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Abstract Contrast-enhanced ultrasound (CEUS) imaging has lately benefited of an

increasing interest for diagnosis and intervention planning, as it allows to visualize

blood flow in real-time harmlessly for the patient. It complements thus the anatom-

ical information provided by conventional ultrasound (US). This chapter is dedi-

cated to kidney segmentation methods in 3D CEUS images. First we present a

generic and fast two-step approach to locate (via a robust ellipsoid estimation

algorithm) and segment (using a template deformation framework) the kidney

automatically. Then we show how user interactions can be integrated within the

algorithm to guide or correct the segmentation in real-time. Finally, we develop a

co-segmentation framework that generalizes the aforementioned method and

allows the simultaneous use of multiple images (here the CEUS and the US images)

to improve the segmentation result. The different approaches are evaluated on a

clinical database of 64 volumes.

Introduction

Ultrasound imaging (US) is a widely used modality due to its versatility, low cost,

and real-time capabilities. Such acquisitions have been for a long time limited to 2D

images but the recent development of 3D US allowed to consider new problems
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such as volumetric assessments of organs or image registration. In addition to

conventional US, three-dimensional real-time visualization of vascularization can

be achieved with contrast-enhanced ultrasound (CEUS) imaging. This rather new

modality provides very useful information for lesions diagnosis or large vessels

monitoring [1]. Gas-filled microbubbles, acting as amplifiers of the blood back-

scattering signal, are used as a contrast agent. Because the bubbles are naturally

eliminated by metabolism processes, this modality is considered as completely safe

for the patients even with renal or liver failure (unlike contrast-enhanced CT, for

example).

However the usually poor quality of CEUS images makes any computer-based

analysis challenging: in addition to having powerful speckle noise, the image is

very grainy and almost binary as a result of ultrasound interactions with individual

bubbles. Unlike in conventional US [2], very few segmentation methods of 3D

CEUS images have been reported. Among them, Gasnier et al. [3] introduced an

interactive approach to segment and analyze tumors in this modality. However,

their framework was specific to lesion segmentation, just as the automatic methods

proposed in [4, 5]. In [6], Ma et al. developed an automatic algorithm to segment the

heart left ventricle. This method, although applicable to other organs, does not

provide any natural way to refine or correct the result interactively. Besides, it has

been designed for images acquired with a particular transducer, producing sparse

rotated slices instead of a whole 3D volume.

In this chapter, we address the problem of kidney segmentation in 3D CEUS

images. This challenging issue is of great importance to assess quantitatively the

volume of renal tissues. First, we present a generic and fast approach to automat-

ically segment a kidney in CEUS volumes. Our method consists in detecting it in

the image as an ellipsoid, and then deforming this ellipsoid to match precisely its

boundary. Second, we extend this framework in order to take into account other

kinds of information :

• user interactions: Because of the poor image quality or pathologies, image

information may be sometimes unreliable and even misleading. In such cases,

the clinician user should be able to guide or correct the segmentation easily and

with a real-time feedback.

• simultaneous use of another image: Because of shadowing effects, pathologies,

and limited field of view, parts of the kidney may be hardly visible in the image.

In such cases even expert users may have difficulty delineating the true boundary

of the organ by solely relying on one CEUS image. In clinical routine every

CEUS acquisition is preceded by a conventional US acquisition to locate the

kidney. Hence, the latter would be useful to complement the CEUS image and

thus cope with missing and corrupted information.

Prior work on kidney segmentation in CEUS is limited to two of our conference

papers [7, 8], of which this chapter is an extended version.

The remainder of the chapter is organized as follows. First of all, section “Mate-

rial” is dedicated to the description of the material used throughout the chapter in

validation experiments. In section “Kidney Detection via Robust Ellipsoid
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Estimation”, we introduce a fast and robust method to estimate roughly the center,

orientation, and sizes of the kidney. This is a done via an original variational

framework for ellipsoid detection. The outcome of this step is then used as the

prior model of a segmentation algorithm, based on template deformation, described

in section “Kidney Segmentation via Implicit Template Deformation”. Because of

the inherent ambiguities in CEUS images, the obtained segmentation may be

improved by using additional information. In section “Segmentation with User

Interactions”, we show how user interactions can be used inherently in our frame-

work to correct the result in real-time. Then we extend our approach to multiple

images, namely the CEUS and the US volumes (section “Joint Co-segmentation and

Registration”) which are not aligned. Thus a generic framework for joint

co-segmentation and registration is introduced and applied to both the kidney

detection and segmentation. We show that by taking additional information into

account, the automatic kidney segmentation is more robust. Finally, we conclude the

chapter by discussing potential improvements.

Material

This section describes the material used throughout the chapter. Our database is

composed of 64 pairs of CEUS and US volumes acquired from 35 different patients,

via an iU22 ultrasound system (Philips, The Netherlands). In order to have a

clinically representative database, both healthy and diseased kidneys were consid-

ered. Images were acquired using different probes, namely V6-2 and X6-1 (Philips,

The Netherlands) US probes, with various fields of view. The volumes size was

Fig. 1 Slices of conventional and contrast-enhanced ultrasound 3D images of the kidney for two

different patients (left and right)
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512 � 510 � 256 voxels with different spatial resolutions (0.25 � 0.25 � 0.55 mm

in average). The acquisition protocol was as follows: first, the clinician scouted for

the patient’s kidney using conventional US and acquired a US volume. Then, 2.4

mL of Sonovue (Bracco, Italy) contrast agent was injected to the patient and a

CEUS acquisition was performed after a few seconds. Indeed, dynamic CEUS

images of a kidney show a cortical enhancement shortly followed by a medullary

enhancement. Better visualization of kidney tissue is then available when the

contrast agent has diffused as it is completely hyperechoic whereas its fatty

surrounding produces no signal. Figure 1 shows a comparison of US and CEUS

images for two patients of our database. Note that the US and CEUS images are not

aligned as the clinician may have slightly moved the probe between the two

acquisitions.

