizes, (b) depicts the maturity distribution. These
figures were made using Algorithm 26.

Algorithm 26. Jump-Diffusion GRW, Point-to-Point Simulation

inputs: T, dt, λ, F (·) (jumpsize distribution)

S0, μ, σ
S = S0;

n = T/dt; �number of steps

simTime = 0;

arrivalArray = poissonArrivals(λT); �use (6.6)

NT = arrivalArray length; �number of jumps

sDX=1; �step index, point at next step

jDX = 1; �jump index, point at next jump
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jump diffusion path

a b

jump diffusion maturity distribution

Fig. 6.7. Characteristics of a jump-diffusion geometric random walk. A typical path
is shown in (a) and the end-point distribution is shown in (b). The drift-diffusion pa-
rameters are: μ = 3% and σ = 40%. The jumps are distributed as LN(−0.0032, 0.082)
with event rate λ = 0.1 per day

for . . . �infinite loop

if( jDX > NT or sDX ∗ dt < arrivals[jDX] )

dst = sDX*dt - simTime; //increment in simtime

�do a diffusion

dS = S(μ ∗ dst+ σ
√
dstZ); �Z ∼ N(0, 1)

S = S + dS;

simTime = simTime+dst; �update simTime

sDX = sDX+1; �point at next step

else �jump event

�do a diffusion since last step

dst = arrivals[jDX]-simTime; �increment in simTime

dS = S(μ ∗ dst+ σ
√
dstZ); �Z ∼ N(0, 1)

S = dS + S;

simTime = arrivals[jDX]; �update simTime

S = S*J; �J ∼ F (·), after jump price

jDX= jDX + 1; �point to next jump time

endif

�check if done

if sDX > n break out of loop

endfor

ST = S;

6.6.2 Jump-Diffusion Risk-Free Growth

In order to use a Lévy process for market predictions, the process must be a
martingale. It is possible to achieve this by adjusting the drift of the process,
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this is a consequence of the Girsarnov Theorem, [Bjo04]. However, except for the
Poisson pure jump and Wiener processes, the martingale measure is not unique.
From the discussion in Section 6.1, this means the market is incomplete and
there is no one no-arbitrage price. Notwithstanding uniqueness, next we show
how to calculate a no-arbitrage drift for the jump-diffusion process.

The infinitesimal growth rate of the jump-diffusion model may be calculated
from (6.24). The drift term being constant, its expected value is itself μStdt,
and the expected value of the diffusion term is 0 because the expected value of
a Wiener process is that. With regard to the jump term, the expected value is
the expected jump size times the expected arrival rate of the jumps. Since the
latter arise according to a Poisson distribution with intensity λ, we may write

E

(
St

Nt∑

k=1

(Jk − 1)δtk (dt)

)
= StE(J − 1) (λdt) . (6.28)

For example, if the jumps are distributed according to N(μJ , σ
2
J), then

E(dSt) = μSdt+ (μJ − 1)Stλdt. (6.29)

And if they are distributed according to LN(α, β2), then

E(dSt) = μSdt+ (eα+
1
2
β2 − 1)Stλdt. (6.30)

On the other hand, in order to be risk-neutral, the expected growth rate
should be Strdt where r is the risk-free rate. Hence in the case of normally
distributed jumps

r = μ+ λ(μJ − 1)

so that
μ = r − λ(μJ − 1). (6.31)

And in the case of lognormally distributed jumps,

μ = r − λ(eα+
1
2
β2 − 1). (6.32)

Using these drifts in the price simulations for these jump diffusion processes is
the equivalent of using the risk-free rate in the GBM simulations. One still has
to discount back the option payoffs.

6.6.3 Calculating Prices for Vanilla Options

We will use the Monte Carlo method to obtain option prices by simulating the
jump-diffusion model. The only change to Algorithm 26 is to add the option
payoff function G(ST ) (for path independent options) at the end of the loop and
then discount this back to t = 0, see Algorithm 27.

If the jump sizes are to be normally or lognormally distributed, use (6.31) or
(6.32) as appropriate for the drift.

In Fig. 6.8 we compare jump-diffusion ending price distributions for both
normal and lognormal jump sizes against that of geometric Brownian motion.
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normal jumps

a b

lognormal jumps

Fig. 6.8. Comparisons between GBM maturity distribution (in red) and a jump dif-
fusion maturity histogram. For the GBM r = 3%, vol= 40%, T=100 days. The Pois-
son process is λ = 0.1 per day. In (a) the jumps are N(1, 0.062); in (b) they are
LN(−0.0032, 0.082)

In each case the jump-diffusion prices show greater spread and so we can expect
higher option prices as if the volatility were greater.

Algorithm 27. Monte Carlo Jump-Diffusion Pricing Algorithm

inputs: S0, K, T, r, σ, nTrials
E = 0
for i = 1, . . . , nTrials

S = S0

�use Algorithm 26 to generate ST

E = E +G(ST )
end for

option price = e−rTE/nTrials

Figure 6.9 illustrates a comparison between option prices under the Black-
Scholes model and those of a jump diffusion model. As previously mentioned, the
jump diffusion model is incomplete and therefore there is no unique no-arbitrage
price. In the figure the risk-neutral value of (6.31) was used.

Exotic Options

Many of the exotic options go just as discussed in Chapter 4 since we are able to
simulate instances of the price paths for Lévy processes. However others require
some care in the use of Lévy jump process. In the case of a barrier option, a jump
can carry the underlying’s price across the barrier triggering the corresponding
action. And again, in our shout boundary approach to shout options, a jump
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vanilla put

a b

vanilla call

Fig. 6.9. Black-Scholes put and call values (black) as compared with those for the
jump diffusion model (red) using normal distribution jumps plotted against stock price
S. The option characteristics are: K = 100, T = 60 (days), rf = 3%, vol= 40%. The
jump parameters are as indicated. The jump diffusion ATM put costs 6.75 vs 6.20
for Black-Scholes, a 9% increase. The jump diffusion ATM call costs 7.21 vs 6.70 for
Black-Scholes, an 8% increase

can carry the price across the boundary calling for a shout. These options must
be simulated event-to-event and Brownian bridges must be considered between
events (4.1), see [CT04].

As previously reported, simulation prices of vanilla options for a range of pa-
rameter values, for example, drifts in the jump-diffusion model, when compared
to their market prices can be used to determine the exact (current) parameter
values applicable. Then these values are used to calculate exotic option prices.

6.7 Time Shifted Processes

In Section 6.3 we encountered an example of a subordinator, a process that is
either constant or increasing. One of the main uses of such a process is to replace
the smoothly moving calendar time by the subordinator process. In this way an
entirely new class of Lévy processes can be generated. In finance such a process
is used to simulate business time since businesses tend to operate from event
to event. If τt is a subordinator and Xt an overlying Lévy process, then the
subordinated or time changed process is

Lt = Xτt . (6.33)

Often a Wiener process is used as the overlying process.
Figure 6.10 shows a typical Gaussian subordinator path in (a) and the end

point histogram in (b). The simulation, done via Algorithm 28, proceeds in reg-
ular time increments Δt as usual. But the Wiener process is based on an inverse
Gaussian time step. The path of such a process often has large movement as
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shown but they are not exactly jumps since they occur Δt time units apart.
These can occur when there is a long time period commanded by the subordina-
tor, then the Gaussian step has a chance to be large. The end point distribution
is depicted in (b). It shows a narrow peak but a very wide base. A small number
of large jumps in the same direction can account for this phenomenon.

subordinator path subordinator density

a b

Fig. 6.10. Illustrated in (a) is a typical Gaussian subordinator path. Illustrated in (b)
is an end point histogram. It shows a narrow peak but a very wide base. A small number
of large jumps in the same direction can account for this phenomenon

Algorithm 28. Gaussian Subordinator Simulation

inputs: T, dt, X0, μ, σ, a, b
X = X0;

n = T/dt; �number of steps

for i = 1, 2, . . . , n
τ ∼ IG(a ∗ dt, b) �incr. in time via subordinator

ΔX = μτ + σ
√
τZ; �Z ∼ N(0, 1)

X = X +ΔX;

endfor

XT = X;

6.8 Heavytailed Distributions

The normal distribution is widely used in finance, but often it is only an approx-
imation to the actual distribution of the circumstance. One piece of evidence for
this is that events which should only occur once in thousands of years, instead
occur 2 or 3 times in 40. Some have labeled these as “six-sigma events” since, if
the normal distribution applied, their probability of occurring would be that in
the upper tail six standard deviations from the mean. It can be inferred that the
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actual distribution governing, for example price movements, has greater proba-
bility for extreme events than is accounted for by the normal distribution. That
is to say, the tails of the distribution should be fatter.

It is for this reason that financial mathematicians study heavytailed distri-
butions, densities decaying more slowly in the tails than the normal. In this
section we examine two examples. The first is the widely known family of t dis-
tributions, sometimes known as the Student t. For the second example, we show
that a heavytailed distribution can be constructed as the difference between two
independent subordinators.

6.8.1 Student’s t-Distribution

The t distribution has a single parameter, ν > 0, known as the degrees of freedom
(dof). Some members of the family are shown in Fig. 6.11.

The t probability density function is given by

fν(x) =
Γ (ν+1

2 )√
νπΓ (ν2 )

(
1 +

x2

ν

)− 1
2
(ν+1)

. (6.34)

In this Γ (·) is the gamma function defined by the integral

Γ (z) =

∫ ∞

0
tz−1e−t dt.

In (6.34) the gamma terms are just constants contributing to normalization.
The gamma function is an extension of the factorial function. Using integra-

tion by parts, it is easy to see that it satisfies the recursion

Γ (z + 1) = zΓ (z).

And by direct integration we get

Γ (1) = 1.

Fig. 6.11. Student t densities for degrees of freedom equal to 1, 2, 3, and infinity (the
standard normal)
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From these two facts it is easy to see that, for integers, gamma is the factorial
function,

Γ (n) = (n− 1)! n a positive integer. (6.35)

The only other commonly needed value of gamma is for z = 1/2 and that value
is well-known,

Γ (
1

2
) =

√
π. (6.36)

With these preparations, we may write the first five members of the tν family
(for integral ν)

f1(x) =
1

π(1 + x2)

f2(x) =
1

2
√
2
(1 + x2/2)−3/2

f3(x) =
2

π
√
3
(1 + x2/3)−2

f4(x) =
3

8
(1 + x2/4)−5/2

f5(x) =
8

3π
√
5
(1 + x2/5)−3.

The ν = 1 density is also known as Cauchy’s density. As ν → ∞ the tν
distribution tends to the standard normal density. As seen in Fig. 6.11 the tails
become less heavy as ν increases.

The t densities are symmetric about x = 0 and hence have mean equal to 0.
The ν = 1 and ν = 2 densities do not have bounded square integrals and
therefore their variances are infinite. But for ν > 2 the variances are finite,

var(tν) =
ν

ν − 2
ν = 3, 4, . . . . (6.37)

Sampling from the Student-t

The most widely used method for sampling from the tν distribution is due to
Baily [Bai94]. It is valid for all ν > 0 The Baily algorithm is a simple modification
of the Marsaglia-Bray algorithm, Algorithm 2, for the standard normal.

Algorithm 29. Baily’s Algorithm for tν Samples

repeat

U ∼ U(0,1); U = 2U-1; �uniform on -1 to 1

V ∼ U(0,1); V = 2V-1; �a point in the sqr.

until W=U2+V2<= 1
C=U2/W; R = ν(W−2/ν − 1)
T =

√
RC;

if( U∼ U(0,1) <.5 )

return T

else

return -T
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6.8.2 Difference Subordinator Densities

Although we have only studied two Lévy densities besides the normal, namely
the Poisson and the inverse Gaussian, there are many known. And we have
shown how Lévy processes can be constructed as compound Poisson processes
or by time change. Many of the Lévy process densities are heavytailed. Here we
show another method for constructing a heavytailed density guaranteed to be
infinitely divisible.

Let Xt and Yt be subordinators and put Zt equal to their difference,

Zt = Xt − Yt. (6.38)

Then Zt is infinitely divisible and therefore a Lévy process. For example, X and
Y can be the same subordinator.

By independence, the mean of Zt is just the difference of that of Xt and Yt,
and the variance is the sum var(Zt) = var(Xt) + var(Yt). In Fig. 6.12 we show
the difference between two inverse Gaussians for two different parameter sets.
Also shown is the normal density having the same mean and variance. At about
2σ the difference density exceeds the normal showing that its tails are heavy.

Application to Asset Prices

An alternate formulation of (6.23) derives from including the risk-free rate in
the stochastic exponential separately,

dSt = rf St−dt+ St−dZt. (6.39)

This formulation is completely general and holds for any Lévy process Zt. From
the martingale preserving property, in this formulation the process e−rf tSt is a
martingale if and only if E(Z1) = 0.

