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E. Gibson, M. Gaed, J.A. Gómez, M. Moussa, C. Romagnoli,

S. Pautler, J.L. Chin, C. Crukley, G.S. Bauman,

A. Fenster, and A.D. Ward

27 Anatomical Landmark Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 717

David Liu and S. Kevin Zhou

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759

Contents ix



Computer-Aided Diagnosis Systems

for Acute Renal Transplant Rejection:

Challenges and Methodologies

Mahmoud Mostapha, Fahmi Khalifa, Amir Alansary, Ahmed Soliman,

Jasjit Suri, and Ayman S. El-Baz

Abstract This chapter overviews one of the most critical problems in urology,

namely detection of acute renal transplant rejection. Developing an effective, fast,

and accurate computer-aided diagnosis (CAD) system for early detection of acute

renal rejection is of great clinical importance for the management of these patients.

For this reason, CAD systems for early detection of renal transplant rejection have

been investigated in a huge number of research studies using different image

modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed

tomography (CT), and radionuclide imaging. A typical CAD system for kidney

diagnosis consists of a set of processing steps including, but not limited to, image

registration to account for kidney motion, segmentation of the kidney and/or its

compartments (e.g., cortex, medulla), construction of agent kinetic curves, func-

tional parameters estimation, and diagnosis and assessment of the kidney status.

Due to the widespread popularity of US and MRI, this chapter overviews the

current state-of-the-art CAD systems that have been developed for kidney diagnosis

using these two image modalities. In addition, the chapter addresses several

challenges that researchers face in developing efficient, fast, and reliable CAD

systems for early detection of kidney diseases.
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Introduction

Early detection of kidney rejection is important for clinical management in patients

with transplanted kidneys [1]. In the USA, approximately 17,736 renal transplants

are performed annually [2], and given the limited number of donors, transplanted

kidney salvage is an important goal. Renal transplantation complications could

be divided into 6 classes: urologic complications, fluid collections, vascular compli-

cations, neoplasms, recurrent native renal disease, and graft dysfunction [3].

Urologic complications include urine leaks associated with discharged urinomas,

which have different sizes and occurs within 2 weeks from transplantation. Also,

transplant patients face the high risk of developing calculous disease and urinary

obstruction. Around transplantation fluid collections have been usually recorded in

up to 50 % of renal transplantations and include urinomas, hematomas, lym-

phoceles, and abscesses. The size, location, and the growth possibility of these

collections greatly influence their clinical relevance [4]. vascular complications

include transplanted artery stenosis, infarction, arteriovenous fistulas [AVFs] and

pseudoaneurysms, and renal vein thrombosis. Although these complications are

found in only 10 % of transplantation cases, they represent significant reasons for

serous graft dysfunction that has high mortality rates [5]. Cancer development

highly increases after kidney transplantation, especially when immunosuppression

period is extended. Neoplasms risks include renal cell carcinomas and lymphomas

[6]. Recurrent disease is rare in the early stage posttransplantation and is usually

detected in long-term renal transplant recipients with diabetes, amyloidosis, and

cystinosis [7]. Renal graft dysfunction causes are acute tubular necrosis (ATN),

rejection (hyperacute, acute, and chronic), and drug nephrotoxicity [8]. ATN is

found initially in most cadaveric grafts and usually diminishes within 2 weeks

depending on ischemic insult. ATN is usually related to the donor kidney and is

commonly observed in patients whose transplants are from living relatives [9].

Acute rejection is found in up to 40 % of patients within 3 weeks after transplanta-

tion and it is typically reversible through high-dose steroids or antibody therapy [10].

Chronic rejection manifested itself as a gradual deterioration in graft function

starting at 3 months posttransplantation [11]. The recurrent previous episodes of

acute rejection is themain cause for chronic rejection [10]. Since finding an effective

treatment of chronic rejection is still an ongoing research, avoiding episodes of acute

rejection is the ideal way of preventing chronic rejection [9]. Drug toxicity also

contributes in degrading the grafted kidney functions. Cyclosporine imposes a high

nephrotoxic potential as it can afferent glomerular arterioles [11].

Acute rejection, i.e., the immunological response of the human immune system

to the foreign kidney, is the most important cause of renal dysfunction among other

diagnostic possibilities. Acute rejection is still a risk for grafts, regardless of the

progresses made within the last decades. The incidence of rejection episodes

depends on several factors, e.g., the organ (status), comorbidities, medication,

and compliance [12]. Chronic allograft deterioration and worsening long-term

risk increases significantly with each acute rejection episode [13, 14]. Consequently,

2 M. Mostapha et al.



early detection and effective-fast treatment of acute rejection are crucial to preserve

a graft‘s function. At present, the initial evaluation of renal dysfunction after

transplantation is based on multiple blood tests and urine sampling (e.g., plasma

creatinine, creatinine clearance). Creatinine clearance is a clinical measurement

used to estimate renal function, specifically the filtration rate of the glomeruli, and

its value is determined by measuring the concentration of endogenous creatinine

(which is produced by the body) in both plasma and urine. Creatinine clearance is a

slightly less accurate measure of the glomerular filtration rate than inulin clearance

because, unlike inulin, a small amount of creatinine is reabsorbed by the kidney and

is not excreted in the urine, thereby being lost to measurement. Difficulties involved

in carrying out the inulin clearance procedure, however, render creatinine clearance

the more practical clinical measurement with which to assess renal function

[15]. However, the fact that creatinine clearance provides information on both

kidneys together, but not unilateral information [16], and that significant change

in creatinine level is only detectable after the loss of 60 % of the kidney function

[17], limits the efficiency of such index in detecting renal rejection. Therefore, an

obligating need for highly sensitive and specific detection of early acute detection

still exists, with biopsy remaining the gold standard diagnostic procedure. How-

ever, biopsy as an invasive procedure imposes the risk of bleeding and infection to

the patients, may cause injury to the graft, and is limited to patients who are not

taking any anticoagulant drugs. Moreover, this procedure relies on few small

samples from limited areas to determine the status of the entire organ. Therefore,

this may lead to a wrong estimation of the extent of inflammation in the whole graft

[18]. So, diagnostics with noninvasive image-based techniques to investigate the

entire graft would yield much better results.

Several noninvasive imaging modalities have been used clinically used to asses

transplanted kidneys. Radionuclide imaging (also called scintigraphy), the tradi-

tional method in renal imaging, is an excellent modality for evaluating graft

function, both qualitatively and quantitatively, while screening for common

complications [8]. However, this technique fails in showing accurate anatomical

details due to its limited spatial resolution, so functional abnormalities inside

different parts of the kidney (such as cortex and medulla) cannot be discriminated

precisely [19]. Furthermore, radionuclide imaging includes radiation exposure [20],

thus limiting the range of its applications, especially in monitoring such diseases as

ATN or cyclosporin [21]. Ultrasound imaging (US) is usually used to evaluate the

transplanted kidney early in the postoperative period, and it can also be used for

long-term follow-up assessment of the transplanted kidney. US is a relatively

cheap and non-nephrotoxic modality; however, sensitivity and reliability of this

method mainly depend on the investigator’s experience [22]. During an episode

of rejection, both two-dimensional and Doppler ultrasound show unspecific

features. Doppler may give high pulsatility index (PI) and resistivity index (RI)

values ( >0.8), which is an indication similar to those of ATN [23, 24]. However,

by knowing the course of the finding, discrimination between these two compli-

cations could be achieved, as acute rejection usually needs more than few weeks to

develop [3]. Computed tomography (CT) is a commonly available technology that

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 3



uses contrast agents that allows accurate evaluation of various diseases in renal

transplantation and with lower costs than magnetic resonance (MR) imaging

[25]. However, information gathered by CT to detect renal acute rejection is

unspecific and the contrast agents used still are nephrotoxic. Therefore, currently

CT has a limited role in diagnosing acute renal rejection [12]. Magnetic resonance

imaging (MRI) provides excellent morphological information. Excellent temporal

and spatial resolution were possible, thanks to the use of multichannel coils and

parallel imaging, which allowed advanced analysis of different aspects of renal

function which might be useful to distinguish acute rejection from ATN [26, 27].

More recently, dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) has gained considerable attention in detecting acute renal rejection

due its ability to provide both functional and anatomical information, and the use of

the FDA approved contrast agent Gd-DTPA is harmless since it is freely filtered and

not reabsorbed by the kidney [28]. However, even with an imaging technique like

DCE-MRI, there are several problems because the abdomen is scanned repeatedly

and rapidly after the injection of the contrast agent. Therefore, developing a

noninvasive CAD system from DCE-MRI is still a challenging problem due to

the following reasons: (1) the spatial resolution of the dynamic MR images is low

due to fast scanning, (2) the images suffer from the motion induced by the breathing

patient which necessitates advanced registration techniques, and (3) the intensity of

the kidney changes nonuniformly as the contrast agent perfuses into the cortex

which complicates the segmentation procedures [29].

In literature, the development of computer-aided diagnosis (CAD) systems for

detecting acute renal rejection using different image modalities is an ongoing area

of increased research. The success of the CAD systems can be measured based on

the diagnostic accuracy, speed, and automation level [30]. The most popular image

modalities used for the diagnosis of kidney diseases are ultrasound (US) and

magnetic resonance imaging (MRI). In the following sections, we will first review

quickly the anatomy and the functions of the kidney, then we will overview

different CAD systems for diagnosis of acute renal rejection using these two

imaging modalities.

Anatomy and Functions of the Kidney

Kidneys are bean-shaped organs, located at the back of the abdominal cavity, one

on each side of the spinal column, just below the rib cage [31] as shown in Fig. 1.

Each kidney is about the size of a fist, but every day, they process about 200 quarts

of blood to make the 2 quarts of waste products and extra water which becomes

urine [32]. It is the urine production that keeps the blood clean and chemically

balanced, making the kidneys vital organs for the body. A cross section of a kidney,

as shown in Fig. 2, consists of three regions: the pelvis, the cortex, and the medulla.

The pelvis region is only an extension of the ureter into the kidney, while the cortex

(outer portion) and the medulla (inner portion) are the main two structural regions.

4 M. Mostapha et al.



The cortex and medulla consist of nearly 1 million functional units called nephrons,

which are 45–65 mm in length and 0.05 mm in width [33]. Nephrons in the cortex

and the medulla process the blood that enters the kidney in several steps to form

the urine. The urine then escapes into the pelvis to be transported via ureter tubes to

the urinary bladder and with the urethra to the outside environment [31].

The actual process of creating the urine from the blood takes place in the

nephrons. Each nephron consists of a glomerulus, its tubule and its blood supply

as seen in Fig. 3. The tubule is also divided into four parts: Bowman’s capsule,

proximal tubule, loop of Henle, and distal tubule. The blood meets the glomerulus

structure and the urine starts to formulate through three main processes. These

processes include filtration by the glomerulus, as well as reabsorption and secretion

by the tubular cells. By means of these processes, the important products such as the

amino acids and water in the body are conserved, whereas the metabolic wastes

(urea, uric acid, creatinine, ammonia) are excreted out of the body.

Fig. 2 A schematic showing the anatomy of the human kidney

Fig. 1 Schematic of the abdominal area of the human body showing the location of a the kidney

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 5



The first process, the filtration, occurs in the glomerulus. The differences in the

blood pressure and the protein osmotic (oncotic) pressure allow the glomerulus to

act as an ultra-filter and allow only small particles to enter the fluid that goes into

the Bowman’s capsule. As a result, the fluid enters the Bowman’s capsule lacks the

blood cells and the proteins. From the Bowman’s capsule, this filtrated fluid goes

into the tubular cells which actively transport the necessary materials such as

glucose back into the body. This active transportation is called reabsorption, and

it helps to retain normal blood levels of necessary materials. On the other hand, a

process called secretion is responsible for removing some substances from the

blood and adding to the tubular [33]. By the end of these three steps, the urine of

a healthy kidney should be free of protein, glucose, and any blood cells.

In ultrasound, ultrasonic sound waves are transferred at high frequency by a

transducer, and transfer through the skin and other body tissues to the kidney. The

sound waves reflect from the kidney like an echo and come back to the transducer.

The transducer collects the reflected waves, which are then altered into an

Fig. 3 Structure of a nephron
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electronic image of the kidney. The speed at which the waves travel is highly

affected by various types of body tissues. By introducing additional mode to the

ultrasound, the blood flow could be estimated. A Doppler probe inside the trans-

ducer gauges the velocity and direction of blood flow in the vessel by allowing

sound waves to be audible. The loudness degree of the sound waves shows the level

of blood flow in a blood vessel. Also, obstruction of blood flow could be determined

by the absence of these sounds. In DCE-MRI, as the contrast agent Gd-DTPA

passes through the cortex, the signal intensity is expected to increase before it

decreases slightly due to water reabsorption. Constant signal intensity is then

expected followed by a decrease due to the washout of the contrast agent. In a

healthy kidney, the signal intensity increases instantly after the contrast agent is

introduced in around 40 s and peaks within 100 s and starts to drop slowly to its

initial value while the urine is formed [34].

Ultrasound

Ultrasound is currently still the first choice in the early assessment of the

transplanted kidney or in the long-term follow-up. After 24–48 h posttrans-

plantation, a baseline US evaluation is performed with a detailed examination of

renal size, echogenicity, collecting system, ureter condition, and evaluation of any

postoperative collections. Graft enlargement (swelling, more globular shape),

reduction of corticomedullary differentiation, increased echogenicity, prominent

medullary pyramids, or irregularities in the graft perfusion are all typical US

findings in case of acute renal rejection [12]. Color Doppler (CD) and power

Doppler (PD) are used to investigate blood flow in the renal and iliac vessels, and

“flow quantification” can be measured using resistivity index (RI), pulsatility index

(PI), and systolic/diastolic ratio [22]. The Doppler resistive index (RI) developed by

Leandre Pourcelot is a measure of pulsatile blood flow that mirrors the resistance to

blood flow caused by microvascular bed distal to the site of measurement. RI is

usually determined as a standard practice in clinical monitoring, and it can depend

on the recipient’s vessels and their elasticity beside the graft vessels [35]. RI was

found to be a useful parameter in quantifying the variations in renal blood flow that

might be associated with renal disease. RI is defined as
PSV� EDV

PSV
, where PSV:

peak systolic velocity and EDV: end diastolic velocity [36]. Figure 4 shows how RI

is calculated from a CD sonogram. Contrast-enhanced Ultrasound (CEUS) is used

to evaluate cortical perfusion since CD and PD can only estimate perfusion in large

arteries [37], see Fig. 5.

Recently, the are several studies that evaluate the performance of the conven-

tional ultrasound parameters such as the resistance index (RI) in the diagnosis of

early allograft dysfunction. According to [38, 39], RI is not an exact indicator of

renal graft dysfunction, and it could only provide a prognostic marker of the graft.

Saracino et al. [40] concluded that RI measurements taken early after kidney

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 7



transplant could predict long-term renal function. However, Kramann et al. [23]

focused in their research on evaluating the ability of RI measurements to predict

renal allograft survival on the time point of RI measurement. They found that RI

measurements should be taken 12–18 months posttranplantation in order to be able

to predict long-term allograft survival. Also, Khosroshahi et al. [41] compared

Doppler US images of the donor’s kidney before and 6–12 months after transplan-

tation and showed that a significant increase in the RI couldn’t be related to the graft

enlargement. Krejčı́ et al. [42] examined the potential of US evaluation in the

detection of subclinical acute rejection using a composite gray-scale, CD, and PD

Fig. 4 The process of calculating renal resistance index from CD sonogram

Fig. 5 Illustration of gray-scale sonography (a), color Doppler (b), power Doppler (c), and CEUS

(d). Note that CD or PD cannot evaluate the cortical perfusion; however, CEUS can explore

this area

8 M. Mostapha et al.



imaging, and it was proven that a significant differentiation between different

groups could be achieved. Damasio et al. [43] investigated the use of Doppler US

in the case of dual kidney transplantation (DKT), and it was concluded that DKT

patients had higher RI and lower kidney volumes than single kidney transplantation

(SKT) patients. Chudek et al. [44] tried to characterize factors that influence PI and

RI in patients with immediate (IGF), slow (SGF), or delayed (DGF) kidney graft

function, and found that ischemic injury which occurred mainly prior to organ

harvesting played a dominant role determining intrarenal resistance in the early

posttransplant period. Fischer et al. [45] proved the superiority of ultrasound

contrast media (USCM) to conventional US that uses the RI indicator in the

diagnosis of early allograft dysfunction. In addition, Benozzi et al. [46] found

that both US and CEUS could identify grafts with early dysfunction, but only

some CEUS-derived parameters could differentiate between ATN and acute renal

rejection. A summary of recent studies relating to acute renal rejection with

different US findings is given in Table 1.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) has become the most powerful and central

noninvasive tool for clinical diagnosis of diseases [47]. The main advantage of MRI

is that it offers the best soft tissue contrast among all imaging modalities (e.g., US

and CT). However, structural MRI lacks functional information. Dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) is a special MR technique that

has emerged as a new noninvasive technique to provide superior information of the

anatomy, function, and metabolism of tissue [26, 48]. The technique involves the

acquisition of serial MR images with high temporal resolution before, during, and

several times after the administration of a contrast agent (e.g., gadolinium) into the

blood stream. In DCE-MRI, the signal intensity in target tissue changes in propor-

tion to the contrast agent concentration in the volume element of measurement, or

voxel. DCE-MRI is commonly used to enhance the contrast between different

tissues, particularly normal and pathological. A typical example of a dynamic

MRI time series data of the kidney is shown in Fig. 6.

DCE-MRI has been extensively used in many clinical applications, including the

study of the hemodynamic (i.e., perfusion) and properties of tissues (blood flow,

blood volume, mean transit time), microvascular permeability and extracellular

leakage space, detection of renal transplant diseases, and MR angiography

[49]. Advantages of DCE-MRI techniques over other imaging modalities include

the lack of ionizing radiation, increased spatial resolution, the ability to provide

superior anatomical and functional information, and the feasibility to be used as

early as possible (even one day posttransplantation) for the assessment and follow-

up of the transplanted kidney. Unlike the brain where the widely used clinical agent

gadolinium is confined by the blood–brain barrier and behaves essentially like an

intravascular agent, in the kidney tissue the contrast agent gadolinium behaves as a

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 9



Table 1 Summary of studies on acute renal rejection with different US findings

Study Objective Methods Conclusions

Fischer

et al. [45]

Compare the ability of

USCM in diagnosing

early allograft dys-

function with the

traditional US

modalities that relies

on the RI parameter.

An overall of 48 successive

kidney recipients

undertook US examina-

tion after USCM admin-

istration 4–10 days after

transplantation.

Conventional US that

rely on RI

measurements are

inferior to USCM

when it comes to

diagnosing early

kidney allograft

dysfunction.

Kirkpantur

et al. [38]

Investigate the correla-

tion relationship

between RI and renal

histopathologic

characteristics in

grafted kidneys.

The intrarenal RI was retro-

spectively compared

with biopsy results in

28 kidney recipients.

RI appeared to offer a

predictive indicator

for the graft rather

than yielding a pre-

cise diagnosis of

renal graft

dysfunction.

Kramann

et al. [23]

Evaluate the ability of RI

measurements to pre-

dict renal allograft

survival through a

retrospective single-

center analysis, but

with special focus on

the time point of RI

measurement.

In total, 88 patients with an

RI measurement 0�3,

3�6, and 12�18 months

after transplantation

were involved and

separated into two

groups according to RI

threshold of 0.75.

RI obtained 12�18

months after trans-

plantation was found

to be able to help in

predicting long-term

allograft results,

while RI acquired

during the first

6 months after trans-

plantation failed to

predict renal allograft

dysfunction.

Seiler

et al. [39]

Test the hypothesis that

renal RI represents a

sign of systemic vas-

cular damage rather

than an organ-

specific indicator.

Renal and splenic RIs

besides common carotid

intima-media thickness

(IMT) were measured in

87 stable transplant

recipients.

Results backed the belief

that renal RI is not a

specific marker of

allograft dysfunction.

Benozzi

et al. [46]

Compare the results of

CEUS and PD in

renal transplanted

kidneys within

30 days after

transplantation.

Altogether, 39 kidney

recipients experienced

CEUS and US

examinations at 5, 15,

and 30 days after trans-

plantation. The

outcomes were

correlated with clinical

findings and functional

evolution.

Although US and CEUS

both could recognize

grafts with early dys-

function, only some

CEUS-derived

factors could separate

ATN from acute

renal rejection.

Krejčı́

et al. [42]

Assess the prospect of

ultrasound evaluation

in the recognition of

subclinical acute

rejection that are

diagnosed in stable

Gray-scale assessment, CD

imaging, and PD imag-

ing were performed

before each of 184 proto-

col graft biopsies in

77 patients in the third

week, third month, and

Groups with borderline

changes and subclini-

cal acute rejection

and groups with nor-

mal histological

finding and clinically

manifested acute

(continued)
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Table 1 (continued)

Study Objective Methods Conclusions

grafts by protocol

biopsy.

first year after

transplantation.

rejection could be

successfully divided

using a combined

gray-scale, PD and

CD assessment.

Damasio

et al. [43]

Analyze CD results in

patients with dual

kidney transplanta-

tion (DKT) and com-

pare renal volume

and resistive index

(RI) values between

DKT and single kid-

ney transplantation

(SKT).

Reviewing the clinical and

imaging findings

[30 CDUS, five mag-

netic resonance

(MR) and one computed

tomography

(CT) examination] in

30 patients with DKT.

Renal volumes and RI

were compared with

14 SKT patients and

comparable levels of

renal function.

CD provided beneficial

information in

patients with DKT,

and DKT patients had

higher RI and lower

volumes than SKT

patients.

Khosroshahi

et al. [41]

Compare the Doppler US

variations in the

donor’s kidney

before transplanta-

tion with the

recipient’s kidney at

6 to 12 months after

transplantation.

Before transplantation, the

size, cortical thickness,

echogenicity, anastomo-

sis, mean pulsatility

index (MPI), and RI of

the 20 kidney donors

were documented. In

addition, the same

parameters were

measured in the

recipient’s kidney at 6 to

12 months after

transplantation

Findings showed a sig-

nificant enlargement

of the kidney size

accompanied with an

insignificant increase

in MPI and RI of the

transplanted kidney.

Saracino

et al. [40]

Evaluate the potential for

RI measured early

after kidney trans-

plant to also predict

long-term renal

function.

RI measurements of

79 transplant patients

within 1 month after the

transplant were divided

into two groups based on

RI median value of

0.635.

Early determination of

RI can help predict

long-term graft func-

tion in kidney trans-

plant recipients.

Chudek

et al. [44]

Describe factors that

affect PI and RI in

patients with imme-

diate (IGF), slow

(SGF), or delayed

(DGF) kidney graft

function.

PI and RI were measured in

200 transplanted patients

at 2 to 4 days after

transplantation. Patients

with acute rejection

episodes within the first

month were discarded.

IGF, SGF, and DGF

were defined based on

different creatinine

levels.

A central role in the

determination of

intrarenal resistance

in the early period

after transplantation

is played by ischemic

injury, which tran-

spired primarily prior

to organ harvesting.
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leakage agent, namely it distributes in the extra cellular extra vascular space, and at

short times (up to about 2 min) after administration at DCE-MRI, time-intensity

curves (TIC) that represent the average intensity of the kidney can be constructed.

Importantly, from these TICs empirical parameters (indexes) that reflect the

delivery of agent to the tissue bed can be estimated (see Fig. 7). Other clinically

important functional parameters, such as fractional plasma volume (FPV), renal

blood flow (RBF), glomerular filtration rate (GFR), renal plasma flow (RPF), and

cortical and medullary blood volumes, can also be estimated from the perfusion

curves [50]. Whereas these TICs represent global information about the kidney

condition, it is conceivable that a vascular insult can be confined to a local territory.

Thus for visual local assessment it is helpful for the radiologists that the perfusion

indexes can be displayed as pixel-by-pixel parametric maps (see Fig. 8) overlayed

on an anatomic image. This is of great importance, in case of kidney dysfunction,

the radiologist can investigate which kidney regions need attention during follow-

up of the treatment and thus determine the appropriate therapy.

Fig. 6 DCE-MRI images taken at different time points post the adminstration of the contrast agent

showing the change of the contrast as the contrast agent perfuses into the tissue beds for kidney

Fig. 7 Typical DCE-MRI TIC representing the average intensity of the kidney measured before

and after the adminstration of the contrast agent into the blood stream. The figure illustrates typical

transient phase (peak value, time to the first peak, and the initial up-slope) and the tissue

distribution phase parameters that can be estimated and used for diagnosis

12 M. Mostapha et al.



Developing a CAD for early and noninvasive diagnosis of the kidney is an

ongoing area for research interest. However, DCE-MRI exhibits multiple challenges

stemming from (1) the need to image very quickly, to capture the transient first-pass

transit effects, while maintaining adequate spatial resolution (2) varying signal

intensities over the time course of agent transit, and (3) nonrigid deformations, or

shape changes, may occur related to pulsatile or transmitted effects from adjacent

structures, such as bowel. A schematic diagram of a typical CAD system for

detection of acute rejection is shown in Fig. 9. The motion correction step of the

kidney on DCE-MRI time series is a preprocessing step in developing the CAD

system to compensate for the global and/or local motion of the kidney. Next, the

kidney objects are segmented and the functional unit (i.e., renal cortex) is extracted

in order to determine dynamic agent delivery. In the final step, perfusion is estimated

from contrast agent kinetics using empiric indexes (see Fig. 7) and classification is

performed based on the extracted features to distinguish between acute rejection and

non-rejection. Below, we will overview the related work on renal image segmenta-

tion and registration as well as the todays’ CAD systems for kidney diagnosis.

Related Work on Renal Image Segmentation and Registration

Dynamic MR images are subject to relatively low signal-to-noise, nonuniform

intensity distribution over the time series images, and geometric kidney deforma-

tions caused by gross patient motion, transmitted respiratory effects, and intrinsic

Fig. 8 Perfusion maps for the four perfusion indexes estimated from the normalized TICs: peak

signal intensity (first column), initial up-slope (third column), average plateau (second column),
and time-to-peak (last column); for a normal subject (upper row) and acute rejection subject

(lower row). The red and blue hues of each color scale correspond to respective highest and lowest
values, respectively. Note all indexes show worsening of perfusion with pathology
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and transmitted pulsatile effects. Therefore, accurate segmentation and registration

of dynamic MR renal images is a challenge. These two basic steps are commanding

the major attention in this research area for automated analysis of dynamic perfusion

MRI. Particularly, kidney motion effects can be compensated for by specific use of

global and local registration techniques. On the other hand, kidney segmentation

techniques can be classified into three main categories: threshold-based, deformable

boundary-based, and probabilistic or energy minimization-based methods. Below

we review the related work on kidney segmentation and registration techniques

addressing the above-mentioned challenges.

Threshold-based techniques segment the kidney and its internal structures (i.e.,

cortex and medulla) by analyzing an empirical probability distribution, or histo-

gram of pixel intensities in a region-of-interest (ROI). Earlier computerized renal

image analysis (e.g., [51–54]) was usually carried out either manually or semiauto-

matically. Typically, the user defines an ROI in one image and for the rest of the

images, image edges were detected and the model curve was matched to these

edges. However, the manual ROI placements are based on the users’ knowledge of

anatomy and thus are subject to inter- and intra-observer variability. Also, valuable

information, being inherent in the DCE-MRI signal intensity time series

(sequences), is not used. Additionally, these approaches are very slow, even though

semiautomated techniques (e.g., [51, 54]) do reduce the processing time. Giele

et al. [55] introduced an approach for the segmentation and registration and of the

kidney on DCE-MRI. First, the kidney contour is drawn manually by the user

in a single high-contrast image. Then, the phase difference movement detection

(PDMD) method is employed to correct kidney displacements. Their method

demonstrated better performance than direct image intensity matching and cross-

correlation. However, when compared with the radiologist results, the PDMD

Fig. 9 Typical computer-aided diagnosis (CAD) system for diagnosis of acute renal rejection.

The input of a CAD system is the DCE-MRI medical images. The motion correction step is used to

handle global and/or local motion during data acquisition. The renal cortex is segmented after

kidney object segmentation since it is the cortex that is primarily affected by the perfusion deficits

that underlie the pathophysiology of acute rejection. Then, the time intensity curves are

constructed and perfusion features are extracted and used for diagnosis
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method accuracy was about 68 % and a manual mask to register the time frames

was still required. Additionally, only translational motion was handled, while

rotational motion was not mentioned, although the existence of the latter has been

discussed in a number of studies [51, 56, 57]. De Priester et al. [54] subtracted the

average of pre-contrasted images (10 frames) from the average of early enhanced

images (30 frames) and thresholded the resulting difference image to obtain a

kidney mask. Objects smaller than a certain size (700 pixels) were removed, and

the remaining kidney object was closed using morphological erosion and manual

processing. This approach was further expanded by Giele [58] by applying an

erosion filter to the mask image in order to obtain a contour at a second subtraction

stage. Koh et al.[59] segmented kidneys with the morphological 3D H-maxima

transform. Rectangular masks and edge information are used to exclude training

data or prior knowledge. Simple thresholding is too inaccurate to segment human

organs in DCE-MRI, because these specific regions have similar gray level (inten-

sity) distributions.

Evolving deformable boundary methods have been explored as a more accurate

means of kidney segmentation. A series of studies on both rats and human subjects

[57, 60–65] has been conducted for the registration and segmentation of kidneys

from DCE-MRI. A multi-step segmentation and registration in the study on humans

by Sun et al. [57, 62] initially corrects the large-scale motion by using an image

gradient-based similarity rigid registration (only translational). Once roughly

aligned, a high-contrast image is subtracted from a pre-contrast image and a level

set approach was used to extract the kidney border from the difference image. Then,

the segmented kidney contour is propagated over the other frames to search for

the rigid (rotation and translation) registration parameters. For rat studies, Sun et al.

[60, 61, 63] used a variational level set approach to find the kidney borders. Their

framework integrated a subpixel motion model and temporal smoothness

constraints. For segmenting the cortex and medulla, the level set approach by

Chan and Vese [66] was used. The deformable model-based segmentation has

been improved by hybrid edge- and region-based models in a number of studies

[67, 68]. Some works have focused on segmenting multiple objects with multiphase

level set methods [69, 70]. Abdelmunim et al. [71] incorporated both image

and shape prior information into a variational level set framework for kidney

segmentation. However, their model did not adequately account for spatial

dependencies between the pixels and therefore are quite sensitive to imperfect

kidney contours and image noise. Yuksel et al. [72, 73] proposed a parametric

deformable model approach for the segmentation of the kidney where the deform-

able contour evolution was constrained using two density functions. The first

describes the kidney shape prior and is constructed using the average signed distance

maps of the training samples. The second functional describes the pixel-wise image

intensity distribution of the kidney and its background, estimated using an adaptive

linear combinations of discrete Gaussians (LCDG) [74–81]. El-Baz et al. [82–84]

proposed a parametric deformable model-based approach for the segmentation of

the kidney using shape and visual appearance priors. The shape model is constructed

from a linear combination of vectors of distances between the training boundaries
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and their common centroid. The appearance prior is modeled with a spatially

homogeneous second-order Markov-Gibbs random field (MGRF) of gray levels

with analytically estimated pairwise potentials. The current appearance model is

described with the LCDG model [74–81]. Khalifa et al. [29, 85] proposed an

automated level set-based framework for the segmentation of kidney from dynamic

MRI. They proposed a stochastic force that accounts for a shape prior and features of

image intensity and pairwise MGRF spatial interactions [75, 86–88]. These features

are integrated into a joint MGRF image model of the kidney and its background to

constrain the evolution of the deformable contour [89–92]. They employed a

two-stage registration methodology using first an affine transformation to account

for the global motion, followed by a partial differential equation (PDE)-based

approach for local motion correction [90, 92]. The segmentation approach in [29, 89]

was later extended to deal with 3D data in [93, 94]. Gloger et al. [95] presented a

level set-based approach using the shape prior information and Bayesian statistical

concepts for generating the shape probability maps. However, the shape prior model

in [29, 89, 93–95] did not impose temporal constraints on kidney segmentation.

The graph cut-based segmentation algorithm by Boykov et al. [96, 97]

minimizes the energy of a temporal MGRF model of intensity curves. Each voxel

is described with a vector of intensity values over time. Initially, several seed points

are placed on the objects and on the background to give user-defined constraints as

well as expert samples of intensity curves. These samples are used to compute a

two-dimensional histogram further acting as a data penalty function in minimizing

the energy. Although the results looked promising, manual interaction was still

required. Rusinek et al. [98] proposed a graph cut-based segmentation formwork to

assess cortical and medullary functional parameters. Their method employed a rigid

registration step to account for the kidney displacements and the approach has been

tested on simulated and in-vivo data. Ali et al. [99] used the graph cut-based

minimization of an energy functional combining a shape constraint with boundary

properties. The constraint was built using a Poisson probability distribution and

distance maps. Chevaillier et al. [100, 101] proposed a semiautomated method to

segment internal structures (i.e., cortex, medulla, and pelvis) from DCE-MRI time

series by using k-means-based partitioning to classify pixels according to contrast

evolution using vector quantization algorithm. However, it was only tested on eight

data sets for normal kidneys, and user interaction was still required. A similar

segmentation by Song et al. [102] has only been tested on two MRI data sets, with

simulated rotation and translation rigid motion, for one normal and one abnormal

kidney. An automated framework proposed by Zöllner et al. [103] assesses renal

function by deriving voxel-based functional information from DCE-MRI, the

nonrigid image registration compensating for the motion and deformation of

the kidney during DCE-MRI acquisitions. The k-means clustering method [104]

was used for extracting functional information about different regions of the kidney

according to their dynamic contrast enhancement patterns. An automated wavelet-

based k-means clustering framework for segmenting the kidneys was proposed by

Li et al. [105]. The images were co-aligned using B-splines registration and cross-

correlation (CC) cost function and their framework was tested on seven subjects
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(four volunteers and three patients). Yang et al. [106] proposed a framework for the

classification of kidney tissue using fuzzy c-mean clustering. In order to reduce

the motion artifacts, their framework employed a nonrigid registration step using

the demons algorithm [107] and the squared pixel distance as a similarity metric

and the squared gradient of the transformation field as the smoothness regulariza-

tion term. To summarize, the reviewed methodologies for kidney segmentation and

registration are presented in Table 2.

Renal CAD Systems

The integration of accurate kidney segmentation andmotioncorrection into a complete

computer-aided diagnostic (CAD) system for renal assessment is still a challenge. In

recent years, several CAD systems have been proposed to analyze kidney function

using DCE-MRI. The DCE-MRI of the kidney has the ability to characterize tissue-

specific functional changes, and the potential to measure both total and cortical

volume, and other functional parameters such as renal blood flow (RBF) and glomeru-

lar filtration rate (GFR). Farag et al. [108] and El-Baz et al.[109–112] proposed an

automated framework for early diagnosis of acute renal transplant rejection. Their

CAD system included parametric deformable model segmentation, nonrigid align-

ment, and classification of the kidney status using empirical parameters estimated from

the perfusion curves. They proposed a new external energy to control the evolution of

the deformable boundary using the density estimations one for a shape model and the

other for gray level distribution estimated using linear combination ofGaussian (LCG)

[75, 86–88, 113–120]. They proposed a geometric-based nonrigid registration

approach that deforms the kidney objects over a set of closed equi-spaced contours)

iso-contours. The evolution of the iso-contours is guided by an exponential speed

function by minimizing the distances between the corresponding pixel pairs on

the reference and target iso-contours.Correspondencebetween the target and reference

iso-contours is evaluated by their normalized cross-correlation (NCC). Their fram-

eworkswere tested on 30 data sets and the evaluation of the kidney statuswas based on

four empirical parameters (peak signal intensity, time-to peak, the slope between the

peak and the first minimum (wash-in slope), and the slope between the peak and

the signal measured from the last image in the sequence (wash-out slope)). Similar

CAD systems were proposed in [121, 122]. They employed a global alignment step

based on maximizing a special Gibbs energy function, the perfusion curves were

estimated from the whole kidney rather than the cortex, and the system was tested on

a larger cohort of 100 patients.

A semiautomated approach by Rusinek et al. [98] assessed cortical andmedullary

functional parameters (RPF, GFR, vascular volumes of the cortex and medulla, and

rate of water absorption) using simulated and in-vivo data. Their framework

employed an initial rigid alignment (translation only) step followed by a graph

cut-based segmentation approach. Zikic et al. [123] evaluated kidney kinetic

parameters after motion correction using template-matching-based registration
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and normalized gradient field (NGF), as the contrast-invariant similarity measure.

However, the kidney was segmented manually, only the translational motion was

considered, and the evaluation of perfusion parameters (plasma volume and tubular

flow) was performed visually by trained physicians for 10 data sets of healthy

volunteers. Semiautomated evaluation of renal function was explored by De

Senneville [124] using rigid-body registration to handle kidney motion inside a

user-defined ROI. The renal cortex was segmented manually, and the GFR was

estimated with Patlak-Rutland tracer kinetic model. Their method demonstrated a

significant uncertainty reduction on the computed GFR for native kidneys, but not

the transplanted ones. Anderlik et al. [125] proposed a framework for quantitative

assessment of kidney function using a two-step motion correction and pharmacoki-

netic modeling. The GFR was estimated from the time-intensity curves using

Sourbron et al. [126] compartment model. Their framework has been tested on

11 data sets. Zöllner et al. [103] employed a nonrigid registration using B-splines

and mutual information (MI) as a similarity metric. Functional information was

extracted regionally using k-means clustering [104]. This system was tested only on

four DCE-MRI data sets and the evaluation of kidney regions was assessed qualita-

tively according to their mean signal intensity time courses.

An automated framework for the classification of kidney transplant status

was proposed by Khalifa et al. [29, 85, 127]. In their framework, the kidney was

segmented using a stochastic geometrical deformable model approach and the local

motion of the kidney is corrected for by a Laplace partial differential equation-

based nonrigid alignment method [90, 92]. The system was tested on 26 data sets

and the kidney status was evaluated using K-nearest neighbor classifier based on

empirical parameters estimated from the agent kidney kinetic curves. Their frame-

work was later extended in [127] by using analytical function-based model to fit

agent kinetic curves derived from the cortex rather than the whole kidney as in [29].

For the classification of kidney status, five features (three are derived from the

gamma-variate functional model and two are from the perfusion data, namely

the time-to-peak and average plateau, see Fig. 7) were chosen and the study

included 50 transplant patients (27 non-rejection and 23 acute rejection).

Semiautomated estimation of renal parameters was performed by Hodneland

et al. [128]. A viscous fluid model combined with an NGF-based cost function

was used for elastic kidney registration. However, the kidney was segmented

interactively with the nearest neighbor approach, the framework was tested only

on 4 data sets of two healthy volunteers, and the reported GFR measurements were

slightly underestimated relative to the creatinine reference values. Positano et al.

[129] proposed a CAD system for the estimation for renal parameters. Their system

included a two-step rigid registration framework to compensate for kidney motion

using MI and adaptive prediction of kidney position over the course of the respira-

tory cycle. The perfusion indices (peak signal intensity, mean transit time (MTT),

initial up-slope, and time to peak) were estimated from the extracted perfusion

curves from the automatically and manually registered datasets were similar as

well. However, their registration method could address only the global motion, but

not the local motion. A summary of current CAd system for kidney diagnosis is

presented in Table 3.
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Discussion and Conclusions

Designing efficient and reliable CAD systems for early detection of renal transplant

complications is very important, since early detection of renal transplant compli-

cations, specially renal rejection, can be potentially mitigated by the adminstration

of anti-rejection medications. In this chapter, we overview recent CAD systems for

the detection of kidney rejection using ultrasound and magnetic resonance imaging

modalities. This chapter addresses current approaches and their strengths and

limitations. In the final section, we summarize this work by outlining the research

challenges that face each stage in kidney diagnosis CAD systems. In addition, the

suggested trends to solve these challenges are presented.

Several challenges and aspects have been facing the development of accurate

and fast CAD systems for early detection of renal transplant complications. These

challenges can be summarized as follows.

• Most clinical and research studies focus on 2D time series analyses that

are compatible with data acquisitions for real patient scenarios. However, the

extension of the work to deal with 4D (3D + time) is one of the major challenges.

The goal of DCE-MRI is to obtain the best feasible temporal resolution while

maintaining good spatial resolution. Therefore, the acquisition of 3D data with

higher spatial resolution greatly affects the temporal resolution and vice versa.

Thus, a compromise in choosing the acquisition parameters for 3D time series

(4D) is required to achieve a sufficiently high signal-to-noise ratio (SNR),

since an ideal rapid isotropic 3D imaging of the moving kidneys is not

achievable [124].

• Accurate delineation of kidney borders requires new segmentation models to

account for the large inhomogeneities that exist in the kidney (i.e., cortex,

medulla). This can be achieved by integrating into the segmentation

techniques both the spatial interactions information between the kidney pixels

and the intensity information. Most popular spatial interaction models are

MGRF-based methods using binary maps and pairwise relationships for 2D

and 3D images (see, e.g., [29, 75, 86, 90– 94, 130, 131]). A recent study by

Khalifa et al. [85] demonstrated the advantage of higher-order MGRF spatial

model over the second-order one for the segmentation of the kidney from

DCE-MRI. Also, a new trend in medical image analysis is to learn the

appearance of the kidney using MGRF from gray-scale images instead of

binary maps [132–139].

• Motion artifacts present one of the major challenges for automated analysis of

DCE-MRI. Both global and local kidney deformations affect accurate analysis

of perfusion data. In literature, a tremendous number of image registration

methods have been proposed to handel both global and local motion in medical

images (please see [140] for more details). A new trend to provide more accurate

registration is the use of higher-order similarity metrics [141–145]. Unlike

other registration methods that are prone to image intensity variations over

the time series, other sophisticated methods [29, 112, 127] explicitly depend
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only on the geometric features to compensate for the kidney motion. These

approaches can be extended to delay with 3D data.

• Fusion of information from different modalities (US, MRI, and CT) is also

another major challenge. This is due to the fact that different modalities give

different clinical information and have their own image resolutions.
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105. Li S, Zöllner FG, Merrem AD, Peng Y, Roervik J, Lundervold A, Schad LR (2012) Wavelet-

based segmentation of renal compartments in DCE-MRI of human kidney: Initial results in

patients and healthy volunteers. Computer Med Imag Graph 36(1):108–118

106. Yang X, Ghafourian P, Sharma P, Salman K, Martin D, Fei B (2012) Nonrigid registration

and classification of the kidneys in 3D dynamic contrast enhanced (DCE) MR images. In:

Proceedings of SPIE medical imaging 2012: image processing (SPIE’12), vol 8314. SPIE,

The International Society for Optical Engineering, Bellingham, pp 1–9

107. Wang H, Dong L, O’Daniel J, Mohan R, Garden AS, Ang KK, Kuban DA, Bonnen M, Chang

JY, Cheung R (2005) Validation of an accelerated demons algorithm for deformable image

registration in radiation therapy. Phys Med Biol 50(12):2887–2905

108. Farag A, El-Baz A, Yuksel S, El-Ghar MA, Eldiasty T (2006) A framework for the detection

of acute rejection with dynamic contrast enhanced magnetic resonance imaging. In:

Proceedings of IEEE international symposium on biomedical imaging: from nano to macro

(ISBI’06), Arlington, 6–9 April 2006, pp 418–421

109. El-Baz A, Farag A, Fahmi R, Yuksel S, El-Ghar MA, Eldiasty T (2006) Image analysis of

renal DCE MRI for the detection of acute renal rejection. In: Proceedings of IAPR interna-

tional conference on pattern recognition (ICPR’06), Hong Kong, 20–24 August 2006, pp

822–825

30 M. Mostapha et al.



110. El-Baz A, Farag A, Fahmi R, Yuksel S, Miller W, El-Ghar MA, El-Diasty T, Ghoneim M

(2006) A new CAD system for the evaluation of kidney diseases using DCE-MRI. In:

Proceedings of international conference on medical image computing and computer-assisted

intervention (MICCAI’06), Copenhagen, 1-6 October 2006, pp 446–453

111. El-Baz A, Farag AA, Yuksel SE, El-Ghar MEA, Eldiasty TA, Ghoneim MA (2007) Applica-

tion of deformable models for the detection of acute renal rejection. In: Farag AA, Suri JS

(eds) Deformable models, vol 1, chap 10, pp 293–333

112. El-Baz A, Gimel’farb G, El-Ghar MA (2007) New motion correction models for automatic

identification of renal transplant rejection. In: Proceedings of international conference on

medical image computing and computer-assisted intervention (MICCAI’07), Brisbane,

October 29–November 2, 2007, pp 235–243

113. Farag AA, El-Baz A, Gimel’farb G (2004) Precise image segmentation by iterative EM-based

approximation of empirical grey level distributions with linear combinations of Gaussians.

In: Computer vision and pattern recognition workshops, (CVPRW’04), Washington, DC,

27 June–2 July. IEEE Computer Society, Piscataway, pp 109–109

114. Farag A, El-Baz A, Gimel’farb G (2004) Density estimation using modified expectation

maximization for a linear combination of Gaussians. In: Proceedings of IEEE international

conference on image processing (ICIP’04), vol 3, Singapore, 24–27 October 2004, pp

1871–1874

115. Gimel’farb G, Farag A, El-Baz A (2004) Expectation-maximization for a linear combination

of Gaussians. In: Proceedings of IEEE international conference on pattern recognition

(ICPR’04), vol 4, Cambridge, 23–26 August 2004, pp 422–425

116. El-Baz A, Farag A, Gimelfarb G (2005) Cerebrovascular segmentation by accurate probabi-

listic modeling of TOF-MRA images. In: Image analysis, Proceedings of the 14 Scandinavian

Conference on Image analysis (SCIA’05), Joensuu, June 19–22. Springer, Heidelberg.

pp 1128–1137

117. El-Baz A, Farag AA, Gimelfarb G, Hushek SG (2005) Automatic cerebrovascular segmenta-

tion by accurate probabilistic modeling of TOF-MRA images. In: Proceedings of interna-

tional conference on medical image computing and computer-assisted intervention

(MICCAI’05), Palm, Spring, October 26–29. Springer, Berlin, pp 34–42

118. El-Baz A, Farag AA, Gimelfarb G, El-Ghar MA, Eldiasty T (2006) A new adaptive probabi-

listic model of blood vessels for segmenting MRA images. In: Proceedings of international

conference on medical image computing and computer-assisted intervention (MICCAI’06),

Copenhagen, 1–6 October 2006, pp 799–806

119. El-Baz A, Farag A, Gimel’farb G, El-Ghar MA, Eldiasty T (2006a) Fast unsupervised

segmentation of 3D magnetic resonance angiography. In: Proceedings of IEEE international

conference on image processing (ICIP’06). IEEE, Piscataway, pp 93–96

120. El-Baz A, Farag A, Gimel’farb G, El-Ghar MA, Eldiasty T (2006b) Probabilistic modeling of

blood vessels for segmenting MRA images. In: Proceedings of IAPR international conference

on pattern recognition (ICPR’06), vol 3. IEEE, Piscataway, pp 917–920

121. El-Baz A, Gimel’farb G, El-Ghar MA (2008a) A novel image analysis approach for accurate

identification of acute renal rejection. In: Proceedings of IEEE international conference on

image processing (ICIP’08), San Diego, 12–15 October 2008, pp 1812–1815

122. El-Baz A, Gimel’farb G, El-Ghar MA (2008b) Image analysis approach for identification of

renal transplant rejection. In: Proceedings of IAPR international conference on pattern

recognition (ICPR’08), Tampa, 8–11 December 2008, pp 1–4

123. Zikic D, Sourbron S, Feng X, Michaely HJ, Khamene A, Navab N (2008) Automatic

alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic

studies. In: Proceedings of SPIE medical imaging 2008: image processing (SPIE’08), vol

6914. SPIE, Bellingham, pp 1–8

124. de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008)

Improvement of MRI-functional measurement with automatic movement correction in native

and transplanted kidneys. J Magnet Resonan Imag 28(4):970–978

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 31



125. Anderlik A, Munthe-Kaas A, Oye O, Eikefjord E, Rorvik J, Ulvang D, Zollner F, Lundervold

A (2009) Quantitative assessment of kidney function using dynamic contrast enhanced

MRI-Steps towards an integrated software prototype. In: Proceedings of the 6th international

symposium on image and signal processing and analysis (ISPA’09), Salzburg, 16–18 Septem-

ber 2009, pp 575–581

126. Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI- measurement of

perfusion and glomerular filtration in the human kidney with a separable compartment

model. IEEE Eng Med Biol Mag 43(1):40–48

127. Khalifa F, El-Ghar MA, Abdollahi B, Frieboes H, El-Diasty T, El-Baz A (2013) A compre-

hensive non-invasive framework for automated evaluation ofacute renal transplant rejection

using DCE-MRI. NMR in Biomedicine 26(11):1460–1470

128. Hodneland E, Kjorstad A, Andersen E, Monssen J, Lundervold A, Rorvik J, Munthe-Kaas A

(2011) In vivo estimation of glomerular filtration in the kidney using DCE-MRI. In:

Proceedings of the 7th international symposium on image and signal processing analysis

(ISPA’11), Dubrovnik, 4–6 September 2011, pp 755–761

129. Positano V, Bernardeschi I, Zampa V, Marinelli M, Landini L, Santarelli MF (2012)

Automatic 2D registration of renal perfusion image sequences by mutual information and

adaptive prediction. Mag Resonan Mater Phys Biol Med pp 1–11

130. El-Baz A, Farag A, Gimelfarb G (2005) MGRF controlled stochastic deformable model. In:

Image analysis, Proceedings of the 14 Scandinavian conference on image analysis

(SCIA’05), Joensuu, June 19–22. Springer, Heidelberg, pp. 1138–1147

131. Khalifa F, Beache GM, Firjani A, Welch KC, Gimel’farb G, El-Baz A (2010) Deformable

model guided by stochastic speed with application in cine images segmentation. In:

Proceedings of IEEE international conference on image processing (ICIP’10), Hong Kong,

26–29 September 2010, pp 1725–128

132. El-Baz A, Gimelfarb G, Falk R, Abo El-Ghar M (2009) Automatic analysis of 3D low dose

CT images for early diagnosis of lung cancer. Pattern Recogn 42(6):1041–1051

133. El-Baz A, Gimelfarb G, Falk R, El-Ghar MA (2011) 3D MGRF-based appearance modeling

for robust segmentation of pulmonary nodules in 3D LDCT chest images. In: El-Baz A, Suri

JS (eds) Lung imaging and computer aided diagnosis, chap. 3. CRC, Boca Raton, pp 51–63

134. El-Baz A, Gimelfarb G, Falk R, El-Ghar MA, Suri JA (2011) Appearance analysis for the

early assessment of detected lung nodules. In: El-Baz A, Suri JS (eds) Lung imaging and

computer aided diagnosis, chap. 17. IEEE, Piscataway, pp 395–404

135. El-Baz A, Khalifa F, Elnakib A, Nitzken M, Soliman A, McClure P, El-Ghar MA, Gimelfarb

G (2012) A novel approach for global lung registration using 3D Markov-Gibbs appearance

model. In: Proceedings of international conference on medical image computing and

computer-assisted intervention (MICCAI’12), Nice, 1–5 October 2012. Springer, Berlin,

pp 114–121

136. El-Baz A, Gimel’farb G, Abou El-Ghar M, Falk R (2012) Appearance-based diagnostic

system for early assessment of malignant lung nodules. In: Proceedings of IEEE international

conference on image processing (ICIP’12), Orlando, September 30–October 3, pp 533–536

137. El-Baz A, Soliman A, McClure P, Gimelfarb G, Abou El-Ghar M, Falk R (2012) Early

assessment of malignant lung nodules based on the spatial analysis of detected lung nodules.

In: Proceedings of IEEE international symposium on biomedical imaging: from nano to

macro (ISBI’12), Barcelona, 2–5 May 2012, pp 1463–1466

138. El-Baz A, Gimel’farb G, Falk R, El-Ghar M (2010) Appearance analysis for diagnosing

malignant lung nodules. In: Proceedings of IEEE international symposium on biomedical

imaging: from nano to macro (ISBI’10), Rotterdam, 14–17 April 2010, pp 193–196

139. Farag AA, El-Baz A, Gimelfarb G, Falk R, El-Ghar MA, Eldiasty T, Elshazly S (2006)

Appearance models for robust segmentation of pulmonary nodules in 3D LDCT chest

images. In: Proceedings of international conference on medical image computing and

computer-assisted intervention (MICCAI’06), Copenhagen, 1–6 October 2006, pp 734–741

32 M. Mostapha et al.



140. Khalifa F, Beache GM, Gimel’farb G, Suri JS, El-Baz A (2011) State-of-the-art medical

image registration methodologies: A survey. In: El-Baz A, Acharya UR, Mirmedhdi M, Suri

JS (eds) Handbook of multi modality state-of-the-art medical image segmentation and

registration methodologies, vol 1, chap 9. Springer, New York, pp 235–280

141. Rueckert D, Clarkson MJ, Hill DLG, Hawkes DJ (2000) Non-rigid registration using higher-

order mutual information. In: Proceedings of SPIE medical imaging 2000: image processing

(SPIE’00), vol 3979, pp 438–447

142. Khalifa F, Beache GM, Elnakib A, Sliman H, Gimel’farb G, Welch KC, El-Baz A (2012) A

new nonrigid registration framework for improved visualization of transmural perfusion

gradients on cardiac first-pass perfusion MRI. In: Proceedings of IEEE international sympo-

sium on biomedical imaging: from nano to macro (ISBI’12), Barcelona, 2–5 May 2012,

pp 828–831

143. Khalifa F, Beache GM, Firjani A, Welch KC, Gimel’farb G, El-Baz A (2012) A new nonrigid

registration approach for motion correction of cardiac first-pass perfusion MRI. In:

Proceedings of IEEE international conference on image processing (ICIP’12), Lake Buena

Vista, 30 September–3 October, 2012, pp 1665–1668

144. Khalifa F, Beache GM, Gimel’farb G, El-Baz A (2012) A novel CAD system for analyzing

cardiac first-pass MRI images. In: Proceedings of IAPR international conference on pattern

recognition (ICPR’12), Tsukuba Science City, 11–15 November 2012, pp 77–80

145. Khalifa F, Beache GM, Elnakib A, Sliman H, Gimel’farb G, Welch KC, El-Baz A (2013) A

new shape-based framework for the left ventricle wall segmentation from cardiac first-pass

perfusion MRI. In: IEEE international symposium on miomedical imaging: from nano to

macro (ISBI’13), San Francisco, 7–11 April 2013. IEEE, Piscataway, pp 41–44

Biography

Mahmoud Mostapha received his B.Sc. degree in Electronics and

Communications Engineering from Mansoura University, Mansoura, Egypt, in

2009. In January 2013 he joined the BioImaging Laboratory at University of

Louisville, Louisville, KY, USA, as a research assistant. He is currently pursuing

his M.S. in the ECE Department at the University of Louisville. His current

research is focused on developing new computer assisted diagnostic (CAD) system

for brain disorders from diffusion tensor MRI images.

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 33



Fahmi Khalifa received his B.Sc. and M.S. degrees in Electrical Engineering from

Mansoura University, Mansoura, Egypt, in 2003 and 2007, respectively. In May

2009 he joined the BioImaging Laboratory at University of Louisville, Louisville,

KY, USA, as a graduate research assistant. His current research includes develop-

ing new computer aided diagnostic (CAD) systems, image modeling, shape analy-

sis, and 2D and 3D image segmentation and registration.

Amir Alansary received his B.Sc. Electrical Engineering from Mansoura Univer-

sity, Egypt, in 2009. Mr. Alansary was a part-time employee at the Middle East

Technology company for 2 years, from February 2009 to February 2011. He joined

the BioImaging Laboratory at University of Louisville, Louisville KY, as a research

assistance in 2012. His general interests are in Digital Image Processing, Medical

Imaging, and Computer Vision. Currently, Mr. Al Ansary is researching in Medical

Image Analysis field and Autism Diagnostics.

Ahmed Soliman received his B.Sc. and M.S. degrees in Computer Engineering

from Mansoura University, Mansoura, Egypt. In December 2011 he joined the

BioImaging Laboratory at University of Louisville, Louisville, KY, USA, as a

research assistant. He has actively been working on Design of Computer Aided-

Diagnostic Systems for Lung Segmentation and Early Detection of Lung Nodules.

34 M. Mostapha et al.



Jasjit Suri is an innovator, scientist, a visionary, an industrialist, and an interna-

tionally known world leader in Biomedical Engineering. Dr. Suri has spent over

20 years in the field of biomedical engineering/devices and its management. He

received his Doctorate from University of Washington, Seattle and Business Man-

agement Sciences from Weatherhead, Case Western Reserve University,

Cleveland, Ohio. Dr. Suri was crowned with President’s Gold medal in 1980 and

the Fellow of American Institute of Medical and Biological Engineering for his

outstanding contributions.

Ayman S. El-Baz, Ph.D., is an Associate Professor in the Department of Bioengi-

neering at the University of Louisville, KY. Dr. El-Baz has 12 years of hands-on

experience in the fields of bioimaging modeling and computer-assisted diagnostic

systems. He has developed new techniques for analyzing 3D medical images. His

work has been reported at several prestigious international conferences (e.g.,

CVPR, ICCV, and MICCAI) and in journals (e.g., IEEE TIP, IEEE TBME, IEEE

TITB, and Brain). His work related to novel image analysis techniques for lung

cancer and autism diagnosis has earned him multiple awards, including: first place

at the annual Research Louisville 2002, 2005, 2006, 2007, 2008, 2010, 2011, and

2012 meetings, and the “Best Paper Award in Medical Image Processing” from the

prestigious ICGST International Conference on Graphics, Vision and Image

Processing (GVIP-2005). Dr. El-Baz has authored or coauthored more than

300 technical articles.

Computer-Aided Diagnosis Systems for Acute Renal Transplant Rejection. . . 35



Kidney Detection and Segmentation

in Contrast-Enhanced Ultrasound 3D Images

Raphael Prevost, Benoit Mory, Remi Cuingnet, Jean-Michel Correas,

Laurent D. Cohen, and Roberto Ardon

Abstract Contrast-enhanced ultrasound (CEUS) imaging has lately benefited of an

increasing interest for diagnosis and intervention planning, as it allows to visualize

blood flow in real-time harmlessly for the patient. It complements thus the anatom-

ical information provided by conventional ultrasound (US). This chapter is dedi-

cated to kidney segmentation methods in 3D CEUS images. First we present a

generic and fast two-step approach to locate (via a robust ellipsoid estimation

algorithm) and segment (using a template deformation framework) the kidney

automatically. Then we show how user interactions can be integrated within the

algorithm to guide or correct the segmentation in real-time. Finally, we develop a

co-segmentation framework that generalizes the aforementioned method and

allows the simultaneous use of multiple images (here the CEUS and the US images)

to improve the segmentation result. The different approaches are evaluated on a

clinical database of 64 volumes.

Introduction

Ultrasound imaging (US) is a widely used modality due to its versatility, low cost,

and real-time capabilities. Such acquisitions have been for a long time limited to 2D

images but the recent development of 3D US allowed to consider new problems
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such as volumetric assessments of organs or image registration. In addition to

conventional US, three-dimensional real-time visualization of vascularization can

be achieved with contrast-enhanced ultrasound (CEUS) imaging. This rather new

modality provides very useful information for lesions diagnosis or large vessels

monitoring [1]. Gas-filled microbubbles, acting as amplifiers of the blood back-

scattering signal, are used as a contrast agent. Because the bubbles are naturally

eliminated by metabolism processes, this modality is considered as completely safe

for the patients even with renal or liver failure (unlike contrast-enhanced CT, for

example).

However the usually poor quality of CEUS images makes any computer-based

analysis challenging: in addition to having powerful speckle noise, the image is

very grainy and almost binary as a result of ultrasound interactions with individual

bubbles. Unlike in conventional US [2], very few segmentation methods of 3D

CEUS images have been reported. Among them, Gasnier et al. [3] introduced an

interactive approach to segment and analyze tumors in this modality. However,

their framework was specific to lesion segmentation, just as the automatic methods

proposed in [4, 5]. In [6], Ma et al. developed an automatic algorithm to segment the

heart left ventricle. This method, although applicable to other organs, does not

provide any natural way to refine or correct the result interactively. Besides, it has

been designed for images acquired with a particular transducer, producing sparse

rotated slices instead of a whole 3D volume.

In this chapter, we address the problem of kidney segmentation in 3D CEUS

images. This challenging issue is of great importance to assess quantitatively the

volume of renal tissues. First, we present a generic and fast approach to automat-

ically segment a kidney in CEUS volumes. Our method consists in detecting it in

the image as an ellipsoid, and then deforming this ellipsoid to match precisely its

boundary. Second, we extend this framework in order to take into account other

kinds of information :

• user interactions: Because of the poor image quality or pathologies, image

information may be sometimes unreliable and even misleading. In such cases,

the clinician user should be able to guide or correct the segmentation easily and

with a real-time feedback.

• simultaneous use of another image: Because of shadowing effects, pathologies,

and limited field of view, parts of the kidney may be hardly visible in the image.

In such cases even expert users may have difficulty delineating the true boundary

of the organ by solely relying on one CEUS image. In clinical routine every

CEUS acquisition is preceded by a conventional US acquisition to locate the

kidney. Hence, the latter would be useful to complement the CEUS image and

thus cope with missing and corrupted information.

Prior work on kidney segmentation in CEUS is limited to two of our conference

papers [7, 8], of which this chapter is an extended version.

The remainder of the chapter is organized as follows. First of all, section “Mate-

rial” is dedicated to the description of the material used throughout the chapter in

validation experiments. In section “Kidney Detection via Robust Ellipsoid
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Estimation”, we introduce a fast and robust method to estimate roughly the center,

orientation, and sizes of the kidney. This is a done via an original variational

framework for ellipsoid detection. The outcome of this step is then used as the

prior model of a segmentation algorithm, based on template deformation, described

in section “Kidney Segmentation via Implicit Template Deformation”. Because of

the inherent ambiguities in CEUS images, the obtained segmentation may be

improved by using additional information. In section “Segmentation with User

Interactions”, we show how user interactions can be used inherently in our frame-

work to correct the result in real-time. Then we extend our approach to multiple

images, namely the CEUS and the US volumes (section “Joint Co-segmentation and

Registration”) which are not aligned. Thus a generic framework for joint

co-segmentation and registration is introduced and applied to both the kidney

detection and segmentation. We show that by taking additional information into

account, the automatic kidney segmentation is more robust. Finally, we conclude the

chapter by discussing potential improvements.

Material

This section describes the material used throughout the chapter. Our database is

composed of 64 pairs of CEUS and US volumes acquired from 35 different patients,

via an iU22 ultrasound system (Philips, The Netherlands). In order to have a

clinically representative database, both healthy and diseased kidneys were consid-

ered. Images were acquired using different probes, namely V6-2 and X6-1 (Philips,

The Netherlands) US probes, with various fields of view. The volumes size was

Fig. 1 Slices of conventional and contrast-enhanced ultrasound 3D images of the kidney for two

different patients (left and right)
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512 � 510 � 256 voxels with different spatial resolutions (0.25 � 0.25 � 0.55 mm

in average). The acquisition protocol was as follows: first, the clinician scouted for

the patient’s kidney using conventional US and acquired a US volume. Then, 2.4

mL of Sonovue (Bracco, Italy) contrast agent was injected to the patient and a

CEUS acquisition was performed after a few seconds. Indeed, dynamic CEUS

images of a kidney show a cortical enhancement shortly followed by a medullary

enhancement. Better visualization of kidney tissue is then available when the

contrast agent has diffused as it is completely hyperechoic whereas its fatty

surrounding produces no signal. Figure 1 shows a comparison of US and CEUS

images for two patients of our database. Note that the US and CEUS images are not

aligned as the clinician may have slightly moved the probe between the two

acquisitions.

For each image, an expert was asked to segment the kidney with a semiautomatic

tool. This segmentation was considered as the ground truth. The different

approaches described in the chapter will be evaluated by computing the Dice

coefficient between the segmentation result S and the ground truth G T, defined as

DiceðS;GTÞ ¼ 2
VolðS \ GTÞ

VolðSÞ þ VolðGTÞ ; (1)

where Vol(X) denotes the volume of a region X. Thus the higher the Dice coeffi-

cient, the better the segmentation is. In particular, this score is equal to 1 for a

perfect segmentation and 0 for a completely non-overlapping segmentation.

All proposed methods were implemented in a C++ prototype and the computa-

tional times will be given for a standard computer (Intel Core i5 2.67 Ghz, 4GB

RAM).

Kidney Detection via Robust Ellipsoid Estimation

Since kidney shape can be roughly approximated by an ellipsoid, the kidney

automatic detection problem in CEUS images can be initially reduced to finding

the smallest ellipsoid encompassing most of the hyperechoic voxels. A large

number of methods (e.g., Hough transforms [9, 10]) have already been proposed

to detect ellipses in images [11]. However their extension to 3D, though possible, is

usually computationally expensive mainly because of the number of parameters to

estimate (9 for a 3D ellipsoid). Furthermore, they do not explicitly use the fact that

only one ellipsoid is present in the image. On the other hand, statistical approaches

like robust Minimum Volume Ellipsoid (MVE) estimators [12] are better suited but

require prior knowledge on the proportion of outliers (here the noise, artifacts, or

neighboring structures), which may vary from one image to another and is thus not

available. We therefore propose an original variational framework, which is robust

and fast, to estimate the best ellipsoid in an image I : Ω � ℝ3 ! ℝþ.
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A Variational Framework for Robust Ellipsoid Estimation

In the considered framework, an ellipsoid is implicitly represented using an implicit

function ϕ : Ω! ℝ that is positive inside the ellipsoid and negative elsewhere. ϕ
can be parametrized by the center of the ellipsoid c ∈ ℝ3 and its sizes and

orientations encoded by a 3 � 3 positive-definite matrix M. We therefore define

the implicit equation of an ellipsoid as

ϕc;MðxÞ ¼ 1� ðx� cÞTMðx� cÞ ¼ 0 : (2)

The detection method should be robust to outliers, i.e. bright voxels coming from

noise, artifacts, or other neighboring structures. Excluding those outliers is done by

estimating a weighting function w (defined over the image domainΩ into [0,1]) that

provides a confidence score for any point x to be an inlier. The ellipsoid estimation

is then formulated as an energy minimization problem with respect to c, M, and w:

min
c;M;w

(
Edetðc;M;wÞ ¼ �

ð
Ω
ϕc;MðxÞ IðxÞ wðxÞ dx

þ μ: log
VolðMÞ
jΩj

� �
:

ð
Ω
IðxÞ wðxÞ dx

� �)

with ϕc;MðxÞ ¼ 1� x� cð ÞTM x� cð Þ
and VolðMÞ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM�1

p
the ellipsoid volume:

(3)

The ellipsoid detection energy Edet is composed of two terms:

• a data-fidelity term: The first term is an integral over the whole image domain Ω
of the product ϕc,M by w I. Note that w I is highly positive at voxels that have a

high intensity but are not outliers. To minimize the energy, such voxels must

therefore be included inside the ellipsoid, i.e. where ϕ is positive.

• a regularization term: The second term penalizes the volume of the ellipsoid Vol

(M) with respect to the domain volume jΩj. The logarithm provides a statistical

interpretation of the problem and eases the minimization of the energy, as will be

seen in the next subsection. It is normalized by
R
w I and weighted by a trade-off

parameter μ > 0.

Numerical Optimization

This ellipsoid estimation process can be viewed as fitting a Gaussian distribution to

the bright pixels of the image by minimizing its negative log-likelihood. Therefore

Edet has a statistical meaning and when w is fixed, the minimizers (c∗,M∗) of Edet
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ð�; �;wÞ have a closed form. Indeed, c∗ is the barycenter of all voxels x weighted by

I(x)w(x), while M∗ is the inverse of the covariance matrix1 of the same data.

Besides, Edet is linear with respect to w which is by definition restricted to [0,1].

Therefore, at every voxel x the minimizer w∗(x) is equal to 0 or 1, depending only

on the sign ofϕc;M � μ log VolðMÞ
jΩj

� �
. w∗ is then the indicator of the current ellipsoid

estimation which has been dilated proportionately to μ. Its purpose is to remove the

contribution of the points which are far away from the current ellipsoid and may

hinder its refinement.

The weighting function w is initialized to 1 everywhere. Minimization of Edet is

then performed with an alternate iterative scheme that successively updates the

variables c, M, and w, as summarized in Algorithm 1. As the energy Edet decreases

at each step, the algorithm is guaranteed to converge. In practice, few iterations are

required for convergence and total computational time is less than a second for a 3D

image.