For each image, an expert was asked to segment the kidney with a semiautomatic

tool. This segmentation was considered as the ground truth. The different

approaches described in the chapter will be evaluated by computing the Dice

coefficient between the segmentation result S and the ground truth G T, defined as

DiceðS;GTÞ ¼ 2
VolðS \ GTÞ

VolðSÞ þ VolðGTÞ ; (1)

where Vol(X) denotes the volume of a region X. Thus the higher the Dice coeffi-

cient, the better the segmentation is. In particular, this score is equal to 1 for a

perfect segmentation and 0 for a completely non-overlapping segmentation.

All proposed methods were implemented in a C++ prototype and the computa-

tional times will be given for a standard computer (Intel Core i5 2.67 Ghz, 4GB

RAM).

Kidney Detection via Robust Ellipsoid Estimation

Since kidney shape can be roughly approximated by an ellipsoid, the kidney

automatic detection problem in CEUS images can be initially reduced to finding

the smallest ellipsoid encompassing most of the hyperechoic voxels. A large

number of methods (e.g., Hough transforms [9, 10]) have already been proposed

to detect ellipses in images [11]. However their extension to 3D, though possible, is

usually computationally expensive mainly because of the number of parameters to

estimate (9 for a 3D ellipsoid). Furthermore, they do not explicitly use the fact that

only one ellipsoid is present in the image. On the other hand, statistical approaches

like robust Minimum Volume Ellipsoid (MVE) estimators [12] are better suited but

require prior knowledge on the proportion of outliers (here the noise, artifacts, or

neighboring structures), which may vary from one image to another and is thus not

available. We therefore propose an original variational framework, which is robust

and fast, to estimate the best ellipsoid in an image I : Ω � ℝ3 ! ℝþ.

40 R. Prevost et al.



A Variational Framework for Robust Ellipsoid Estimation

In the considered framework, an ellipsoid is implicitly represented using an implicit

function ϕ : Ω! ℝ that is positive inside the ellipsoid and negative elsewhere. ϕ
can be parametrized by the center of the ellipsoid c ∈ ℝ3 and its sizes and

orientations encoded by a 3 � 3 positive-definite matrix M. We therefore define

the implicit equation of an ellipsoid as

ϕc;MðxÞ ¼ 1� ðx� cÞTMðx� cÞ ¼ 0 : (2)

The detection method should be robust to outliers, i.e. bright voxels coming from

noise, artifacts, or other neighboring structures. Excluding those outliers is done by

estimating a weighting function w (defined over the image domainΩ into [0,1]) that

provides a confidence score for any point x to be an inlier. The ellipsoid estimation

is then formulated as an energy minimization problem with respect to c, M, and w:

min
c;M;w

(
Edetðc;M;wÞ ¼ �

ð
Ω
ϕc;MðxÞ IðxÞ wðxÞ dx

þ μ: log
VolðMÞ
jΩj

� �
:

ð
Ω
IðxÞ wðxÞ dx

� �)

with ϕc;MðxÞ ¼ 1� x� cð ÞTM x� cð Þ
and VolðMÞ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM�1

p
the ellipsoid volume:

(3)

The ellipsoid detection energy Edet is composed of two terms:

• a data-fidelity term: The first term is an integral over the whole image domain Ω
of the product ϕc,M by w I. Note that w I is highly positive at voxels that have a

high intensity but are not outliers. To minimize the energy, such voxels must

therefore be included inside the ellipsoid, i.e. where ϕ is positive.

• a regularization term: The second term penalizes the volume of the ellipsoid Vol

(M) with respect to the domain volume jΩj. The logarithm provides a statistical

interpretation of the problem and eases the minimization of the energy, as will be

seen in the next subsection. It is normalized by
R
w I and weighted by a trade-off

parameter μ > 0.

Numerical Optimization

This ellipsoid estimation process can be viewed as fitting a Gaussian distribution to

the bright pixels of the image by minimizing its negative log-likelihood. Therefore

Edet has a statistical meaning and when w is fixed, the minimizers (c∗,M∗) of Edet
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ð�; �;wÞ have a closed form. Indeed, c∗ is the barycenter of all voxels x weighted by

I(x)w(x), while M∗ is the inverse of the covariance matrix1 of the same data.

Besides, Edet is linear with respect to w which is by definition restricted to [0,1].

Therefore, at every voxel x the minimizer w∗(x) is equal to 0 or 1, depending only

on the sign ofϕc;M � μ log VolðMÞ
jΩj

� �
. w∗ is then the indicator of the current ellipsoid

estimation which has been dilated proportionately to μ. Its purpose is to remove the

contribution of the points which are far away from the current ellipsoid and may

hinder its refinement.

The weighting function w is initialized to 1 everywhere. Minimization of Edet is

then performed with an alternate iterative scheme that successively updates the

variables c, M, and w, as summarized in Algorithm 1. As the energy Edet decreases

at each step, the algorithm is guaranteed to converge. In practice, few iterations are

required for convergence and total computational time is less than a second for a 3D

image.