Fig. 6.12. Difference inverse Gaussian histograms for two quite different parameter sets.
Overlaying each figure is the normal distribution with the same mean and variance. Both
inverse Gaussians are heavytailed
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Problems: Chapter 6

1. Show that if X ∼ Po(λ1) and Y ∼ Po(λ2), then X + Y ∼ Po(λ1 + λ2). Hint:

Pr(X + Y ≤ z) =

z∑

y=0

Pr(X ≤ z − y|Y = y)Pr(Y = y)

=

z∑

y=0

λz−y
1 e−λ1

(z − y)!

λy
2e

−λ2

y!
.

2. The skew of a random variable X is defined as

skew = E
(
(X − μX)3

)
/std3X . (6.40)

Given data x1, x2, . . . , xn an estimator for skew is

skew =

∑n
1 (xi − x)3

ns3

where x and s are empirical mean and standard deviation. Being a symmetric
distribution the normal has 0 skew. Calculate the empirical skew of the log returns
(log Si+1

Si
), for 3 stock equities of your choice using daily prices over the last 2 years.

(Use the FIMCOM database or finance.yahoo for the prices, see Section 1.7.3
page 25.)

3. The kurtosis of a random variable X is defined as

kurtosis = E
(
(X − μX)4

)
/std4X . (6.41)

Given data x1, x2, . . . , xn an estimator for kurtosis is

kurtosis =

∑n
1 (xi − x)4

ns4

where x and s are empirical mean and standard deviation. The kurtosis of the nor-
mal distribution is 3, cf. the footnote on page 15. Calculate the empirical kurtosis
of the log returns (log Si+1

Si
), for 3 stock equities of your choice using daily prices

over the last 2 years. (Use the FIMCOM database or finance.yahoo for the prices,
see Section 1.7.3 page 25.)

4. (a) From market price data make a graph of implied volatility σ versus strike price
K for call options on the S&P-500 for expiration maturities of T on the order of
30 days (near as possible). Do the same for T = 60 and 90 days. You now have a
volatility surface, implied volatility versus strike and time.
(b) Do the same for put options.

5. The Gamma distribution, G(α, λ) has density given by

fG(x : α, λ) =
λα

Γ (α)
xα−1e−λx, x > 0. (6.42)

Here Γ (α) is the gamma function of Section 6.8 and equals (α−1)! if α is a positive
integer. Show that the Gamma is infinitely divisible (empirically) by showing that
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the histogram for the sum of six samples of G(1, λ) has the same density as G(6, λ).
Note that, for α a positive integer, then

W =
−1

λ
log(

α∏

1

Ui) Ui ∼ U(0, 1) (6.43)

is a sample from G(α, λ), [SM09].

6. (a) Make a chart similar to Fig. 6.9 showing the price of a put option using the jump
diffusion model with lognormal jumps for stock prices versus the GBM model. In
order to compare the results with jump diffusion using N(μJ , σ

2
J ) jumps, find α and

β to match the mean and variance,

μj = μLN = eα+
1
2β

2

, σ2
J = (eβ

2 − 1)μ2
LN .

(b) Do the same for calls.

7. (a) Make a chart similar to Fig. 6.9 showing the price of a put option using a
difference IG model for stock prices versus the GBM model. Use a− = a+ = 41
and b− = b+ = 8. What are the mean and variance of the difference IG process?
(b) Do the same for calls.

8. (a) Work the Bermuda option Problem 5 of Chapter 4 assuming prices follow a
jump diffusion with normal sized jumps. Be sure to report your jump parameters.
(b) Repeat (a) using lognormal sized jumps.

9. Work the Bermuda option Problem 5 of Chapter 4 assuming prices follow a sym-
metric differential IG model, use equation (6.39). Be sure to report your model’s
parameters.

10. Recalculate Table 4.2 page 121 for barrier options assuming prices follow a jump
diffusion model with normal sized jumps. Recall that the simulation must go event-
by-event.

11. Recalculate Table 4.1 page 119 for Asian options assuming prices follow a differen-
tial IG process.

12. A portfolio consists of 100 shares each of stock A: S0 = 60, μ = 8%, σ = 40%; and
B: S0 = 40, μ = 3%, σ = 20%. Their correlation is ρ = 0.3. After 6 months what is
the probability of losing money and the expected gain of the portfolio if (a) prices
follow a Gaussian GBM model? (b) a jump diffusion with normal jumps?

13. Work the VaR Problem 9 of Chapter 2 assuming prices follow jump diffusion with
normal sized jumps.

In the following assume a jump diffusion model for prices with normal jumps.

14. Analyze covered calls as in Table 5.2.
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15. Analyze creditspreads as in Table 5.5.

In the following assume a (symmetric) difference IG model for prices.

16. Analyze iron condors as in Table 5.9.

17. Analyze the straddle strategy as in Table 5.7.
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Kelly’s Criterion

The nature of markets in finance is one of almost constant ups and downs.
Against this environment investors make every effort to succeed in their invest-
ments relying on studies of equity fundamentals, market dynamics, experience
and other factors to assure success. Fortunately most of the time their efforts
are rewarded thus growing their investment capital. But not always. Individual
stocks may plunge in value only to remain suppressed for a long period of time
or even to never recover. And from time to time it gets worse; this can happen
to the entire market. These are called Bear markets.

Thus investing is a proposition in which an investment generally pays off
but occasionally takes a loss, possibly even a complete loss.1 Mathematically we
would say investing is a probabilistic enterprise with a positive expectation. In
this regard, investing is like gambling with the difference being that gambling
usually has a negative expectation.

Suppose an investor has P capital and places it all in investment A. This is
usually not very wise. Assuming that investment A could completely fail, even
though the probability might be very small, the investor could lose everything
and be left with no investment capital at all, game over. The question with which
we concern ourselves in this chapter is, what fraction of P should be invested in
A? What criteria should be used to decide?

Working at Bell Labs in the early 1950s, John Kelly considered the problem
of deciding how much money to risk on probabilistic outcomes that are nonethe-
less in your favor, [Kel56]. His motivation was speculation about gambling tips
over noisy communication channels, but the work has been much more widely
interpreted. Among others, it is the basis of a strategy for asset allocation in the
stock market, the Kelly Criterion.

The criterion applies to investments having a finite time horizon upon which
the investment is settled. Furthermore, such investments are to be repeated in-
definitely. As a class, option trades fit these conditions very well. In the following
we derive Kelly’s Criterion and then investigate its application to option trading.

1 The law provides that stockholders are not liable for the company’s debts limiting their
loss to 0.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7 7,
© Springer Science+Business Media New York 2013
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7.1 Kelly’s Formula for a Simple Game

We start with a simple example. A trader with long experience in credit spreads
determines that 40% of the trades have failed and lost their complete investment.
But the remaining 60% have succeeded and earned an average return of 88%.
Under these conditions, what fraction of the trader’s investment capital should
be risked on a continuing series of these credit spreads?

It may be clearer to recast the problem as a gamble. The bet is on the outcome
of a weighted coin that lands Heads with probability p = 0.6 (and Tails with
probability q = 1 − p = 0.4). On Tails, the entire bet is lost; but on Heads the
net gain is γ = 88% of the bet.

Gamblers describe payoffs in terms of odds (and often, probabilities too); for
example (a : b) means that winning increases one’s bankroll by $a while losing
decreases one’s bankroll by $b. On a per unit basis this is (ab : 1), that is, for $1
bet, the gain is $(a/b) in case of a win.

In either formulation, we calculate the expected gain per unit bet as

Egain = γp− q, (7.1)

or Egain = 0.128 for the particulars given. The expectation is positive so the
gamble is in the players favor and, over the long haul, the gambler expects to
make 12.8% per play. Therefore the gambler plans to repeat the bet indefinitely.

But how much to risk on each bet?
Since the bets will be made repeatedly, it would a mistake to risk it all each

time – one loss leaves the gambler, or trader, with nothing. Instead, we suppose
the amount bet on each play is a fixed fraction f of the gambler’s bankroll.
Letting F0 denote the gambler’s initial fortune, after one play the new fortune
will be

F1 =

{
if win F0 + γfF0 = (1 + γf)F0,
if lose F0 − fF0 = (1− f)F0,

After N plays the fortune will be the product

FN = (1 + γf)W (1− f)LF0 (7.2)

where W is the number of wins and L is the number of losses in the N plays.
Kelly’s key insight is this:

we should strive to maximize the expected growth rate of our fortune.

The growth rate after N plays, GN , satisfies the equation eGNNF0 = FN ,
see (2.9),2 and therefore

GN =
1

N
log

FN

F0
=

W

N
log(1 + γf) +

L

N
log(1− f). (7.3)

2 This is the effective growth rate for this discrete process; the actual growth rate follows from
the equation 2gNNF0 = FN .
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Since W and L are random variables, so is GN . As N increases indefinitely, the
ratio W/N tends to p and L/N tends to q with probability 1; hence in the limit
we obtain the expected growth rate

G = p log(1 + γf) + q log(1− f). (7.4)

Maximize G with respect to f by setting the derivative to zero,

0 =
pγ

1 + γf
− q

1− f
=

pγ(1− f)− q(1 + γf)

(1 + γf)(1− f)
,

for a solution of

f =
γp− q

γ
=

Egain

γ
. (7.5)

Note the simple form of the answer, the expectation over the gain, or sometimes
referred to in brief as the edge over the odds. This is Kelly’s formula.

A notable aspect of Kelly’s Criterion is that, since only a fraction of the
fortune is bet on each play, there is always a fraction held back – one’s fortune
can never be zero.

In Fig. 7.1 we show N = 260 plays of the simple game with p = 0.6, q = 0.4,
γ = 0.88, and for various fractions f (with differing ordinate scales). From (7.5)
the optimal betting fraction is

f = 0.6 − 0.4/0.88 = 0.145.

Therefore if the old fortune is F0, the new fortune F1 is

F1 =

{
if win (1 + 0.88 ∗ 0.145)F0 = 1.128F0,
if lose (1− 0.145)F0 = 0.855F0.

(7.6)

The maximal growth rate, from (7.4) with f given by (7.5), is

G = p log(1 + γp− q) + q log(1− γp− q

γ
)

= p log(p(1 + γ)) + q log(
q

γ
(1 + γ)) (7.7)

or, with the present numbers,

G = 0.0096.

After N = 260 plays the expected fortune is

E(F260) = F0e
260∗0.0096 = 12.15F0,

a 12 fold increase.
The runs were obtained by simulation using the following code, and therefore

each is only a single possible fortune history. Of course, projected out indefinitely,
the f = 0.145 graph will have the greatest gain rate; this is the point of the
maximization. Otherwise, the most important feature demonstrated by the figure
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is that the volatility of the fortunes markedly increase with increasing f . Even
the maximizing fraction is accompanied by large swings in fortune.

This is a cautionary aspect of the Kelly Criterion. We take up this topic again
in Section 7.5.

Algorithm 30. 60/40 Game simulation

Fortune=1; f=0.145; gain = 0.88
for i=1 to N
wager = f*Fortune
U∼ U(0,1) �uniform sample on 0 to 1
if U < 0.6

Fortune = Fortune + gain*wager
else

Fortune = Fortune - wager
endif

endfor
�ending Fortune after N plays

bet fraction 5%,

a

c d

b

bet fraction 10%

bet fraction 14.5%, bet fraction 20%

Fig. 7.1. Instances of fortune histories for the 60/40 game for various betting fractions
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7.2 The Simple Game with Catastrophic Loss

Consider the example of an option trader who kept careful records of his or her
last 75 butterfly trades and notes these statistics:

• 49 gained money, 26 lost money
• Average gain per success, $889.12;
• Average loss of the worst two, $2,637.00;
• Average loss of the remaining 24, $1,366.32.

The payoff expectation of this trade has been

Egain = 889.12 ∗ 49

75
− 1,366.32 ∗ 24

75
− 2,637.00 ∗ 2

75
= 73.35;

a gain of $73.35 per trade.
As above, we ask what fraction f of our investment capital should be risked on

this trade going forward. Start by taking the average (intermediate) loss as the
unit “bet”. Regard the loss suffered by the worst two trades as a “catastrophic”
loss. Per unit bet the gains and losses are:

γ =
889.12

1,366.32
= 0.651, λ = 1, μ =

2,637.00

1,366.32
= 1.930.

and their probabilities are

p1 =
49

75
= 0.653, p2 =

24

75
= 0.32, p3 =

2

75
= 0.026.

On a per unit basis the expected payoff is

Egain = 0.651 ∗ 0.653 − 0.32 − 1.930 ∗ 0.026 = 0.0536.

The important difference here from the simple game is that f cannot be as
big as 1; because of the catastrophic loss, we could lose nearly twice the bet. In
fact to avoid losing more than our fortune we must have

f <
1

1.93
= 0.518.