The choice of μ is paramount as it controls the number of points that are taken

into account for the ellipsoid matrix estimation. It should be set to values close to 2
5

in 3D and 1
2
in 2D (the proof is deferred in the appendix).

Figure 2 shows such a process for a synthetic 2D image. The first ellipse estimate

is too large as all voxels are considered but far points are progressively eliminated

via the weighting function w until the algorithm converges towards the good

solution. We also present results on real CEUS data in Fig. 3. The estimated

ellipsoids are not perfectly accurate but robust and close enough to be used as an

initialization for a segmentation algorithm.

1Up to a constant multiplier.
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Kidney Segmentation via Implicit Template Deformation

The previously detected ellipsoid will now be deformed to segment the kidney more

precisely. We follow the template deformation framework described in [13, 14] and

extended in [15], as it is a very efficient model-based algorithm and it has already

been applied successfully to kidney segmentation in CT images [16].

Implicit Template Deformation Framework

Implicit template deformation is a framework where an implicit shape defined by a

function ϕ0 : Ω! ℝ , called the template, is deformed so that its zero level set

segments a given image I : Ω! ℝþ . The segmenting implicit shape is the zero

level set of a function ϕ : Ω! ℝ, therefore defined with respect to this template

Fig. 2 (a) Original 2D synthetic image, corrupted by salt-and-pepper noise. (b) Evolution of the

ellipse along the iterations (orange) and final result (green). (c) Ellipse contour and center

superimposed on the product w I at convergence

Fig. 3 Results of the ellipsoid detection (red) compared to the ground truth (green), on slices of

the volumes shown in Fig. 1
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and a transformation of the space ψ :Ω !Ω that becomes the unknown of the

problem : ϕ¼ ϕ0 ∘ ψ. In our application, the template is the implicit function of the

previously estimated ellipsoid ϕ0 ¼ ϕc
∗,M∗ and ψ is sought such that the image

gradient flux across the surface of the deformed ellipsoid (ϕ0 ∘ ψ)�1(0) is maxi-

mum. The segmentation energy is then

EsegðψÞ ¼
ð
fϕ0�ψ¼0g

� ~rIðxÞ ; ~nðxÞ
D E

dSðxÞ þ λRðψÞ; (4)

where~nðxÞ denotes the vector normal to the surface of the segmentation at point x.

RðψÞ is a regularization term which prevents large deviations from the original

ellipsoid. Its choice will be detailed in section “Transformation Model” hereafter.

λ is a positive scalar parameter that controls the strength of this shape constraint.

Using the divergence theorem, the first data-fidelity term can be rewritten asð
fϕ0�ψ¼0g

� ~rIðxÞ; ~nðxÞ
D E

dSðxÞ ¼ �
ð
fϕ0�ψ�0g

divðrIðxÞÞ dx ¼ �
ð
fϕ0�ψ�0g

ΔIðxÞ dx (5)

where Δ denotes the Laplacian operator. Introducing H the Heaviside function (H
(a) ¼ 1 if a is positive, 0 otherwise) yields a more convenient formulation of the

segmentation energy :

EsegðψÞ ¼ �
ð
Ω
Hðϕ0 � ψðxÞÞ ΔIðxÞ dxþ λRðψÞ; (6)

Transformation Model

The choice of the space of possible solutions ψ to Problem (6) is, in our case,

intrinsically linked to the notion of shape. A shape can be considered as a set of

objects sharing the same visual aspect. It should be invariant to geometric trans-

forms such as translation, rotation, scaling, or shearing. We will refer to such a

global transformation as the pose. To set up a clear distinction between the pose and
the subsequent shape deformation, similarly to [17], we design our template

transformation model ψ as a functional composition of a global transformation G
and a nonrigid local transformation L (see Fig. 4):

ψ ¼ L � G (7)

Pose. G : Ω! Ω is chosen as a parametric transform that coarsely aligns the

template with the target surface in the image. It will basically correct or adjust

the global position and scaling of the ellipsoid and can be chosen as a similarity.G is
thus represented by a matrix in homogeneous coordinates defined by 7 parameters

p ¼ fpigi¼1���7 and noted Gp.
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Deformation. L : Ω! Ω is expressed using a displacement field u in the template

referentialL ¼ Id þ u. Similarly to problems in image registration and optical flow

algorithms [18], u should be smoothly varying in space. While adding penalizations

on differential terms of u toRðψÞ is a valid approach, efficient implementations are

difficult to derive. Taking advantage of efficient linear filtering, smoothness of the

displacement u is set as a built-in property defining it as a filtered version of an

integrable unknown displacement field v

uðxÞ ¼ Kσ�v½ 	ðxÞ ¼
ð
Ω
Kσðx� yÞ vðyÞ dy (8)

where Kσ is a Gaussian kernel of scale σ. The overall transformation that can

therefore be parametrized by p and v will be noted ψp,v.

The proposed decomposition allows to define the shape prior term independently

from the pose:RðψÞ ¼ RðLÞ.R thus quantifies how much the segmenting implicit

function ϕ deviates from the prior shape ϕ0. Using the L2 norm we choose to

constraint L towards the identity :

RðLÞ ¼ 1

2
kL � Idk22 ¼

1

2

ð
Ω
kuðxÞk2 dx (9)

The optimization problem to solve finally reads:

min
p;v

Esegðψp;vÞ ¼ �
ð
Ω
Hðϕ0 � ψp;vðxÞÞ ΔIðxÞ dxþ

λ

2

ð
Ω
kKσ�vk2

� �

with ψp;v ¼ ðId þ uÞ � Gp and u ¼ Kσ�v
(10)

Fig. 4 Decomposition of the transformation ψ. The implicit template ϕ0 undergoes a global

transformation G and a local deformation L
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Numerical Implementation

Problem (10) is minimized via a standard gradient descent simultaneously on the

parameters of the pose Gp and the deformation field v. The descent evolution

equations are obtained by applying calculus of variations to Eseg . We omit the

tedious details but the final equations, after a variable substitution, read

@p

@t
¼ �

ð
Ω
δðϕ0 � LÞ : rϕ0 � L; ðId þ JuÞ @G

@p
G�1

	 

: ΔI � G�1

@v

@t
¼ �

"
δðϕ0 � LÞ : rϕ0 � L : ΔI � G�1 þ λv

#
�Kσ

8>>>><
>>>>:

(11)

where δ denotes the Dirac distribution and Ju is the Jacobian matrix of the

displacement field u.

A quick analysis of Eq. (11) reveals several key aspects for an efficient imple-

mentation. Interpolating ϕ0 � L and rϕ0 � L over the whole domain Ω would be

extremely time-consuming. Nevertheless, since it is multiplied by δðϕ0 � LÞ, the
warped gradient field rϕ0 � L is only needed on the set ϕ0 � L ¼ 0f g (Fig. 5a)

which highly reduces the computational burden. Moreover, precise knowledge of

the warped template ϕ0 � L is only necessary near its zero level set. We use a

coarse-to-fine approach using octrees. At each level a decision is made to further

refine the cell depending on the distance measure (Fig. 5b) drastically dropping

complexity. Finally, stemming from the displacement model, extrapolating image

and pointwise forces to the whole space boils down to a convolution with Kσ
(Fig. 5c). In practice, our current 3D implementation supports up to 100 time

steps per second for a discretization of the implicit function on a 64 � 64 �
64 lattice.

Fig. 5 Fast template deformation with coarse-to-fine distance warp and convolutions. (a) Surface/

pointwise forces. (b) Coarse-to-fine ϕ0 � L. (c) Convolved deformation
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Results for Automatic Segmentation in CEUS Images

This validation has been performed on the CEUS images of the dataset presented in

section “Material”. The completely automatic pipeline had a computational time of

around 5 s.

Quantitative results are reported in Fig. 6. The overall median Dice coefficient is

0.69 for the detection and 0.76 for the segmentation and 25 % of the database have

a very satisfying segmentation (Dice coefficient higher than 0.85), given the very

poor image quality and the presence of pathologies.

Figure 7 shows the obtained result for the two cases introduced in Fig. 1. The

segmentations are very similar to the ground truth and can be considered as satisfy-

ing. Some cases are, however, more difficult (e.g., Fig. 10 in the next section) and

will require additional information.

Segmentation with User Interactions

The previously described approach is fast and automatic, but fails in some difficult

cases. Indeed ultrasound shadows or kidney pathologies make the image informa-

tion unreliable and thus hinder the segmentation algorithm. It is therefore important

to provide the clinician a way to guide or correct the segmentation easily and with a

real-time feedback. As proposed in [15], this can be done easily within the implicit

template deformation framework that was presented in section “Kidney Segmen-

tation via Implicit Template Deformation”.
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Fig. 6 Kidney detection (red) and segmentation (blue) results in terms of Dice coefficients shown

as boxplots (left) and histograms (right). Boxplots show, respectively, the first decile, the first

quartile, the median, the third quartile, and the ninth decile. Extreme points are shown separately
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User Interactions as Constraints

In this section, we show how the user can guide the segmentation by indicating

points that should be inside or outside the segmentation (see Fig. 8).

Consider that the user provides N points {xk}k �ΩN in the image domain

labeling each one as inside or outside of the surface to extract (which can be

done via simple interactions such as a left click on an inside point, and a right

click on an outside point). The implicit formulation allows to express this

Fig. 7 Result of the automatic segmentation (blue) compared to the ground truth (green) on a

particular slice (top) and in 3D (bottom)

Fig. 8 User interactions as inside/outside points. (a) Template deformed without constraints. (b)

User indicates points that should be inside (blue) and outside (red) the segmentation. (c) New

segmentation that satisfies these constraints
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information merely as inequality constraints on the deformed implicit function, at

points {xk}k :

8k 2 ½j1;Nj	; γk : ϕ0 � ψðxkÞ � 0 (12)

where γk¼ 1 (resp.� 1) for inside (resp. outside) points. Note that it is also possible

to specify a point that should be exactly on the segmentation surface by labeling it

as both inside and outside: the two inequality constraints are equivalent to an

equality constraint. Then, putting together the initial formulation in Eq. (6) and

the constraints of Eq. (12) yields a general formulation of implicit template defor-

mation with user interactions, as the following minimization problem:

min
ψ

EsegðψÞ ¼ �
ð
Ω
Hðϕ0 � ψðxÞÞ ΔI xð Þ dxþ λRðψÞ

� �
subject to 8k 2 ½1;N	; γk : ϕ0 � ψðxkÞ � 0

(13)

In the next subsection we propose a method to solve this problem efficiently.

For the sake of genericity, no assumption is made on the representation of the

deformation ψ and the model ψ ¼ L � Gwill be just a particular implementation of

the approach described hereafter.

Optimization Scheme

Since EsegðψÞ is a non-convex functional and has to be minimized under a set of

nonlinear constraints, no specifically tailored algorithms are available. For this

matter, we follow a general augmented Lagrangian methodology [19] and define

an equivalent unconstrained problem that can be locally minimized by gradient

descent. The constrained problem (13) can equivalently be written as an

unconstrained minimization problem of the form

min
ψ

~EsegðψÞ ¼ max
α�0

EsegðψÞ �
XN
k¼1

αkckðψÞ
( )( )

with ckðψÞ ¼ γk : ϕ0 � ψðxkÞ
(14)

where αk is the Lagrange multiplier associated with the kth constraint. Equation (14)
has the same set of solutions as the original problem in Eq. (13): if ψ satisfies all

constraints ck, then ~EsegðψÞ ¼ EsegðψÞ; otherwise, ~EsegðψÞ is infinite. Since ~Eseg

jumps from finite to infinite values at the boundary of the feasible set, it is difficult

to minimize it as such. A more practical approach is to introduce a smooth
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approximation ~Eseg
ν

that depends on a quadratic penalty parameter ν. Parameter ν
will be used to constrain the maximizers (αk)k to finite values. These multipliers are

estimated iteratively and we introduce (αk
j)k the multipliers estimates at the jth

iteration, in order to define the energy approximation

~Eν
segðψ ; α jÞ ¼ max

α�0
EsegðψÞ �

XN
k¼1

αkckðψÞ � 1

2ν

XN
k¼1

αk � αjk

� �2

( )
(15)

The maximizing Lagrange multipliers associated with each constraint ck(ψ) have a
closed-form solution :

α jþ1
k ¼ 0 if α j

k � νckðψÞ 
 0

α j
k � νckðψÞ otherwise.

(
(16)

Substituting (16) into (15) yields the following expression of the smooth approx-

imation ~Eseg
ν
:

~Eν
segðψ ; α jÞ ¼ EsegðψÞ þ

XN
k¼1

Fν ckðψÞ; α j
k

� �

with Fνða; bÞ ¼
� abþ ν

2
a2if νa 
 b

� 1

2ν
b2otherwise.

8><
>:

(17)

Finally, the alternate scheme described in Algorithm 2, in which the penalty

parameter ν is gradually increased, will provide a local minimizer of Eseg that

eventually satisfies the user constraints. Within this process, Step (1) is straight-

forward and Step (2) is very similar to the gradient descent proposed in section

“Numerical Implementation”:

@p

@t
 @p

@t
�
XK
k¼1

γkFðαkÞ rϕ0 � L � GðxkÞ; ðId þ JuÞ @G
@p
ðxkÞ

	 


@v

@t
 @v

@t
�
"XK

k¼1
γkδGðxkÞ FνðαkÞrϕ0 � L

#
�Kσ

8>>>>>>><
>>>>>>>:

(18)

Note that the additional terms in Eq. (18) are just pointwise contributions that do

not influence the overall computational time.
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Influence of User Interactions on Kidney Segmentation
in CEUS

Validation of the user interactions has been performed on a subset of 21 CEUS

volumes from 21 different patients of our database. For each case, the automatic

segmentation has been run and its result was refined with user interactions from an

expert. Figure 9 reports the Dice coefficients obtained as a function of the number

of clicks. The score gradually increases as the user interacts with the algorithm but

rapidly converges: most of the time, less than 3 clicks are needed for a fairly precise

result (Dice � 0.9).2 The results also show that even when the initialization

produces a low score, very few interactions can improve a lot the segmentation.

The influence of user interactions is illustrated in Fig. 10, where we show results on

a difficult case. The patient has a lot of renal cysts that are anechogenic and hinders

the automatic segmentations. With 3 clicks, the segmentation is much closer to the

ground truth.

Nevertheless, in some applications user interactions are not possible and the

segmentation has to be automatic. In the next section, we propose to improve the

kidney segmentation by using simultaneously and automatically the conventional

US image

2 The ground truth may not exactly be reached because of the high intra-operator variability.
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Fig. 9 Boxplots of the Dice coefficient between the ground truth and the segmentation at different

steps of the proposed algorithm. Boxplots show, respectively, the first decile, the first quartile, the

median, the third quartile, and the ninth decile. Extreme points are shown separately

Fig. 10 Example of a segmentation with user interactions. (a) Slice of the original CEUS volume.

(b) Comparison of the ground truth (green) and automatic segmentation (red). (c) Corrected

segmentation (blue) with 2 inside points (blue dots) and one outside point (red dot). (d) 3D

visualization of the ground truth (green), the automatic (red), and corrected (blue) segmentation,

with constraint points
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Joint Co-segmentation and Registration

Co-segmentation often denotes the task of finding an object in each image that shares

the same appearance but not necessarily the same shape [20]. Here we look for the

exactly same organ in two images but with a different appearance. As simultaneous

acquisition of US and CEUS is not possible on current 3D imaging systems, the two

images are in arbitrary referentials and need to be aligned. However, standard iconic

registration methods are not adapted since visible structures, apart from the kidney

itself, are completely different in US and CEUS. Co-segmentation shall therefore

help registration, just as registration helps co-segmentation. This calls for a method

that jointly performs these two tasks (see Fig. 11).

Although segmentation and registration are often seen as two separate problems,

several approaches have already been proposed to perform them simultaneously.

Most of them rely on an iconic registration guiding the segmentation (e.g., [21–23]).

Yet they assume that the segmentation is known in one of the images, which is not

the case in our application of co-segmentation. Moreover, as stated before, CEUS/

US intensity-based registration is bound to fail since visible structures do not

correspond to each other. Instead of registering the images themselves, Wyatt

et al. [24] developed a MAP formulation to perform registration on label maps

resulting from a segmentation step. However no shape model is enforced and noise

can degrade the results. In [25], Yezzi et al. introduced a variational framework that

consists in a feature-based registration in which the features are actually the

segmenting active contours.

In this section, we aim at extending both the previously described kidney

detection and segmentation in a 3D CEUS image to a pair of 3D CEUS and US

images. To that end, we develop a generic joint co-segmentation and registration

framework inspired by [25]. This results in a fully automated pipeline to obtain both

an improved kidney segmentation in CEUS and US images and a registration of

them. But first of all, in order to use conventional US, we need to learn how the

kidney looks like in such images.

Fig. 11 Joint co-segmentation and registration. Given two different non-aligned images of the

same object, the proposed method aims at segmenting this object in both images as well as

estimating a rigid transformation between them
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Learning Appearance in Conventional Ultrasound

In CEUS images, bright areas indicate the presence of contrast agent which is

mainly localized in the kidney. This is why we directly used the image intensity as a

voxel probabilities to be inside the kidney. However in conventional US images,

this does not hold and we need to transform the image into a more elaborate kidney

probability map.

The kidney appearance has a much higher variability in US images, although

their structure is consistent: kidneys are always composed of a bright sinus

surrounded by a darker parenchyma (see Fig. 12). As intensity itself is not reliable

enough, we chose to combine multiple image features using decision forests [26] to

obtain a class posterior map pUS.
Recent work [27–31] demonstrated that adding contextual information allows to

improve spatial consistency and thus classification performance. Here we propose

to exploit the kidney structure in a simple yet efficient way. Similarly to the auto-

context framework introduced by Tu et al. [32], contextual information is included

by using two classifiers in cascade. A first classification (kidney vs background) is

performed in each voxel using a decision forest. Then we use these class posterior

probabilities as additional input of a second random forest that will give the final

kidney probability pUS. In the remainder of the chapter, we will work on this map

instead of the original US image.

The features used for the first decision forest were the intensity of the image and

its Laplacian at the considered voxel as well as at its neighbors’ within a 7 � 7 � 7

local patch, at three different scales (σ ¼ 2,4,6 mm). Intensities were normalized in

each patch. For the second forest, we added the estimated class posterior as addi-

tional channels. Each forest was composed of 10 trees with maximum depth 15.

To validate this probability estimation, the patient database was split into two

groups. Results on the whole dataset were then obtained using a two-fold cross-

validation. Figure 13 shows the ROC and Precision-Recall curves computed (1) by

Fig. 12 Kidney appearance in US images (the kidney boundary is denoted in red). (Left) Original
images showing the high variability of the database. (Middle) Kidney probability given by the first
classifier. (Right) Final kidney probability pUS
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the first decision forest and (2) using the auto-context approach with another forest

in cascade. The latter provides better kidney probabilities with respect to all

reported statistics. Indeed, taking into account structural information helps, for

example, in distinguishing the kidney sinus from the background or the parenchyma

from shadows and allows a more spatially coherent classification (see Fig. 12).

Generic Framework for Co-segmentation and Registration

In sections “Kidney Detection via Robust Ellipsoid Estimation” and “Kidney

Segmentation via Implicit Template Deformation”, we presented two variational

methods to, respectively, detect and segment the kidney. They both consist in

seeking ϕ as the minimizer of a functional of the following generic form

EIðϕÞ ¼
ð
Ω
f ðϕðxÞÞ rIðxÞ dxþRðϕÞ (19)

where f is a real-valued function and rI(x) denotes a pointwise score on whether

x looks like an interior or exterior voxel in the image I. This is a standard setting in
which the optimal implicit function ϕ must achieve a trade-off between an image-

based term and a regularization term R.3
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Fig. 13 Comparison of classification results for the single decision forest and the auto-context

approach. (Left) ROC curve. (Right) Precision-Recall curve

3 For example, the seminal method of Chan and Vese [33] falls in this framework with f ¼ H the

Heaviside function and rIðxÞ ¼ ðIðxÞ � cintÞ2 � ðIðxÞ � cextÞ2 with cint and cext denoting mean

intensities inside and outside the target object.
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We are interested in the case where a pair of images I1 : Ω1 ! ℝ and I2 : Ω2

! ℝ of the same object are available. If those images were perfectly aligned,

the energy in Eq. (19) can be straightforwardly generalized to perform

co-segmentation :

EI1;I2ðϕÞ ¼
ð
Ω1

f ðϕðxÞÞ ðrI1ðxÞ þ rI2ðxÞÞ dxþRðϕÞ : (20)

Unfortunately, such an assumption rarely holds in medical applications unless

the two images are acquired simultaneously. A more realistic hypothesis is to

assume that the target object, segmented by ϕ, is not deformed between the two

acquisitions, but only undergoes an unknown rigid transformation Gr . The

co-segmentation energy thus reads

EI1;I2ðϕ;GrÞ ¼
ð
Ω1

f ðϕðxÞÞ rI1ðxÞ dxþ
ð
Ω2

f ðϕ � GrðxÞÞ rI2ðxÞ dxþRðϕÞ : (21)

Note that, after a variable substitution, it can be equivalently written

EI1;I2ðϕ;GrÞ ¼
ð
Ω1

f ðϕðxÞÞ ðrI1ðxÞ þ rI2 � G�1r ðxÞÞ dxþRðϕÞ : (22)

Minimizing EI1;I2 with respect to ϕ and Gr simultaneously can be therefore

interpreted as performing jointly segmentation (via ϕ) and rigid registration ðvia
GrÞ. This generalizes a more common co-segmentation approach (e.g., [34]) where

the images are first aligned in a preprocessing step.

In the following, we apply this framework to the robust ellipsoid detection

(section “Kidney Detection via Robust Ellipsoid Estimation”) and implicit template

deformation (section “Kidney Segmentation via Implicit Template Deformation”)

to build a completely automated workflow for kidney segmentation in CEUS and

US images. Note that the kidney, which is surrounded by a tough fibrous renal

capsule, is a rigid organ. The hypothesis of non-deformation is therefore justified.

Application to Kidney Detection

The robust ellipsoid detection setting of Eq. (3) falls into the framework described

in Eq. (19) with :

• f ¼ I d and rI ¼ �wI;
• Rðϕc;MÞ ¼ RðMÞ ¼ μ:

Ð
Ω Iw: log VolðMÞ

jΩj
� �

.
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Expanding this algorithm to another image I2 requires the introduction of

another weighting function w2. Following Eq. (21), we can now define the

co-detection energy as

Eco�detðc;M;w1;w2;GrÞ ¼ �
ð
Ω
ϕc;MðxÞ w1ðxÞ I1ðxÞ dx

�
ð
Ω
ϕc;M � GrðxÞ w2ðxÞ I2ðxÞ dx

þ μ

ð
Ω
w1I1 þ w2I2

� �
log

VolðMÞ
jΩj

� �

with VolðMÞ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detM�1

p
the ellipsoid volume:

(23)

To facilitate the resolution of such a problem, Gr—as a rigid transformation—

can be decomposed into a rotation and a translation. We can therefore equivalently

write the energy as a function of the ellipsoid center c2 in the second image and the

rotation matrix R :

Eco�detðci;wi;R;MÞ ¼ �
ð
Ω
ϕc1;MðxÞ w1ðxÞ I1ðxÞ dx

�
ð
Ω
ϕc2;R

TMRðxÞ w2ðxÞ I2ðxÞ dx

þ μ

ð
Ω
w1I1 þ w2I2

� �
log

VolðMÞ
jΩj

� � (24)

Minimization of such functional is done in an alternate three-step process:

1. The statistical interpretation still holds for the ellipsoid centers and matrix:

minimizers c1
∗ and c2

∗ are weighted centroids while minimizer M∗ is related

to the weighted covariance matrix of pixels coming from both images.

2. The unknown matrix R accounts for the possible rotation between the two

images and can be parametrized by a vector of angles Θ 2 ℝ3 . A gradient

descent is performed at each iteration to minimize the energy with respect to Θ.
3. The weights w1 and w2 are finally updated as indicator functions (up to a slight

dilation) of the current ellipsoid estimates.

The complete minimization strategy is summarized in Algorithm 2. This algo-

rithm is computationally efficient: closed-form solutions are available (except forℝ)

and the process, though iterative, usually converges in very few iterations.
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Figure 14 shows an example of ellipse co-detection in synthetic images, where

the probability of belonging to the target object is the image intensity. Despite the

noise, the simulated shadow, and the reduced field-of-view effect, the co-detection

algorithm provides a good estimate on the ellipse position, size, and orientation in

both images.

Application to Kidney Segmentation

Implicit template deformation, as previously described in section “Kidney Seg-

mentation via Implicit Template Deformation”, is part of the framework defined in

Eq. (19) with :

• f ¼ H and rI ¼ �ΔI;
• Rðϕ0 � ψÞ ¼ RðLÞ ¼ λ

2
kL � Idk22.

We can therefore extend it to co-segmentation using Eq. (21) by considering the

following functional

Eco�segðϕ0 � L � G;GrÞ ¼ Eco�segðL;G;GrÞ
¼ �

ð
Ω
Hðϕ0 � L � GÞ ΔI1ðxÞ dx

�
ð
Ω
Hðϕ0 � L � G � GrÞ ΔI2ðxÞ dx

þ λ

2
kL � Idk22:

(25)
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The energy Eco�seg is then minimized with respect to the parameters of G, Gr and
each component of the vector field u, through a gradient descent similar to sec-

tion “Numerical Implementation”.

Results for Kidney Co-segmentation in CEUS and US

The average overall computational time for kidney probability estimation in US,

ellipsoid co-detection, and kidney co-segmentation was around 20 s with our

implementation.

Validation was performed by comparing the co-segmentation approach to a

segmentation from a single image (in both CEUS an US cases). Dice coefficients

and relative error on the measured kidney volume are reported in Fig. 15. Using

simultaneously the complementary information from US and CEUS images signif-

icantly improves the segmentation accuracy in both modalities. More specifically,

the median Dice coefficient is increased from 0.74 to 0.81 in CEUS (p-value <
10�4) and 0.73 to 0.78 in US (p-value< 10�4). Furthermore, the proposed approach

Fig. 14 Ellipse detection on two synthetic images I1 (a) and I2 (d). Detected ellipses with their

center and main axes are shown in (b) and (e) for independent ellipse detection (red) and proposed
method for co-detection (blue) compared to the ground truth (green). (c) Second image registered

with the estimated transform G�1r . (f) Combination of image terms w1I1 þ ðw2I2Þ � G�1r used for

ellipse estimation at convergence
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provides more reliable clinical information as the median error on the kidney

volume is almost divided by two in CEUS (29 % versus 15 %) and in US (25 %

versus 13 %). Figure 16 shows the joint co-segmentation and registration results for

one case. Independent segmentation fails in both US and CEUS images because of

the kidney lesion (indicated by the yellow arrow) that looks like the background in

CEUS but like the kidney in US. Conversely, the proposed co-segmentation

manages to overcome this difficulty by combining information from the two

modalities. Furthermore, for this example, one can assess the estimated registration

by comparing the location of the lesion in the two modalities. Results on another

case were also displayed in Fig. 11.

Fig. 16 Example of joint co-segmentation and registration for a CEUS (top) and a US (bottom)
images. (Left) Comparison of independent segmentations (red) and the proposed co-segmentation

(blue) with respect to the ground truths (green). (Middle, Right) Two views of the registered

volumes that can be assessed by considering the position of the lesion (yellow arrow)

a b c d

Fig. 15 Boxplots of segmentation results for kidney segmentation in US and CEUS images, in

terms of Dice coefficients (a)–(b) and relative volume error (c)–(d). The proposed

co-segmentation compares favorably to independent segmentation with a p-value < 10�4.
Boxplots show, respectively, the first decile, the first quartile, the median, the third quartile, and

the ninth decile. Extreme points are shown separately
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Conclusion

This chapter addressed the problem of kidney segmentation in 3D CEUS images.

Such a task is challenging because of the noise, the artifacts, and the partial

occultation of the organ (due to the limited field of view).

A robust ellipsoid detector has been introduced to coarsely locate the kidney.

The ellipsoid is then deformed to segment the kidney more precisely, by maximiz-

ing the image gradient flux through the segmentation boundary, using the template

deformation framework. This method yields a fully automatic pipeline that pro-

vides a satisfying segmentation in a large number of cases but may fail when the

image information is too ambiguous (shadows, pathologies, etc).

To overcome such difficulties, two extensions of this approach have been

proposed to take into account additional information. First, we showed how user

interactions can be exploited to guide the segmentation in real-time, by letting the

user indicate points that should be inside/outside/on the segmentation. Then, we

introduced a generic co-segmentation framework that generalizes any segmentation

method to allow the simultaneous use of multiple images (here the CEUS and the

US images). This results in both a better estimate of the organ shape and a

registration of the images. The two aforementioned extensions are compatible

and including user interactions in multiple images would be straightforward.

The kidney detection can still be improved by including more anatomical prior

knowledge. A possible solution would be to constrain the ellipsoid’s axis lengths or

volume to be close to clinically meaningful values. Another way is the use of CT

images of the same patient to extract a tailored model of the kidney and help both

the CEUS detection and segmentation.

Appendix: Choice of the Parameter μ for Ellipsoid Detection

The choice of μ in Eq. (3) is paramount as it controls the number of points that are

taken into account for the ellipsoid matrix estimation. To find a suitable value, let us

consider an ideal case of an image I0 in which there is one white ellipsoid (I0 ¼ 1)

on a black background (I0 ¼ 0), whose implicit function is ϕc0;M0
. We also assume

that the confidence weight is w � 1 everywhere. Then the matrix estimated by our

approach would be

M� ¼ argminM Edetðc0;M; 1Þ

¼ 2

μ

1Ð
Ω I0

ð
Ω
I0ðxÞ x� c0ð Þ x� c0ð ÞTdx

� ��1
(26)

Using the fact that I0 ¼ 1f1�ðx�c0ÞTM0ðx�c0Þ�0g is the indicator of the ellipsoid yields
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M� ¼ 2

μ

1

VolðM0Þ
ð
f1�ðx�c0ÞTM0ðx�c0Þ�0g

x� c0ð Þ x� c0ð ÞTdx
" #�1

(27)

After a variable substitution x M
1=2
0 ðx� c0Þ, this expression becomes

M� ¼ 2

μ

detðM�1=20 Þ
VolðM0Þ M

�1=2
0

ð
fkxk
1g

xxTdx M
�1=2
0

" #�1
(28)

With VolðM0Þ ¼ 4π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM�10 Þ

q
¼ 4π

3
detðM�1=20 Þ, we then obtain

M� ¼ 2

μ

3

4π
M
�1=2
0

ð
fkxk
1g

xxTdx M
�1=2
0

" #�1
(29)

Note that the integral
Ð
fkxk
1g xx

Tdxdenotes the covariance matrix of a 3D unit ball,

which is actually a scalar matrix that can be easily computed

ð
fkxk
1g

xxTdx ¼

2π
2

3

1

5
0 0

0 2π
2

3

1

5
0

0 0 2π
2

3

1

5

0
BBBBB@

1
CCCCCA ¼

4π

15

1 0 0

0 1 0

0 0 1

0
B@

1
CA (30)

Combining Eqs. (29) and (30) leads to

M� ¼ 2

μ

1

5
M�10

� �� ��1
(31)

which yields the following relationship between M∗ and M0 :

M� ¼ 5

2
μM0 (32)

This shows that the exact solution M0 is retrieved for μ ¼ 2
5
. This value actually

depends on the dimension of Ω. Here we assumed Ω � ℝ3 but for 2D images, the

optimal value would rather be μ ¼ 1
2
.
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Renal Cortex Segmentation on Computed

Tomography

Xinjian Chen, Dehui Xiang, Wei Ju, Heming Zhao, and Jianhua Yao

Abstract The current procedure of renal cortex segmentation is subjective and

tedious. This chapter introduces an automated framework for renal cortex segmen-

tation on contrast-enhanced abdominal CT images. The framework consists of four

parts: first, an active appearance model (AAM) is built using a set of training

images; second, the AAM is refined by live wire (LW) method to initialize the

shape and location of the kidney; third, an iterative graph cut-oriented active

appearance model (IGC-OAAM) method is applied to segment the kidney; Finally,

the identified kidney contour is used as shape constraints for renal cortex segmen-

tation which is also based on IGC-OAAM. The chapter also discusses several other

state-of-art techniques for segmentation and modeling of the kidneys.

Kidney Anatomy and Clinical Problem

The kidney consists of four anatomical structures, the renal cortex, renal column,

renal medulla, and renal pelvis (shown in Fig. 1). The kidney acts as the body’s

garbage collection and disposal system. It helps to control water levels and elimi-

nate wastes through urine as the body’s filtering system. It also serves homeostatic

functions such as the regulation of electrolytes, maintenance of acid–base balance,

and regulation of blood pressure (via maintaining salt and water balance). However,

its function may be disturbed by many kidney diseases, such as, kidney cancer,
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membranous nephropathy, nephritic syndrome, hypertensive renal disease, etc.

Kidney cancer is one of the ten most common cancers in both men and women

worldwide. Overall, the risk for developing kidney cancer is about 1 in 70 in

lifetime [1]. Renal cell carcinoma which arises from the renal cortex is the most

common type of kidney cancer in adults, responsible for approximately 80 % of

cases [2]. Hence, the investigation of the renal cortex has great values for kidney

cancer research. The renal cortex segmentation is of particular clinical importance.

The renal cortical volume and thickness are effective biomarkers for renal function

in many clinical situations, for instance, urological treatment decision-making [3],

radiotherapy planning [4], and assessment of clinical outcomes of surgery [5, 6].

The renal cortex, medulla, and pelvis are three basic compartments of kidneys.

Only out-layer of the kidney is strictly defined as a renal cortex because renal

columns are anatomically and functionally different from the cortex. Several

previous researches treated renal cortex and column as homogeneous structures

though they are anatomically different. However, only the out-layer of the kidney

(i.e., renal cortex) needs to be quantified with volume and thickness in most clinical

applications. For certain clinical studies, it is advisable to measure the renal cortex

precisely.

The renal cortex segmentation is one of fundamental steps for renal cortical

volume and thickness measurement, since the quantification of renal cortical volume

and thickness plays an important role in renal function analysis. However, kidney and

renal cortex segmentation is a challenging task. As shown in Fig. 1, the location of

kidney in abdomen and its specific internal anatomical structures in CT images are

visualized in one slice (see Fig. 1a), and the surface of different internal anatomical

structures is also rendered (see Fig. 1b). Surrounding anatomical structures or organs,

Fig. 1 Kidney. (a) The kidney in one CT slice. (b) Iso-surface rendering [7]
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such as liver, spine, and muscles, are located beside the kidney. In addition,

the boundaries with adjacent anatomical structures are weak. Image artifacts,

noise, and various pathologies, such as cancers and nephrolithiasis, pose more

challenges. The renal cortex and renal column are fused as one connected compo-

nent, since they have similar intensity distributions. The renal cortex is a non-fully

closed structure due to the renal pelvis [7]. Currently, the renal cortex segmentations

used in many clinical situations rely on manual methods, which are subjective,

tedious, time-consuming, and prone to errors. Hence, there is a strong need to

develop a fully automatic and accurate kidney and renal cortex segmentation.

Imaging Protocol

Computed tomography (CT) imaging, magnetic resonance imaging (MRI), and

ultrasound (US) imaging are widely used for kidney examination and kidney

diseases diagnosis because essential anatomical information, including kidney

morphology and kidney ducts, can be readily obtained [8–11].

Computed tomography (CT) scan is a noninvasive diagnostic imaging modality

that uses a combination of X-rays and computer technology to produce detailed

cross-sectional images (often called slices) of the body. A beam of X-rays is aimed

at one part of body, for instance, abdomen, which needs to be checked. Energy of

beam attenuates as it passes through skin, bone, muscle, and other tissue. These

variations can be detected by a two-dimensional monitor behind the body part. The

X-ray beam moves in a circle around the body inside CT gantry. After the

projection is accomplished in one direction, the X-ray signals are transmitted to a

computer in order to reconstruct a series of slices.

CT imaging of the kidneys is useful in the examination of one or both of the

kidneys to detect conditions obstructive conditions, such as kidney stones, congen-

ital anomalies, polycystic kidney disease, accumulation of fluid around the kidneys,

and the location of abscesses. The CT images can also present precise information

about the size, shape, and position of a tumor. It is also useful in checking to see

whether a cancer has spread to organs and tissues beyond the kidney and can help

find enlarged lymph nodes that might contain cancer.

Although high resolution CT has taken the largest leap, MRI is also an imaging

technique used primarily in medical settings to produce 3D high-quality morpho-

logic images of the inside of the human body in the evaluation of renal

abnormalities. MRI modality can be applicable to children and pregnant women

since it does not lead to radiation exposure, compared to CT modality. MRI uses a

powerful magnetic field, radio waves, and a computer to produce detailed pictures

of organs, soft tissues, bone, and virtually all other internal body structures. The

energy from the radio waves is absorbed and then released in a pattern formed

by the type of body tissue and by certain diseases. A computer translates the
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pattern into a very detailed image of parts of the body. A contrast material called

gadolinium is often injected into a vein before the scan to better see details. This

contrast material cannot be used in people on dialysis, because in those people it

could cause a severe side effect called nephrogenic systemic fibrosis. Additionally,

dynamic contrast-enhanced MRI is often used for renal lesion characterization. The

multiphase 3D volume interpolation is performed as multiple breath-hold

sequences before and at timed intervals after intravenous bolus injection of a

gadolinium-based contrast agent. It allows for more accurate computer-processed

image subtraction and better degree of lesion enhancement with reproducible

diaphragmatic excursion during breath-holds.

MRI still plays an important role in differentiating benign lesions versus malig-

nant lesions of patients in renal imaging. MRI can achieve the similar accuracy as

CT in detection and characterization of most renal lesions, including malignant

renal lesions such as renal cell carcinomas, and benign renal lesions such as

oncocytoma and angiomyolipoma. In addition, MRI has a high sensitivity in

evaluating complicated cysts and early lymph node spread and can be used to

analyze lesions with minimal amounts of fat or with intracellular fat. Functional

MRI of the kidney has found broad clinical application. It can be used in the

analyses of compromised renal function, severe contrast allergy. Attempts are

being made to use MRI for imaging of renal function, including perfusion, glomer-

ular filtration rate, and intra-renal oxygen measurement.

Ultrasound (US) imaging of kidney is also a noninvasive and painless modality

used to obtain the size, shape, and location of the kidneys with no radiation

exposure. This modality uses sound waves to create images of internal organs. A

handheld transducer is utilized to send out ultrasonic sound waves at a frequency.

The ultrasonic sound waves go through the skin and other body tissues to the organs

and structures of the abdomen as the transducer is placed on the abdomen at certain

locations and angles. The sound waves bounce off the tissues in the organs like an

echo and return to the transducer. The transducer picks up the reflected waves,

which are then converted into an image of the organs.

Ultrasound imaging can help determine if a kidney mass is solid or filled with

fluid. Therefore, blood flow to the kidney can be assessed by using an additional

mode of ultrasound technology during an ultrasound imaging. An ultrasound

transducer with a Doppler probe is used to assess blood flow. By making the

sound waves audible, the Doppler probe within the transducer evaluates the veloc-

ity and direction of blood flow in the vessel. The degree of loudness of the audible

sound waves suggests the rate of blood flow within a blood vessel. Absence or

faintness of these sounds may show an obstruction of blood flow. In addition,

ultrasound imaging is suitable for detection and characterization of tumors, since

the echo patterns produced by most kidney tumors are different from those of

normal kidney tissue. Different echo patterns can distinguish some types of benign

and malignant kidney tumors. This imaging modality can be used to guide a biopsy

needle into the mass to obtain a sample if a kidney biopsy is needed.
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General Frameworks

In computer vision and image analysis, image segmentation is a fundamental and

challenging problem. In medical image processing, several challenges still remain

in spite of several decades of research and many key technological advances. The

medical image segmentation methods may be classified into three frameworks:

image-based [12–23], model-based [24–32], and hybrid methods [33–40]. Image-

based methods perform segmentation based only on information available in the

image; these include thresholding, region growing [12], morphological operations

[13], active contours [14, 15], level sets [16], live wire [17], watershed [18], fuzzy

connectedness [19, 20], and graph cut [21, 22]. These methods perform well on

high-quality images. However, the results are not as good when the image quality is

inferior or boundary information is missing. In recent years, there has been an

increasing interest in model-based segmentation methods. One advantage of these

methods is that, even when some object information is missing, such gaps can be

filled by drawing upon the prior information present in the model. The model-based

methods employ object population shape and appearance priors such as atlases [24,

25, 29, 30, 41], statistical active shape models [26, 42, 43], and statistical active

appearance models (AAMs) [27, 31, 32]. As such, hybrid methods that form a

combination of two or more approaches are emerging as powerful segmentation

tools, where their superior performances and robustness over each of the

components are beginning to be well demonstrated [33–40].

Typically, image information, such as, the spatial information and intensity, were

used for kidney and renal cortex segmentation with image-based methods. Boykov

and colleagues [44] developed a temporal Markov model to describe the time

intensity curves for each pixel and used the min-cut/max-flow algorithm for kidney

segmentation [45]. Sun et al. [46] presented an integrated image registration algo-

rithm to segment renal cortex in MR images. Zöllner et al. [47] applied automated

image analysis methods in the assessment of human kidney perfusion based on 3D

dynamic contrast-enhanced MRI data. Song et al. [48] combined spatial anatomical

structures with temporal dynamics for dynamic MR images kidney segmentation.

Another type is model-based segmentation framework. Freiman et al. [49] pro-

posed a nonparametric model constraint graph min-cut/max-flow approach for

automatic kidney segmentation in CT images. Tsagaan et al. [50] integrated the

gray level appearance of the target and statistical information of the shape into

NURBS surface-based deformable model to automatically segment kidneys from

abdominal 3D CT images. Touhami et al. [51] proposed a statistical method for

fully automatic kidneys segmentation. They used spatial and gray-levels prior

models by using a set of training images.

Several prior investigations have addressed the kidney and renal cortex segmen-

tation on hybrid methods. In order to automatically segment kidney parenchyma in

MR datasets, Gloger et al. [52] first applied a multistep refinement approach to

improve the quality of the probability map, and then an extended prior shape level

set segmentation method was used on the refined probability maps and combined
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several relevant kidney parenchyma features. Lin et al. [53] proposed a two-step

fully automatic kidney parenchyma 3D segmentation technique in MR datasets to

segment kidney in CT images. Xie et al. [54] introduced a texture and shape priors-

based method in ultrasound images. Li et al. [55] presented a graph construction-

based optimal graph search method for renal cortex segmentation on CT images.

Li et al. [7] also presented an automatic renal cortex segmentation approach by

the combination of the implicit shape registration and novel multiple surfaces

graph search.

In Fig. 2, the kidney cortex framework is divided into two phases: training and

segmentation. In the first phase, landmarking is used to annotate kidney’ shape, an

AAM is built, and then the live wire and graph cuts parameters are trained. The

second phase consists of two main steps: initialization and delineation. In the

initialization step, a pseudo 3D initialization strategy is applied such that the contour

of the kidney is obtained slice by slice via amulti-object AAMmethod. A refinement

operation may be done subsequently to correct improperly initialized slices. We

employ the pseudo-3D initialization strategy motivated by its efficiency and ability

to combine. The strategy is much faster while achieved a similar performance

compared to a full 3D initialization method. Additionally, it is difficult to integrate

AAM into live wire in 3D. In the delineation step, we compute the graph cuts cost

based on the shape information generated from the oriented active appearancemodel

(OAAM) initialization step. The kidney is delineated using the iterative graph cut

OAAM method. After getting the kidney contour, we employ morphological

Fig. 2 The framework of the proposed method (AAM active appearance model, LW live wire, GC
graph cuts, MOAAM multi-object active appearance model, IGC-OAAM iterative graph

cut-oriented active appearance model)
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operations to obtain the initial cortex shape. Finally, the shape constrained iterative

graph cut OAAM method is applied once more to segment the renal cortex. The

details of each step are described in the following sections.

Kidney Modeling

The literature is rich with kidney modeling approaches. To segment 3D kidneys in

CT images, more detailed active shape models were generated and did not need to

explicit or parametric formulations of the problem. The active shape model was

quickly updated with additional prior knowledge. In addition, the crucial corre-

spondence problem is solved by nonrigid image registration [56]. Tsagaan

et al. [50] presented a deformable model-based approach for automated segmenta-

tion of kidneys from 3D abdominal CT images. Spatial and gray-levels kidney prior

models were used according to a set of training images [51]. In the paper of Lin

et al. [53] he presented a directional model-based approach for computer-aided

kidney segmentation of CT images. Xie et al. [54] introduced a texture and shape

priors-based method in ultrasound images. In the framework shown in Fig. 2, the

top and bottom slices of each kidney are first manually selected before the AAM is

constructed. Then linear interpolation is executed to generate the same number of

slices for the kidney in every training image, in order to establish anatomical

correspondences. 2D OAAMs are then built for each slice level from the images

in the training set. The cost function of live wire and parameters of graph cuts are

also obtained in this phase.

Landmark Specification

A 3D shape of kidney is represented as a stack of 2D contours and also manually

annotated slice by slice. Because of its simplicity, generality, and efficiency,

manual landmarking is still in use in clinical research, although semiautomatic or

automatic methods are also available for annotating kidneys. Therefore, manual

landmarking is applied to annotate kidney’s shape. Prominent landmarks on each

shape are identified by trained operators and also visualized on slices.

The equally spaced landmarking method [57] was assessed, in order to demon-

strate that there is a strong correlation between the shapes annotated by the manual

and semiautomated landmarking approaches. In practice, the shape of an object can

be represented by a finite subset of a sufficient number of its points; hence the shape

of a kidney is treated as an infinite point set. Then, different numbers of landmarks

are used for different kidneys from different medical images based on their size.

Numerous researches have been done for the analysis of effects of distribution of

landmarks on model building and segmentation results; these experiments conse-

quently were omitted while manual landmarking was validated by the equally

spaced labeling method.
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Active Appearance Model Construction

The standard AAM [31, 32] method is applied to build the model after the

landmarks are specified. Shape and texture information are integrated into

the model. Suppose Mj denotes the AAM for slice level j and the number of slice

levels is n, then the complete AAMM can be represented asM ¼ (M1,M2, . . .,Mn).

Although a pseudo 3D initialization strategy is applied, the fully 3D AAM

denoted M3D is also constructed by using the method in [58]. This 3D model is

used to only provide the delineation constraints as explained later.

Live Wire Cost Function and Graph Cuts Parameter Training

An oriented boundary cost function is designed for a kidney included in the model

M as per the Live Wire method [16]. Following the original terminology and

notation in [16], a boundary element, bel for short, is defined as an oriented edge

between two pixels with values 1 and 0. A bel is represented as an ordered pair ( p,q)
of four-adjacent pixels where p is inside the kidney (pixel value is 1) and q is outside
(pixel value is 0) for a given image slice I, as shown in Fig. 3. Every pixel edge of I is
considered as constituting two potential bels( p,q) and (q,p) and possibly assign

different cost values to them. The features assigned to each bel are used to represent

the likelihood of the bel that belongs to the boundary of a particular object of interest.

The cost c(l ) associated with bel l is a linear combination of the costs assigned

to its features,

c lð Þ ¼

Xnf
i¼1

wicf f i lð Þð Þ

Xnf
i¼1

wi

(1)

where, nf denotes the number of features, wi denotes a positive constant indicating

the emphasis given to feature fi, and cf denotes the function to convert feature values
fi(l ) at l to cost values cf ( fi(l )). fi may represent features such as intensity on the

immediate interior of the boundary, intensity on the immediate exterior of the

Fig. 3 The four possible situations that a boundary element is an oriented pixel edge. The inside

of the boundary is to the left of the bel and the outside is to the right of the bel
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boundary, and gradient magnitude at the center of the bel in [16]. Different fi may

be combined, which depends on the intensity characteristics of the object of

interest. As suggested in [16], cf is chosen as an inverted Gaussian function, and

all selected features are combined with uniform weights wi. We employ the feature

of live wire to define the best-oriented path between any two-landmark points (xk
and xk+1) as a sequence of bels with minimal total cost:

κ xk; xkþ1ð Þ ¼
Xh
i¼1

c lið Þ (2)

where h is the number of bels in the best-oriented path (l1,l2, . . .,lh). The total cost
structure K(x) associated with all the landmarks may be formulated as

K xð Þ ¼
Xm
k¼1

κ xk; xkþ1ð Þ (3)

where m denotes the number of landmarks for the object of interest, and we assume

that the contour is closed, i.e., xm+1 ¼ x1. In other words, K(x) represents the sum of

the costs associated with the best-oriented paths between all m pairs of successive

landmarks of shape instance x. The parameters of K(x) for each object shape x are
obtained automatically as described in [16] by using the training images.

For the sake of continuity, the description of how the parameters of graph cuts

are estimated is given in section “Kidney and Renal Cortex Segmentation” where

the graph cuts algorithm is described.

Kidney Localization

The initialization step plays a critical role in the segmentation of kidney and renal

cortex framework. The subsequent segmentation tends to have higher accuracy

when initial model is localized in the region closer to kidney. To segment the

kidneys in dynamic contrast-enhanced MRI, graph cut method was used based on

min-cut/max-flow algorithm [45], where the localization was accomplished by

painting foreground seed points and background seed points on some slices

[44]. Tsagaan et al. [50] presented automated positioning method of an initial

model for automated segmentation of kidneys from abdominal 3D CT images.

The candidate kidney region was detected according to the statistical geometric

location of kidney within the abdomen in [53]. This method can be applied to

images of different sizes since they used the relative distance of the kidney region

to the spine. In the work of Li et al. [55], the coarse pre-segmentation was firstly

obtained by using Amira. Recently, the whole kidney was coarsely initialized using

an implicit shape registration method in [7].

In this framework, the initialization method provides the shape constraints to the

subsequent graph cuts delineation step and makes the delineation fully automatic.
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The developed initialization method is divided into three main steps. First, a slice

localization method is employed to identify the top and bottom slices of the

kidneys. A linear interpolation is then utilized to generate the same number of

slices for the given image of a subject as in the model. The kidneys are recognized

slice by slice via the OAAMmethod. A multi-object strategy [59] is applied to help

with kidney recognition. Even if just one kidney is to be segmented, other organs

can also be included in the model to provide context and constraints. Finally, a

refinement approach is used to adjust the initialization result.

Localization of Top and Bottom Slices

There are several recent researches related to slice localization. Haas et al. [40]

created a navigation table with eight landmarks, which were identified in various

ways. By using probabilistic boosting tree and Haar features, Seifert et al. [42]

developed a method to detect invariant slices and single point landmarks in full

body scans. Emrich et al. [60] introduced a CT slice localization approach by using

k-nearest neighbor instance-based regression. The target of slice localization is to

identify the top and bottom slices of the organ in our framework. The model can be

utilized to locate slices, since the model is already trained for each kidney slice. The

proposed approach is based on the similarity of the slice to the OAAM.

The top slice model is used for each slice in the image based on the recognition

method described in section “Kidney and Renal Cortex Segmentation,” in order to

locate the top slice in a given image. Then the slice corresponding to maximal

similarity or minimal distance is considered as the top slice of the kidney. Figure 4

shows the localization of the top slice in a CT image, where the distance value is

computed from (5). The minimal value corresponds to the top slice of the left

kidney. A similar method is applied to detect the bottom slice.

Kidney Recognition by Multi-object Active Appearance Model

The kidney recognition method is based on the AAM. The root mean square

difference between the appearance model instance and the target image is achieved

in traditional AAM matching method for object recognition. It is more suitable for

matching appearances than for the detailed segmentation of target images in this

procedure (shown in Fig. 5b). The reason is that the AAM is optimized on global

appearance; therefore, it is less sensitive to local structures and boundary informa-

tion in this procedure. In contrast, the live wire detects the boundary very well [16],

but it needs good initialization of landmarks and user interaction. Therefore, live

wire is integrated into AAM, in order to combine their complementary strengths.

In the new procedure, the landmarks needed in the live wire are provided by the

AAM; meanwhile, the shape model of the AAM can be improved by live wire.
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The live wire is fully integrated into AAM in two aspects: First, the shape model of

the AAM is improved based on the live lire method; second, the live wire boundary

cost is integrated into cost computation during the AAM optimization process.

As shown in Fig. 5c, the boundary detection is much improved with the proposed

OAAM segmentation, compared to traditional AAM method (see Fig. 5b).

Refinement of the Shape Model in Active Appearance

Model by Live Wire

First, a rough placement of the model is achieved by using the conventional AAM

searching method. The shape is obtained from the shape model of the AAM, and

then live wire is applied to update the landmarks using only the shape model and the

pose (i.e., translation, rotation, and scale) parameters in [33], as shown in Fig. 6.

The refined shape model is subsequently transformed back into the AAM.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

Slice number

D
is

ta
nc

e

a b

Fig. 4 Illustration of top slice recognition [61]. (a) A slice of the abdominal region. Cross point is

the top slice of the left kidney. (b) The distance values of each slice to the top slice are plotted for

the left kidney

Fig. 5 Comparison of traditional active appearance model and oriented active appearance model

segmentation [61]. (a) Original image. (b) Traditional active appearance model segmentation. (c)

Oriented active appearance model segmentation
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Meanwhile, AAM refinement is utilized to yield its own set of coefficients for shape

and pose.

Algorithm 1: Refine Active Appearance Model Shape Model Based on Live Wire

Input: The shape model x.
Output: Updated shape model x0 and new affine transformation t0.
Begin

For each triple P1, P2, and P3 of successive landmarks on x

1. Delineate from P1 to P2 and P2 to P3 via Live Wire.

2. Search the middle point Q1 and Q2 in the Live Wire segments obtained from P1

to P2 and from P2 to P3, respectively.

3. Delineate from Q1 to Q2 via Live Wire.

4. Search the point P02 on the Live Wire segment from Q1 to Q2 closest to P2, and

update P2 to P02.

EndFor

5. Transform the obtained shape xr into a new shape model instance x0 by aligning

xr to the mean shape x , in order to yield the new affine transformation t0.
6. Apply the model constraints to the new shape model x0 so that the new shape is

within the allowed shape-space.

End

Oriented Active Appearance Model Optimization

The boundary cost is not taken into consideration in the traditional AAM matching

method, since the optimization is based only on the difference between the appear-

ance model instance and the target image. Its performance can be considerably

improved for AAM matching with the integration of the boundary cost. During the

optimization process, the cost computation is performed with the combination of

the live wire technique. Shape and texture information is represented as b, and it is

the current estimate of the AAM parameters,

Fig. 6 The position of the landmarks [61]. (a) P1, P2, and P3 are three landmarks from active

appearance model. (b) The middle pointQ1 of the live wire segment between P1 and P2, andQ2 for

P2 and P3 are obtained. (c) Landmark P2 is moved to the closest point P02 on the live wire segment

from Q1 to Q2
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b ¼ QT bs
bg

� �
(4)

where Q represents a matrix which specifies the modes of shape and appearance

variation derived from the training set, bs denotes the shape model parameters, and

bg denotes the appearance model parameters. Combined with the above shape

model refinement approach, our optimization process is described as follows:

Algorithm 2: Oriented Active Appearance Model Optimization

Input: Model parameters vector b, pose vector t, texture vector u, weight parameters

α1 ¼ α2 ¼ 0.5.

Output: Updated model parameters vector b, t and u.
Begin

1. Obtain shape parameters bs from b, and refine bs using Algorithm 1 and get the

updated shape model parameters b0s and pose t0, and update b by b ¼ QT b
0
s

bg

� �
.

2. Resample the image intensity as g0im and compute the texture model frame using

g0s ¼ Tu
�1(g0im) based on the updated b and t0.

3. Evaluate the errors

(a) Texture error Eaam ¼ jr(ϕ)j2, where ϕT ¼ (bTjt0TjuT) and r(ϕ) ¼ g0s � g0im.
(b) Total error by combiningEaam and live wire cost along the shape boundaryElw,

Etotal ¼ α1 � Eaam þ α2 � Elw (5)

4. Compute the predicted displacements δϕ ¼ � Rr(ϕ), where

R ¼ ∂rT

∂ϕ
∂r
∂ϕ

� ��1
∂rT

∂ϕ

5. Set k ¼ 1,

6. Update the parameters ϕ  ϕ + kδϕ,
7. Repeat steps 1–3 based on the new parameters ϕ, and obtain the new error E0total.
8. If E0total < Etotal, then accept the new parameters and go to step 9.

Else try k ¼ 0.5, 0.25, etc. and go to step 6.

9. Repeat starting with step 1 until no improvement is made to the total error.

End

In the process of initialization, a multiple resolution method is applied. It starts

from the coarsest resolution and then iterated to convergence at each level before

starting the next level. It is more efficient using this method than searching at a

single resolution, and it can lead to a convergence to the correct solution using this

method even when the model position is far away from the kidney. It may be

necessary to get a discrepancy between these error functions because they run in

Renal Cortex Segmentation on Computed Tomography 81



shape-space and image-space, since the total error function is a linear combination

of the nonlinear functions of live wire and AAM costs. Therefore, it may lead to

E0 < E becoming false, because an increase in AAM costs may not be exactly

overcome by the cost of the live wire. In addition, another important factor will

affect this condition, since high variation of Eaam error stems from large texture

nonuniformity even though the live wire cost becomes stable after several

iterations. It is easily trapped in local minima during the process of conventional

AAM optimization. Therefore, such difficulties may be overcome by changing the

ratio of the contributing errors into the total cost, although it is difficult to solve this

problem in a fail-safe manner.

Refinement of the 3D Recognized Shapes

The recognized shapes are stacked together to form 3D objects after kidneys are

recognized in all slices. Sometimes the initialization result for one slice is far away

from the results for its neighboring slices. This shows a failure of recognition for

this slice. At most two slices failed in recognition in this sense in all of our tests. The

new shape is interpolated from the shapes in neighboring slices once failure occurs.

The following algorithm is applied to improve the recognized shape results.

Algorithm 3: Refinement of the 3D Recognized Shape

Input: Slices 1 � j � n, weights η1 ¼ 0.5, η2 ¼ 0.25 and η3 ¼ 0.25, threshold of

reliability Tj is estimated from training data.

Output: Refined 3D shape.

Begin
For j ¼ 1 : n

1. Compute the distance between the centroids of the shapes in slices j � 1 and

j + 1 as dj�1 and dj+1
2. Compute the total reliability for slice j

relj ¼ η1 �
emax � e

emax

� �
þ η2 � exp

dj�1 � μ dj�1
� �� �2

2 � Var dj�1
� �

 !

þ η3 � exp �
djþ1 � μ djþ1

� �� �2
2 � Var djþ1

� �
 !

3. If relj < Tj, then estimate the shape in slice j via interpolation from the neigh-

boring slices.

EndFor
End

Here, μ(dj � 1), var(dj � 1), μ(dj + 1), and var(dj + 1) represent the mean and

variance of dj � 1 and dj + 1, respectively, which are estimated from training images

during the model building process. e and emax denote current and maximum slice
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localization errors, respectively. However, only one neighbor slice is applied to the

above algorithm for the first and last slice.

Kidney and Renal Cortex Segmentation

Different approaches have been proposed to segment kidney and renal cortex. Many

methods employ image information, such as, the spatial information and intensity.

Sun et al. [46] presented an integrated image registration algorithm to segment renal

cortex in MR images. Their method achieved temporal image registration by

multiple steps. They first detected large-scale motion to register the images roughly,

and then integrated region information and local gradient information with auxiliary

image segmentation results to refine the registration results. Zöllner et al. [47] have

applied automated image analysis methods in the assessment of human kidney

perfusion based on 3D dynamic contrast-enhanced MRI data. This approach used

a nonrigid 3D image registrationmethod to reduce motion artifacts in the image time

series. The subsequent k-means clustering method as used to segment the kidney

compartments (cortex, medulla, and pelvis). Song et al. [48] developed a 4D level set

approach for dynamic MR images kidney segmentation. Their method also com-

bined spatial anatomical structures with temporal dynamics.

Spiegel et al. [56] proposed an active shape model generation method to segment

3D kidneys in CT images. Their approach method yielded more detailed active

shape models and did not need explicit or parametric formulations of the problem.

The active shape model was updated with additional prior knowledge quickly. Then

they used nonrigid image registration to solve the crucial correspondence problem.

Freiman et al. [49] proposed a nonparametric model constraint graph min-cut/max-

flow approach for automatic kidney segmentation in CT images. The segmentation

was considered as a maximum a-posteriori estimation problem in a model-driven

Markov random field. Energy functional was built with a nonparametric hybrid

shape and intensity model. The latent model and minimization of the energy

functional were then computed with an expectation maximization algorithm.

Tsagaan et al. [50] presented a deformable model-based approach for automated

segmentation of kidneys from abdominal 3D CT images. They integrated the gray

level appearance of the target and statistical information of the shape into NURBS

surface-based deformable model. In addition, they proposed automated positioning

method of an initial model. Touhami et al. [51] proposed a statistical method for

fully automatic kidneys segmentation. They used spatial and gray-levels prior

models by using a set of training images.

Gloger et al. [52] proposed fully automatic kidney parenchyma 3D segmentation

technique in MR datasets by using Bayesian concepts for probability map genera-

tion. They first applied a multistep refinement approach to improve the probability

map quality, and then an extended prior shape level set segmentation method was

used on the refined probability maps and combined several relevant kidney

parenchyma features. Lin et al. [53] presented a model-based approach for
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computer-aided kidney segmentation of CT images. Their approach was divided

into two steps. First, the candidate kidney region was detected according to the

statistical geometric location of kidney within the abdomen. This method can be

applied to images of different sizes since they used the relative distance of the kidney

region to the spine. In the second step, kidney region seed points were identified by

using directional model, and then adaptive region growing was used by the

properties of image homogeneity. Xie et al. [54] introduced a texture and shape

priors-based method in ultrasound images. They applied a bank of Gabor filters on

test images to extract texture features, and then constructed the texture model by

estimating the parameters of a set of mixtures of half-planedGaussians. Based on the

texture model, the texture similarities of areas around the segmenting curve were

computed respectively in the inside and outside regions. Finally, they combined the

texturemeasures into the parametric shapemodel. Kidney segmentation was accom-

plished by calculating the parameters of the shape model to minimize a texture-

based energy function. Li et al. [55] presented a graph construction-based optimal

graph search method for renal cortex segmentation on CT images. The renal cortex

segmentation problem was treated as a multiple surfaces extraction problem. More

recently, Li et al. [7] developed an automatic renal cortex segmentation approach by

the combination of the implicit shape registration and novel multiple surfaces graph

search. The proposed approach consists of three steps. In the first step, the whole

kidney was coarsely initialized using an implicit shape registration method, and the

shapes built in the space of Euclidean distance functions. In the second step, the

multiple surfaces graph searching algorithm was applied to obtain the outer and

inner surfaces of renal cortex. In the end, a renal cortex refining scheme was utilized

to detect and reduce incorrect segmentation pixels around the renal pelvis and to

improve the segmentation accuracy.

In the cortex segmentation framework, the aim of this step is to finally precisely

delineate the kidneys recognized in the previous step. An iterative algorithm is

proposed by combining graph cuts and OAAMmethod for the kidney and renal cortex

delineation. The iterative graph cut OAAM algorithm effectively integrates the shape

informationwith the globally optimal 3Ddelineation ability of theGraphCutsmethod.

Shape Integrated Graph Cuts

Graph Cuts segmentation can be considered as an energy minimization problem for

a set of pixels P and a set of labels L, such that the goal is to find a labeling

f : P ! L that minimizes the energy function En( f ).

En fð Þ ¼
X
p2P

Rp f p
� �þ X

p2P, q2Np

Bp,q f p; f q
� �

(6)

where Np represents the set of pixels in the neighborhood of p, Rp( fp) represents the
cost of assigning label fp 2 L to p, and Bp,q( fp,fq) represents the cost of assigning

labels fp, fq 2 L to p and q. If Bp,q in two-class labeling, L ¼ {0,1}, is a
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sub-modular function, i.e., Bp,q(0,0) + Bp,q(1,1) � Bp,q(0,1) + Bp,q(1,0), the

problem can be solved efficiently with graph cuts in polynomial time [22].

In this chapter, the unary cost Rp( fp) represents the sum of a data penalty Dp( fp)
and a shape penalty Sp( fp) term. The data penalty term is defined according to

image intensity and can be treated as a log likelihood of the image intensity for the

target object. The shape prior term does not depend on image information, and the

boundary term is defined according to the gradient of the image intensity.

Based on the shape prior, the proposed energy function is formulated as follows:

En fð Þ ¼
X
p2P

�
α � Dp f p

� �þ β � Sp f p
� ��þ X

p2P, q2Np

γ � Bp,q f p; f q
� �

(7)

where α, β, γ denote the weights for the data term, shape term Sp, and boundary

term, respectively, satisfying α + β + γ ¼ 1. These terms are formulated as

follows:

Dp f p
� � ¼ �lnP Ip

��O� �
if f p ¼ object label

�lnP Ip
��B� �

if f p ¼ background label

(
(8)

Bp,q f p; f q
� � ¼ exp � Ip � Iq

� �2
2σ2

 !
� 1

d p; qð Þ � δ f p; f q
� �

(9)

δ f p; f q
� � ¼ 1 if f p 6¼ f q

0 otherwise

�
(10)

where Ip denotes the intensity of pixel p; object label denotes the label of the object
(foreground); P(Ip|O) and P(Ip|B) denote the probability of intensity of pixel

p belonging to object and background, respectively, which are estimated from

object and background intensity histograms during the training phase; d( p,q)
denotes the Euclidian distance between pixels p and q; and σ denotes the standard

deviation of the intensity differences of neighboring voxels along the boundary.

Sp f p
� � ¼ 1� exp � d p; xOð Þ

rO

� �
(11)

where d( p,xO) denotes the distance from pixel p to the set of pixels which constitute
the interior of the current shape xO of object O (note that if p is in the interior of xO,
then d( p,xO) ¼ 0); rO denotes the radius of a circle that just encloses xO. The
linear time method was applied to compute this distance [62].

The histograms of intensity are estimated for object and background from the

training images in the training phase, in order to compute P(Ip|O) and P(Ip|B). α, β
can be estimated by optimizing accuracy as a function of α, β and then compute

γ ¼ 1 � α � β. The gradient descent method is used for the optimization. The

true positive volume fraction [59] is used to represent the algorithm’s accuracy

Accu(α,β). After both α and β are initialized to 0.35, Accu(α,β) is computed

optimally over the training data set to select the best α and β.
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Minimizing En with Graph Cuts

The minimization of (7) can be achieved by graph cuts method. The graph is

constructed as follows. V ¼ P [ L. V represents all the pixel nodes and terminals

corresponding to the labels in L, which represent objects of interest and the

background. A ¼ AN [ AT. AN represents the n-links which connect pixels p and

q ( p 2 P, q 2 Np), and wp,q represents its weight. AT represents the set of t-links
which connect pixel p and terminals l 2 L , and wp,l represents its weight. The

desired graph with cut cost |C| is constructed using the following weight

assignments:

wp,q ¼ γ � Bp,q (12)

wp, l ¼ K � α � DpðlÞ þ β � SpðlÞ
� �

(13)

where K is a large constant in order to ensure the weights wp,l positive.

Iterative Graph Cut-Oriented Active Appearance Model

In this step, the location of recognized shapes is supposed to be close to the desirable

boundaries in the given image. The proper position of the landmarks of the objects

represented in the initialized shape xin can be achieved when the graph cut cost is

minimized in the iterative graph cut OAAM algorithm, described as follows.

Algorithm 4: Iterative Graph Cut-Oriented Active Appearance Model

Input: Initialized shapes xin, shape distance d ¼ 1, ε ¼ a small value.

Output: Resulting shapes xout and the associated kidney boundaries shape.

Begin
While d > ε do

1. Perform graph cuts segmentation using (7) based on the OAAM initialized

shapes xin;
2. Compute the new position of the landmarks by moving each landmark in xin to

the point closest on the graph cuts boundary; call the resulting shapes xin;
3. If no landmarks move, then, set xnew as xout and stop;

Else, subject xnew to the constraints of model M3D, and call the result xin. And
compute the shape distance d between the current shape and previous shape.

EndWhile

Perform one final Graph Cuts segmentation based on xout, and obtain the associated
shape boundaries.

End

In our implementation, ε ¼ 0.1. The segmentation accuracies usually don’t change

much after two iterations in our test. The distance is constrained for a landmark to

move within any iteration to six voxels, in order to make the change smoother.
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Renal Cortex Segmentation

The renal cortex segmentation consists of three main steps: kidney delineation,

cortex shape generation, and cortex delineation.