The choice of μ is paramount as it controls the number of points that are taken

into account for the ellipsoid matrix estimation. It should be set to values close to 2
5

in 3D and 1
2
in 2D (the proof is deferred in the appendix).

Figure 2 shows such a process for a synthetic 2D image. The first ellipse estimate

is too large as all voxels are considered but far points are progressively eliminated

via the weighting function w until the algorithm converges towards the good

solution. We also present results on real CEUS data in Fig. 3. The estimated

ellipsoids are not perfectly accurate but robust and close enough to be used as an

initialization for a segmentation algorithm.

1Up to a constant multiplier.
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Kidney Segmentation via Implicit Template Deformation

The previously detected ellipsoid will now be deformed to segment the kidney more

precisely. We follow the template deformation framework described in [13, 14] and

extended in [15], as it is a very efficient model-based algorithm and it has already

been applied successfully to kidney segmentation in CT images [16].

Implicit Template Deformation Framework

Implicit template deformation is a framework where an implicit shape defined by a

function ϕ0 : Ω! ℝ , called the template, is deformed so that its zero level set

segments a given image I : Ω! ℝþ . The segmenting implicit shape is the zero

level set of a function ϕ : Ω! ℝ, therefore defined with respect to this template

Fig. 2 (a) Original 2D synthetic image, corrupted by salt-and-pepper noise. (b) Evolution of the

ellipse along the iterations (orange) and final result (green). (c) Ellipse contour and center

superimposed on the product w I at convergence

Fig. 3 Results of the ellipsoid detection (red) compared to the ground truth (green), on slices of

the volumes shown in Fig. 1
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and a transformation of the space ψ :Ω !Ω that becomes the unknown of the

problem : ϕ¼ ϕ0 ∘ ψ. In our application, the template is the implicit function of the

previously estimated ellipsoid ϕ0 ¼ ϕc
∗,M∗ and ψ is sought such that the image

gradient flux across the surface of the deformed ellipsoid (ϕ0 ∘ ψ)�1(0) is maxi-

mum. The segmentation energy is then

EsegðψÞ ¼
ð
fϕ0�ψ¼0g

� ~rIðxÞ ; ~nðxÞ
D E

dSðxÞ þ λRðψÞ; (4)

where~nðxÞ denotes the vector normal to the surface of the segmentation at point x.

RðψÞ is a regularization term which prevents large deviations from the original

ellipsoid. Its choice will be detailed in section “Transformation Model” hereafter.

λ is a positive scalar parameter that controls the strength of this shape constraint.

Using the divergence theorem, the first data-fidelity term can be rewritten asð
fϕ0�ψ¼0g

� ~rIðxÞ; ~nðxÞ
D E

dSðxÞ ¼ �
ð
fϕ0�ψ�0g

divðrIðxÞÞ dx ¼ �
ð
fϕ0�ψ�0g

ΔIðxÞ dx (5)

where Δ denotes the Laplacian operator. Introducing H the Heaviside function (H
(a) ¼ 1 if a is positive, 0 otherwise) yields a more convenient formulation of the

segmentation energy :

EsegðψÞ ¼ �
ð
Ω
Hðϕ0 � ψðxÞÞ ΔIðxÞ dxþ λRðψÞ; (6)

Transformation Model

The choice of the space of possible solutions ψ to Problem (6) is, in our case,

intrinsically linked to the notion of shape. A shape can be considered as a set of

objects sharing the same visual aspect. It should be invariant to geometric trans-

forms such as translation, rotation, scaling, or shearing. We will refer to such a

global transformation as the pose. To set up a clear distinction between the pose and
the subsequent shape deformation, similarly to [17], we design our template

transformation model ψ as a functional composition of a global transformation G
and a nonrigid local transformation L (see Fig. 4):

ψ ¼ L � G (7)

Pose. G : Ω! Ω is chosen as a parametric transform that coarsely aligns the

template with the target surface in the image. It will basically correct or adjust

the global position and scaling of the ellipsoid and can be chosen as a similarity.G is
thus represented by a matrix in homogeneous coordinates defined by 7 parameters

p ¼ fpigi¼1���7 and noted Gp.
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Deformation. L : Ω! Ω is expressed using a displacement field u in the template

referentialL ¼ Id þ u. Similarly to problems in image registration and optical flow

algorithms [18], u should be smoothly varying in space. While adding penalizations

on differential terms of u toRðψÞ is a valid approach, efficient implementations are

difficult to derive. Taking advantage of efficient linear filtering, smoothness of the

displacement u is set as a built-in property defining it as a filtered version of an

integrable unknown displacement field v

uðxÞ ¼ Kσ�v½ 	ðxÞ ¼
ð
Ω
Kσðx� yÞ vðyÞ dy (8)

where Kσ is a Gaussian kernel of scale σ. The overall transformation that can

therefore be parametrized by p and v will be noted ψp,v.