To find the maximizing fraction, compute the expected gain rate G as before.
After N trades our fortune will be

FN = (1 + γf)W (1− f)L(1− μf)CF0,

where W,L,C are the number of wins, intermediate losses, and catastrophic
losses in the N trades. The expected gain becomes

G = lim
N→∞

1

N
log

FN

F0
= p1 log(1 + γf) + p2 log(1− f) + p3 log(1− μf).

The maximizing fraction is given by the root of
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0 = G′ =
p1γ

1 + fγ
− p2

1− f
− p3μ

1− fμ
.

Combining these fractions results in a quadratic polynomial in the numerator
to solve for f . Using the numbers for the butterfly application, the maximizing
fraction is

f = 0.078.

An instance of 260 iterations of this investment is shown in Fig. 7.2. The maximal
growth rate and expect fortune after 260 identical investments are

G = 0.019, E(F260) = 151.17.

Fig. 7.2. An example fortune history of a butterfly trader. The size of each trade is
7.8% of the traders investment capital. At the end of the period the trader has doubled
his fortune on the basis of these trades in this example. But after 160 trades the fortune
was down about half

7.3 The Optimal Allocation Problem When Only One Winner

The foregoing was concerned with optimally allocating our resources to a single
venture. Now we want to allow for the possibility of several ventures. At first
suppose that only one of them will succeed and our entire investment allocated
to the others is lost. This could happen for example by buying calls on each
of several firms vying for a lucrative contact. We anticipate that our call on
the company winning the contract will pay off handsomely but those on the
others will probably expire worthless. As before, this problem can equally well
be posed in gambling terms. In fact Kelly’s original formulation was that of bets
on a horse race at the track.

When framed in terms of an allocation problem, it is more convenient to
work with payouts rather than gains and losses. By the payout α of a bet we
mean the multiplier per unit bet, or per unit investment, upon success. There is
a simple relationship between payouts and gains. For a $1 bet, if the gain is γ,
then the payout is

α = γ + 1. (7.8)

because the payout includes the $1 paid in.
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We know that a gamble is favorable if its expectation is positive, which is to
say E = pγ− (1− p) > 0. In terms of payouts, this is equivalent to the condition

pα > 1 (7.9)

since pα− 1 = p(γ+1)− 1 = pγ− (1− p). It follows that the odds are fair when
pα = 1.

7.3.1 A Four Choice Allocation Problem

To illustrate ideas, we will work through a specific example. Suppose there are
four investments under consideration, A, B, C, and D. Through careful research
assume that their probabilities of success and associated payoffs are estimated to
be as given in Table 7.1. Payouts are higher for the long shots, possibly because
other investors have the same idea we have. Denote by fi the fraction of our
bankroll allocated to investment i, i = A,B,C,D, and let b denote the fraction
held back, that is not invested. Thus

b+ fA + fB + fC + fD = 1. (7.10)

Table 7.1 Four choice probabilities and payoffs

Choice Win probability Payoff multiplier Fraction

A 0.5 2.1 fA
B 0.3 3.2 fB
C 0.1 10.8 fC
D 0.1 8.5 fD

Before continuing, observe that the sum of the reciprocal payouts is an im-
portant quantity,

τ =
∑

i

1

αi
. (7.11)

It is easiest to explain this in terms of gambling. Let Ii denote the total amount
of money bet on outcome i. Then I = IA + IB + IC + ID is the total amount
the “house” receives from the bets on this play. If A succeeds, the “house” pays
back αAIA. Similarly for B, C, and D. If each of these payouts equals the total
paid in, meaning αiIi = I, then the sum τ equals 1,

1

αA
+

1

αB
+

1

αC
+

1

αD
=

IA
I

+
IB
I

+
IC
I

+
ID
I

= 1.

It means that all money paid in is paid back out. In the investment interpre-
tation it means there are no commissions or other losses, for example, via the
bid/ask spread. If τ > 1 it means that less money is paid back than paid in and
consequently there are commissions or other losses. On the other hand, if τ < 1,
it means money is being created over all by the venture.
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Now to the solution. As before, let F0 denote the initial size of the investor’s
fortune, or the gambler’s bankroll. If A wins, the fortune will then be bF0

held over plus αAfAF0 as the earnings of the investment on A; altogether
(b + αAfA)F0. Similar expressions hold in case B, C, or D win. The fortune
after N such cycles will be

FN = (b+ αAfA)
NA(b+ αBfB)

NB (b+ αCfC)
NC (b+ αDfD)

NDF0

where Ni is the number of times outcome i, i = A,B,C,D, occurred in the N
plays. In the limit as N → ∞, the growth rate tends to

G = lim
N→∞

1

N
log

FN

F0
= pA log(b+ αAfA) + pB log(b+ αBfB)

+ pC log(b+ αCfC) + pD log(b+ αDfD). (7.12)

Finally, the fractions we seek, including the fraction held back, are those
that maximize G. But this time the constraint (7.10) applies. By the LaGrange
method for constrained optimization we derive the following system with λ as
the LaGrange multiplier,3

∂G

∂fi
=

piαi

b+ αifi
= λ, i = A,B,C,D

∂G

∂b
=

∑

i

pi
b+ αifi

= λ

and the constraint b+ fA + fB + fC + fD = 1. (7.13)

Equations (7.13) comprise the archetypal system for these problems. Prob-
lems with fewer or more allocation choices than four entail the obvious modi-
fications. Note that the system (7.13) only applies to solutions interior to the
constraint region.

Unfortunately the general solution of this system is not straightforward.
Therefore before tackling it, we first gain familiarity by considering some simpler
examples.

7.3.2 A Two Choice Problem with τ ≤ 1

First consider a two choice problem in which τ = 1. For example let pA = 0.6,
pB = 0.4, αA = 1.88, and αB = 2.136; 1/1.88 + 1/2.136 = 1. The gain for
betting on A here is γ = α − 1 = 0.88 and we see that this is the simple game
of Section 7.1 in disguise.

Since τ = 1, meaning that the “house” pays back everything it takes in, we
reason that there is no need to hold money back; we can effectively hold money
back by placing canceling bets. So put b = 0. From (7.13), with b = 0, we have
that pA = fAλ and pB = fBλ. Together these show that λ = 1,

3 See Section A.13.
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1 = pA + pB = fAλ+ fBλ = (fA + fB)λ = λ. (7.14)

But then we get as a solution fA = pA = 0.6 and fB = pB = 0.4.
With this solution, if the old fortune is F0, the new fortune F1 is

F1 =

{
if A 1.88 ∗ 0.6F0 = 1.128F0,
if B 2.136 ∗ 0.4F0 = 0.855F0,

the same as before, (7.6) above.
By placing canceling bets (only one of A or B will win) we effectively bet

only a fraction of our bankroll. In the worst case, that of B winning, we get
back 85.5% of our bankroll; this is effectively the fraction not risked. Therefore
0.145 = 1− 0.855 is the fraction at risk.

The solution is not unique. In fact every choice of b, fA, and fB for which
λ = 1 is a solution; for example b = 0.1, fA = 0.547, and fB = 0.353. It is
because, with this choice, the new fortune upon a win for A will be pAαAF0,
and upon a win for B will be pBαBF0, the same as before.

If τ < 1 everything is the same. Again choices of b, fA, and fB for which
λ = 1 is a solution.

7.3.3 A Two Choice Problem with τ > 1

In this case b cannot be zero because the “house” extracts a payment for each
play. Again assume pA = 0.6 and pB = 0.4. Since the Kelly Principle does not ap-
ply unless we have a positive expectation, we take αA big enough for this to hap-
pen, for example αA = 2. For αB = 1.5 we will have τ = 1/2 + 1/1.5 = 7/6 > 1.

Because outcome A is advantageous, from what we have seen so far, we must
have (from the first equation of (7.13) with λ = 1)

pAαA

b+ αAfA
= 1 (7.15)

maximizing the gain for this outcome. On the other hand, since outcome B is
disadvantageous, we expect that fB should be zero. This is indeed the case, see
the details box on the next page.

7.3.4 Solution to the Four Choice Problem

Now return to the four choice problem of Table 7.1. We first rank the choices in
terms of best payoff prospects, pα, this works out to be: C with 0.1∗10.8 = 1.08,
A with 0.5 ∗ 2.1 = 1.05, B with 0.3 ∗ 3.2 = 0.96, and D with 0.1 ∗ 8.5 = 0.85.
Because C and A have positive expectation we know they must satisfy

pCαC

b+ αCfC
= 1 and

pAαA

b+ αAfA
= 1. (7.16)
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The resulting growth rate equation becomes

G = pA log(pAαA) + pC log(pCαC)
+pB log(b+ αBfB) + pD log(b+ αDfD); (7.17)

now a function of three variables b, fB, and fD. Using (7.16) the constraint
reduces to the following

1 = b+ fA + fC + f +B + fD

= b+ (pA − b

αA
) + (pC − b

αC
) + fB + fD

1− (pA + pC) = b(1− (
1

αA
+

1

αC
)) + fB + fD. (7.18)

Given (7.15), the optimization problem we are trying to solve can be reduced. After
substituting the partial solution into (7.13), the first term contains only known values.
Subtracting that out leaves the simpler problem

H = G− pA log(pAαA) = pB log(b+ αBfB) (7.19)

for H as a function of b and fB and subject to the constraint that b + fA + fB = 1.
But again calling on (7.15), fA = pA − b/αA, and so the constraint becomes

b(1− 1

αA
) + fB = 1− pA. (7.20)

Maximizing H is equivalent to maximizing b + αBfB and this occurs at the largest
possible values of b and fB subject to (7.20). But because 1/αB > 1 − 1/αA, this
occurs when fB = 0 and, from (7.20),

b =
1− pA

1− 1
αA

. (7.21)

For the numbers given above we get

b =
1− 0.6

1− 1
2

= 0.8,

and so fA = 0.2 along with fB = 0. For the degenerate fraction fB the solution is not
from the interior of the solution domain and (7.15) does not necessarily hold for B,

pBαB

b+ αBfB
=

0.4(32 )

0.8
=

3

4
�= 1.

It would seem that since investing in B or D is disadvantageous, we should
put fB = fD = 0. On the other hand, no need to guess, these assignments should
be derivable. We first see if adding a fraction of B will increase the growth rate
on its own by taking fD = 0. With this assignment, the growth rate equation
from (7.17) is
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H = G− pA log(pAαA)− pC log(pCαC)
= pB log(b+ αBfB) + pD log(b). (7.22)

Again H is maximized by choosing the largest possible values of b and fB; but
at the same time they must satisfy (7.18) (with fD = 0).

It may be that H is maximized on the boundary of its domain, that would be
at fB = 0. But this is not the case. To find the interior maximizing values of b
and fB we must again call on the LaGrange method. With LaGrange multiplier
μ, we have from (7.22) and (7.18)

∂H

∂fB
=

pBαB

b+ αBfB
= μ

∂H

∂b
=

pB
b+ αBfB

+
pD
b

= μ(1− τ2) (7.23)

where

τ2 =
1

αC
+

1

αA
. (7.24)

By eliminating μ between equations (7.23) and substituting fB from (7.18) we
find the solution to be

b =
1− p3
1− τ3

fB = pB − b

αB
and μ = 1 (7.25)

where
p3 = pC + pA + pB

τ3 =
1

αC
+

1

αA
+

1

αB
.

Perhaps surprisingly we find that, once again,

pBαB

b+ αBfB
= 1

maximizing the effect of fB as pB log(pBαB). To complete the solution, we should
reduce G even further by this choice of fB and optimize over b and fD. We leave
it to the reader to see that indeed fD = 0 for optimality and so b is given
by (7.25).

Using the numbers of Table 7.1 we find that

b =
1− (0.1 + 0.5 + 0.3)

1− ( 1
10.8 + 1

2.1 +
1
3.2)

= 0.8423.

and

fA = 0.5 − 0.8423

2.1
= 0.099, fB = 0.3− 0.8423

3.22
= 0.037,

fc = 0.1 − 0.8423

10.8
= 0.022 fD = 0.
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Fig. 7.3. Fortune histories for the four choice investment problem

The maximum growth rate is

G = pA log(pAαA) + pB log(pBαB) + pC log(pCαC) + pD log(b)

= 0.00268.

Note that by not taking fB = 0 the contribution of that term is pB log(pBαB) =
−0.0122 as opposed to pB log(b) = −0.0515 otherwise.

After 60 and 260 iterations respectively under this allocation the expected
fortunes are

E(F60) = 1.17, E(F260) = 2.00.

In Fig. 7.3 we show two instances of 60 iterations of this investment problem.

7.4 The Optimal Allocation Problem with Multiple Winners

In the previous section our capital was allocated among several investments for
which there could be only one winner. But more often the investments tend to
be independent; some fraction of them, or even all of them, can be successful. Or
conversely, they may all lose money. We take up this sort of optimal allocation
problem next. Again we demonstrate the method with the help of an example.