Kidney Delineation

The purpose of this step is to precisely delineate the kidney shapes recognized in the

previous step. We propose an iterative graph cut OAAM method for the kidney’s

delineation, which effectively integrates the shape information from the OAAM

initialization step with the globally optimal 3D delineation capability of the graph

cuts method.

Renal Cortex Shape Construction

The initial cortex shape needs to be required after the kidney contour is obtained.

A morphological operation (erosion) is applied to construct an initial renal cortex

shape. The running times of erosion is estimated from the training data set which is

actually related with the depth of the renal cortex.

Renal Cortex Delineation

Based on the former step, the initial cortex shape can be generated. The location of

initialized cortex shapes is supposed to be close to the desirable boundaries in the

given image. The iterative graph cut OAAM is applied again to refine the final renal

cortex boundaries, and the obtained initial cortex shape is used as the shape constraint.

Experimental Results

The proposed method was tested on a clinical dataset which includes 27 patients (12

men and 15 women, age ranged from 19 to 63). The patients were injected with

130 mL of Isovue-300 contrast agent (Bracco Diagnostics, Milan, Italy) before

image acquisition. These CT images were reviewed with a three-dimensional multi-

planar reformatting interactive mode on an image-processing workstation

(Advanced Workstation; GE Medical Systems). The pixel size varied from 0.55

to 1 mm, and slice thickness from 1 to 5 mm. All datasets were acquired from one of

two different types of CT scanners (LightSpeed Ultra, GE Medical Systems,

Milwaukee, WI; or Mx8000 IDT 16, Philips Medical Systems, Andover, MA).

The leave-one-out strategy was adopted to evaluate the proposed method.
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To quantitatively evaluate the proposed method, the MICCAI 2007 grand

challenge for liver segmentation evaluation criteria: volumetric overlap error

(OE), relative volume difference (VD), average symmetric surface distance (AD),

root mean square symmetric surface distance (RMSD), and maximal symmetric

surface distance (MD), were used to evaluate the proposed method.

Volumetric overlap error is defined as,

OE ¼ 1� Vs \ Vtj j
Vs [ Vtj j (14)

where Vs and Vt are the manually segmented image and the computer segmentation

result, respectively, while the intersection operation \ and union operation [ are the
voxel wise and and or operation, respectively, and jVj represents the number of

voxels in region V.
To account for the extension of a result over-segmented or under-segmented,

relative volume difference was calculated according to

SVD ¼ Vtj � jVsj j
Vsj j (15)

To evaluate the global and local disagreement between the manually segmented

image and the segmentation result image, average symmetric surface distance, root

mean square symmetric surface distance, and maximal symmetric surface distance

were calculated according to

AD ¼

X
ps2Ss

D ps; Stð Þ þ
X
pt2St

D pt; Ssð Þ

Ssj j þ Stj j (16)

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ps2Ss

D2 ps; Stð Þ þ
X
pt2St

D2 pt; Ssð Þ

Ssj j þ Stj j

vuuut
(17)

MD ¼ max max
ps2Ss

D ps; Stð Þð Þ, max
pt2St

D pt; Ssð Þð Þ
� �

(18)

where Ss and St are the surfaces of the manually segmented image and the segmen-

tation result. D( p,S) represents the minimum Euclidean distance between an

arbitrary point p and surface S.
The Experimental results are summarized in Table 1. The average volumetric

overlap error for kidney segmentation is about 3.6 %, while for cortex segmenta-

tion; the average overlap error is about 12.7 %.

Table 1 Segmentation evaluation based on the “MICCAI 2007 grand challenge for liver segmen-

tation” evaluation criteria

Method OE (%) VD (%) AD (mm) RMSD (mm) MD (mm)

Kidney segmentation 3.6 � 2.6 1.9 � 2.1 0.9 � 0.5 1.7 � 1.1 16.9 � 7.1

Cortex segmentation 12.7 � 3.3 3.9 � 5.2 1.5 � 1.1 2.8 � 2.6 19.5 � 0.8
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The segmentation results are shown in Fig. 7c, d and g, h for the kidney and

cortex by the proposed method, respectively. In addition, the error of cortex

segmentation is higher than kidney segmentation, which may be due to the greater

difficulty in cortex segmentation than kidney segmentation.

In terms of efficiency, the running time was tested for the kidney and cortex

segmentation on an Intel Xeon E5440 workstation with 2.83 GHz CPU, 8 GB of

RAM. For kidney segmentation, the time for the computation was reduced from

8 min for manual segmentation to about 1.3 min for automatic segmentation. For

renal cortex segmentation, the time was reduced from 20 min for manual segmen-

tation, to less than 2 min for automatic segmentation.

Conclusion and Discussion

In this chapter, we introduced a 3D automatic renal cortex segmentation method.

This framework effectively integrates the AAM and live wire with graph cuts so

that their complementary strengths can be fully exploited. It consists of two phases:

training and segmentation. For the training part, we build an AAM and then trained

the live wire and graph cuts parameters. In the second phase, we employed a

pseudo-3D strategy and segmented the organs slice by slice via multi-object

OAAM method which synergistically integrated the AAM with live wire methods.

Subsequently, an iterative graph cut OAAM method is proposed which integrates

the shape information. The approach was tested on a clinical abdominal CT dataset

with 27 contrast-enhanced images. The experimental results showed that an overall

renal cortex segmentation accuracy with overlap error �12.7 %, volume difference

�3.9 %, average distance �1.5 mm, RMS distance �2.8 mm, and maximal

distance �19.5 mm could be achieved.

For initialization, we applied a pseudo-3D strategy and integrated AAM with

live wire methods to improve the performance. Besides, the multi-object strategy

also helped initialization because of increased constraints. Compared to the real 3D

AAM method, the pseudo 3D OAAM approach has comparable accuracy; mean-

while, it achieves roughly a 12-fold speed up. The aim of initialization is to provide

rough object localization and shape constraints for a latter graph cuts method which

will accomplish refined delineation. We suggest that it is better to employ a fast and

robust method than a slow and more accurate technique for initialization.

For delineation, the shape constrained graph cuts method is the core part of the

whole framework. Several similar researches were also done in the literatures

[36–39]. However, they are mostly studied on 2D images, and it is difficult to

compare with these methods since the testing data sets used are different.

So far, it has not received much attention to research on the localization of a CT

slice within a human body, although it can greatly facilitate the workflow of a

physician. It is an important part to localize the top and bottom slices of organs

automatically in the whole framework. It can also be utilized to localize any slice by

constructing the corresponding slice model.
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Fig. 7 Experimental results for two slice levels of kidney and cortex segmentation. (a) and (e) are

the original slice images; (b) and (f) are multi-object active appearance model initialization result;

(c) and (g) are the kidney segmentation results; (d) and (h) are the cortex segmentation results
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In this chapter, only one object is delineated at a time. With the shape constraints

of multiple organs, the proposed iterative graph cut OAAM method can be easily

applied to segment multiple organs simultaneously. However, it is difficult to

achieve a globally optimal min cut solution for simultaneously segmenting multiple

objects for graph cuts. Global optimality is guaranteed for single object segmenta-

tion. The α-expansion method can accomplish segmentations only within a known

factor of the global optimum for multiple objects [39].

The proposed method takes about 2 min for segmenting one organ. To make it

more practical in clinical applications, the parallelization or multi-thread imple-

mentation of the algorithm may be a good choice. Anderson and Setubal [63] and

Liu and Sun [64] proposed parallelization of the graph cuts methods and achieved

good performance.
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Diffuse Fatty Liver Disease: From Diagnosis

to Quantification

Luı́s Curvo-Semedo, Daniel Ramos Andrade, Catarina Ruivo,

Cláudia Paulino, and Filipe Caseiro-Alves

Abstract Even though liver biopsy is considered to be the gold standard for

diagnosis and quantification of liver steatosis, it is not devoid of problems, since

it implicates an invasive maneuver which carries a certain amount of risk of

hemorrhage. Furthermore, it suffers from sampling errors and is very dependent

on the experience of the reader for quantification.

As such, noninvasive imaging methods have been increasingly used for

detecting and quantifying fatty infiltration of the liver, and their growing impor-

tance is reflected on their widespread use for this purpose. Ultrasound, computed

tomography, and, particularly, magnetic resonance imaging may be especially

helpful in this regard. This chapter deals with their use in the assessment of liver

steatosis, focusing on the main features of diffuse fatty liver infiltration on each

imaging method and on their application for quantification of liver fat.
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HU Hounsfield units

MDCT Multi-detector row CT

MR Magnetic resonance

MRI Magnetic resonance imaging

NAFLD Nonalcoholic fatty liver disease

NASH Nonalcoholic steatohepatitis

ppm Parts per million

ROI Region of interest

SVS Single-voxel spectroscopy

US Ultrasonography

USS Ultrasonographic steatosis score

Introduction

Fatty liver disease encompasses a wide spectrum of conditions which are

characterized by triglyceride accumulation within the cytoplasm of hepatocytes.

The two most common conditions associated with fatty liver are alcoholic liver

disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which is related to

obesity, insulin resistance, and metabolic syndrome. NAFLD is the most prevalent

chronic hepatic disease in the Western countries, affecting more than 30 % of adults

and 38 % of obese children [1, 2].

Apart from “simple” steatosis with fat accumulation in the hepatocyte, more

severe states exist, which are characterized by hepatic mononuclear cell infiltration,

hepatocyte necrosis, and inflammation—nonalcoholic steatohepatitis (NASH)—

representing an important risk factor for progression to liver failure, cirrhosis, and

even hepatocellular carcinoma [2, 3].

Fatty acids in the liver promote conditions resulting in systemic subclinical

inflammation, increased hepatic glucose production, and, as recently described,

increased secretion of fetuin-A [4–7]. This protein is increasingly produced and

secreted from the liver under hepatic steatosis [8, 9] and directly induces insulin

resistance and increased cytokine expression. Both, ALD and NAFLD may lead

to steatohepatitis with inflammation, cell injury, and fibrosis and may progress to

irreversible cirrhosis [10–15].

Liver biopsy and histological analysis are considered the diagnostic reference

standard for the assessment of fatty infiltration of the liver. Histological assessment

provides information about the fat distribution within the hepatic lobules and allows

a semiquantitative evaluation of steatosis. Thus the steatosis pattern can be divided

into macro- and microvesicular steatosis with hepatocytes containing either one

large vacuole of fat which is larger than the cell nucleus, displacing it, or many

small fatty cytoplasmic inclusions without a significant nuclear displacement,

respectively [16]. Macrovesicular steatosis is more common and is found not

only in NAFLD but also in alcoholic fatty liver disease [17].
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The extent of hepatic steatosis is visually estimated based on the percentage of

hepatocytes containing visible fatty inclusions, whereas the size of the intracellular

fat inclusions is not taken into account [18]. Scales representing the degree of

steatosis are used, ranging from three- to six-point scales [16, 18–20]. Often, a five-

point ordinal scale is used (0, 1–5, 6–33, 34–66, >67 %). However, liver biopsy is

an invasive method with the risk of post-interventional hemorrhage and bleeding,

even though the post-biopsy complication rate is quite low [21]. As for the mortality

rate, it lies between 0.1 and 0.01 % [21]. Nevertheless, it should be emphasized that

biopsy-based quantification of steatosis is derived from a small tissue sample and

may, as such, be inaccurate in cases of uneven fat distribution in the liver, as it

might not be a representative of the entire organ.

Therefore, noninvasive techniques are desirable in order to estimate or even

quantify the degree of steatosis and eventually assess the pattern of hepatic fat

distribution.

This is true, for instance, in the preoperative evaluation of liver donors for

transplantation, in whom the assessment of hepatic steatosis plays an important

role [22, 23]. Especially the macrovesicular subtype is critical for donor selection as

it has been associated with a greater risk of primary nonfunction after liver

transplantation [24, 25]. Another area of application is the monitoring of steatosis

following treatment, especially after dietary and lifestyle intervention since

repeated measurements are warranted [26, 27].

This chapter will focus on the usefulness of different imaging modalities (ultra-

sound, computed tomography, and magnetic resonance imaging (MRI)) in the

diagnosis and quantitative assessment of diffuse liver steatosis in the clinical setting.

Imaging Modalities

Ultrasound

Ultrasonography (US) is widely accepted as the initial screening means for the

evaluation of fatty infiltration of the liver, since it provides a noninvasive, well-

tolerated, and inexpensive tool for detection and estimation of steatosis [28, 29].

In US images, diffuse hepatic steatosis manifests as a generalized increase in

echogeneity compared to adjacent right kidney (Fig. 1a) or spleen, due to the

intracellular accumulation of fat inclusions [28, 30]. However, US is neither highly

sensitive nor specific for detection of hepatic steatosis (sensitivity ranges of

60–94 % and specificity of 66–95 % in several studies), and it cannot reliably

distinguish between fibrosis and steatosis [30]. In fact, diffuse hepatic steatosis and

diffuse fibrosis can have analogous appearances on US, and therefore it can

sometimes be difficult to differentiate between them (Fig. 1).
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As a result, some work groups have preferred the designation “fatty fibrotic

pattern” to describe this pattern of increased echogeneity, despite the fact that the

echo shadows tend to be coarser in the presence of pure fibrosis [31].

As predicted, sensitivity of US raises with increasing degrees of fatty infiltration

[28]. For example, in the presence of hepatic fat content of 10–19 %, it has a

sensitivity of 55 %, which increases to 80 % in the presence of >30 % fatty

infiltration. However, in the presence of morbid obesity (as defined by a body

mass index superior to 40 kg/m2), the sensitivity and specificity of US fall to 49 %

and 75 %, respectively, possibly due to technical problems in performing US in

such patients [32].

Most US studies refer to a three-point scoring system for grading hepatic

steatosis (mild, moderate, and severe), based on subjective evaluation of

hyperechogenic liver tissue, the increased discrepancy of echogeneity between

liver and kidney, and the loss of echoes from the walls of the portal system

[33]. A recent study performed in a pediatric population scored steatosis identified

Fig. 1 US images (a, c) showing both hyperechoic livers in comparison to the parenchyma of the

right kidney. Corresponding CT images of the same patients demonstrate respectively hypodense

liver parenchyma due to marked fatty infiltration (b) and hyperattenuating liver parenchyma in a

patient with liver fibrosis (d)
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by US using a 0–3 scale as follows: absent steatosis (score 0)—normal liver

echotexture; mild steatosis (score 1)—slight and diffuse increase in fine parenchy-

mal echoes with normal visualization of diaphragm and portal vein borders;

moderate steatosis (score 2)—moderate and diffuse increase in fine echoes with

slightly impaired visualization of portal vein borders and diaphragm; and severe

steatosis (score 3)—fine echoes with poor or no visualization of portal vein borders,

diaphragm, and posterior portion of the right liver lobe. It was demonstrated that

this ultrasonographic steatosis score (USS) had an excellent correlation with the

histological grade of steatosis and a USS score of 2 had a sensitivity of almost 80 %

for moderate to severe steatosis [34].

However, this visual quantification can be very subjective; in a retrospective US

study of liver fat, the intra-observer agreement for severity of steatosis ranged from

55 to 68 % [35]. Therefore, it should be stressed that US visual examination is

accurate for detecting moderate to severe hepatic steatosis, but the diagnosis of mild

steatosis can be difficult.

In addition, recent studies demonstrated that US is very poor at discriminating

small changes in hepatic fat content. For example, Fishbein and colleagues

suggested from their study that an individual with hepatic steatosis undergoing a

reduction of MRI hepatic fat fraction from 40 to 20 % through successful interven-

tion would be unlikely to have a corresponding change in US appearance [19].

As mentioned above, the hyperechogenicity of the liver visually compared with

that of the kidney parenchyma is well recognized as one of the most important signs

of steatosis (Fig. 1a). Some studies suggested a computed hepatorenal index for

quantification of liver fat, as a means of overcoming variability related to subjective

evaluation [36–38]. In fact, a significant correlation was found between the

hepatorenal sonographic index and magnetic resonance spectroscopy or histologi-

cal steatosis in several studies, including one that showed very high concordance

(sensitivity and specificity higher than 90 %) between the hepatorenal sonographic

index and the degree of steatosis in biopsy [38]. Moreover, the hepatorenal sono-

graphic index showed higher sensitivity than traditional US qualitative methods in

detecting mild hepatic steatosis [38]. Furthermore, this index is reproducible and

operator-independent, as shown by an interobserver agreement rate of 95.6 % for

the diagnosis of hepatic steatosis [37]. There are however some drawbacks. The

most important occurs in patients with inhomogeneous distribution of the liver fat,

in whom sampling errors may be found (the measurements of echo intensity in only

one region of interest (ROI) could not be representative of the entire liver). Another

possible limitation to the use of this ratio is related to the presence of renal diseases,

including structural disease or ectopic or absent right kidneys [38].

Another method available for quantitative grading of liver fat infiltration

encompasses the estimation of the decrease in amplitude of the backscattered

echo—the far-field slope (FFS) value. Normal liver has an FFS of 33 � 6, and

values of 38 � 10, 44 � 8, and 49 � 4 are reported to be indicative of mild to

severe hepatic steatosis, respectively. However, qualitative rating of steatosis at US

was more accurate than quantitative estimation (sensitivity, specificity, and
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accuracy of 60 %–100 %, 77 %–95 %, and 96 %, in comparison with 77 %, 77 %,

and 71 %, respectively) [39].

Ultimately, the US assessment of hepatic fat content is based on a subjective

visual assessment rather than an objective quantification of sonographic images in

the setting of the daily clinical practice. The lack of reliable quantitative methods,

weak reproducibility, failure in differentiating fatty infiltration from fibrosis, and its

relative inability to detect small changes in liver fat with time are impeditive of a

widespread use of US in the quantification of hepatic steatosis. Further analysis on

the validity of computer-aided US (hepatorenal index) should be performed in order

to confirm the accuracy, reproducibility, and standardization value of this method,

as it seems to be a promising effective noninvasive imaging modality that can be

applied for quantifying fatty infiltration of the liver and that could be used for

follow-up.

Computed Tomography

Computed tomography (CT) can be useful in the assessment of hepatic steatosis.

Fatty infiltration typically results in decreased attenuation of the liver parenchyma

(hypodense liver) in non-enhanced CT images (Fig. 2).

The visual assessment of liver fat usually requires an internal control in order to

compare its attenuation with that of the liver (usually the spleen but also the kidney

and the skeletal muscle).

In non-enhanced CT, the hepatic fat content can be assessed either subjectively

by visual inspection or objectively by placing an ROI and measuring the attenuation

values within it [40].

Several scales for visual assessment of the amount of steatosis on non-enhanced

CT images have been suggested. A recent study used a five-point scale as follows:

grade 1, hepatic vessels show lower attenuation than the hepatic parenchyma out to

the peripheral third of the liver; grade 2, hepatic vessels show lower attenuation

than hepatic parenchyma out to the middle third of the liver; grade 3, hepatic vessels

show lower attenuation than hepatic parenchyma in the central third of the liver;

grade 4, hepatic vessels show the same attenuation as that of hepatic parenchyma;

and grade 5, hepatic vessels show higher attenuation than the hepatic parenchyma

[41] (Fig. 2).

When placing a ROI to determine the attenuation of the liver parenchyma, three

kinds of measurements have been investigated, which include (1) the absolute

measurement of liver attenuation in Hounsfield units (HU), (2) the calculation of

the spleen-to-liver attenuation ratio, and (3) the difference in attenuation values

between liver and spleen. The comparison with the spleen permits tominimize errors

in attenuation measurements caused by variations in CT parameters due to individ-

ual factors (such as body habit and metallic instruments) [30].

The placement of one or two ROIs as large as possible (at least 1 cm2), avoiding

inclusion of any large vessels or biliary structures in the right hepatic lobe, is

commonly the preferred method in the measurement of hepatic attenuation (Fig. 3).
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Kodama and co-workers found that a hepatic attenuation of 40 HU represents a

degree of fatty infiltration of approximately 30 % (moderate to severe steatosis).

Their study showed that liver CT numbers of 64.4 HU � 3.1, 59.1 HU � 7.3, 41.9

HU � 6.7, and 25.0 HU � 15.5 at non-enhanced imaging correlated with degrees

Fig 2 Non-enhanced CT

scan. There is

hypoattenuation of liver

parenchyma relative to the

hepatic vessels and the

spleen, corresponding to

marked fatty infiltration.

Asterisk is placed over a

focal area of fatty sparing in

the left liver lobe

Fig. 3 ROI placing over the right liver lobe for measurement of the attenuation of the liver

parenchyma. In this patient, the density value of about 30 HU reflects a marked fatty infiltration of

the liver
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of fatty change of 0 %, 1–25 %, 26–50 %, and more than 50 %, respectively. This

retrospective study suggested that the absolute liver attenuation value on

non-enhanced CT was the best predictor of pathologic fat content and that compari-

son methods with splenic attenuation were deemed unnecessary, as they did not

contribute to accurately predict fat content and were more complex and time-

consuming [42]. In clinical practice, however, the absolute value of hepatic attenua-

tion is unreliable because most CT scanners are not appropriately calibrated for this

purpose and because an overlap exists between normal and abnormal liver attenua-

tion values. Therefore, most investigators favor a comparison between the hepatic

attenuation value and an internal standard devoid of fat, such as the spleen [43].

This hepatic attenuation index can be achieved by calculating the ratio of hepatic

attenuation to splenic attenuation (Fig. 4).

Several studies showed that the ratio of liver to spleen attenuation values

provides a useful index of liver fat. Park and collaborators reported that a hepatic

to splenic attenuation ratio of less than 0.8 had 100 % specificity for the diagnosis of

moderate to severe (>30 %) macrovesicular steatosis [44]. Even in markedly obese

patients (BMI of 44.4 � 1.1), the liver to spleen index correlated strongly with

histological macrosteatosis [45].

Another method of obtaining the quantification of liver fat involves the mea-

surement of the difference between the hepatic and splenic attenuation (Fig. 5).

Attenuation value of normal healthy liver parenchyma is about 50–57 HU, which

is 8–10 HU higher than that of the spleen [46]. Two studies found a specificity of

100 % for the detection of steatosis of more than 30 % when the hepatic–splenic

Fig. 4 Measurement of the hepatic attenuation index. Placing a ROI over the liver and other over

the spleen allows determination of their attenuation values and calculation of the index. In this

case, attenuation coefficients were approximately 31 and 53 HU for liver and spleen, respectively.

As a result, the hepatic attenuation index was 0,58, corresponding to marked steatosis
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attenuation difference was less than �9 HU [44] and less than �10 HU [24].

Limanond and co-workers showed that a hepatic–splenic attenuation difference of

more than 5 HU was an accurate predictor of the absence of significant

macrovesicular steatosis (0–5 %) and a difference of �10 to 5 HU was suggestive

of mild to moderate steatosis (6–30 %) [24]. However, the sensitivity of these

measurements for the diagnosis of macrovesicular steatosis of more than 30 %

was comprehended between 73 and 82 % [24, 41, 44].

Contrast-enhanced CT plays a limited role in the diagnosis of steatosis because

in this case the attenuation values of liver parenchyma depend on several factors

related to the contrast and the patient, such as total volume and rate of injection,

iodine concentration, body weight, cardiac output, location of intravenous access,

and timing of the measurement [40, 47]. These factors lead to significant overlap

between the densities of normal and fatty livers as Jacobs and colleagues found in

their study [48].

However, in order to reduce the radiation burden to the patient, frequently only

contrast-enhanced images are acquired. In this setting, the attenuation measure-

ments should ideally be done 80–100 s after the beginning of contrast injection to

minimize those factors [48]. Using this delay, a difference of at least 20 UH between

the liver and spleen was reported to have high sensitivity and specificity (86 %

and 87%, respectively) in the diagnosis of fatty liver infiltration, when using 150mL

of iothalamate meglumine injected at a rate of 2 mL/s [48].

Fig. 5 Measurement of the difference in attenuation values between liver and spleen by placing

ROIs over the liver and the spleen for determination of their attenuation values. In this patient,

attenuation coefficients were approximately 32 and 50 HU for liver and spleen, respectively. The

difference in attenuation was �18, reflecting marked fatty liver infiltration
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Panicek and co-workers suggested that when only contrast-enhanced images are

available, comparing attenuation of liver to skeletal muscle is preferable as it is

considered to be more specific, particularly with severe degrees of fatty infiltration.

However, this hypothesis is true only if the grade of fatty infiltration is high [49].

The first studies evaluating dual-source/dual-energy CT suggest that this tech-

nique may be used to measure the extent and grade of fatty liver infiltration [50, 51],

by measuring changes in hepatic attenuation between images acquired at the lower

and higher energy levels (typically, 140 and 80 kVp). The attenuation of fatty liver

changes more markedly with the change in tube potential than does that of normal

liver [40]. Raptopoulos et al. showed that an attenuation change by more than

10 HU with a tube potential change from 140 and 80 kVp was indicative of

fatty infiltration of more than 25 % [52]. The value of dual-energy CT in the

quantification of steatosis, however, has to be evaluated in further studies, because

attenuation difference varies significantly in the presence of iron overload.

The most important drawback of CT in the quantification of steatosis is that

tissue attenuation does not depend solely on fat content. It might be influenced by

an assortment of other factors, some immeasurable by CT, such as iron, copper,

glycogen, fibrosis, or edema [43]. As such, underlying diffuse liver diseases may

alter attenuation values of liver parenchyma so that hepatic steatosis may be

misdiagnosed or concealed. For example, increased iron deposition in liver paren-

chyma in case of hemochromatosis may lead to a significant increase in attenuation

values of the liver. Subsequently, the increase of attenuation due to iron deposition

and the decrease due to fatty infiltration might add up to almost normal attenuation

values, so that hepatic steatosis can be masked [52, 53].

Furthermore, it has recently been demonstrated in vitro that CT attenuation

values vary significantly between different manufacturers’ multi-detector row CT

(MDCT) scanners, among different generations of MDCT scanners, and even with

individual combinations of scanner and convolution kernel [54]. Moreover, CT is

associated with radiation exposure which limits its use in longitudinal studies and in

specific age groups (children).

Although non-contrast-enhanced CT is a viable option for the qualitative diag-

nosis of macrovesicular steatosis of 30 % or greater, it is not clinically acceptable

for the diagnosis and quantification of mild to moderate hepatic steatosis, especially

in living donor liver transplant candidates, in whom preoperative evaluation of fatty

infiltration is critical for donor selection.

Magnetic Resonance Imaging

At present, MRI is considered to be the most sensitive and objective imaging tool

for the demonstration and quantification of hepatic steatosis. Three MR techniques

for the detection and quantification of steatosis are available for clinical use:

chemical shift imaging, frequency-selective imaging, and MR spectroscopy [55].
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These techniques help to detect fat signals on the basis of the difference in

precessional frequency between water and fat.

Although fat detection may be enough to suggest the diagnosis of fatty liver, fat

quantification is required to determine the severity of steatosis, actively monitor

patients over time, and assess response to therapeutic intervention.

Unlike fat detection, which can be accomplished by recognizing certain qualita-

tive imaging features, fat quantification requires quantitative analysis of the MR

signal. Regardless of the MR imaging technique used, the key step is to break down

the net MR signal into fat signal and water signal. Once fat and water signals have

been identified and their intensities measured, the fat signal fraction (FSF) can be

calculated as the ratio of the fat signal to the total MR signal:

FSF ¼ Sfat= Swater þ Sfatð Þ

where Sfat ¼ fat signal and Swater ¼ water signal

However, all MR signals are subject to longitudinal (T1) and transverse (T2 or

T2*) relaxation effects and are influenced by the imaging parameters that control

T1 and T2 (or T2*) weighting. Therefore, the accuracy of quantification varies

depending on the pulse sequence and imaging parameters used.

Chemical Shift

Chemical shift imaging is by far the most widely used method for the detection of

steatosis in clinical practice, since in-phase and out-of-phase images are routinely

acquired as part of the abdominal MR imaging protocol.

Chemical shift is related to the difference in resonance frequency between two

proton MR signals, expressed in parts per million (ppm) of the resonance frequency

of the static magnetic field B0. The difference of resonance frequency between

protons bound to methylene groups of triglycerides (CH2 in fatty acid chains) and

water (H2O) protons amounts to approximately 3.5 ppm. This means that when a

standard nonselective radiofrequency pulse is applied to a fat–water admixture,

both proton species are excited, but the water signal precesses faster than the fat

signal by about 3.5 ppm (224 Hz at 1.5 T and 447 Hz at 3.0 T) [28, 30, 55].

Because of the phase interference between the fat and water signals, the gradient

echoes obtained at the in-phase and out-of-phase echo times can be summarized

with the equations

SIP ¼ Swater þ Sfat
SOP ¼ Swater � Sfat

where SIP and SOP are the net signal within a given pixel in the in-phase and

out-of-phase echoes, respectively, and Sfat and Swater are the contributions from fat

signal and water signal, respectively.
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The strength of fat signal relative to water signal (FSF) can be quantified by

measuring the signal on the in-phase and out-of-phase images and then applying the

equation

FSF ¼ Sfat= Swater þ Sfatð Þ ¼ SIP� SOPð Þ=2SIP

If out-of-phase and in-phase images are acquired with the dual-echo sequence,

pixel-by-pixel computation of the FSF values over the entire image is possible by

means of a simple and rapid post-processing technique to generate an “FSF map.”

Such an image depicts, at each pixel location, the proportion of the total signal

arising from fat (Fig. 6).

While conventional spin-echo sequences possess acquisition times of several

minutes for the whole liver, the development of fast gradient-echo techniques and

parallel imaging [56, 57] has reduced acquisition time sufficiently enough to permit

breath-hold sequences and, since the in-phase and out-of-phase images are acquired

simultaneously, misregistration errors to be minimized [58]. In clinical practice, a

breath-hold T1-weighted gradient-echo in-/out-of-phase sequence is used [59, 60].

The dual-echo technique is an implementation of the out-of-phase/in-phase

gradient-echo sequence, in which both the out-of-phase and in-phase echoes are

acquired after a single radiofrequency excitation [55].

With 1.5-T magnets, the fat and water protons are in phase or out of phase when

the TE is an even or odd multiple, respectively, of 2.32 ms [16].

With an echo time at which the fat and water signals are in phase, their signals

add constructively; when they are out of phase, their signals cancel [58]. Fat

detection is possible by comparing the signal intensity on the in-phase and out-of-

phase images. In the presence of steatosis, there is a signal loss on out-of-phase

images due to phase cancellation of fat and water (Figs. 7 and 8).

Fig. 6 Calculation of FSF. Out-of-phase (a) and in-phase (b) MR images obtained at 1.5 T show a

fatty liver. Cancellation of fat and water signals causes diffuse signal intensity loss on the out-of-

phase image. (c) FSF map. Fat–water admixture (fatty liver) appears bright, whereas subcutaneous

fat (almost exclusively fat) appears similar to lean tissue (e.g., spleen) due to fat–water dominance
ambiguity. FSF can be estimated by measuring the liver signal on the FSF map (40 % in this case).

If no FSF map is available, FSF can be calculated with the equation (SIP–SOP)/2 SIP; in this case,

(433–89)/(2 � 433) ¼ 40 %
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This has been shown to be an accurate predictor of hepatic fat content, with very

good correlation with the histological assessment of liver fat [16, 28, 61–63].

Chemical shift imaging provides a simple and rapid method for fat quantification

over the entire imaging field. The method is robust because it is relatively unaf-

fected by magnetic field inhomogeneity and works well at a variety of B0 field

strengths.

Despite its conceptual simplicity and ease of implementation, however, the

chemical shift method has important limitations. With standard clinical post-

processing, images are reconstructed from the signal intensity (magnitude of the

magnetization vector) and not the signal phase (direction of the magnetization

vector). In the out-of-phase echo, the water and fat magnetizations are opposed;

consequently, the direction of the net magnetization vector is aligned with

Fig. 7 Chemical shift imaging. Out-of-phase (a) and in-phase (b) MR images obtained at 1.5 T

show diffuse signal intensity loss on the out-of-phase image in a fatty liver. There is a focal area of

greater signal loss on out-of-phase image (white arrow), corresponding to a more marked focal

fatty infiltration

Fig. 8 Chemical shift imaging. Out-of-phase (a) and in-phase (b) MR images show marked

diffuse signal intensity loss on the out-of-phase image in a fatty liver. There is a liver metastasis

from a gastric cancer (white arrow) that does not show signal intensity changes in the out-of-phase

image due to the absence of fatty components within it
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whichever signal is dominant. However, because only the signal intensity image is

reconstructed, the out-of-phase intensity represents water minus fat or fat minus

water, whichever value is positive. The consequence of this so-called fat–water

signal dominance ambiguity is that the FSF calculated from a single pair of out-of-

phase and in-phase echoes cannot distinguish water-dominant fatty tissue (“wet”

fat) from fat-dominant fatty tissue (“dry” fat). For example, a tissue with 20 % fat

by signal composition would appear to have the same FSF as a tissue with 80 % fat.

This phenomenon is apparent on the FSF map, on which subcutaneous adipose

tissue (dry fat) appears darker than the fatty liver parenchyma (wet fat) (Fig. 6).

Nevertheless, this may be more of a theoretic concern rather than a practical one,

since a liver fat fraction above 50 % is relatively rare.

A dual-flip-angle technique using low- and high-flip-angle gradient-echo

sequences to determine the dominant component has been suggested by some

authors to answer this problem [58]. Because greater T1 weighting amplifies the

fat signal, a high flip angle increases the out-of-phase signal cancellation if water is

the dominant component but diminishes the out-of-phase signal cancellation if fat

is dominant. If the signal loss is more pronounced with a high flip angle, water is

dominant; if it is more marked with a low flip angle, fat is dominant.

To overcome ambiguity, a phase-sensitive processing has also been proposed.

This method (three-point Dixon method) requires the acquisition of an additional

image with a phase shift of �180º or 360º and elaborated phase-correction

algorithms to obtain true fat-only and true water-only images [64–71]. Unfortu-

nately, the necessity of recording several images for the Dixonmethod from the liver

is critical, due to the restricted duration of a breath-hold of the patient. On the other

hand, several measurements in different breath-hold periods suffer from potentially

variable positions of the liver in the fixed coordinate system of the scanner.

Reeder and co-workers have developed the so-called IDEAL technique [72],

combining iterative decomposition of water and fat with echo asymmetry and least-

squares estimation. This technique describes a multipoint fat–water separation

using optimized echo shifts in order to achieve maximal signal-to-noise perfor-

mance. Combined with gradient-echo imaging, it provides robust fat–water separa-

tion even in the presence of inhomogeneities of the static magnetic field [73].

Comparing chemical shift images obtained before and after gadolinium adminis-

tration could also help resolve fat–water dominance ambiguity. Because gadolinium

amplifies the water signal relative to the fat signal, its administration diminishes

the out-of-phase signal cancellation if water is dominant but increases the out-of-

phase signal cancellation if fat is dominant. Thus, if the FSF is greater after than

before gadolinium administration, fat is the dominant signal component; if the

reverse is true, water is the dominant signal component.

Out-of-phase/in-phase chemical shift imaging relies on the premise that the fat

and water signals characteristically interfere with each other at a known frequency.

However, the human fat spectrum has multiple peaks, each representing a distinct

proton species. Although the dominant CH2 peak has the greatest role in canceling

the water signal in the out-of-phase echo times, other less dominant peaks may also

contribute to the fat signal. Because fat quantification with a pair of in-phase and
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out-of-phase echoes is based only on the interaction between water and the CH2

component of the total fat signal, it does not account for complex phase interference

patterns from other chemical moieties and may, therefore, be somewhat inaccurate.

Another general limitation of the in-phase/out-of-phase techniques is that in the

resultant fat-only and water-only images, T1 and T2* relaxation effects cannot be

completely ruled out so that hepatic fat content may be misdiagnosed [47, 49, 74].

The relaxation times can be measured separately and considered in the fat calcula-

tion, but additional measurement of relaxation times leads to increased examination

times [58, 75].

Heavy T1 weighting (short repetition time or high flip angle) preferentially

suppresses the water signal (with longer T1), leading to relative amplification of

the fat signal. Because heavily T1-weighted sequences tend to lead to overestima-

tion of fat quantity, they are well suited for the detection of small amounts of fat and

should be used if high detection sensitivity is desired. In contrast, low T1 weighting

causes the T1 terms of the fat and water to be more balanced and reduces the

relative amplification of the fat signal. Because minimally T1-weighted sequences

are relatively unbiased by T1 effects, low T1 weighting (long repetition time or low

flip angle) is recommended for fat quantification.

Yet another approach to reduce the T1 bias is to administer gadolinium [76]. At a

standard clinical dose, gadolinium reduces the signal of fatty tissue relative to that

of nonfatty tissues by increasing the signal of water within the fatty tissue. How-

ever, its routine use for the sole purpose of fat quantification is not recommended

due to cost and potential risks.

T2* effects can also affect fat quantification. The out-of-phase/in-phase sequen-

tial design causes unavoidable underestimation of the fat signal because both fat

and water signals undergo T2* signal decay during the interecho interval (Fig. 9).

Fig. 9 Gradient-echo MR signal intensity in arbitrary units (a.u.) from fatty liver (approximately

25 % at MR spectroscopy) as a function of echo time (TE) at 1.5 T. A “best fit” biexponential

curve, drawn through measured in-phase (IP) and out-of-phase (OP) signal intensities,

demonstrates phase interference effect between fat and water protons and T2* decay
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The degree of underestimation depends on the amount of signal decay from

out-of-phase imaging (early echo) to in-phase imaging (late echo). In tissues with

very short T2* relative to the interecho interval (e.g., liver with excess iron), the

T2* signal decay may overwhelm the effect of fat–water signal cancellation. A high

concentration of iron within the hepatocyte can cause relevant localized magnetic

field inhomogeneities, resulting in a signal loss of the liver parenchyma [16, 59, 60].

Insufficient signal yield, however, may render accurate fat quantification impossi-

ble, and the fat fraction may be grossly underestimated [60].

Therefore, Alustiza and Castiella recommend to perform a study of iron quanti-

fication in cases of markedly decreased signal intensity on in-phase images [59].

T2* effects can be minimized by selecting the earliest possible consecutive

out-of-phase and in-phase echoes and the most closely spaced set of out-of-phase

and in-phase echoes possible, using the out-of-phase/in-phase sequential design.

Multiple studies have found a high correlation between histological liver fat

fraction and fat fraction calculated with out-of-phase/in-phase chemical shift MR

imaging. However, the accuracy of this technique for liver fat quantification is

influenced by the presence of hepatic iron and is poor in patients with elevated liver

iron content (such as in cirrhosis and hemochromatosis). Accuracy also depends on

whether an out-of-phase/in-phase (high-specificity) or in-phase/out-of-phase

(low-specificity) strategy is used.

Frequency-Selective Imaging

Fat quantification may also be performed by acquiring two images, one with and

one without a fat-saturation pulse, applied around the CH2 peak to null the domi-

nant component of the fat signal. Because other fat peaks are nearby, their signals

may also be suppressed depending on the bandwidth of the saturation pulse. If

complete suppression of all fat signals by the fat-saturation pulse is assumed, the

FSF can be calculated as

NFS ¼ Swater þ Sfat
FS ¼ Swater
FSF ¼ Sfat=Swater þ Sfat ¼ SNFS � SFSð Þ=SNFS

where FS ¼ fat-saturated, NFS ¼ non-fat-saturated, and SNFS and SFS represent the
signals obtained without and with the fat-saturation pulse, respectively.

The efficacy of the fat suppression depends on multiple factors: (a) the separa-

tion of the fat peaks from the water peak (in ppm), which increases proportionally to

B0; (b) the fat-saturation pulse bandwidth, which must be sufficiently wide to cover

as many fat peaks as possible without suppressing the water peak; and (c) the

severity of local field inhomogeneity.

The fat-saturation technique has theoretical advantages over the two-point

chemical shift approach [77, 78]. Unlike the two-point chemical shift FSF, the

FSF computed with equation (SNFS–SFS)/SNFS is unambiguous over the entire
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0–100 % FSF range. Thus, if the saturation pulse successfully suppresses most of

the fat peaks without suppressing the water peak, the measured FSF will account for

the multiple components of the fat signal.

However, frequency-selective fat saturation requires precise targeting of the

frequency band containing the fat peaks. In the presence of B0 magnetic field

inhomogeneity, the efficacy of the suppression can be compromised. Achieving a

uniform magnetic field within the abdomen can be difficult even with appropriate

preparation (the so-called shimming), and the fat-saturation pulse may have unpre-

dictable results, such as incomplete fat suppression or even inadvertent water

suppression. Complete failure of fat suppression is readily apparent, but incomplete

failure may be difficult to observe visually. Because it is not practical to measure

field inhomogeneity in routine clinical practice, the success of fat saturation within

a ROI cannot be assured, and quantification errors may occur.

The same principles discussed for chemical shift imaging apply to frequency-

selective imaging. Low T1 weighting (long repetition time and, for gradient-echo

sequences, low flip angle) improves accuracy for fat quantification. Therefore,

single-shot fast spin-echo sequences, which have a very long effective repetition

time and generate T1-independent images, are well suited for fat quantification.

However, a fat fraction map obtained at a particular echo time inevitably has some

T2 weighting and can be biased for the long T2 signal component. To correct for T2

effects, a two-echo single-shot fast spin-echo sequence may be performed without

and with frequency-selective fat saturation. At each effective echo time, the

fat-saturated image (water signal) is subtracted from the unsaturated image (water

plus fat signal) to create a fat-signal image. Thus, two water-signal images and two

fat-signal images are generated, one at each effective echo time. The T2 of water

and fat are then estimated from the water-signal and fat-signal images, respectively,

and the T2-corrected fat fraction is calculated.

Although early results with frequency-selective imaging are promising, confir-

matory studies are needed before routine clinical application is recommended. The

ability of this method to help detect and quantify small amounts of fat is uncertain

and requires further investigation.

MR Spectroscopy

The MR imaging spectrum describes the strength of the proton signal as a function

of the resonance frequency and encompasses all proton moieties in fatty acids as

well as in water. Each proton moiety (H2O, CH, CH2, CH3, and others) has well-

known unique precession frequencies. Spectra from liver tissue recorded in vivo

usually show only two dominant signal portions, namely, the water signal

(positioned at 4.7 ppm) and the signal from methylene protons of fatty acids

(positioned at 1.3 ppm). The signal of each chemical moiety is proportional to the

area under the spectral peak at the corresponding frequency (Fig. 10).
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The gathering of reliable spectral data and precise resolution of individual peaks

require high magnetic field homogeneity. Such homogeneity is usually attainable

within the 1–3-cm MR spectroscopy voxel with shimming.

Several strategies are applied for volume-selective proton MR spectroscopy

in vivo: single-voxel spectroscopy (SVS) techniques, point resolved spectroscopy

(PRESS) [79] or stimulated-echo acquisition mode (STEAM) sequences [80] are

usually applied for recording spectra from voxel sizes in a range from 1 ccm

(1 � 1 � 1 ccm) to 27 ccm (3 � 3 � 3 ccm). Suitable voxels for spectroscopy

can be easily positioned in a subregion of the liver without inclusion of subcutane-

ous or visceral adipose tissue—and remote to lung tissue.

In most cases of NAFLD, hepatic lipids seem to be distributed relatively

homogeneously in the liver [81–83], and therefore, SVS approaches are considered

representative for a reliable quantification of hepatic lipids. However, it should be

mentioned that Cowin and co-workers showed significant differences between

different regions in right and left lobe in their study [26].

The total fat signal can be accurately modeled as the sum of the areas of the CH,

CH2, CH3, and other peaks. The FSF can be defined as follows:

FSF ¼ Afat= Awater þ Afatð Þ
Afat ¼ ACH þ ACH2 þ ACH3 þ Aothers

where A is the spectral peak area for the indexed proton species, with Afat equal to

ACH + ACH2 + ACH3 + Aothers.

MR spectroscopy takes into account the multiple spectral components of fatty

acids and, in theory, is the most direct method of fat quantification.

Fig. 10 MR imaging spectrum of a fatty liver. Water (H2O) protons resonate at 4.7 ppm and fat

(CH2) protons at 1.3 ppm. Other components of triglycerides (e.g., CH3, CH2-COOR moieties

(others), and CH¼CH) possess their own characteristic resonance frequencies at 0.9, 2.1, and

5.3 ppm, respectively
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Good reproducibility of liver MR spectroscopy has been determined, revealing

high intraindividual correspondence in repeated measurements [26, 82, 84].

Nevertheless, in vivo MR spectroscopy requires a skilled operator to correctly

perform the examination, process the data, and interpret the results. The major

disadvantage of MR spectroscopic fat quantification is the complexity of data

analysis. The spectroscopy software generally requires a large amount of user

input; is prone to bias; and may not permit accurate, reproducible quantification

of all fat signal components. Setting up initial prior knowledge parameters in the

software can be quite challenging and requires substantial expertise in proton MR

spectroscopy.

Standard MR spectroscopic pulse sequences have relatively long minimum echo

times, which may introduce T2 weighting between the signals of individual peaks

and, unless T2 relaxation effects are taken into account, may lead to quantification

errors. Also, shimming the MR spectroscopy voxel tends to be time-consuming and

may lengthen overall examination time considerably.

In proton MR spectroscopy, each frequency peak represents a distinct proton

species with its own longitudinal and transverse relaxation rates, and the relative

signal strength of the peaks can vary depending on repetition time and echo time.

Thus, a FSF calculated from a single spectrum obtained with a particular repetition

time and echo time can be biased. If MR spectroscopy is performed, it should use a

relatively long repetition time (�3 s) to minimize T1 effects and acquire data at

multiple echo times to measure and correct for T2 decay. This ensures complete or

near-complete recovery of the longitudinal magnetization of most biologic tissues,

including the water and fat components of a fatty liver, and generates spectra which

are independent of T1 relaxation effects. However, T2 relaxation causes the

intensity of individual signal components to decay at different rates, and the relative

spectral peak areas vary as a function of echo time.

At multiecho MR spectroscopy with a long repetition time, bias can be removed

by minimizing T1 effect and, peak by peak, correcting for T2 effect. The T2 value

of each spectral peak is calculated assuming a monoexponential signal decay, and

the relative proton density of each peak is estimated by extrapolating the T2 decay

curve to an echo time of 0. The fat fraction calculated in this way is independent of

T1 and, for every peak, is corrected for T2.

MR spectroscopy is considered the most accurate noninvasive technique for fat

quantification. If both T1 and T2 relaxation effects are taken into account with use

of a long repetition time and multiecho acquisition protocol, respectively, MR

spectroscopy allows direct proton-density quantification of the water and fat chem-

ical moieties, from which molecular triglyceride concentration (in micromoles per

milligram) can be calculated.

It is important to note in this context that percentage values of liver steatosis

from MR spectroscopy studies (and from MR imaging studies as well) are different

from percentage values from histological examinations. The reason is that MR

techniques determine volume fractions of lipids in the liver tissue rather than the

percentage of hepatocytes showing visible fat droplets in the microscopic

view [30].
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Conclusion

In conclusion, several methods for noninvasive detection and quantification of liver

fat are available in daily clinical practice. Although liver biopsy is still regarded as

the gold standard in the assessment of fatty infiltration of the liver, since it provides

a distinction between simple steatosis and steatohepatitis based on pathological

assessment of the specimen, it is an invasive and a potentially risky method for the

patient. At the same time, it allows a subjective estimation of the fat content in a

small tissue sample, which is not necessarily representative for the whole organ.

Ultrasound is widely available, noninvasive, and cost-efficient but also operator-

dependent and relatively insensitive for lower grades of fatty infiltration. Computed

tomography permits a semiquantitative assessment of hepatic steatosis but is in turn

influenced by iron overload and exposes patients to ionizing radiation. MRI offers

imaging and spectroscopic methods for quantification of liver fat with high accu-

racy without many of the drawbacks related to the above mentioned imaging

techniques. Despite its benefits, it is not as widely available as the other methods

and is technically challenging. It seems however that MR techniques are especially

helpful in many clinical settings, where mainly quantitative data of lipid content in

liver are important.
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Multimodality Approach to Detection

and Characterization of Hepatic

Hemangiomas

Rajan T. Gupta and Daniele Marin

Abstract Hemangiomas are themost common benign hepatic tumor and represent a

common incidental finding on routine imaging examinations of the liver. The major-

ity of hemangiomas demonstrate classical imaging findings on grayscale ultrasound

(US), multidetector-row computed tomography (MDCT), and magnetic resonance

imaging (MRI). The classic appearance on contrast-enhanced cross-sectional imag-

ing is that of centripetal nodular enhancement with progressive fill-in of the lesion

over time with conventional extracellular CT and MR contrast agents. With the

advent of new gadolinium-based MR contrast agents such as hepatocyte-specific

contrast agents and blood pool contrast agents, some different appearances of

hemangiomas are possible and familiarity with these appearances is critical in

making the correct diagnosis. There are also variants of the typical hemangioma,

including the flash-filling hemangioma, giant hemangioma, sclerosed or hyalinized

hemangioma, as well as hemangiomas occurring on a background of hepatic steatosis

and cirrhosis. Again, knowledge of these variant types of hemangiomas can prevent

against misdiagnosis of these lesions in the clinical setting.

Introduction

Hemangioma represents the most common benign liver tumor, with an estimated

incidence of 5–20 % in the general population [1, 2]. Although hemangiomas can

occur in both sexes at all ages, middle-aged women are more frequently affected,

perhaps reflecting the causative effect of female sex hormones. Hepatic heman-

giomas are commonly identified in asymptomatic patients during imaging studies

performed for unrelated reasons [3]. In a minority of cases, larger lesions may
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produce signs and symptoms related to mass effect, such as a palpable upper

abdominal mass, abdominal discomfort, or pain. Sudden onset with acute pain

owing to spontaneous or traumatic rupture has been sporadically described in larger

lesions. Large hemangiomas can also present with thrombocytopenia and consump-

tive coagulopathy.

Pathology

Hemangiomas are usually solitary, although lesions can be multiple in approxi-

mately 15% of cases. At macroscopic inspection, hemangiomas appear as flat, well-

demarcated, lesions of red-blue color, varying in size from few millimeters to

several centimeters [4]. Hepatic hemangiomas are more commonly peripheral in

location, with a subcapsular location inmany cases. Organized thrombi, fibrosis, and

calcification may be noted at gross inspection, particularly in the central area of

larger lesions. Occasionally, hemangiomas may undergo sclerosis, presenting as a

firm, gray-white nodule of fibrous tissue at inspection (the so-called sclerosed

hemangioma). Microscopically, hemangiomas consist of a tangle of cavernous

vascular spaces lined by flattened endotheliumwith minimal intervening connective

tissue.

Association of hemangioma with other benign liver lesions, such as focal

nodular hyperplasia and hepatic adenoma, has been described.

Imaging Techniques

Ultrasonography

At grayscale ultrasonography (US), the typical appearance of hepatic hemangioma

is a homogeneous, hyperechoic mass with well-defined margins and posterior

acoustic enhancement [5] (Fig. 1). Occasionally, small (<3 cm) lesions may

demonstrate a thick hyperechoic rim with a central hypoechoic region that,

according to some authors, may correspond to areas of previous hemorrhagic

necrosis, scarring, or myxomatous changes [6]. Color and power Doppler imaging

has limited value in the diagnosis of hepatic hemangioma.

Contrast-enhanced US can be performed to help in the characterization of

hemangiomas that present equivocal imaging findings on grayscale US [7].

Hemangiomas demonstrate a reproducible and specific enhancement pattern at

contrast-enhanced US that closely reflect the imaging appearance with other

contrast-enhanced cross-sectional imaging techniques. This includes demonstration

of peripheral nodular enhancement of the lesion in the arterial phase that expand in

a centripetal pattern during the hepatic venous phase and beyond, often progressing
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to complete fill-in of the lesion. Although the speed of enhancement may differ in

different lesions, likely reflecting differences in the circulatory time of contrast

material in various lesions, the degree of enhancement of the peripheral nodules

classically exceeds that of the adjacent liver parenchyma. This sustained enhance-

ment, in which the lesion has an echogenicity equal to or greater than that of the liver

through the portal venous phase and beyond, is a requisite for a confident diagnosis.

Complete enhancement does not always occur, especially in large lesions, which

often undergo central thrombosis of the intralesional venous sinusoids.

Multidetector-Row Computed Tomography

With the recent advent of multidetector-row computed tomography (MDCT)

scanners, substantial anatomic volumes can be acquired within a short scan time,

with submillimeter section thickness and virtually no penalty in increased radiation

dose. With the assistance of test bolus or bolus-tracking techniques for monitoring

the contrast material bolus transit time, these technologic advances have led to

image acquisition during peak vascular enhancement, with almost uniform

enhancement along the entire scanned volume, reduced motion artifacts, and the

capability to generate high-resolution reformations in any desired plane. As a result,

the incidental detection of hemangiomas in an asymptomatic patient has become

Fig. 1 Forty-five-year-old female who presents for liver ultrasound due to right upper abdominal

pain. (a) Grayscale sonographic image demonstrates a hyperechoic lesion in the right hepatic lobe

(arrow) with imaging characteristics of a hemangioma. (b) Color Doppler imaging of the lesion

demonstrates no substantial central flow within the lesion and some peripheral vascularity. This

appearance is common for hemangiomas and is likely related to the very slow blood flow within

the central dilated vascular channels of the lesion
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a relatively common finding during radiologic examinations performed for

indications other than evaluation for liver disease. The main goal of imaging is to

firmly establish a diagnosis to avoid unnecessary, aggressive management and

to minimize patient distress and anxiety.

At precontrast CT, hemangiomas manifest as a hypoattenuating lesion relative to

the liver. However, because hemangioma may be hyperattenuating in the setting of

diffuse fatty liver disease, lesion’s isoattenuation relative to aorta and intrahepatic

vessels has been used as a more reliable finding for the diagnosis of hemangioma on

precontrast CT. Central calcifications may occur in giant hemangiomas and are

better identified before intravenous administration of iodinated contrast media.

At contrast-enhanced CT, hemangiomas classically show peripheral, discontinu-

ous, nodular enhancement, with centripetal progression of lesion’s enhancement

(Fig. 2). The enhancing areas of hemangiomas are isoattenuating to aorta during the

hepatic arterial phase and to the blood pool during the hepatic venous and delayed

phases [5, 8]. When all typical criteria are observed, lack of complete lesion

enhancement on the delayed-phase imaging should not dissuade from the diagnosis

of hemangioma. Giant hemangiomas usually lack complete enhancement on

delayed-phase imaging owing to thrombosis or sclerosis of the central portion of

the tumor or insufficient imaging time to complete lesion filling.

In rare circumstances, small hemangiomas may demonstrate very slow enhance-

ment following administration of intravenous contrast material, showing persistent

hypoattenuation relative to the liver on all imaging phases. This uncommon finding

has been explained as a slow fill-in of the large vascular spaces of the lesion.

Identification of even a single small focus of enhancement (also known as the

“central dot sign”) allows confident diagnosis in some of these atypical lesions [9].

Magnetic Resonance Imaging

With the recent introduction of fast imaging sequences that allow breath-hold

imaging of the liver during short acquisition times (less than 20 s), and substantial

reduction in the cost per examination, MR imaging has been advocated by some as

the modality of choice in the noninvasive work-up of focal liver lesions. Compared

to CT, major advantages of MR imaging include higher soft-tissue contrast resolu-

tion, greater sensitivity to intravenous gadolinium-based contrast agents, excellent

depiction of fluid-containing structures (e.g., the biliary tree, gallbladder, or cystic

lesions), and the absence of ionizing radiation. The latter attribute of MR imaging

can be an effective strategy to limit the radiation burden from CT examinations,

most importantly in children and young adults.

Most hepatic hemangiomas can be confidently characterized at MR imaging,

using a combination of T2-weighted and T1-weighted sequences before and after

contrast material administration. The hallmark of these lesions is the very long T1

and long T2 values derived from the blood pooling within the vascular channels,
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Fig. 2 Seventy-four-year-old male with no significant past medical history presents for CT of the

abdomen and pelvis for follow-up of a pancreatic cystic lesion. (a, b) Axial contrast-enhanced CT

(CECT) images of the liver, acquired in the arterial and portal venous phases, respectively, show a

left hepatic lobe lesion with progressive centripetal nodular enhancement (arrow). (c) Axial

T2-weighted (T2W) 3D fast spin echo (FSE) with fat saturation (FS) reveals the lesion in the

left hepatic lobe to be homogeneously hyperintense (arrow) relative to the background liver. (d, e)
Axial T1-weighted (T1W) 3D gradient recalled echo (GRE) images with FS acquired in the portal

venous and late venous phases (approximately 70 and 120 s after administration of Gd-BOPTA,

respectively) show progressive peripheral nodular enhancement within the lesion (arrow), similar

to the CT enhancement pattern. (f) Axial T1W 3D GRE with FS image acquired in the equilibrium

phase (approximately 5 min after administration of Gd-BOPTA) shows complete fill-in of the

lesion (arrow), confirming that it is a hemangioma
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which is responsible for lesion’s low signal intensity on T1-weighted images and

markedly high signal intensity on T2-weighted images. Many studies have

emphasized the importance of acquiring heavily T2-weighted imaging in the

diagnosis of hepatic hemangiomas at imaging [10]. While the use of fat suppression

increases the conspicuity of these lesions on T2-weighted images, this improvement

is not necessarily accompanied by an improved characterization of these liver

tumors. Although less common, metastases from neuroendocrine tumors, mucinous

colorectal cancer, and, occasionally, breast cancer may also manifest high signal

intensity on T2-weighted images, thus mimicking hepatic hemangioma. Although

correlation with lesion characteristics on other imaging sequences allows confident

differential diagnosis, percutaneous lesion biopsy may be still necessary in a small

number of indeterminate cases.

With recent advances in technology, diffusion-weighted (DW) MR imaging has

been increasingly used in abdominal imaging applications, including liver lesion

characterization. Black-blood diffusion images (using low b values) allow suppres-

sion of the signal from the intrahepatic vessels improving detection of focal liver

lesions, as compared to a standard T2-weighted sequence. This improvement is

related to improved image contrast and lack of blurring with single-shot spin-echo

echo-planar imaging [11]. In addition, preliminary evidence suggests that the

diffusion information provided by imaging at higher b values may also improve

characterization of focal liver lesion. Previous studies showed that hepatic

hemangioma (and simple hepatic cysts) manifest a typical imaging pattern

on DW imaging, including high signal intensity on DW images at low b values

(e.g., b ¼ 0 s/mm2), strong signal intensity on DW images at high b value (e.g.,

b ¼ 500 s/mm2), and substantially higher ADC values relative to the background

liver. This appearance is remarkably different from that of malignant liver

neoplasms, which classically demonstrate mild to moderate hyperintensity on

DW images at low b values, which persist at higher b values. ADC values of

malignant liver neoplasms are also typically lower compared with those of the

surrounding liver parenchyma.

The enhancement pattern of hepatic hemangioma on contrast-enhanced MR

imaging using conventional extracellular gadolinium contrast agents is comparable

to that seen at multiphasic contrast-enhanced CT (Fig. 3). The greater sensitivity of

MR to intravenous gadolinium-based contrast agents, particularly with the use

of optimized fat-suppressed T1-weighted sequences, may improve visualization

of smaller peripheral foci of enhancement in small hemangiomas with slow flow

and conceivably result in better characterization of these lesions.

More recently, the introduction into daily clinical practice of hepatocyte-specific

gadolinium-based MR contrast media has offered the possibility to simultaneously

provide information of a standard MR imaging examination with the additional

functional data during the liver-specific phase of imaging. The combination of

functional and morphologic information improves the detection and characteriza-

tion of liver tumors. Gadolinium benzyloxypropionictetraacetate, or Gd-BOPTA

(MultiHance, Bracco Diagnostics Inc., Princeton, NJ), and gadolinium ethoxy-

benzyl diethylenetriaminepentaacetic acid, or Gd-EOB-DTPA (Eovist/Primovist,
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Fig. 3 Thirty-nine-year-old female who presents for further evaluation with MR for liver lesion

seen on ultrasound. (a) Grayscale sonographic image demonstrates a hyperechoic lesion in the

right hepatic lobe without any evidence of a hypoechoic halo. (b) Axial T2W FSE with FS image

prior to the administration of Gd-BOPTA reveals a large hyperintense lesion in the posterior

segment of the right hepatic lobe (arrow) with area of increased signal centrally. (c) Axial T1W

3D GRE with FS image acquired in the arterial phase (approximately 25 s after administration of

Gd-BOPTA) shows peripheral nodular enhancement with this lesion. (d) Axial T1W 3D GRE

with FS image acquired in the portal venous phase (approximately 70 s after administration of

Gd-BOPTA) shows some increased nodular enhancement of the lesion. (e) Axial T1W 3D GRE

with FS image acquired in the late venous phase (approximately 3 min after administration of

Gd-BOPTA) shows the lesion to progressively fill in with contrast. (f) Axial T1W 3D GRE with

FS image acquired in the delayed phase (approximately 10 min after administration of

Gd-BOPTA) shows the lesion to nearly completely fill with contrast. This is the characteristic

appearance of hemangiomas using extracellular contrast agents. Note that the blood pool remains

bright on these images, compatible with the fact that hemangiomas will follow the signal of the

blood pool
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Bayer Pharmaceuticals, Wayne, NJ), are two commonly used examples of this

category of contrast agent. Gd-EOB-DTPA, which was approved by US Food and

Drug Administration (FDA) for focal liver lesion detection and characterization in

2008, has a substantially greater uptake by the hepatocyte and excretion through the

hepatobiliary pathway compared to Gd-BOPTA (approximately 50 % compared to

5 % in patients without impaired hepatic function) [12]. This contrast dynamic

characteristics result in stronger and more rapid enhancement of the liver and biliary

system during the hepatobiliary phase, with a peak enhancement approximately

20 min after contrast material injection [13–15] compared to 40–120 min for

gadobenate dimeglumine [16–20]. While early imaging during the hepatobiliary

phase is beneficial, theoretically leading to improved workflow considerations [21]

and possible decreased examination costs due to the potential ability to characterize

lesions in a single MR time slot, the rapid hepatic uptake of Gd-EOB-DTPA may

potentially create a pitfall in the assessment of the enhancement pattern of hepatic

hemangiomas [22]. Recent evidence has shown that these lesions are commonly

hypointense relative to the high signal intensity background liver on images

acquired during the delayed and, in some cases, the portal venous phases. This

appearance can be confusing and be potentially misinterpreted as evidence of

washout within a lesion, a finding commonly associated with other liver lesions

such as adenoma, hepatocellular carcinoma, and liver metastases (Figs. 4, 5, and 6).

Consideration of imaging characteristics during the other imaging phases of

enhancement as well as on the precontrast T2-weighted and DW images is critical

for the confident differential diagnosis of these hepatic lesions.

Of note, our preliminary clinical experience suggests that the enhancement

pattern of hemangiomas in not substantially altered from conventional extracellular

agents when using some of the newer blood pool contrast agents, such as

gadofosveset trisodium (Ablavar, Lantheus Medical Imaging, North Billerica,

Massachusetts, USA) (Fig. 7). Hemangiomas are again noted to follow the blood

pool, a finding consistent with the pathologic composition of hemangioma,

constituted almost entirely by multiple vascular channels with minimal interposed

connective fibrous tissue.

Nuclear Medicine

Technetium-99m pertechnetate-labeled red blood cell scintigraphy was previously

regarded as a reference standard for the diagnosis of hemangiomas. Because

hemangiomas have increased blood volume relative to the liver, they manifest as

a hot spot on blood pool scanning (30–50 min after injection of the radiotracer).

130 R.T. Gupta and D. Marin



Fig. 4 Thirty-eight-year-old female who presents for MR imaging to further evaluate a liver

lesion seen on ultrasound. (a) Grayscale sonographic image demonstrates a homogeneously

hyperechoic lesion in the right hepatic lobe (arrow) adjacent to the right kidney. (b) Coronal

half-Fourier acquisition single-shot turbo spin-echo (HASTE) images reveal a corresponding well-

circumscribed T2 hyperintense lesion in the right hepatic lobe (arrowhead). (c) Axial T1W 3D

GRE with FS image acquired in the arterial phase (approximately 25 s after administration of

Gd-EOB-DTPA) shows a small amount of peripheral nodular enhancement within this lesion

(arrow). (d) Axial T1W 3D GRE with FS image acquired in the portal venous phase (approxi-

mately 70 s after administration of Gd-EOB-DTPA) shows additional high signal within the lesion,

corresponding to progressive enhancement (arrow). (e) Axial T1W 3D GRE with FS image

acquired in the hepatocyte phase (approximately 10 min after administration of Gd-EOB-DTPA)

shows the lesion to be hypointense to the liver parenchyma (arrow), related to the decreased dose

of Gd-EOB-DTPA versus conventional extracellular agents, shorter plasma half-life as well as

increased hepatobiliary uptake [22]

Multimodality Approach to Detection and Characterization of Hepatic Hemangiomas 131



Fig. 5 Thirty-eight-year-old female who presents abdominal MR examination due to elevated

total serum bilirubin. (a, b) Axial T1W 3D GRE with FS images at two different levels of the liver

acquired in the arterial phase (approximately 25 s after administration of Gd-EOB-DTPA) shows a

lesion with peripheral nodular enhancement in the posterior segment of the right hepatic lobe

(arrow) as well as a hyperenhancing lesion in the hepatic dome (arrowhead). (c, d) Axial T2W
FSE with FS images at the same levels in the liver reveals a hyperintense lesion in the right hepatic

lobe (arrow) corresponding to the first lesion on the arterial phase images. Note that the
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Atypical Appearances of Hepatic Hemangioma

Flash-Filling Hemangioma

Small hemangiomas frequently have atypical features that make their diagnosis

challenging at imaging. In approximately 40 % of cases, small hemangiomas can

demonstrate vivid and uniform enhancement during the late hepatic arterial phase

(the so-called flash-filling hemangioma pattern) [23]. This appearance is frequently

associated with lack of lesion’s isoattenuation relative to the blood pool during

contrast-enhanced imaging. These imaging findings may overlap with those of

other hypervascular liver tumors (most notably, hepatocellular carcinoma and

hypervascular liver metastases [24]), thus precluding a confident diagnosis of

these lesions at imaging (Fig. 8). Demonstration of vivid and homogeneous

enhancement similar to the aorta during the late hepatic arterial phase and high

signal intensity on T2-weighted MR images provide useful diagnostic clues in the

diagnosis of these challenging lesions. Areas of transient perilesional enhancement

during the hepatic arterial phase caused by arteriovenous shunt have been described

in association with flash-filling hemangiomas and other hypervascular liver

tumors [25].

Grayscale US has a limited role in the diagnosis of flash-filling hemangiomas.

A large number of lesions demonstrate atypical imaging findings (i.e., hypoechoic

appearance relative to the liver). On the other hand, the high temporal resolution of

real-time contrast-enhanced US may allow better visualization of small peripheral

areas of early enhancement with rapid centripetal progression in some flash-filling

hemangiomas, thus allowing confident characterization of the lesion.

⁄�

Fig. 5 (continued) hyperenhancing focus more superiorly in the liver is not definitely seen on the

T2W image (arrowhead denoting the region of interest). (e, f) Axial T1W 3D GREwith FS images

acquired in the portal venous phase (approximately 70 s after administration of Gd-EOB-DTPA)

shows more nodular enhancement of the first lesion in the posterior segment of the right hepatic

lobe and near isointensity of the second lesion in the hepatic dome to the surrounding parenchyma.

(g, h) Axial T1W 3D GRE with FS image acquired in the hepatocyte phase (approximately 15 min

after administration of Gd-EOB-DTPA) shows the posterior right hepatic lesion to be relatively

hypointense compared to the hyperintense liver parenchyma. The lesion in the hepatic dome is

mildly hyperintense to the surrounding liver parenchyma. Based on these signal characteristics, the

lesion in the posterior right hepatic lobe represents a hemangioma and the lesion in the hepatic

dome represents focal nodular hyperplasia (FNH). The FNH is hyperintense to the liver paren-

chyma in the delayed hepatocyte phase with Gd-EOB-DTPA due to the fact that it contains

hepatocytes and malformed biliary ductules [21]
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Fig. 6 Seventy-five-year-old female with history of gastrointestinal stromal tumor and liver

lesion. MR examinations were performed with Gd-BOPTA and Gd-EOB-DTPA approximately

7 months apart. (a) Axial T1W 3D GRE with FS image acquired in the arterial phase (approxi-

mately 25 s) after administration of Gd-BOPTA shows a hypointense lesion in the right hepatic

lobe with centripetal nodular enhancement (arrow). (b) Axial T1W 3D GRE with FS image

acquired in the arterial phase (approximately 25 s after administration of Gd-EOB-DTPA)

shows similar findings as the study using Gd-BOPTA. (c, d) Axial T1W 3D GRE with FS images
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Giant Hemangioma

Hemangiomas measuring 4 cm or greater in diameter have been also referred to as

giant hemangiomas [5, 26]. Giant hemangiomas are often heterogeneous on all

imaging modalities, due to internal areas of hemorrhage, thrombosis, extensive

hyalinization, liquefaction, and fibrosis. After intravenous administration of con-

trast material, the typical early, peripheral, globular enhancement of hemangiomas

is generally observed in these large lesions, allowing confident diagnosis at imag-

ing. Incomplete contrast enhancement of the lesion on delayed imaging is not

uncommon due to central cleft-like area of cystic degeneration and stellate fibrous

septa (Fig. 7).