The proposed decomposition allows to define the shape prior term independently

from the pose:RðψÞ ¼ RðLÞ.R thus quantifies how much the segmenting implicit

function ϕ deviates from the prior shape ϕ0. Using the L2 norm we choose to

constraint L towards the identity :

RðLÞ ¼ 1

2
kL � Idk22 ¼

1

2

ð
Ω
kuðxÞk2 dx (9)

The optimization problem to solve finally reads:

min
p;v

Esegðψp;vÞ ¼ �
ð
Ω
Hðϕ0 � ψp;vðxÞÞ ΔIðxÞ dxþ

λ

2

ð
Ω
kKσ�vk2

� �

with ψp;v ¼ ðId þ uÞ � Gp and u ¼ Kσ�v
(10)

Fig. 4 Decomposition of the transformation ψ. The implicit template ϕ0 undergoes a global

transformation G and a local deformation L
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Numerical Implementation

Problem (10) is minimized via a standard gradient descent simultaneously on the

parameters of the pose Gp and the deformation field v. The descent evolution

equations are obtained by applying calculus of variations to Eseg . We omit the

tedious details but the final equations, after a variable substitution, read

@p

@t
¼ �

ð
Ω
δðϕ0 � LÞ : rϕ0 � L; ðId þ JuÞ @G

@p
G�1

	 

: ΔI � G�1

@v

@t
¼ �

"
δðϕ0 � LÞ : rϕ0 � L : ΔI � G�1 þ λv

#
�Kσ

8>>>><
>>>>:

(11)

where δ denotes the Dirac distribution and Ju is the Jacobian matrix of the

displacement field u.

A quick analysis of Eq. (11) reveals several key aspects for an efficient imple-

mentation. Interpolating ϕ0 � L and rϕ0 � L over the whole domain Ω would be

extremely time-consuming. Nevertheless, since it is multiplied by δðϕ0 � LÞ, the
warped gradient field rϕ0 � L is only needed on the set ϕ0 � L ¼ 0f g (Fig. 5a)

which highly reduces the computational burden. Moreover, precise knowledge of

the warped template ϕ0 � L is only necessary near its zero level set. We use a

coarse-to-fine approach using octrees. At each level a decision is made to further

refine the cell depending on the distance measure (Fig. 5b) drastically dropping

complexity. Finally, stemming from the displacement model, extrapolating image

and pointwise forces to the whole space boils down to a convolution with Kσ
(Fig. 5c). In practice, our current 3D implementation supports up to 100 time

steps per second for a discretization of the implicit function on a 64 � 64 �
64 lattice.

Fig. 5 Fast template deformation with coarse-to-fine distance warp and convolutions. (a) Surface/

pointwise forces. (b) Coarse-to-fine ϕ0 � L. (c) Convolved deformation
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Results for Automatic Segmentation in CEUS Images

This validation has been performed on the CEUS images of the dataset presented in

section “Material”. The completely automatic pipeline had a computational time of

around 5 s.

Quantitative results are reported in Fig. 6. The overall median Dice coefficient is

0.69 for the detection and 0.76 for the segmentation and 25 % of the database have

a very satisfying segmentation (Dice coefficient higher than 0.85), given the very

poor image quality and the presence of pathologies.

Figure 7 shows the obtained result for the two cases introduced in Fig. 1. The

segmentations are very similar to the ground truth and can be considered as satisfy-

ing. Some cases are, however, more difficult (e.g., Fig. 10 in the next section) and

will require additional information.

Segmentation with User Interactions

The previously described approach is fast and automatic, but fails in some difficult

cases. Indeed ultrasound shadows or kidney pathologies make the image informa-

tion unreliable and thus hinder the segmentation algorithm. It is therefore important

to provide the clinician a way to guide or correct the segmentation easily and with a

real-time feedback. As proposed in [15], this can be done easily within the implicit

template deformation framework that was presented in section “Kidney Segmen-

tation via Implicit Template Deformation”.

Ellipsoid Segmentation 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

Dice coefficient

D
ic

e 
co

ef
fic

ie
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Fig. 6 Kidney detection (red) and segmentation (blue) results in terms of Dice coefficients shown

as boxplots (left) and histograms (right). Boxplots show, respectively, the first decile, the first

quartile, the median, the third quartile, and the ninth decile. Extreme points are shown separately
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User Interactions as Constraints

In this section, we show how the user can guide the segmentation by indicating

points that should be inside or outside the segmentation (see Fig. 8).

Consider that the user provides N points {xk}k �ΩN in the image domain

labeling each one as inside or outside of the surface to extract (which can be

done via simple interactions such as a left click on an inside point, and a right

click on an outside point). The implicit formulation allows to express this

Fig. 7 Result of the automatic segmentation (blue) compared to the ground truth (green) on a

particular slice (top) and in 3D (bottom)

Fig. 8 User interactions as inside/outside points. (a) Template deformed without constraints. (b)

User indicates points that should be inside (blue) and outside (red) the segmentation. (c) New

segmentation that satisfies these constraints
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information merely as inequality constraints on the deformed implicit function, at

points {xk}k :

8k 2 ½j1;Nj	; γk : ϕ0 � ψðxkÞ � 0 (12)

where γk¼ 1 (resp.� 1) for inside (resp. outside) points. Note that it is also possible

to specify a point that should be exactly on the segmentation surface by labeling it

as both inside and outside: the two inequality constraints are equivalent to an

equality constraint. Then, putting together the initial formulation in Eq. (6) and

the constraints of Eq. (12) yields a general formulation of implicit template defor-

mation with user interactions, as the following minimization problem:

min
ψ

EsegðψÞ ¼ �
ð
Ω
Hðϕ0 � ψðxÞÞ ΔI xð Þ dxþ λRðψÞ

� �
subject to 8k 2 ½1;N	; γk : ϕ0 � ψðxkÞ � 0

(13)

In the next subsection we propose a method to solve this problem efficiently.

For the sake of genericity, no assumption is made on the representation of the

deformation ψ and the model ψ ¼ L � Gwill be just a particular implementation of

the approach described hereafter.