Table 7.2 Probabilities and payoffs for two investments

Choice Success probability Payoff multiplier Fraction

A pA = 0.6 αA = 2.1 fA
B pB = 0.5 αB = 2.2 fB

Suppose we have two investment opportunities A and B with particulars as
in Table 7.2. Both investments have positive expectation but since they could
both lose, we must not risk our entire capital; again let b be the fraction held
back.

The growth rate equation this time must contains terms for the possibility
that both investments succeed, with probability pApB, that one succeeds while
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the other fails, with probabilities pA(1− pB) and (1− pA)pB, or that both fail,
(1 − pA)(1 − pB). In the usual way we derive the growth rate to be

G = pApB log(b+ αAfA + αBfB) + pA(1− pB) log(b+ αAfA)
+(1− pA)pB log(b+ αBfB) + (1− pA)(1− pB) log(b). (7.26)

The unknowns b, fA, and fB are constrained in that b+ fA + fB = 1.
Using the techniques developed in the previous sections, the solution reduces

to solving for w in the following equation

pApB
w + τ2 − 1

+
pA(1− pB)

w + 1
αB

− 1
+

(1− pA)pB

w + 1
αA

− 1
+

(1− pA)(1− pB)

w
= 0.

The details are given in the box on the next page. While it would seem there
is no symbolic solution, this equation is easily solved numerically. Using the
parameters in Table 7.2 there are three solutions of which only one, w = 0.29113,
gives admissible values of b, fA, and fB. Then from (7.29)

u = 1− 1

2.2
− 0.29113 = 0.2543 v = 1− 1

2.1
− 0.29113 = 0.2327

and from (7.28)

b = 0.687, fA = 0.2345, fB = 0.0784.

The sum b + fA + fB = 1 confirming that λ is indeed 1. The maximal growth
rate and expected fortune for 60 iterations are

G = 0.0347 E(F60) = 8.02.

Two 60 iteration instances of this investment are shown in Fig. 7.4.

7.4.1 Allocation for Correlated Investments

In the previous section the investments were taken to be independent. But this
is probably not realistic. We have already called attention to the fact that, to
an extent, the market moves in concert both up and down, see Section 2.3.3.
If our investments are correlated, how does that affect the Kelly Criterion? To
see how, we re-examine investments A and B of the previous section in this new
light.

Start by assuming that A and B are correlated with a given correlation coef-
ficient ρ, see page 49. Recall that ρ quantifies the degree to which A and B move
together. But we need to specify more than just the correlation coefficient, we
also need the joint probabilities for the two investments.
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By the method of LaGrange, with multiplier λ = 1, the system of equations for the
unknowns is

∂G

∂fA
=

pApBαA

b+ αAfA + αBfB
+

pA(1− pB)αA

b+ αAfA
= 1

∂G

∂fB
=

pApBαB

b+ αAfA + αBfB
+

(1− pA)pBαB

b+ αBfB
= 1

∂G

∂b
=

pApB
b+ αAfA + αBfB

+
pA(1 − pB)

b+ αAfA
+

(1 − pA)pB
b+ αBfB

+
(1− pA)(1 − pB)

b
= 1

(7.27)

Temporarily make the following assignments in the fractions above

t = pApB

b+αAfA+αBfB
u = pA(1−pB)

b+αAfA

v = (1−pA)pB

b+αBfB
w = (1−pA)(1−pB)

b .
(7.28)

Solving (7.27) as an under-determined linear system we get the following solutions in
terms of w

t = w + τ2 − 1

u = 1− 1

αB
− w

v = 1− 1

αA
− w

(7.29)

where τ2 = 1
αA

+ 1
αB

. Now reciprocate each equation (and add b to the first)

2b+ αAfA + αBfB =
pApB

w + τ2 − 1
+ b

b+ αAfA =
pA(1 − pB)

1− 1
αB

− w

b+ αBfB =
(1− pA)pB

1− 1
αA

− w

(7.30)

Subtract the second and third equations from the first, and noting that b = (1 −
pA)(1− pB)/w, we get

0 =
pApB

w + τ2 − 1
+

pA(1 − pB)

w + 1
αB

− 1
+

(1 − pA)pB

w + 1
αA

− 1
+

(1− pA)(1 − pB)

w
(7.31)

to be solved for w.

Let X be the random variable which is 1 if A succeeds and 0 if A fails. This
is a Bernoulli random variable; it is easy to see that

E(X) = pA, and var(X) = pA(1− pA). (7.32)
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Fig. 7.4. Two instances of fortune histories for the two investment allocation using the
optimal investment fractions, b = 0.687, fA = 0.2345, fB = 0.0784

Similarly let Y be the same thing for B, Y = 1 with probability pB and Y = 0
with probability 1− pB.

The joint density, d(·, ·), for X and Y is defined by: d(1, 1) is the probability
both succeed, d(0, 0) is the probability they both fail, d(1, 0) is the probability A
succeeds and B fails and d(0, 1) is the other way around. Since the joint random
variable XY is 1 only if both A and B succeed and 0 otherwise, we have

covar(X,Y ) = E(XY )− E(X)E(Y ) = d(1, 1) − pApB. (7.33)

But from (2.29)

ρ =
covar(X,Y )

√
var(X)var(Y )

=
d(1, 1) − pApB

σAσB
,

where σA and σB are the standard deviations of X and Y respectively. Therefore

d(1, 1) = pApB + ρσAσB . (7.34)

It says the joint probability that both A and B succeed at the same time is
increased by the product of the correlation coefficient with the product of the
two standard deviations.

To get the other joint probabilities we proceed in a similar manner. For
example, for d(1, 0), let Y C be the complementary random variable to Y : Y C is
1 when B fails and 0 when B succeeds. Then the correlation between X and Y C

is the negative of that between X and Y . Since XY C is non-zero only when A
succeeds and B fails we have

−ρ =
E(XY C)− E(X)E(Y C)

√
var(X)var(Y C)

=
d(1, 0) − pA(1− pB)

σAσB

and so
d(1, 0) = pA(1− pB)− ρσAσB. (7.35)
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The other joint probabilities are

d(1, 0) = pA(1− pB)− ρσAσB, d(0, 0) = (1− pA)(1− pB) + ρσAσB . (7.36)

The only modification to the growth rate equation (7.26) is that now the
coefficients are the modified probabilities,

G = d(1, 1) log(b+ αAfA + αBfB) + d(1, 0) log(b+ αAfA)
+d(0, 1) log(b+ αBfB) + d(0, 0) log(b). (7.37)

With the same algebraic manipulation as before we again arrive at (7.31) only
with the numerators replaced by d(1, 1), . . ., d(0, 0),

0 =
d(1, 1)

w + τ2 − 1
+

d(1, 0)

w + 1
αB

− 1
+

d(0, 1)

w + 1
αA

− 1
+

d(0, 0)

w
. (7.38)

Consider the problem of the previous section and assume the correlation
coefficient between A and B is 0.3. Equation (7.38) becomes

0 =
0.3727

w − 0.0692
+

0.2272

w − 0.5454
+

0.1272

w − 0.5238
+

0.2727

w
.

The relevant root is w = 0.3621 giving the solution

b = 0.755, fA = 0.229, fB = 0.012, for ρ = 0.3.

With this correlation, the fraction held back has increased mostly at the expense
of the fraction to B. The growth rate for this allocation is

G = 0.0309.

High Correlation Between Investments

What if the correlation is much bigger? With steady increase in ρ the fraction
allocated to B will decrease to 0. This occurs at ρ = 0.3488 . . .. Then the solution
will no longer lie in the interior of the constraint region and at that point the
LaGrange equations will not be valid. Instead the solution will be found on the
boundary, either b = 0, or fA = 0 or fB = 0.

Consider the problem of the previous section and assume the correlation
coefficient between A and B is 0.8. Among the two expected payouts, that for A
is bigger since pAαA = 1.26 > 1.1 = pBαB; a reason to try the fB = 0 boundary.
But then (7.37) reduces to

G = (d(1, 1) + d(1, 0)) log(b+ αAfA) + (d(0, 1) + d(0, 0)) log(b)
= pA log(b+ αAfA) + (1− pA) log(b), (7.39)

since

d(1, 1) + d(1, 0) = (pApB + ρσAσB) + (pA(1− pB)− ρσAσB) = pA
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similarly d(0, 1) + d(0, 0) = 1− pA. The problem has now reduced to the simple
game of Section 7.1; its solution is given by

fA =
pAγA − (1− pA)

γA
=

0.6 ∗ 1.1− 0.4

1.1
= 0.236.

Of course b = 1− 0.236 = 0.764. The corresponding growth rate is

G = 0.0308.

Anti-correlation Between Investments

What if A and B are negatively correlated? Assume ρ = −0.3. The solution
to (7.38) for this correlation is w = 0.2223. The resulting fractions are

b = 0.569, fA = 0.279, fB = 0.153.

The growth rate for these fractions is

G = 0.0449.

We see once again the advantage of negatively correlated investments.

7.5 Taming the Kelly Volatility

A review of the several growth histories presented in this chapter for allocations
fixed by the Kelly Criterion reveal a characteristic feature – high volatility. In
fact these fortune histories are a kind of geometric random walk with binomially
instead of normally distributed increments. One of their properties is that for
any fraction m of one’s initial fortune F0, given enough time the walk will be
less than mF0. If q is the probability of an adverse outcome, one that will
reduce the fortune, then for any n > 0, the probability of n consecutive adverse
outcomes is qn > 0. There are other possibilities, for example the probability of
n adverse outcomes with one intervening beneficial outcome is

(n−1
1

)
qn(1−q). As

all these probabilities are positive, given enough time a catastrophic drawdown
will happen.

Furthermore, while in the limit the Kelly Criterion will produce maximum
growth, this is of little value to the investor since investors are bound by finite
time horizons. A more important question is, “What will the fortune be after a
specific number of plays?”

There are attempts to ameliorate these shortcomings of the Kelly Criterion
by fixing allocations at smaller fractions than the maxmizers, for example “half-
Kelly.” Figure 7.1 shows some fortune histories for sub-maximal fractions.

Even better are schemes that dynamically adjust the allocation fractions
depending on the current fortune growth rate. Such schemes are hard to analyze
theoretically but can be easily evaluated by Monte Carlo methods.

Consider one possible scheme: reduce the betting fraction if the growth rate
up to the present time is bigger than expected and increase the fraction if the
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growth rate is too small. For example in the 60/40 game with gain γ = 1 the
betting fraction is, equation (7.5),

f = p− q = 0.2.

and the maximal growth rate is, from (7.7),

Gmax = 0.6 log(0.6 ∗ 2) + 0.4 log(0.4 ∗ 2) = 0.020. (7.40)

The more the present growth rate exceeds Gmax, the more f is reduced. On the
other hand, if the present growth rate is much smaller than Gmax, then f is
allowed to approach 0.2.

y = tanh((x − 0.005)/0.0167)

a b

y = 0.5(1 + tanh((x − 0.005)/0.0167))

Fig. 7.5. Graphs of the hyperbolic tangent function horizontally scaled and shifted; (b)
is also vertically scaled and shifted to vary from 0 to 1

To implement such a plan we use the hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x
. (7.41)

This function lies between −1 and 1, tends to −1 as x → −∞, and increases
asymptotically to 1 as x → ∞. It can be horizontally scaled and shifted as
desired using parameters s and h respectively,

y = tanh((x− h)/s).

The parameter h shifts the graph to the right by h units and s scales the argu-
ment so that what used to happen at x = 1 now happens at x = s. Figure 7.5a
is the graph of

y = tanh((x− 0.005)/0.0167).

The range of this function is −1 to 1. But we require the range to be 0 to 1 so we
use the function in panel (b) which is vertically scaled by 1/2 and shifted up by 1.
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Now, given minimum and maximum fractions, say minbet and maxbet

respectively, the dynamically determined fraction is given by

f = minbet+ y(maxbet - minbet).

Finally, in the application we take x to be the difference between the target
growth rate and the actual growth rate, denoted Gt and Ga respectively. The
complete system is

y = 0.5(1 + tanh((Gt −Ga − h)s))
f = minbet+ y(maxbet - minbet). (7.42)

With the numbers above, if the actual growth rate equals the target, then the
ratio y is 0.35, so f is about a third of the way between the minimum and
maximum fractions, this can be seen is Fig. 7.5b. Also seen in this figure, when
the actual growth rate lags behind the target by 0.02, then the ratio y is ap-
proximately 0.8, and when the actual exceeds the target by 0.2, the ratio is
approximately 0.05, very close to the minimum bet.

Fig. 7.6. Two runs of the dynamically adjusted 60/40 game

The implementation of this scheme for dynamically adjusting Kelly bets is
given below.

Algorithm 31. Dynamic Kelly growth

inputs: p, γ, h, s, Gt, minbet, maxbet
nTrials, nBets �number of times to play the game

avgGR = 0 �average growth rate over nTrials
for i = 1, . . ., nTrials

F = 1 �each trial starts with unit fortune
for n=1, . . . , nBets

Ga = (log F )/n �actual current growth rate
y = 0.5(1 + tanh((Gt −Ga − h)/s))
f = minbet+y(maxbet- minbet)
if U ∼ U(0, 1) < p �win or lose this bet?