Sclerosed or Hyalinized Hemangioma

Sclerosed or hyalinized hemangiomas are rare [27, 28]. Some authors have

suggested that hyalinized hemangiomas represent an end stage of hemangioma

involution [29]. Sclerosed hemangiomas demonstrate atypical features, including

minimal increase in T2 signal intensity and lack of early enhancement on dynamic

contrast-enhanced image (Figs. 9 and 10). Diagnosis cannot always be made

at imaging, and liver biopsy may occasionally be necessary for definitive

confirmation.

⁄�

Fig. 6 (continued) acquired in the portal venous phase approximately 90 s after administration of

Gd-BOPTA (c) and Gd-EOB-DTPA (d) shows the lesion to demonstrate progressive fill-in with

contrast (arrow). Some relatively increased signal noted in the liver parenchyma is also noted on

(d). (e, f) Axial T1W 3D GRE with FS image acquired approximately 8 min after administration of

Gd-BOPTA (e) shows the lesion to be substantially brighter than the adjacent liver parenchyma.

This is in contrast to the findings on (f) which is an axial T1W 3D GRE with FS image acquired

approximately 8 min after administration of Gd-EOB-DTPA. In this image, the lesion is noted to

be hypointense to the adjacent liver parenchyma. Note also the markedly different signal of the

hepatic parenchyma between the comparison studies acquired at similar time points with the two

contrast agents. This likely indicates that the liver is in the hepatocyte phase with Gd-EOB-DTPA

(f) but not yet in the hepatocyte phase with Gd-BOPTA (e). This is an expected finding based on

the pharmacokinetics of these contrast agents. (g) Axial T1W 3D GRE with FS image acquired

21 min after administration of Gd-EOB-DTPA shows the effects of the negative contrast to noise

ratio of the hemangioma to the liver in the delayed phase (figures and legend reprinted from

European Journal of Radiology, Volume 81(10), Gupta RT, Marin D, Boll DT, et al., “Hepatic

hemangiomas: Difference in enhancement pattern on 3T MR imaging with gadobenate

dimeglumine versus gadoxetate disodium,” pp. 2457–2462, Copyright 2012 with permission of

Elsevier)
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Fig. 7 Forty-seven-year-old female who presents follow-up of liver lesion seen on CT. Patient

underwent MR examination approximately 6 months after initial scan using gadofosveset

trisodium (Ablavar, Lantheus Medical Imaging, North Billerica, Massachusetts, USA). (a)

Noncontrast-enhanced axial CT (NECT) of the liver reveals a large low-attenuation lesion in the



Hemangioma in Fatty Liver

Severe fatty liver may confound the assessment of the enhancement pattern of focal

hepatic lesions. In severe fatty liver, the attenuation of hemangioma may reverse to

even hyperattenuation relative to the liver on precontrast CT. Hemangiomas may

also be accompanied by a focal spared zone as seen in malignant tumors in fatty

liver. On grayscale US, this finding could mimic the hypoechoic halo seen in

metastatic liver lesions. MR imaging with the combination of T2-weighted imaging

and fat-suppressed T1-weighted imaging before and following administration of

gadolinium contrast agents almost invariably allows confident diagnosis of heman-

gioma in the setting of diffuse fatty liver disease.

Hemangioma in Cirrhotic Liver

Hemangiomas are less commonly detected or are generally smaller when occurring

within a cirrhotic liver [27]. This observation is likely related to a progressive

shrinkage of the lesion in the fibrotic liver. Capsular retraction may occur over

peripheral hemangiomas that regressed [27, 28]. Larger lesions typically demon-

strate classic imaging characteristics, thus allowing confident diagnosis at cross-

section imaging. Smaller hemangiomas, on the other hand, frequently demonstrate

an atypical enhancement pattern, including early homogenous enhancement during

the arterial phase, which could not always reflect the blood pool on more delayed

imaging phases. In the setting of cirrhosis, this appearance is concerning for

hepatocellular carcinoma. The multiparametric characteristics of MR imaging

could help in the differential diagnosis of these challenging cases.

⁄�

Fig. 7 (continued) right hepatic lobe with some central dystrophic calcifications. (b) Axial CECT

of the liver, acquired in the portal venous phase, shows the right hepatic lobe lesion with

centripetal nodular enhancement. (c) Axial CECT of the liver, acquired approximately 5 min

after administration of intravenous contrast media, shows the right hepatic lobe lesion to be

progressively filling in with contrast, confirming the diagnosis of hemangioma. (d) Axial T2W

3D FSE with FS image prior to the administration of intravenous gadolinium reveals a large

homogenously hyperintense lesion in the right hepatic lobe. (e) Axial T1W 3D GRE with FS

image acquired in the arterial phase (approximately 25 s after administration of gadofosveset)

shows the lesion in the right hepatic lobe beginning to show subtle peripheral nodular enhance-

ment. (f) Axial T1W 3D GRE with FS image acquired in the portal venous phase (approximately

70 s after administration of gadofosveset) shows the lesion in the right hepatic lobe demonstrating

increased peripheral nodular enhancement. (g) Coronal T1W 3D GRE with FS acquired approxi-

mately 11 min after administration of gadofosveset shows puddling of contrast and near-complete

fill-in of the right hepatic lobe lesion. Note how the lesion follows the blood pool as is character-

istic of hemangiomas
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Fig. 8 Fifty-seven-year-old female with past medical history significant for colorectal carcinoma

presents with an incidental hepatic lesion seen on CT. (a) Axial CECT images of the liver,

acquired in the portal venous phase, shows a hyperdense lesion in the right hepatic lobe

(arrow). (b) Axial T2W FSE with FS image reveals the lesion in the right hepatic lobe to be
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Recommendations for Follow-up or Surgery

Hepatic hemangiomas virtually never cause complications and should be treated

conservatively. In rare circumstances, larger lesions may become clinically symp-

tomatic, requiring surgical enucleation or resection. If the appearance is classic for

hepatic hemangioma at US, no further evaluation should be required in patients

without a history of underlying malignancy. MR imaging should represent the

modality of choice for the characterization of atypical lesions or lesions that

occur in the setting of chronic liver disease or if there is any clinical concerns for

metastatic disease.

Despite the high diagnostic accuracy of imaging in the diagnosis of hepatic

hemangioma, a minority of lesions may still remain indeterminate due to atypical

findings at imaging. In the absence of prior evidence of stability, 6–12 months

imaging follow-up is frequently recommended in patients with a low index of

suspicion for liver malignancy. While the large majority of hemangiomas demon-

strate a stable appearance at follow-up, a slight interval increase in size of a lesion

has been occasionally described and should not be necessarily regarded as evidence

of malignancy. Percutaneous liver biopsy may be indicated for the definitive

diagnosis of atypical hemangiomas in patients at high risk for malignancy. This

procedure is not associated with an increased complication rate when compared to

percutaneous biopsy of other liver lesions.

Conclusions

Hemangiomas are the most common benign hepatic tumor and represent a common

incidental finding on routine imaging examinations of the liver. The majority of

lesions demonstrate typical imaging finding on grayscale US and no further inves-

tigation is needed in patients with low risk of malignancy. In some cases, further

⁄�

Fig. 8 (continued) well circumscribed, mildly lobulated, and homogeneously hyperintense

(arrow). (c) Axial T1W 3D GRE with FS image acquired in the arterial phase (approximately

25 s after administration of Gd-EOB-DTPA) shows the lesion to be hyperenhancing (arrow). (d)
Axial T1W 3D GRE with FS image acquired in the portal venous phase (approximately 70 s after

administration of Gd-EOB-DTPA) shows the lesion to be persistently hyperintense to the

surrounding liver parenchyma (arrow). (e) Axial diffusion-weighted imaging (DWI) and

corresponding automated diffusion coefficient (ADC) maps show the lesion to not demonstrate

restricted diffusion, but rather “T2 shine through” as it is bright on both DWI and ADC. This

supports the diagnosis of a flash-filling hemangioma as opposed to a metastatic focus, which would

likely demonstrate restricted diffusion (i.e., bright on DWI, dark on ADCmaps). (f) Axial T1W 3D

GRE with FS image acquired in the hepatocyte phase (approximately 15 min after administration

of Gd-EOB-DTPA) shows the lesion to be hypointense to the liver parenchyma (arrow), compati-

ble with the expected appearance of a hemangioma using this MR contrast agent
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Fig. 9 Forty-five-year-old female who presents for further evaluation with MR for liver lesion

seen on CT. (a) Axial T2W 3D FSE with FS image prior to the administration of Gd-EOB-DTPA

reveals a large hyperintense lesion in the right hepatic lobe with area of increased signal centrally.

This T2 hyperintensity with focal-increased signal centrally can be seen with sclerosing

hemangiomas. (b) Axial T1W 3D GRE with FS image acquired in the arterial phase (approxi-

mately 25 s after administration of Gd-EOB-DTPA) shows peripheral nodular enhancement that is

characteristic of hemangiomas. (c) Axial T1W 3D GRE with FS image acquired in the portal

venous phase (approximately 70 s after administration of Gd-EOB-DTPA) shows progressive fill-

in of the lesion. (d) Axial T1W 3D GRE with FS image acquired in the hepatocyte phase

(approximately 25 min after administration of Gd-EOB-DTPA) shows the lesion to be relatively

hypointense compared to the hyperintense liver parenchyma. The central portion of the lesion is

more hypointense compared to the surrounding lesion, likely related to sclerosis. (e) Grayscale

sonographic image with color Doppler signal of the lesion demonstrates similar morphology as

noted on the MR
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Fig. 10 Fifty-six-year-old female with past medical history significant for breast cancer presents

for further evaluation of hepatic lesions seen on PET-CT. Patient underwent MR examination

immediately after initial PET-CT scan using Gd-EOB-DTPA for lesion characterization. (a, b)

Axial CECT images through the liver in the portal venous phase demonstrate at least four

low-attenuation lesions in the liver, including a lesion in the lateral segment of the left hepatic

lobe (curved arrow) and two lesions in the posterior segment of the right hepatic lobe (straight
arrows). (c, d) Positron-emission tomographic (PET) images at the same level as the CT images in

(a, b) reveal no substantial FDG uptake in the expected location of the left hepatic lobe lesion

(curved arrow) and right hepatic lobe lesions (straight arrows). (e, f) Axial T2W 3D FSE with FS

image reveals the lesions to be hyperintense. (g) Axial T1W 3D GRE with FS image acquired in

the portal venous phase (approximately 70 s after administration of Gd-EOB-DTPA) shows the

lesions with peripheral nodular enhancement. (h) Axial T1W 3D GRE with FS image acquired in

the late venous phase (approximately 3 min after administration of Gd-EOB-DTPA) shows the

lesions with progressive fill-in of contrast. (i, j) Axial T1W 3D GRE with FS images acquired in

the hepatocyte phase (approximately 15 min after administration of Gd-EOB-DTPA) shows the

lesions to be hypointense to the hyperintense liver parenchyma. Note that the left hepatic lobe

lesion (curved arrow) is more hypointense centrally which could suggest that this is a sclerosing

hemangioma. This is in contrast to the lesions in the right hepatic lobe (straight arrows) which
look more homogeneously hypointense; this likely indicates that these lesions are not sclerosed

and are following the blood pool signal



imaging investigation is necessary to establish an accurate diagnosis of hemangi-

oma. In the absence of a relative or absolute contraindication, MR imaging is

generally preferred over contrast-enhanced multiphase CT, due to the higher diag-

nostic performance and lack of ionizing radiation exposure to the patient.

Radiologists should be familiar with the potentially confusing enhancement pattern

of hepatic hemangiomas at contrast-enhanced MR using new liver-specific contrast

agents. Imaging follow-up or percutaneous liver biopsy is occasionally necessary for

the diagnosis of the small number of lesions that remain indeterminate at imaging.
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Ultrasound Liver Surface and Textural

Characterization for the Detection

of Liver Cirrhosis

Ricardo Ribeiro, Rui T. Marinho, Jasjit Suri, and J. Miguel Sanches

Abstract This chapter addresses the problem of liver cirrhosis classification via

ultrasound imaging. For this classification problem, a liver semiautomatic contour

segmentation algorithm to characterize the morphology and a textural feature

extraction scheme for the characterization of liver parenchyma are proposed.

Phase congruency is used to enhance liver contour and help medical doctor in the

inspection of liver surface. The regularity of the enhanced liver contour is

characterized from geometrical features that are used together with US textural

features in the classification process. The classification of the proposed method is

tested by using support vector machine, Bayesian, Parzen and k-nearest neighbor
classifiers and their performance are compared. The Bayes classifier outperformed

the compared classifiers, attaining an overall accuracy of 87.22%, with a detection

rate of 88.52 % and 86.11 % for the non-cirrhotic and cirrhotic class, respectively.
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Introduction

Chronic liver disease (CLD) is an oncogenic disease where most likely

developments, if not treated, are hepatocellular carcinoma (HCC) or death.

Major progress in the knowledge and management of liver disease has been

observed in the past 30 years; however, still 29 million people in the European

Union suffer from a chronic liver condition [1].

Cirrhosis is the end-stage of every CLD [2], defined as the histological develop-

ment of regenerative nodules surrounded by fibrous bands in response to chronic

liver injury [3] and has a variety of clinical manifestations and complications [4].

The most probable outcome of cirrhosis is HCC, which is the fifth most common

cause of cancer in Europe [1]. There are 14–26 new cirrhosis cases per 100,000

inhabitants per year or an estimated 170,000 deaths per year [1].

Four leading causes of cirrhosis have been identified, namely chronic alcohol

consumption, chronic viral hepatitis B, chronic viral hepatitis C, and non-alcoholic
fatty liver disease (NAFLD). If detected in time, each of these causes is responsive

to treatment. The problem is, in part, related to the fact that CLD is characterized by

a silent and asymptomatic phase. Thus, the solution relies on early detection and

staging.

Liver fibrosis results from a repeated healing response, leading to an abnormal

fibrogenesis (connective tissue production and deposition). The progression rate of

fibrosis depends on the disease cause, environmental and host factors. Cirrhosis is

an advanced stage of liver fibrosis that is accompanied by distortion of the hepatic

vasculature. It leads to hemodynamic changes, compromising exchange between

hepatic sinusoids and hepatocytes [3]. The major clinical consequences of cirrhosis

are impaired hepatocyte (liver) function, an increased intrahepatic resistance (portal

hypertension) and the development of HCC [3].

As the disease progresses, portal pressure increases and liver function decreases,

resulting in the development of ascites, portal hypertensive gastrointestinal (GI)

bleeding, encephalopathy, and jaundice. The development of any of these compli-

cations marks the transition from a compensated to a decompensated phase [2].
Decompensated cirrhosis is defined by the presence of ascites, variceal bleeding,

encephalopathy, and/or jaundice. Ascites is considered the landmark sign of

decompensated cirrhosis. Transition from a compensated to a decompensated

stage occurs at a rate of 57% per year [2].

The survival of patients with compensated cirrhosis (> 12 years) is significantly

longer than that of decompensated patients (� 2 years). Death in compensated

patients occurs mostly after transition to a decompensated stage [2].

In CLD, clinical and biochemical evaluation are often irrelevant. Thus, liver
biopsy (LB) is considered a key role for the diagnosis and follow-up of CLD,

particularly in HCV chronic infected patients. The role of LB is to confirm the

diagnosis of chronic hepatitis, to assess the necro-inflamatory activity (grading) and

the severity of fibrosis (staging), to exclude another hepatopathy or an associated

disease, and to certify the diagnosis of cirrhosis (when present) [5]. However, LB is
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an imperfect technique, highly invasive, prone to errors and clinical complications,

with a sensibility ranging 80 % [6]. Also, practical issues are also raised, since the

size of a biopsy specimen, which should be > 2.5 cm in length and between 1.2 to

1.8 mm in diameter, representing only a 1∕50000 of the total liver mass.

Clinical trends are leading to alternative, simple, and noninvasive methods.

A direct consequence of this trend is a decrease in the performed LB of more

than 90 %. The main advantages of these methods are the good cost/effective

relation and wide accessibility. Among the noninvasive methods, ultrasound

(US) is considered very promising and it is typically a frontline exam.

Cirrhosis is detected on US images by liver surface coarseness, portal mean flow

velocity fromDoppler, and changes of the liver parenchyma observed on the speckle

textural characteristics [7]. As in clinical examination, US liver surface coarseness is

a reliable indicator [8], directly correlated with the gross appearance of the cirrhotic

liver, as seen at laparoscopy [9]. This morphological feature is best observed

when ascites is present or when a high-frequency linear transducer (5–12 MHz) is

used [9–13].

Most of the proposed US CAD systems for cirrhosis detection are based on linear

transducers instead of the convex ones. Linear US transducers are able to achieve

higher frequencies and thus increase image spatial resolution, enhancing the per-

ception of image edges and details (e.g., liver surface) [14, 15], while reducing

speckle noise. Nevertheless, Gaiani et al. [8] has reported the ability to detect this

surface irregularity with low-frequency convex transducer (3.5–5 MHz). This pos-

sibility will be further studied in this work, since low-frequency convex transducers

are normally used in abdominal US exams, performed in clinical practice.

Visual inspection of liver surface is the preferred approach in the majority of the

studies. Table 1 summarizes the visual features used to characterize liver surface

contour via US images. As referred in [16], these approaches are subjective,

non-reproducible, and qualitative. Berzigotti et al. [11] is an example of the extrac-

tion of quantitative features, directly from the US image, with a dedicated software,

for cirrhosis contour.

The goal of this chapter is to provide objective US morphological assessment of

liver surface and textural information of the liver parenchyma for the detection of

liver cirrhosis. The method is based on common US images (e.g., acquired with a

low-frequency convex transducer), to be as reproducible as possible. To enhance

Table 1 Liver surface contour characteristics used to detect cirrhosis from US images

Class US findings

Normal Hyperechoic straight [10, 12] and regular [12] line, with a thickness

less than 1 mm [10].

Cirrhosis Liver surface with diffuse irregularity [10].

Nodular aspect of the liver surface [13].

Multiple nodular irregularities on the ventral liver freely mobile, during

respiratory excursion [9].

Dotted or irregular line and/or heterogenous liver parenchyma [12].

Curved line superior to 2.04 cm in a straight 2 cm segment line [11].
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liver surface details on US images, while avoiding noise amplification, a

novel enhancement algorithm based on a phase congruency (PC) map computed

from a de-speckled field is presented. This topic will be further discussed in

section “Methods”.

To increase the robustness of the method, US textural features extracted from the

liver parenchyma are combined with the morphological ones. Textural analysis of

US liver parenchyma is a powerful tool for CLD diagnosis and staging. Image

texture may be viewed as a global pattern arising from a deterministic or random

repetition of local subpatterns or primitives. The structure resulting from this

repetition is very useful for discriminating between the contents of the image of a

complex scene [17].

Common features used for liver parenchyma analysis are: (1) textural based,

e.g. first order statistic [18–20], co-occurrence matrix [20–22], wavelet transform

[21, 23] and (2) depth attenuation and intensity related, e.g. attenuation along the

depth [20, 24, 25] and backscattering [20, 24, 25] parameters and coefficients.

In this chapter, we introduce the monogenic decomposition as a feature extractor

from US images of the liver parenchyma, as well as the co-occurrence matrix.

A binomial classification is then considered, cirrhosis or non-cirrhosis, and

several classifiers are used to assess the discriminative power of the selected

features: (1) the support vector machine (SVM), (2) the Bayes classifier, and
(3) the k-nearest neighbor (kNN). Several figures of merit were computed to assess

and compare the performance of each classifier.

The remainder of this chapter is organized as follows. “Methods” formulates

the problem discussed and it is organized in the following topics: “US Image

Pre-processing” introduces the pre-processing algorithm used, the “Liver Surface

Enhancement” describes the methods applied to enhance liver surface, with partic-

ular relevance to the use of phase congruency edge detection on the de-speckle
field; “Liver Surface Detection and Feature Extraction” describes the algorithm

used to detect liver surface and posterior extraction of morphological and textural

features; and “Feature Selection and Classification Procedure” outlines the feature

selection and classification techniques. The experimental results are given in the

“Results” section and discussed in the section “Discussion and conclusions” which

also summarizes the chapter.

Methods

In this section, a detailed description of the algorithms and methods used to

formulate the problem is presented. In short, by using PC algorithm, a liver surface

map is developed from the de-speckle field. Based on this, contour points

are collected and morphological features extracted for cirrhosis detection. The

performances of the detection algorithm are tested with four different classifiers.
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US Image Pre-processing

To eliminate the influence of the US scanner and operator, US images are

normalized and decomposed. The procedure described in [26] to separate the

textural and intensity information within US images is here adopted. In this, an

estimation of the radio frequency (RF) raw data is firstly done based on physical

considerations about the data generation process, namely, by taking into account

the US scanner parameters tuned by the clinician during the US exam.

The estimated RF image is decomposed in de-speckled and speckle fields

according to the following model [26]

yði; jÞ ¼ xði; jÞηði; jÞ; (1)

where η(i,j) are considered independent and identically distributed (i.i.d.) random

variables with Rayleigh distribution. This image describes the noise and textural

information and is called speckle field. In this model, the noise is multiplicative in

the sense that its variance, observed in the original image, depends on the underly-

ing signal, x(i,j). Figure 1 illustrates an example of the decomposition methodology

in a US liver image of a patient with decompensated cirrhosis.

Liver Surface Enhancement

Speckle noise present in US images decreases the discriminative perception of

meaningful details, namely, edges. Besides this difficulty, in clinical practice the

perceived liver capsule and the adjacent overlying membranous structures (perito-

neum, transverse fascia, pre-peritoneal fat) are not always clear and irregularities

due to subfascial or sub-peritoneal pathology may be falsely described as

abnormalities of the liver surface [9].

Fig. 1 Decomposition procedure of US liver parenchyma. (a) Observed B-mode US image.

Estimated (b) de-speckle and (c) speckle fields
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To reduce these drawbacks, the use of the de-speckle field is proposed to outline
liver surface. This field is obtained in a Bayesian framework using a total variation

edge preserving prior, with the ability to maintain the tissue interfaces and, there-

fore, the geometric shape of liver boundaries [26].

PC-based algorithm for edge detection is used to study liver surface detection

accuracy. The results obtained with de-speckle images outperform the ones

obtained with the common methods based on the B-mode US images, directly

provided by the US scanner. Next a short description of the phase congruency

algorithm [27] is given.

Contour regularity/smothness can be characterized from the PC map. PC is

related to the local energy and it is invariant to image brightness and contrast

[28]. Local Energy Model postulates that features are perceived at point in an image

where the Fourier components are maximally in phase [29]. The local Fourier

components at a location, x, in a signal will each have an amplitude Am(x) and a

phase angle ϕm(x).
The magnitude of the vector from the origin to the end point is the local energy,

jE(x)j. The measure of PC developed by Morrone [30] is:

PC ¼ jEðxÞjP
m AmðxÞ (2)

If all Fourier components are in phase, all the complex vectors would be aligned

and the ratio of jE(x)j ¼ ∑mAm(x) would be 1. If there is no PC, the ratio falls to a

minimum of 0 [29].

The wavelet transform is used to obtain frequency information to a point in a

signal. To preserve phase information, linear-phase filters must be used like

non-orthogonal wavelets that are in symmetric/anti-symmetric quadrature pairs.

Let η(x), Ms
e and Ms

o denote the one-dimensional signal, even-symmetric (cosine)

and odd-symmetric (sine) wavelets at scale s, respectively. The response vector,

formed by the responses of each quadrature pair of filters, is as follows,

½esðxÞ; osðxÞ� ¼ ½ηðxÞ�Me
s ; ηðxÞ�Mo

s �: (3)

The amplitude of the transform at a given wavelet scale is given by

AsðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
esðxÞ2 þ osðxÞ2

q
; (4)

and the phase is given by

ϕsðxÞ ¼ atan2ðesðxÞ; osðxÞÞ: (5)

At each point x in the η signal, there is an array of these response vectors, one

vector for each scale of filter. These response vectors form the basis of the localized

representation of the signal, and they can be used in exactly the same way as Fourier

components can be used to calculate PC.
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A difficulty with phase congruency is its response to noise [27]. If the distribu-

tion of the noise response is determined, the noise T is taken to be:

T ¼ μr þ kσr; (6)

where μr and σr describe the mean and standard deviation of the distribution

describing the noise energy response, respectively, and k is typically in the range

2 to 3.

Taking the noise in consideration, the expression for PC is

PC ¼ WðxÞbEðxÞ � TcP
s AsðxÞ þ ε

(7)

where bc denotes that the enclosed quantity is equal to itself when its value is

positive and zero otherwise, W(x) is a weighting function and ε is a small positive

constant to avoid PC to became ill conditioned when all Fourier amplitudes are very

small.

PC extension to a two-dimensional signal requires the formation of a 90 degree

phase shift of the signal, which is accomplished using odd-symmetric filters. As one

cannot construct rotationally symmetric odd-symmetric filters, one is forced to

analyze a two-dimensional signal by applying the one-dimensional analysis over

several orientations and combining the results.

To detect edges at all orientations, a bak of filters must be designed to tile the

frequency plane uniformly. In the frequency plane, the filters appear as 2-D

Gaussians symmetrically or anti-symmetrically placed around the origin, depending

on the spatial symmetry of the filters. The length-to-width ratio of the 2-D wavelets

controls their directional selectivity. This ratio can be varied in conjunction with the

number of filter orientations used in order to achieve an even coverage of the 2-D

spectrum. A more sensitive phase deviation function on which to base the calcula-

tion of PC is

ΔΦsθðx; yÞ ¼ cosðϕsθðx; yÞ � �ϕθðx; yÞÞ � j sinðϕsθðx; yÞ � �ϕθðx; yÞÞ; (8)

where �ϕθðx; yÞ denotes the mean phase angle at orientation θ.
The approach of [27] produces the following equation for 2D phase congruency:

PCðx; yÞ ¼
P

θ

P
s WðxÞbAsθðx; yÞΔΦsθðx; yÞ � TcP

θ

P
s Asθðx; yÞ þ ε

; (9)

PC algorithm [27] was implemented with the following parameters. Six orienta-

tions and five scales were used. The wavelength of the smallest scale filters was

3 pixels, the scaling factor between successive filters was 2. A noise compensation

k value of 2 was used. The cutoff c was set at 0.5 and γ at 10.
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The performance of the PC detector for the original US image and de-speckle
field was analyzed by estimated noise T value and by visual inspection, particularly

inspecting the continuity of the detected contour line. Based on PC noise estima-

tion it is expected that, due to the presence of speckle corruption, the original US

image leads to more blurred definition of liver surface when compared with the

de-splecke field.

Liver Surface Detection and Feature Extraction

PC contour from the de-speckle field is then overlaid on the original US image to

generate a liver surface enhancement. The aim of this overlay image is to aid the

physician in the evaluation and selection of liver contour points. Figure 2 shows

examples of the resultant US liver surface enhanced image obtained from the

conducted experiments.

The liver surface contour is then extracted, for characterization purposes, using

the snake technique proposed by [31], which computes one iteration of the energy-

minimization of active contour models. To initialize the snake, the operator selects

at least four points in the liver surface, as exemplified in Fig. 3.

Liver contour is characterized with respect to spatial coordinates and inclination

angles. Based on the detected liver contour, the following features were extracted:

1. root mean square (rms) of the different angles produced by the points that

characterize the contour, rmsα, where the first point was assumed the reference

point (as shown in Fig. 3),

Fig. 2 Examples of the US liver surface enhanced image. The white arrow indicates the highlight

given to the anterior liver surface, which aids in the inspection of the liver contour. The white star
points to the fat/muscle layers that typically increase the difficulty in a correct identification of the

contour
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2. root mean square of the variation of the points of the contour in the y-axis (image

depth), rmsy,
3. the mean (μ) and variance (σ2) of the referred angles, μα and σα2,
4. the variance of the y-axis coordinates at each point, σy2, and
5. the correlation coefficient of the y-axis coordinates, Ry.

Thus, the morphological feature set, used in this thesis, is composed by a total of

6 features,

Morphological set 2 frmsα; rmsy; μα; σ2α; σ2y ;Ryg:

To increase the discriminative power of the method, textural features extracted

from the US liver parenchyma are also considered for feature selection. From each

speckle field, an ROI, of 128�128 pixels, is manually selected by an expert operator

along medial axis, as exemplified in Fig. 4 with the criteria: (1) representative of

liver parenchyma; (2) avoid major vessels and ligaments; and (3) as superficial as

possible, to avoid US beam distortions. The following textural features are then

extracted.

Fig. 3 Example of the snake method in the de-speckle field: the initialization step (a), the

resulting contour detection (b), and a scheme of the extracted angles and contour points (c)
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Co-occurrence Matrix

A common approach for texture characterization is using the co-occurrence matrix,

which is based on the definition of the joint probability distributions of pairs of

pixels. The second-order histogram is defined as the co-occurrence matrix [32].

The elements of the Co-occurrence tensor,Co ¼ fci;jðΔl;ΔcÞg, describe the gray
level spatial correlation in the image [32]. More precisely, element ci,j(Δl,Δc)

represents the joint probability of the pixel intensities i and j in relative spatial

position of (Δl,Δc) [32] and can be computed as follows

ci;jðΔl;ΔcÞ ¼
XN
l¼1

XM
c¼1

1 ifðηl;c ¼ iÞ ^ ðηlþΔl;cþΔc ¼ jÞ
0 otherwise

(
(10)

For instance, let us assume a pixel distance of 6 and four directions

[0∘, 45∘, 90∘, 135∘]. In this case, the displacement vector, used for co-occurrence

computation, is ðΔl;ΔcÞ 2 fð0; 6Þ; ð�6; 6Þ; ð�6; 0Þ; ð�6;�6Þg. Here, we calculate

the most commonly statistical features, based on [33], namely:

• Contrast: measure the local variations in the co-occurrence matrix,

contrastðΔl;ΔcÞ ¼
X
i;j

i� jj j2ci;jðΔl;ΔcÞ (11)

• Correlation: measure the joint probability occurrence of the specified pixel

pairs,

correlationðΔl;ΔcÞ ¼
X
i;j

i� μið Þ j� μj
� �

ci;jðΔl;ΔcÞ
σiσj

(12)

Fig. 4 Example of correct

positioning of the ROI

within an US image
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• Energy: also known as the angular second moment [20],

energyðΔl;ΔcÞ ¼
X
i;j

ci;jðΔl;ΔcÞ2 (13)

• Homogeneity: measures the closeness of the distribution of elements in the

matrix to the matrix diagonal,

homogeneityðΔl;ΔcÞ ¼
X
i;j

ci;jðΔl;ΔcÞ
1þ i� jj jð Þ (14)

A set of 4 features, for each (Δl,Δc) pair, is extracted from the co-occurrence

matrix, in a total of 16 features:

co-occurrence matrix set 2 fcontrast; correlation; energy; homogeneityg:

2-D Monogenic Signal Decomposition

In the polar representation of a complex signal, the modulus of the complex signal

is identified as a local quantitative measure of the local amplitude, and the argument

of the complex signal is identified as a local measure of its variation, called the local
phase [34]. From the image processing and recognition points of view, the magni-

tude of the monogenic image is strongly related to the intensity of the images.

The phase fields reveal local and global spatial variations of these intensities

and therefore are very discriminative and powerful for textural characterization

purposes.

Given a two-dimensional signal f(x), x ∈ ℝ2, Felsberd and Sommer [34] define

the three-component monogenic signal as [35]

fmðxÞ ¼ ðf ðxÞ;Reðℝf ðxÞÞ; Imðℝf ðxÞÞÞ ¼ ðf ; f1; f2Þ: (15)

The local amplitude of the signal is given by AðxÞ ¼ kfmðxÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ f 21 þ f 22

q
,

while its local orientation θ and local phase ψ are specified by the following

relations

f ¼ A cosψ ; f1 ¼ A sinψ cos θ; f2 ¼ A sinψ sin θ: (16)

In the monogenic decomposition (MD), the local amplitude includes energetic

information, and the phase includes structural information. If the monogenic phase

is decomposed into local orientation and local phase, the split of identity is also

preserved with respect to geometric and structural information. The local phase is

invariant to changes of the local orientation, and the local orientation is invariant to
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changes of the local structure [34]. This decomposition is particularly useful for

feature extraction and classification in image processing.

Here, a third order decomposition is used, as proposed by [27]. From each

response (A, ψ, θ)τ, where τ ∈ {1,2,3}, the AR coefficients of a first order 2D

model {a1,1, a1,0, a0,1}, energy and μ are extracted. A total of 45 features are

extracted in the MD set,

MD set 2 fðA;ψ ; θÞτða0;1; a1;0; a1;1; energy; μÞg;

where τ ∈ {1, 2, 3}.

The textural set, co-occurrence matrix set andMD set, is composed by a total of

61 US features, extracted from the liver parenchyma. To avoid overfitting, feature

selection is performed, as explained in the next section.

Feature Selection and Classification Procedure

The proposed features are incorporated in a forward feature selection method, using

as criterion the performance of a kNN classifier, where k ¼ 1, in a leave-one-out

cross-validation basis, to select the most significant features to characterize liver

contour and textural changes in this classification problem.

Four different classifiers were implemented and tested: the SVM, Bayes, Parzen,
and kNN classifier. A short description of each is now provided.

The aim of SVM is to find a decision plane that has a maximum distance

(margin) from the nearest training pattern This is performed by mapping the

feature vector in a higher-dimensional space. In this new space the SVM finds a

hyperplane to separate the two classes with a decision boundary set by support

vectors [21, 36]. The computationally intensive mapping process can be reduced

with an appropriate kernel function. In this work, the radial-basis kernel (SVMR)

is used.

The implementation of the Bayes classifier assumes that the vector of features

are multivariate normal distributed [36, 37] with different means, {μ1,μ2} and

covariance matrices, {Σ1,Σ2}. The corresponding quadratic discriminant functions

gτðxÞ ¼ � 1

2
ðx� μτÞTΣτðx� μτÞ �

1

2
ln Στj j þ lnPðωτÞ; (17)

with τ ∈{1, 2} and where P(ωτ) is the prior probability of the ζ-th class. The

probability of each class from the data as follows,

PðωτÞ ¼ Nτ

NS
; (18)
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where Nτ is the number of samples within class ωτ and Ns the number of samples

of the population. The classification of a given feature vector x is performed

according to

2 ifg2ðxÞ > g1ðxÞ
1 otherwise

(
(19)

The Parzen classifier estimates the distribution density of the samples that

constitute each class by summing the distance-weighed contributions of each sample

in a class and classify a test sample by the label corresponding to the maximum

posterior [37].

The nonparametric kNN classifier is also tested in this work. It classifies a test

sample to a class according to the majority of the training neighbors in the feature

space by using the minimum Euclidean distance criterion [20].

All classifiers were implemented using the algorithm proposed by [38]. The

comparison of the proposed classifiers is based on their performance. The classifier

performance is measured based on the overall accuracy (OA),

OA ¼ TPþ TN

TPþ FN þ FPþ TN
; (20)

the sensitivity (sens),

sens ¼ TP

TPþ FN
; (21)

and specificity (spec),

spec ¼ TN

FPþ TN
; (22)

where TP, FP, FN, and TN are true-positives, false-positives, false-negatives, and
true-negatives, respectively. The table displayed in Fig. 5, containing these classi-

fication performance metrics, is the confusion matrix.

Moreover, for the classifier that yields the best performance, the positive likeli-
hood ratio (+LR) and negative likelihood ratio (�LR) are calculated, as follows

þLR ¼ TP=ðTPþ FNÞ
FP=ðFPþ TNÞ ¼

sens

1� spec
(23)

and

�FR ¼ FN=ðTPþ FNÞ
TN=ðFPþ TNÞ ¼

1� sens

spec
: (24)
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Data Set

We enrolled 72 patients with cirrhosis, confirmed by liver biopsy. A non-cirrhotic

group with 61 patients (31 patients belonging to the normal class and 30 from

the chronic hepatitis one) was submitted to the same examination. The database

(n ¼ 133) was divided into two classes; non-cirrhosis, ωNC, and cirrhosis, ωC.

All patients were outpatients coming for a routine visit and registered at the

Liver Unit, Gastroenterology Department, of Santa Maria Hospital in Lisbon,

Portugal. The study protocol was approved by the Ethics Committee of the referred

hospital, according to the principles of the Declaration of Helsinki. All participants

gave their informed and written consent before entering the study.

Data collection was performed between October 2010 and April 2011. The same

data acquisition protocol was used for each patient, which includes US examina-

tion, biochemical tests, and clinical history. Whenever possible, data from each

patient was collected in the same day, to avoid intra-patient variability.

Results

The first experiment conducted here aims to study the advantage of using the

de-speckle field for the detection of liver contour, over the traditional B-mode US

image. PC was computed in both images and the estimated noise was calculated.

Figure 6 shows a plot of the noise values, T, for the original US image and the

correspondent de-speckle field. The mean (σ) values obtained for the original US

image and de-speckle field are 10.94 (4.60) and 0.26 (0.49), respectively. Statistical
differences ( p < 0.01) were observed. As expected, US images are highly

associated with noise, which corrupt the detected shape of the liver contour.

True diagnosis

Classification

Positive Negative

Positive TP FP TP + FP

Negative FN TN FN + TN

TP + FN FP + TN

Fig. 5 Example of a confusion matrix. A confusion matrix is a 2�2 table showing actual values

(columns) versus classified values (rows), where TP, FP, FN, and TN are true-positives, false-
positives, false-negatives, and true-negatives, respectively
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The presence of noise also affected the performance of the PC edge detector. The

improvement achieved with the use of the de-speckle field is observed in Fig. 7.

Under the de-speckle field, PC map marked prominently the liver contour, whereas

in the map computed from the original US image confusion between the definition

of the contour and noise is observed. To standardize the proceedings, and as

reported in the literature, the study is focused on the anterior surface of the liver.

From the proposed morphological feature set, 2 features were selected, namely:

rmsα and Ry. rmsα measures the angle variation in the contour points, achieving a

mean (σ) value for ωNC and ωC of 1.19 (0.59) and 1.80 (0.90), respectively. In Ry, the

mean (σ) values for ωNC and ωC are � 0.01 (0.02) and 0.01 (0.01), respectively.

The probability density functions of the selected features are displayed in Fig. 8,

where it is possible to observe a significantly inter-class overlap.

To evaluate the discriminant power of the selected morphological features, four

different classifiers were tested, namely a kNN, a Bayes classifier, and an SVM

classifier with radial-basis (SVMR) kernels. The results are summarized in Table 3.

The Bayes classifier outperformed the other considered classifiers, achieving an

overall accuracy of 73.30 %, a sensitivity of 83.67 %, and a specificity of 54.09 %.

Figure 9 demonstrates the difficulty of defining an acceptable classification bound-

ary, due to inter-class feature overlap.

Despite the low accuracy of the classification, the detection rate achieved for ωC

outperforms the studies of [12, 16, 39–43], which reported a sensitivity ranging from

12.5 % [16] to 73.0 % [43]. The opposite behavior is observed in the specificity,

where all the stated studies outperform the present study. This may be related to the

fact that ωNC incorporates normal liver volunteers and chronic hepatitis ones, which

can increase the variability in the detected liver contour.
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Fig. 6 Scatter plot of the detected noise, T, in the original US image and in the de-speckle field
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Fig. 8 Plot of the estimated probability density function of the selected contour features ((a) rmsα
and (b) Ry). Individual inspection reveals that exists a significant overlap between the considered

classes

Fig. 7 Examples of the detected liver surface via phase congruency. (a), (b), (c), and (d) represent

an example from a normal samples of the original US image, de-speckle field, PC map obtained

from the original US image and PC map from the de-speckle field, respectively. A cirrhotic

example is also given from (e) to (h), where (e) is the original US image, (f) the correspondent

de-speckle field, (g) the PC map computed from the original US image, and (h) the PC map

computed from the de-speckle field
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To improve the robustness of the method and its discrimination power, liver

parenchyma US textural features were included. Physiologically, the irregularities

observed in liver surface should corroborate with changes in liver parenchyma.

After feature selection, a subset of 5 textural features was obtained: a1,0 A1,

energy (0,6), energy A1, energy ψ2 and a0,1 A2. The great majority of the selected

features are extracted from the monogenic decomposition. Table 2 summarizes the

statistical characteristics (μ and σ) of the selected features for ωNC and ωC.

As in the morphological feature subset, the same classification procedure

was applied to the textural feature subset. Table 3 outlines the classification

results. Textural feature subset yields better classification performances than the

Fig. 9 Approximation of a two-dimensional probability density function via the trained Bayes
classifier

Table 2 Mean (μ) and
standard deviation (σ) of the
selected US textural features Features

ωNC ωC

μ σ μ σ
a1,0 A1 0.11 0.08 0.05 0.10

energy (0,6) 0.61 0.32 0.78 0.24

energy A1 3.39 0.04 3.38 0.03

energy ψ2 3.39 0.05 3.39 0.06

a0,1 A2 0.86 0.03 0.89 0.02
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morphological subset. The best overall performance was achieved with the k N N
classifier, k ¼ 3, which attained an OA of 78.20 %. However, the best individual

performance, that jointly maximize the sensitivity and specificity, was observed

with the SVM classifier, radial-basis kernel (r ¼ 0.4), with a sensitivity and

specificity of 77.78 % and 75.41 %, respectively.

Combining the subsets of features further improves the classifiers performance,

as summarized in Table 3. With feature combination, the best overall performance

was obtained with the Bayes classifier. This result outperforms the results obtained

individually for each subset, morphological and textural, which reinforce the idea

that both changes are present in liver cirrhosis and are detectable by US.

In the individual class performance, Bayes classifier correctly identified 54 of the
61 patients of ωNC, corresponding to a specificity of 88.52 %. For ωC, the results

show a probability that the test is positive on cirrhotic patients of 86.11 %,

corresponding to a feasibility of 62 correct diagnosis in 72 patients. A + L R
(95 % confidence interval) of 6.2 (5.4–7.2) and a � L R of 0.21 (0.18–0.24) were

achieved.

Discussion and Conclusions

Patients with CLD have a higher risk of death or oncogenesis. Most HCC cases are

associated with cirrhosis related to chronic HBV or HCV infection. Southern

European countries tend to have mid-incidence levels of HCC (10–20 per

100,000 individuals). The 5-year cumulative risk of developing HCC for patients

with cirrhosis ranges between 5 % and 30 % [44]. Thus, noninvasive methods for

CLD detection and staging are a key feature for this clinical problem.

In this scope, the present work sought to know whether US imaging information,

morphological and textural one, can better discriminate cirrhosis.

A semiautomatic detection of liver surface, based on US images, is proposed to

discriminate liver cirrhosis. The post-processing algorithm was able to enhance the

contour information in common low-frequency abdominal US examinations

(2.8–5.0 MHz) with a convex probe. The implementation of the phase congruency

algorithm computed in the de-speckled field allowed an enhancement of liver

surface. PC map was then overlaid to the original B-mode US image, to work as

Table 3 Overall and individual class accuracies (%) for each classifiers, with the morphological

subset, textural subset, and the combination of both

Classifier

Morphological subset Textural subset Morphological + Textural

ωNC ωC OA ωNC ωC OA ωNC ωC OA

Bayes 54.09 83.67 73.30 67.21 76.39 72.18 88.52 86.11 87.22

Parzen 40.98 40.81 53.46 42.62 93.06 69.92 60.66 83.33 72.93

3-NN 44.26 68.37 59.12 65.57 88.89 78.20 86.90 81.90 84.20

SVMR 6.56 92.85 59.75 75.41 77.78 76.69 87.50 70.49 79.70
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a guide to outline liver contour. The proposed enhancement algorithm is

schematically represented in Fig. 10.

The results stress that US image decomposition in its speckle and de-speckle
fields enhanced the discrimination power of the extracted features, improving the

reliability of the proposed algorithm.

Morphological information extracted via phase congruency algorithm from the

de-speckle field positively characterizes liver surface changes in liver cirrhosis.

Changes produced by liver cirrhosis in the liver surface appear to be related to the

relation of the contour points in depth and its inclination variation. Similar results

were obtained in [9–13]; however, this work presents two major innovations: (i) the

use of low-frequency US transducer and (ii) the extraction of objective and repro-

ducible US morphological features.

The inclusion of textural information obtained from the liver parenchyma

improved the classification performance. Textural features extracted from the

speckle field peak the architectural changes observed in liver parenchyma.

Monogenic decomposition feature set is dominant in the feature selection pro-

cess. A novelty in this work is the introduction of this set as a US feature extractor.

Fig. 10 US liver surface enhancement algorithm scheme
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Relevant information was found to be in the second and third US decomposition

levels of this technique.

The outlines of this approach are resumed as follows:

• The de-speckle field allows edges preservation of the anatomical structures,

while smoothing homogenous regions contaminated by speckle, in accordance

with the results of [45]. By this, it is possible to use low-frequency US

transducers (3.5 MHz) and thus maintaining the normal US protocol used in

clinical facilities.

• Edge perception via phase congruency computed from the de-speckle image

highlights liver surface. By overlaying the resultant PC edge image over the

original US image we proposed the US liver surface enhanced image.
• One main advantage of this approach is that it produces reproducible morpho-

logical features for the detection of liver cirrhosis and does not depend on ROI

positioning.

• The combination of morphological (extracted from the de-speckle field) and

textural (extracted from the speckle field) information can accurately detect

cirrhosis.

Future studies in the area of liver surface detection should include other features

to increase diagnostic accuracy, perform a more exhaustive analysis in terms of

classifiers, such as using a combination of classifiers and use state-of-the-art

automatic snakes, in order to create a fully automatic detection method. Also,

more robust classification techniques should be attempted, particularly classifiers

combinations.

In conclusion, liver cirrhosis can accurately be detected by US images based on

morphological and textural features. When cirrhosis is present, liver surface is

characterized by its uncorrelated variation in depth and its inclination angles.

Characteristic textural changes are also present in cirrhotic liver parenchyma,

particularly related to a multi-resolution spatial analysis. These findings describe

the commonly referred liver with coarse and heterogenous appearance, present in
US clinical reports in cirrhotic patients.
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MR Imaging of Hepatocellular Carcinoma

Dong Ho Lee and Jeong Min Lee

Abstract Liver cirrhosis is a major public health problem worldwide and is the end

result of chronic liver disease. Cirrhotic liver is characterized by advanced hepatic

fibrosis and formation of a spectrum of hepatocellular nodules ranging from benign

regenerative nodules to overt HCC. Screening and early detection of HCC in

cirrhotic liver are highly important because the treatment result for HCC is optimal

when the tumor is small. With the technical development of MR scanners and

recent advances in MR contrast agent for liver imaging as well as dedicated MR

exam protocol including functional assessment, MR imaging has emerged as an

important modality for assessing liver cirrhosis and detecting HCC. Therefore, the

radiologist should be familiar with the MR imaging features of HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common tumor in the world

and is the third most common cause of cancer-related death, after lung cancer and

stomach cancer [1]. The incidence rates of HCC are varied: 20–150/100,000/year in

high-risk area in Asia and Africa, 5–20/100,000/year in the areas with intermediate

risk in Japan and the Mediterranean countries, and <5/100,000/year in areas with

low risk in Northern Europe and the USA [2]. However, the incidence of HCC in
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USA has been raised over the last 10 years [3] and is expected to increase on the

next 2 decades [4], mainly due to the increase of hepatitis C or B virus (HCV/HBV)

infections [5]. The strongest predisposing factor for developing HCC is liver

cirrhosis and approximately 80 % of cases of HCC have been developed in a

cirrhotic liver [6]. The annual incidence of HCC is 2.0–6.6 % in patients with

liver cirrhosis, while 0.4 % in patients without liver cirrhosis [6]. All kinds of

chronic liver disease can cause liver cirrhosis, and the etiologic agents of liver

cirrhosis are different among the different areas. The most common etiologic agents

are HBV infection in Asia, except Japan and Africa [7, 8], and HCV infection in the

West and Japan. Other lesser common causes of liver cirrhosis including hereditary

hemochromatosis, alcohol abuse, and biliary cirrhosis have variable but usually

lower rates of HCC [9]. In viral-related cirrhosis, co-infection with other viruses

and alcohol abuse significantly increase the risk of developing HCC [10]. Liver

cirrhosis is characterized by irreversible remodeling of the hepatic architecture with

bridging fibrosis and formation of a spectrum of hepatocellular nodules, including

regenerative nodules (RN), dysplastic nodules (DN), and HCCs [11]. These

cirrhosis-associated hepatocellular nodules result from the localized proliferation

of hepatocytes and their supporting stroma in response to liver injury [12]. The

development of HCC in a cirrhotic liver is described as a multistep progression,

from low-grade DN to high-grade DN, then to DN with microscopic foci of HCC,

then to small well-differentiated HCC, and finally to overt carcinoma [13, 14].

However, also a de novo development of HCC can occur, and it has been usually

seen on normal liver parenchyma without evidence of cirrhosis or nodules in

European and American people who have low incidence of chronic liver disease

[15, 16].

HCC meets the criteria established by the World Health Organization for

performing surveillance [17]. Currently, various therapeutic options for HCCs are

available, including liver transplantation, surgical resection, local ablation therapy,

and transcatheter arterial chemoembolization (TACE), all of which contribute to

improvements in patients survival rates [18, 19]. The 5-year survival rates of

patients undergoing curative therapy such as liver transplantation, hepatic resec-

tion, and percutaneous ablation therapy range between 40 and 75 % [20]. Therefore,

screening the cirrhosis patients and differentiation of cirrhosis-associated hepato-

cellular nodules, early detection of HCC is important, because the most effective

treatment of HCC is curative therapy when the tumor is small [21–23]. However,

detection of small and early stage HCCs remains the most challenging area in liver

imaging [9]. Currently, various imaging modalities such as ultrasound (US),

computed tomography (CT), magnetic resonance imaging (MRI), and positron-

emission tomography (PET) have been used for the detection and diagnosis of HCC

[9, 24, 25]. Among these, dynamic contrast-enhanced CT is considered as a first-

line modality for the diagnosis and therapeutic planning in HCC [24, 25]. However,

MRI is an upcoming alternative as a modality for liver imaging and seems to be

more useful than other modalities for detecting and assessing the cirrhosis-

associated hepatocellular nodules because it provides better soft-tissue contrast

and a more nuanced depiction of different tissue properties, without ionizing
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radiation [23, 26]. In addition, MRI can demonstrate some unique pathologic

features of HCC, which cannot be easily accessed by other imaging modalities.

For example, chemical shift gradient-echo imaging can depict intratumoral

steatosis (by the accumulation of triglycerides within cytoplasm of hepatocytes)

and these imaging features are helpful to predict malignant transformation of a DN

to HCC [19, 27]. Dynamic contrast-enhanced MRI also provides reliable informa-

tion regarding tumor vascularity which is related to sinusoid capillarization and

neoangiogenesis of the HCC during the hepatocarcinogenesis [28]. Furthermore,

recent advances in MR imaging techniques such as parallel acquisition imaging, a

powerful gradient system with increased speed, rapid high-quality MR technique,

and functional MRI tools such as diffusion-weighted imaging (DWI) and

elastography have facilitated the detection and characterization of small HCCs

and optimal management of cirrhotic patients [23]. Newly developed dedicated

MR contrast agents that target the reticuloendothelial system (RES) or hepatocyte

have also been introduced in liver MR imaging, providing better chance to

detect and assess the cirrhosis-associated hepatocellular nodules. With these

developments in MR technology, MRI has dramatic changes with regard to artifact

robustness, spatial resolution, and scan speed in the liver imaging area [25].

As imaging has the crucial role in detection, characterization, therapeutic planning,

and posttreatment follow-up for HCC, the radiologists should know the MR imag-

ing features of HCC.

Liver MR Imaging Technique

Imaging of the cirrhotic liver can be performed at 1.5-T or 3.0-T field strength

[9, 29]. A phased-array coil should routinely be used [9]. In a standard protocol for

liver MR, study should always include T1-weighted gradient recalled echo (GRE)

in-phase and opposed-phase sequences, a moderately T2-weighted turbo spin-echo

(TSE) or fast spin-echo (FSE) sequence, and multiphase T1-weighted three-

dimensional (3D) spoiledGRE sequencewith fat suppression before and after contrast

medium administration [23]. The rationale for the acquisition of pre-contrast T1- and

T2-weighted images is to emphasize the presence of different tissue components both

in the normal liver parenchyma as well as in a focal lesion, such as the presence of

water, the entity of vascularization, fibrotic changes, fat, and metabolites [30]. A

heavily T2-weighted sequence (echo time > 120 ms) helps distinguish between solid

and cystic lesions, and a fast sequence such as single-shot FSE or half-Fourier

acquisition TSE is used for this purpose [9, 23].

The sequences used can vary according to vendor and personal preferences [31],

but several guidelines should be kept: First, to improve image quality, sequences

should be performed during suspended respiration or should be respiratory aver-

aged (some T2-weighted sequences) [9]. Suspending respiration at end expiration

produces more consistent breath holding compared with end inspiration but is more

difficult for patients. Second, three-dimensional (3D) gadolinium-enhanced GRE
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sequences are preferred to two-dimensional (2D) GRE sequences because of the

thinner sections obtained, which improve lesion detection and permit multiplanar

image reconstructions [9, 32–35]. Section thickness being lesser than 4 mm for 3D

sequences should be used. Third, contrast agent bolus timing is strongly

recommended. Appropriate evaluation of the liver parenchyma and focal lesion

requires imaging during the hepatic arterial phase of contrast enhancement,

especially late hepatic arterial phase, when the portal vein is only slightly enhanced

[36, 37]. However, late hepatic arterial phase continues only for approximately

15–20 s [38–41]. Therefore, well-timed acquisition of late arterial phase images is

crucial, and there has been three methods which may be used to determined the

acquisition delay necessary to obtain images during the late hepatic arterial phase:

hazarding a “best” guess with fixed delay, MR fluoroscopic triggering, and timing

with a test bolus [42–44]. Based on previous reports [9, 37, 45], a best guess with

fixed delay is not a reliable method for consistently resulting in optimal timing in

patients with liver cirrhosis and is not recommended. Hypervascular HCC is most

obvious in the late arterial phase and can be missed if the hepatic arterial-dominant

phase images are obtained early [36]. Therefore, as a general rule, it is better to

perform the image acquisition too late than too early; if in doubt about optimal

timing for late hepatic arterial phase, one should error on the side of a longer

acquisition delay [37]. The use of fluoroscopic triggering is appropriate only for

MR sequences with which the high-contrast central portion of k-space is filled first,

at the beginning of the acquisition [44]. A test bolus, or timing run, can provide the

most accurate determination of the acquisition delay [37, 42, 43, 46]. However, if

rapid multiphase arterial images are acquired, a timing bolus may not be essential

[9]. Fourth, for the improvement of lesion characterization—for example, to detect

the washout of HCC on delayed phase or to visualize delayed contrast retention of

hemangioma or cholangiocarcinoma—multiphase dynamic gadolinium contrast-

enhanced imaging should include three contrast-enhanced phases or more [9]. Now-

adays, late hepatic arterial phase, portal venous phase, and delayed or equilibrium

phase images are routinely obtained in many institutes including ours. In addition,

in case of application of hepatocyte-targeting contrast agent, it is necessary that a

further 3D-GRE breath-hold T1-weighted sequence be obtained at different delayed

times, depending on applied contrast agent. Fifth, unless signal intensity is not

compromised, the highest spatial resolution should be used. For this purpose,

parallel imaging techniques can be applied with the possibility of reducing the

acquisition time. However, parallel imaging techniques should be used with care,

because they can result in image artifacts and reduced lesion conspicuity [47].

Patients’ breath-holding capacity is also taken into account for the high spatial

resolution image acquisition and reducing the breathing-related motion artifact.

Post-processed images, such as subtracted imagewhich derived from arterial phase

gadolinium-enhanced image and unenhanced image, are sometimes useful to assess

the real presence of hypervascularization of nodule showing as hyperintense also on

baseline T1-weighted image [48, 49]. Subtraction can be performed if the unenhanced

and gadolinium-enhanced imaging sequences are identical, if the MR scanner is not

retuned between acquisitions, and if there are no image rescaling issues [9].
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Patients should be instructed to hold their breath in a similar fashion during all

sequences to minimize misregistration artifacts, which appear as a bright line at the

edge of organ due to incomplete overlap [9].

Recently, functional MRI tools such as DWI and elastography have been

introduced and facilitated the detection and characterization of small cirrhosis-

associated hepatocellular nodules. The DWI is an imaging technique which

provides tissue contrast by measuring the diffusion properties of water molecules

within tissue [50]. Diffusion is a physical process that results from the thermally

driven, random motion of water molecules [51–53]. DWI is based on intravoxel

incoherent motion (IVIM) and provides noninvasive quantification of water

diffusion and microcapillary-blood perfusion [23, 54]. DWI uses a T2-weighted

spin-echo sequence and two strong motion sensitizing gradients on either side of the

180� refocusing pulse, known as the Stejskal-Tanner sequence [50]. In the tissue

with restricted water diffusion, the effect of the dephasing gradient is cancelled out

by the rephasing gradient, which reflected as a maintained T2 signal intensity in the

tissue. On the contrary, in the tissue with free water diffusion, the mobile water

molecules are not fully rephased and a reduction in overall T2 signal intensity

follows [23, 52]. The sensitivity of a DWI sequence is characterized by its b value,

which summarizes the influence of the motion-sensitizing gradients. The higher

the b value, the more sensitive the sequence is to diffusion effects [23]. For the

quantification of diffusion property reflected in an apparent diffusion coefficient

(ADC), DWI acquisition with at least two different b values are required. Low ADC

values mean restricted water diffusion, thus in tissue which are higher cellular.

On the contrary, high ADC values are seen in areas with relatively free diffusion,

thus in tissue with low cellularity [23, 55]. Therefore, DWI images can provide

information regarding tissue cellularity. As DWI does not require gadolinium

contrast material, DWI is attractive in patients with renal dysfunction at high risk

for nephrogenic systemic fibrosis [23, 54]. However, DWI has played only a minor

role in abdominal imaging for a long time, as DWI in the body suffers from low

signal-to-noise ratio (SNR), low spatial resolution, and significant artifact caused

by patient-related motion. With advanced technologic development, including new

scanner generations with homogenous magnetic fields and with introduction of

high-grade amplitudes and parallel imaging, DWI with echo-planar images is

suitable for a high-quality and robustness [52, 55]. The DWI of the liver is usually

performed before contrast material administration, although performing DWI after

administration of gadolinium chelates did not appear to significantly affect ADC

calculations [54]. DWI can help to increase the detection rate of focal liver lesions

and show added value increasing the detection rate for HCC with gadolinium-

enhanced dynamic MR in patients with liver cirrhosis [25, 54, 56].

MR elastography (MRE) is an emerging technique which can assess the tissue

mechanical properties quantitatively [57, 58]. Using modified phase-contrast MR

sequences to image propagating shear waves in tissue, MRE is the proposed

noninvasive method for measuring the stiffness value of the liver parenchyma

and focal liver lesions [59–61]. The technique is used to obtain spatial maps and

measurements of shear wave displacement patterns [23]. The wave images are
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processed to generate maps known as elastograms, which show local quantitative

values of the shear modulus of the tissues [58]. There have been several reports

concerning the feasibility of MRE of the liver, and these studies offered promising

results indicating that MRE of the liver can be used as a successful quantitative

method for the noninvasive diagnosis of liver fibrosis [61–64]. Inspired by these

successful application of MRE to noninvasive evaluation of hepatic fibrosis,

recent study tried to evaluate the usability of MRE to characterize solid liver

tumors [58].

MR Contrast Agent for Liver Imaging

The major classes of contrast agents currently used for assessing cirrhosis-

associated hepatocellular nodules include the three classes: gadolinium chelates

with low molecular weight extracellular agent, reticuloendothelial system (RES)-

targeting agent including superparamagnetic iron oxide (SPIO) particles, and

hepatobiliary contrast agents. Low molecular weight gadolinium chelates are

extracellular paramagnetic contrast agents distributed within the extracellular inter-

stitial space [26]. Gadolinium has seven unpaired electrons and thus is highly

paramagnetic. Gadolinium causes T1 shortening of adjacent water protons, and

these T1 shortening effects tend to cause signal enhancement at T1-weighted

imaging [65, 66]. Gadolinium chelates and iodinated contrast media have the

similar pharmacokinetics in the liver as well as throughout the body and enter

the liver via the hepatic artery and portal vein and are freely redistributed from the

vascular to the interstitial space [37]. Therefore, gadolinium chelate-enhanced

T1-weighted image can be understood as the manner used for the interpretation

of iodinated contrast-enhanced CT imaging. The important difference between

gadolinium chelates and iodinated contrast is that the iodine molecule itself is

imaged at computed tomography, whereas in MR it is the effect of gadolinium

that is assessed rather than molecule itself [37]. For exact assessment of liver tissue

or hepatic tumor vascularity using gadolinium chelates with T1-weighted image,

well-timed arterial phase imaging is crucial. Therefore, dynamic contrast-enhanced

T1-image acquisition and variable methods for determining the acquisition timing

are widely used for liver MRI.

Reticuloendothelial agents target the RES, particularly liver and spleen. The

uptake of such agents, like that of technetium 99 m sulfur colloid in nuclear

medicine, reflects the number of functioning macrophages [67, 68]. RES-targeting

agents in clinical use include superparamagnetic iron oxide (SPIO) particles [37].

These dextran-coated iron-based particles are 30–150 nm in diameter [69]. SPIO

particles are phagocytosed by macrophages throughout the whole body but are

preferentially entrapped by Kupffer cells taking up more than 80 % of circulating

particles, which line the hepatic sinusoids [37]. SPIO particles act as a negative

contrast agent. Their superparamagnetic properties cause local magnetic field

inhomogeneity and result in considerable T2 and T2* shortening [37, 67].
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Tissues that accumulate SPIO particle thus reduced signal intensity, particularly on

T2- and T2*-weighted images [66, 70]. Therefore, T2- or T2*-weighted sequences

must be needed for evaluation of focal liver lesion after administration of SPIO

particles. Most focal hepatic lesions including liver tumors are deficient in Kupffer

cells and do not accumulate SPIO particles [71, 72]. Therefore, after administration

of SPIO particles, focal hepatic lesions appear relatively hyperintense as the back-

ground liver which accumulates the SPIO particle darkens preferentially [37]. In

some institutions, SPIO particles are used in combination with gadolinium chelates

to create a dual-contrast effect. With this technique so called as dual-contrast liver

MRI, the SPIO particles are administrated first and are followed later by an infusion

of gadolinium chelates [37]. The two agents synergistically improve lesion-to-liver

contrast on dynamic T1-weighted images because background liver is darkened by

the SPIO particles uptake by Kupffer cells whereas the focal liver lesion of interest

including HCC is highlighted by gadolinium chelates [73–75]. For exact evaluation

of focal liver lesion with dual-contrast liver MRI protocol, both T2- and

T2*-weighted images after SPIO particle administration and before infusion of

gadolinium chelates and dynamic T1-weighted images after gadolinium chelates

administration are required. However, the appearance on subsequent dynamic

gadolinium chelate-enhanced images may be altered due to the previously injected

SPIO particles, and the assessment of venous washout may be impaired [26, 75].

In case of severe liver dysfunction with or without cirrhosis, the ability of SPIO

particle accumulation by Kupffer cell is decreased, which would limit the utility of

this agent [76]. In such cases, the spleen is the site of preferential SPIO uptake. SPIO

particles cause signal intensity loss; thus, SPIO-enhanced images tend to be signal

poor [37]. To compensate this drawback of SPIO particles, the voxel size or the

acquisition time may have to be increased depending on the indication of liver MRI.

Signal intensity loss in the liver also may lead to obscuration of the intrahepatic bile

ducts by blooming artifacts [37]. Accordingly, MR cholangiographic sequences

should be obtained before SPIO particle administration. Hepatic signal intensity

lossmay also result in the partial obscuration of focal liver lesions, and this is another

drawback of SPIO particles.

Hepatobiliary contrast agents are paramagnetic compounds that are taken up by

functioning hepatocytes and excreted in bile. Agents of this class increase the signal

intensity of the liver, bile duct, and some hepatocyte-containing lesions at

T1-weighted imaging [74, 77, 78]. Manganese is chelated to dipyridoxyl diphos-

phate to produce the prototype hepatobiliary agent known as mangafodipir

trisodium [37]. Nowadays, new gadolinium-based contrast agents having both

extracellular and hepatobiliary properties are developed and introduced in liver

MR imaging: gadobenate dimeglumine (Gd-BOPTA) and gadolinium ethoxybenzyl

diethylenetriaminepentaacetic acid (Gd-EOB-DTPA). These contrast media are

commonly applied for the study of liver vascular supply during the dynamic studies

on the first part of image acquisition [49, 79]. Moreover, thanks to their lipophilic

characteristics, these media, after the intravascular and interstitial distribution, are

taken up by functioning hepatocytes, metabolized, and excreted into the bile through

the so-called canalicular multispecific organic anion transporter, shared with
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bilirubin [80]. The main difference between Gd-BOPTA and Gd-EOB-DTPA

consists in the fact that approximately 50 % of Gd-EOB-DTPA is excreted by the

biliary tract, while regarding Gd-BOPTA, this percentage is much lower, being

approximately 5 % of the administered dose [78]. The peak of intracellular concen-

tration of these contrast agents ranges from 20 to 60 min after injection, depending

on the biliary excretion rate of contrast medium and on the hepatic function of the

patient [81, 82]. Therefore, although two imaging sessions are typically required

with Gd-BOPTA if dynamic imaging and hepatobiliary phase imaging are desired,

one imaging session is necessary with Gd-EOB-DTPA for assessment of lesion

vascularity using dynamic images and hepatocellular function using hepatobiliary

phase [23]. Thanks to their dual function, these newly developed gadolinium-based

hepatobiliary contrast agents are nowadays applied for a number of clinical purposes

such as characterization of focal liver lesions, the correct assessment of hepatic

metastasis, as well as the characterization of cirrhosis-associated hepatocellular

nodules [83–88].

Hepatocarcinogenesis and MR Imaging Features

of Hepatocellular Nodules

Liver cirrhosis is the end result of chronic liver disease and is characterized by

destruction of the normal hepatic architecture, which is replaced by fibrotic septa

and formation of a spectrum of hepatocellular nodules ranging from benign regen-

erative nodules to overt HCC [89, 90]. The development of HCC in a cirrhotic liver

is described as a multistep progression, from low-grade DN to high-grade DN, then

to DN with microscopic foci of HCC, then to small well-differentiated HCC, and

finally to overt carcinoma [13, 14]. High-grade DN is considered as premalignant

lesion, and patients with high-grade DN are at the greatest risk of developing HCC

[14]. The differentiation of these cirrhosis-associated hepatocellular nodules and

early detection of HCC are important, because the most effective treatment for

HCC is surgical resection or transplantation and local ablation therapy when

the HCC is small [21, 22]. However, their accurate characterization may be difficult

even at histopathologic analysis, because of the multistep process that features of

these cirrhosis-associated hepatocellular nodules overlap, particularly with regard

to differentiation of DN and small HCC [9, 26]. Several important changes within

the hepatocellular nodules can occur during the progression of hepatocarci-

nogenesis toward to HCC, and these changes can provide the clue for the differen-

tial diagnosis for cirrhosis-associated hepatocellular nodules. Therefore, the

radiologist should know these important changes and be familiar with these imag-

ing features.
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Regenerative Nodule

A regenerative nodule is defined as a hepatocellular nodule containing one

(monoacinar regenerative nodule) or more portal tracts (multiacinar regenerative

nodule) in a liver that is otherwise abnormal due to either cirrhosis or other

severe liver disease [12]. Regenerative nodules form in response to necrosis, altered

circulation, or other stimuli [12]. These nodules are the most common cirrhosis-

associated hepatocellular nodules [91, 92] and are presented eventually in all

cirrhotic livers and are surrounded by fibrous septa [12, 93]. Cirrhosis is classified,

on the basis of the size of these nodules in the pathologic specimen, into

micronodular (�3 mm), macronodular (>3 mm), and mixed types [12]. Although

most regenerative nodules have a diameter of less than 2 cm, regenerative nodules

with a diameter of more than 2 cm have been observed in patients with long-

standing Budd-Chiari syndrome [12] and in patients with cirrhosis due to autoim-

mune hepatitis [94]. Giant regenerative nodules with a diameter of 5 cm have also

been described, but they are rare [12]. The largest nodules are usually located near

major vessels [26]. Regenerative nodules are constituted by proliferating normal

hepatocytes that maintain all metabolic activity of normal hepatocytes [49].