Optimization Scheme

Since EsegðψÞ is a non-convex functional and has to be minimized under a set of

nonlinear constraints, no specifically tailored algorithms are available. For this

matter, we follow a general augmented Lagrangian methodology [19] and define

an equivalent unconstrained problem that can be locally minimized by gradient

descent. The constrained problem (13) can equivalently be written as an

unconstrained minimization problem of the form

min
ψ

~EsegðψÞ ¼ max
α�0

EsegðψÞ �
XN
k¼1

αkckðψÞ
( )( )

with ckðψÞ ¼ γk : ϕ0 � ψðxkÞ
(14)

where αk is the Lagrange multiplier associated with the kth constraint. Equation (14)
has the same set of solutions as the original problem in Eq. (13): if ψ satisfies all

constraints ck, then ~EsegðψÞ ¼ EsegðψÞ; otherwise, ~EsegðψÞ is infinite. Since ~Eseg

jumps from finite to infinite values at the boundary of the feasible set, it is difficult

to minimize it as such. A more practical approach is to introduce a smooth
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approximation ~Eseg
ν

that depends on a quadratic penalty parameter ν. Parameter ν
will be used to constrain the maximizers (αk)k to finite values. These multipliers are

estimated iteratively and we introduce (αk
j)k the multipliers estimates at the jth

iteration, in order to define the energy approximation

~Eν
segðψ ; α jÞ ¼ max

α�0
EsegðψÞ �

XN
k¼1

αkckðψÞ � 1

2ν

XN
k¼1

αk � αjk

� �2

( )
(15)

The maximizing Lagrange multipliers associated with each constraint ck(ψ) have a
closed-form solution :

α jþ1
k ¼ 0 if α j

k � νckðψÞ 
 0

α j
k � νckðψÞ otherwise.

(
(16)

Substituting (16) into (15) yields the following expression of the smooth approx-

imation ~Eseg
ν
:

~Eν
segðψ ; α jÞ ¼ EsegðψÞ þ

XN
k¼1

Fν ckðψÞ; α j
k

� �

with Fνða; bÞ ¼
� abþ ν

2
a2if νa 
 b

� 1

2ν
b2otherwise.

8><
>:

(17)

Finally, the alternate scheme described in Algorithm 2, in which the penalty

parameter ν is gradually increased, will provide a local minimizer of Eseg that

eventually satisfies the user constraints. Within this process, Step (1) is straight-

forward and Step (2) is very similar to the gradient descent proposed in section

“Numerical Implementation”:

@p

@t
 @p

@t
�
XK
k¼1

γkFðαkÞ rϕ0 � L � GðxkÞ; ðId þ JuÞ @G
@p
ðxkÞ

	 


@v

@t
 @v

@t
�
"XK

k¼1
γkδGðxkÞ FνðαkÞrϕ0 � L

#
�Kσ

8>>>>>>><
>>>>>>>:

(18)

Note that the additional terms in Eq. (18) are just pointwise contributions that do

not influence the overall computational time.
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Influence of User Interactions on Kidney Segmentation
in CEUS

Validation of the user interactions has been performed on a subset of 21 CEUS

volumes from 21 different patients of our database. For each case, the automatic

segmentation has been run and its result was refined with user interactions from an

expert. Figure 9 reports the Dice coefficients obtained as a function of the number

of clicks. The score gradually increases as the user interacts with the algorithm but

rapidly converges: most of the time, less than 3 clicks are needed for a fairly precise

result (Dice � 0.9).2 The results also show that even when the initialization

produces a low score, very few interactions can improve a lot the segmentation.

The influence of user interactions is illustrated in Fig. 10, where we show results on

a difficult case. The patient has a lot of renal cysts that are anechogenic and hinders

the automatic segmentations. With 3 clicks, the segmentation is much closer to the

ground truth.

Nevertheless, in some applications user interactions are not possible and the

segmentation has to be automatic. In the next section, we propose to improve the

kidney segmentation by using simultaneously and automatically the conventional

US image

2 The ground truth may not exactly be reached because of the high intra-operator variability.
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Fig. 9 Boxplots of the Dice coefficient between the ground truth and the segmentation at different

steps of the proposed algorithm. Boxplots show, respectively, the first decile, the first quartile, the

median, the third quartile, and the ninth decile. Extreme points are shown separately

Fig. 10 Example of a segmentation with user interactions. (a) Slice of the original CEUS volume.

(b) Comparison of the ground truth (green) and automatic segmentation (red). (c) Corrected

segmentation (blue) with 2 inside points (blue dots) and one outside point (red dot). (d) 3D

visualization of the ground truth (green), the automatic (red), and corrected (blue) segmentation,

with constraint points
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Joint Co-segmentation and Registration

Co-segmentation often denotes the task of finding an object in each image that shares

the same appearance but not necessarily the same shape [20]. Here we look for the

exactly same organ in two images but with a different appearance. As simultaneous

acquisition of US and CEUS is not possible on current 3D imaging systems, the two

images are in arbitrary referentials and need to be aligned. However, standard iconic

registration methods are not adapted since visible structures, apart from the kidney

itself, are completely different in US and CEUS. Co-segmentation shall therefore

help registration, just as registration helps co-segmentation. This calls for a method

that jointly performs these two tasks (see Fig. 11).

Although segmentation and registration are often seen as two separate problems,

several approaches have already been proposed to perform them simultaneously.