F = (1 + γf)F
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else
F = (1− f)F

endif
endfor
avgGR = avgGR + F �F is ending fortune

endfor
avgGR = avgGR/nTrials;

Example 7.1. In an example run of the algorithm for the 60-40 game, the target
growth rate was taken to be Gt = 0.02, the Kelly maximum, the minimum bet to
be 0.05, equal to one fourth the Kelly fraction, and the maximum bet to be the
Kelly fraction 0.20. The results are that over 10,000 trials the average growth
rate was 0.0162, compare with (7.40). Two of the runs are shown in Fig. 7.6. The
smooth curve is fortune growth at the target rate.

Problems: Chapter 7

1. Implement the 60-40 game over 300 iterations and show the fortune of the game
for several runs. Assume the return upon success is 88%. Experiment with several
betting fractions above and below the growth rate maximizer. Plot the average return
rate as a function of betting fraction. Be sure to make enough runs so that these
averages are good to 2 places.

2. In Table 5.1 on page 151 the second line gives the gain expectation for buying
ATM calls as 0.161 with the probability of a gain as 0.37. Assuming complete loss
of investment is the complementary probability, what is the average return on this
investment? What is the size of the Kelly bet?
(Answer 2.14, 7.5%.)

3. In Table 5.2 on page 153 the fifth line gives the gain expectation for $5 OTM 30 day
covered calls as 0.242 with probability of a gain as 54%. Since the gain could be
anywhere between 0 and 5.36, assume it is the mid-point, 2.68. Further assume that
the trade loses $1 36% of the time. How much does it lose the remaining 10% of
the time? Under these conditions, what is the Kelly fraction of ones portfolio to be
allocated to this investment?
(Answer 8.45, 1.9%)

4. What fractions of a portfolio should be allocated to the following independent invest-
ments: A has 70% chance of succeeding and payoff multiplier α = 1.5; B has 40%
chance of succeeing and payoff multiplier α = 2.6.

5. Same question as Problem 4 if A and B are correlated with coefficient ρ = 0.2.

6. Throughout this chapter (and in Problem 1 above) it has been assumed that the
return upon success was fixed, e.g. 88%. But what if the return is only an average?
Rework Problem 1 as follows: upon each success, let the return be either 100% or
76% equally likely. How does this change your average return rate graph?
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7. Implement Algorithm 30 of page 194 on the investment of Problem 2. Show the
fortune after 30 iterations of the strategy, after 60. Estimate the mean and variance
of these ending fortunes. Use at least 10,000 trials.

8. Repeat Problem 7 but now use a dynamic allocation strategy such as Algorithm 31.
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Some Mathematical Background Topics

A.1 Series Identities

A.1.1 Geometric Series

Direct multiplication confirms the algebraic identity (x− y)(xn + xn−1y + . . .+
xyn−1 + yn) = xn+1 − yn+1 for any x and y and n a positive integer. If x �= y,
then

xn + xn−1y + . . .+ xyn−1 + yn =
xn+1 − yn+1

x− y
.

In particular

1 + r + r2 + . . . + rn−1 =
1− rn

1− r
. (A.1)

If |r| < 1 the right hand side converges as n → ∞ and this becomes

1 + r + r2 + . . . =
1

1− r
. (A.2)

A.1.2 Arithmetic Series

By adding 1+ 2+ 3+ . . .+n to itself backwards one gets n terms each equal to
n+ 1. Hence

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

A.1.3 Taylor’s Series

An infinitely differentiable function y = f(x) can be expanded in a power series
about a given point x = a according to

f(x) = f(a) +
f ′(a)
1!

(x− a) +
f ′′(a)
2!

(x− a)2 +
f (3)(a)

3!
(x− a)3 + . . . .

In particular, the exponential function can be expanded about 0 to give

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
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ex = 1 + x+
x2

2!
+

x3

3!
+ . . . . (A.3)

Likewise the log function can be expanded about 1. Using the change of variable
u = t− 1, from the definition of the log function

log(1 + x) =

∫ 1+x

1

dt

t
=

∫ x

0

du

1 + u

=

∫ x

0
(1− u+ u2 − u3 + . . .)du = x− x2

2
+

x3

3
− . . . (A.4)

valid for |x| < 1.

A.2 Histograms

A histogram is a special kind of bar chart for depicting a set of values, v1, v2,
. . ., vN , numbering, say, N in total. A convenient subdivision of the x-axis is
created containing the values, for example by means of the points x0, x1, x2,
. . ., xK ; x0 ≤ vi ≤ xK , i = 1, 2, . . . , N . They establish intervals, or bins, [x0, x1),
[x1, x2), . . ., [xK−1, xK). A count is made of how many of the values lie in each
bin, for example n1 in [x0, x1), n2 in [x1, x2) and so on. Finally a rectangle of
that height nk is drawn standing on bin [xk−1, xk), k = 1, . . . ,K. This is called
a frequency histogram.

Altogether the area under to bars is A =
∑K

k=1 nk(xk−xk−1). Redrawing the
figure and making the height on the kth subinterval equal to nk/A, produces a
density histogram or just histogram for short.

A density histogram is an approximation of the probability density of the
process generating the original values.

A.3 Probability Distributions and Densities

A random variable X is the specific (real-valued) outcome of a trial of a process
whose outcomes are unpredictable (in exact value). By means of a histogram it
is possible to see with what frequency the various outcomes occur.

For a discrete random variable, one with only finitely many outcomes, the
frequency pi of each outcome, xi, is its probability, Pr(X = xi) = pi, and the
function of these probabilities, f(xi) = pi, is its probability density function or
pdf.

For every real number x, the sum of the probabilities less than or equal to x
is called the cumulative distribution function or cdf,

F (x) =
∑

{f(xi) : xi ≤ x}.

The cumulative distribution function is 0 for x less than the smallest outcome of
the process, is 1 for x larger than the largest outcome, and is otherwise constant
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except for jumps at each outcome xi by the amount pi. It follows that for each x,
F (x) is the probability that a trial of the process will be less than or equal to x.

Likewise for a continuous random variable, its cumulative distribution func-
tion F (x) is the probability that a trial of the process will be less than or equal
to x. However for a continuous random variable, the cdf is continuous, that
is, has no jumps. But nevertheless it is monotone increasing (if y > x, then
F (y) ≥ F (x)) and tends to 0 as x → −∞ and 1 as x → ∞.

The probability density function f(·) for a continuous random variable is
the derivative of its cdf. Therefore the probability a trial of the process will lie
between two real values is given by the integral of its pdf,

Pr(a < X < b) =

∫ b

a
f(x) dx.

A.4 Expectations

The expectation of a function g(X) of a random variable is, in the discrete case,

E(g(X)) =
∑

i

g(Xi)f(xi)

and in the continuous case

E(g(X)) =

∫ ∞

−∞
g(x)f(x) dx.

The mean is the expectation of X itself

μ = E(X)

and the variance is the expectation of the squared differences from the mean

var(X) = E

[
(X − μ)2

]
= E(X2)− μ2.

The third member is an equivalent expression for the second.
If a distribution is tightly clustered about its mean, its variance is small.
By the Law of Large Numbers, expectations can be approximated empirically.

Let X1, X2, . . ., Xn be the outcomes of n trials of the process. The estimate of
the expectation E(g(X)) is

E(g(X)) ≈ 1

n

n∑

i=1

g(Xi).

This tends to the exact value as n → ∞.
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Let X and Y be two random variables defined over the same probability
space, their covariance is defined as

covar(X,Y ) = E

(
(X − μX)(Y − μY )

)
. (A.5)

The correlation between X and Y is defined as

ρXY =
covar(X,Y )

σXσY
. (A.6)

IfX and Y are independent then E(f(X)g(Y )) = E(f(X))E(g(Y )) for functions
of X and Y respectively and so covar(X,Y ) = ρXY = 0. Further, if X and Y
are independent, then var(f(X) + g(Y )) = var(f(X)) + var(g(Y )).

A.5 The Normal Distribution

Among probabilistic processes, one of the most important is the normal distri-
bution. It is a continuous process with density given by

φ(x) =
1

σ
√
2π

e−
1
2
(x−μ

σ
)
2

, −∞ < x < ∞.

The density has two parameters, μ and σ2, and these are its mean and variance
respectively. A notation for this distribution is N(μ, σ2).

There is no closed form expression for the cdf of the normal distribution in
terms of familiar functions, but there are several accurate rational approxima-
tions. That due to Abramowitz and Stegun is as follows.

Let Φ(·) denote the cumulative distribution function and let

t = 1/(1 + a|x|),
|x| indicates the absolute value of x. Then

Φ(x) ≈ 1− φ(x)(b1t+ b2t
2 + b3t

3 + b4t
4 + b5t

5). (A.7)

The constants are:

a = 0.2316419
b1 = 0.319381530, b2 = 0.356563782, b3 = 1.781477937
b4 = 1.821255978, b5 = 1.330274429 (A.8)

There is also an rational approximation for the inverse of the cumulative distri-
bution function. The following is from [BFS83]

Let x = Φ−1(u) for 0.5 ≤ u < 1 and put

y =
√
− log((1− u)2).
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Then

x = y +
p0 + p1y + p2y

2 + p3y
3 + p4y

4

q0 + q1y + q2y2 + q3y3 + q4y4
. (A.9)

If 0 < u < 0.5, by symmetry, Φ−1(u) = −Φ−1(1−u). The constants
are:

p0=−0.322232431088 q0=0.099348462606
p1=−1 q1= 0.588581570495
p2=−0.342242088547 q2=0.531103462366
p3=−0.0204231210245 q3=0.10353775285
p4=−0.0000453642210148 q4=0.0038560700634

A.6 The Central Limit Theorem

Theorem A.1. (Central limit theorem) Let X1, X2, . . . , Xn be independent
random samples from a distribution with mean μ and finite variance σ2. Then

Y =

∑n
i=1Xi − nμ√

nσ2

has a limiting distribution as n → ∞ and it is N(0, 1), normal with mean 0 and
variance 1.

A.7 Least Squares

Assume variables y and x are linearly related with slope m and intercept b.
And assume we have n empirical data points testing that relationship, (x1, y1),
(x2, y2), . . ., (xn, yn). Let ei be the difference between the empirical value yi and
the predicted value, mxi + b. The sum of the squares of these differences is

n∑

i=1

e2i =
n∑

i=1

(yi − (mxi + b))2 . (A.10)

We seek to find the values of m and b which minimize this sum.
Start by differentiating (A.10) with respect to m and b and set the derivatives

to zero. First with respect to m

0 = 2

n∑

i=1

(yi − (mxi + b)) (−xi)

0 =

n∑

i=1

xiyi −m

n∑

i=1

x2i − b

n∑

i=1

xi, (A.11)

a −2 has been divided out since what’s left will still be zero.
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Then with respect to b

0 = 2

n∑

i=1

(yi − (mxi + b)) (1)

0 =

n∑

i=1

yi −m

n∑

i=1

xi − nb. (A.12)

The resulting system of two linear equations in two unknowns is, from (A.11)
and (A.12),

m
∑n

i=1 x
2
i + b

∑n
i=1 xi =

∑n
i=1 xiyi

m
∑n

i=1 xi + nb =
∑n

i=1 yi.

The solution by Cramer’s Rule, see below, is

m =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

b =

∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 (A.13)

A.8 Error Estimates for Monte Carlo Simulations

Suppose we are trying to use Monte Carlo to estimate some value, call it θ.
Let X1, X2, . . ., Xn be n estimates of θ as derived from the outcome of

the simulation. If the Xi are independent and identically distributed with mean
θ, then by the central limit theorem their sample average X̄ is approximately
normally distributed with mean equal to θ and variance equal to σ2

X/n, where
σ2
X is the (unknown) variance of the Xi. In this case

Y =
X̄ − θ
√

σ2
X/n

is approximately N(0, 1) distributed. From a N(0, 1) table, e.g. Equation (A.7),
notice that with probability 0.954 a normal sample lies within two standard
deviations of the mean (above and below)

2(Φ(2)− 0.5) = 0.954.

Hence

Pr

⎛

⎝−2 <
X̄ − θ
√

σ2
X/n

< 2

⎞

⎠ = 0.954.
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In other words, with probability 0.954, θ lies in the interval

X̄ − 2
√

σ2
X/n < θ < X̄ + 2

√
σ2
X/n.

Now, given a value for σ2
X , we may calculate probabilistic error bounds for θ, or

confidence intervals as they are called.
In practice there are three problems with this program. First, usually σ2

X
must itself be estimated from the data. Second, the Xi may not be identically
distributed; the simulation may suffer start-up effects, for example. And third,
the Xi may be correlated.