At histologic analysis, regenerative nodules have an intact reticulin framework, a

normal vascular profile, and preserved hepatocellular and phagocytic functions

[95]. Portal tracts are present, but due to the periportal fibrosis and scarring,

ductular proliferation and portal vein obliteration may occur [26]. Because regen-

erative nodules consist of proliferating normal hepatocytes with surrounding

fibrous septa, most of these nodules are indistinct and invisible on T1-weighted

and T2-weighted images [89]. Less commonly, they can be hyperintense to

surrounding liver parenchyma on T1-weighted images. The exact cause for this

T1 hyperintensity is unknown; it may be due to the intranodular presence of lipid,

protein, or possibly copper [96, 97]. Lipid-containing regenerative nodules also

display a signal loss on opposed-phase GRE images in comparison with in-phase

images. Steatotic regenerative nodules tend to occur in multiples [26]. A single

fatty nodule may be suggestive of a dysplastic or malignant process [26].

Some regenerative nodules can contain iron (the so-called siderotic nodules), and

these iron-containing regenerative nodules may have decreased signal intensity

on both T1- and T2-weighted images due to susceptibility effects of iron [89, 92,

98, 99]. Generally, the blood supply of a regenerative nodule continues to be largely

from the portal vein with minimal contribution from the hepatic artery and overlays

that of liver parenchyma [100]. Therefore, such a blood supply pattern can explain

why there is no enhancement during the hepatic arterial phase on MR images

(Fig. 1). Hepatic arterial phase enhancement in regenerative nodules has been

reported in few cases and can be mistaken for HCC [93, 101]; however, the lack

of washout during the portal venous and late equilibrium phases enables the

differentiation between the capillarization of sinusoids and a true neoangiogenesis,

which characterizes the HCC blood supply [95]. As most regenerative nodules have

a preserved phagocytic action by functioning Kupffer cell, they can accumulate
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SPIO particle like a normal liver parenchyma and appear hypointense on SPIO-

enhanced T2- and T2*-weighted images and isointense to surrounding liver paren-

chyma. Uptake and excretion of hepatobiliary contrast agents by these regenerative

nodules is usually preserved, and on hepatobiliary phase, virtually all regenerative

nodules have a similar signal intensity to surrounding liver parenchyma, which

gives the liver a homogeneous appearance [26]. Occasionally, some regenerative

nodules show hyperintense signal on hepatobiliary phase, and this can be explained

as follow: regenerative nodules may have sufficient hepatocellular function to take

up the hepatobiliary contrast agent but not to excrete it (i.e., excretion function of

hepatocyte is impaired firstly) [26]. Regenerative nodules with a diameter of more

than 15 mm at imaging have an increased likelihood of being dysplastic or

malignant and can be mistaken for HCC [26]. However, an absence of hepatic

arterial phase gadolinium contrast enhancement, preserved uptake function of

hepatobiliary contrast agents, and accumulation of SPIO particles are findings

suggestive of benignity [26].

Fig. 1 MR imaging features of regenerative nodule. (a) Fat-suppressed FSE T2-weighted axial

MR image shows approximately 2 cm-sized subtle low-signal-intensity nodule in segment VIII of

the liver (white arrow). (b) On T1-weighted image, this nodule shows iso-signal intensity to

surrounding liver parenchyma (white arrow). (c) On arterial phase Gd-EOB-DTPA-enhanced

image, this nodule shows no arterial enhancement. (d) On portal venous phase, this nodule

shows iso-signal intensity. (e) On hepatobiliary phase image obtained 20 min after administration

of Gd-EOB-DTPA, this nodule shows iso-signal intensity. Subtle hyperintensity is also seen at the

periphery of this nodule. On pathologic exam, this nodule is diagnosed with regenerative nodule
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Dysplastic Nodule

A dysplastic nodule is defined as a nodule of hepatocytes of at least 1 mm in

diameter, and is composed of hepatocytes that display histologic characteristics of

abnormal growth but do not meet the histologic criteria for malignancy [12].

Dysplastic nodules usually occur in the setting of cirrhosis and may be classified

as low or high grade, according to the degree of dysplasia [12, 26]. Dysplastic

nodules are found in 15–25 % of cirrhotic livers [102]. Dysplastic nodules are

characterized histologically by progressive architectural derangement, nuclear

crowding, atypia, and a variable number of unpaired arterioles or capillaries [26].

Low-grade dysplastic nodules closely resemble the regenerative nodules histologi-

cally. These nodules are composed of hepatocytes with minimal atypia, including

slightly increased nuclear/cytoplasmic ratio, minimal nuclear atypia, and absent

mitosis as well as have the normal vascular profile, hepatocellular function, and

Kupffer cell density [12]. Low-grade dysplastic nodules are considered to have low

malignant potential with slow, infrequent progression to HCC and are not thought

to be premalignant [103]. To the contrary, high-grade dysplastic nodules show at

least moderate dysplasia, some architectural distortion, and occasional mitosis, with

sinusoidal capillarization and an increased density of unpaired arteries [104]. They

may even express alpha-fetoprotein (AFP) but are not frankly malignant [105]. The

Kupffer cell density is variable; it may be increased, normal, or diminished

[106–108]. High-grade dysplastic nodules are thought to progress to HCC more

frequently than low-grade dysplastic nodules [103]. They are considered as prema-

lignant, and development of HCC within a dysplastic nodule has been reported

within as little as 4 months [109, 110]. However, the rate of malignant transforma-

tion of dysplastic nodules is relatively slow, and it has been suggested that both

high- and low-grade dysplastic nodules may disappear on follow-up studies and

that only a small percentage of high-grade dysplastic nodules progress to HCC

[26, 111]. As expected on the basis of their heterogeneous histologic characteristics,

dysplastic nodules have variable appearance on MR images, and their signal

intensity characteristics overlap with those of regenerative nodules and well-

differentiated HCC [26] (Figs. 2 and 3). However, many of dysplastic nodules

usually have similar signal intensity on T1- and T2-weighted images to regenera-

tive nodules; thus, they are isointense to surrounding liver parenchyma [9]. Some

dysplastic nodules can retain copper, which causes them to have hyperintensity on

T1-weighted images [89]. If siderotic, these nodules are hypointense to surrounding

liver parenchyma on T1- and T2-weighted images due to susceptibility effects of

iron. Occasionally, both regenerative and dysplastic nodules can infract, leading to

high signal intensity on T2-weighted images, and therefore are often mistaken for

HCC [112]. Regarding blood supply to dysplastic nodules, low-grade dysplastic

nodules are normally supplied by the portal vein, and therefore are isointense to

liver parenchyma during the hepatic arterial phase [9]. Whereas some high-grade

dysplastic nodules can receive increasing arterial blood supply [113–116], this

feature of high-grade dysplastic nodules may overlap with those of HCC nodules
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during the process of hepatocarcinogenesis. These nodules can reveal the contrast

enhancement on hepatic arterial phase, and therefore can be mistaken for HCC

[9]. In case of high-grade dysplastic nodules showing an arterial enhancement, the

differential diagnosis with an HCC is mainly demanded by the lack of washout on

portal venous and late equilibrium phase images [49]. Regarding RES-targeting

agents, dysplastic nodules usually accumulate the SPIO particles, therefore appear

as hypointense on SPIO-enhanced T2- or T2*-weighted images and as isointense to

surrounding liver parenchyma. However, the density of Kupffer cells in high-grade

dysplastic nodules may vary, thus explaining the different signal intensities, rang-

ing from slightly hypointense to iso- or even slightly hyperintense [49]. Regarding

hepatobiliary contrast agents, it is not yet clear whether this class of contrast agent

permits the characterization of dysplastic nodules [26]. A dysplastic nodule with a

focal focus of HCC was first described on T2-weighted images as “a nodule within

a nodule” appearance [117]. The classic MR appearance is a focus of high signal

intensity within a low-signal-intensity nodule on T2-weighted images, and this

focus of HCC may also show arterial enhancement [118] (Figs. 4 and 5).

Fig. 2 MR imaging features of dysplastic nodule. (a) T2-weighted FSE axial MR image shows

approximately 2 cm-sized low-signal-intensity nodule in segment I of the liver (white arrow).
(b) On T1-weighted image, this nodule shows iso- or slightly high signal intensity (white arrow).
(c, d, e) On dynamic contrast enhancement, this nodule (white arrow) reveals low signal intensity

on arterial (c), portal (d), and equilibrium image (e)
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Hepatocellular Carcinoma

HCC is defined as a malignant neoplasm composed of cells with hepatocellular

differentiation [12]. HCC generally are describes as small (<2 cm in diameter) or

large (�2 cm in diameter). The classic system of macroscopic classification of

HCC, in use since 1901, includes three major types: nodular when there are small

lesions with distinct margins, massive when there is a single large mass with or

without small satellite nodules, and diffuse when there are multiple infiltrative

tumors [119]. Large HCCs tend to show evidence of necrosis and often have a

mosaic appearance characterized by a seemingly random distribution of confluent

small nodules with intervening fibrous septa and areas of necrosis [12, 26]. Tumor

capsules, irregular margins, satellite nodules, and vascular invasion are frequently

found with such large HCCs [12, 120, 121]. All these features of large HCCs can

provide the clue for the MR imaging diagnosis of HCCs. However, regarding small

Fig. 3 Large fat-containing dysplastic nodule. (a) T2-weighted FSE axial MR image shows

approximately 3 cm-sized low-signal-intensity nodule in segment I of the liver (white arrow).
(b) On in-phase T1-weighted image, this nodule shows iso-signal intensity (white arrow). (c) On
opposed-phase T1-weighted image, signal drop is seen for this nodule when compared with

in-phase image (white arrow), suggesting fat-containing nodule. (d) On SPIO-enhanced T2*-

weighted image, this nodule shows accumulation of SPIO particle, resulting in signal drop (white
arrow). (e) On arterial phase-contrast-enhanced image, no arterial enhancement is seen on this

nodule
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Fig. 4 HCC foci within large dysplastic nodule. (a) T2-weighted FSE axial MR image shows

approximately 4 cm-sized heterogeneous signal intensity mass in segment IV of the liver. Right

upper portion of this nodule shows high signal intensity (white arrow) within the surrounding

low-signal-intensity nodule. This feature of nodule is called as nodule-in-nodule appearance.

(b) On SPIO-enhanced T2*-weighted image, right upper portion of nodule does not accumulate

SPIO particle, resulting in high signal intensity (white arrow). (c) On T1-weighted image, this nodule

shows high signal intensity except right upper portion (white arrow). (d) On arterial phase-contrast-
enhanced image, arterial enhancement is seen for right upper portion of this nodule (white arrow). On
pathologic exam, this right upper portion of nodule is diagnosed with HCC foci

Fig. 5 HCC foci within large dysplastic nodule. (a) T2-weighted FSE axial MR image shows

approximately 4 cm-sized low-signal-intensity nodule in segment VII of the liver. However, right

lateral portion of this nodule shows high signal intensity (white arrow). (b) On T1-weighted image,

this right lateral portion of nodule shows slightly low signal intensity (white arrow). (c) On arterial

phase-contrast-enhanced image, arterial enhancement is seen for right lateral portion of this nodule

(white arrow). On pathologic exam, this right lateral portion of nodule is diagnosed with HCC foci
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(<2 cm in diameter) and early stage of HCC, these features are almost absent

(Figs. 6, 7, 8, and 9). Histologic features of HCC include advanced architectural

distortion (widening and irregularity of hepatocyte plates, presence of

pseudoglandular structures, absence of portal tracts, and increased density of

unpaired arteries), nuclear atypia, necrosis, and microscopic invasion of stroma

and portal tracts [26]. Kupffer cells are also eventually absent in HCC; however,

well-differentiated HCCs can contain some Kupffer cells. Normal hepatocyte

uptake and excretion function are also disappeared in HCCs. However, some

well-differentiated HCCs preserve some uptake function of hepatocytes. A tumor

capsule composed of an inner fibrous tissue layer and an outer layer of compressed

vessels and bile ducts is evident at histologic examination in 65–82 % of larger

HCCs [26]. However, regenerative nodules and dysplastic nodules may also have a

tumor capsule. Small HCCs tend to be well differentiated, and large HCCs are most

often moderately or poorly differentiated [12]. The presence of extracapsular

extension or macrovascular invasion, the absence of tumor capsule, and poor

histologic differentiation are associated with a higher risk of tumor recurrence

after treatment [26].

Fig. 6 Typical MR features of small HCC. (a, b) On SSFSE (a) and FSE (b), T2-weighted axial

MR images show approximately 2 cm-sized nodule in segment VII of the liver (white arrow). (c)
On SPIO-enhanced T2*-weighted image, this nodule shows high signal intensity (white arrow),
suggesting no accumulation of SPIO particle. (d) On arterial phase-contrast-enhanced image, this

nodule shows arterial enhancement (white arrow). Arterioportal shunt is also seen adjacent to this
nodule (black arrow). All these image features are typical for HCC
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The signal intensity characteristics of HCCs depend on their size, histologic

grade, and biologic features, and therefore are variable on T1- and T2-weighted

images [122, 123]. Some HCCs show hypersignal intensity to surrounding liver

parenchyma on T1-weighted images, and these T1 hyperintensities are attributed to

intratumoral fat, to copper, or to glycogen [122, 124]. Intratumoral fat content leads

to loss of signal intensity on opposed-phase GRE images in comparison with

in-phase GRE images, thus easily identified with dual echo imaging [125]. Moder-

ate hyperintensity on T2-weighted images is one of key imaging features of HCC,

as dysplastic nodules do not show T2 hyperintensity unless they are infracted

[89, 112, 122]. However, small HCC can be difficult to detect on T2-weighted

images because of heterogeneity of cirrhotic liver, which obscures mildly hyperin-

tense tumors. Breathing-related artifacts, particularly in patients with ascites, can

also keep HCC from being detected [126, 127]. Also, some well-differentiated

HCCs may appear isointense or even hypointense on T2-weighted images to

Fig. 7 MR features of large HCC with diffusion and hepatobiliary phase. (a) FSE T2-weighted

axial MR image shows large heterogeneous high-signal-intensity mass lesion at right lobe of the

liver. (b) On T1-weighted images, this mass shows low signal intensity. (c) On arterial phase

Gd-EOB-DTPA-enhanced image, heterogeneous arterial enhancement is seen within this nodule.

(d) On hepatobiliary phase image obtained 20 min after administration of Gd-EOB-DTPA, this

mass shows low signal intensity. (e) On diffusion-weighted image, this mass shows high signal

intensity. (f) On ADC map, this mass reveals low signal intensity. Considering diffusion-weighted

image and ADC map, this mass has diffusion restriction, suggesting high cellularity, one of the

typical features of HCC
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surrounding liver parenchyma [26]. Large HCCs can exhibit a greater variability of

signal intensity, mainly caused by necrosis and hemorrhage. Hemorrhagic HCCs

may show marked high signal intensity on T1-weighted images and low signal

intensity on T2- and T2*-weighted images. Intratumoral necrosis typically

manifests as one or more areas of low signal intensity on T1-weighted images

and high signal intensity onT2-weighted images [26].

In nature of blood supply to the cirrhosis-associated hepatocellular nodules, as

the progression of multistep carcinogenesis from regenerative nodules to overt

HCC, gradual reduction of the normal hepatic arterial and portal venous blood

supply to the nodule, and followed by an increase in the abnormal arterial supply

via newly formed abnormal arteries (neoangiogenesis) are the key features of

change occurring within the nodules, and these features were reported by some

investigators with CT during hepatic arteriography (CTHA) and CT during arterial

portography (CTAP) [116, 128]. Histologically, this feature corresponds to a dimi-

nution in the portal tracts (portal vein and hepatic artery), which are virtually absent

in HCC [128]. Moreover, unpaired arteries and sinusoidal capillarization are most

common in HCC, less common in dysplastic nodules, and rare in regenerative

Fig. 8 Large HCCwith mosaic pattern and capsular enhancement. (a) T2-weighted FSE axial MR

image shows approximately 5 cm-sized heterogeneous high-signal-intensity mass lesion in right

posterior segment of the liver. (b) On SPIO-enhanced T2*-weighted image, this mass shows

heterogeneous high signal intensity. (c) On arterial phase-contrast-enhanced image, this mass

shows heterogeneous arterial enhancement. (d) On portal phase image, peripheral capsular

enhancement is seen (white arrows)

MR Imaging of Hepatocellular Carcinoma 185



nodules [9, 104]. Therefore, overt HCCs provide their blood supply wholly from

newly formed abnormal arteries. This process of neoangiogenesis of arterial

recruitment during the hepatocarcinogenesis reflects the one of key imaging

features of HCC, which is arterial enhancement [129, 130]. With moderate

hyperintensity on T2-weighted images, arterial enhancement (hypervascularity)

is considered as essential characteristic of HCC. Enhancement tends to be hetero-

geneous in large HCCs and is homogeneous in small HCCs [123, 131]. However,

all HCCs are not hypervascular, and approximately 80–90 % of HCCs are

hypervascular and show intense enhancement on hepatic arterial phase after an

injection of gadolinium contrast agents [26]. About 10–20 % of HCCs are

hypovascular and show contrast enhancement slightly less than that in surrounding

liver parenchyma on hepatic arterial phase. Typically, hypovascular HCCs are

small, well-differentiated tumors [26]. This feature probably reflects the stage of

hepatocarcinogenesis within nodule where there has been partial or complete loss

of the normal portal tract, with no associated increased neo-arterializations to

Fig. 9 Large HCC with inner necrosis. (a) On T1-weighted axial MR image shows approximately

7 cm-sized mass lesion in right posterior segment of the liver. More prominent hypointensity is

seen at central portion of mass (white arrow). (b) On arterial phase-contrast-enhanced image,

contrast enhancement of mass is seen except for the central portion (white arrow). (c) Portal phase
image shows peripheral capsular enhancement of this mass. (d) On FSE T2-weighted image, this

mass shows moderate-degree high signal intensity. More prominent hyperintensity is also seen at

central portion of mass (white arrow). On pathologic exam, this portion is diagnosed as internal

necrosis of HCC. (e) On mangafodipir trisodium-enhanced T1-weighted MR image, this mass

shows low signal intensity
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cause hyperintensity in the hepatic arterial phase [128, 132]. However, poorly

differentiated and diffusely infiltrative hypovascular HCC also may occur

[133, 134]. In such cases, despite large size and aggressive behavior, HCCs may

be difficult to detect on gadolinium-enhanced MR images. In such cases,

T2-weighted images or SPIO-enhanced images can help the visualization of

these tumors [26]. Since portal venous blood supply to HCC is reduced, HCCs

usually become hypointense in the portal venous phase, the so-called washout.

These washouts and hypointensity to liver parenchyma of HCCs are more evident

on delayed phase images and highly specific for HCCs with a reported overall

sensitivity of 89% and specificity of 96% for delayed hypointensity [129]. Rarely,

some HCCs may remain hyperintense to surrounding liver parenchyma on portal

venous and delayed phase images [9]. On portal venous and delayed phase images,

HCC can show a delayed enhancing outer rim “capsule,” and these features are

also highly specific for HCCs [9, 89, 101]. Ueda et al. reported that all 32 HCCs

(mean diameter, 2.5 cm) in their study using single-level dynamic CT hepatic

arteriography (CTHA) showed surrounding halo of enhancement or “corona

enhancement” in the venous phase [135]. This finding can be explained by portal

venous drainage of the HCCs, and the portal venous drainage of HCCsmay explain

the high incidence of portal vein thrombosis associated with HCC [9]. A tumor

capsule can appear as a thin circumferential rim at the periphery of an HCC

nodule on MR images and typically thickens with increasing tumor size [136].

On unenhanced T1- and T2-weighted images, the tumor capsule often shows low

signal intensity. As tumor capsules are composed of fibrous inner tissue and

compressed outer vessels, they enhance progressively after gadolinium contrast

administration and retain contrast agent longer, therefore showing hyperintensity

to the surrounding liver parenchyma on delayed phase images [136–138]. There-

fore, delayed capsular rim enhancement of HCCs can be explained by either portal

venous drainage of the HCC or tumor capsule delayed enhancement.

Regarding SPIO particles, moderately and poorly differentiated HCCs charac-

teristically accumulate less or eventually no SPIO particles when comparing with

the surrounding liver parenchyma, and therefore show no signal drop in SPIO-

enhanced T2- and T2*-weighted images, revealing the relatively high signal

intensity to surrounding liver parenchyma. The neoplastic sinusoid capillarization

and formation of unpaired arteries lead to progressive loss of Kupffer cells within

nodules [139]. However, well-differentiated HCCs can contain Kupffer cells and

may accumulate SPIO particles, and therefore tend to be iso- or hypointense on

SPIO-enhanced T2- and T2*-weighted images compared with the surrounding

liver parenchyma [106–108]. Large HCCs may have nonuniform Kupffer cells

density and show heterogeneous uptake of SPIO particles [26]. HCCs are lacking

of functioning hepatocytes within the nodules, so they do not accumulate or

excrete hepatobiliary contrast agents. Therefore, on hepatobiliary phase images

obtained after administration of hepatobiliary contrast agents, HCCs appear as

low signal intensity in comparison with the surrounding liver parenchyma

[133, 140]. According to recent study, hepatobiliary phase images obtained
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using Gd-EOB-DTPA can increase the sensitivity for detecting HCCs

[85]. Rarely, some small HCCs can show iso- or even hyperintensity on

hepatobiliary phase, especially in case of well-differentiated HCCs. These

findings can be explained as follows: well-differentiated small HCCs may pre-

serve hepatocellular function to take up the hepatobiliary contrast agent but have

impaired excreting function, and therefore the hepatobiliary contrast agents can

be retained within these nodules.

Functional MRI tools such as DWI and elastography can also help the detection

and diagnosis of HCC in cirrhotic liver. As other malignant tumor, HCCs have

increased cellularity. Increased cellularities within the HCCs prevent water from

freely diffusing, and this restricted water molecule diffusion of HCCs can be

detected on DWI as hyperintensity lesions. There are compelling data that show

better performance of DWI compared with T2-weighted imaging for lesion charac-

terization [23, 54]. DWI can help to increase the detection rate of focal liver lesions

and show added value increasing the detection rate for HCC with gadolinium-

enhanced MR in cirrhotic liver [25, 54, 56]. In addition, the quantification of

restricted diffusion with the ADC maps helps to differentiate malignant lesion

from benign lesion [141–143]. Different ADC cutoffs (1.4–1.6 � 10–3 mm2/s)

have been suggested in the literature, with a reported sensitivity of 74–100 % and

specificity of 77–100 % [23, 53]. However, up to now there is no evidence in the

literature in how far DWI might be a feasible approach to differentiate among

regenerative nodules, dysplastic nodules, and HCCs [23, 25]. Malignant tumors

including HCCs are also harder in comparison with surrounding normal tissues and

have increased stiffness values. MR elastography (MRE) can detect focal liver

lesions with increased stiffness values and measure the tissue stiffness value quanti-

tatively. According to a previous study [57], HCCs have greater stiffness value than

benign tumor or surrounding liver parenchyma, and a cutoff value of 5 kPa for

differentiation of benign tumors formmalignant hepatic tumors is suggested. Use of

MRE may lead to new quantitative tissue characterization parameters for

differentiating benign and malignant hepatocellular nodules in a cirrhotic liver

[23, 57]. Further studies are needed to validate the possible application of MRE in

the diagnosis and monitoring of HCCs [23, 57, 144].

Large HCCs show a more variable pattern. A mosaic pattern is created by

confluent nodules separated by fibrous septa and area of necrosis [9]. These tumors

usually show high signal intensity on T2-weighted images and enhance heteroge-

neously [145, 146]. Large HCCs do not pose a diagnostic problem.

Diffuse-type HCC constitutes up to 13% of cases of HCC [147] and appears as an

extensive, heterogeneous, permeative hepatic tumor, often associated with an

elevated serumAFP level [9]. These tumors have a patchy or nodular early enhance-

ment pattern and can be difficult to detect on unenhanced T1- or T2-weighted images

but become hypointense in the late phase of enhancement [147]. Contour deformity

of liver surface can also be a clue for the diagnosis of these tumors.

Portal vein invasion is another important characteristic of HCC and is thought to

be associated with the portal venous drainage of HCC [135, 148]. However, patients
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with cirrhosis can also develop benign portal vein thrombosis secondary to portal

hypertension and venous stasis [149]. Malignant portal vein thrombosis in HCC

occurs by means of direct invasion of vein [149]. The incidence of malignant portal

vein thrombosis in association with HCC is reported from 5 to 44 % [150–153], and

at autopsy, the reported rate has been increased [154]. A malignant portal vein

thrombus is always contiguous with or directly in contact with a parenchymal HCC

[9]. Increased signal intensity on T2-weighted images is highly suggestive of

malignant thrombosis. Malignant portal vein thrombosis is characterized by dra-

matic expansion of the vein, compared with near-normal-diameter veins in benign

bland thrombosis [155] (Fig. 10). The enhancement of intravascular tumor tissue

during the arterial phase and filling defect on later phase images is also highly

specific for malignant thrombosis and is due to the presence of neovascularization

of tumor [155]. Therefore, assessment of the dynamic gadolinium-enhanced

gradient-echo images can help distinguish between bland portal vein thrombosis

and malignant ones. A bland thrombus has very low signal intensity due to

Fig. 10 HCC with left portal vein invasion. (a) T2-weighted FSE axial MR image shows diffuse

high signal intensity at left medial segment of the liver. Expansion of left portal vein with inner

high signal intensity is also seen. (b) T1-weighted image shows diffuse low signal intensity at left

medial segment with expansion of left portal vein with inner low signal intensity. (c) On arterial

phase-contrast-enhanced image, diffuse arterial enhancement of left medial segment is seen.

Expanded left portal vein also shows arterial enhancement. (d) Portal phase image shows diffuse

low signal intensity in left medial segment. The expanded left portal vein also shows low signal

intensity, suggesting washout. All these imaging features are typical for HCC with left portal vein

invasion
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hemosiderin content, whereas malignant thrombus has the same signal intensity and

contrast enhancement pattern as the HCC [9, 156]. However, some rare cases with

enhancement of bland benign thrombi have also been reported [155]. Differentiation

of these two types of thrombi is critical in clinical practice. The presence of a tumor

thrombus also carries a higher risk of hematogenous dissemination of HCC and

precludes liver transplantation for treatment options. However, a bland thrombus is

a frequent finding in the setting of liver cirrhosis, may occur in the absence of HCC,

and depending on its location and extent, may be of minimal importance for

decision making with regard to disease management [26].

Invasion of HCC into the hepatic veins occurs less frequently than and is often

associated with invasion of the portal vein [9] (Fig. 11). In rare cases, HCC may

grow into the major bile ducts, resulting in obstructive jaundice, and is frequently

associated with concomitant portal vein tumor invasion [154] (Fig. 12).

Fig. 11 HCC with right hepatic vein invasion. (a) T2-weighted FSE axial MR image shows

approximately 3 cm-sized high-signal-intensity mass lesion in segment VII of the liver. Expansion

of adjacent right hepatic vein with inner high signal intensity (white arrow) is also seen. (b) On

SPIO-enhanced T2*-weighted image, expansion of right hepatic vein with high signal intensity is

also noted (white arrow). (c) On T1-weighted image, expanded right hepatic vein shows low signal

intensity (white arrow). (d) On arterial phase-contrast-enhanced image, arterial enhancement of

expanded right hepatic vein is seen (white arrow). (e) Portal phase image shows low signal

intensity of expanded right hepatic vein, suggesting washout (white arrow). All these imaging

features are typical for HCC with right hepatic vein invasion
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Lesions Mimicking HCC

Among the MR imaging characteristics of HCC, arterial enhancement is considered

the most consistent feature of HCC. However, other arterial enhancing nonmalig-

nant lesions can also be seen in the cirrhotic liver, especially those measuring

smaller than 2 cm in diameter, which may be regarded as HCC and explains the

high incidence of false-positive results for HCC [157–159] (Figs. 13, 14, 15,

and 16). Transient arterial enhancement due to non-tumorous arterioportal shunts

[160, 161] or focal obstruction of a distal parenchymal portal vein [38] is often seen

in the cirrhotic liver. Usually these shunts are isointense to surrounding liver

parenchyma on T1- and T2-weighted images and are commonly located in the

liver periphery, wedge shaped. However, shunts can be seen as nodular or irregularly

outlined shape and may also showminimally hyperintensity on T2-weighted images

[38, 160, 162]. In such cases, the differentiation between small HCC and

arterioportal shunts is difficult, and shunt can be misinterpreted as small HCC. On

dynamic contrast-enhanced MR images, shunts are isointense to the surrounding

liver parenchyma on portal venous and delayed phase. Aberrant venous drainage and

Fig. 12 HCC with bile duct invasion. (a) On SPIO-enhanced T2*-weighted image, diffuse high

signal intensity at right anterior segment of the liver is seen (white arrow). (b) T1-weighted image

also shows diffuse subtle low signal intensity at right anterior segment (white arrow). (c, d) On
arterial phase (a) and portal phase (b), contrast-enhanced images show expansion of right anterior

bile duct with intraluminal enhancing mass (white arrows). This intraluminal enhancing mass is

HCC which invades right anterior bile duct
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early drainage by a subcapsular vein have all been described as hypervascular areas

which are seen hyperintense on hepatic arterial phase images and mimicking small

HCCs [9, 160, 163]. As shunts and vascular changes are not true mass or tumor,

functional MR imaging including DWI can also help the differential diagnosis.

However, the ability of DWI differentiating HCCs from non-tumorous lesions has

not been fully investigated. Further study has to be needed for this issue.

Fibrosis is frequently found in cirrhotic liver and usually in a lattice-like network

throughout the liver. Focal confluent hepatic fibrosis, observed in end-stage liver

disease, can have mass-like appearance, and therefore may be mistaken for HCC

[164]. Areas of confluent fibrosis can be diffuse but more often focal, wedge shaped

with the wide base toward the liver capsule, and usually located in the anterior and

medial segment of the liver, either involving the entire segment or a portion of it

[164]. Confluent fibrosis is usually associated with atrophy of the affected segment,

and capsular retraction over the area is common [93]. Confluent fibrosis is usually of

Fig. 13 HCC mimicking lesion: focal nodular hyperplasia (FNH). (a) T2-weighted FSE axial MR

image shows approximately 3 cm-sized high-signal-intensity lesion. (b) On SPIO-enhanced T2*-

weighted image, this nodule shows low signal intensity suggesting accumulation of SPIO particle.

However, central portion of this nodule corresponding to central scar does not accumulate SPIO

particle, resulting in high signal intensity (arrow). (c) On precontrast T1-weighted image, this

nodule shows subtle low signal intensity. (d) On arterial phase-contrast-enhanced image, arterial

enhancement of this nodule is seen. However, central portion of this nodule does not show

enhancement on this phase (white arrow). (e) On equilibrium phase, delayed enhancement of

central scar is clearly seen (white arrow). These imaging findings are consistent with FNH, which

can mimic HCC considering T2 high signal intensity and arterial enhancement
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low signal intensity to the surrounding liver parenchyma in T1-weighted images and

hyperintense on T2-weighted images. Confluent fibrosis do not contain Kupffer cells,

therefore hyperintense on SPIO-enhanced T2- and T2*-weighted images. These

hyperintensity on T2-weighted images and SPIO-enhanced images may lead to

misclassification of focal confluent hepatic fibrosis as HCCs. On dynamicMR images

after gadolinium contrast administration, delayed enhancement of fibrosis is charac-

teristic [9]. However, occasionally confluent fibrosis shows contrast enhancement

during the hepatic arterial phase, mimicking small HCCs and requiring biopsy for

exact diagnosis [164, 165]. The characteristic shape, location, volume loss, and

enhancement pattern can help differentiate focal confluent fibrosis fromanHCC [166].

Other arterial enhancing hepatic tumor such as hemangioma, focal nodular

hyperplasia (FNH), hepatic adenoma, and hypervascular metastasis can also

mimic an HCC [167–169]. Hemangiomas, commonly found in normal livers, are

rare in end-stage cirrhosis, probably because the process of cirrhosis can obliterate

existing hemangiomas [9]. Therefore, hemangiomas are often atypical in

Fig. 14 HCC mimicking lesion: confluent hepatic fibrosis. (a) T2-weighted FSE axial MR image

shows diffuse high signal intensity at right anterior segment of the liver (white arrows). Volume

loss of affected segment and capsular retraction are also seen. (b) On SPIO-enhanced T2*-

weighted image, diffuse wedge-shaped high signal intensity at right anterior segment is seen

(white arrows), suggesting no accumulation of SPIO particle in this area. (c) On arterial phase-

contrast-enhanced image, arterial enhancement of this area is not evident. (d) On equilibrium

phase, diffuse delayed enhancement at right anterior segment is clearly seen (white arrow). These
features are consistent with confluent hepatic fibrosis, which can mimic HCC considering T2 high

signal intensity and no accumulation of SPIO particles
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appearance in cirrhotic livers and contain large regions of fibrosis [164]. Especially,

with the concomitant use of gadolinium chelates and SPIO particles using dual-

contrast protocol, enhancement pattern of hemangioma after gadolinium adminis-

tration can be impaired due to the previously injected SPIO particle and may lead to

misclassification of hemangioma as HCCs [75]. Some FNH and hepatic adenoma

have Kupffer cell, therefore can accumulate SPIO particle, and show low signal

intensity on SPIO-enhanced T2- and T2*-weighted images. These characteristic

can help differentiate these nodules from HCCs [170].

It is important to distinguish HCC from benign large regenerative nodules,

which occurs secondary to liver damage without cirrhosis, for example, in case of

Budd-Chiari syndrome or severe disease of the portal veins or hepatic sinusoid.

These nodules often appear as multiple well-defined arterially enhancing nodules

with high signal intensity on T2-weighted images and sometimes delayed

hypointensity [171, 172]. They sometimes contain a central scar [173]. Information

about patient’s history can be helpful [9].

Mass-forming intrahepatic cholangiocarcinoma is also occasionally misinter-

preted as an HCC. Mass-forming intrahepatic cholangiocarcinoma usually shows

thin or thick rim enhancement in the arterial and venous phases, with progressive

Fig. 15 HCCmimicking lesion: nodular arterioportal (AP) shunt. (a, b) There is no focal lesion in

the liver on FSE T2-weighted (a) and T1-weighted (b) axial MR images. (c) However, on

EOB-DTPA-enhanced arterial phase image, nodular-enhancing lesion is clearly seen (arrow).
(d) On equilibrium phase, however, this nodule is not visualized. (e) On hepatobiliary phase

image, there is no focal lesion in the liver. This is the case of nodular AP shunt which can mimic

HCC considering nodular arterial enhancement
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and concentric filling of contrast agent in the later phases [174]. This pattern of

contrast enhancement is atypical for HCC. However, in case of small mass-forming

intrahepatic cholangiocarcinoma, arterial enhancement can be seen. Intrahepatic

biliary duct dilation distal to the tumor and associated capsular retraction are

features more commonly associated with mass-forming intrahepatic cholangio-

carcinoma and are rarely seen in association with HCC [174, 175].

Difficulty in Diagnosis of Small (�2 cm) Arterial

Enhancing Lesion

Key MR features for the diagnosis of HCC are as follows: (1) contrast enhancement

during the hepatic arterial phase and washout during the later portal venous and

equilibrium phase, (2) capsular rim enhancement on portal venous and delayed

Fig. 16 HCC mimicking lesion: hemangioma. (a) FSE T2-weighted axial MR image shows

approximately 3 cm-sized high-signal-intensity lesion at segment III of the liver (white arrow).
(b) On T1-weighted image, this lesion shows low signal intensity (white arrow). (c) On arterial

phase-contrast-enhanced image, arterial enhancement is seen on the peripheral portion of this

lesion. (d) On portal venous phase, complete fill-in-type enhancement of this lesion is also seen

(white arrow). (e) On equilibrium phase, this lesion shows subtle persistent enhancement (white
arrow). This is the typical MR features of hemangioma which can mimic HCC considering T2

high-signal-intensity arterial contrast enhancement
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phase images, (3) moderately hyperintensity on T2-weighted images, (4) hyperin-

tensity on SPIO-enhanced T2- and T2*-weighted images, (5) hypointensity on

hepatobiliary phase after administration of hepatobiliary contrast agent, (6) and

restricted diffusion on DWI. Large HCCs (>2 cm) usually show all of these features

and do not pose a diagnostic problem. However, small HCCs (�2 cm) tend not to

have these entire features but have some of them. Therefore, small nodules are often

difficult to characterize as benign or malignant. In addition, small arterially enhanc-

ing nodules are not uncommon in the cirrhotic liver, and the majority of these

nodules are benign [101, 132, 157, 158, 176–178]. However, detection and charac-

terization of small HCCs is important because curative treatment options such as

transplantation or percutaneous ablation are optimally beneficial when the tumor is

small [179, 180]. In patients with cirrhosis and small HCC, the 5-year survival rate

after transplantation is 80 % compared with less than 5 % in those with untreated

symptomatic HCC [6, 178, 181]. If small HCCs are left alone, these HCCs can grow

aggressively. Invasion of tumor can also occur before tumors reach the 2 cm cutoff

size for small HCC [129]. Therefore, every attempt should be made to characterize

these small nodules [9]. If exact characterization of these nodules is not possible with

MR images, follow-up imaging or biopsy should be considered to verify their nature.

The management of small enhancing nodules (�2 cm) is mainly dependent on their

imaging features [9]. If the imaging features are highly suggestive of malignancy

(i.e., hypointensity on delayed image, capsular rim enhancement on portal venous

and delayed phase images, moderate hyperintensity on T2-weighted images,

restricted diffusion, absence of uptake of SPIO particles and hepatobiliary contrast

agent), the diagnosis of HCC should be made at either imaging or biopsy, because

resection or ablation therapy is more effective and beneficial than surveillance.

However, more often than not, the imaging features of these nodules are nonspecific,

and biopsy or follow-up imaging becomes necessary to confirm their nature [9]. The

optimal follow-up interval is yet to be established and is influenced by the tumor

volume doubling time. Reported doubling time for HCC ranges from 18 to 605 days,

and smaller HCCs tend to grow rapidly and to have a shorter doubling time

[182–188]. Therefore, a follow-up interval of 3–6 months has been suggested and

used in many institute nowadays.
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Magnetic Resonance Imaging

of Adenocarcinoma of the Pancreas

Richard C. Semelka, Luz Adriana Escobar, Najwa Al Ansari,

and Charles Thomas Alexander Semelka

Abstract Technical advances of magnetic resonance imaging (MRI), including

ultrahigh-field magnetic resonance at 3.0 T, parallel imaging techniques,

and multichannel receive coils of the abdomen, are valuable tools in the assess-

ment of the pancreatic disease. A standard MR protocol including non-contrast

T1-weighted fat-suppressed and dynamic gadolinium-enhanced gradient-echo

imaging is sensitive for the evaluation of pancreatic cancer. Optimal use of MRI

in the investigation of pancreatic cancer occurs in the following circumstances:

(1) detection of small non-contour deforming tumors, (2) evaluation of local

extension and vascular encasement, (3) determination of the presence of lymph

node and peritoneal metastases, and (4) determination and characterization of

associated liver lesions and liver metastases.

Introduction

Epidemiology and Risk Factors

Pancreatic ductal adenocarcinoma, referring to carcinoma arising in the exocrine

portion of the gland, accounts for 95 % of malignant tumors of the pancreas and is

the fourth most common cause of cancer death in the United States [1].

The lesion is more common in men and blacks, most frequently in the eighth

decade of the life [2, 3].

Several predisposing factors have been related with an increased incidence of

pancreatic cancer. Heavy alcohol drinking may result in chronic pancreatitis, which
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is a risk factor for pancreatic cancer. A strong family history of pancreatic cancer

is also likely a risk factor, although the association is not as great as for breast or

colon cancer.

Pancreatic adenocarcinoma has a poor prognosis, with a 5-year survival rate of

only 5 % [2, 3].

Approximately 60–70 % of pancreatic adenocarcinomas involve the pancreatic

head (Fig. 1), 10–20 % area located in the body (Fig. 2) and 5–10 % in the tail.

Diffuse glandular involvement occurs in 5 % of cases [4].

Pancreatic cancer arising in the head of the pancreas may cause obstruction of the

CBD and pancreatic duct, with the MR cholangiopancreatography (MRCP) appear-

ance of a “double duct sign” (Fig. 1), which was first described on ERCP studies.

This sign can be also appreciated, although less commonly, in patients with focal

pancreatitis. Painless jaundice is the classical presenting feature of carcinomas

within the pancreatic head. It should be noted that cancer arising in the uncinate

process may not obstruct the CBD until very late in the course of disease.

Fig. 1 Pancreatic cancer, arising in the head of the pancreas with biliary tree dilatation and main

pancreatic duct dilatation, “double duct sign.” Immediate postgadolinium T1-weighted

fat-suppressed SGE images (a) fat-suppressed T2-weighted SS-ETSE, (b) coronal T2-weighted

SS-ETSE (c) thick section MRCP (d). A 2-cm tumor is shown in the pancreatic head with minimal

peripheral enhancement on the early post-contrast images (arrow (a)), causing proximal dilatation

and abrupt distal narrowing of the common bile duct (CBD), with simultaneous dilatation of the

main pancreatic duct (MPD), which represents the “double duct sign” (d)
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Fig. 2 Large infiltrative pancreatic cancer arising from the neck and body of the pancreas with

biliary tree and pancreatic duct dilatation and vascular encasement. Fat-suppressed T1-weighted

SGE (a), immediate postgadolinium T1-weighted fat-suppressed SGE (b), 90-s postgadolinium

fat-suppressed SGE (c), non-breath hold 3D MRCP; and (d) MRCP with MIP reconstruction (e)

images. A 5-cm poorly differentiated infiltrative adenocarcinoma of the neck and body of the

pancreas (arrow (c)), causing a marked dilatation of the intrahepatic ducts and obstruction of

the common bile duct (CBD) visualizing and abrupt narrowing of the distal CBD (arrow (d)).

Dilatation CBD, the main pancreatic duct and side branches of the body and tail of the pancreas

are best depicted on MRCP images (d, e). The tumor has low signal intensity on immediate

post-contrast (b) showing encasement of the hepatic artery (arrow (b)). The portal vein and

proximal SMV are encased by the mass and there is a filling defect in the SMV, compatible

with thrombus (c)
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Carcinoma involving the body and tail of the pancreas grows insidiously and often

has already metastasized widely at the time of diagnosis [5]. The most common sites

of metastases are the liver, regional lymph nodes, peritoneum, and lungs.

The rich lymphatic supply and lack of pancreatic capsule account for the early

spread of cancer into regional nodes. The nodal groups most frequently involved

include paraortic, parapancreatic, paracaval, celiac, and paraportal.

Clinical manifestations may be nonspecific, including abdominal pain, weight

loss, and painless jaundice caused by obstruction of the common bile duct.

Nonresectable disease is seen at presentation in 75%of patients, with liver (Fig. 3)

and peritoneal metastases as the most frequent secondary organ involvement [4].

Fig. 3 Staging pancreatic cancer liver metastases. Immediate postgadolinium fat-suppressed SGE

(a), T2-weighted fat-suppressed spin-echo (b), T1-weighted in-phase SGE (c), immediate, and (d)

and 90-s postgadolinium T1-weighted fat-suppressed SGE images (e). Small tumor in the head of

the pancreas (arrow (a)) with the presence of multiple liver metastases that are mildly hyperintense

on T2 (b) hypointense on T1-weighted images (c), and have a discrete ring enhancement on the

immediate postgadolinium images (d)
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Surgery remains the sole curative treatment for patients with pancreatic

carcinoma, with postoperative 5-year survival rate of 20 % [6].

Accurate detection and staging of pancreatic cancer are essential to ensure

appropriate selection of patients who will benefit from surgery.

One study regarding prognostic factors after a Whipple procedure found that the

5-year survival rate was greater for patients with node-negative and small tumors

(<3 cm) than for those with node-positive and large tumors [7]. Another study

demonstrated a 5-year survival of 100 % for patients with a tumor smaller than 1 cm

and limited to the intraductal epithelium [8].

Advances in magnetic resonance imaging (MRI) including fast acquisition

methods and sequences, parallel imaging techniques, multichannel phased-array

torso coil, and high-field MR systems (1.5 and 3.0 T) have provided high-quality

images of the pancreas, which are sufficient to detect and characterize focal

pancreatic lesions smaller than 1 cm. Tumors that measure <1 cm in size that are

resected are associated with a 95 % 5-year survival. Hence, detection of these small

tumors is critical to improve patient survival.

Magnetic Resonance Imaging Technique

New MRI techniques in the abdomen that limit artifacts have improved the role of

MRI in the diagnosis and characterization of pancreatic disease.

MRI of the pancreas should always be performed with a high-field (1.5 or 3.0 T)

magnetic resonance unit with a phased-array torso coil to maximize signal to noise

ratio, improving breath hold and increased fat-water frequency shift, which facilitates

chemically selective excitation-spoiling fat suppression or water excitation.

The use of high spatial resolution MR imaging at 3.0 T will provide the highest

image quality and spatial resolution of the pancreas, allowing for the detection of

small focal pancreatic lesions [9].

Breath-hold T1-weighted gradient-echo sequences obtained either as a 2D or 3D

gradient echo, fat suppression techniques, and dynamic administration of gadolin-

ium chelate provide a high-quality study of the pancreas sufficient to evaluate and

characterize focal pancreatic mass lesions smaller than 1 cm in diameter and to

evaluate diffuse pancreatic disease [10–12].

MRCP depicts well the biliary and pancreatic ducts to evaluate ductal dilatation

(Fig. 1) and abnormal duct pathways [13–15]. Combining the tissue imaging

sequences and MRCP gives comprehensive information of the full range of pancre-

atic disease.

The standard MR protocol for the evaluation of the pancreatic cancer used in our

institution includes coronal and transverse T2-weighted single-shot echo train

spin-echo (SS-ETSE), transverse T2-weighted fat-suppressed SS-ETSE, trans-

verse T1-weighted spoiled gradient echo (SGE) in-phase and out-of-phase, and

transverse T1-weighted fat-suppressed 3-dimensional gradient echo (3D GE)

acquired before and after contrast administration during the hepatic arterial
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dominant (15–20 s), early hepatic venous (45 s), and the interstitial phase (120 s),

with the interstitial phase images acquired in transverse and coronal plane.

Magnetic resonance cholangiopancreatography (MRCP) acquired in a coronal

oblique projection can delineate the pancreatic and bile ducts [10] (Fig. 2).

MRCP images can be used to position in plane the pancreatic duct, in an oblique

coronal projection, to delineate longer segments of the pancreatic duct in continuity.

T2-weighted echo train spin-echo sequences such as T2-weighted half-Fourier

acquisition snapshot turbo spin-echo (HASTE) provide anatomic display of the

common bile duct (CBD) and pancreatic duct on coronal and transverse plane

images. This sequence also provides information about the complexity of pancre-

atic fluid collections in the presence of complications.

T2-weighted fat-suppressed images are useful in demonstrating liver metastases,

islet cell, and cystic pancreatic tumors.

Performing postgadolinium gradient-echo imaging as a 3D gradient-echo tech-

nique has advantages such as: (a) thinner sections (3 vs. 5 mm for 2D-SGE) and

(b) absence of mirror artifacts from the aorta, which is problematic at 2D-SGE. The

thinner sections obtainable at 3 T permit high spatial resolution reconstructions in

alternative planes, which can be helpful to evaluate the portal vein.

Evaluation of Pancreatic Cancer Using MRI

Tumor Detection

The normal pancreas is high in signal intensity on non-contrast T1-weighted

fat-suppressed images because of the presence of aqueous protein in the acini of

the pancreatic parenchyma (Fig. 4) [10]. In elderly patients the signal intensity

of the pancreas can diminish and be lower than that of the liver, reflecting changes

of fibrosis secondary to the aging process [12].

On the gadolinium contrast-enhanced images, the pancreas demonstrates a

uniform capillary blush on immediate post-contrast images, becoming isointense

in signal to the liver on interstitial phase images (Fig. 4) [7].

Pancreatic cancer usually appears as a low-signal-intensity mass on non-contrast

T1-weighted fat-suppressed images [10, 17, 18], with decreased enhancement on

immediate post-contrast images and mild progression of enhancement on intersti-

tial phase images (Fig. 5). In the majority of cases, the tumors show margination

with decreased enhancement on immediate post-contrast with a higher signal

intensity of the adjacent pancreas [19]. This appearance is commonly observed in

pancreatic cancer treated with chemotherapy and radiation therapy, but may also be

seen at initial presentation in 27 % of the patients, which is a feature of both

anaplastic and very well-differentiated tumors [19].
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Conventional spin-echo images are generally limited in the detection of pancre-

atic cancer. On T2-weighted images, tumors are usually minimally hypointense

relative to pancreas and therefore difficult to visualize.

Detection of carcinoma is best performed on immediate postgadolinium

T1-weighted gradient-echo images, on which the lesion will enhance to a lesser

extent than the surrounding normal tissue due to the abundant fibrous stroma and

sparse tumor vascularity of the lesion [17]. The appearance of adenocarcinoma on

the interstitial phase (>1 min postgadolinium) of mild progressive enhancement

reflects the increased volume of the extracellular space and the venous drainage of

cancers compared to normal pancreatic tissue (Fig. 5) [17].

In general, large pancreatic tumors tend to remain mildly low in signal intensity

on interstitial phase images, whereas the signal intensity of smaller tumors may

range from hypointense to mildly hyperintense on this phase.

Pancreatic cancers appear as mildly low-signal-intensity masses on non-contrast

T1-weighted fat-suppressed images and distinct from normal pancreatic tissue,

which is high in signal intensity (Fig. 5) [7, 17, 18].

Obstruction of the main pancreatic duct caused by the neoplasm, results in

tumor-associated pancreatitis, which is most often observed in large tumors as the

time delay during growth of the tumor allows progressive duct obstruction, atrophy,

Fig. 4 A normal pancreas at 3TMRI, In-phase T1-weighted SGE (a), fat-suppressed T2-weighted

SS-ETSE (b), T1-weighted fat-suppressed SGE (c), immediate postgadolinium T1-weighted

fat-suppressed 3D GE images (d). Images of the pancreatic body and tail illustrates the normal

appearance of the pancreas with a high intensity on T1-weighted fat-suppressed images due to the

presence of aqueous protein in the acini of the pancreas (c). A uniform capillary blush is seen on

the immediate postgadolinium images, which renders a higher in signal intensity comparing to the

enhancement of the adjacent liver, bowel, and abdominal fat (d)
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and resultant chronic pancreatitis. Pancreatic tissue distal to pancreatic cancer is

often atrophic in volume and lower in signal intensity compared to normal pancre-

atic parenchyma due to chronic inflammation associated with progressive fibrosis

and diminished proteinaceous fluid of the gland (Fig. 6) [17, 18].

In these cases, depiction of cancer is poor on non-contrast T1-weighted

fat-suppressed images. However, immediate post-contrast images can define the

size and extent of adenocarcinomas that obstruct the pancreatic duct, as tumors

almost always enhance less than adjacent chronically inflamed pancreas [17, 18].

Chronic pancreatitis can be seen as a focal mass-like lesion in the head of the

pancreas, which appears as a low-signal-intensity mass on non-contrast and imme-

diate post-contrast T1-weighted images. This MRI feature causes difficulty distin-

guishing between pancreatic cancer from chronic pancreatitis on the basis of extent

of enhancement of the lesion [20, 21].

One study evaluated the accuracy of MRI, emphasizing on the T1-weighted 3D

GE sequence, in the differential diagnosis between pancreatic carcinoma and

chronic pancreatitis, in patients with focal pancreatic mass [22]. The study results

showed a sensitivity of 93 % and specificity 75 %. The most discriminative finding

for pancreatic adenocarcinoma was a relative demarcation of the mass compared to

Fig. 5 Pancreatic cancer located in the pancreatic head. T1-weighted fat-suppressed SGE (a),

immediate postgadolinium T1-weighted SGE (b), and transverse (c) and coronal (d) interstitial

postgadolinium fat-suppressed SGE images. There is a 2-cm hypoenhancing mass in the pancre-

atic head clearly shown in the immediate postgadolinium image (arrow (b)) with discrete

progressive enhancement on the interstitial phase gadolinium-enhanced fat-suppressed images

(c). The tumor infiltrates distally the CBD, causing biliary obstruction and vascular infiltration of

the main portal vein and SMV best visualized in the coronal image (arrow (d))
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background pancreas in contrast to chronic pancreatitis. In contrast, the discrimi-

native feature of chronic pancreatitis was an ill-defined demarcation with relatively

increased signal intensity and enhancement compared with the background

pancreas on early hepatic venous phase images reflecting a more progressive

enhancement of inflammatory tissue compared to cancer from early to late post-

contrast images. An additional helpful imaging feature is effacement of the fine,

lobular architectural pattern of the pancreas in pancreatic adenocarcinoma [22],

which is often preserved in pancreatitis.

The presence of encasement of the celiac axis, superior mesenteric artery

(SMA), lymphadenopathy, and liver metastases are all helpful to establish the

diagnosis of pancreatic cancer [23, 24].

MRI is a more reliable diagnostic technique than computed tomography (CT) in

the detection of pancreatic cancer due to the superior soft tissue contrast and the

Fig. 6 Large pancreatic head cancer with tumor-associated chronic pancreatitis. Coronal

T2-weighted single-shot echo train spin-echo (a), T1-weighted fat-suppressed SGE (b), immediate

(c), and 90-s postgadolinium T1-weighted fat-suppressed SGE images (d). A 9-cm hypoenhancing

mass located in the head and uncinate process of the pancreas encasing the superior mesenteric

artery (arrow (c)) and obstruction of the distal CBD. Note the atrophy of pancreatic body and tail

of the pancreas with mild dilatation of main pancreatic duct (arrow (b)). There is a diffusely low

signal intensity on the precontrast T1-weighted fat-suppressed images (b), and diffuse diminished

enhancement of the body and tail of the pancreas on the 90-s postgadolinium T1-weighted

fat-suppressed SGE images (long arrow (d)). These findings are related to a long-term evolution

pancreatic tumor-associated chronic pancreatitis
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multiple types of data acquired. This is especially important for small non-contour

deforming pancreatic cancer, which may be difficult to identify even with multi-

detector row CT [25, 26]. According to a previous study [18], the immediate

post-contrast gradient-echo sequence was found to be the most sensitive approach

to detect pancreatic cancer, particularly in the head region, compared to spiral CT.

Staging

Preoperative staging of pancreatic cancer is important in order to correctly select

surgical candidates.

Advanced stage of disease precludes radical tumor resection in most patients

with pancreatic cancer. There are several MRI findings that radiologists

should address to determine resectability in the MRI report, such as: (1) distant

metastases: liver, lung, and distant paraortic lymph nodes; (2) regional lymph

nodes; (3) peritoneal disease; (4) direct invasion of adjacent organs: stomach,

colon, spleen; (5) invasion into the peripancreatic arteries: celiac trunk, hepatic

artery, SMA; and (6) invasion into peripancreatic veins: portal and superior

mesenteric vein [24].

Local extension of cancer and lymphovascular involvement can be evaluated on

non-suppressed T1-weighted images [26]. Low-signal-intensity tumors that extend

beyond the pancreas and invade adjacent organs are detected in the background

of high-signal-intensity fat tissue on nonfat-suppressed T1-weighted images [17].

Gadolinium-enhanced fat-suppressed GE images acquired in the interstitial phase

demonstrate an intermediate-signal-intensity tumor with enhancement extending

into low-signal-intensity suppressed fat. Thus, a combination of both sequences is

of value to detect the local tumor extension beyond the pancreas.

Vascular Encasement

Pancreatic cancer has a tendency to encase adjacent vessels including the main

portal vein, the superior mesenteric vein, celiac trunk, and its branches as well as

arterial vessels such as the SMA.

On MRI, vascular encasement is observed as a loss of fat plane around vessels

and as an encasing soft tissue lesion, which in advanced disease will result in

luminal narrowing of the involved vessel (Figs. 2 and 5) [27].

Vascular encasement by the tumor is best evaluated on thin-section 3D GE

images, which can be analyzed both as source images in the transverse plane and

reformatted images in the coronal plane [28].

When the tumor-vessel contact is less than 90� of the vessel circumference or

even absent, the likelihood of vessel invasion is low. A tumor-vessel contact of

90–180�, of the vessel circumference, means intermediate probability of vessel

invasion.
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Coronal plane reformatted images are useful to determine the relationships

between tumor and the portal vein as it enters the porta hepatis and between a

tumor and the superior mesenteric vein along the medial margin of the pancreatic

head (Fig. 5).

Lymph Node Metastases

The presence of a rich lymphatic network and the lack of capsule of the pancreatic

tissue accounts for the early spread of cancer to the regional lymph nodes in the

setting of pancreatic carcinoma [29].

Lymph node metastases are observed in up to two thirds of patients with

adenocarcinoma. Peripancreatic, celiac, paraportal, paracaval, and paraortic

lymph node groups are the most common involved.

Lymph nodes are well demonstrated on T2-weighted fat-suppressed images and

interstitial phase post-contrast fat-suppressed T1-weighted images as moderately

high-signal-intensity foci in background of low-signal-intensity suppressed fat on

both sequences.

T2-weighted fat-suppressed imaging is particularly useful for the demonstration

of lymph nodes near the liver or in the portal hepatic region because of the signal

intensity difference between moderately high-signal-intensity nodes and moder-

ately low-signal-intensity liver and low-signal-intensity fat [30]. Nonfat-suppressed

T1-weighted images, in which lymph nodes are seen as low-signal-intensity foci in

a background of high-signal-intensity fat, are useful to detect mesenteric or retro-

peritoneal nodes in the setting of abundant fat in these locations [30]. Coronal plane

images can provide a good visualization of the nodal groups involved as well.

Liver Metastases

Detection of liver metastases in the clinical context of pancreatic adenocarcinoma

is crucial, because their presence makes the patient ineligible for curative resection.

Liver metastases from pancreatic cancers are generally refounded in shape,

mildly low in signal intensity on T1-weighted images, and minimally hyperintense

on T2-weighted images (Fig. 3). The low-signal-intensity center of the metastatic

lesions reflects the desmoplasic nature of the primary cancer [10]. On immediate

post-contrast gradient-echo images, they usually demonstrate ring enhancement.

Wedge-shape perilesional enhancement can be seen associated with the liver

metastases on the immediate postgadolinium images [28].

For small metastatic lesions, homogeneous early enhancement with rapid fading

is commonly seen in the subcapsular location. These small subcapsular hyper-

vascular metastases are observed in more than 80 % of patients with pancreatic

cancer liver metastases [31].
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Peritoneal Metastases

The peritoneum is often involved in metastatic pancreatic carcinoma. Detection of

peritoneal metastases is critical because it excludes patients from curative

surgery [16].

Peritoneal metastases appear as moderately high-signal peritoneal lesions in a

dark background of suppressed fat on an interstitial phase gadolinium-enhanced

fat-suppressed sequence [17]. They can be recognized both by the presence or

absence of ascites and are very conspicuous even if the lesions have thin volumes

or have a linear shape, because of the relatively high signal of these lesions.

Interstitial phase gadolinium-enhanced fat-suppressed sequences have been

shown to be an effective technique to delineate peritoneal metastases compared

with CT images [32].

Chemotherapy and Radiation Therapy Treated Pancreatic

Ductal Adenocarcinoma

After treatment with chemotherapy and radiation therapy, morphologic and physi-

ologic changes occur in the tumor, the pancreas, and peripancreatic fatty tissue.

There is a decrease in tumor size in approximately 50 % of cases, and the

development of fibrogenic tissue as a sign of clinical response.

Assessment of treatment response is a challenging task because in most of the

cases, the interface between the tumor margin and the surrounding background

pancreatic tissue is indistinct. In these instances evaluation of tumor dimensions is

extremely difficult.

Postreatment images can show signs of acute chronic pancreatitis. The presence

of pancreatic tumor and pancreatitis can show an increase in abnormal pancreatic

tissue even though the tumor itself has decreased in size. Follow-up imaging after

pancreatitis has resolved is important.

Lesions That Simulate Pancreatic Cancer

Nonneoplastic Solid Lesions

Focal Fat Replacement

Pancreatic lipomatosis or fatty infiltration replacement is a common finding in the

adult pancreas, especially in elderly and obese patients. Involvement is normally

diffuse but in rare cases focal fat can simulate a neoplastic lesion.
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The anterior aspect of the head of the pancreas is the most common location for

focal fat infiltration.

Non-enhanced CT can suggest the diagnosis if the lesion contains sufficient

macroscopic fat to exhibit characteristics of fat attenuation (negative Hounsfield

units) (Fig. 7) [33]. Enhanced CT is not always helpful because normal parenchyma

is demarcated as higher density adjacent to foci of fatty infiltration, which may

simulate cancer.

The absence of mass effect, ductal, or vascular displacement, is an important

clue for the diagnosis.

Fig. 7 Focal fatty replacement in the head of the pancreas. Unenhanced CT scan (a), portal phase

contrast-enhanced CT scan, (b), transverse in-phase (c), and opposed-phase T1-weighted SGE (d)

and T1-weighted fat-suppressed 3D GE images (e). A nondeforming 1-cm oval lesion in the

anterior aspect of the head of the pancreas, showing a low attenuation (attenuation value:-17 UH)

on the unenhanced CT scan (arrow (a)), mild heterogeneous enhancement on the enhanced CT

scan (b), and marked signal loss with the opposed-phase T1-weighted sequence relative to the

in-phase (long arrow (d)). There is also a signal intensity loss on the T1-weighted fat-suppressed

3D GE images (e). There is absent of ductal obstruction or vascular infiltration in this pancreatic

lesion
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MR imaging is the modality of choice for the assessment of this entity due to its

high specificity in the detection of fat [34]. There will be a moderate to marked

signal loss with the opposed-phase T1-weighted sequence relative to the in-phase

weighted sequence (Fig. 7) [35].

Macroscopic fatty replacement of the pancreas will have a high signal intensity

with T1- and T2-weighted sequences and signal loss with fat-suppressed sequences.

Acute Focal Pancreatitis

Acute pancreatitis is an acute inflammatory condition typically presenting with

abdominal pain and elevation in pancreatic enzymes, secondary most often to

alcoholism or cholelithiasis. Autoimmune pancreatitis is a condition that is achiev-

ing greater recognition in recent years.

MRI is a very sensitive technique for detection of subtle changes of acute

pancreatitis even in the setting of a morphologically normal pancreas. CT imaging

examinations appear normal in 15–30 % of patients with clinical features of acute

pancreatitis [36].

The sensitivity of MRI exceeds that of CT imaging, supporting the role of MRI

in the evaluation of patients with a nonconclusive CT or a suspected focal lesion to

differentiate inflammatory from neoplastic lesion of the pancreas.

The acutely inflamed pancreas shows either focal or diffuse enlargement of the

parenchyma, with signal intensity similar to that of normal pancreatic tissue in

non-complicated pancreatitis. Peripancreatic fluid is an important sign visualized in

acute pancreatitis, best depicted in the T2-weighted fat-suppressed images, seen as

high signal in a background of intermediate- to low-signal-pancreas and fat (Fig. 8).

Focal Chronic Pancreatitis

Chronic pancreatitis is defined pathologically by continuous or relapsing inflam-

mation of the organ leading to irreversible morphologic injury, and typically leads

to impairment of function. This clinical condition can be acquired either as a

disease process distinct from acute pancreatitis or as a complication of repeated

attacks of acute pancreatitis.

Distinction between focal pancreatitis and adenocarcinoma is difficult because

both entities may cause focal enlargement of the pancreatic head, obstruction of the

common bile duct and pancreatic duct, atrophy of the tail of the pancreas, and

obliteration of the fat plane around the SMA.

It is difficult to differentiate focal enlargement of the pancreatic head due to

chronic pancreatitis from pancreatic cancer based only on CT images due to the

similar appearance as hypoattenuated lesions.

MRI imaging provides more accurate detail in chronic pancreatitis, not only in

the morphologic findings but also distinguishing fibrosis. Fibrosis in chronic pan-

creatitis is shown by diminished signal intensity on T1-weighted fat-suppressed
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images, as well as diminished heterogeneous enhancement on immediate

postgadolinium gradient-echo images, with enhancement that progresses to greater

than background pancreas.

Both adenocarcinoma and chronic pancreatitis show similar signal intensity

changes of the enlarged region of pancreas on non-contrast T1-weighted

fat-suppressed and T2-weighted images: generally mildly hypointense on

T1-weighted images and heterogeneous and mildly hyperintense on T2-weighted

images.

On immediate postgadolinium images, focal chronic pancreatitis shows

heterogeneous enhancement with presence of signal voids, from cysts and

calcifications, without evidence of a definable mass lesion. Usually in this entity,

the focally enlarged portion of the pancreas shows preservation of the glandular,

feathery texture similar to that of the remaining pancreas [22]. In contrast, in

pancreatic cancer, the focally enlarged portion of the pancreas loses its usual

architectural detail.

Diffuse low signal intensity of the entire pancreas, including the area of focal

enlargement, on T1-weighted fat-suppressed and immediate postgadolinium SGE

images are characteristic for chronic pancreatitis. In the setting of pancreatic cancer,

the enhancement of the tumor is less than the adjacent pancreatic parenchyma [38].

Fig. 8 Mild focal acute pancreatitis. Fat-suppressed T2-weighted single-shot echo train spin-echo

(SS-ETSE) (a), T1-weighted SGE (b), immediate and interstitial postgadolinium T1-weighted

fat-suppressed 3D GE images (c, d). Focal pancreatitis shows a mild focal enlargement of the

posterior aspect of the head of the pancreas with high signal intensity on T2-weighted

fat-suppressed images, due to minimal free fluid (arrow (a)). The intensity of the pancreatic

head enhancement is less than normal for pancreas on the capillary phase (long arrow (c)) and

shows progressive enhancement on the interstitial-phase images (d). There is a preservation of the

lobular architecture of the pancreatic head
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Features that favor a diagnosis of focal pancreatitis include non-dilated or smoothly

tapering of pancreatic and bile ducts coursing through the mass (“duct penetrating

sign”) [37, 38], pancreatic calcifications, and pancreatic duct irregularities.

Abrupt interruption of a smoothly dilated pancreatic duct, upstream pancreatic

gland atrophy, and a high ratio of duct caliber to the pancreatic gland width are

features recognized in adenocarcinoma [39].

Acute pancreatitis superimposed on the chronic disease is well shown on MR

images. Pancreatic pseudocysts are observed in patients with chronic pancreatitis as

a sequel of episodes of acute inflammation. Pseudocysts are generally seen as high

signal intensity on T2-weighted images, but they can have variable signal intensity

depending on the presence of blood, protein, infection, or debris. Lack of enhance-

ment on early and late postgadolinium images is therefore critical to demonstrate

that a complex T2-signal lesion is a pseudocyst.

Neoplastic Lesions

Pancreatic Endocrine Tumors

Pancreatic endocrine tumors (ET) were previously called islet cell tumor, because

they were thought to have originated from the islets of Langerhans; however, recent

evidence suggests that these tumors originate from pluripotential stem cells in the

ductal epithelium [40]. They account for 1–2 % of all pancreatic neoplasms. Most

cases are sporadic, but association with syndromes such as multiples endocrine

neoplasia type 1, von Hippel-Lindau syndrome, neurofibromatosis type 1, and

tuberous sclerosis has been observed. ETs are classified into functioning and

nonfunctioning tumors. The functioning tumors may present with an endocrine

abnormality resulting from the secretion of hormones [41].

The most common pancreatic endocrine tumors are insulinomas and

gastrinomas, followed in frequency by nonfunctional or untyped tumors.