Most of them rely on an iconic registration guiding the segmentation (e.g., [21–23]).

Yet they assume that the segmentation is known in one of the images, which is not

the case in our application of co-segmentation. Moreover, as stated before, CEUS/

US intensity-based registration is bound to fail since visible structures do not

correspond to each other. Instead of registering the images themselves, Wyatt

et al. [24] developed a MAP formulation to perform registration on label maps

resulting from a segmentation step. However no shape model is enforced and noise

can degrade the results. In [25], Yezzi et al. introduced a variational framework that

consists in a feature-based registration in which the features are actually the

segmenting active contours.

In this section, we aim at extending both the previously described kidney

detection and segmentation in a 3D CEUS image to a pair of 3D CEUS and US

images. To that end, we develop a generic joint co-segmentation and registration

framework inspired by [25]. This results in a fully automated pipeline to obtain both

an improved kidney segmentation in CEUS and US images and a registration of

them. But first of all, in order to use conventional US, we need to learn how the

kidney looks like in such images.

Fig. 11 Joint co-segmentation and registration. Given two different non-aligned images of the

same object, the proposed method aims at segmenting this object in both images as well as

estimating a rigid transformation between them
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Learning Appearance in Conventional Ultrasound

In CEUS images, bright areas indicate the presence of contrast agent which is

mainly localized in the kidney. This is why we directly used the image intensity as a

voxel probabilities to be inside the kidney. However in conventional US images,

this does not hold and we need to transform the image into a more elaborate kidney

probability map.

The kidney appearance has a much higher variability in US images, although

their structure is consistent: kidneys are always composed of a bright sinus

surrounded by a darker parenchyma (see Fig. 12). As intensity itself is not reliable

enough, we chose to combine multiple image features using decision forests [26] to

obtain a class posterior map pUS.
Recent work [27–31] demonstrated that adding contextual information allows to

improve spatial consistency and thus classification performance. Here we propose

to exploit the kidney structure in a simple yet efficient way. Similarly to the auto-

context framework introduced by Tu et al. [32], contextual information is included

by using two classifiers in cascade. A first classification (kidney vs background) is

performed in each voxel using a decision forest. Then we use these class posterior

probabilities as additional input of a second random forest that will give the final

kidney probability pUS. In the remainder of the chapter, we will work on this map

instead of the original US image.

The features used for the first decision forest were the intensity of the image and

its Laplacian at the considered voxel as well as at its neighbors’ within a 7 � 7 � 7

local patch, at three different scales (σ ¼ 2,4,6 mm). Intensities were normalized in

each patch. For the second forest, we added the estimated class posterior as addi-

tional channels. Each forest was composed of 10 trees with maximum depth 15.

To validate this probability estimation, the patient database was split into two

groups. Results on the whole dataset were then obtained using a two-fold cross-

validation. Figure 13 shows the ROC and Precision-Recall curves computed (1) by

Fig. 12 Kidney appearance in US images (the kidney boundary is denoted in red). (Left) Original
images showing the high variability of the database. (Middle) Kidney probability given by the first
classifier. (Right) Final kidney probability pUS
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the first decision forest and (2) using the auto-context approach with another forest

in cascade. The latter provides better kidney probabilities with respect to all

reported statistics. Indeed, taking into account structural information helps, for

example, in distinguishing the kidney sinus from the background or the parenchyma

from shadows and allows a more spatially coherent classification (see Fig. 12).

Generic Framework for Co-segmentation and Registration

In sections “Kidney Detection via Robust Ellipsoid Estimation” and “Kidney

Segmentation via Implicit Template Deformation”, we presented two variational

methods to, respectively, detect and segment the kidney. They both consist in

seeking ϕ as the minimizer of a functional of the following generic form

EIðϕÞ ¼
ð
Ω
f ðϕðxÞÞ rIðxÞ dxþRðϕÞ (19)

where f is a real-valued function and rI(x) denotes a pointwise score on whether

x looks like an interior or exterior voxel in the image I. This is a standard setting in
which the optimal implicit function ϕ must achieve a trade-off between an image-

based term and a regularization term R.3
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Fig. 13 Comparison of classification results for the single decision forest and the auto-context

approach. (Left) ROC curve. (Right) Precision-Recall curve

3 For example, the seminal method of Chan and Vese [33] falls in this framework with f ¼ H the

Heaviside function and rIðxÞ ¼ ðIðxÞ � cintÞ2 � ðIðxÞ � cextÞ2 with cint and cext denoting mean

intensities inside and outside the target object.
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We are interested in the case where a pair of images I1 : Ω1 ! ℝ and I2 : Ω2

! ℝ of the same object are available. If those images were perfectly aligned,

the energy in Eq. (19) can be straightforwardly generalized to perform

co-segmentation :

EI1;I2ðϕÞ ¼
ð
Ω1

f ðϕðxÞÞ ðrI1ðxÞ þ rI2ðxÞÞ dxþRðϕÞ : (20)

Unfortunately, such an assumption rarely holds in medical applications unless

the two images are acquired simultaneously. A more realistic hypothesis is to

assume that the target object, segmented by ϕ, is not deformed between the two

acquisitions, but only undergoes an unknown rigid transformation Gr . The

co-segmentation energy thus reads

EI1;I2ðϕ;GrÞ ¼
ð
Ω1

f ðϕðxÞÞ rI1ðxÞ dxþ
ð
Ω2

f ðϕ � GrðxÞÞ rI2ðxÞ dxþRðϕÞ : (21)

Note that, after a variable substitution, it can be equivalently written

EI1;I2ðϕ;GrÞ ¼
ð
Ω1

f ðϕðxÞÞ ðrI1ðxÞ þ rI2 � G�1r ðxÞÞ dxþRðϕÞ : (22)

Minimizing EI1;I2 with respect to ϕ and Gr simultaneously can be therefore

interpreted as performing jointly segmentation (via ϕ) and rigid registration ðvia
GrÞ. This generalizes a more common co-segmentation approach (e.g., [34]) where

the images are first aligned in a preprocessing step.