The second and third issues may be dealt with by batching . Divide the n
trials into m batches each of size J :

X1 . . . XJ | XJ+1 . . . X2J | . . . | X(m−1)J+1 . . . XmJ .

Thus there are m = n/J batches. By the CLT the batch random variables

Bi =
1

J

iJ∑

j=(i−1)J+1

Xj , i = 1, . . . ,m,

tend to be independent and identically distributed. Now we may apply the de-
velopment above to the Bi in place of the Xi. Thus

θ̂ = B̄ =
1

m

m∑

i=1

Bi

is an estimator θ̂ for θ. And the random variable

Y =
θ̂ − θ

√
σ2
B/m

is approximately N(0, 1).
If we knew the variance σ2

B of the batch random variables, then we could use
the normal distribution itself to make error bounds as was done above. However,
σ2
B is generally not known and must itself be estimated from the Bi data. The

sample variance for σ2
B is given by

s2B =
1

m− 1

m∑

i=1

(Bi − θ̂)2 (A.14)

and is itself a random variable (gamma distributed).
Thus in place of Y we have

t =
θ̂ − θ

(sB/
√
m)

, (A.15)

the quotient of a normal random variable by a gamma random variable. Such
a combination is a Student-t random variable. The Student-t is well known and
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has one parameter, its degrees-of-freedom or dof, see Section 6.8.1. Tables giving
ordinates of the Student-t are included in the appendix of most statistics books.
We provide an abbreviated one as well, Table A.2. So we must use the t-statistic
to obtain the confidence intervals we seek.

For example, given α, tα is defined by

Pr(−tα < t < tα) = α.

These values tα can be looked up in or derived from a t-table. If the table
gives cumulative values instead of two-sided values, as does the table below, a
conversion is required. Since the t distribution is symmetric, Pr(−tα<t<tα)=α
is equivalent to

Pr(t < tα) = α+
1− α

2
=

1 + α

2
.

Thus if one wants, say, a 95% confidence interval for t, use the cumulative table
with β = (1 + 0.95)/2 = 0.975.

The t distribution
The table gives tβ vs dof where tβ is defined by Pr(t < tβ) = β.

dof 1 2 3 4 5 6 8 10 15 20 30 40 60 120 ∞
tβ 6.31 2.92 2.35 2.13 2.02 1.94 1.86 1.81 1.75 1.73 1.70 1.68 1.67 1.66 1.65

Table A.1. Cumulative t values for β = 0.95

dof 1 2 3 4 5 6 8 10 15 20 30 40 60 120 ∞
tβ 12.71 4.30 3.18 2.78 2.57 2.45 2.31 2.23 2.13 2.09 2.04 2.02 2.00 1.98 1.96

Table A.2. Cumulative t values for β = 0.975

A.9 Drawing Normal Samples

The Box–Muller Algorithm generates exact N(0, 1) samples.

Algorithm 32. Box–Muller Algorithm

U1, U2 ∼ U(0, 1) �draw two independent uniform samples

Z1 = cos(2πU1)
√−2 lnU2

Z2 = sin(2πU1)
√−2 lnU2

�Z1, Z2 are two independent N(0, 1) samples

The Marsaglia-Bray algorithm is an alternative that also produces exact
samples.
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Algorithm 33. Marsaglia-Bray Algorithm

repeat

U ∼ U(0,1); U = 2U-1; �uniform on -1 to 1

V ∼ U(0,1); V = 2V-1; �a point in the sqr.

until W=U2+V2<= 1
Z1 = U

√
(−2/W ) lnW

Z2 = V
√

(−2/W ) lnW
�Z1, Z2 are two independent N(0, 1) samples

A.10 Drawing Inverse Gaussian Samples

The inverse Gaussian density is, from (6.10),

fIG(x;a,b) =
aeab√
2PIx3

e−
1
2
(a

2

x
+b2x), x > 0.

Samples may be drawn as follows:

Algorithm 34. Samples from IG(a,b)

Z ∼ N(0, 1) �standard normal sample, see A.9

y = Z2

x = (a/b) + (y −
√

4aby + y2)/(2b2)
U ∼ U(0, 1)
if U < a/(a+ bx) then return x;

else return a2/(b2x);

A.11 Inverting the CDF

A sample X from a distribution having cdf F (·) is obtaining by solving
U = F (X) for X where U ∼ U(0, 1). This derives from the following argu-
ment

U ∼ U(0, 1) iff Pr(U < u) = u

iff Pr(F (X) < F (x)) = F (x)

iff Pr(X < x) = F (x).

The last line shows X ∼ F (·).
For example, since the cdf of the exponential is F (t) = 1 − e−λt, one easily

obtains an exponential sample by solving U = F (T ) = 1− e−λT ,

T =
−1

λ
log(1− U). (A.16)
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A.12 Cramer’s Rule

A linear system with n equations in n unknowns is a system as follows,

a11x1 + a12x2 + · · · + a1nxn = r1
a21x1 + a22x2 + · · · + a2nxn = r2

...
...

...
...

an1x1 + an2x2 + · · · + annxn = rn

.

The discriminant is the determinant of the matrix of coefficients,

Δ = detA = det

⎡

⎢⎢
⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · · ...
an1 an2 · · · ann

⎤

⎥⎥
⎦ .

The solution for the ith unknown is the ratio of determinants

xi =
detAi

Δ

where Ai is A with the ith column replaced by the right hand side,

Ai =

⎡

⎢⎢
⎣

a11 · · · a1,i−1 r1 a1,i+1 · · · a1n
a21 · · · a2,i−1 r2 a2,i+1 · · · a2n
... · · · ...

...
... · · · ...

an1 · · · an,i−1 rn an,i+1 · · · ann

⎤

⎥⎥
⎦ .

For a 2 by 2 system this gives

x1 =

det

[
r1 a12
r2 a22

]

det

[
a11 a12
a21 a22

] x2 =

det

[
a11 r1
a21 r2

]

det

[
a11 a12
a21 a22

]

as can be verified by direct substitution.

A.13 LaGrange Optimization

Let y = f(x) be a real–valued function of a vector variable x. We want to
maximize (or minimize) f subject to the condition that g(x) = 0 where g is a
second real–valued function of x called the constraint. LaGrange noticed that f
continues to increase (or decrease) as x varies along the path enforced by g until
the tangents of the two curves are parallel. But then their gradients are parallel
too (see (B.5)). Thus the optimum occurs when

gradf = λ gradg
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where λ is a real number called the LaGrange multiplier. This equation along
with the constraint constitute the system to be solved for the optimizers of the
system.

The LaGrangian is the difference

Λ = f(x)− λg(x).

The system of equations above can also be generated by setting to 0 the partial
derivative of the LaGrangian with respect to each component of x. Setting to
0 the partial derivative of the LaGrangian with respect to λ gives back the
constraint equation.

A.14 Bisection Method for Roots

A simple and adequate method for numerical root solving is the bisection
method. Suppose one wants the value of x which solves y = f(x) for a given
function f and value of y. This is the same problem as finding the root g(x) = 0
of g where g(x) = f(x)− y.

The method starts with an estimate of x that is too low, x1, and an estimate
that is too high, x2. For example g(x1) < 0 and g(x2) > 0 (or conversely); thus
g(x1)g(x2) < 0.

In this way the root we are seeking, x0, is bracketed. Next the value of g is
calculated for the mid-point

xm =
1

2
(x1 + x2).

Then either x1 or x2 is set equal to xm depending on whichever maintains a
bracket on the root. The process is now iterated until the desired accuracy is
attained.



B

Stochastic Calculus

In earlier chapters we have derived equations and algorithms based on the bi-
nomial tree and other discrete models. And we have alluded to the notion that
these models converge to the correct prices as they become more refined, which
is to say, in the limit as n → ∞, or equivalently, as Δt → 0. Just as in ordinary
calculus, such a limit leads to a calculus of stochastic processes, the Itô calculus.
In this chapter we introduce and analyze the continuous counterparts of the ran-
dom walk models with which we have become familiar. In the next chapter we
take up limits in the binomial model. Our objective lies in validating the limiting
processes of the discrete models we have been using and not in analyzing the
resulting continuous models per se. We also hope to acquaint the reader with
the continuous approach.

B.1 The Itô Integral

The stochastic calculus we require is based on the Wiener Process Wt and hence
on Brownian motion and arithmetical random walks. From Algorithm 1 on page
10 increments ΔX of the walk are given by ΔX = μΔt+ σ

√
ΔtZt where Zt ∼

N(0,1) is a standard normal sample. Summing these increments we obtain the
end point random variable XT ,

XT = X0 +

n∑

i=1

(
μΔt+ σ

√
ΔtZi

)
. (B.1)

By letting Δt → 0 we would expect to get in the limit the integral

XT = X0 +

∫ T

0
μdt+

∫ T

0
σdWt. (B.2)

But the third term of this stochastic integral is quite unlike ordinary Riemann
or Lebesgue integrals. How does one integrate with respect to the stochastic
process Wt? In the following we hope to make this precise within the constraints
of the scope and level of this text.

R.W. Shonkwiler, Finance with Monte Carlo, Springer Undergraduate
Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-8511-7,
© Springer Science+Business Media New York 2013
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The infinitesimal counterpart to (B.2) is the stochastic differential equation1

dXt = μdt+ σdWt. (B.3)

We start by defining stochastic differentials dXt.
Since all our modeling is referenced back to the Wiener Process, we are

concerned with a calculus based on differentiating functions of Wt, for example
df(Wt) or possibly df(t,Wt). To define such differentials we start where it all
began, with the derivative of a real valued function of a real variable,

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

To extend its application, it is helpful to rewrite the definition as

df = f(t+ h)− f(t) = f ′(t)h+ o(h). (B.4)

In this, little oh of h stands for terms that converge to zero as h → 0 when divided
by h. In this form the derivative, f ′(t), is seen as the best linear approximation
to f at t.

For example, if f is a real valued function of a vector variable, t = [ t1 t2 ]
T ,

then f ′(t) is the gradient,2 the 1× 2 matrix
[
∂f
∂t 1

∂f
∂t 2

]
(B.5)

since

f(t1 + h1, t2 + h2)− f(t1, t2) ≈
[
∂f
∂t 1

∂f
∂t 2

]
[
h1
h2

]
=

∂f

∂t 1
h1 +

∂f

∂t 2
h2

and the difference is o(h1, h2).
In the case at hand, defining the derivative of df(Wt), the difference f(Wt+h)−

f(Wt) is a random variable and has a probability distribution. We will require
that, in the limit, the mean be proportional to h, thus μh where μ is not a
function of h, and the variance be proportional to increments of Wt. Thus the
differential d(f(Wt)) is defined by

df(Wt) = μh+ σ(Wt+h −Wt) + o(h) (B.6)

which means that the difference between df(Wt) and the first two terms on the
right hand side is a random variable whose mean and variance are both o(h).
Example. Calculate the differential d(W 2

t ).

W 2
t+h −W 2

t = (Wt+h −Wt)(Wt+h +Wt)

= (Wt+h −Wt)(2Wt +Wt+h −Wt)

= 2Wt(Wt+h −Wt) + (Wt+h −Wt)
2.

1 In some texts (B.2) is taken as the definition of (B.3).
2 More exactly, the gradient is a vector, in this case a 2× 1 matrix, while the derivative is a
linear functional (a 1× 2 matrix). The gradient acts on its argument via dot product while
the derivative acts via matrix multiplication; both yield the same result.
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By the definition of a Wiener process, see Section 1.3, the term Wt+h − Wt is
a normally distributed random variable with mean 0 and variance h, that is
Wt+h −Wt =

√
hZh where Zh ∼ N(0,1) (and may depend on h). Therefore the

mean of this random variable squared is h,

E((Wt+h −Wt)
2) = var(Wt+h −Wt) = h. (B.7)

We may now calculate the variance of (Wt+h −Wt)
2 − h as

E((Wt+h −Wt)
2 − h)2 = E(hZ2

h − h)2 = h2E(Z2
h − 1)2. (B.8)

Since the expectation in the last member is finite (see Section 1.5.2), when
divided by h this term goes to 0. Therefore we have calculated

d(W 2
t ) = h+ 2Wt(Wt+h −Wt),

that is to say, μ = 1 and σ = 2Wt in (B.6). In terms of infinitesimals,

d(W 2
t ) = dt+ 2WtdWt. (B.9)

The surprise is the unexpected term dt. This is called the Itô term. It will appear
again as we take up Itô’s Lemma below. Another surprise in this example is that
the Itô term is deterministic. As seen in (B.8), this is because the variance of each
term goes to zero on the square of h, much faster than the mean, compare (B.7).
As infinitesimals, these terms have no variance.

Before moving on we may exploit what we have derived in the Example by
now integrating this infinitesimal equation to get

2

∫ T

0
WtdWt =

∫ T

0
d(W 2

t )−
∫ T

0
dt = W 2

T − T

since W0 = 0.