Nonfunctional tumors account for at least 15–20 % of pancreatic endocrine

tumors and tend to present with symptoms owing to large tumor mass or metastatic

disease. In general, functioning tumors manifest early in the course of disease when

they are small due to the clinical manifestations of excessive hormone production.

Malignancy cannot be diagnosed on the basis of histological appearance of

pancreatic endocrine tumors instead it is determined by the presence of metastases

or local invasion beyond the pancreas. The liver is the most common organ for

metastatic spread.

Insulinomas are most commonly benign tumors, gastrinomas are malignant in

approximately 60 % of cases, and almost all other nonfunctioning tumors are

malignant in most cases.

Tumor morphologic features are variable. Small tumors are generally solid and

homogeneous, whereas larger tumors are heterogeneous with presence of cystic

degeneration and calcifications.
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In MR imaging, endocrine tumors are moderately low in signal intensity

on T1-weighted fat-suppressed and intermediate to high signal intensity on

T2-weighted fat-suppressed images [42]. The more distinctive feature of ET is

their behavior in contrast-enhanced imaging, where they enhance avidly during

the arterial phase, enhancing more rapidly and intensely than the normal pancreas

(Fig. 9).

Insulinomas most often appear as small tumors (<2 cm), with intense and

homogeneous enhancement on immediate postgadolinium images (Fig. 10),

whereas gastrinomas most commonly are large lesions (2.5–4 cm approximately),

with peripheral ring like enhancement on immediate postgadolinium images.

Homogeneous enhancement is typical for small tumors less than 2 cm, whereas

larger lesions tend to show heterogeneous enhancement.

Metastases to lymph nodes and solid organs such as the liver may have an

enhancement pattern similar to that of the primary tumor.

It is important to differentiate endocrine tumors from other neoplasms of the

pancreas, particularly adenocarcinoma, since the prognoses and treatment options

are different for both entities.

Features that distinguish most pancreatic endocrine tumors from pancreatic

adenocarcinoma include high signal intensity on T2-weighted sequences (Figs. 9

and 10), increased enhancement on immediate postgadolinium images,

Fig. 9 Small neuroendocrine pancreatic tumor in the uncinate process. Fat-suppressed

T2-weighted single-shot echo train spin-echo (SS-ETSE) (a), T1-weighted fat-suppressed 3D

GE (b) immediate (c) and interstitial postgadolinium T1-weighted fat-suppressed 3D GE images

(d). There is a 1-cm well-defined lesion with a high signal intensity on the T2-weighted

fat-suppressed image (arrow (a)), low signal intensity on T1-weighted fat-suppressed 3D GE (b)

showing homogeneous enhancement on the hepatic arterial dominate phase (long arrow (c)) and

fading in the hepatic venous phase
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hypervascular liver metastases, lack of pancreatic duct obstruction, or vascular

encasement [43].

Venous thrombosis, peritoneal regional node enlargement, are characteristic

features of pancreatic ductal adenocarcinoma, are generally not present in endo-

crine tumors.

Periampullary and Ampullary Carcinoma

Tumors arising from the ampulla of Vater, periampullary duodenum, or distal

common bile duct are termed periampullary carcinomas.

Their presentation is similar to that of pancreatic head ductal adenocarcinoma,

including obstruction of both the CBD and pancreatic duct. MRCP is very effective

for the visualization of biliary and pancreatic ductal dilatation as well for the level

of obstruction [48].

Periampullary carcinomas can cause ampullary obstruction and become

clinically symptomatic even when they are only a few millimeters in size.

Fig. 10 Insulinoma on the tail of the pancreas. Fat-suppressed T2-weighted SS-ETSE (a),

T1-weighted fat-suppressed 3D GE (b), T1-weighted postgadolinium hepatic arterial dominant

and hepatic venous phase fat-suppressed 3D GE images (c, d) demonstrates a 2-cm lobulated mass

located in the tail of the pancreas, showing high signal intensity on T2-weighted fat-suppressed

images (arrow (a)), intense heterogeneous enhancement on immediate postgadolinium images

(long arrow (c))
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The prognosis of periampullary carcinoma is significantly better than that of

pancreatic carcinoma, with a 5-year survival rate up to 85 % [48].

Magnetic resonance images for periampullary carcinoma demonstrate a similar

appearance to that of pancreatic adenocarcinoma. Periampullary and ampullary

carcinomas have low signal intensity on T1- and T2-weighted images and dimin-

ished enhancement on early postgadolinium images because of their hypovascular

character. On 2-min postgadolinium fat-suppressed images, delayed enhancement

is a typical finding [48]. A thin ring of enhancement is commonly observed along

the periphery of theses tumors and may also be a relatively specific finding.

Pancreatic Lymphoma

Non-Hodgkin lymphoma may involve peripancreatic lymph nodes or may directly

invade the pancreas. Intermediate-signal-intensity peripancreatic lymph nodes are

distinguished from high-signal-intensity normal pancreas on non-contrast

T1-weighted fat-suppressed images [44].

Primary pancreatic lymphoma is a rare entity, representing less than 2 % of

extranodal lymphomas and 0.5 % of pancreatic tumors [45].

Pancreatic lymphoma carries a better prognosis than pancreatic adenocarcinoma

because first-line treatment with chemotherapy is generally effective, producing

long-term disease regression or remission. Surgery is not required in most cases.

Two morphologic patterns of pancreatic lymphoma are recognized [46]: focal

and diffuse form. The focal form occurs in the pancreatic head in 80 % of the cases

and has a mean size of 8 cm (range: 2–15 cm). At MRI imaging lymphoma has a

low signal intensity on T1-weighted images and intermediate signal intensity on

T2-weighted images.

The diffuse form is infiltrative, leading to glandular enlargement and poor

definition. These features can simulate the appearance of acute pancreatitis,

showing a low signal intensity on T1- and T2-weighted MR images with homoge-

neous contrast enhancement, although small foci of reduced or absent enhancement

are sometimes seen.

Several features that may help distinguish pancreatic lymphoma from adenocar-

cinoma are the presence of a bulky localized tumor in the pancreatic head without

significant main pancreatic duct dilatation, enlarged lymph nodes below the level of

the renal vein, and invasive tumor growth with infiltration of retroperitoneal and

upper abdominal organs.

Vascular invasion is less common in lymphoma than in pancreatic

adenocarcinoma.

Metastases of the Pancreas

Involvement of the pancreas by metastatic tumor may be the result of spread by

direct extension or hematogenous metastases. Direct invasion from stomach and

transverse colon carcinoma are not rare.
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Metastases are most frequently from renal cell carcinoma and lung cancer

followed by breast, colon, prostate, and malignant melanoma.

Three morphological patterns of metastatic involvement of the pancreas have

been described: solitary lesion (50–70 % of cases), multifocal (5–10 %), and diffuse

(15–44 %) [47].

Metastases generally have low signal intensity on T1-weighted, mildly high

signal intensity on T2-weighted images. The enhancement of most metastases

follows a ring pattern, with a variable degree of enhancement depending on the

angiogenic properties of the primary neoplasm. Small metastases (<1 cm in

diameter) enhance uniformly on immediate postgadolinium gradient-echo images.

Renal cancer metastases resemble the appearance of islet cell tumors. Melanoma

metastases may be high in signal intensity on T1-weighted images because of

paramagnetic properties of melanin pigment.

Ductal obstruction is uncommon even with larger tumors, which is an important

feature distinguishing metastases from pancreatic ductal adenocarcinoma. Chronic

pancreatitis that arises secondary to ductal obstruction is not present, and therefore

background pancreas is moderately high signal intensity, creating a sharp contrast

and good delineation with hypointense tumors on non-contrast T1-weighted

fat-suppressed images.

Conclusions

– MRI may be the optimal method to evaluate pancreatic cancer.

– Detection of small tumors is best made with MRI.

– Staging is also performed well, with good detection and characterization of

metastases.

– The full range of other pancreatic disease is well shown.

References

1. Jemal A, Siegel R, Ward E (2008) Cancer statistics. Ca Cancer J Clin 58:71–96

2. Warshaw AL, Fernandez-del Castillo C (1992) Pancreatic carcinoma. N Engl J Med

326:455–465

3. Moossa AR (1982) Pancreatic cancer: approach to diagnosis, selection for surgery and choice

of operation. Cancer 50:2689–2698

4. Low G, Anukul P, Noam M (2011) Multimodality imaging of neoplastic and nonneoplastic

solid lesions of the pancreas. Radiographics 31:993–1015

5. Baron R, Stanley R, Lee J (1983) Computed tomographic features of biliary obstruction. AJR

Am J Roentgenol 140:1173–1178
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Quantitative Evaluation of Liver Function

Within MR Imaging

Akira Yamada

Abstract Hepatocellular uptake index (HUI) is a quantitative indicator of

excretory liver function, which is obtained from signal intensity of the liver and

spleen and liver volume on gadoxetate disodium-enhanced MR images. HUI

correlates well with existing quantitative liver function test results, such as

indocyanine green clearance, and allows segmental liver function to be evaluated

even if there are regional differences in liver function.

Introduction

Quantification of liver function is important not only for monitoring liver function

but also for preoperative diagnosis of reserved liver function with the goal of

preventing postoperative liver failure. Currently, the indocyanine green (ICG)

clearance test is considered to be the most reliable method for such quantification

[1]. This test is based on properties of the colorant compound ICG: after ICG is

administered into blood, it is specifically incorporated into hepatocytes, and almost

100 % of it is excreted in bile. Thus, for example, the plasma disappearance rate of

ICG (ICG-PDR) and the retention rate 15 min after intravenous administration

(ICG-R15) are used as quantitative indicators of liver function [2]. However, the

ICG clearance test has a disadvantage, because although it reflects total liver

function, it is unable to evaluate segmental liver function. Therefore, it would be

highly desirable to establish a quantitative method for evaluation of liver function

using imaging modalities such as computed tomography (CT) and magnetic reso-

nance (MR) imaging.
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An example of such a method is MR perfusion study using a gadolinium

(Gd)-based extracellular fluid contrast agent. This technique has been applied to

quantitative evaluation of blood flow dynamics of the liver and also to diagnosis of

liver function and liver fibrosis [3]. However, the information obtained from

contrast-enhanced MR imaging with a Gd-based extracellular fluid contrast agent

is still an indirect indicator of liver function; using the data obtained by this method,

it is still difficult to evaluate the function of the hepatocytes themselves.

On the other hand, gadoxetate disodium (Gd-EOB-DTPA) is a tissue-specific Gd

contrast agent that was introduced only recently for clinical application. In this

compound, a lipophilic branched-chain ethoxybenzyl (EOB) moiety is linked to an

extracellular fluid contrast agent, Gd-DTPA. Because of the presence of the

lipophilic branched chain, Gd-EOB-DTPA has properties of both an extracellular

fluid contrast agent and a hepatocyte-specific contrast agent. Because the com-

pound is incorporated into hepatocytes, gadoxetate disodium-enhanced MR imag-

ing is capable of reflecting hepatocyte function. A study aimed at applying this

method to quantitative evaluation of liver function has been performed [4].

Here, we describe Gd-based extracellular fluid contrast agents, which are essen-

tial for an understanding of quantitative evaluation of liver function in gadoxetate

disodium-enhanced MR imaging, and discuss the pharmacokinetics of gadoxetate

sodium. We also review the quantitative methods that have been proposed for

diagnosis of liver function using gadoxetate disodium-enhanced MR imaging,

along with the future prospects for clinical applications of these methods.

Quantitative Evaluation of Blood Flow Dynamics of the

Liver, Using a Gd-Based Extracellular Fluid Contrast Agent

1. Linear two-compartment model

Among the paramagnetic ions, Gd has the most unpaired electrons (seven) and

exhibits the strongest T1-shortening. However, because Gd alone is highly toxic,

it must be administered as a compound with a chelating agent [5]. After admin-

istration into systemically circulating blood and arrival at the blood vessel of the

target tissue, a Gd-based extracellular fluid contrast agent diffuses rapidly along

the concentration gradient and reaches equilibrium between the interior and

exterior of the blood vessel. Most of the contrast agent that is not incorporated

into the cells and re-diffuses into the blood vessel is excreted from the kidney

into the urine when kidney function is normal [5]. The disappearance of the

Gd-based extracellular fluid contrast agent from the blood occurs in two phases:

a distribution phase, in which it mainly diffuses from blood to tissue, and a

disappearance phase, in which it is mainly excreted from blood into urine. These

pharmacokinetics can be explained by a two-compartment model. In addition,

because the diffusion along the concentration gradient is proportional to the

concentration, the pharmacokinetics of a Gd-based extracellular fluid contrast
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agent can be explained by a linear two-compartment model consisting of a

central compartment (systemic circulation) and a peripheral compartment (tis-

sue) (Fig. 1). Strictly speaking, there are two compartments in the extracellular

space of the tissue, namely, the interior and exterior of the blood vessels; in the

liver, these correspond to the sinusoids and the Disse space, respectively.

However, if one postulates the establishment of an instantaneous equilibrium,

based on the assumption that diffusion of substances between the two extracel-

lular spaces is extremely fast, then the two extracellular spaces may be modeled

as the same compartment. (If an instantaneous equilibrium between the two

extracellular spaces is not established, then a more complicated model must be

considered. Details have been described in the literature [6].) If Ca(t) is the

concentration of the contrast agent in the systemically circulating blood (e.g.,

aorta) at time t, Ct(t) is the concentration of the contrast agent in the tissue

extracellular space (e.g., in the liver, sinusoids, and Disse space), τ is the time

needed for the contrast agent to reach the tissue from systemic circulation, K1 is

Fig. 1 Linear two-compartment model of gadolinium-based extracellular fluid contrast agent.

Ca(t), concentration of the contrast agent in systemically circulating blood at time t; Ct(t),
concentration of the contrast agent in tissue extracellular space at time t; τ, time required for the

contrast agent to arrive at tissue via the systemic circulation; K1, rate coefficient for diffusion of

contrast agent from systemic circulation to tissue; and k2, rate coefficient for diffusion of contrast

agent from tissue to systemic circulation. The contrast agent, administered intravenously into

systemically circulating blood, reaches a tissue after a period τ, diffuses into the tissue at a velocity
proportional to the concentration in systemically circulating blood Ca(t) and the diffusion rate

coefficient K1, and diffuses out of the tissue at a velocity proportional to the concentration in the

tissue extracellular space Ct(t) and the diffusion rate coefficient k2. The contrast agent is not

incorporated into the cell and is excreted from the kidney into urine

Quantitative Evaluation of Liver Function Within MR Imaging 235



the rate coefficient for diffusion of the contrast agent from the systemic circula-

tion to the tissue, and k2 is the rate coefficient for diffusion from the tissue to the

systemic circulation, then the change over time in the concentration of the

contrast agent in the tissue can be described by the following differential

equation [6, 7]:

dCt tð Þ=dt ¼ K1� Ca t� τð Þ � k2� Ct tð Þ

Then, the T1 relaxation rate of the tissue after imaging (1/T1) can be expressed

by the sum of the T1 relaxation rate inherent to the tissue (1/T10) and the

T1-shortening caused by the contrast agent present in the extracellular fluid

(1/T1ECF) [5].

1=T1 ¼ 1=T10 þ 1=T1ECF

1=T1ECF ¼ R1� Ct tð Þ

where R1 is an indicator termed “T1 relaxivity,” which reflects the degree of

T1-shortening of the contrast agent; the enhancement effect on the T1-weighted

image is stronger when R1 is larger. For example, in the case of the spin echo

method, the following equation describes the relationship between the T1

relaxation rate (1/T1) and the MR signal strength (S) [8]:

S ¼ κ � ρ� 1� 2e� TR�TE=2ð ÞT1 þ e�TR=T1
� �

� e�TE=T2

κ is a proportionality factor, ρ is proton density, TR is repetition time, and TE is

echo time. Therefore, there is no linear proportional relationship between MRI

contrast agent concentration and the MR signal intensity similar to that between

the iodine contrast agent concentration and CT value. However, because there is

an exponential correlation between the MRI contrast agent concentration and the

signal intensity up to a certain concentration (about 5 mmol/L in a 1.5 T MR

apparatus) [9], the enhancement effect on MR images is considered to mostly

reflect the concentration of the contrast agent. As Ca(t) and Ct(t) can be deter-

mined on MR images in this way, it is possible to determine the parameters τ,
K1, and k2 by curve fitting, using the time-intensity curves (TIC) of the systemic

circulation and tissue obtained by multiphase imaging [10].

In the following subsections, we discuss the significance of each parameter

determined in the linear two-compartment model of the Gd-based extracellular

fluid contrast agent, in terms of diagnostic imaging.

2. τ
τ is the time required for the contrast agent to arrive at tissue via the systemic

circulation. The contrast agent arrives more slowly at a tissue with large τ than at
a tissue with small τ. A difference in τ is observed as a difference in the upward

flexion point of the TIC (Fig. 2) [7].
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3. K1

K1 is the rate coefficient for diffusion of the contrast agent from the systemic

circulation into the tissue. Therefore, it can be said that within a particular

period, more contrast agent flows into a tissue with larger K1 than into a tissue

with smaller K1. The diffusion of the contrast agent into the tissue is influenced

both by blood flow rate and by blood vessel permeability [6]. Differences in K1

are observed as differences in the peak height of the TIC during early-phase

imaging (Fig. 3) [11]. The usefulness of K1 as a factor for estimating the

outcome of patients with hepatocellular carcinoma, and also as an indicator for

evaluation of therapeutic effects, has been reported [12].

4. k2

k2 is the rate coefficient for diffusion of the contrast agent from the tissue into

the systemic circulation. It is also expressed as the inverse of mean transit time,

and it can be said that the contrast agent diffuses more rapidly out of a tissue with

larger k2 than out of a tissue with smaller k2 [6]. Differences in k2 are observed

Fig. 2 Influence of τ on time-intensity curve. Shown are time-intensity curves obtained as K1 and

k2 were kept constant and τ was altered. The upward flexion point of the time-intensity curve is

delayed when τ is large, compared to when τ is small
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as differences in the slope of the TIC between early- and late-phase imaging

(Fig. 4) [11]. Similarly to K1, k2 has also been reported to be useful as a factor

for estimating the outcome of patients with hepatocellular carcinoma and as an

indicator for evaluating therapeutic effects [12].

5. K1/k2

K1/k2 is also expressed as distribution volume (Vd), which is defined as the

volume of all tissues and organs in the body where the drug is distributed,

assuming that it is distributed at the concentration identical to that in the

systemically circulating blood [3]. It can be said that a tissue with large K1/k2

contains more contrast agent in the extracellular space than a tissue with small

K1/k2. However, note should be taken of the fact that K1/k2 does not indicate

the actual volume of the tissue where the contrast agent is distributed.

Differences in K1/k2 are observed as differences in the height of the TIC during

late-phase imaging and reflect the contrast-enhancement effect in the

equilibrium-phase imaging (Fig. 5) [11].

Fig. 3 Influence of K1 on time-intensity curve. Shown are time-intensity curves obtained as τ and
k2 were kept constant and K1 was altered. The peak of the time-intensity curve is higher when K1

is large, compared to when K1 is small
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6. Two-in-one-outlinear compartment model

Because hepatic blood flow is supplied by both the hepatic artery and the

portal vein, a 2-in-1-outlinear compartment model should be considered, in

order to evaluate hepatic blood flow dynamics in detail [7]. Such a model

takes into the account the influence of portal blood flow in a linear

two-compartment model:

dCt tð Þ=dt ¼ K1a � Ca t� τað Þ þ K1p � Cp t� τp
� �� k2� Ct tð Þ

where Ca(t), Cp(t), τa, τp, K1a, and K1p are arterial and portal concentrations of

the contrast agent, time to arrival, and transfer rate coefficient. It is possible to

determine the arterial blood flow rate [K1a/(K1a + K1p)], Vd [(K1a + K1p)/k2],

and other parameters by analyzing these values, which have been used for

evaluation of liver fibrosis [3].

Fig. 4 Influence of k2 on time-intensity curve. Shown are time-intensity curves obtained as τ and
K1 were kept constant and k2 was altered. The time-intensity curve declines more rapidly when k2

is large, compared to when k2 is small
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Quantitative Evaluation of Liver Function Using

Gadoxetate Disodium

Gadoxetate disodium is a tissue-specific Gd contrast agent consisting of a Gd-based

extracellular fluid contrast agent, Gd-DTPA, linked to a lipophilic branched-chain

EOB moiety. When administered intravenously, this compound is transferred from

the systemic circulation into the tissue, distributed into the extracellular fluid, and

incorporated specifically into hepatocytes by the organic anion transporter peptide

(OATP) expressed on the hepatocyte membrane. About 40 % of the administered

agent is excreted into bile, while about 60 % of it is excreted into urine. Thus, the

pharmacokinetics of gadoxetate disodium and the resulting imaging findings are

easily explained by a nonlinear compartment model, in which the model of the

extracellular fluid Gd-based contrast agent is modified to take into account

incorporation into cells (Fig. 6) [13]:

Fig. 5 Influence of magnitudes of K1 and k2 on time-intensity curve. Shown are time-intensity

curves obtained as τ and K1/k2 were kept constant and K1 and k2 were altered. Various peak

heights and decay patterns are observable, depending on the values of K1 and k2, but the contrast

enhancement is constant in late-phase imaging
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dCt tð Þ=dt ¼ K1� Ca t� τð Þ � k2þ v tð Þf g � Ct tð Þ

where v(t) is the nonlinear rate coefficient at time t, representing the incorporation

from the tissue extracellular space into cells. v(t) can be expressed by the following
Michaelis-Menten equation:

v tð Þ ¼ Vmax= Km þ Ct tð Þf g

where Vmax is the maximum rate of incorporation, and Km is the Michaelis-Menten

constant, which is defined as the substrate concentration giving an incorporation

rate of half Vmax. Normally, gadoxetate disodium-enhanced MRI is carried out

within 20 min after administration of the contrast agent; if it is postulated that

excretion of the contrast agent into bile is negligibly small, then the intracellular

concentration of the contrast agent at time t can be expressed by
Ð
{v(t) � Ct(t)} • dt.

Fig. 6 Nonlinear two-compartment model of hepatocyte-specific gadolinium contrast agent.

Ca(t): concentration of the contrast agent in systemically circulating blood at time t; Ct(t):
concentration of the contrast agent in tissue extracellular space at time t; τ: time required for the

contrast agent to arrive at tissue via the systemic circulation; K1: rate coefficient for diffusion of

contrast agent from systemic circulation to tissue; k2: rate coefficient for diffusion of contrast

agent from tissue to systemic circulation; v(t): rate coefficient for uptake of contrast agent from

hepatic extracellular space into cell; Vmax: maximum reaction rate; and Km: Michaelis-Menten

constant. The contrast agent, administered intravenously into systemically circulating blood,

reaches a tissue after a period τ, diffuses into the tissue at a velocity proportional to the

concentration in systemically circulating blood Ca(t) and the diffusion rate coefficient K1, and

diffuses out of the tissue at a velocity proportional to the concentration in the tissue extracellular

space Ct(t) and the diffusion rate coefficient k2. The contrast agent is excreted from the kidney into

urine and is also incorporated from the extracellular space into hepatocytes, via a nonlinear process

v(t) characterized by Vmax and Km, and excreted into bile
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In other words, gadoxetate disodium uptake into hepatocytes is governed by the

amount of the contrast agent delivered to the tissue extracellular space and the uptake

rate into hepatocytes, thus reflecting both blood flow and transporter function.

Furthermore, in view of the fact that R1 of EOB differs between extracellular fluid

(R1extracellular fluid ¼ 8.7 L mmol�1 s�1) and hepatocytes (R1HC ¼ 16.6

Lmmol�1 s�1) [21], the T1 relaxation rate in tissue (1/T1) at time t can be expressed
by the sum of the T1 relaxation rate specific to the tissue (1/T10), the T1-shortening

by the contrast agent present in the extracellular fluid (1/T1extracellular fluid) and the

T1-shortening of the contrast agent present in the hepatocytes (1/T1HC):

1=T1 ¼ 1=T10 þ 1=T1extracellular fluid þ 1=T1HC

1=T1extracellular fluid ¼ R1extracellular fluid � Ct tð Þ
1=T1HC ¼ R1HC �

ð
v tð Þ � Ct tð Þf g � dt

Thus, the hepatic enhancement effect in gadoxetate disodium-enhanced MR

imaging can be assumed to reflect the sum of the concentration of gadoxetate

disodium present in the extracellular fluid and the integral concentration of

gadoxetate disodium incorporated into hepatocytes.

Several attempts have been made to perform quantitative evaluation of liver

function by applying the pharmacokinetics of gadoxetate disodium, thereby

correcting the liver signal intensity on gadoxetate disodium-enhanced MR images.

1. Correction of liver signal intensity before contrast-enhanced MR imaging

Kim et al. [14] determined liver signal intensities (SIs) on T1-weighted images

using the spin echo method, before and after gadoxetate disodium-enhanced MR

imaging, in a rat model of artificially induced hepatitis, to examine their correlation

with the half-life of ICG in blood (ICG-T½). Relative enhancement (RE), used as an

indicator for evaluating the signal intensity, can be calculated according to the

following equation:

RE %ð Þ ¼ SIpostcontrast � SIprecontrast
� �

=SIprecontrast � 100

The correlation coefficients of ICG-T½ with RE-max (the maximum RE until

60 min after contrast-enhanced imaging) and with RE-T½ (the half-life after

RE-max) were �0.98 and 0.97, respectively, indicating that compromised liver

function leads to a decrease in liver signal intensity in gadoxetate disodium-

enhanced MR imaging and delay of excretion of gadoxetate disodium into bile [14].

Shimizu et al. [15] determined liver signal intensities on spin echo T1-weighted

images before and after gadoxetate disodium-enhanced imaging, to examine the

correlation between the ischemic period and RE-T½ in a rat model of artificially

induced local hepatic ischemia reperfusion. The results showed that RE-T½ varied

statistically significantly, depending on the difference of ischemic period. Further-

more, RE-T½ was longer, i.e., excretion of gadoxetate disodium into bile was
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delayed, when the ischemic period was longer. The RE-T½ values in the ischemic

and non-ischemic regions were statistically significantly different from each other,

indicating that it might be possible to diagnose segmental liver function using

gadoxetate disodium-enhanced MR imaging [15].

Because gadoxetate disodium exhibits a stronger enhancement effect in

hepatocytes than in extracellular fluid, the effect of the gadoxetate disodium present

in the extracellular fluid on the liver signal intensity becomes insignificant suffi-

ciently late after administration, when excretion from the kidney has progressed.

Therefore, it should be possible to evaluate uptake of gadoxetate disodium into

hepatocytes by subtracting the signal intensity before contrast-enhanced imaging.

However, even when MR images were acquired 20 min after gadoxetate disodium

administration (the time point when the maximum enhancement effect may be

obtained in humans), the correlation of RE with ICG-PDR was small (r ¼ 0.48)

[16]. Therefore, it would be necessary to correct for the extracellular fluid-based

enhancement effect in the clinical setting.

2. Correction for the extracellular fluid-based enhancement effect

Motosugi et al. [17] measured signal intensities of the liver and spleen on

fat-suppressed T1-weighted 3D gradient echo images 20 min after the administra-

tion of gadoxetate disodium to patients, in order to examine the correlation of these

values with various indicators of liver function (ICG-R15, serum albumin-bilirubin

concentration, prothrombin time, and Child classification). Quantitative liver-to-

spleen contrast ratio (Q-LSC ¼ SIliver/SIspleen), which is determined from the ratio

of liver and spleen signal intensities, showed the best correlation with ICG-R15.

Furthermore, Q-LSC values varied statistically significantly, depending on the

severity of hepatopathy by Child classification, indicating that the Q-LSC value

declines, i.e., the contrast of liver and spleen becomes weaker, with progression of

hepatic disease (Figs. 7 and 8). [17].

Fig. 7 Fat-suppressed

T1-weighted 3-dimensional

gradient echo image 20 min

after Gd-EOB-DTPA

administration (TR/TE/

FA ¼ 3.5/1.42/15), in a

case of chronic hepatitis

(ICG-PDR* ¼ 0.08 s�1,

liver volume ¼ 1,024 mL).

The contrast of the liver

and spleen is reduced,

and the signal intensity

of the liver is uneven.

*ICG-PDR ¼ indocyanine

green plasma

disappearance rate
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Because gadoxetate disodium is present not only in hepatocytes but also in

extracellular fluid, it is necessary to correct for the extracellular fluid-based

enhancement effect when hepatocyte function is evaluated from the liver signal

intensity in the hepatocyte phase. On the other hand, the distribution volume

(Vd ¼ K1/k2) of extracellular fluid is significantly similar in normal liver and

spleen tissues [18], with the difference between normal liver and liver cirrhosis

being approximately 10 % [3]. Thus, in hepatocyte-phase imaging, when the

concentration of the contrast agent in the extracellular fluid is in equilibrium,

the contrast-enhancement effect (1/T1extracellular fluid) of the gadoxetate disodium

present in the extracellular space of the liver can be approximated by the contrast-

enhancement effect of the spleen. Liver signal intensity corrected by spleen signal

intensity might be used as an effective indicator of liver function (Fig. 9). However,

the coefficient of determination obtained in the regression analysis of Q-LSC and

liver function indicators (ICG-R15 and Child classification) was small, at 0.34 [17],

suggesting that further improvement is needed in order to achieve quantitative

determination of liver function with gadoxetate disodium-enhanced MR imaging.

It is also possible to use the hepatic extraction fraction (HEF), which is determined

by deconvolution analysis of the signal intensities of the liver and aorta over time,

as an indicator for correction of the extracellular fluid-based contrast-enhancement

effect and evaluation of gadoxetate disodium uptake into the liver. HEF is reported

to be significantly lower in patients with primary biliary cirrhosis than in healthy

subjects, and there is a correlation between HEF and the severity of PBC. However,

no comparison of quantitative methods for determination of liver function (e.g.,

ICG clearance test) has been made in human beings [19, 20].

3. Correction for liver volume

All liver function diagnostic methods that employ conventional gadoxetate

disodium contrast-enhanced MR imaging, such as RE, Q-LSC, and HEF, focus

Fig. 8 Fat-suppressed

T1-weighted 3-dimensional

gradient echo image 20 min

after Gd-EOB-DTPA

administration (TR/TE/

FA ¼ 3.5/1.42/15), in a

case of normal liver

(ICG-PDR* ¼ 0.23 s�1,

liver volume ¼ 1,091 mL).

The contrast of the liver

and spleen is strong,

and the signal intensity

of the liver is uniform.

*ICG-PDR ¼ indocyanine

green plasma

disappearance rate
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only on the local signal intensity and make no correction for liver volume. Thus,

these methods may be useful in evaluating the severity of local fibrosis [21] and in

qualitative diagnosis of liver function [22]. For quantitative diagnosis of liver

function, however, the regional signal intensity as well as liver volume should

also be taken into consideration (Figs. 10 and 11) [23]. In addition, conventional

methods use the regional signal intensity as representative of the signal intensity of

the entire liver, on the assumption that there are no regional differences in liver

function. Thus, in cases where there are regional differences in liver function, for

example, under the influence of obstructive jaundice or obstructed blood flow in the

portal vein, it is necessary to use an indicator that correctly reflects these regional

differences (Fig. 12). The hepatocellular uptake index (HUI) has been proposed as a

quantitative indicator of liver function that takes such regional differences into

account. HUI is calculated according to the following equation, which corrects for

the extracellular fluid-based contrast enhancement and liver volume [24]:

Fig. 9 Time-intensity curves of liver and kidney in gadoxetate disodium contrast-enhanced MRI.

Shown are the time concentration curves observed in an actual dynamic study and simulation

results obtained in the nonlinear two-compartment model analysis. Hepatocyte enhancement

effect (green) is observed even in the early-phase imaging, contributing to a gradual increase of

the time-intensity curve of the entire liver (red). The hepatic extracellular fluid-based enhancement

effect (blue) shows a decay similar to those of spleen (purple) and aorta (black); the extracellular
fluid-based enhancement effects of liver and spleen are quite similar to each other in the late-phase

imaging

Quantitative Evaluation of Liver Function Within MR Imaging 245



Fig. 10 Fat-suppressed T1-weighted 3-dimensional gradient echo image obtained 20 min after

Gd-EOB-DTPA administration (TR/TE/FA ¼ 3.5/1.42/15), in a case of mild hepatopathy

(ICG-PDR* ¼ 0.19 s�1, liver volume ¼ 1,045 mL). The contrast of the liver and spleen is strong

but the signal intensity of the liver is uneven. Note that although the liver volume is larger and the

ICG-PDR higher compared to the case of Fig. 11, the ratio of liver and spleen signal intensity is

low. *ICG-PDR ¼ indocyanine green plasma disappearance rate

Fig. 11 Fat-suppressed T1-weighted 3-dimensional gradient echo image obtained 20 min after

Gd-EOB-DTPA administration (TR/TE/FA ¼ 3.5/1.42/15), in a case of normal liver (ICG-PDR*

¼ 0.15 s�1, liver volume ¼ 749 mL). The contrast of the liver and spleen is strong, and the signal

intensity of the liver is uniform. Note that although liver volume is smaller and ICG-PDR is lower

compared to the case of Fig. 10, the ratio of liver and spleen signal intensity is high. *ICG-

PDR ¼ indocyanine green plasma disappearance rate
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HUI ¼ V � L20 � S20ð Þ=S20

The HUI equation above can be interpreted as follows: if the difference in signal

intensity before imaging is considered negligible, then the difference between the

average signal intensity of the entire liver on the fat-suppressed T1-weighted image

(L20), and the mean signal intensity of the spleen (S20) 20 min after administration

of gadoxetate disodium represents the enhancement effect of gadoxetate disodium

uptake into hepatocytes. The amount of gadoxetate disodium uptake into

hepatocytes per unit volume is determined approximately, normalizing it against

the signal intensity of the spleen (S20), and the amount of gadoxetate disodium

uptake into hepatocytes in the entire liver is estimated by integrating the concen-

tration over the liver volume (V ). HUI correlates well with the ICG plasma

disappearance rate, an indicator of substrate incorporation into the same

hepatocytes via OATP [24]. As HUI is determined directly from the signal intensity

and the liver volume in the region of interest, it would be applicable to cases in

which there are regional differences in liver function and would therefore allow

more accurate estimation of segmental liver reserve function [24]. HUI has been

shown to be useful in predicting reserve liver function after transarterial

chemoembolization therapy [25]. Manual identification of the liver region of

interest demands time and labor. However, if advances in computer-assisted diag-

nostic imaging allow blood supply regions and anatomical regions of interest to be

Fig. 12 Fat-suppressed T1-weighted 3-dimensional gradient echo image obtained 20 min after

Gd-EOB-DTPA administration (TR/TE/FA ¼ 3.5/1.42/15), in a case undergoing right portal vein

branch embolization (ICG-PDR* ¼ 0.21 s�1, liver volume ¼ 957 mL). Decreases are observed in

the signal intensity and volume of the right hepatic lobe, which was subjected to portal vein

embolization. Compensatory hypertrophy is observed in the left hepatic lobe. *ICG-PDR ¼
indocyanine green plasma disappearance rate
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defined automatically, it will be possible to achieve more efficient and sophisticated

diagnosis of reserve liver function (Fig. 13) [26].

Summary

We have presented here quantitative methods for diagnosis of liver function using

MR imaging, with special reference to a gadolinium-based extracellular fluid contrast

agent, the pharmacokinetics of gadoxetate disodium, and previously proposed vari-

ous quantitative methods for liver function diagnosis. However, clinical application

of such quantitative MR imaging for the diagnosis of reserved liver function is still

challenging, and further research is required to establish a standard imaging method,

correct for the effect of iron–fat deposition, and overcome any other problems.

Fig. 13 Automatic extraction of liver using Gd-EOB-DTPA contrast-enhanced MRI. (a) F

Fat-suppressed T1-weighted 3-dimensional gradient echo image obtained 20 min after

Gd-EOB-DTPA administration (TR/TE/FA ¼ 3.5/1.42/15). Original image before contour

extraction. (b) Contour of liver manually extracted from (a). (c) Contour of liver automatically

extracted from (a). The automatically extracted contour is more accurate than the manually

extracted contour (b), because the latter omits fine branches of the liver
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Diffusion-Weighted Imaging of the Liver

Ali Muhi, Tomoaki Ichikawa, and Utaroh Motosugi

Abstract Diffusion-weighted imaging (DWI) has been more frequently used in

abdominal imaging after recent advances in technology including parallel imaging

and EPI, particularly for assessment of liver. These advances in technology have

reduced examination time and artifacts. DWI is quick and can be performed in a

single breath-hold. It can be easily incorporated to the conventional MRI

sequences. It is useful for the evaluation of focal and diffuse liver disease and has

the potential for evaluation of tumor response to treatment.

DWI Acquisition Techniques

Diffusion-weighted imaging (DWI) is usually performed using a single-shot spin-

echo EPI sequence. DWI can be performed using other sequences including

gradient-echo EPI, single-shot fast spin echo, and some view-sharing techniques

such as PROPELLER. However, spin-echo EPI is still the most efficient and

appropriate sequence for abdominal DWI.

When performing DWI, combination with parallel imaging is essential because

it minimizes echo time and acquisition time, which increases SNR and reduces

motion-related artifacts. Keeping a long TR, for example longer than 7,000 ms can

help avoid signal decay caused by insufficient T1-relaxation.

Abdominal DWI methods can be divided into three categories according to

respiratory control. These are the breath-holding method, the free-breathing

method, and the respiratory-triggered method (Table 1).
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Breath-holding DWI is the simplest method. One or two breath holds are

required for about 20 s. This is done with a single acquisition to obtain maximum

anatomical coverage. The advantage of breath-holding DWI is the minimal acqui-

sition time. The disadvantages include low SNR, low spatial resolution, and high

sensitivity to distortion.

Free-breathing multiple averaging DWI was first described by Dr. Takahara and

is also known as DWIBS. In this technique, signal averaging is performed more

than 4 times to obtain a sufficiently high SNR. ADC measurement is possible in this

technique because the respiratory motion is bulky and slow that it can be considered

as a coherent motion.

The advantages of free-breathing DWI are the high SNR, ability to obtain

multiple b-values that enables ADC measurements, high spatial resolution, and

thin slice sections. It can be performed even for uncooperative patients including

pediatric cases. The disadvantages include long acquisition times, usually requires

more than 3 min, and image blurring. Another disadvantage is that it is suboptimal

for assessing small lesions.

Respiratory-triggered DWI is the most sophisticated method. Multiple averaging

of 3 or 4 times is essential to obtain a sufficiently high SNR. Respiratory-triggered

DWI shares all of the advantages of the free-breathing method. Additionally,

minimal motion artifacts in this technique enable assessments of small lesions.

Minimal slice misalignment is useful for preparing a fusion image. Accurate ADC

measurements can be performed by eliminating the signal drop due to respiratory

motion. The main disadvantage is the long acquisition time. It may take more than

5 min if the breathing of the patient is irregular. The time-consuming nature of this

method limits the number of slices and anatomical coverage.

Table 1 Suggested sequence parameters for performing liver DWI (PHILIPS Achiva 1.5 T)

Breath-hold

acquisition

Free-breathing/respiratory-triggered

acquisition

Sequence SE SE

Field of view (cm) 37.5 � 30 37.5 � 30

Matrix 152 � 120 124 � 120

Repetition time (TR) �980 �1,230

Echo time (TE) Minimum (~34) Minimum (~59)

EPI factor 63 53

Number of averages 2 4

Slice thickness (mm) 7 5

Number of slices 25 25

Slice orientation Axial Axial

Direction of motion probing

gradient

Phase, frequency,

and slice

Phase, frequency, and slice

Fat suppression Yes Yes

b-Values (s/mm2) One or more 3 or more

Acquisition time 15 2–3 min (free-breathing), 4–5 min

(respiratory-triggering)
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Signal intensity of both liver lobes is affected by cardiac motion in DWI. The

signal loss ratio is more on the left lobe than right lobe (25.5 % vs. 17.3 %) [1].

Fat Suppression

Fat suppression is essential to reduce chemical shift-induced ghosting in EPI-based

DWI. Short tau inversion recovery (STIR) has several advantages including

complete fat suppression. STIR also suppresses signals from materials with short

T1-relaxation times, for example, feces in the colon or rectum. Low SNR is a

disadvantage. Chemical fat-selective saturation (CHESS) is more commonly used

for abdominal DWI to obtain high SNR.

Choice of b-Values and Sequence Optimization

The choice of b-value is a matter of great importance and depends on the purpose of

the DWI.

When DWI is performed for lesion detection, an image with b ¼ 0 is not

required. A single or two b-values, including low and high b-values, are enough

for this purpose. However, two or more b-values including b ¼ 0 may be the most

common choice, yielding both detection and ADC measurements. If 3 or more

b-value images are obtained, the ADC measurement is more accurate.

When 8 or more b-values are used, a more complicated and sophisticated

analysis can be performed, which is known as intra-voxel incoherent motion

(IVIM) imaging.

Low b-value (b ¼ 20–150 s/mm2) suppresses the intrahepatic blood vessels

signal yielding a black blood images, which improve focal liver lesion detection.

High b-values (�600 s/mm2) are considered appropriate to reduce T2 shine-

through ghosting, minimize the perfusion, and suppress unfavorable background

signals. Of course, SNR is a key parameter to be considered when increasing

the b-value. Disadvantage of high b-values is low SNR. In routine clinical practice

obtaining two b-values, including one low and one high, is necessary to improve

lesion detection and characterization.

Qualitative and Quantitative Assessment

Trace DWI for each b-value and ADC map is displayed. Visual assessment of DWI

trace images is useful for focal liver lesion detection and characterization. Low

b-value images are evaluated for lesion detection, whereas high b-value images are

assessed for lesion restricted diffusion and characterization. The signal observed on
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DWI is related to tissue diffusion, perfusion, and tissue T2 relaxation time. There-

fore DWI has some T2 weighting and lesions such as cysts or hemangiomas, which

have long T2 relaxation time, usually show high signal (T2 shine-through). To

reduce T2 shine-through, high b-value images and ADC maps should be assessed.

On high b-value images cyst and hemangiomas show signal drop, whereas on ADC

maps these lesions return high signal and high ADC values.

The ADC value of the liver can be calculated by drawing a region of interest

(ROIs) on the ADC maps. ADC value is usually expressed in (�10�3) mm2/s and

is strongly depends on the b-value chosen for its calculation. With mono-

exponential fitting, two b-values are chosen for ADC calculation. The ADC

value is overestimated when b ¼ 0 s/mm2 is chosen as the first value, because

of the effect of microperfusion [2]. ADC calculated with b > 50 s/mm2 as the

first value (not b ¼ 0) is more reproducible and represents pure diffusion

[2]. ADC is more reproducible and represent pure diffusion when b-values
>50 s/mm2 are used, but a substantial variations in ADC exist even when these

b-values are used. The greater the b-value, the greater the noise and the lower

the SNR.

Bi-exponential fitting requires 8 or more b-values and produce IVIM DWI.

In addition to ADC, other diffusion parameters can be calculated with IVIM DWI

including perfusion-related diffusion (D* or Dfast), pure diffusion (D or Dslow), and

perfusion fraction (f). For more accurate and reproducible calculation of D* very

low b-values (between 0 and 20 s/mm2) are necessary [2].

Applications of Liver DWI

DWI proved to be useful for liver lesion detection and characterization. DWI has

the potential for the diagnosis of liver cirrhosis and for staging of fibrosis. Further-

more, it can be used for assessment of tumor treatment response.

Liver Lesion Detection and Characterization

DWI for Characterization of Focal Liver Lesions

Both direct visual assessment of DWI and ADC calculation could be used for lesion

characterization. Visual assessment using low and high b-values and ADC map

images could distinguish solid from cystic lesions (Table 2). Cystic lesions display

significant signal drop on high b-values, whereas solid lesions usually retain high

signal on high b-values (Figs. 1 and 2).
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Several publications used ADC measurement for discriminating malignant from

benign lesions with acceptable diagnostic accuracy (Table 3) [3–15]. Most malig-

nant tumors show high signal intensity on DWI (both low and high b-values) and
low signal on ADC map (Figs. 3, 4, and 5). This finding may be due to increase

cellular density, complex histological architecture, or increased nuclear/cytoplas-

mic ratio of malignant tumors which impair the diffusion of protons.

Table 2 Characterization of focal liver lesions by visual assessment of low b-value, high b-value,
and ADC maps

Low b-value High b-value ADC map

Simple cyst Hyperintense Hypointense Iso- to hyperintense

Malignant lesions (HCCs,

metastases)

Hyperintense Iso- to hyperintense Hypointense

Hemangioma, FNH, adenoma Hyperintense Iso- to hyperintense Iso- to hyperintense

Necrotic HCC or metastasis Hyperintense Peripheral

hyperintensity

Peripheral hypointensity

Fig. 1 A 71 years old male patient with metastases from colon cancer at left lobe of liver (arrows).
(a) Axial fat-saturated T2WI shows tumors as heterogeneous intermediate signal intensity. Small

cysts were noted as bright lesions in left and right lobes of liver. (b) Tumors and cysts display low

signal intensity compared to liver on axial T1WI. (c) The tumors show heterogeneous intermediate

signal and the cysts show high signal intensity on axial SPIO-enhanced T2WI. (d) Axial DWI

(b ¼ 1,000 s/mm2) shows tumors as hyperintense relative to the liver, whereas cysts display

isointense signal
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However, considerable overlap in ADC exists between malignant lesions and

benign lesions, particularly solid benign lesions such as adenoma or FNH (Fig. 6)

[14, 16]. The decrease in ADC in solid benign lesions may be related to increase

cellularity that restricts diffusion.

Benign lesions such as hemangiomas or simple cysts which are the most

common lesions observed in clinical practice appear high signal on low b-value
DWI and usually return iso to low signal on high b-values. These benign lesions

usually return high ADC (Fig. 7). On the other hand cystic (mucinous) or necrotic

tumor tends to return high ADC, and could be falsely diagnosed as benign.

Haradome et al. reported that combined interpretation of T2WI and DWI yielded

better diagnostic accuracy for discrimination benign from malignant focal liver

lesions than each sequence alone [17]. DWI was superior to T2-weighted images

for the detection of malignant hepatic lesions; however no difference was observed

for characterization of focal hepatic lesions or for detection of benign lesions [18].

DWI, especially with a low b-value 20 s/mm2, was superior to T2-weighted images

for detection of hepatic metastases, particularly for small lesions less than

10 mm [12].

Inan et al. reported that DWI could help in the differential diagnosis of hydatid

and simple cysts of the liver. Most hydatid cysts (95 %) were hyperintense, whereas

most simple cysts (93 %) were isointense with the liver. ADC was 2.9 for hydatid

Fig. 2 A 31 years old male with hepatic hemangioma (arrow). (a) Axial T2-weighted images

shows high signal intensity lesion at the right lobe liver. (b) The lesion appears hyperintense on

axial DWI (b ¼ 0 s/mm2). (c, d) The lesion shows decrease signal on moderate and high b-values
(b ¼ 400 and b ¼ 800 s/mm2) consistent with benign lesion
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cyst vs. 3.5 (�10�3mm2/s) for simple cyst [19]. Fruehwald-Pallamar et al. suggested

that DWI could be added to the conventional MRI to increase diagnostic confidence

for differentiation between pseudolesions and other focal hepatic lesions. In this

study, all hepatic pseudolesions were invisible on DWI [20].

In conclusion, a substantial overlap exist in ADC between malignant and solid

benign lesions particularly adenomas and FNH. This overlap in the reported ADC

may be due to difference in b-value used or type of acquisition technique (breath

hold, free-breathing, or respiratory-triggered technique). DWI and ADC should be

used as ancillary to conventional MRI (i.e., unenhanced conventional MRI or

dynamic contrast-enhanced MRI) for lesion characterization.

Diagnosis and Detection of HCC

HCCs tend to develop in patients with cirrhosis or chronic liver disease. The

diagnosis of HCC depends on observation of increased vascularity (hypervascular)

on arterial phase and washout on portal venous or equilibrium phase (AASLD

Fig. 3 A 61 years old male with peripheral cholangiocarcinoma at the right lobe of liver anterior

to IVC (arrows). (a) Axial T2-weighted images well-circumscribed lobulated mass with interme-

diate signal intensity. (b) Axial arterial phase of gadoxetic acid-enhanced MRI shows moderate

rim enhancement with central heterogeneous poor enhancement. (c) Axial hepatobiliary phase

image at 20 min shows tumor as hypointense mass. (d) The tumor displays high signal intensity on

axial DWI (b ¼ 1,000 s/mm2)
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Fig. 4 A 74 years old male with pathologically proved peripheral cholangiocarcinoma with LN

metastases (arrows). (a) Axial T2-weighted images show large well-circumscribed lobulated mass

with intermediate signal intensity at the left lobe of liver with satellite lesion around the lesion. (b)

Axial arterial phase of CE-MRI shows moderate rim enhancement with central heterogeneous

minimal enhancement. (c, d) The tumor displays high signal intensity on axial and coronal DWI

(b ¼ 1,000 s/mm2). Note satellite lesions around the tumor on axial image and lymph nodes

metastases inferior to the left lobe of liver on coronal images

Fig. 5 A 76 years old female with periductal-infiltrating cholangiocarcinoma of right lobe of

liver. (a, b) Axial and coronal T2WI show poorly defined mass with intermediate signal intensity

with dilatation of bile duct due to obstruction by tumor. (c, d) Axial and coronal arterial phase of

CECT shows minimal enhancement. (e, f) Axial and coronal DWI (b ¼ 1,000 s/mm2) shows the

tumor as hyperintense with tumor growth along bile duct appears as speculation or branch-like on

coronal DWI (arrow)
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criteria). Dynamic contrast-enhanced CT or MRI has reached a high standard for

diagnosis of HCC. With the introduction of liver-specific contrast agent (such as

gadoxetic acid), MRI proved to be the best imaging modality for the detection of

HCC and for characterization of hepatic nodules in cirrhosis and is superior to

CT. Most HCCs show high signal intensity on DWI (both low and high b-values)
and low signal on ADC map (Figs. 8, 9, 10, 11, and 12).

In a study of 91 patients with 109 HCCs, using lesional hyperintensity with DWI

or hypervascularity on arterial phase and washout on portal/delayed phase with

dynamic contrast-enhanced MRI (DCE-MRI) as diagnostic criteria for diagnosis of

HCC, sensitivity of 84 or 85 % were reported compared to 60 % for hypervas-

cularity on arterial phase and washout on portal/equilibrium phase with DCE-MRI

alone [21].

DWI could be helpful to differentiate between HCC and benign hepatocellular

nodules (regenerative or dysplastic nodules) or benign pseudolesion in cirrhotic

liver. In a study of 98 hepatocellular lesions, including 12 dysplastic nodules, none

of the dysplastic nodules were visible (i.e., isointense) on DWI whereas 63 (73 %)

out of 86 HCCs were visible on DWI [22]. In another study, hypervascular

pseudolesions caused by small arterioportal shunts were invisible on DWI [23].

Fig. 6 A 31 years old female patient with hepatic FNH (arrow). (a) Axial arterial phase CECT

shows a bright homogeneous enhancement of the mass with a central scar. (b) Axial delayed phase

CECT shows the mass as isodense to the liver. (c) Axial T2WI shows the mass as slightly

hyperintense with hyperintense central scar. (d) Axial DWI (b ¼ 1,000 s/mm2) shows the mass

as slightly hyperintense
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Lee et al. (AJR 2011) reported that hypointensity on gadoxetic acid-enhanced

hepatobiliary phase images and hyperintensity on high b-value DWI suggest well-

differentiated HCCs rather than benign hepatocellular nodules (regenerative and

dysplastic nodules) in chronic liver disease [24]. When hyperintensity on DWI

was used as a criteria for diagnosis of HCC a sensitivity of 81 % and specificity of

73 % were yielded [24]. In the same study, ADC was not significantly different

between well-differentiated HCC and benign hepatocellular nodule. The use of

visibility with DWI to differentiate HCCs from dysplastic nodules yielded AUC of

0.88, sensitivity of 97.5 % and specificity of 78.95 % [25]. Combination of

contrast-enhanced MRI with DWI improved characterization of nodules in cir-

rhotic liver and yielded AUC of 0.91, sensitivity of 97.5 %, and specificity of

93.22 % [25].

The ADC value has an inverse correlation with the degree of histopathological

differentiation of HCCs. The ADC tends to decrease with increase the

histopathological grade HCCs. This can help to predict the differentiation of

HCC noninvasively [22, 26]. Other study indicated that ADC has no correlation

with histopathologic grade of HCC, but the signal of HCC tended to increase as the

histopathological grade increased [27].

Fig. 7 A 47 years old male patient with colon cancer and hepatic hemangioma (arrow). (a) Axial
T2-weighted images show a high signal intensity lesion at the right lobe of liver. (b) Axial T1WI

shows the lesion as low signal. (c, d) The lesion shows high signal intensity relative to the liver

parenchyma on both DWI (b ¼ 400 s/mm2) and ADC map, respectively. The tumor showed

peripheral nodular enhancement with centripetal filling on dynamic CT images (not shown)
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Le Moigne et al. reported that adding DWI to conventional MRI significantly

increased the accuracy and sensitivity from 0.76 and 75.7 % to 0.86 and 87.8 % for

the diagnosis of small HCCs in the cirrhotic liver [28]. Combined use of DWI with

conventional DCE-MRI helped to provide higher sensitivities than conventional

DCE-MRI alone in the detection of small HCC lesions in patients with chronic liver

disease [29]. The sensitivity increased to 98 % for the combined approach com-

pared to 85 % for DCE-MRI alone [29].

The diagnostic performance of combined DWI with DCE-MRI was comparable

or slightly better than that of combined DCE-MRI and SPIO-enhanced MRI for the

assessment of hypervascular lesions in patients with liver cirrhosis [30].

Kim et al. found no additive value of DWI to gadoxetic acid-enhanced MRI for

detection of HCC [31]. The diagnostic performance of combined DWI and

gadoxetic acid-enhanced MRI was equal to that of gadoxetic acid-enhanced MRI

alone.

In conclusion, DWI is useful adjunct to conventional or DCE-MRI for detection

of HCC, particularly for small nodules adjacent to vessels or nodules at the

periphery of the liver. It could help to distinguish between HCC and other benign

Fig. 8 A 66 years old female with a small HCC within large dysplastic nodule at the left lobe of

liver (Nodule-in-nodule pattern). (a) Axial T2WI shows dysplastic nodule as large mass with low

signal intensity. (b) HCC appears as small focus of increased signal intensity within hypointense

dysplastic nodule on axial superparamagnetic iron oxide (SPIO)-enhanced T2WI. (c) Axial T1WI

shows dysplastic nodule as slightly hyperintense mass relative to the liver. (d) Axial DWI

(b ¼ 1,000 s/mm2) with black and white inversion shows HCC as small focus of increased signal

intensity within isointense dysplastic nodule
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hepatic nodules or pseudolesions. Significant overlap in the ADC value exists

between different grades of HCC and other benign hepatocellular nodules in

cirrhotic liver.

Detection of Liver Metastases

Metastases are the commonest malignant tumors of the liver and second most

commonly involved organ by metastasis in the body after lymph node. Liver

could be involved by metastases from any primary malignant neoplasm in the

body. The most common primary tumors include colon, breast, lung, stomach,

and pancreas. Liver metastases are usually multiple and generally are divided into

hypervascular and hypovascular metastases. MRI proved to be the most accurate

modality for detection of hepatic metastases particularly for small lesions �1 cm.

The introduction of liver-specific contrast agents (hepatocyte-specific and reticulo-

endothelial cell-specific agents) increased the accuracy of MRI for detection of

liver metastases.

Fig. 9 A 63 years old female with moderately differentiated HCC at left lobe of liver (arrow). (a)
Axial fat-saturated T2WI shows tumor as heterogeneous intermediate signal intensity mass. (b, c)

Tumor displays hypervascularity on arterial phase and washout on delayed phase of dynamic

CE-MRI. (d) The tumor appears as hyperintense on axial DWI (b ¼ 1,000 s/mm2)
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Combining diffusion-weighted images (DWI) with conventional MRI or with

liver-specific contrast-enhanced MRI has the potential to improve sensitivity or

accuracy for detection of liver metastasis (Fig. 13). Combination of MnDPDP MR

imaging and DWI resulted in the highest diagnostic accuracy for detection of

colorectal hepatic metastases [32]. Combination of DWI and gadoxetic acid-

enhanced MRI resulted in better diagnostic accuracy for the detection of small

hepatic metastases than each imaging sequence alone [33]. Other studies indicated

that combined DWI and gadoxetic acid-enhanced MRI has the potential to increase

accuracy and sensitivity but not significantly different from that of gadoxetic acid-

enhanced MRI [31, 34]. Other reports show no additional value of DWI to

hepatobiliary phase of gadoxetic acid-enhanced MRI for detection of liver

metastases; however addition of DWI and unenhanced MRI was useful for lesion

characterization particularly for lesions �1 cm [35, 36].

Eiber et al. indicated that in patients with colorectal cancer DWI alone has a

significantly higher detection rate for liver lesions compared to dynamic contrast-

enhanced CT, especially in lesions with a diameter less than 10 mm [37].

Combination of SPIO-MRI with DWI was more reliable than contrast-enhanced

CT and contrast-enhanced US for detection of liver metastasis particularly for

lesions �1 cm [38].

Fig. 10 A76 years old male with NBNC liver cirrhosis and poorly differentiated HCC at left lobe

of liver (arrow). (a) Axial fat-saturated T2WI shows tumor as heterogeneous intermediate signal

intensity mass. (b, c) Tumor displays hypovascularity on arterial phase and delayed phase of

dynamic CECT. (d) The tumor appears as hyperintense on axial DWI (b ¼ 1,000 s/mm2)
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In conclusion DWI is useful adjunct to conventional or DCE-MRI for detection

of liver metastases, particularly for small metastases. In patients with impaired

renal function with risk of nephrogenic systemic fibrosis, DWI could substitute

contrast-enhanced images for the detection of liver metastases.

Diagnosis of Liver Fibrosis and Cirrhosis with DWI

Cirrhosis has been defined as chronic liver disease characterized by diffuse paren-

chymal necrosis with fibrosis and formation of regenerative nodules. The etiology

includes a variety of disorders including viral hepatitis, alcoholic liver disease,

biliary diseases (e.g., sclerosing cholangitis and primary biliary cirrhosis),

Wilson disease, hemochromatosis, autoimmune disease, congestive heart failure,

Fig. 11 A 60 years old male with early HCC at right lobe of liver (arrow). (a) Axial opposed-
phase T1WI shows tumor as hyperintense nodule. (b, c) Tumor displays subtle hyperintensity on

arterial phase and delayed phases of dynamic CE-MRI. (d) Tumor shows hyperintensity on

hepatobiliary phase image (20 min) of gadoxetic acid-enhanced T1WI. (e) The tumor appears as

isointense on axial DWI (b ¼ 1,000 s/mm2). Tumor shows no enhancement on dynamic CECT

(not shown)
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nonalcoholic steatohepatitis (NASH), glycogen storage disease, Budd-Chiari syn-

drome, toxic substances, and cryptogenic. Chronic viral hepatitis is the leading

cause of liver fibrosis and cirrhosis which can eventually lead to end-stage liver

disease and hepatocellular carcinoma HCC.

The disease severity is described by the degree of fibrosis (stage) and

necroinflammation (grade). Liver fibrosis is classified into four stages including:

F0, no fibrosis; F1, mild fibrosis; F2, moderate fibrosis; F3, advanced fibrosis; and

F4, cirrhosis. Grades of activity of hepatic necroinflammation are classified into

four grades including: A0, no activity; A1, mild activity; A2, moderate activity; and

A3, severe activity. The gold standard for diagnosis of fibrosis/inflammation is liver

biopsy. However, liver biopsy is invasive procedure with associated morbidity.

Furthermore, it is prone to sampling error and inter-observer variability. Several

noninvasive techniques including blood tests, Fibroscan (elastography using ultra-

sound), MR elastography are used to assess liver fibrosis with relatively good

sensitivities and specificities. The role of any noninvasive technique should not

be limited to distinguish cirrhosis from normal but also to differentiate between

various stages of fibrosis since treatment is administered to patients with liver

fibrosis stage F2 and greater.

Conventional MRI (without and with contrast material) is excellent for the

evaluation of focal liver lesions associated with cirrhosis; however its role for

evaluation of liver fibrosis/inflammation is limited.

Fig. 12 A 64 years old male with spontaneous ruptured HCC and hemoperitoneum at caudate

lobe of liver (arrow). (a) Axial unenhanced CT shows a hyperdense collection around the caudate

lobe of the liver. (b) Arterial phase of CECT shows heterogenous enhancement with extravasation

of contrast (arrow). (c) Delayed phase of CECT shows tumor as slightly hypodense to the liver.

(d) Axial fat-saturated T2WI performed 1 month after CECT shows tumor as heterogeneous

intermediate signal intensity mass with small fluid collection adjacent to tumor. (e) The tumor

appears as hyperintense on axial DWI (b ¼ 1,000 s/mm2)
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Cirrhotic liver showed increased signal intensity on DWI and restricted diffusion

on ADC map compared to normal liver (Fig. 14). Several previous studies

described a lower ADC value of cirrhotic liver compared to that of normal liver

(Tables 4 and 5) [39–51].

Several reports indicated inverse correlation between liver fibrosis and ADC

values. ADC was useful for distinguishing cirrhosis from normal liver; however,

the ADC values in each fibrosis group overlapped substantially except between no

or early stage of fibrosis (F0 and F1) and advanced fibrosis (F3 or F4) [39, 45,

46]. Do et al. suggested that normalizing liver ADC with spleen ADC improves

diagnostic accuracy for detection of liver fibrosis and cirrhosis when using breath-

hold DWI [46]. Normalized liver ADC was superior to liver ADC for distinguishing

individual stages of fibrosis and for detection of stage �F2 (AUC ¼ 0.864).

Other reports indicated that ADC could predict individual stages of fibrosis with

moderate to good accuracy [40–42, 47, 48, 51]. However, it was inferior to MR

elastography and transient elastography (Fibroscan) for predicting stages of fibrosis

[40, 47, 51]. Lewin et al. compared DWI to Fibroscan and serum markers for

predicting fibrosis in patients with chronic hepatitis and healthy volunteers [40].

Fig. 13 A 61 years old male with solitary metastasis from colon cancer at the medial segment of

left lobe of liver (arrow). (a) Axial fat-saturated T2WI shows tumor appeared as heterogeneous

intermediate signal intensity. (b) The tumor displayed ring-like enhancement on arterial phase of

gadoxetic acid-enhanced T1WI. (c) The tumor appears hypointense on hepatobiliary phase image

(20 min) of gadoxetic acid-enhanced T1WI. (d) Axial DWI (b ¼ 1,000 s/mm2) shows the tumor as

high signal intensity relative to the liver
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ADC was favorable for predicting moderate to severe fibrosis compared with other

noninvasive tests. Patients with moderate-to-severe fibrosis (F2-F3-F4) had hepatic

ADC values (1.10 � 0.11 � 10�3 mm2/s) lower than those without or with mild

fibrosis (F0-F1; 1.30 � 0.12 � 10�3 mm2/s) and healthy volunteers (mean:

1.44 � 0.02 � 10�3 mm2/s). The AUC for ADC were 0.79 and 0.92 for fibrosis

stage�F2 and�F3, respectively compared to AUC of 0.87 and 0.92 with Fibroscan

[40]. Wang et al. reported an inverse correlation between ADCs and stage of

fibrosis, but the median ADC values did not consistently decrease with increasing

stages of fibrosis. Liver ADC was able to predict stages of fibrosis. However, the

ability to predict fibrosis was inferior to that of MR elastography [47]. Kovač

et al. founded that DWI is useful for predicting moderate to severe fibrosis in

patients with cholestatic hepatitis (primary biliary cirrhosis and primary sclerosing

cholangitis). However, transient elastography using Fibroscan provided higher

diagnostic accuracy than DWI for predicting the stage of fibrosis. DWI was useful

to show the distribution of fibrosis [51].

The initial studies using IVIM suggested that perfusion-related diffusion coeffi-

cient (D*) or perfusion parameters played a more important role than pure diffusion

coefficient (D) in differentiating cirrhotic from normal livers. Luciani et al.

acquired DWI with 10 b-values to calculate pure diffusion (D), perfusion-related

diffusion (D*), and perfusion fraction (f), on the basis of the IVIM theory. They

found that in cirrhotic livers perfusion-related diffusion (D*) is significantly

Fig. 14 DWI for diagnosis of liver cirrhosis. A 30 years old male with normal liver (top row) and
64 years old male with cirrhosis secondary to chronic hepatitis C (bottom row), portal vein
occlusion and cavernous transformation of portal vein. T2WI, DWI for b ¼ 0 and b ¼ 400

mm2/s, and ADC map (using b ¼ 0, b ¼ 400 and b ¼ 800 mm2/s). Normal liver shows ADC

within normal range measuring about 1.7 � 10�3 s/mm2. In the cirrhotic patient, T2WI shows

minimal morphological changes; however ADC map shows decrease in ADC measuring

1.2 � 10�3 s/mm2
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reduced [52]. Patel et al. compared IVIM DWI with dynamic contrast-enhanced

MRI (DCE-MRI). They found that D, D*, F, and ADCwere significantly reduced in

cirrhotic patients. The highest area AUC was observed for ADC measuring (0.808).

The perfusion parameters calculated with DCE-MRI were significantly increased.

No correlation existed between IVIM and DCE-MRI parameters. The combination

of ADC with DCE-MRI parameters provided 84.6 % sensitivity and 100 % speci-

ficity for diagnosis of cirrhosis [53].

In conclusion, DWI is useful for predicting liver cirrhosis from normal liver.

However, substantial overlap in ADC exists between individual stages of fibrosis

and DWI should be used with other MRI-based techniques such as MR

elastography or gadoxetic acid-enhanced MRI for evaluation fibrosis/cirrhosis.

Table 4 Mean apparent diffusion coefficients (ADCs) of normal liver and cirrhotic liver

Author b-Value

Mean ADC for normal

liver or fibrosis stage F0

(�10�3 mm2/s)

Mean ADC for Cirrhosis

or advanced fibrosis

(�10�3 mm2/s)

Aube, J radiol 2004 200, 400, 600, 800 1.54 1.14

Koinuma, JMRI 2005 0, 128 3.45 1.98

Lewin, Hepatology

2007

0–800 1.44 1.1

Taouli, AJR 2007 0, 500 1.60 1.22

0, 700 1.42 1.14

0, 1,000 1.19 1.01

Girometti, Radiol Med.

2007

0, 150, 250, 400 1.54 1.11

Girometti, JMRI 2008 0, 150, 250, 400 1.54 1.14

0, 150, 250, 400,

600, 800

1.04 0.91

Luciani, Radiology

2008

0, 10, 20, 30, 50,

80, 100, 200,

400, 800

1.39 1.23

Sandrasegaran, AJR

2009

50, 400 1.26 0.99

Do, AJR 2010 0, 50, 500 1.79 1.55

Patel, JMRI 2010 0, 50, 100, 150,

200, 300, 500,

700, 1,000

1.73 1.41

Wang, AJR 2011 50, 500, 1,000 1.00 0.88

Watanabe, Radiology

2011

0, 500 1.38 1.08

Bakan, Eur Radiol

2012

0, 500, 1,000 1.75 1.32

Kovač, Eur J Radiol

2011

0–800 2.01 1.46

Bonekamp, J Clin

Gastroenterol 2011

0, 750 1.61 1.33

Taouli, JMRI 2008 0, 500 1.49 1.26
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ač

E
u
r
J

R
ad
io
l,
2
0
1
1

B
o
n
ek
am

p

J
C
li
n

as
tr
o
en
te
ro
l,

2
0
1
1

F
ib
ro
si
s
st
ag
e

A
D
C
(�

1
0
�3

m
m

2
/s
)

F
0

1
.7
9

1
.5
4
a

1
.2
6

1
.0
0

1
.4
4

1
.4
9

2
.0
1

1
.6
1

F
1

1
.6
0

1
.2
8
a

1
.0
5

0
.9
1

1
.3
0

�
1
.8
0

1
.4
3

F
2

1
.6
5

1
.3
1
a

1
.0
4

0
.8
9

�
�

1
.6
4

1
.3
6

F
3

1
.7
5

1
.1
7
a

1
.0
3

0
.8
8

1
.2
1

�
1
.6
3

1
.4
4

F
4

1
.5
5

1
.2
0
a

0
.9
9

0
.8
8

1
.1
0

�
1
.4
6

1
.3
3

�F
1

�
�

�
0
.9
1

�
1
.4
0

�
1
.3
3

A
U
C

�
�

�
0
.8
8

�
0
.8
4
8

�
0
.7
7

�F
2

1
.6
8

1
.4
1
a

�1
.0
3

0
.9
1

1
.1
0

1
.3
0

1
.6
3

1
.3
1

A
U
C

0
.6
5
5

0
.8
6
4

0
.6
8
6

0
.8
6

0
.7
9

0
.7
8
3

0
.8
6
8

0
.7
7

�F
3

1
.5
3

1
.4
1
a

�0
.9
8

0
.9
1

1
.2
1

1
.2
7

1
.6
0

�
A
U
C

0
.6
8
9

0
.8
0
5

0
.6
5
6

0
.8
4

0
.9
2

0
.7
1
7

0
.9
0
6

�
F
4

1
.6
8

1
.4
a

�1
.1
5

0
.9
1

�
�

�
�1

.3

A
U
C

0
.7
2
0

0
.9
3
5

0
.9
1
9

0
.7
8

�
�

�
0
.7
8

a
N
o
rm

al
iz
ed

li
v
er

A
D
C
w
as

ca
lc
u
la
te
d
as

th
e
ra
ti
o
o
f
li
v
er

A
D
C
to

sp
le
en

A
D
C

272 A. Muhi et al.



Evaluation of Treatment Response

Tumor response to treatment including chemotherapy, radiotherapy, and ablation

therapy could be assessed with DWI. An increase in ADC after treatment correlates

with positive tumor response to treatment. Changes in ADC after treatment occur

earlier than changes in size.