In the following, we apply this framework to the robust ellipsoid detection

(section “Kidney Detection via Robust Ellipsoid Estimation”) and implicit template

deformation (section “Kidney Segmentation via Implicit Template Deformation”)

to build a completely automated workflow for kidney segmentation in CEUS and

US images. Note that the kidney, which is surrounded by a tough fibrous renal

capsule, is a rigid organ. The hypothesis of non-deformation is therefore justified.

Application to Kidney Detection

The robust ellipsoid detection setting of Eq. (3) falls into the framework described

in Eq. (19) with :

• f ¼ I d and rI ¼ �wI;
• Rðϕc;MÞ ¼ RðMÞ ¼ μ:

Ð
Ω Iw: log VolðMÞ

jΩj
� �

.
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Expanding this algorithm to another image I2 requires the introduction of

another weighting function w2. Following Eq. (21), we can now define the

co-detection energy as

Eco�detðc;M;w1;w2;GrÞ ¼ �
ð
Ω
ϕc;MðxÞ w1ðxÞ I1ðxÞ dx

�
ð
Ω
ϕc;M � GrðxÞ w2ðxÞ I2ðxÞ dx

þ μ

ð
Ω
w1I1 þ w2I2

� �
log

VolðMÞ
jΩj

� �

with VolðMÞ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM�1

p
the ellipsoid volume:

(23)

To facilitate the resolution of such a problem, Gr—as a rigid transformation—

can be decomposed into a rotation and a translation. We can therefore equivalently

write the energy as a function of the ellipsoid center c2 in the second image and the

rotation matrix R :

Eco�detðci;wi;R;MÞ ¼ �
ð
Ω
ϕc1;MðxÞ w1ðxÞ I1ðxÞ dx

�
ð
Ω
ϕc2;R

TMRðxÞ w2ðxÞ I2ðxÞ dx

þ μ

ð
Ω
w1I1 þ w2I2

� �
log

VolðMÞ
jΩj

� � (24)

Minimization of such functional is done in an alternate three-step process:

1. The statistical interpretation still holds for the ellipsoid centers and matrix:

minimizers c1
∗ and c2

∗ are weighted centroids while minimizer M∗ is related

to the weighted covariance matrix of pixels coming from both images.

2. The unknown matrix R accounts for the possible rotation between the two

images and can be parametrized by a vector of angles Θ 2 ℝ3 . A gradient

descent is performed at each iteration to minimize the energy with respect to Θ.
3. The weights w1 and w2 are finally updated as indicator functions (up to a slight

dilation) of the current ellipsoid estimates.

The complete minimization strategy is summarized in Algorithm 2. This algo-

rithm is computationally efficient: closed-form solutions are available (except forℝ)

and the process, though iterative, usually converges in very few iterations.
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Figure 14 shows an example of ellipse co-detection in synthetic images, where

the probability of belonging to the target object is the image intensity. Despite the

noise, the simulated shadow, and the reduced field-of-view effect, the co-detection

algorithm provides a good estimate on the ellipse position, size, and orientation in

both images.

Application to Kidney Segmentation

Implicit template deformation, as previously described in section “Kidney Seg-

mentation via Implicit Template Deformation”, is part of the framework defined in

Eq. (19) with :

• f ¼ H and rI ¼ �ΔI;
• Rðϕ0 � ψÞ ¼ RðLÞ ¼ λ

2
kL � Idk22.

We can therefore extend it to co-segmentation using Eq. (21) by considering the

following functional

Eco�segðϕ0 � L � G;GrÞ ¼ Eco�segðL;G;GrÞ
¼ �

ð
Ω
Hðϕ0 � L � GÞ ΔI1ðxÞ dx

�
ð
Ω
Hðϕ0 � L � G � GrÞ ΔI2ðxÞ dx

þ λ

2
kL � Idk22:

(25)

58 R. Prevost et al.



The energy Eco�seg is then minimized with respect to the parameters of G, Gr and
each component of the vector field u, through a gradient descent similar to sec-

tion “Numerical Implementation”.

Results for Kidney Co-segmentation in CEUS and US

The average overall computational time for kidney probability estimation in US,

ellipsoid co-detection, and kidney co-segmentation was around 20 s with our

implementation.