B.2 Itô’s Lemma

Itô’s Lemma can be thought of as the chain rule for stochastic calculus. In
the sequel we assume that Xt is a stochastic process satisfying the stochastic
differential equation (SDE)

dXt = μ(t,Xt)dt+ σ(t,Xt)dWt (B.10)

where Wt is a Wiener process. These are often referred to as Itô processes. As
shown in (B.10), the coefficients μ and σ are allowed to be functions of both t and
the process Xt itself. In the sequel we will notationally suppress this dependence
and just write μ and σ.

Let f(t, x) be a twice continuously differentiable function. Then Itô’s Lemma
asserts that

df(t,Xt) =

(
∂f

∂t
+ μ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2

)
dt+ σ

∂f

∂x
dWt. (B.11)
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Why this should be so can be seen from a second order Taylor expansion of f
(higher order terms are all o(h) and need not be considered). The first variable

of f is an ordinary real valued variable and gives rise to the term ∂f
∂t dt in (B.11).

We omit it from the discussion below and focus on the second variable in f . By
Taylor’s expansion

f(Xt+h)− f(Xt) =
∂f

∂x
dX +

1

2

∂2f

∂x2
(dX)2 + . . .

=
∂f

∂x
(μdt+ σdWt) +

1

2

∂2f

∂x2
(dX)2 (B.12)

We have dropped the higher order terms here and substituted for dX
from (B.10). We consider (dX)2 separately next. Again from (B.10)

(dX)2 = μ2dt2 + 2μdtσdW + σ2(dW )2

= μ2dt2 + 2μdtσdW + σ2((dW )2 − dt) + σ2dt.

The first term is clearly o(dt) and has no variance. The second term has 0
mean. From (B.7), the variance of the second term is 4μ2σ2(dt)3 and therefore
this term has o(dt) variance. Hence the first two terms can be ignored. Again
from (B.7) the third term has mean 0 and from (B.8) it has variance equal to
σ4(dt)2E(Z2 − 1)2 where Z ∼ N(0, 1). So the variance of this term is also o(dt).
Hence the only term that must be kept is the last one.

Returning to (B.12) with these calculations, we obtain (B.11). Note that the

Itô term is 1
2σ

2 ∂2f
∂x2 .

For a quick example use of (B.11) take dX = dW (so μ = 0 and σ = 1
in (B.10)) and f(t, x) = x2; verify (B.9).

An important application of (B.11) occurs for lognormal stock prices. Let
f(t, x) = log(x) and dSt = μSdt + σSdWt. The coefficients in (B.10) in this
application are μ becomes μS and σ becomes σS. From (B.11)

d(log S) =

(
0 + μS

1

S
+

1

2
σ2S2−1

S2

)
dt+ σS

1

S
dW

= (μ− 1

2
σ2)dt+ σdWt. (B.13)

We may solve (B.13) by integrating

log(ST )− log(S0) =

∫ T

0
(μ − 1

2
σ2)dt+

∫ T

0
σdWt

= (μ− 1

2
σ2)T + σWT

= (μ− 1

2
σ2)T + σ

√
TZ (B.14)

for Z ∼ N(0, 1). In this way we verify (1.22) in an entirely different way.
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B.3 Black-Scholes Differential Equation

In this section we derive the differential equation for a call option. This can be
made to be an ordinary differential equation by constructing a portfolio con-
sisting of both the option and some of the underlying stock because both are
affected by the same stochastic process. As we have previously seen, the right
amount of stock is that given by the delta of the option; we denote that amount
by α. The derivation here is incomplete in that within the scope of this text we
can not explain why it is that we are allowed to treat α as a constant in the
derivation. For an explanation of this matter see for example [Jos03].

Let C be the price of a call option and let S be the price of the underlying
stock. Consider a portfolio A consisting of one option and α shares of stock,
A = C + αS. The portfolio is a function of time and stock price, A = A(t, S)
and S follows geometric Brownian motion

dS = μSdt+ σSdWt.

From Itô’s Lemma (B.11) we have

dA =

(
∂C

∂t
+ μS

(
∂C

∂S
+ α

)
+

1

2
σ2S2∂

2C

∂S2

)
dt+ σS

(
∂C

∂S
+ α

)
dWt.

The objective at this point is to eliminate the stochastic component of the port-
folio; this can be achieved by choice of α:

α = −∂C

∂S
. (B.15)

Then dA reduces to the ordinary differential

dA =

(
∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2

)
dt. (B.16)

Invoking arbitrage pricing theory, the portfolio must grow at the risk free rate
r, so

dA

dt
= rA = r(C + αS)

= r(C − ∂C

∂S
S)

Substituting for dA in (B.16) and transposing the partial derivative to the right
hand side gives the Black-Scholes differential equation

rC =
∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
. (B.17)

We must leave the development at this point except to say that, through a
series of substitutions, (B.17) reveals itself to be a form of the well-known Heat
Equation and can be solved analytically. The solution is (3.29).
Exercise:

Check that the expression for C given in (3.29) is a solution of (B.17).
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Convergence of the Binomial Method

Consider now the binomial model with parameters p, u, and d. To adjust
the model to the given application we match means and variances, see (1.34)
and (1.35). One solution to these equations can be found by setting p = 1/2.
With this choice, we show that the solution for u and d are1

u = 1 + μΔt+ σ
√
Δt+ o(Δt)

d = 1 + μΔt− σ
√
Δt+ o(Δt).

(C.1)

From (1.34) and the choice of p above

1

2
u+

1

2
d =

1

2
(1 + μΔt+ σ

√
Δt) +

1

2
(1 + μΔt− σ

√
Δt) + o(Δt)

= 1 + μΔt+
(μΔt)2

2!
+

(μΔt)3

3!
+ . . . = eμΔt.

Then for (1.35) we have

1

2
u2 +

1

2
d2 =

1

2
(1 + μΔt+ σ

√
Δt)2 +

1

2
(1 + μΔt− σ

√
Δt)2 + o(Δt)

= (1 + μΔt)2 + σ2Δt− σ2Δt2 +
(2μ+ σ2)2(Δt)2

2!
+ . . .

= e(2μ+σ2)Δt.

Let B be a Bernoulli random variable taking the value 1 with probability
1/2 and −1 with probability 1/2; the mean of B is E(B) = 0 and its variance
is var(B) = 1. Then, up to terms of order o(Δt), the binomial method advances
one step with Si+1 = Siu if an up-step or Si+1 = Sid if a down-step; thus

1 Recall that o(Δt) refers to terms, which when divided by Δt, go to 0 as Δt → 0.
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Si+1 = Si(1 + μΔt+ σ
√
ΔtBi).

And hence

Sn = S0

n∏

i=1

(
1 + μΔt+ σ

√
ΔtBi

)
. (C.2)

We may now apply the development of Section 1.5.2 with the Bi in place of
the Zi. Just as in that case, the limiting end-point distribution for ST , is given
by (1.21) and repeated here

log
ST

S0
∼ μT + σ

√
TZ − 1

2
σ2T.

Note that in the derivation on page 15, since B2 = 1 with probability 1, the sum

−1

2
σ2Δt

n∑

i=1

B2
i = −1

2
σ2nΔt = −1

2
σ2T,

directly without the need to invoke the Central Limit Theorem.
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Variance Reduction Techniques

Three applications provided inspiration for the invention of the digital computer:
the code breaking work at Bletchley Park, the ballistic artillery calculations at
the Aberdeen Proving Grounds in Maryland, and the neutron flux calculations
at Los Alamos. The Los Alamos challenge required no less than a unique and
ingenious solution and thus the Monte Carlo method was born, and named, by
Stan Ulam and John Von Neumann.

Initially a great deal of expectation was held out for the method. But soon
it became clear that Monte Carlo was just too slow. Despite that, the method
continued on, solving those problems that could only be solved by Monte Carlo.
Meanwhile research went into the problem of speeding up Monte Carlo calcu-
lations. Being stochastic by its very nature, at the heart of the problem is that
answers generated by Monte Carlo vary from run to run. So how can the variance
be reduced?

One way is to perform more iterations because the variance is reduced by the
factor 1/

√
n, this means to halve the variance requires four times the iterations.

Fortunately for Monte Carlo, computer speed has revived the method. For most
of the algorithms given in this text, a few hundred thousand iterations can be
conducted in under one second. Then too, often the accuracy required is to the
nearest penny, three decimal places.

However a handful of the algorithms we encountered do indeed require a great
deal of time. And so we seek methods for reducing the variance other than more
iterations. In the following we give a brief introduction of the main techniques
used to reduce variance in Monte Carlo applications. For a more comprehensive
treatment, with financial applications, see [Gla03].

D.1 Antithetic Sampling

Virtually all of our simulations use either uniform random samples U ∼ U(0, 1)
or standard normal random samples Z ∼ N(0, 1). In the case of a uniform
sample U , then also 1− U is also a uniform sample. In the case of Z, then also
−Z is a standard normal sample. The pairs U and 1−U or Z and −Z are called
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antithetic variates. The idea behind antithetic variates is that if C = G(S) is a
calculation based on a random variable S, for example C is the value of a call
option based on the expiration price S, then C ′ = G(S′) is likely to be negatively
correlated with C if the simulation of S′ is based on antithetic variates to those
generating S.

This can be carried out quite easily. In the loop over i = 1, 2, . . . , n where
each step Si is generated, simultaneously generate S′

i by using Z for the former
and −Z for the latter. The option value estimate is based on all 2n observations

C̄ =
1

2n

( n∑

k=1

Ck +
n∑

k=1

C ′
k

)
=

1

n

n∑

k=1

(
Ck + C ′

k

2

)
. (D.1)

Although the 2n observations Ck and C ′
k, k = 1, . . . , n are not independent, the

n observations (Ck + C ′
k)/2 are. Therefore the error estimates of Section A.8

apply to them.

D.2 Control Variates

Let Ck, k = 1, 2, . . . , n be the results of n replication of a simulation and we want
to estimate E(C). Suppose on each replication we calculate another output Rk

and that the expectation E(R) is known. Then for any constant β,

Ck(β) = Ck − β(Rk − E(R)) (D.2)

is a control variate estimator.
The expectation is given by

C̄(β) = C̄ − β(R̄ − E(R)) =
1

n

n∑

k=1

(
Ck − β(Rk − E(R))

)
. (D.3)

The variance is given by

varC(β) = var(C − β(R− E(R))
= var(C)− 2βcovar(C,R) + β2var(R). (D.4)

Thus, depending on the choice of β, the control variate estimator can have very
much smaller variance then var(C). The optimal value is

β =
covar(C,R)

var(R)
. (D.5)

Although knowing this value is equivalent to knowing E(C), β can be statistically
estimated from the runs themselves.

As an example consider estimating the cost of a path dependent option E(C).
The discounted stock prices Si can be used as a control variate since, by the
martingale property, E(e−rTST ) = S0.
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D.3 Importance Sampling

Suppose we want to determine the expectation of a function of a random variable
X and the function is only non-zero for rare values of X. Without compensating
in some way, most of the values contributing to the expectation will be zero. This
is as it should be of course, but at the same time it is inefficient. The idea in
importance sampling is to change the probability density so that the rare events
occur more often. We encountered an example of this problem when calculating
the boundary of a shout option; only those paths that venture near the boundary
area are effective at determining the boundary.

To treat the problem in general terms, assume we want to estimate the ex-
pectation

θ = E(h(X)) =

∫
h(x)f(x) dx (D.6)

where f(x) is the density of X. Let g(x) be another density function which is
positive wherever f is positive. The integral (D.6) can be written

θ =

∫
h(x)

f(x)

g(x)
g(x) dx

= Eg

[
h(X)

f(X)

g(X)

]
. (D.7)

The expectation here is with respect to the density g.
In order to gain insight as to the choice of g, suppose h is a positive function,

then for some constant c, 1
ch(x)f(x) is a density. If now g were taken to be that

density, then hf/g = c and then the variance of the estimator hf/g is zero. (And
from (D.7) c = θ.) This shows that g should be chosen as close to the product
hf as possible.

For example suppose that h is the indicator function of some set A, h(x) =
1lA(x). Then θ = Pr(X ∈ A). In this case the optimal choice for g = hf/Pr(X ∈
A) is the conditional density of X given X ∈ A. This means choosing g to make
the event X ∈ A more likely.



E

Shell Sort

The following program creates a permutation array ri so that the doubly
subscripted array xri is sorted low to high,

xr0 ≤ xr1 ≤ . . . ≤ xrn−1 .