Regarding HCCs, the correlation between ADC and tumor response to treatment

was studied after transarterial chemoembolization (TAE) or radiofrequency abla-

tion (RFA). An increase in ADC of HCC was observed in necrotic portion of tumor

following TAE compared to viable tumor [54, 55]. In a recent study, increased

ADC at day 3 following TAE showed the highest correlation to tumor necrosis

compared to FDG-PET and DCE-MRI parameters [56]. Following RFA, the tumor

shows low signal intensity on DWI and increase in ADC correlating with

tumor necrosis [57]. A rim of high signal is usually observed at the tumor periphery

which is likely represents hyperemia due to thermal injury of the surrounding

tissue.

High b-value DWI and ADC maps can be used to evaluate early recurrence

or local progression of tumor following TAE or RFA (Fig. 15) [57, 58].

Fig. 15 A 79 years old female with local recurrence follows radiofrequency ablation (RFA) and

transarterial chemoembolization for HCC. (a) Axial fat-saturated T1WI shows high signal inten-

sity suggestive of hemorrhagic necrosis following RFA. (b) Local recurrence appears as an

enhancing focus at the periphery of the ablated lesion on arterial phase of dynamic CE-MRI.

(c, b) CT during arterioportography (CTAP) and CT during hepatic angiography show tumor as

hypovascular on CTAP and hypervascular on CTHA. (e) The tumor appears as hyperintense on

axial DWI with black and white inversion (b ¼ 1,000 s/mm2)

Diffusion-Weighted Imaging of the Liver 273



However, DWI had lower sensitivity to DCE-MRI for the detection of local HCC

recurrence [59]. Following TAE, iodized-oil (lipiodol) accumulation in tumor

demonstrated as high density on CT obscure visualization of local recurrence.

Local recurrence usually demonstrated as focal high signal intensity at the periph-

ery of tumor on DWI and restricted diffusion on ADC map [57–59]. DWI should be

evaluated with other conventional MRI sequences and dynamic images to evaluate

local recurrence following TAE or RFA.

Regarding liver metastases, a decrease in signal intensity on DWI and increase in

ADC following chemotherapy were observed in responding metastastic tumors

(Fig. 16) [60, 62, 63]. No significant change in ADC was noticed in

non-responding metastastic tumors [60]. Tumoral ADC showed increase at 3–7

days among responders to chemotherapy [61]. Necrotic colorectal metastases with

high ADC prior to treatment showed poor response to chemotherapy [60, 61].

Limitations

DWI used for evaluation of focal liver lesions suffers from limited image quality

due to poor SNR and limited spatial resolution. Respiratory and cardiac motion

and EPI-related artifacts are a challenge. Other challenges include reproducibility

of ADC measurements and establishing uniform parameters across different

vendors.

Fig. 16 A 70 years old male with liver metastases from colon before and after chemotherapy.

Upper row is before chemotherapy, below row is after chemotherapy. Axial fat-saturated T2WI

and Axial DWI (b ¼ 1,000 s/mm2) shows the tumors as high signal intensity relative to the liver.

Tumors show reduction in size following chemotherapy with reduction in signal on high

b-value DWI
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Shape-Based Liver Segmentation Without

Prior Statistical Models

Ahmed Afifi and Toshiya Nakaguchi

Abstract In this work, we introduce a shape-based liver segmentation approach.

However, unlike the other shape-based approaches, this approach is model-free,

and it does not require prior shape or intensity model construction. In contrary, we

exploit the relation between consequent slices in multi-slice CT images to estimate

and propagate shape and intensity constrains. Then, these constrains are integrated

with a shape-based graph cut algorithm to extract the liver object in each slice. This

approach needs a simple user interaction and it eliminates the burdens associated

with model building like data collection, manual segmentation, registration, and

landmark correspondence. Moreover, it is talented to deal with complex shape

and intensity variations. This model-free approach was evaluated on 50 CT images

from three different datasets with several liver abnormalities, including tumors and

cysts, and it achieved high average gauged scores of 80.4, 79.2, and 81.7 for these

datasets.

Introduction

Liver tumors are one of the most common causes of death over the world [1], and

the accurate diagnosis of these tumors helps to reduce their burden. It has shown

that the utilization of computer-aided diagnosis (CAD) systems can greatly improve

tumor diagnosis [2, 3], and it is useful for treatment planning, especially for liver

transplantation and tumor ablation. In liver CAD systems, the liver segmentation is
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the first and essential process, and its accuracy is of special significance. However,

this process is difficult because of low contrast between the liver and surrounding

tissues, great differences in liver shape and intensity, and the existence of liver

abnormalities. Hence, the conventional segmentation methods cannot produce

adequate results.

In literature, there are many attempts to solve the liver segmentation problem

and various approaches have been proposed, including intensity- or texture-based

approaches, deformable and statistical model-based approaches, and probabilistic

atlases-based approaches. In the intensity-based approaches, one or multiple inten-

sity thresholds, region growing, or watershed methods are applied to extract an

initial binary volume which consequently refined using morphological filters or

knowledge-based approaches. In [4], a predefined threshold was utilized on a

simplified image to determine the initial liver area, and then it was refined using

morphological filters and deformable contours with gradient information. Although

this method showed accurate volume measurement results for the used dataset, it

did not consider the change in CT images orientation and variations in liver

intensity. Additionally, due to high variations between the intensity of the liver

and abnormal tissues, it can miss these tissues in the case of liver abnormality.

Rusko et al. [5] proposed a method for liver segmentation in single and multiphase

CT images. In this method, thresholding of a single or joint histogram was applied

to determine the initial liver volume, and then it was adjusted using a region

growing method and a set of anatomical constrains. It has shown that the single-

phase method was failed in the case of dense tumors, and the results can be

enhanced using multiphase method. However, the latter one added a burden of

multiphase acquiring and registration. In [6], the authors applied a region growing

method to a smoothed image to define the liver region that was refined in a slice-by-

slice manner using morphological filters. The seed for region growing was deter-

mined manually for the first slice, and then it is defined from the segmentation of

the previous slice. In this method, the intensity of the liver is considered as a single

Gaussian distribution and the shape as a single connected object and that is not

always true. Therefore, it can miss the small parts of the liver and the dense

abnormal tissues inside the liver. R. Beichel et al. [7] proposed an interactive

liver segmentation approach by utilizing a hybrid desktop/virtual reality user

interface. In their approach, the liver was initially segmented using graph cut

approach initialized from user-defined regions. Consequently, the resulted liver

volume was corrected and refined interactively using several virtual reality tools.

Although this refinement approach achieved accurate segmentation results, it

requires high interaction (about 6.5 min) from a medical expert. Another interactive

approach based on liver intensity information has been proposed by A. Beck

in [8]. In this approach, the operator selects any liver voxel and a 3D fill algorithm

starts to flood-fill the volume from there until a defined stop condition is satisfied.

The problematic parts in this filled volume are then corrected by recursive filling

of missing parts and touching up the results in 3D view. This technique also requires

a high interaction to correct the problematic parts founded in the initial volume.

In an attempt to overcome the limitations of the intensity-based method,
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Foruzan et al. [9, 10] proposed a split thresholding method. In this method, two

overlapping ranges are defined to split the original image and then morphological

filters and rule-based classification approaches were applied to refine the results.

Additionally, they applied anatomical constrains determined from the segmentation

of the previous slice as well as the determination of the ribs to control the

thresholding method. However, their proposed method considers the intensity

information alone, and it cannot detect the abnormal tissues at the boundary of

the liver. A texture region growing method was proposed in [11]. In this method, the

texture features extracted from the 3D co-occurrence matrix were used for a region

growing from a determined seed. This method was evaluated using CT images of

healthy volunteers, and it could detect the healthy liver tissues only. In [12], the

texture features extracted from the co-occurrence matrix were used for voxel

classification and then a 2D region growing method was applied to segment the

liver in each CT slice. While this method could give reasonable segmentation for

easy cases, it greatly failed in average and difficult cases.

In the deformable model-based approaches, an initial contour or surface is

deformed to minimize a predefined energy function. Tibamoso et al. [13] used a

predefined shape model to initialize a deformable surface, which iteratively

deformed in function of the image intensity and edges. The evaluation results

showed that this method could be trapped in the front of liver abnormal tissues.

Furthermore, it requires the nontrivial process of 3D prior shape construction.

Masutani [14] employed the radial basis function to interpolate a set of interactively

defined control points. Wimmer et al. [15] also utilized the radial basis function to

interpolate a set of user-defined 2D contours to generate a smooth surface passing

through all contours. Then, the final segmentation was obtained using the level set

method initialized by the interpolated surface. In these methods depending on the

radial basis function interpolation, the placement of the control points greatly

affects the segmentation accuracy; however, this procedure is too complex because

a large number of control points have to be defined on the 3D volume. In [16], a

snake algorithm was introduced to refine the preliminary liver boundary obtained

from coarse segmentation. This segmentation was carried out by intensity

thresholding and a modified split-and-merge algorithm [17]. The control points

used for this snake algorithm were determined from a preliminary determined liver

boundary, and they were sampled nonuniformly by a recursive algorithm according

to the curvature of the boundary. Although this method produced better results than

the conventional deformable model, it highly depends on the threshold value of the

coarse segmentation, and it is still computationally expensive. Massoptier et al. [18]

use the gradient vector flow (GVF) active contour [19] to adjust the initial liver

boundary obtained using a threshold value determined according to automatically

estimated liver statistics. Additionally, in [20–22], the GVF active contour is used

for liver boundary refinement. However, the accuracy of these methods is greatly

affected by the preliminary segmentation, which usually misses the abnormal

tissues at the liver boundary. The implicit deformable models, also called implicit

active contours or level sets [23], have been utilized for liver segmentation as well.

Furukawa et al. [24] applied maximum a posteriori probability (MAP) estimation to
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extract a rough liver area, and then a modified level set method was applied to get

the final segmentation. In this method, the MAP estimation was performed

according to a predefined probabilistic atlas as well as the image intensity model.

However, this method highly relies on the training data, and it seems to fail in the

front of dense tumors. In [25], authors modified the Chan-Vese model [26] to

consider multiple objects in the background. Then they applied their modified

model to segment the liver in three different resolutions of the input CT volume.

In their model, they consider the liver or foreground as a single object and that leads

to a missing segmentation of liver lesions and large vessels. In [27, 28], the level set

method is also applied to refine an initial segmentation of the liver. Nevertheless,

the performance of level set methods is greatly affected by the initial estimation of

the liver.

The statistical models have been received high interest from the investigators of

liver segmentation approaches. They construct linear or nonlinear models to repre-

sent the variation in liver shape and appearance. The method proposed by

Kainmuller et al. [29] employed the principal component analysis (PCA) to a

very large CT images dataset to construct a statistical shape model (SSM) of the

liver. Then, this shape model was matched to the image data, and the segmentation

was refined using a deformable mesh. Heimann et al. [30] employed a deformable

mesh with internal forces based on an SSM and external forces based on image

data. The initialization of the SSM was performed using an evolutionary algorithm

[31] to determine the pose and shape parameters of the SSM. Afifi et al. [32, 33]

utilized the PCA and kernel PCA to build linear and nonlinear SSM. Then, the SSM

was fitted to a preliminary segmentation obtained by textural feature-based classi-

fication. In these methods, the shapes were represented as signed distance function

and aligned by direct optimization [34]. In [35–37], the SSM was also applied for

liver segmentation in CT images. In addition to SSMs, probabilistic atlases were

integrated into different liver segmentation approaches [24, 37–39]. In [40], CT

enhancement information and priori constraints on shape and location were utilized

in 4D graph cuts to segment liver, spleen, and kidneys. A common challenge of the

statistical model- and probabilistic atlas-based approaches is the model or atlas

construction. It requires a proper collection of a large training dataset to capture all

the possible variations, which is a very hard task. Moreover, these algorithms might

fail when detecting not standard liver shapes, or they might require too much time

to get reasonable results.

In summary, we can conclude that the intensity- and deformable model-based

approaches were highly affected by the liver abnormalities. The statistical model-

and probabilistic atlas-based approaches could enhance the results; however, they

added a burden of model construction and matching. In this chapter, we introduce a

model-free shape-based liver segmentation approach. In this approach, we benefit

from the high correlation between consequent slices of the same patient to define

the shape constrains and to estimate the statistical parameters of the liver and

non-liver tissues. A set of points selected on only one slice is utilized to initialize

shape and intensity constrains, and consequently, they automatically updated from

nearby slices. A graph cut algorithm based on these defined constrains is applied in
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a slice-by-slice manner to automatically segment the whole volume. Additionally,

to reduce the computational time, we build the graph in a narrow band area defined

automatically from the adjacent slice.

The rest of this chapter is organized as follows: In section “The Model-Free

Segmentation Approach,” the model-free segmentation approach is described.

Datasets, evaluation metric, and experimental setup are introduced in section

“Data and Experimental Setup.” In section “Results,” the evaluation results of the

segmentation approach on 50 CT images are presented. These results are discussed

in section “Discussion.” Finally, the work is concluded in section “Conclusion.”

The Model-Free Segmentation Approach

In this work, the segmentation approach mimics the physician’s methodology in

determining the boundary of liver. In this methodology, the correspondence between

adjacent slices in CT image helps in alleviating the ambiguity of the liver boundary

and in detecting the liver abnormalities. In the introduced approach, this information

is encoded in the form of shape constrains propagated from one slice to the adjacent

slice. These constrains are integrated in a shape-based graph cut algorithm to

accurately segment the current slice. Furthermore, to consider inter- and intra-

variations of the liver intensity, the intensity model of the liver is atomically

estimated in a patient-oriented manner, and it is updated from one slice to another.

A simple user interaction is required at first to determine the suitable intensity

range for image normalization and to segment one starting slice. The whole proce-

dure of this model-free approach is introduced in Algorithm 1.

Preprocessing

The raw CT data is encoded in either 12 or 16 bits; hence, we have a very large

number of gray levels. The first aim of the preprocessing step is to map this raw data

to a grayscale data encoded in eight bits. However, the direct mapping of the raw

data to grayscale data increases the effect of under-sampling and the effect of

non-useful intensity ranges. Windowing the raw data around the soft tissue of

abdomen before mapping it enhances the produced image [41]. In this preprocessing

step therefore, we perform image normalization in the soft tissue window.
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Algorithm 1: The model-free segmentation approach

Input: Contrast enhanced CT volume and the set of fixed parameters.

Output: Binary volume, liver is the foreground.

Procedure:

Step-1: Performing image normalization in soft tissue window and then applying nonlinear

diffusion filter to each slice.

Step-2: Selecting one slice as the start slice and then define the liver landmarks on it.

Step-3: Estimating initial shape, intensity, and graph cuts constrains from the start slice.

for all lower slices, starting from the start slice to the last one. do

Step-4: Define a narrow band around the liver object.

Step-5: Performing slice segmentation using shape-based graph cuts algorithm.

Step-6: Adding the segmentation results of this slice to the output volume.

Step-7: Updating shape, intensity, and graph cuts constrains according to current slice

segmentation.

end for

for all upper slices, starting from the start slice to the first one. do

Repeat Step-4 and Step-5.

if the segmented object contains multiple parts then

Step-8: Selecting the left most one as the liver object.

end if

Repeat Step-6 and Step-7.

end for

Step-9: Applying the post-processing procedure to the output volume.

return output volume.

This window is determined by plotting the histogram of the raw data and

selecting the lower and upper bounds of the right distribution in the histogram as

shown in Fig. 1. Then, these lower and upper bounds are used to map the original

raw data to a grayscale data according to (1). The original image and the produced

gray scale one are shown in Fig. 2:

Fig. 1 Determination of the lower and upper bounds used for intensity mapping
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Ig x; yð Þ ¼
0 if Io x; yð Þ � Lo

255 Io x; yð Þ � Loð Þ
Hi� Lo

if Lo < Io x; yð Þ < Hi

255 if Io x; yð Þ � Hi

,

8>><
>>: (1)

where Io is the raw CT image, Ig is the produced gray level image, Lo is the selected

lower intensity bound, and Hi is the selected upper intensity bound.

After mapping the whole CT volume to a grayscale volume, a nonlinear diffu-

sion filter [42, 43] is applied to each 2D slice in the volume to reduce the noise and

to increase the liver homogeneity. In contrast to the convolution and rank filters

(median filter, mean filter, etc.), the nonlinear diffusion filter can remove the noise

from homogenous areas while keeping clear and sharp edges as shown in Fig. 3.

The nonlinear diffusion filter is obtained by the time solution of (2):

∂Ig x; y; tð Þ
∂t

¼ div C ∇Iσg x; y; tð Þ�� ��2� �
∇Ig x; y; tð Þ

� �
¼ ∇C � ∇Iσg x; y; tð Þ�� ��2� �

∇Ig x; y; tð Þ
: (2)

where Ig(x,y,0) is the original gray image, t refers to the iteration steps, and C is a

diffusivity function that depends on the gradient magnitude of the image. Iσg x; yð Þ is

a smoothed version of I(x,y) which is obtained by convolving it with a Gaussian of

standard deviation σg. In this work, a rapidly decreasing diffusivity function

suggested in [44] is implemented as

Fig. 2 Mapping the raw CT data to grayscale image, (a) original data, and (b) the produced gray

image
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C ¼
1 if g � 0

1� e

�
3:315

g=Kð Þ4
if g > 0

:

8><
>: (3)

The conductance parameter, K, determines the contrast of edges that will have

significant effect on the smoothing.

Initialization

A simple user interaction is required to determine and segment one slice in the CT

volume. The segmentation result of this slice, represented as a binary template, is

used to define the initial shape constrains as well as the initial intensity model of the

corresponding case. Consequently, these constrains are automatically propagated in

a slice-by-slice manner.

From the anatomical knowledge of the liver, we can divide the whole CT volume

into twomain parts: the upper part and the lower part. In the upper part, the liver starts

as a single small object behind the heart, and it grows up to be a single large object at

the end of this part. In the lower part, the liver starts as a single large object, and it is

divided into two or more segments and then ends as a single small object behind the

colon and the kidney as shown in Fig. 4. These two parts are separated by a slice

containing nearly the largest cross section of the liver, which is selected as the starting

slice for segmentation. In this slice, the liver object is very clear and its boundary can

be distinguished from the other objects visually. Therefore, the initial liver segmenta-

tion is performed in less than 1 min according to the following procedure:

1. The user selects from 20 to 30 landmarks on the liver boundary as shown in

Fig. 5a.

2. The liver boundary is then estimated using the cubic spline interpolation [45] as

shown in Fig. 5b.

3. The liver object is defined as the object inside the liver boundary as shown in

Fig. 5c.

Fig. 3 Output of the preprocessing step, (a) input image, (b) smoothed image using a nonlinear

diffusion filter, and (c) smoothed image using the median filter
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Fig. 4 The main anatomical structure of the liver, (a) start slice of the liver (liver in green and

cardiac in red), (b) end of the upper part, (c) a slice in the lower part with a liver divided to four

segments, and (d) the end slice of the liver (liver in green, kidney in red, and colon in blue)

Fig. 5 Start slice segmentation, (a) selected landmarks, (b) estimated liver boundary, and (c)

corresponding shape template
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Estimation of the Shape and Intensity Constrains

The shape constrains are applied as a prior probability of the liver location, and the

intensity constrains are defined as the probability of the liver intensity model at each

pixel. These constrains are automatically determined for each slice according to the

segmented liver object in the previous slice. The estimation process is performed

according to the following procedure:

1. Define the binary liver template in the start slice as Tempstr, the binary liver

object in this slice as objectstr, the binary liver template in the previous slice as

Tempprv, the binary liver object in this slice as objectprv, the pixels belonging to

the liver in the previous slice as Liverprv, and the pixels not belonging to the liver
in the previous slice as non ‐ Liverprv.

2. Determine the minor axis of the ellipse that fit the object in Tempprv and denote it
as max (Fig. 6a).

3. Erode the Tempprv with a disk structuring element of radius round(0.02 � max)

and consider the result as the shape template of the current slice (Fig. 6b). This

erosion value has been decided after studying the average change of the minor

liver axes in different cases.

4. If Area(objectprv) � 0.1 � Area(objectstr), calculate the histogram of Liverprv
and non ‐ Liverprv as the intensity model; else, use the previously used intensity

model.

5. Erode Tempprv with a disk structuring element of radius round(0.1 � max) and

the result is considered as the object hard constrains in the graph cut algorithm

(Fig. 6c).

6. Dilate the Tempprv with a disk structuring element of radius max(2, round
(0.1 � max)). Then, the edge of the resulting binary template is determined

and dilated with a disk structuring element of radius 1. The result of this step

is considered as the background hard constrains in the graph cut algorithm

(Fig. 6c).

7. Define a narrow band window surrounding the liver object as the smallest

rectangle fitting the dilated object calculated in step 5 (Fig. 6d).

Segmentation Using Graph Cuts

Introduction to Graph Cuts

An image segmentation problem can be considered as a binary labeling problem.

In which, a unique label Ap ∈ “obj”, “bkg” is assigned to each pixel in the image.

A good labeling or segmentation A, A ¼ A1, A2, . . ., A|P| : |P| is the number of

image pixel, has to minimize a predefined energy function. Boykov et al. [46]

introduced a solution for this problem using a graph cut algorithm. In the graph cuts,

a graph G ¼ 〈V, ε〉 is defined as a set of nodes V and a set of edges ε. The nodes of
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the graph represent the image pixels in addition to two specially designated

terminal nodes S (source) and T (sink), which represent the object and background

labels. The set of edges ε in the graph includes two types of edges: edges between

neighboring pixels, which are defined as n-links, and edges connecting all pixels to

the terminal nodes, which are defined as t-links. All graph edges e ∈ ε, including
n-links and t-links, are assigned some nonnegative weight/cost we. An example of a

simple 2D graph of 3 � 3 image is shown in Fig. 7a.

A binary label Ap that partition the underlying image into object and background

segments can be obtained by determining an s � t cut on the graph. The s � t cut is a
subset of edges C ∈ ε such that the terminals S and T become completely separated

by removing these edges as shown in Fig. 7b. The cost of a cut is defined as the sum

of the weights/costs of all edges included in that cut, |C| ¼ ∑ e ∈ Cwe. The cut with a

Fig. 6 Constrain estimation, (a) sample previous slice (liver contour in red and the minor axis in

green), (b) the contour of the estimated shape template shown on the current slice, (c) the

estimated constrains for graph cut (object in green and background in red), and (d) the slice

after applying the narrow band constrain
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minimal cost gives the optimal segmentation according to the designated energy

function. It is important to formulate a precise energy function that can be encoded

via n-links and t-links. In addition, a set of hard constrains for object and background,

similar to these introduced in [47], can be imposed using infinity cost t-links. The

graph cut algorithm has been successfully applied to liver vessels segmentation in

[48] and to interactive 2D and 3D images segmentation in [49–52].

The goal of energy minimization is to find a labeling A ¼ {A1, A2, . . ., A|p|},

which minimize the Gibbs energy function E(A) defined in (4):

E Að Þ ¼ R Að Þ þ μB Að Þ, (4)

where

R Að Þ ¼
X
p∈P

RpA pð Þ, (5)

B Að Þ ¼
X

p∈P, q∈ℵp

Bpq Ap;Aq

� �
:δ Ap;Aq

� �
, (6)

and

δ Ap;Aq

� � ¼ 1

0

if

if

Ap 6¼ Aq

Ap ¼ Aq
:

�
(7)

The parameter μ in (4) determines the relative importance of the boundary term,

B(A), versus the regional term, R(A), and ℵp defines the neighborhood of pixel p.
Rp(Ap) is the penalty of assigning a label Ap to a pixel p, and Bpq(Ap,Aq) is the penalty

of labeling the pair of pixels p and q with labels Ap and Aq, respectively. In the

Fig. 7 An undirected graph of 3 � 3 image (a) and (b) s � t cut. The thickness of the edges

represents their costs. Figure based on [41]
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presented approach, this energy function is adjusted to include the shape constrains

as a penalty added to the regional term. Hence, the regional term R(A) is computed

by adding two penalties: the data penalty RD(Ap) and the shape penalty Rs(Ap). The

data penalty reflects on how the intensity of pixel p fits into the intensity model of the

object (liver) and background (non-liver tissues). The shape penalty is encoded as

the prior probability of a pixel to be inside or outside the liver object. The data,

shape, and boundary penalties are calculated as in (8), (9), and (10), respectively:

RD Ap

� � ¼
log pr Ip∈“obj”

� �� �
log pr Ip∈“obj”

� �� �þ log pr Ip∈“bkg”
� �� � if Ap ¼ 1

log pr Ip∈“bkg”
� �� �

log pr Ip∈“obj”
� �� �þ log pr Ip∈“bkg”

� �� � if Ap ¼ 0

,

8>>>><
>>>>:

(8)

Rs Ap

� � ¼ 1� shapetemp if Ap ¼ 1

shapetemp if Ap ¼ 0
,

�
(9)

Bpq ¼ e
� Ip�Iqj j2

2σ2 � 1

d p; qð Þ , (10)

where shapetemp is the estimated shape template of the objected (liver) in the current

slice, Ip is the intensity value of a pixel p, pr(Ip ∈ " obj " (" bkg ")) is the proba-

bility of p to be an object (" obj ") or background (" bkg ") pixel, and d( p,q) is the
Euclidian distance between pixels p and q. The total energy function can be

obtained by including the shape penalty into the Gibbs energy function as shown

in (11):

ET Að Þ ¼ 1� λð ÞRD Að Þ þ λRs Að Þ þ μB Að Þ: (11)

The parameter λ determines the relative importance of the data penalty versus

the shape penalty. This total energy function can be minimized efficiently using the

graph cut algorithm. To achieve this goal, a graph with cut cost equaling the value

of ET(A) is constructed using the edge weights defined in (12), (13), and (14).

Furthermore, the hard constrains defined in section “Estimation of the Shape and

Intensity Constrains” are implemented via infinity cost edges:

wsp ¼
1 if p∈“obj”
0 if p∈“bkg”

1� λð ÞRD Ap ¼ 0
� �þ λRs Ap ¼ 0

� �
otherwise

:

8<
: (12)

wpt ¼
0 if p∈“obj”
1 if p∈“bkg”

1� λð ÞRD Ap ¼ 1
� �þ λRs Ap ¼ 1

� �
otherwise

:

8<
: (13)
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wpq ¼ Bpq Ap;Aq

� �
: (14)

Post-processing

In this stage, any tissue surrounded completely by the segmented liver tissue is

added to the final segmentation, which smoothed using a 3D filter. To achieve this

goal, the following procedure is applied:

1. Perform a hole filling to each 2D slice.

2. Perform binary image closing to the 3D volume using a ball-structuring element

of radius 3.

3. Perform a hole filling to each 2D slice again.

4. Smooth the final volume by applying a binary median filter of 3 � 3 � 3 size.

Data and Experimental Setup

In this work, we perform a qualitative evaluation of the model-free segmentation

approach using three datasets: both training and testing datasets of MICCAI2007

[53] and JAMIT contest dataset [54]. In this section, data description, evaluation

metrics, and the parameter setting of the introduced segmentation approach will be

introduced.

Datasets

The first dataset used for evaluation is the MICCAI2007 training dataset. This

dataset contains 20 CT images acquired using a variety of CT scanners, including

4, 16, and 64 detector rows. All of these images were acquired contrast-dye-

enhanced in the central venous phase. According to the machine and protocol

used, pixel spacing is varied from 0.55 to 0.8 mm in x/y direction, and the slice

spacing is varied from 1 to 5 mm. In some cases, the entire anatomy is rotated

around the z-axes. Most images in this dataset have liver abnormalities, including

tumors, metastasis, and cysts of different sizes. The second dataset is the

MICCAI2007 testing dataset, which contains 10 CT images and has the same

characteristic of the previous dataset. The third dataset is the dataset used in

JAMIT contest for liver tumor detection. This dataset contains 20 CT images

acquired contrast-dye-enhanced in portal venous phase. The pixel spacing is varied

from 0.5 to 1 mm in x/y direction, and the slice spacing is varied from 0.8 to 1 mm.

This data is used at the contest for liver tumor detection, and it has different kinds of

liver abnormalities, including tumors and cysts.
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Parameter Setting

The number of iteration of the nonlinear diffusion filter influences the quality of the

smoothing process and then affects the homogeneity of the liver. A large number of

iterations make the object more smooth; however, it greatly increases the

processing time. From numerous experiments on randomly selected cases from

MICCAI2007 training dataset, we set the number of iterations to 10. This value is

optimal for keeping the balance between the object smoothing and the processing

time. The other parameters of the nonlinear diffusion filter, time step, and K were

set to 0.125, 1.5, and 3, respectively. Graph cut parameters have been adjusted

using 5 CT images having different characteristics: 3 from MICCAI2007 training

dataset and 2 from JAMIT dataset. Parameter μ, which determines the influence of

the boundary penalty, was set to 2. The parameter λ, which determines the influence

of the shape penalty in the regional term, was set to 0.2. These parameters were

fixed for all images in all datasets. The parameter σ in the boundary term was

dynamically selected from each slice as the average absolute intensity difference

between the neighboring pixels (15):

σ ¼ 1

Pj j
X

p∈P, q∈ℵp

Ip � Iq
�� �� (15)

Evaluation Metrics

Sensitivity ¼ True Positive

True Positiveþ False Negative
(16)

Specificity ¼ True Negative

False Positiveþ True Negative
(17)

Precision ¼ True Positive

True Positiveþ False Positive
(18)

Accuracy ¼ True Positiveþ True Negative

Number of Voxels
(19)

Error Rate ¼ False Positiveþ False Negative

Number of Voxels
� 100 (20)

Evaluation was performed using two sets of evaluation metrics. The first set of

metrics contains five general segmentation metrics of sensitivity (16), specificity

(17), precision (18), accuracy (19), and the error rate (20).

The second set of metrics, which was used in MICCAI2007 Grand Challenge

workshop [55], includes five metrics. Two of these metrics are volume based and

the other three are surface based. These five metrics are calculated for a segmented

liver volume A and a reference liver volume B as the following:
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1. Volumetric overlap error (VOE), in percent: it is 0 for a perfect segmentation

and 100 if the two volumes A and B do not overlap at all:

VOE ¼ 1� A\Bj j
A[Bj j

� 	� 	
: (21)

2. Relative volume difference (RVD), in percent: a positive value refers to

over-segmentation and a negative value refers to under-segmentation. The

value of 0 means that both A and B have the same volume; however, it does

not imply that they are identical [55]:

RVD ¼ Aj j � Bj j
Bj j

� 	
� 100: (22)

3. Average symmetric surface distance (ASD), in mm: the value of 0 refers to a

perfect segmentation: for each surface voxel of A, the Euclidian distance from

the closest surface voxel of B is calculated. This distance is also calculated

from B to A. The ASD is computed as the average of these distances.

4. Root mean square symmetric surface distance (RMD), in mm: it is similar to the

ASD; however, instead of Euclidian distance, the squared distance is calculated.

The RMD is computed as the square root of the average squared distance.

5. Maximum symmetric surface distance (MSD), in mm: it is similar to ASD;

however, instead of the average, the maximal Euclidian distance is calculated.

Heimann et al. [55] provide a methodology for combining these different

measures in one precision score. They transform the result ρi of each error measure

i to a gauged score φi ∈ [0,100] and the final score is then computed as the average

of all scores. To perform this transformation, they use a manual segmentation

of non-expert to get the average user errors ρ0i for each measure. Considering

the performance of the manual segmentation as 75 out of 100, they calculate the

corresponding score for measure i as

φi ¼ max 0; 100� 25
ρi
ρ0

i

� 	� 	
: (23)

The score of 100 points represents a perfect segmentation, and a score of 75 can

be regarded as equivalent to non-expert segmentation. They also reported that the

error measures of the non-expert are equivalent to 6.4 %, 4.7 %, 1, 1.8, and 19 mm

for VOD, the absolute value of RVD, ASD, RMD, and MSD, respectively.
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Results

The segmentation approach was applied to 50 CT images described in section

“Datasets.” We implemented the approach using Matlab® environment on

Windows®-based personal computer with a Corei7 (2.8 GHz) processor and 6GB

of memory. In order to reduce the processing time required for the smoothing stage,

it was performed in parallel on the eight cores of the Corei7 processor using the

Matlab® parallel computing toolbox.

Experiments on Clinical Data

The shape constrains play an essential role in the introduced model-free segmenta-

tion approach. The estimation of these constrains from the adjacent slice is assessed

by computing the Jaccard coefficient (24), between the estimated shape and the

manually segmented liver object at each slice. Figure 8 shows the computed

coefficient between the true liver object and the estimated shape template and

between the true liver object and the segmented one. From this figure, we can

prove that the estimated template provides a good knowledge about the position and

the shape of the true liver objects at each slice even in the case of large slice

spacing:

Jcoeff ¼ L\Mj j
L[Mj j , (24)

where L is the estimated shape template and M is the manually segmented object.

The evaluation results of the proposed approach using the first set of metrics are

shown in Table 1 for the MICCAI2007 training dataset and in Table 2 for the

JAMIT dataset. The evaluation of the MICCAI2007 testing dataset using this set of

metrics is not available because the ground truth of this dataset is not publicly

available.

Tables 3 and 4 show the accuracy of the proposed approach using the second set

of metrics for the MICCAI2007 training dataset and the JAMIT dataset. The

evaluation results of the MICCAI2007 testing dataset using this set of metrics

which were calculated by the committee of the “3D Segmentation in the Clinic:

A Grand Challenge” workshop of MICCAI2007 are shown in Table 5. The best,

moderate, and worst segmentation results in MICCAI2007 training dataset and

JAMIT dataset are shown in Figs. 9, 10, 11, 12, 13, and 14 in 2D view.
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Comparative Results

In this section, the comparative results of the proposed approach on both

MICCAI2007 datasets are reported. The results of MICCAI2007 training dataset

are compared to the methods introduced in [5, 10] and the final scores are shown in

Table 6. In [10], the authors combine split thresholding and anatomical knowledge

to segment the liver in contrast-enhanced CT images. Although they utilize the

anatomical knowledge to roughly estimate the liver location, the final segmentation

depends on the intensity information alone. Accordingly, their segmentation

results, which were considered as an initial estimation of the liver boundary, were

greatly affected by the liver abnormalities. Ruska et al. in [5] applied the anatomical

knowledge to refine an initial segmentation estimated using intensity thresholding.

However, their proposed method for single-phase CT images was highly relying on

the intensity model of the liver, and it could not extract the liver in the cases

containing large and dense tumors.

Fig. 8 The Jaccard coefficient between the true liver object and the estimated shape template in

blue, and the coefficient between the true liver objected and the segmented one in red: (a) sample

from the MICCAI2007 training dataset with slice spacing of 1 mm, (b) sample from the

MICCAI2007 training dataset with slice spacing of 5 mm, and (c) sample from JAMIT dataset

with slice spacing of 1 mm
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The results of MICCAI2007 testing dataset have been compared to the best

automatic method (Kainmüller et al. [29]) and all interactive methods reported by

T. Heimann et al. in [55]. Averaged results for individual measures of all methods

are summarized in Table 7. As done in [55], all scores are rounded down to the

nearest integer, and runtime is given as the average time to segment one image

volume and it includes interaction time and computation time. Additionally, all

approaches have been classified according to the time required for interaction. Less

than 1 min was regarded as low interaction, less than 5 min as medium interaction,

and more than 5 min as high interaction. Referring to Table 7, the proposed

approach shares the best position with Beichel et al. MBR; however, the proposed

approach is significantly faster, requires less amount of interaction, and does not

require extensive manual refinement. The automatic method of Kainmuller

et al. achieved these results by using an extensive training set of 112 liver shapes

to build an SSM consists of around 7,000 landmarks. The total score of the same

method was 73 when the number of training shapes used to build the SSM was

43 [29].

Table 1 Evaluation of the results for the MICCAI2007 training dataset based on general

segmentation metrics

Case Sensitivity Specificity Precision Accuracy Error rate %

#1 0.9790 0.9971 0.9467 0.9962 0.3799

#2 0.9815 0.9940 0.9472 0.9927 0.7282

#3 0.9838 0.9966 0.9472 0.9958 0.4177

#4 0.9686 0.9983 0.9698 0.9967 0.3266

#5 0.9803 0.9988 0.9732 0.9981 0.1922

#6 0.9854 0.9973 0.9486 0.9968 0.3235

#7 0.9318 0.9993 0.9832 0.9964 0.3581

#8 0.9436 0.9972 0.9686 0.9928 0.7187

#9 0.9583 0.9991 0.9828 0.9969 0.3095

#10 0.9754 0.9963 0.9560 0.9947 0.5290

#11 0.9849 0.9985 0.9715 0.9978 0.2224

#12 0.9855 0.9980 0.9645 0.9973 0.2694

#13 0.9434 0.9984 0.9693 0.9957 0.4310

#14 0.9788 0.9992 0.9677 0.9987 0.1263

#15 0.9806 0.9993 0.9793 0.9987 0.1334

#16 0.9715 0.9966 0.9662 0.9942 0.5758

#17 0.9840 0.9976 0.9559 0.9970 0.3030

#18 0.9707 0.9972 0.9495 0.9959 0.4134

#19 0.9655 0.9973 0.9628 0.9952 0.4828

#20 0.9618 0.9986 0.9551 0.9975 0.2490

Average 0.9707 0.9977 0.9633 0.9963 0.3745

Std. dev. 0.0157 0.0013 0.0119 0.0017 0.1692
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Discussion

The proposed approach provides efficient solutions for the liver segmentation

challenges. The shape constrains are utilized to alleviate the ambiguity of the

liver boundary and to reduce the effect of liver abnormalities. These shape

constrains are estimated in a slice-by-slice manner to transfer the anatomical

knowledge from clear liver cross sections to the ambiguous cross sections. Since

these constrains are estimated in a case-specific manner, the proposed approach is

robust for liver shape variations. The statistical model of the liver is also

constructed in a same manner to consider liver intensity variations. Figures 15

and 16 show that the presented model-free approach can efficiently extract the liver

in different cases containing large and dense tumors. Successful segmentation of

complex and atypical liver shapes is illustrated in Fig. 17.

Referring to Tables 1 and 2, very high level of sensitivity and specificity

indicates that the proposed approach alleviates over- and under-segmentation. A

minimum accuracy, a precision, and a maximum segmentation error of 0.9927,

0.9467, and 0.7282 % reflect the efficiency of the proposed approach. Additionally,

Table 2 Evaluation of the results for the JAMIT dataset based on general segmentation metrics

Case Sensitivity Specificity Precision Accuracy Error rate %

#1 0.9776 0.9993 0.9767 0.9986 0.1422

#2 0.9745 0.9993 0.9583 0.9988 0.1169

#3 0.9667 0.9993 0.9757 0.9983 0.1732

#4 0.9672 0.9991 0.9752 0.9980 0.2023

#5 0.9699 0.9989 0.9785 0.9975 0.2489

#6 0.9708 0.9987 0.9753 0.9974 0.2611

#7 0.9212 0.9981 0.9487 0.9952 0.4818

#8 0.9653 0.9993 0.9650 0.9987 0.1337

#9 0.9733 0.9995 0.9747 0.9990 0.0994

#10 0.9614 0.9990 0.9604 0.9981 0.1948

#11 0.9604 0.9997 0.9836 0.9989 0.1076

#12 0.9673 0.9977 0.9708 0.9955 0.4529

#13 0.9542 0.9989 0.9611 0.9978 0.2240

#14 0.9591 0.9995 0.9809 0.9985 0.1469

#15 0.9647 0.9991 0.9806 0.9975 0.2545

#16 0.9592 0.9995 0.9786 0.9987 0.1327

#17 0.9744 0.9991 0.9662 0.9985 0.1531

#18 0.9719 0.9996 0.9766 0.9991 0.0883

#19 0.9745 0.9996 0.9827 0.9991 0.0901

#20 0.9687 0.9995 0.9762 0.9988 0.1229

Average 0.9651 0.9991 0.9723 0.9981 0.1914

Std. dev. 0.0121 0.0005 0.0093 0.0011 0.1090
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Fig. 9 2D visualization of the best case in MICCAI2007 dataset according to the scores in

Table 3. (a–f) Case #14 slices 83, 80, 76, 67, 57, and 45. The green contour represents the manual

reference and the red one represents the segmentation result

Fig. 10 2D visualization of the moderate segmented case in MICCAI2007 dataset according to

the scores in Table 3. (a–f) Case #6 slices 96, 85, 72, 56, 40, and 20. The green contour represents
the manual reference and the red one represents the segmentation result
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Fig. 11 2D visualization of the worst segmented case in MICCAI2007 data set according to the

scores in Table 3, (a–f) case #7 slices 229, 206, 154, 140, 104, 57. The green contour represents the
manual reference and the red one represents the segmentation result

Fig. 12 2D visualization of the best case in JAMIT dataset according to the scores in Table 4.

(a–f) Case #19 slices 18, 35, 57, 75, 105, and 151. The green contour represents the manual

reference and the red one represents the segmentation result
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Fig. 13 2D visualization of the moderate segmented case in JAMIT dataset according to the

scores in Table 4. (a–f) Case #16 slices 10, 31, 53, 77, 109, and 155. The green contour represents
the manual reference and the red one represents the segmentation result

Fig. 14 2D visualization of the worst segmented case in JAMIT dataset according to the scores in

Table 4. (a–f) Case #7 slices 16, 45, 76, 109, 144, and 184. The green contour represents the

manual reference and the red one represents the segmentation result
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based on the scores shown in the last column of Tables 3, 4, and 5, the average

performance of the proposed approach (80.4 for JAMIT dataset, 79.2 and 81.7

for MICCAI2007 datasets) can be regarded as closer to the reference manual

segmentation than the average human performance [55]. Small deviation of these

scores shows the ability of the proposed approach to deal with extreme cases as well

as easy and moderate cases. The processing time required to segment a CT volume

on a personal computer with the specification described in section “Results” ranges

from 2 to 5 min. This time is significantly less than the manual or other conven-

tional segmentation methods.

In general, the proposed approach can efficiently utilize the anatomical knowl-

edge of the liver to achieve accurate segmentation results. The precision of this

approach is high for all parts of the liver with a small degradation at the most top

and the most bottom parts as shown in Fig. 18a. However, in some cases, having

extremely ambiguous boundaries between the liver and the heart, this degradation

increases at the top part of the liver due to false segmentation of heart parts as a liver

as shown in Fig. 18b. This problem can be solved by applying more advanced

heart–liver separation methodology. Additionally, to check the effect of start slice

selection and initialization, two additional segmentations have been performed and

reported in Table 8. These results show that all segmentations have roughly the

same or slightly different scores.

Table 6 Scores of the

proposed approach on

MICCAI2007 training dataset

compared to the scores of

Ruska et al. [5] and Foruzan

et al. [10]

Case Proposed Ruska et al. [5] Foruzan et al. [10]

#1 76 59 32

#2 81 78 47

#3 82 71 33

#4 80 81 44

#5 83 77 21

#6 79 78 53

#7 68 73 8

#8 58 73 40

#9 81 70 39

#10 80 75 31

#11 81 70 34

#12 82 70 23

#13 76 74 0

#14 88 70 76

#15 85 83 0

#16 81 8 12

#17 82 79 52

#18 76 78 23

#19 73 85 34

#20 82 71 70

Average 79.2 71 34

Std. dev. 5.1 16 21
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Conclusion

The portal venous CT images are the most important and the most common tool for

diagnosis of liver diseases. The vasculature and lesions are most visible in this

phase; however, the extraction of the liver is challenging due to the contrast of the

normal and abnormal liver tissues and the existence of noise. In this work, we

introduce a novel model-free shape-based approach for liver segmentation in portal

venous CT images using a case-specific knowledge. In which, the relation between

consequent slices of the same image is exploited to estimate the shape and intensity

information of the liver. Then, this information is integrated into the graph cut

Fig. 15 Segmentation results of cases containing dense liver abnormalities (MICCAI2007

dataset). The green contour represents the manual reference and the red one represents the

segmentation result
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algorithm to segment the whole CT image. Unlike the other shape-based

segmentation approaches, which use training data to build a statistical model, this

approach does not require any prior training for model construction. Accordingly, it

is not restricted to the trained model, and it can be applied when there is no enough

training data available. The evaluation results demonstrated the high precision of

the proposed approach. It efficiently estimates the liver boundary even with the

existence of large and dense liver abnormalities. The utilization of a case-specific

knowledge increases the ability of the proposed approach to deal with difficult and

atypical liver shapes. Additionally, it removes the burden of model construction

and matching. A low processing time required by the proposed approach makes it

suitable for clinical application.

Fig. 16 Segmentation results of cases containing dense liver abnormalities (JAMIT dataset). The

green contour represents the manual reference and the red one represents the segmentation result
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Fig. 17 Segmentation results of cases containing atypical liver shapes, (a, b) 2D view of case#11

in MICCAI2007 dataset and (c, d) 2D view of case#12 in JAMIT dataset. The green contour

represents the manual reference and the red one represents the segmentation result
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Fig. 18 Jaccard coefficient between manual segmentation and the results of the proposed

approach at different slices, (a) typical case and (b) case with false-positive at the top part of

the liver
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CT Imaging Characteristics

of Hepatocellular Carcinoma

Masahiro Okada and Takamichi Murakami

Abstract Computed tomography (CT) is essential for the diagnosis of liver tumors.

In the CT criteria of hypervascular hepatocellular carcinoma (HCC), the diagnosis is

based on hemodynamic findings, such as arterial enhancement, followed by washout

in the portal-venous and/or equilibrium phase. In this chapter, typical and atypical

findings (HCC mimickers) of HCC on CT and current diagnostic techniques to

image HCC were stated.

Focus Points

1. Dynamic CT with an intravenous bolus injection of contrast medium is essential

to diagnose HCC.

2. Four-phase imaging (unenhanced, arterial, portal-venous, and equilibrium

phases) on liver dynamic CT is usually performed to diagnose HCC.

3. A characteristic enhancement pattern consisting of arterial enhancement and the

corresponding washout at portal-venous and equilibrium phases are very impor-

tant for the diagnosis of HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most common tumor in the world, and

the incidence of HCC is rising [1, 2]. The majority of HCCs develop in cirrhotic

livers, and the early detection and characterization of this entity is important for

decisions on therapeutic strategy. Several therapeutic methods are currently used

for patients with HCC. Patients diagnosed with HCC are candidates for curative
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treatment options, such as surgical resection and liver transplantation. Radio-

frequency ablation (RFA) has become one of the most widely used procedures

for the treatment of HCC. In the cases of many or large hypervascular lesions in the

liver, transcatheter arterial chemoembolization (TACE) is a useful procedure.

Molecular-targeted drug, such as sorafenib, is a new therapy of active multikinase

inhibitor with effects on tumor-cell proliferation and tumor angiogenesis and allows

to demonstrate superior survival in patients with advanced HCCs.

Sonography is frequently the first examination and can be sensitive in detecting

HCC but depending on the operator. MRI has superior contrast resolution and may

better detect lesions, but CT is a convenient examination and frequently employed

initially because of high throughput of CT examination (short examination time).

Nuclear medicine imaging and conventional angiography are less useful for the

detection of HCC because of low spatial and contrast resolution.

Multidetector-row computed tomography (MDCT) plays an important role on

HCC imaging, because it provides several advantages, such as volumetric study

(with higher spatial and time resolution), reduced scan time, reduced motion

artifact, and reduced radiation exposure. Moreover, recently advanced CT technol-

ogy of dual-energy CT has a high potential for liver imaging, including monochro-

matic image and CT dose reduction.

The diagnostic criteria for HCC are based on the typical hemodynamic pattern of

dynamic CT (arterial hypervascularity and washout at portal-venous and/or equi-

librium phase), although there are some atypically enhancing HCCs. According to

the American Association for the Study of Liver Diseases (AASLD), a liver nodule

larger than 1 cm in size in a cirrhotic liver that demonstrates the typical hemody-

namic pattern on CT and MRI can be diagnosed as HCC without biopsy. We should

follow this international guideline when HCC diagnosis is made on imaging

modalities.

Most importantly, we should understand HCC findings of CT on the basis of

multistep hepatocarcinogenesis and multistep change of intranodular blood supply

of hepatic nodules. Therefore, the balance between arterial flow and portal flow in

the nodule is important to diagnose HCC. In this chapter, CT imagings of HCC

including atypical findings of HCC and HCC mimickers are discussed. Moreover,

we should know optimal scan methods of the liver CT in this article and make

diagnosis of HCC correctly.

Etiology of Hepatocellular Carcinoma

There are multiple factors involved in the etiology of HCC. HCC most commonly

appears in a patient with chronic viral hepatitis (hepatitis B or hepatitis C) and/or

with cirrhosis. Especially, in East Asia, it is related often to viral hepatitis, such as

hepatitis C and B, whereas, in western countries, alcohol is the main cause,

although virus-related hepatitis increases.
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There are some other important factors that contribute to the international burden

of HCC. Obesity [3], diabetes [4], heavy use of alcohol [5], and nonalcoholic

steatohepatitis [6] are linked with carcinogenesis from non-B non-C liver cirrhosis.

Multistep Hepatocarcinogenesis of Hepatocellular

Carcinoma

Increased arterial neovascularization combined with decreased portal blood flow is

seen within the hepatic nodules on multistep carcinogenesis from regeneration to

HCC. This fact has been reported by using CT during hepatic arteriography

(CTHA) and CT during arterial portography (CTAP) [7, 8].

Normal hepatic artery decreased in accordance with increasing grade of

malignancy, but abnormal arteries due to tumor angiogenesis developed in high-

grade dysplastic nodule (DN) and increased in well-, moderately and poorly

differentiated HCCs (Fig. 1). The change of intranodular blood supply occurs

during hepatocarcinogenesis.

Microscopic invasion of stroma and portal tracts is important to differentiate

HCC from DN [9]. On the multistep carcinogenesis, high-grade DN develops foci

of malignancy [9]. Hypervascularity of HCC is a characteristic on imaging, because

of progressive sinusoidal capillarization and unpaired artery on pathology [10, 11].

Modern CT Imaging of the Liver

In patients with a suspicion of HCC (such as rising alpha-fetoprotein and protein

induced by vitamin K absence or antagonist-II levels), one of the best methods of

diagnosis involves a CT scan of the liver using intravenous (IV) contrast agent and a

four-phase scanning (unenhanced, arterial phase, portal-venous phase and equilib-

rium phase) to increase the ability of the diagnostic radiologists to detect small or

subtle HCCs.

CT is now widely available and represents an important method for the

diagnostics of liver lesions and planning of therapy. Dynamic MDCT with an

intravenous bolus injection of contrast medium (CM) is essential to diagnose

liver tumor [12, 13]. Diagnostic accuracy of the liver tumors has improved, because

MDCT has higher spatial and temporal resolutions by the increase of both gantry

rotation speed and the number of detector rows. But rapid scan speed with a MDCT

scanner sometimes increases the difficulty to image hypervascular HCC during the

arterial phase after CM injection. The optimal technique for IV injection of CM is

very important to diagnose HCC. Therefore, we should know the optimal scanning

protocol to start in the arterial phase after IV injection of CM.
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The arterial phase imaging is useful to detect hypervascular HCC. On arterial

phase of liver dynamic CT, there is a good correlation between tumor vascularity on

CT and angiography. The portal-venous and equilibrium phases imaging are useful

for the differential diagnosis of HCC, because the washout of CM from the tumor in

these phases is a typical finding of hypervascular HCC (Fig. 2). On portal-venous

and equilibrium phases, a minimum enhancement of 50 Hounsfield units

(HU) should be achieved as adequate liver enhancement to obtain high conspicuity

of low-attenuated hepatic lesions at the portal-venous and equilibrium phases

[14–16].

Hepatocellular carcinoma

well – moderately –
poorly HCC

a

b

early HCC
low

grade
DN

high
grade

DN

Hepatocellular nodule

Arterial supply

Portal supply

RN
Low
DN

High
DN

Well
diff.
HCC

Moderately
Poorly
diff.
HCC

= abnormal arterial = hepatic arterial supply = portal supply

Fig. 1 (a) Terminology of nodular hepatocellular lesions. International Working Party.

Hepatology 1995. DN ¼ dysplastic nodule; well-moderately-poorly HCC ¼ well-moderately-

poorly differentiated hepatocellular carcinoma (HCC). (b) Change of intranodular blood supply

on multistep carcinogenesis from regeneration to HCC. RN ¼ regenerative nodule, low DN ¼
low-grade dysplastic nodule, high DN ¼ high-grade dysplastic nodule, well-diff. HCC ¼ well-

differentiated HCC, and moderately poorly diff. HCC ¼ moderately or poorly differentiated

HCC. Arterial supply is decreasing from RN to high-grade DN and is increasing from well-

differentiated HCC to moderately and poorly differentiated HCC because of the proliferation of

unpaired (abnormal) arteries, whereas portal supply is gradually decreasing from RN to moder-

ately and poorly differentiated HCC
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However, arterial parenchyma enhancement due to arterioportal venous

(AP) shunt may become a false-positive lesion (mimic HCC) on dynamic MDCT

that evaluates hemodynamics of liver tumor, and it may sometimes reduce speci-

ficity. The finding of washout pattern is useful to distinguish non-tumorous AP

shunt from hypervascular HCC, because AP shunt substantially showed no washout

of the liver at the portal-venous and equilibrium phases. In other words, HCC shows

both focal arterial enhancement and the corresponding washout in the portal and

equilibrium phases, but AP shunt shows arterial enhancement alone and wedge-

shaped appearance. However, the differentiation between HCC and AP shunt is

sometimes difficult because some HCCs (especially small HCCs) do not demon-

strate washout.

Scanning through the upper abdomen can be performed in less than 2–3 s by

using state-of-the-art MDCT scanners with more than 64 channels, even though a

spatial resolution of 0.6 mm is employed for both longitudinal and short axis of the

body (transverse slice thickness), so-called isotropic voxel volume imaging. Three-

dimensional (3D) images can be reconstructed from the isotropic voxel imaging

data by using multiplanar reconstruction (MPR), volume rendering (VR) (Fig. 3),

and maximum intensity projection techniques. These 3D images are useful for

preoperative anatomical evaluation for surgeons and preoperative explanations

for patients [17].

Fig. 2 Unenhanced CT (a), arterial phase (b), portal-venous phase (c), and equilibrium phase

(d) of the CT show iso-density, hyper-density, washout with hyper-density ring (corona; arrow)
enhancement, and washout with hyper-density capsule (arrow), respectively
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Scanning Protocol of Liver Dynamic CT to Detect

Hepatocellular Carcinoma (Table 1)

A. Four-phase liver dynamic CT.
Dynamic CT of the liver is performed by using bolus injection of iodine CM

[18–20]. A four-phase (unenhanced CT, arterial phase, portal-venous phase, and

equilibrium phase) examination protocol of liver dynamic CT should be

employed for the diagnosis of HCC. By the use of different dynamic CT phases,

good characterization of hepatic space-occupying lesions can be achieved.

B. CM injection parameters in the liver dynamic CT.
It is important to optimize the parameters of the CT examination. There are

several important technical factors for the injection of CM, such as volume and

concentration of CM, injection rate, injection duration, body weight (BW),

and scan delay time in the hepatic arterial phase. The volume and concentration

of CM and the injection rate are directly related to maximum liver enhancement

[21–24], whereas patients’ BWs are inversely related [25]. A rapid injection of

CM is effective for the depiction of hypervascular HCC, when using the same

volume and concentration of CM [26, 27]. The concentration and injection rate

of CM are important for determining the amplitude of contrast enhancement in

artery and hypervascular HCCs during arterial phase. And, the injection dura-

tion of CM is also important to predict peak enhancement time in the liver,

because it may be the only factor to restrict temporal changes in contrast

enhancement. When the alternative of injection rate or injection duration of

CM is fixed, the other factor should be variable depending on the patients’ BW.

Fig. 3 (a) Volume rendering of hepatic arterial phase. Detailed depiction of hepatic arteries

(right hepatic artery, left hepatic artery, proper hepatic artery, common hepatic artery) and superior

mesenteric artery is obtained during early arterial phase by using CT angiography with intravenous

injection of CM. (b) Volume rendering of portal-venous phase. Detailed depiction of portal vein

system (portal vein, splenic vein, superior mesenteric vein) is obtained during portal-venous phase

by using CT angiography with intravenous injection of CM
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C. Scan timing after CM injection for arterial, portal-venous, and equilibrium
phases of dynamic CT.
The injection duration of CM is important to predict peak enhancement time in

the liver, because the injection duration of CM is equal to the time of peak aortic

enhancement after an arrival of CM to the abdominal aorta; in other words, it

may be the only factor to restrict temporal changes in contrast enhancement.

When injection duration of 30 s is employed, scanning is substantially made at

arterial (approximately 40 s postinjection), portal-venous (approximately

70–90 s postinjection), and equilibrium phases (approximately 180–300 s post-

injection) at whole liver containing the tumor. Ichikawa et al. stated that the

peak enhancement time of the aorta, portal vein, and liver constantly appears

approximately 10, 20, and 30 s after any fixed injection durations (completion of

CM injection), respectively [28].

D. Computer-assisted bolus-tracking technique.
It is important to predict the peak time of aortic enhancement to achieve optimal

detection of HCC at the arterial phase for patients with hypervascular HCC,

because blood is supplied to tumors from the hepatic artery (which is a branch of

the abdominal aorta). The routine use of computer-assisted bolus-tracking

techniques (i.e., SmartPrep®) for hepatic arterial phase scanning is

recommended to detect hypervascular HCC [29], because the imaging by

bolus-tracking technique is useful to catch the optimal scan timing during

hepatic arterial phase in patients with severe cardiac dysfunction.

The scan delay for the arterial phase is about 20 s (i.e., optimal scan delay

after a 30-s contrast injection of the hepatic arterial phase ranges from 5 to 10 s

for the detection of hypervascular HCCs [30]) for the 16- or 64-MDCT scanner

after achievement of 100-HU attenuation of the descending aorta measured

Table 1 Optimal imaging parameters of liver dynamic CT for hypervascular HCC

Total volume and concentration of CM

600 mgI/kg (i.e., 300 mgI/mL, 2 mL/kg) in patients with liver damage

Injection duration of CM

30 s

Injection rate of CM

Total volume of CM/30 s (i.e., 120 mL/30 s ¼ 4 mL/s)

Phases of liver dynamic CT

Arterial phase of dynamic CT

Fixed scan timing, approximately 40 s postinjection of CM

Bolus tracking, approximately 20-s delay after achievement of 100-HU attenuation of the aorta

Portal-venous phase of dynamic CT

Fixed scan timing, approximately 70–90 s postinjection of CM

Bolus tracking, approximately 30-s delay after arterial scanning

Equilibrium phase of dynamic CT

Fixed scan timing, approximately 180–300 s postinjection of CM

Note. HCC Hepatocellular carcinoma, CM contrast medium
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with bolus-tracking technique. A certain scan delay after arterial phase

acquisition was used for the portal-venous phase acquisition (optimal scan

delay after a 30 s contrast injection of the portal venous phase is 35 s after the

completion of contrast injection or somewhat longer [30]).

E. Body weight (BW)-tailored dose (volume x concentration of CM).

To achieve adequate liver enhancement for all patients with a wide variety of BW

on CT, recent clinical studies have suggested that the dose of CM should be

tailored according to patients’ BWs, because a fixed dose of CM does not

allow the same effects for the contrast enhancement of liver in patients with

different BWs [31–33]. The variation in liver enhancement among patients

with different BWs is cancelled by using the BW-tailored dose of CM [31].

When a tailored dose of CM according to patients’ BW is injected in the liver CT,

a fixed injection duration method allows the minimization of the variation in

aortic peak enhancement time for each patient [28, 34]. In patients with lighter

BW, the injection rate can be reduced without reducing the degree of enhance-

ment in the liver [31]. For the liver dynamic CT, 600 mgI/mL of CM is

recommended [35].

American Association for the Study of Liver Diseases

The diagnostic algorithm for suspected HCC by the AASLD guideline states that

an imaging diagnosis of HCC should be made if a lesion larger than 1 cm shows

a typical vascular enhancement pattern on a single dynamic imaging study (Fig. 4)

[36]. For hepatic nodules smaller than 1 cm, repeated sonography at 3 months

is recommended to investigate the nodular size. Four-phase MDCT and dynamic

contrast-enhanced MRI are recommended in this algorithm as imaging modalities

to detect arterial hypervascularity and washout at portal-venous and/or equilibrium

phase for hepatic nodules larger than 1 cm. Therefore, confirmation of arterial

enhancement and the corresponding washout in the portal and equilibrium phases

on dynamic CT is important to diagnose HCC after sonographic detection of

hepatic nodule on the screening program. A biopsy is not needed to confirm the

diagnosis of HCC if certain imaging criteria are met. When typical findings of

HCC, such as arterial hypervascularity and washout at portal-venous and/or equi-

librium phase on liver dynamic CT, could not be obtained, other contrast-enhanced

imagings or biopsy of hepatic nodules are recommended.

Classification of Nodules in Multistep Hepatocarcinogenesis

1. Regenerative nodule (RN).

Regenerative nodules (RNs) represent a region of parenchyma enlarged in

response to necrosis, altered circulation, or other stimuli. In chronic
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hepatitis B, macronodular hepatic nodules (>3 mm in diameter) are substantially

seen, although micronodular nodules (<3 mm in diameter) are seen in other

causes of cirrhosis. When RNs contain iron, they are substantially

hyperattenuation or isoattenuation to the liver on unenhanced CT. Most RNs

are difficult to depict on enhanced CT, because they show similar enhancement

pattern compared to the surrounding liver parenchyma [37], but RNs may show

early enhancement in comparison to or less than the surrounding liver [38]. And

on the equilibrium phase, RN may show multiple hypoattenuation nodules

which are separated by hyperenhancing fibrous tissue in the liver.

2. Dysplastic nodule (DN).
Dysplastic nodules (DNs) are subclassified on the basis of cellular abnormalities,

such as low-grade DN, containing hepatocytes with mild atypia, and high-grade

DN, containing hepatocytes with moderate atypia, but insufficient for the diag-

nosis of malignancy. Low-grade DNs are difficult to distinguish histologically

fromRNs [9]. High-grade DN is most likely to progress to HCC than is low-grade

DN. High-grade DN has pathologic features of increased cell density of this

lesion, mild thickened cell plates, and foci of increased cell proliferation. The

differentiation between high-grade DN and well-differentiated HCC in the liver

cirrhosis can be difficult, because of overlap on imaging. However, rapid interval

growth is one of the criteria of malignancy on imaging. DNs containing foci of

HCC are considered to be premalignant lesions.

Fig. 4 American Association for the Study of Liver Diseases (AASLD) guideline
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DNs may be detected as hypoattenuation in the arterial and/or portal-venous

phase, because of normal or slightly decreased portal-venous supply to the DNs

(Fig. 5), although DNs are not seen on imaging as frequently [39]. DNs are

usually isoattenuation to the surrounding liver [40]. Lim et al. stated that helical

dynamic triple-phase CT including arterial, portal-venous, and delayed phases

depicted 14 % of high-grade DNs and 7 % of low-grade DNs [41].

3. Hepatocellular carcinoma (HCC).
MDCT provides detailed information about tumor vascularization and can also

help differentiate its pathological grade noninvasively.

(a) Early hepatocellular carcinoma (early HCC).
Tumor cells of early HCC grow in a replacing fashion. And portal tracts may

be present in these lesions. The invasion into intralesional portal tracts is

seen, and this invasion is called as “stromal invasion.” And early HCC does

not show distal metastasis. Decrease or disappearance of ductular reaction is

important to differentiate early HCC from fibrosis with chronic hepatitis

[42]. Stromal invasion of early HCC has the active matrix metalloproteinase-

1 (MMP-1) [43].

Fig. 5 Low-grade dysplastic nodule. Unenhanced CT (a), arterial phase (b), portal-venous phase

(c), and equilibrium phase (d) of the CT show iso-density, hypodensity (arrow), washout with
hypodensity (arrow), and washout with hypodensity (arrow), respectively
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Early detection of early HCC may permit effective treatment and achieve

long-term cure, although the natural history of early HCC is not well known.

Treatment of early-stage HCC is potentially curative therapy with 5-year

survival rates of 50–70 % [44, 45]. Early HCC substantially shows

hypovascular tumor and slightly washout on liver dynamic CT (Fig. 6).

It may be difficult to differentiate early HCC from other benign lesions,

such as RN and DN. US-assisted biopsy of the lesion can be used to

differentiate neoplastic lesions from non-neoplastic lesions.

(b) Well-differentiated hepatocellular carcinoma (well-differentiated HCC).
On pathology, microscopic invasion of stroma and portal tracts is the

primary diagnostic feature to differentiate well-differentiated HCC from

DNs [46]. The diagnosis of well-differentiated HCC can be difficult,

commonly requiring examination by several imaging modalities [47,

48]. Well-differentiated HCC has relatively low malignant potential and

rarely invades vessels or metastasis to other sites [49]. Fatty changes of

tumor tissue were occasionally observed (Fig. 7). Minimal enhancement

of the tumor is substantially seen in well-differentiated HCC. Even though

HCC is usually considered to be a hypervascular tumor, well-differentiated

tumors can be hypovascular tumor.

Fig. 6 Early HCC. Unenhanced CT (a), arterial phase (b), portal-venous phase (c), and equilib-

rium phase (d) of the CT show iso-density, iso-density, washout with hypodensity (arrow) and
washout with hypodensity (arrow), respectively
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(c) Moderately differentiated hepatocellular carcinoma (moderately
differentiated HCC).
Dynamic CT substantially reveals a basket pattern which means hypervas-

cularity of moderately differentiated HCCs (Fig. 8). A peak of enhancement

is usually seen at the arterial phase followed by a rapid decrease of enhance-

ment at the portal-venous and equilibrium phases, because moderately

differentiated HCC has greater arterial blood supply. Lesions larger than

3 cm are often heterogeneous, with mosaic or mixed pattern arising from

intratumoral necrosis, hemorrhage, fatty deposit, and interstitial fibrosis. The

appearance of HCC on CT depends on tumor size and histologic tumor

grades.

(d) Poorly differentiated hepatocellular carcinoma (poorly differentiated
HCC).
In poorly differentiated HCC, gradually increasing enhancement over time

is substantially seen (Fig. 9). Asayama et al. state that the arterial blood

supply of poorly differentiated HCC is lower than that of moderately

Fig. 7 Well-differentiated HCC. Unenhanced CT (a), arterial phase (b), portal-venous phase (c),

and equilibrium phase (d) of the CT show hypodensity with fat deposit (arrow), hyper-density
(arterial enhancement; arrow) with hypodensity (fat component), washout with ring enhancement

(capsule; arrow) and washout with ring enhancement (capsule; arrow), respectively
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differentiated HCC by CT during hepatic angiography. Therefore, the arte-

rial blood supply decreases as the histologic grade progresses in the late

stage of HCC development. The enhancement of poorly differentiated HCC

shows greater arterial vascularization than that of well-differentiated

HCC. The presence of arterial hypervascularization of the poorly differen-

tiated HCCs and some of the moderately differentiated HCCs indicates that

lesions with this contrast enhancement pattern are most likely an advanced-

to-late stage.