Validation was performed by comparing the co-segmentation approach to a

segmentation from a single image (in both CEUS an US cases). Dice coefficients

and relative error on the measured kidney volume are reported in Fig. 15. Using

simultaneously the complementary information from US and CEUS images signif-

icantly improves the segmentation accuracy in both modalities. More specifically,

the median Dice coefficient is increased from 0.74 to 0.81 in CEUS (p-value <
10�4) and 0.73 to 0.78 in US (p-value< 10�4). Furthermore, the proposed approach

Fig. 14 Ellipse detection on two synthetic images I1 (a) and I2 (d). Detected ellipses with their

center and main axes are shown in (b) and (e) for independent ellipse detection (red) and proposed
method for co-detection (blue) compared to the ground truth (green). (c) Second image registered

with the estimated transform G�1r . (f) Combination of image terms w1I1 þ ðw2I2Þ � G�1r used for

ellipse estimation at convergence
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provides more reliable clinical information as the median error on the kidney

volume is almost divided by two in CEUS (29 % versus 15 %) and in US (25 %

versus 13 %). Figure 16 shows the joint co-segmentation and registration results for

one case. Independent segmentation fails in both US and CEUS images because of

the kidney lesion (indicated by the yellow arrow) that looks like the background in

CEUS but like the kidney in US. Conversely, the proposed co-segmentation

manages to overcome this difficulty by combining information from the two

modalities. Furthermore, for this example, one can assess the estimated registration

by comparing the location of the lesion in the two modalities. Results on another

case were also displayed in Fig. 11.

Fig. 16 Example of joint co-segmentation and registration for a CEUS (top) and a US (bottom)
images. (Left) Comparison of independent segmentations (red) and the proposed co-segmentation

(blue) with respect to the ground truths (green). (Middle, Right) Two views of the registered

volumes that can be assessed by considering the position of the lesion (yellow arrow)

a b c d

Fig. 15 Boxplots of segmentation results for kidney segmentation in US and CEUS images, in

terms of Dice coefficients (a)–(b) and relative volume error (c)–(d). The proposed

co-segmentation compares favorably to independent segmentation with a p-value < 10�4.
Boxplots show, respectively, the first decile, the first quartile, the median, the third quartile, and

the ninth decile. Extreme points are shown separately
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Conclusion

This chapter addressed the problem of kidney segmentation in 3D CEUS images.

Such a task is challenging because of the noise, the artifacts, and the partial

occultation of the organ (due to the limited field of view).

A robust ellipsoid detector has been introduced to coarsely locate the kidney.

The ellipsoid is then deformed to segment the kidney more precisely, by maximiz-

ing the image gradient flux through the segmentation boundary, using the template

deformation framework. This method yields a fully automatic pipeline that pro-

vides a satisfying segmentation in a large number of cases but may fail when the

image information is too ambiguous (shadows, pathologies, etc).

To overcome such difficulties, two extensions of this approach have been

proposed to take into account additional information. First, we showed how user

interactions can be exploited to guide the segmentation in real-time, by letting the

user indicate points that should be inside/outside/on the segmentation. Then, we

introduced a generic co-segmentation framework that generalizes any segmentation

method to allow the simultaneous use of multiple images (here the CEUS and the

US images). This results in both a better estimate of the organ shape and a

registration of the images. The two aforementioned extensions are compatible

and including user interactions in multiple images would be straightforward.

The kidney detection can still be improved by including more anatomical prior

knowledge. A possible solution would be to constrain the ellipsoid’s axis lengths or

volume to be close to clinically meaningful values. Another way is the use of CT

images of the same patient to extract a tailored model of the kidney and help both

the CEUS detection and segmentation.

Appendix: Choice of the Parameter μ for Ellipsoid Detection

The choice of μ in Eq. (3) is paramount as it controls the number of points that are

taken into account for the ellipsoid matrix estimation. To find a suitable value, let us

consider an ideal case of an image I0 in which there is one white ellipsoid (I0 ¼ 1)

on a black background (I0 ¼ 0), whose implicit function is ϕc0;M0
. We also assume

that the confidence weight is w � 1 everywhere. Then the matrix estimated by our

approach would be

M� ¼ argminM Edetðc0;M; 1Þ

¼ 2

μ

1Ð
Ω I0

ð
Ω
I0ðxÞ x� c0ð Þ x� c0ð ÞTdx

� ��1
(26)

Using the fact that I0 ¼ 1f1�ðx�c0ÞTM0ðx�c0Þ�0g is the indicator of the ellipsoid yields
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M� ¼ 2

μ

1

VolðM0Þ
ð
f1�ðx�c0ÞTM0ðx�c0Þ�0g

x� c0ð Þ x� c0ð ÞTdx
" #�1

(27)

After a variable substitution x M
1=2
0 ðx� c0Þ, this expression becomes

M� ¼ 2

μ

detðM�1=20 Þ
VolðM0Þ M

�1=2
0

ð
fkxk
1g

xxTdx M
�1=2
0

" #�1
(28)

With VolðM0Þ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM�10 Þ

q
¼ 4π

3
detðM�1=20 Þ, we then obtain

M� ¼ 2

μ

3

4π
M
�1=2
0

ð
fkxk
1g

xxTdx M
�1=2
0

" #�1
(29)

Note that the integral
Ð
fkxk
1g xx

Tdxdenotes the covariance matrix of a 3D unit ball,

which is actually a scalar matrix that can be easily computed

ð
fkxk
1g

xxTdx ¼

2π
2

3

1

5
0 0

0 2π
2

3

1

5
0

0 0 2π
2

3

1

5

0
BBBBB@

1
CCCCCA ¼

4π

15

1 0 0

0 1 0

0 0 1

0
B@

1
CA (30)

Combining Eqs. (29) and (30) leads to

M� ¼ 2

μ

1

5
M�10

� �� ��1
(31)

which yields the following relationship between M∗ and M0 :

M� ¼ 5

2
μM0 (32)

This shows that the exact solution M0 is retrieved for μ ¼ 2
5
. This value actually

depends on the dimension of Ω. Here we assumed Ω � ℝ3 but for 2D images, the

optimal value would rather be μ ¼ 1
2
.
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