1 void sort(double[] x, int[] rankPerm) {
2 boolean done;
3 int swap, gap, len=x.length;
4 for( int i=0; i<len; i++) rankPerm[i] = i;
5
6 gap=len/2; //integer arithmetic
7 while( gap>=1 ) {
8 do {
9 done=true;

10 for( int i=0; i<len−gap; i++) {
11 if( x[rankPerm[i]] > x[rankPerm[i+gap]] )
12 {
13 swap = rankPerm[i];
14 rankPerm[i] = rankPerm[i+gap];
15 rankPerm[i+gap] = swap;
16 done = false;
17 } //end if
18 } //end for
19 } while(!done); //end of do.while
20 gap = gap/2;
21 }//end while
22 }
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F

NextDayPrices Program

1 import java.io.*;
2 import java.util.*;
3 import static java.lang.System.err;
4
5 public class
6 nextDayPrices
7 {
8 static int histoTrials = 200;
9 static int trialsPerHisto = 50;
10 static double binWidth = 1.0;
11 static double binStart = 30.0;
12 static double binEnd = 71.0;
13 static int[] histo;
14
15 static ArrayList rDate = new ArrayList();
16 static ArrayList rOpen = new ArrayList();
17 static ArrayList rHigh = new ArrayList();
18 static ArrayList rLow = new ArrayList();
19 static ArrayList rClose = new ArrayList();
20 static ArrayList rVolume = new ArrayList();
21 static ArrayList rAdjClose = new ArrayList();
22
23 //===
24 static int
25 getPrices(String tkr)
26 {
27 FileInputStream fis=null;
28 String line;
29 StringBuffer ipBuff = new StringBuffer();
30 try {
31 //Open a reader on the file
32 fis= new FileInputStream(tkr+".csv");
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33 BufferedReader reader =
34 new BufferedReader(new InputStreamReader(fis));
35
36 //Read the file and store in buffer
37 while( (line=reader.readLine()) !=null) {
38 ipBuff.append(line+"\n");
39 }
40 //Close the file
41 reader.close();
42 fis.close();
43
44 } catch( IOException ioe ) {
45 err.println("Exc. reading prices, error= "+ioe);
46 err.println("Quitting. . .");
47 System.exit(2);
48 }
49 return parseDataTable(ipBuff);
50 }
51 //===
52 /**
53 * return size of the lists or an error code
54 * −1 no such element, −2 array index OOB,
55 * −3 list sizes mis−match
56 */
57 static int
58 parseDataTable(StringBuffer ipBuff)
59 {
60 String text = ipBuff.toString();
61 String strTokens = ",\n";
62 StringTokenizer st = new StringTokenizer(text,strTokens,false);
63 String tokA;
64
65 //first 7 are the table headers
66 try {
67 for( int i=0;i<7;++i) tokA = st.nextToken();
68 } catch( NoSuchElementException nsee ) {
69 err.println(" parseDataTable: (parsing table header) "+nsee);
70 return −1;
71 }
72
73 //reset the arraylists
74 rDate.clear(); rOpen.clear(); rHigh.clear();
75 rLow.clear(); rClose.clear(); rVolume.clear();
76 rAdjClose.clear();
77
78 int j=0, k=st.countTokens();
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79 try{
80 //pick the values from the web page (rows of 7)
81 for( ; j<k/7; ++j) //over lines
82 {
83 rDate.add(st.nextToken()+" "); //format: yyyy−mm−dd
84 rOpen.add(st.nextToken()+" ");
85 rHigh.add(st.nextToken()+" ");
86 rLow.add(st.nextToken()+" ");
87 rClose.add(st.nextToken()+" ");
88 rVolume.add(st.nextToken()+" ");
89 rAdjClose.add(st.nextToken()+" ");
90 }
91 }catch( ArrayIndexOutOfBoundsException aioob) {
92 err.println("parseDataTable@ got aioob exception, j= "+j);
93 err.println("#tokens "+k+", so #lines "+(k/7));
94 return −2;
95 }
96 if( j != rAdjClose.size() )
97 {
98 err.println("parseTable@ size mis−match among lists");
99 return −3;

100 }
101 return j;
102 }
103 //===
104 static void
105 printHisto()
106 {
107 int maxHeight = 0;
108 int nTrials=0;
109 for( int i=0; i<histo.length; ++i)
110 {
111 nTrials += histo[i];
112 maxHeight = Math.max(maxHeight,histo[i]);
113 }
114
115 //80 char rows, minus 14 for other material in the row
116 double charRate = (80−14)/(double)maxHeight;
117
118 System.out.println("\tNumber of histogram trials: "+nTrials);
119 System.out.println(
120 "\thistogram depicts fraction of cells at the given percentage\n");
121 for( int i=0; i<histo.length; ++i )
122 {
123 System.out.format("%.2f |",binStart+i*binWidth);
124 for( int j=0; j<(int)(charRate*histo[i]); ++j)
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125 System.out.print("*");
126 System.out.format("%6.3f\n",histo[i]/(double)nTrials);
127 }
128 }
129 //===
130 static void
131 removeCSVfiles(ArrayList tList)
132 {
133 for( int i=0; i<tList.size(); ++i)
134 {
135 String fileName = (String)tList.get(i);
136 File f = new File(fileName+".csv");
137 if( !f.exists() ) continue;
138 boolean success = f.delete();
139 if( !success )
140 err.println("nextDayPrices@ could not delete "+fileName);
141 }
142 }
143 //mmm===
144 public static void
145 main(String[] args)
146 {
147 long seed = System.currentTimeMillis();
148 //seed = 17; //for debugging
149 Random rng = new Random(seed);
150
151 boolean getNames = false;
152 boolean getData = true;
153 getZipFile gzf = null;
154
155 try{
156 gzf = new getZipFile(getNames,getData);
157 }catch( IOException ioe) {
158 err.println(
159 "Exception getting web based symbols files, error= "+ioe);
160 err.println("Quitting.");
161 System.exit(1);
162 }
163 System.out.println(""); //clear the dots
164
165 int nBins = (int)Math.rint((binEnd−binStart)/binWidth);
166 histo = new int[nBins];
167
168 int nTickers = gzf.tickersList.size();
169 int upCnt=0, dwnCnt=0, oaUp=0, oaDwn=0; //overall Up/Dwn
170 int nPrices, i, j, bin;
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171 double p0, p1;
172 double upAvg = 0;
173 for( int h=1; h<=histoTrials; ++h)
174 {
175 upCnt = dwnCnt = 0;
176 for( int n=0; n<trialsPerHisto; ++n)
177 {
178 i = rng.nextInt(nTickers); //ticker index
179 nPrices = getPrices((String)gzf.tickersList.get(i));
180
181 j = 1 + rng.nextInt(nPrices−1); //date, j=0 has no successor
182 p0 = Double.parseDouble((String)rAdjClose.get(j));
183 p1 = Double.parseDouble((String)rAdjClose.get(j−1));
184 //err.format("date0= %s, p0= %.2f; date1= %s, p1= %.2f\n",
185 //(String)rDate.get(j),p0,(String)rDate.get(j−1),p1);
186 if( p1>p0 ) { ++upCnt; ++oaUp;}
187 else if( p1<p0 ) {++dwnCnt; ++oaDwn; }
188 }
189 upAvg = 100*upCnt/(double)(upCnt+dwnCnt); //in percent
190 bin = (int)((upAvg−binStart)/binWidth);
191 if( 0<=bin && bin < nBins ) ++histo[bin];
192 else
193 System.out.format("outlier: %.2f\n",upAvg);
194 if( h%10 == 0 ) System.out.print("*");
195 }
196 int totalTrials = histoTrials*trialsPerHisto;
197 int totalCounted = oaUp+oaDwn;
198 System.out.format("\n"+
199 "Out of %d trials, up= %d (%.2f%%), dwn=%d (%.2f%%) nochange=%d\n",
200 totalTrials,oaUp,100*oaUp/(double)totalCounted, oaDwn,
201 100*oaDwn/(double)totalCounted,(totalTrials−totalCounted));
202 printHisto();
203 removeCSVfiles(gzf.tickersList);
204 }
205 }
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derivative
financial, 167

discounting, 40
discriminant, 222
diversifiable risk, 73
diversification, 59, 66
dividend yield, 105
dominates, 67
dot product, 67
drift, 9, 45
drift-diffusion, 11
dual trade, 136

effective rate, 36
efficient, 68
efficient frontier, 68
efficient market hypothesis, 21
equilibrium assumptions, 68
equity, 34
equivalent measure, 167
European call, 79
European put, 78
event rate, 170
event-to-event, 171, 182
ex-dividend date, 46
excess rate of return, 71
exchange option, 124
expectation, 60, 89
expiration date, 78, 79
expiry, see expiration date
exponential moving average, 24

face value, 34
FIMCOM database, 26
financial instrument, 34
financial leverage, 135
forward contract, 82
fundamental information, 22

gamma function, 184
geometric average, 39
geometric Brownian motion, 11
geometric cooling, 113
geometric random walk, 12
Girsanov Theorem, 180
Greeks, 135, 137

heat equation, 229
historical simulation, 57

holder, of an option, 78, 79
hyperbolic tangent, 208

implied volatility, 165
importance sampling, 235
in the money, 78, 79
indicator function, 28, 48
infinite activity, 174, 176
infinite variation, 8
infinitely divisible, 169, 186
intensity, 170
inter-arrival times, 170
iron condor, 161
Itô process, 227
Itô term, 227

jump-diffusion, 176

Kelly’s formula, 193
kurtosis, 187

LaGrange multiplier, 222
LaGrangian, 222
Law of Large Numbers, 107
least-squares, 72
leverage, 148, 150
Lévy measure, 173
Lévy process, 169
little oh, 226
log-return, 35
logarithmic cooling, 113
logarithmic return, 35
long, 81

Margrabe option, 124
market portfolio, 69
Markov property, 8
Marsaglia-Bray, 220
martingale, 8, 166, 176, 179
measure, 90, 167

Martingale preserving property, 177
maturity distribution, 13
maximum variables, 147
mean, 5, 215
mean-variance theory, 33
measure, 166
median, 16
Monotonicity Theorem, 81
moving average, 23, 130
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negatively correlated, 62
nominal rate, 36
normal distribution, 216
normal probability density, 6
numeraire, 124
NYSE delisting rate, 45

odds, 192
option

American call, 79
American option, 98
American put, 78
Asian, 117
barrier, 117
basket, 117
Bermuda, 117
call, 77, 79
chooser, 117
compound, 117
European call, 79
European put, 78
exchange, 117, 124
expiration date, 78, 79
extendible, 118
holder, 78, 79
in the money, 78, 79
lookback, 118
out of the money, 78, 79
outperformance, 124
payoff chart, 78, 79
put, 77, 78
shout, 118
spread, 118
strike price, 78, 79
underlying, 79
writer, 78, 79

out of the money, 78, 79
outperformance option, 124

par value, 34
path dependent option, 93
payoff chart, 78, 79
payouts, 196
perpetuity, 42
Poisson process

compensated, 171
with drift, 171

present value, 40
price of risk, 70

profit curve
for a call, 80
for a put, 79

protective put, 152
put, 77, 78
put pricing
binomial method, 95
continuous method, 102

put-call parity, 82, 138

random walk, 4
rate
effective, 36
nominal, 36

rate of return, 35
replicate, 81
replication principle, 81
reset strike shout option, 129
return
compound, 36
logarithmic, 35
of an investment, 35
rate of, 35
simple, 36

reverse trade, 135
risk aversion, 61
risk premium, 70
risk-free investment, 34
risk-free rate, 34
market determination, 151

risk-neutral, 61, 61, 89
risk-return plot, 63, 66

sample variance, 219
scenario, 3
security, 34
fixed-income, 34

security market line, 71
self-financing portfolio, 81, 167
semi-strong efficient market hypothesis,

22
set-up cost, 81
seven-ten rule, 38
short, 81
shout boundary, 129
shout option, 129
shout price, 129
shouting, 129
simple return, 36
skew, 187
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skip-strike butterfly, 160
specific risk, 73
square summable, 174
statistical blur, 11
statistical measure, 89
statistical prices, 18
Stirling’s formula, 7
stochastic differential equation, 226, 227
stochastic exponential, 177
stochastic integral, 225
stock touching, 147
straddle, 158
strike price, 78, 79
Student t-distribution, 184
Student-t random variable, 219
subordinated process, 182
subordinator, 172, 182, 186
systemic risk, 73

t-distribution, 184
t-statistic, 220
technical analysis, 22

channels, 22
double bottoms, 22
double tops, 22
head and shoulders, 22
resistance, 22
support, 22

time changed process, 182
time decay, 142

time horizon, 57
time value, 99
touching, 147
trading days, 142
trading stop, 146
transpose, 50
true range, 27

underlying, 77–79
US Treasury web site, 34

vanilla options, 106
variance, 5, 215
VIX, 91
volatility, 10, 45, 48, 104
historical, 10, 104
implied, 104
statistical, 10

volatility smile, 165

weak form of the efficient market
hypothesis, 22

web page, 26
Wiener process, 225
Wiener process with drift, 9
world state, 3
writer, of an option, 78, 79

yield to maturity, 43

zero-coupon bond, 34, 35
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