Cirrhosis

CT Features of Liver Cirrhosis

Liver cirrhosis (LC) is one of the most important factors in hepatocarcinogenesis.

Liver cirrhosis demonstrates less contrast enhancement of the liver than

normal liver and sometimes shows inhomogeneous enhancement because of

Fig. 8 Moderately differentiated HCC. Unenhanced CT (a), arterial phase (b), portal-venous

phase (c), and equilibrium phase (d) of the CT show iso-density, hyper-density (arterial enhance-

ment; arrow), slight washout with ring enhancement (capsule; arrow) and clear washout with ring
enhancement (capsule; arrow), respectively
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regeneration, fibrosis, and the altered portal-venous flow (Fig. 10). In addition,

collateral vessels, such as paraumbilical vein, splenorenal shunt, and esophageal

varices, are seen due to portal hypertension. Ascites is also seen in patients with

liver cirrhosis.

MDCT Findings of Hepatocellular Carcinoma

The CT appearance of HCC depends on tumor size and histologic grade. Small

HCC is defined as nodules smaller than 2–3 cm in size, whereas lesions larger than

3 cm in size are often heterogeneous with a mosaic or mixed pattern arising from a

necrosis, fibrosis, fatty degeneration, and hemorrhage [50].

A characteristic enhancement pattern consisting of hyperenhancement in the

arterial phase and washout in the portal-venous or equilibrium phase is associated

Fig. 9 Poorly differentiated HCC. Unenhanced CT (a), arterial phase (b), portal-venous phase (c),

and equilibrium phase (d) of the CT show almost iso-density, indistinct hypodensity (hypovascular

enhancement; arrow), washout (arrow) without ring enhancement and washout (arrow) without
ring enhancement, respectively. Ascites is seen at the subphrenic space
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with high specificity (nearly 100 %) for the diagnosis of HCC. But dynamic

CT with extracellular CM has some diagnostic limitations related to tumor size.

Hepatic nodules larger than 1 cm in diameter show high accuracy of hypervascular

HCCs in a cirrhotic liver, although it is difficult to diagnose subcentimeter

HCCs [36]. Therefore, the confirmation by biopsy is sometimes required for

questionable hepatic nodules to determine the diagnosis. Thus, the key charact-

eristics of HCC on CT are hypervascularity in the arterial phase scans, washout in

the portal and equilibrium phase studies, a pseudocapsule, and a mosaic pattern.

Both calcifications and intralesional fat may be appreciated.

There is insufficient diagnostic performance for the early detection of both small

and early HCCs evenwith state-of-the-art CT. Gadoxetic acid disodium (gadolinium

ethoxybenzyl diethylenetriaminepentaacetic acid, Gd-EOB-DTPA; PRIMOVISTⓇ

Bayer Schering Pharma AG, Berlin, Germany) is a hepatocyte-specific MR contrast

agent. Gd-EOB-DTPA-enhanced MRI is a promising examination to diagnose

small HCC [51] and depicts early HCCs, such as well-differentiated HCC, in the

early stage of hepatocarcinogenesis, because Gd-EOB-DTPA has the properties

Fig. 10 Liver cirrhosis. Unenhanced CT (a), arterial phase (b), portal-venous phase (c), and

equilibrium phase (d) of the CT show peripheral irregularity of the liver, splenomegaly, and ascites

at the subphrenic space. No tumor is seen in the liver
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of an extracellular gadolinium chelate, as well as being a hepatocyte-targeting agent.

Gd-EOB-DTPA-enhanced MRI enables hepatocyte-phase imaging to start

10–20 min postinjection. Therefore, additional dynamic imaging modality, such as

Gd-EOB-DTPA-enhanced MRI, is recommended, when liver dynamic CT shows

indeterminable result in the diagnostic process of HCCs [36].

Characteristic Features of Hepatocellular

Carcinoma on Dynamic CT

Unenhanced CT substantially shows a hypodense nodule. Arterial phase of

dynamic CT reveals arterial hypervascularity, because hypervascular HCC has

greater arterial blood supply. Arterial hypervascularity of HCC is followed by

washout at the portal-venous and equilibrium phases (Figs. 2 and 8). And fibrous

capsule around tumor is sometimes seen in the case of large (>2 cm in size) HCC

(Table 2) (Figs. 2 and 8). This fibrous capsule is enhanced at portal-venous phase

and equilibrium phase, because fibrous tissue substantially shows delayed

enhancement.

On liver dynamic multiphase CT, unenhanced image acquisitions are carried out

at baseline and then after intravenous bolus administration of iodinated

CM. According to the clinical query, the most appropriate injection protocol should

be chosen. In many countries including Japan, four-phase liver dynamic CT is

substantially used for the examination of hypervascular HCC. And the higher

tumor-to-liver contrast in the dynamic CT is required for the detection and charac-

terization of HCC. It is believed that the minimum difference of approximately

10 HU between hepatic nodules and surrounding liver is needed to detect the

nodules.

Mosaic pattern is composed of the variable tissue composition of HCC. Enhanc-

ing nodules in HCC indicate viable tumor cells, and low attenuation areas represent

necrosis, fibrosis, or hemorrhage [52].

Nodule-in-nodule appearance is consisted of histologically different

components, such as moderately differentiated HCC and well-differentiated HCC

or dysplastic nodule with malignant focus. Thus, these mosaic pattern and nodule-

in-nodule appearance are often used in conjunction with hypervascularity at arterial

phase, washout at portal-venous and equilibrium phases, and fibrous capsule around

tumor as characteristic features of HCC (Table 3).

Table 2 Important findings of liver dynamic CT for hypervascular HCC

• Early enhancement during the arterial phase and washout (lower attenuation than surrounding

liver parenchyma) during the portal-venous and/or equilibrium phases in contrast-enhanced CT

• Persistent enhancing fibrous capsule around tumor during the portal-venous and/or equilibrium

phases
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Vascular Invasion

Vascular invasion and histopathologic grading are identified as prognostic

parameters. Vascular invasion is found to be more common in poorly differentiated

HCC and diffuse type HCC. This is thought to be related to the portal-venous

drainage of HCC. The rates of vascular invasion are reported as significantly lower

in patients with well-differentiated tumors when compared with moderately and

poorly differentiated tumors [53].

Relatively high rate of HCC invasion into the portal vein is found in patients

with advanced HCCs, and this portal invasion is classified as Vp0 (none), Vp1

(microscopic), Vp2 (into the segmental branch), and Vp3 (into the lobar vein or the

main trunk) in Japan [54].

Uncommon Features

Hepatocellular Carcinoma Mimics

1. Arterial portal shunting.

Shunts rarely show delayed washout on post-contrast image (Fig. 11), although

chronic shunts give damage in the shunting area and may show slightly washout.

And shunts may demonstrate vessels through them and wedge-shaped

appearance.

2. Focal nodular hyperplasia (FNH) or FNH-like nodule.

FNH-like nodule is seen in the chronic liver disease and disorder of intrahepatic

blood flow [55], although FNH is seen in non-cirrhotic liver. FNH is a benign

and generally asymptomatic hepatic tumor, whereas focal nodular hyperplasia-

like nodules (FNH-like nodules) are focal lesions occurring in liver cirrhosis and

are morphologically very similar to classical FNH in an otherwise normal liver.

They are sometimes misdiagnosed as HCC on CT imaging because both types of

lesions show arterial phase enhancement. FNH and FNH-like nodule usually

appear homogeneous, well defined, and hypoattenuating or isoattenuating rela-

tive to the liver at unenhanced CT (Fig. 12), and they classically demonstrate

intense early enhancement and may show isoattenuating relative to the liver at

Table 3 Characteristic

features of HCC
• Arterial enhancement (washin) and washout

• Mosaic appearance

• Nodule-in-nodule appearance

• Capsule or pseudocapsule
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delayed scans. A central scar (if present) may demonstrate delayed

enhancement.

3. Liver hemangioma.

Liver hemangioma shows peripheral globular enhancement, progression of

enhancement toward the center of the nodule at arterial phase and portal-venous

phase (filling in phenomenon), and persistence of enhancement at equilibrium

phase in contrast-enhanced CT (Fig. 13). This is the key point of the differential

diagnosis between liver hemangioma and HCC, because HCC shows washout at

equilibrium phase. It is rarely difficult to differentiate small hemangiomas

(especially high-flow hemangioma) and small HCC on liver dynamic CT.

4. Hypervascular liver metastasis.

Hypervascular liver metastases include primary tumors such as neuroendocrine/

islet cell tumor, carcinoid, renal cell carcinoma, melanoma, and thyroid carci-

noma. Most metastases appear hypoattenuating at unenhanced CT, although

neuroendocrine tumor metastases may appear hyperattenuating at unenhanced

CT. Most hypervascular metastases show early enhancement of viable tumor at

arterial phase and become mild hyper- to mild hypoattenuation to the liver in

portal-venous phase (Fig. 14).

Fig. 11 Arterial portal shunting. Arterial phase ((b) arrow) of the CT shows small enhancement in

the lateral segment of the left lobe, although other phases ((a) unenhanced CT, (c) portal-venous

phase, and (d) equilibrium phase) have iso-density of the region
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Hepatic Perfusion CT

CT can be used not only to image anatomical structure but also to analyze liver

function. CT perfusion is performed by serial images after the administration of a

bolus of iodinated contrast agent, enabling detailed analysis of liver hemodynamics.

The impulse residue function (IRF) of a localized bolus in hepatic blood flow is

fundamental to perfusion CT. The passage of contrast agent enables the calculation

of a TDC and is shown as the IRF. Mathematically, IRF is calculated as a tissue

curve. CT perfusion is obtained by monitoring the first pass through the vasculature

after bolus injection of an iodinated contrast agent. Perfusion technique with

dynamic contrast enhancement can enable the quantitative analysis of not only

liver tissue vascularity but also HCC vascularity (Fig. 15). As an example, perfu-

sion CT is performed by the acquisition of serial images of the same slice level

after a bolus administration of 30–40 mL of iodinated contrast medium [56].

Patients with hypervascular HCC show the high blood volume and blood flow

and short transit time [57].

Fig. 12 Focal nodular hyperplasia. Arterial phase ((b) arrow) of the CT shows homogeneous

enhancement in the segment 5/6 of the right lobe, although other phases [(a) unenhanced CT,

(c) portal-venous phase, and (d) equilibrium phase] have iso-density of the tumor
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CT perfusion is employed to calculate hepatic blood flow by using a color-

encoded display of parameters from the liver time–density curve (TDC), with

iodine contrast agent. Hepatic perfusion CT enables analysis of the measurement

of following: tissue blood flow (TBF, mL/min/100 g); tissue blood volume (TBV,

mL/100 g); mean transit time (MTT, sec), which is the average time for blood

elements to traverse the vasculature from arterial inlet to venous outlet (propor-

tional to perfusion pressure); and hepatic arterial fraction (HAF; %), which is the

ratio of arterial perfusion to total liver perfusion. Thus, liver functional maps are

calculated by the input function based on regions of interest (ROIs) set on the aorta

and portal vein. The passage of contrast material through blood vessels enables the

calculation of the TDC. In postprocessing software of CT perfusion, a

deconvolution-based method has become widely used for liver perfusion CT

imaging [56, 58]. Enhancement of the abdominal aorta is used as a substitute for

hepatic artery input.

CT perfusion is a feasible technique for quantifying tumor vascularity and

angiogenesis in advanced HCC [59] and depicts tumor vascular physiology in

patients with HCC. Thus CT perfusion can be used for detection of tumor

Fig. 13 Liver hemangioma. Unenhanced CT (a), arterial phase (b), portal-venous phase (c), and

equilibrium phase (d) of the CT show slightly low-density, peripheral globular enhancement,

progression of enhancement toward the center of the nodule, and persistence of enhancement,

respectively. Arrows show liver hemangioma in the lateral segment of the left lobe
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angiogenesis and in assessing response to antiangiogenic treatment for various

cancers [60]. Great impact of perfusion CT has been shown in the assessment

of patients with HCC, especially that of tumor response to antiangiogenic

drugs, such as sorafenib (Nexavar, Bayer Schering Pharma AG, Berlin, Germany)

[61, 62].

Iterative Reconstruction

Iterative reconstruction (IR) is a statistical reconstruction method that may be

influenced by high background activity such as in the liver. IR technique, such as

Adaptive Statistical iterative Reconstruction (ASiR) of GE healthcare, solves this

by subtracting noise, not merely masking it [63].

CT image quality is strongly proportional to radiation dose. Several parameters,

such as milliamperage (mA), exposure time, peak kilovoltage (kVp), and pitch, are

Fig. 14 Hypervascular liver metastases from pancreatic neuroendocrine tumor (gastrinoma).

Unenhanced CT ((a) arrow) of the CT shows irregular low-density tumor in the segment 8 of

the right lobe. Arterial phase ((b) arrow) of the CT shows heterogeneous enhancement in the

segment 8 of the right lobe. Portal-venous phase (c) and equilibrium phase (d) of the CT show

heterogeneous enhancement (slightly high-density; arrows) in the segment 8 of the right lobe
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adjusted based on the relation between the benefit and risk to patients. In general,

CT characteristics are largely determined by peak tube voltage (kVp), which

determines the upper limit of X-ray energy, and tube current (mA). Images obtained

with low-voltage X-rays contain a high degree of noise, although this is

alleviated by increasing the tube current. IR technique enables a reduction

in radiation dose compared with the usual filtered back-projection algorithm,

alternatively, enables a reduction in image noise when employed at the same

Fig. 15 CT perfusion of large HCC on liver dynamic CT. Arterial phase ((a) arrow) of the CT

shows huge enhancement of hypervascular HCC in the entire right lobe. Tissue blood flow (b),

tissue blood volume (c), mean transit time (d), and hepatic arterial fraction (e) show hepatic

perfusion parameters as liver imaging function
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radiation dose as that for the filtered back-projection. Generally, dose reduction

causes an increase in noise and image artifacts. But, IR delivers enhance image

quality by improved low contrast detectability whilst preserving anatomical detail.

Volume Helical Shuttle

The volume helical shuttle (VHS) is a breakthrough technique for liver imaging.

Hypervascular HCC can be analyzed by using several whole liver scans, such as

12 phases in the arterial phase of dynamic CT (Fig. 16). We performed the world’s

first VHS CT scan for dynamic CT angiography and also for liver- and

brain-perfusion studies, with high temporal resolution. VHS scan technique that

we have developed with GE healthcare can provide almost real-time hemodynamic

change by shuttling the CT scanning cradle back and forth during scanning,

and also enables wider coverage for complete organ imaging: >120 mm longitudi-

nally [64]. Thus, VHS offers dynamic blood flow studies, leading to a new concept

termed “four-dimensional (4D) CT.”

Dual-Energy CT

Dual-energy CT is a promising technique used to obtain material-specific images,

because it makes possible the differentiation of materials and tissues in images

obtained based on the differences in iodine and water densities. Dual-energy

CT has been shown to have improved ability to detect contrast agent and to

distinguish high-density substances created by iodine from those created by cal-

cium or other substances. Postprocessing algorithms enable subtraction of iodine

maps from dual-energy CT data (e.g., subtraction of calcification) to create a virtual

noncontrast image. Dual-energy CT can be used with multidetector CT as current

clinical settings, and the technology is based on the simultaneous acquisition of

two data sets (high and low energy). Finally dual-energy CT allows to create

accurate material decomposition images and monochromatic spectral images with

energy from 40 to 140 k-electron voltage (keV). CT images at 80 kVp or the

equivalent 55 keV monochromatic images may show a higher contrast-to-noise

ratio for hypervascular HCCs because the attenuation value of iodine increases

with the use of low-voltage X-rays [65]. Monochromatic images reconstructed

from dual-energy CT data may provide some improvement of detection of

hypervascular HCCs.

Several previous studies have employed dual-energy CT for clinical use in the

abdominal region [66–68] and thus are useful for the detection and characterization

of renal stones [69]. Dual-energy CT allows to increase the sensitivity of imaging of

hypervascularized and hypovascularized liver lesions, and by the use of virtual

native imaging, it has become possible to avoid additional native imaging which
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Fig. 16 Volume helical shuttle (VHS) in patients with small HCC. 1st, 1st phase; 2nd, 2nd phase;

3rd, 3rd phase; 4th, 4th phase; 5th, 5th phase; 6th, 6th phase; 7th, 7th phase; 8th, 8th phase; 9th, 9th

phase; 10th, 10th phase; 11th, 11th phase; 12th, 12th phase. A HCC located in segment 2 of the

liver shows arterial enhancement of tumor, and the enhancement gradually increased from 1st

phase to 9th phase of VHS in this case. At 6th phase of VHS shows the peak tumor-to-liver contrast

(arrow)
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reduces the X-ray exposition of patients. Moreover, dual-energy CT provides an

accurate method of quantitating liver iron [70], offers more specific tissue charac-

terization, and can improve the assessment of vascular disease [71].

Low-Tube Voltage CT

The standard CT setting for liver imaging includes multiphase CT scans at 120 kVp

with bolus injection of contrast media. Low-tube voltage CT is a promising method

for obtaining higher contrast of HCCs in the dynamic CT (Fig. 17), because

iodinated contrast media provide greater X-ray attenuation (higher conspicuity of

hepatic lesions) with low-tube voltage through an increased photoelectric effect

[72, 73]. When low-voltage X-rays (such as 80 kVp) are used, iodine contrast

agents are more conspicuous at low- than at high-tube voltage settings, although

there is high image noise in large patients [74]. The increased noise of low-voltage

X-ray scanning may be a problem, because the density of the liver is relatively

homogeneous. Therefore, maintaining an appropriate signal-to-noise ratio (SNR) in

low-voltage raw data is an important factor in dual-energy scanning. Beam harden-

ing artifact is greater on low-voltage than on 120 kVp X-ray images, so a technique

with reduced beam hardening in the images is desirable, such as monochromatic

images made by dual-energy scanning. ASiR can improve SNR and reduce beam

hardening in the low-tube voltage CT.

Fig. 17 Comparison between 100 and 120 kVp of CT tube voltage on the equilibrium phase of

liver dynamic CT. This is a case of HCC before and post RFA. Liver parenchymal enhancement

after injection of contrast agent (600 mgI/kg), with 120 kVp of CT setting. Because ASIR was used

for the lower KVp CT, CT value of the liver with 100 kVp and low amount of contrast medium

(480 mgI/kg) is similar to that with 120 kVp and high amount of contrast medium. By using ASIR,

100 kV CT shows the same noise level (SD) as 120 kVp CT. Mean/SD of CT value for 120 kVp

(a) and 100 kVp (b) is 106/12 and 107/12 HU
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Conclusion

We described typical and atypical findings of HCC on liver dynamic CT and

introduced new CT technologies to image and analyze HCC. It is important to

understand liver dynamic CT examinations for the strategy of HCC therapy.
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Clinical Applications of Hepatobiliary

MR Contrast Agents

Antoine Wadih and Sebastian Feuerlein

Abstract Modern hepatocellular-specific MR contrast agents such as gadoxetic

acid are an important adjunct to conventional extracellular contrast material in MRI

examinations of the liver. They allow not only evaluation of vascular structures and

early dynamic contrast kinetics but are also able to determine the presence or

absence of functioning hepatocytes. In addition, the high biliary excretion rate of

50% allows a true T1 cholangiopancreatography phase with improved characteri-

zation of biliary abnormalities and leaks.

Introduction

The ability of hepatic MRI to characterize focal and diffuse liver disease has been

greatly improved by the introduction of hepatocyte-specific contrast agents. Histor-

ically, this group included gadolinium-based agents (gadobenate dimeglumine),

manganese-based agents (mangafodipir trisodium), and reticuloendothelial agents

(iron oxide particles, SPIO). The latter two agents are no longer commercially

available and suffered from inherent problems such as unsuitability for bolus

injection and consecutive inability to evaluate hepatic vascular structures. Recently,

gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (gadoxetic acid

disodium, Eovist®, Bayer HealthCare) was introduced to the US market after

being used under the brand name Primovist® in the European Union and Australia

for many years. Gadoxetic acid is characterized by rapid and specific hepatocellular

uptake, resulting in approximately 50 % biliary excretion in patients with normal

hepatic function [1]. This results in a hepatocellular phase about 20 min after
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contrast administration, allowing for a single exam imaging strategy. In addition,

gadoxetic acid is suitable for bolus injection and therefore not only facilitates

evaluation in hepatocellular imaging phases that target parenchymal and biliary

lesions but also enables MRI in the arterial and portal venous distribution phases for

assessment of tissue perfusion and the intrahepatic vasculature itself. Gadobenate

dimeglumine (Multihance®, Bracco) is a gadolinium-based contrast agent that is

approved for bolus injection and most commonly used as extracellular agent. Due

to a biliary excretion rate of 2 %, a hepatobiliary phase can be acquired about 2 h

after intravenous contrast administration. However, this usually necessitates the

patient being taken off the scanner between dynamic and hepatobiliary imaging and

is therefore undesirable both from a patient and workflow perspective. This chapter

mainly focuses on the application of gadoxetic acid; however, most of the general

principles of image interpretation also apply to hepatobiliary imaging using

gadobenate dimeglumine. The physiology of hepatobiliary contrast agents will be

described followed by the MRI techniques typically used. Clinical applications of

the agent will then be presented with discussion of focal liver lesions and the

evaluation of biliary pathologies.

Hepatobiliary Contrast Agents: Properties and Mechanism

Gadoxetic acid is a derivative of Gd-DTPA (Magnevist®) to which a lipophilic

ethoxybenzyl moiety has been added (Fig. 1). This chemical change results in an

increased protein binding which does not only allow for specific uptake of the

contrast agent into liver cells but also achieves a higher T1 relaxivity compared to

other gadolinium-based contrast materials [2]. The increased relaxivity however

cannot fully compensate for the fact that the recommended dose of gadoxetic

acid of 0.025 mmol/kg only represents 25 % of the gadolinium molecules

given with other extracellular contrast agents commonly used for liver MRI

(recommended dose 0.1 mmol/kg). During the initial trials performed in 1996, a

dose of 0.0125 mmol/kg was shown to be sufficient for the detection of hepatic

metastases [3]. Hence, a double dose of 0.025 mmol/kg was chosen somewhat

randomly to enable proper parenchymal enhancement and detection and character-

ization of liver lesions with little regard to the evaluation of arterially enhancing

lesions or the vasculature itself.

Molecular Properties

At the level of the hepatocytes, gadoxetic acid is actively transported into the cell

through the “organic anion transporting polypeptide 8” (OATP8), which belongs to

the solute carrier transporter superfamily of the OATPs, located at the sinusoidal

membranes of the cells (Fig. 2). The uptake of gadoxetic acid can be limited by
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competition with other endogenous compounds such as bilirubin and therapeutic

drugs. In functional liver cells, gadoxetic acid can then be excreted into the biliary

canaliculi via the “multidrug resistance-associated protein 2” (MRP2) located at the

canalicular membrane of the cell or back into the bloodstream via MRP3 located at

Fig. 1 Chemical structure of gadoxetic acid. Note the lipophilic ethoxybenzyl group (red circle)
that has been added to the Gd-DTPA (Magnevist®) molecule to increase protein-binding

capabilities

Fig. 2 Model of a hepatocyte showing the different membrane transporter proteins. Gadoxetic

acid is actively transported from the bloodstream into the hepatocyte by the “organic anion

transporting polypeptide 8” (OATP8) located at the sinusoidal membranes. The molecules can

then be excreted into the biliary canaliculi via the “multidrug resistance-associated protein 2”

(MRP2) or back into the bloodstream via MRP3. The function of all membrane proteins can be

altered by up- or downregulation
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the sinusoidal membrane (Fig. 2). It is important to note that the function of all

membrane proteins involved with the transport of gadoxetic acid can be altered by

up- or downregulation, most commonly by retrieval from or insertion into the cell

membrane [3]. A large number of factors can have an influence on the regulation of

the membrane proteins such as oxidative stress or cholestasis [3]. The resulting

alterations in uptake and excretion of gadoxetic acid at the level of the hepatocytes

can affect the enhancement pattern of the liver rendering characterization of certain

atypical liver lesions more complex and challenging.

Pharmacokinetics

When gadoxetic acid is injected intravenously, it is initially distributed in the

extracellular fluid compartment just as the extracellular agents. Despite its signifi-

cantly lower dose, it can be used for dynamic imaging of the liver similar to

extracellular contrast agents; however, detection rate for subtle hyperenhancing

lesions might be limited. Since gadoxetic acid is competing with other molecules

such as bilirubin at the membrane transporter proteins, the degree of hepatic

excretion is dependent on the liver function. In patients without significant liver

disease, approximately 50 % of gadoxetic acid is excreted through the biliary

system as described above and 50 % through the kidneys. Hepatic-specific enhance-

ment is detectable as early as 1–2 min after contrast administration (Fig. 3) [4]. The

high biliary excretion rate allows for a new hepatobiliary phase that becomes

significant for imaging at about 10 min and is unique to this class of agents.

Enhancement in the hepatobiliary phase depends on the constellation of molecular

transporters (Fig. 2) and typically reflects the presence of functioning hepatocytes

and biliary canaliculi. The unique contrast kinetics with a steady background

increase of hepatic parenchymal signal intensity over the first 20–30 min after

contrast administration prohibits a true equilibrium phase with gadoxetic acid

(Fig. 3) [4]. This change in background signal intensity has the potential to

complicate evaluation of vascular structures and vascular lesions.

Fig. 3 Different contrast phases after injection of 0.025 mmol/kg gadoxetic acid. Note the

reversal of portal vein-to-liver contrast between arterial and delayed imaging and the absence of

a true equilibrium phase due to progressive enhancement of the hepatic parenchyma
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Protocol Optimization

The recommended time frame for hepatobiliary phase acquisition is within a

relatively broad window of 10–120 min, with a delay of 20 min being most

commonly used. In order to minimize the scanning time, some of the standard

sequences can safely be acquired during the “wait time” between the early contrast

phases and the hepatobiliary phase. It has been shown that ADC values of most

organs are not different if acquired after contrast injection [5, 6] so diffusion-

weighted imaging can be moved into the time slot between dynamic and

hepatobiliary imaging. Similar holds true for standard T2-weighted turbo

spin-echo (TSE) sequences. By using this strategy, total imaging time can be as

low as 25 min. There is conflicting evidence regarding the quality of post-contrast

acquisition of high-resolution respiratory-triggered 3D MR cholangiopancrea-

tography (MRCP) sequences [7, 8]. Assuming a slow increase of intrabiliary

concentration of the T2 shortening gadolinium-based contrast agent and a long

image acquisition time secondary to the necessary respiratory triggering technique,

it can reasonably be speculated that reduced intrabiliary T2 signal is a potential

problem as confirmed by Ringe et al. [7]. It is therefore currently recommended that

3D MRCP sequences be performed prior to contrast administration.

While most institutions use a delay of about 20 min after contrast injection for

the hepatobiliary phase, more delayed imaging can offer better opacification of the

biliary tree allowing for noninvasive contrast-enhanced MR cholangiography

[9]. These extra sequences can be acquired after 30 and if needed 40 min, but

given this substantial amount of extra time necessary, they are mostly reserved for

specific clinical indications such as evaluation for suspected postoperative bile

leakage. Since acquisition speed is not of critical importance for the delayed

T1-weighted gradient echo sequences, respiratory triggering can be used to reduce

respiratory motion artifacts and also increase spatial resolution [10].

Imaging Appearance of Focal Liver Lesions

The characterization of focal liver lesions is a common clinical request for

abdominal radiologists, partly due to the widespread use of cross-sectional imaging

and the associated discovery of incidental liver lesions. Accurate classification of

these lesions is crucial to enable selection of the most appropriate treatment

strategy. Despite the high tissue contrast and fast dynamic imaging with MRI,

some focal liver lesions are difficult to confidently characterize with extracellular

contrast agents alone. Gadoxetic acid with its hepatobiliary properties is a very

important adjunct to conventional MR imaging providing further information about

the properties of the lesion, improving diagnostic confidence and accuracy [11].
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Cavernous Hemangioma

Hepatic hemangiomas (Figs. 4 and 5) are the most common benign hepatic tumors

and are frequently found incidentally at routine examinations. Using CT or MRI

extracellular contrast agents, hemangioma typically shows peripheral nodular

arterial enhancement with progressive centripetal filling on the portal venous and

equilibrium phase. This enhancement pattern is highly specific for hemangioma.

However, high-flow or “flash-filling” hemangiomas, which account for about 20 %

of all hemangiomas and 40 % of hemangiomas less than 1 cm in diameter [12, 13],

show immediate homogenous enhancement in the arterial phase. With extracellular

agents, the enhancement characteristics of hemangiomas usually follow the blood

pool in the later imaging phases, so lesions will be iso- or mildly hyperintense to the

liver parenchyma in the portal venous and equilibrium phases, depending on

the variable degree and speed of filling. However, this hyperintensity allows

confident diagnosis of hemangioma. Due to the absence of a true equilibrium

phase and the increasing enhancement of the liver parenchyma with gadoxetic

acid, hemangiomas are typically hypointense compared to background liver

starting a few minutes after contrast administration [13]. This hypointensity of

Fig. 4 Hemangioma in 39 year-old female (white arrow in (a)). Axial post-gadoxetic acid series

((a) arterial, (b) portal venous, (c) delayed 20 min) demonstrate peripheral nodular enhancement in

the early phases followed by hypointensity on hepatobiliary phase imaging. Blood pool signal

intensity was confirmed using the main portal vein on a different slice position (not shown). The

lesion is hypointense on T1 non-contrast (d) and markedly hyperintense on fat-saturated T2 turbo

spin-echo (e) also consistent with a hemangioma. Magnetization-prepared T1 GRE sequence (f) is

an inversion recovery technique with the inversion time optimized for hemangioma; therefore the

significant signal suppression on this sequence can serve as additional confirmation
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hemangiomas in the later phases makes its differentiation form hepatocellular

carcinoma (HCC) and hypervascular metastases more challenging, in particular

for high-flow hemangiomas lacking the classic peripheral nodular enhancement

with progressive filling or lesions smaller than 1 cm (Fig. 5). This differentiation of

small and/or atypical hemangioma from metastasis is a common pitfall with the use

of gadoxetic acid [14, 15]. While comparison of lesion signal intensity with that of

the portal vein as representative of the blood pool could be very helpful to establish

the diagnosis of a hemangioma, accurate measurements of signal intensity can be

challenging in small lesions. Combination with other signal characteristics such as

high T2 signal intensity and ringlike arterial enhancement will also help increasing

diagnostic accuracy for hemangioma versus metastasis [14]. In selected cases, it

might ultimately be necessary to bring patients back and add delayed sequences

after administration of a conventional extracellular contrast agent, where the blood

pool remains hyperintense compared to the hepatic parenchyma, allowing the

confident diagnosis of hemangioma if lesions are iso- or hyperintense (Fig. 5).

Focal Nodular Hyperplasia

Focal nodular hyperplasia (FNH) are the second-most commonly encountered

benign liver lesions after hemangioma with a prevalence of about 1 % [16]. In

contrast to hepatic adenoma, they are classified as a regenerative lesion rather than a

true neoplastic lesion [16]. FNHs have a strong female predilection of about eight

to one and are believed to be a hyperplastic response of the hepatic parenchyma to a

Fig. 5 Multiple focal liver lesions detected on CT in a 37 year-old female with history of colon

cancer. The upper row shows one of the larger lesions (white arrow), the lower row one of the

smaller subcentimeter lesions (black arrow) ((a/f) arterial, (b/g) portal venous, (c/h) hepatobiliary
phase, (d/i) T2 turbo spin-echo, (e/j) 30 min post-gadobenate dimeglumine). Based on the initial

gadoxetic acid exam ((a–d) and (f–i)) confident characterization was not possible due to atypical

arterial enhancement pattern, and despite some features suggesting hemangioma such as very high

T2 signal intensity and blood pool signal intensity on hepatobiliary phase images. The patient was

brought back for additional gadobenate dimeglumine (Multihance®) series, which on the 30-min

delayed series demonstrated hyperintensity compared to background liver confirming the

suspected diagnosis of hemangioma for not only the large but also the smallest lesions
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preexisting vascular malformation [16]. They are asymptomatic in most patients

with none of the known complication inherent to other focal lesions such as

spontaneous hemorrhage or malignant transformation. FNHs are often incidental

findings and no usually no treatment is required. Currently, FNHs are classified as

classic (80 %) or nonclassic (20 %). The latter group may lack the nodular abnormal

architecture or malformed vessels, but always show bile duct proliferation. At gross

pathology, FNHs demonstrate lobulated contours and nodular hyperplastic paren-

chyma with normal-appearing hepatocytes but a thickened plate architecture char-

acteristic of regeneration. The parenchyma is surrounded by radiating fibrous septa

originating from a central scar that contains large arterial vessels and is seen in

about 50 % of cases [17]. The arterial blood in FNH, as opposed to that in adenomas

flows centrifugally from the anomalous central arteries to the periphery of the

lesion. FNHs contain abnormal bile ducts that have no connection to the hepatic

biliary tree.

Typically, FNHs are iso- or slightly hypointense on T1-weighted images and

slightly hyper- or isointense on T2-weighted images (Figs. 6 and 7). When the

central scar is visible, it is hypointense to the lesion on the T1-weighted images

and hyperintense on T2-weighted images. FNHs do not have a true capsule, although

a pseudocapsule resulting from compression of the surrounding liver parenchyma by

the lesion can be seen. On the dynamic contrast-enhanced images, FNHs show

intense homogeneous enhancement in the arterial phase and become isointense to

the liver in the portal venous phase. On delayed phase imaging, FNHs are iso- or

hyperintense compared to the surrounding liver parenchyma, likely secondary to the

Fig. 6 Liver lesion in a 37 year-old female representing a typical FNH with central

T2-hyperintense scar and multiple fibrous septa with spoke wheel pattern ((a) arterial, (b) portal

venous, (c) 4-min delay, (d) hepatobiliary phase, (e) T1 non-contrast, (f) T2 turbo spin-echo). The

lesion demonstrates typical arterial hyperenhancement and isointensity on the 20-min post-

gadoxetic acid images highly suggestive of FNH
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combination of functioning hepatocytes and reduced or absent biliary drainage [18].

The central scar, while hyperintense on delayed images when an extracellular

contrast agent is given, appears hypointense compared to the background liver due

to the intense specific hepatic enhancement.

Hepatic Adenoma

Hepatic adenomas are benign neoplasm of the liver often associated with the use

of oral contraceptives and consecutive strong female predilection [19]. Growth of

adenomas is driven by both the dose and duration of estrogen use. Other risk groups

for hepatocellular adenoma are patients with type I glycogen storage disease and

patients on anabolic/androgenic steroids. Many or most patients with no more than

a few adenomas are asymptomatic and almost invariably have normal liver function

and no elevation of serum “tumor markers” such as AFP. Large adenomas may

cause a sensation of right upper quadrant fullness or discomfort. However, a

possible clinical manifestation of hepatic adenoma if not discovered incidentally

is spontaneous rupture or hemorrhage, leading to acute abdominal pain or even

signs of hypovolemia [20]. Liver adenomatosis appears to be a distinct entity

characterized by ten or more hepatic adenomas. Although the adenomas in liver

adenomatosis are histologically similar to other adenomas, they are not steroid

dependent and more likely to lead to symptoms, impaired liver function,

hemorrhage, and perhaps malignant degeneration [20].

Fig. 7 FNH with similar imaging features as lesion in Fig. 6 (white arrow), however due to

smaller size much less classical appearance ((a) arterial, (b) portal venous, (c) 4-min delay, (d)

hepatobiliary phase, (e) T1 non-contrast, (f) T2 turbo spin-echo). Diagnosis here is mostly based

on isointensity of the lesion on delayed images
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Hepatocellular adenoma (Fig. 8) varies in size from 1 to 15 cm and consists of

cells resembling normal hepatocytes separated by dilated sinusoids. These

sinusoids are perfused by arterial pressure because the adenomas lack portal venous

supply [20]. This contributes to the hypervascular nature of the hepatic adenoma

and explains the increased predilection for hemorrhage particularly in the presence

of poor connective tissue support. Because a capsule is usually absent or incom-

plete, hemorrhage may spread into the liver or abdominal cavity. Bile ductules are

notably absent from adenomas, a key histologic feature that helps distinguish

hepatocellular adenoma from FNH when using hepatocellular contrast agents.

Adenoma cells are larger than normal hepatocytes and contain large amounts of

glycogen and lipid. Adenomas can undergo malignant transformation to HCC, even

after years of maintaining a stable appearance [21].

Large hepatocellular adenomas typically appear heterogeneous on T1- and

T2-weighted imaging due to hemorrhage and necrosis. On T1-weighted images,

they are usually hypointense to the liver parenchyma. Areas of increased signal

intensity can be present reflecting intralesional hemorrhage, glycogen, or fat.

Intratumoral fat can be confirmed by chemical shift artifact on T1-weighted

GRE opposed-phase images or with fat suppression. On T2-weighted images,

heterogeneously increased signal intensity relative to the liver parenchyma is

typically seen. On dynamic enhanced images using extracellular contrast agents,

Fig. 8 Liver lesion found in a 42 year-old female with vague abdominal pain (white arrow).
Lesion is hyperenhancing on arterial phase (a) and portal venous phase (b), however hypointense

on hepatobiliary phase (c) suggestive of hepatic adenoma (in the absence of cirrhosis). The lesion

also demonstrates T1 hyperintensity (d) suggestive of fat or glycogen content and T2

hyperintensity (e), both in keeping with the suspected adenoma
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heterogeneous arterial enhancement is present, though often to a lesser degree than

with FNH. With gadoxetic acid, HCA show similar hemodynamics in the arterial,

portal venous, and equilibrium phases as with extracellular contrast agents. How-

ever, in the hepatobiliary phase, HCA are typically hypointense to the rest of the

liver parenchyma, reflecting the absence of functioning bile ducts and dysfunctional

intralesional bilirubin excretion. This feature allows reliable differentiation of FNH

and HCA in most cases. However, approximately 5–10 % of hepatic adenoma can

demonstrate iso- or even hyperintensity compared to the surrounding liver on

delayed imaging after gadoxetic acid [22, 23]. In these cases, the clinical history

as well as secondary imaging findings such as the central scar and pseudocapsule of

FNH and hemorrhage, necrosis, and T1 shorting contents of HCA should be used

for lesion characterization.

Hepatic Metastasis

Metastatic disease to the liver is much more common than primary liver tumors.

The most common sites of primary malignancy are the gastrointestinal tract, in

particular colorectal cancer, followed by breast cancer, lung cancer, genitourinary

malignancies, and melanoma. MRI has proven to be the most effective method for

evaluation of metastatic liver disease owing to its ability to acquire multiple phases

of contrast enhancement without ionizing radiation as well as to use inherent tissue

contrast to both detect and characterize lesions. Hepatic metastases from extrahe-

patic malignancies (Fig. 9) do not contain functioning hepatocytes or bile ducts and

Fig. 9 Seventy-two year-old male with carcinoid metastasis to the liver (white arrow). The lesion
is hyperenhancing on arterial phase (a) with washout and ringlike enhancement on the portal

venous and 4-min delayed phases (b, c) and hypointensity on the hepatobiliary phase (d). A flash-

filling hemangioma would have been difficult to exclude; however, only minimal T2

hyperintensity (e) and ringlike enhancement make metastasis the more likely option
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therefore do not retain contrast in the hepatocellular phase [24]. As a consequence,

all metastatic lesions typically appear uniformly hypointense in comparison with

surrounding liver tissue in the hepatobiliary phase. Due to the improved lesion-to-

liver contrast with clearly demarcated margins in a strongly enhancing background,

liver parenchyma imaging with gadoxetic acid in the hepatobiliary phase is partic-

ularly useful for detection of hypovascular metastases, which are often more

difficult to perceive on dynamic imaging with extracellular agents [25]. Using

gadoxetic acid in the hepatobiliary phase in addition to the dynamic phases has

been shown to increase the sensitivity for detection of liver metastasis. It was shown

that hepatobiliary phase images showed a significantly better detection rate over

precontrast and dynamic imaging with an improved sensitivity from 87 to 96 %, in

particular for lesions smaller than 1 cm (71–90 %) [25].

Liver metastases often show some degree of enhancement in the hepatobiliary

phase. Metastatic lesions from colorectal cancer showing more than 50 % enhance-

ment compared to that of the adjacent liver on hepatobiliary phase images

accounted for around 80 % of lesions [26]. In another study [27], 62 % of liver

metastasis from breast cancer showed a central, round hyperintense portion

surrounded by a relatively hypointense rim, resulting in a “target” appearance on

20-min delayed hepatobiliary phase. This “target” appearance was pathologically

confirmed to originate from an internal central component of desmoplastic reaction

with large interstitial space and fibrosis retaining the extracellular component of

gadoxetic acid.

If lesion detection is requested rather than lesion characterization in particular in

patients with known GI malignancy, the delayed hepatobiliary phase can be

acquired after 10 min instead of 20 min to reduce overall imaging time. A recent

study found that the hepatobiliary phase obtained at 10 min provided similar

diagnostic performance for detection of liver metastasis from colorectal carcinoma

compared with the images obtained after 20 min despite a lower tumor to liver CNR

and overall image quality [28].

Hepatocellular Carcinoma

The natural history of liver cirrhosis has extensively been studied starting with

increasing fibrosis secondary to a certain insult, whether chemical, infectious,

inflammatory, or metabolic and progressing to cirrhosis. Reactive proliferation of

normal hepatocytes within the surrounding fibrous stroma produces regenerative

nodules. With persistent insult, increase in size and cellularity with changes of

atypia occur leading to the formation of dysplastic nodules. A focus of small HCC

may then develop within a dysplastic nodule which can grow into progressed HCC

(Fig. 10) [29]. A major challenge in the classification of cirrhosis-associated

nodules is the distinction between dysplastic nodules (DN) and early HCC due to

the lack of reliable objective imaging criteria. The International Consensus Group

of Hepatocellular Neoplasia (ICGHN) established objective criteria for the
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distinction between DN and early HCC [30]. “Stromal invasion” which is defined as

growth of tumor tissue into the portal tracts, fibrous septa, and/or blood vessels was

recognized as the most important pathologic finding for differentiating these two

entities [31]. However, making this distinction based on imaging alone remains

challenging.

Dysplastic nodules are hypovascular lesions. This hypovascularity is attributed

to a relative decrease of density of preexisting portal tracts as the parenchymal

component increases within the nodule. Transition from dysplastic nodule to early

HCC is represented by stromal invasion on histology. After DN transform into early

HCC, vascularity decreases more severely because of decrease in preexisting

arterial and portal venous blood supply caused by stromal invasion. However,

while cirrhosis-associated nodules usually express normal membrane protein

pattern and therefore demonstrate isointensity on hepatobiliary phase imaging,

early HCC is characterized by a reduced expression of OATP8 and therefore

appears hypointense on hepatobiliary imaging. Development of progressed HCC

is characterized by proliferation of abnormal arteries (neovascularization) [31]

and consequent hyperintensity on arterial phase imaging [29] as well as T2

hyperintensity, which makes this stage of the process relatively easy to diagnose,

also owed to the usually larger size of these lesions. A tumor capsule is a charac-

teristic sign of HCC and is present in 60–82 % of cases. Vascular and biliary

invasion occurs frequently in HCC and can affect both the portal and hepatic

veins [29].

While the diagnosis of progressed HCC is usually based on arterial

hyperenhancement, portal venous washout, and T2 hyperintensity, the main chal-

lenge remains in the differentiation of dysplastic nodules and early HCC, especially

given the much better prognosis and potential for curative treatment options with

Fig. 10 Development of HCC from cirrhosis-associated nodules. Conventional imaging features

usually do not allow differentiation of dysplastic nodules and early HCC; however, hypointensity

on hepatobiliary phase imaging in a nodule that otherwise appears like a dysplastic nodule has

been shown to be highly suggestive of early HCC [30]
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early stage lesions. A recent study could demonstrate that hypointensity on

hepatocellular phase imaging has 97 % sensitivity and 100 % specificity for the

detection of early HCC [30], much higher numbers than fat content on T1-weighted

sequences or low unenhanced CT attenuation. This is underscoring the tremendous

value of hepatobiliary contrast agents for imaging of HCC.

Since introduction of hepatocellular contrast agents, hypointensity in the

hepatobiliary phase has been used as one of the main elements to diagnose

progressed HCC. However, there is a certain subset of well- or moderately

differentiated HCC, typically 10–20 % according to most studies that show

isointensity or even hyperintensity on hepatocellular phase imaging compared to

the background liver [32, 33]. It has been suggested that this could be secondary

to varying degrees of residual hepatobiliary function, reflective of different stages

of tumor differentiation [34]. It could be shown that while hypointensity is

associated with reduced expression of the membrane protein responsible for taking

up gadoxetic acid into the liver cell (OATP8, Fig. 2), the hyperintense lesions

demonstrate upregulation of both OATP8 and the protein exporting gadoxetic acid

back into the hepatic sinusoids, MRP3 [35]. As mentioned, these lesions are well or

moderately differentiated; there have been no reported cases of poorly

differentiated hyperenhancing HCC [32, 33].

Focal Fatty Sparing

Focal fatty changes in the liver are usually easily confirmed with a variety of

modalities based on chemical shift properties on T1-weighted imaging, echotexture

on ultrasound, the absence of mass effect on the vessels, and just general morphol-

ogy. In few situations, focal fatty sparing in the background of diffuse hepatic

steatosis can pose a diagnostic challenge particularly when the focal area has a

mass-like appearance. In fact, since hepatic metastases usually contain no fat, they

could be thought of as regions of focal sparing within the fatty liver (Fig. 11). The

only difference of an area of focal fatty sparing and a metastatic lesion is

the enhancement curve which for focal fatty sparing should parallel the one of

surrounding liver parenchyma, while metastatic tissue usually enhances less than

liver. Use of gadoxetic acid contrast agent for dynamic imaging can be helpful for

better characterization of an area of focal fatty sparing. Using signal enhancement

ratios of all dynamic phases, including the hepatobiliary phase, it was demonstrated

that there was no significant difference in contrast enhancement effects of the liver

parenchyma between areas of fatty change and area of nonfatty change, suggesting

the preserved function of hepatocytes for the uptake of gadoxetic acid in the area of

fatty change of the liver [36]. This means that although an area of focal fatty sparing

containing normal liver parenchyma shows low signal intensity compared to the

liver parenchyma in the hepatobiliary phase similar to a metastatic lesion, if

the enhancement of the area parallels that of the liver parenchyma, a metastatic

lesion is rather unlikely.
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Evaluation of the Biliary Tree

Gadoxetic acid does not only cause T1 shortening within the bloodstream and the

liver cells but also within the biliary tree, a characteristic that can be used for

T1-weighted MR cholangiography as addition to the classic T2-weighted MRCP.

The use of T1-weighted gradient echo sequences has advantages over the T2 turbo

spin-echo technique that is most commonly used, namely, higher spatial resolution,

shorter acquisition time, and insensitivity to other fluid-filled structures [37].Accurate

depiction of the biliary tree is crucial in patients undergoing preoperative evaluation

for liver transplant, or other complex liver surgery to avoid inadvertent injury to

variant or aberrant bile ducts. Regarding the evaluation of postoperative patients,

T1-weighted biliary tree imaging adds a functional component to T2-MRCP, which

is particularly helpful in the assessment of potential biliary leakages and/or

perihepatic fluid collections after gallbladder or liver surgery (Fig. 12).

Analysis of biliary opacification also allows semiquantitative assessment

of excretory liver function; however, this is of only minimal practical value.

Fig. 11 Seventy-two year-old female with gastric adenocarcinoma and two liver lesions. Lesion

1 (black arrow) demonstrates hypointensity on arterial phase (a), progressive filling on portal

venous phase (b) and hypointensity on hepatobiliary phase (c). In-phase (d) and opposed-phase (e)

imaging show a significantly fatty liver with relative sparing of the lesion. These imaging findings

along with the marked T2 hyperintensity (f) were highly suggestive of a hemangioma. Lesion

2 (white arrow) shows no significant enhancement, but similar fatty sparing as lesion 1 (although

with higher T1 signal intensity) and only minimal T2 hyperintensity. This lesion proved to be a

metastasis on follow-up imaging. It is noteworthy that lesion 2 in isolation would have been

difficult to differentiate from an atypical hemangioma. The fact that the lesion appears hypointense

compared to the blood pool (portal vein) might have helped
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More relevance could be attributed to the ability of gadoxetic acid-based T1

cholangiography to evaluate gallbladder filling and cystic duct obstruction similar

to scintigraphic methods. Limited data suggests that T1-weighted cholangiography

has a very high positive predictive value for acute and to a lesser degree chronic

cholecystitis based on filling of the gallbladder [37].

Due to the fact that gadoxetic acid competes at the OATP8 membrane trans-

porter protein with bilirubin, T1-weighted cholangiography is often not feasible in

cases of high-grade biliary obstruction due to lack of excretion. At our institution,

gadoxetic acid is not used if the total serum bilirubin is 5 mg/dL or higher.

If gadoxetic acid is used with elevated bilirubin levels below 5 mg/dL, longer

delay times should be anticipated to allow for full biliary opacification.
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Fast Object Detection Using Color Features

for Colonoscopy Quality Measurements

Jayantha Muthukudage, JungHwan Oh, Ruwan Nawarathna,

Wallapak Tavanapong, Johnny Wong, and Piet C. de Groen

Abstract The effectiveness of colonoscopy depends on the quality of the

inspection of the colon. There was no automated measurement method to evaluate

the quality of the inspection. To address this, we have been investigating automated

post-procedure quality measurement. The limitation of post-processing quality

measurement is that quality measurements become available only long after the

procedure was over and the patient was released. A better approach is to inform any

suboptimal inspection immediately so that the endoscopist can improve the quality

of the inspection in real-time during the procedure. Both post-processing and real-

time quality measurements require a number of analysis tasks such as detecting a

bite-block region as an indicator that a procedure is an upper endoscopy, not

colonoscopy, detecting a blood region as an indicator for inflammation or bleeding,

and detecting a stool region as an indicator of quality of the colon preparation.

Color is the most distinguishable characteristic for differentiation among these

object classes and normal pixels. In this paper, we propose a method to detect

these object classes using color features. The main idea is to partition very large

positive examples of these objects into a number of groups. Each group is called

a “positive plane” and is modeled using a convex hull enclosing feature points of
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that particular group. Comparisons with traditional classifiers such as K-nearest

neighbor (K-NN) and Support Vector Machines (SVM) prove the effectiveness of

the proposed method in terms of accuracy and execution time that is critical in the

targeted real-time quality measurement system.

Introduction

Advances in video technology are being incorporated into today’s healthcare

practices. Endoscopy is introduced to inspect a human body cavity to locate

abnormal lesions. Examples of endoscopic procedures are colonoscopy, upper

gastrointestinal endoscopy, enteroscopy, bronchoscopy, cystoscopy, laparoscopy,

wireless capsule endoscopy (WCE), and minimally invasive surgeries (e.g., video

endoscopic neurosurgery). These endoscopes come in various sizes, but all have a

tiny video camera at the tip of the endoscope. During an endoscopic procedure, this

tiny video camera generates a video signal of an existing or created space inside

the human body, which is displayed on a monitor for analysis by the physician.

Colonoscopy is an important screening procedure for colorectal cancer. During a

colonoscopy procedure, the colon is inspected for colorectal cancers.

In the US, colorectal cancer is the second leading cause of all cancer deaths

behind lung cancer [1]. As the name implies, colorectal cancers are malignant

tumors that develop in the colon and rectum. The survival rate is higher if the

cancer is found and treated early before metastasis to lymph nodes or other organs

occurs. Colonoscopy has contributed to a marked decline in the number of colorec-

tal cancer-related deaths. However, recent data suggest that there is a significant

(4–12 %) miss-rate for the detection of even large polyps and cancers [2–4]. The

miss-rate may be related to the experience of the endoscopist and the location of

the lesion in the colon, but no prospective studies related to this have been done

thus far.

The effectiveness of colonoscopy in prevention of colorectal cancers depends on

the quality of the inspection of the colon, which generally can be evaluated in terms

of the withdrawal time (time spent during the withdrawal phase when the endo-

scope is gradually withdrawn) and the thoroughness of the inspection of the colon

mucosa. Current American Society for Gastrointestinal Endoscopy (ASGE)

guidelines suggest that (1) on average the withdrawal phase during a screening

colonoscopy should last a minimum of 6 min and (2) the visualization of cecum

anatomical landmarks such as the appendiceal orifice and the ileocecal valve should

be documented [5].

There was no automated measurement method to evaluate the endoscopist’s

skills and the quality of colonoscopy procedures. To address this critical need, we

have investigated an automated post-procedure quality measurement system [6, 7]

to process de-identified videos of colonoscopy in MPEG-2 format [8]. The limita-

tion of post-processing quality measurement is that quality measurements become
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available only long after the procedure was done and the patient was released.

The endoscopist can only improve the quality of the next colonoscopy procedures.

However, a better approach is to inform any suboptimal inspection immediately so

that the endoscopist can improve the quality in real-time during the procedure. This

system has been placed at Mayo Clinic Rochester for a clinical trial since the

beginning of 2011 [9]. The goal of this new system is to achieve real-time analysis

and feedback to aid the endoscopist towards optimal inspection to improve overall

quality of colonoscopy during the procedure. Since our system captures colonos-

copy videos in MPEG-2 format at about 30 frames per second, to achieve real-time

analysis and feedback, all analysis tasks must be completed within 33 ms. We call

this requirement the “real-time requirement.”

For both post-processing and real-time quality measurements, the system needs

to run a number of software modules for various processing. Modules detecting the

objects such as bite-block, blood, and stool (see Fig. 1) are essential for generating

various quality metrics due to the following reasons.

• Typically, upper endoscopy and colonoscopy procedures are performed in the

same room at different times. It is necessary to distinguish the type of a

procedure prior to execution of any quality measurement method to evaluate

Fig. 1 Sample frames of (a) Green Bite-block, (b) Blood, (c) Stool areas marked with blue lines,
and (d) Normal colonoscopy frame
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the procedure. For instance, stool detection generates useful information only for

colonoscopy, but not for upper endoscopy. We need to develop a method to

detect the procedure type at the beginning of the procedure so that only

colonoscopy-related modules run on the procedure. In upper endoscopy,

a bite-block (see Fig. 1a) is inserted for patient protection. By detecting a

bite-block appearance, we can distinguish colonoscopy from upper endoscopy

• Blood detection plays several important roles in various endoscopies, for

example, blood detection in wireless capsule endoscopy (WCE) aims to find

abnormal regions in the small bowel. On the other hand, blood detection in

colonoscopy has two applications: detection of bleeding and erythema and

estimation of whether polypectomies [1] are performed during the procedure.

We propose a method to detect blood regions in colonoscopy videos

• The diagnostic accuracy of colonoscopy depends on the quality of bowel

preparation [10]. Without adequate bowel preparation, missed lesions may be

covered by stool. The quality of bowel cleansing is generally assessed by the

quantity of solid or liquid stool in the lumen. Despite a large body of published

data on methods that could optimize cleansing, a substantial level of inadequate

cleansing occurs in 10–75 % of patients in randomized controlled trials [11].

Poor bowel preparation has been associated with patient characteristics, such as

inpatient status, history of constipation, use of antidepressants, and noncompli-

ance with cleansing instructions. To assess the quality of bowel preparation, we

propose a method to compute the amount of mucosa covered by stool

Since all these objects do not pose any other distinguishable characteristics (i.e.,

shape or texture) other than color, we use color feature. In our previous work [12],

we developed a method detecting stool regions in colonoscopy frames. This method

was developed solely for post-processing quality measurement. Consequently, it

does not meet the real-time requirement for the real-time quality measurement

system. In this proposed study, we extend the previous method to detect regions of

bite-blocks and blood with good accuracy in addition to stool and to reduce

detection time to satisfy the real-time requirement. The main idea is to partition

very large positive examples (pixel values) of each object into a number of groups,

in which each group is called “positive plane.” Each positive plane is modeled as a

separate entity for that group of positive examples. Our previous method for

modeling each plane is very time-consuming. As a result, it does not meet the

real-time requirement. To overcome this drawback, we propose to use a “convex

hull” to represent a positive plane. The convex hull representation enables real-time

object detection. Our experimental results show that the proposed method is more

accurate, faster, and more robust.

The rest of the paper is organized as follows. Section “Related Work” discusses

the related work. Section “Proposed Methodology” describes the proposed meth-

odology and the three applications for detecting stool, bite-block, and blood.

Section “Experimental Method and Results” shows our experimental results.

Finally, Section “Conclusion and Future Work” summarizes our concluding

remarks.
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Related Work

Color-based classification plays a major role in the field of medical image analysis.

A significant number of studies on object detection based on color features can be

found in the literature. Some of them are briefly summarized in this section.

In [13], we proposed a method to classify stool images in colonoscopy videos

using a Support Vector Machine (SVM) classifier. The colonoscopy video frame is

down-sampled into equal-sized blocks in order to reduce the size of the feature

vector. Some pixel-based values such as average color and a color-histogram of

each block are used to form a feature vector for the SVM classifier. Then, a stool

mask is made for each video frame using the trained SVM classifier, and some

post-processing methods are applied to improve the detection accuracy. The post-

processing methods include a majority filter and a morphological opening filter.

Finally, the frames having more than 5 % of stool area (pixels) are classified as stool

frames. A disadvantage of this SVM-based method is the detection time, which is

not fast enough to be used in the real-time environment.

In our previous method [12], we proposed a method to detect stool regions for

post-processing quality measurement. First, we partition the data (stool pixel

values) set into a number of groups, and model each group as a separate data set.

The separate data set is called “positive plane.” For the modeling of each positive

plane, it is divided into a number of blocks using a thresholding mechanism. The

block division including the number of blocks significantly affects the detection

time. Hence, we need to find a replacement of the block division to meet the real-

time requirements.

Most related works on blood detection are conducted on wireless capsule endos-

copy (WCE) videos. In [14], a methodology was proposed aiming at the detection of

bleeding patterns in WCE videos. In this study, the features used are the histograms

of hue, saturation, and value [15], and co-occurrence matrix of the dominant colors.

These features are then used with a SVM ensemble to detect bleeding patterns in

WCE videos. Another method to detect bleeding and other blood-based

abnormalities in WCE images was presented in [16]. This work was based on a

previously published method in [17]. The segmentation is carried out on smoothed

and de-correlated RGB (Red, Green, and Blue) color channels using a fuzzy

segmentation algorithm. The segmentation result is then transformed to a Local

Global graph, which mathematically describes the local and global relationships

between the segmented regions in terms of a graph. This graph is used for merging

similar segmented regions. In [18], the detection of bleeding patterns is done in two

steps. First, the detection of frames with potential bleeding areas is performed based

on the assumption that blocks representing bleeding areas are more saturated than

the others. Pre-classification detects a frame as a bleeding frame if at least one block

represents a bleeding area. In the second step, the initial classification is verified and

refined based on pixel-based multi-thresholding of the saturation and intensity.

Finally, a bleeding level is assigned to that particular frame based on the pixel

values. The work in [19] uses a Neural Network classifier with chromaticity
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moments for the classification of bleeding and ulcer regions. All the blood detection

methods mentioned above suffer from very slow detection time. Thus, they are not

applicable to our real-time environment. To the best of our knowledge, there is no

methodology for the detection of a bite-block appearance in the literature.

Proposed Methodology

This section explains the proposed method in detail. The method consists of

three stages: Training (Section “Training Stage”), Modeling (Section “Convex

Hull Models of Green Bite-Block, Blood, and Stool”), and Detecting

(Section “Detecting Stage”).

Training Stage

It consists of eight steps as shown in Fig. 2. They are described in the following

subsections.

Training Dataset Generation

In this subsection, we explain Steps 1, 2, and 3 in the training stage (Fig. 2). The

domain expert marked and annotated the contents of colonoscopy frames into four

classes: bite-block, blood, stool, and normal frames. They are used as training data.

Figure 1 shows some sample frames of the four classes used in this study. We

extract and store the pixels values from these marked and annotated areas. These

pixels contain some duplicate values, which are removed to create a unique set of

training examples (pixel values) in RGB color space. As per the property of high

discriminative power [20], we transform these pixels in RGB color space into those

in HSV (Hue, Saturation and Value) color space.

2. Extract
Object Areas

3. Remove
Duplicate Pixel

Values

4. HSV
Conversion

5. Generate
Positive
Planes

6. Compute Convex
Hull for each
Positive Plane

7. Iterative
Outlier

Removal

8. Generate
the Training

Model 

1. Image
Classification

Fig. 2 Steps in training stage

370 J. Muthukudage et al.



HSV Conversion

This subsection explains Step 4 in the training stage (Fig. 2). RGB color space is

defined by the three chromaticities of the red, green, and blue and represented as

a three-dimensional Cartesian coordinate system. RGB is a device-dependent color

model. That is, different devices produce given RGB values differently. Thus, an

RGB value does not define the same colors across different devices [20]. Also, RGB
color channels are strongly correlated. This characteristic makes the RGB color

space less discriminative.

HSV color space describes colors in terms of their color (Hue), shade (Satura-

tion), and brightness (Value) [20]. Hue is typically expressed as an angle value from

0 to 360
�
representing hues of various colors. In this study, Hue is expressed as a

number from 0 to 1 instead of an angle from 0
�
to 360

�
as seen in (1). Saturation is

an amount of grayness in a color and represented as a number in the range of 0 and

1. Value (brightness or intensity) of a color is represented as a number from 0 to

255. In the proposed method, RGB color values of a pixel are converted to HSV
values of the same pixel using (1).

H ¼

G� B

Δ

0
@

1
A,Cmax ¼ R

B� R

Δ

0
@

1
A,Cmax ¼ G

R� G

Δ

0
@

1
A,Cmax ¼ B

S ¼
0, Δ ¼ 0
Δ

Cmax

,Δ <> 0 V ¼ Cmax

8<
:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(1)

where Cmax ¼ max(R,G,B), Cmin ¼ min(R,G,B), and Δ ¼ Cmax � Cmin.

Positive Plane Generation

This subsection explains Step 5 in the training stage (Fig. 2). Now we have the

positive examples of the three object classes (bite-block, blood, and stool) in HSV
color space. We project all these examples into HSV color cube in which each

channel (H, S, and V ) is represented as an axis in the 3D Cartesian coordinate

system. This step is illustrated in Fig. 3 in which HSV color cube is shown in the

XYZ coordinate system. Z-values are in a different range than the X and Y values,

but the same scales are used for illustration purpose.

In the next step, we create 256 planes in the HSV color cube along Value (Z ) axis
so that each integer location of Value axis has a plane parallel to HS planes as seen

in Fig. 3. Only a small number of positive planes are shown in the figure. EitherH or

S axis can be selected as the index axis. Based on our experiments, usage of Value
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axis as the index axis offers the best detection accuracy. Then, we assign a number

(from 0 to 255) to each plane (i.e., Plane#0, Plane#1 . . . Plane#255). Some planes

contain a very small number of positive class examples. Among these 256 planes,

hence, we keep the planes in which its positive class examples are greater than or

equal to a certain threshold. In our study, we use three for the threshold value which

was decided experimentally. Each selected plane is called a “Positive Plane.” Each

positive plane contains a subset of positive examples (pixels) and is later modeled

as a 2D classifier. For instance, Plane#0 (at V ¼ 0) is treated as a classifier for

positive class examples on Plane#0.

Computation of a Convex Hull for Each Positive Plane

This subsection explains Step 6 in the training stage (Fig. 2). For each positive plane

selected in Section “Positive Plane Generation”, we generate a convex hull.

Algebraically, a convex hull of a dataset X can be characterized as the set of all

of the convex combinations of finite subsets of points from X: that is a set of points
in the form of

Pn
j¼1 /ixj , where n is an arbitrary nonzero positive integer,

the numbers, / i, are nonnegative and sum to 1, and the point xj is in X. So, the
convex hull, Hconvex(X) of set X is given in (2), where / i is a fraction between

0 and 1 in  (real numbers). The maximum value of k can be the number of data

points in the dataset, which contribute to the convex hull.

Hconvex Xð Þ ¼
Xk
i¼1

/ixi
��xi∈X,/i∈,/i � 0,

Xk
i¼1

/i ¼ 1, k ¼ 1, 2, . . .

( )
(2)

To generate a convex hull that adheres to the constraints given in (2), we use the

quick hull algorithm introduced in [21]. The basic steps of the quick hull algorithm

are given below, and its graphical representation is given in Fig. 4.

Fig. 3 Placement

of planes along value axis
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1. Find the furthest and closest points from the origin along the x-axis; these two

points will be the vertices of the convex hull. Partition the points into two halves

using the line drawn between the two points selected (Fig. 4b)

2. Select a point from one side of the line drawn in Step 1, which is the furthest

point from the line. This point along with the two points selected in the above

step creates a triangle. The points lying inside of that triangle will be discarded

since they cannot be any vertices of the convex hull (Fig. 4c)

3. Repeat Step 2 for the other side of the line drawn in Step 1

4. Repeat Steps 2 and 3 on the two new lines formed by the triangle

5. Iterate until no more points are left

Iterative Outlier Removal

This subsection explains Steps 7 and 8 in the training stage (Fig. 2). After obtaining

the convex hull as described in Section “Computation of a Convex Hull for each

Positive Plane”, we perform a procedure for outlier removal, in which we remove

outliers in several stages in order to improve the overall accuracy of the proposed

method. For the outlier removal we use (3). The reason why we are using this

equation instead of a typical outlier removal method like “Box plot” is that it is easy

to be applied to our convex hulls. Using (3), we remove convex hull vertices

from the original data points and recalculate convex hull on reduced data points.

The subscript i in the equation represents the number of iterations, which is

determined experimentally (i.e., in our study, i ¼ 1) and provided in the beginning

of the outlier removal procedure. Outlier removal procedure stops when it iterates

i time(s).

Fig. 4 Convex hull

generation using

the quick hull algorithm
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HConvex ið Þ Xð Þ ¼ HConvex X �
Xi�1

n¼0

Hconvex nð Þ Xð Þ
 !

(3)

As mentioned in Section “Positive Plane Generation”, a positive plane has at

least three vertices (positive examples), so this outlier removal is applied to a

convex hull with four or more vertices. After performing the outlier removal, we

store the positive plane number along with the coordinate values of convex hull

vertices for that particular positive plane. This procedure is done for all the positive

planes. We then combine all the positive convex hulls in a model. We call this

“convex hull model.” This convex hull model is used for the detecting stage.

Convex Hull Models of Green bite-block, Blood, and Stool

In this section, we present three different applications of the proposed method.

We use the algorithm mentioned in Section “Training Stage” to generate convex

hull models for three different classes of objects: green bite-block, blood, and stool.

Although a bite-block could be of any color, the most commonly used bite-blocks in

our data set are green. Thus, we design our method to detect green bite-blocks.

However, our method can be easily extended to detect a different bite-block

color. The selection of positive planes is depicted in Figs. 5a and 6b for each object

class. For ease of illustration, we only present a small number of positive planes in

this figure.

An example of a positive plane (plane #200) for each application can be seen in

Fig. 6. In this figure, the positive examples at the corresponding positive plane and

Hconvex(1) along with Hconvex(0) are shown. Please note that the Hue (X) axis is

shown in different scales for each class to capture the dataset clearly.

Detecting Stage

In this section, we explain how to use the convex hull model generated in

Section “Training Stage” to detect the three classes of objects from an unseen

colonoscopy frame. First, we convert the pixel values in a video frame from RGB to

HSV. Each pixel in the video frame is evaluated using the convex hull model. This

evaluation is performed by selecting the corresponding positive plane. The Value

(Z) of a pixel is obtained and used as an index to choose the corresponding positive
plane. For example, if the Value (Z ) of a pixel in an unseen video frame is

5, then Plane #5 in the corresponding model is selected and examined if it is a

positive plane. This will dramatically reduce the number of comparisons so that

the searching time is significantly reduced. In other words, the detecting time of the
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proposed technique is dependent on neither the number of positive planes nor

how many positive examples in the corresponding plane. By comparing the HS
(XY) values of the pixel with the convex hull generated in the training stage, we

label the pixel as positive or negative. Pixels that are either on or inside the convex

polygon (formed by convex hull vertices) are labeled as positive examples. As

mentioned above, three different convex hull models are generated from the

training examples for green bite-blocks, blood, and stool. The corresponding

convex hull model is used for detection of each class of objects.

Fig. 5 Selection of positive planes. (a) HSV cubes and corresponding locations of positive

example pixels, and (b) Several planes inserted into the HSV cube of (a). First row: Green bite-

block, second row: Blood, and third row: Stool
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Experimental Method and Results

In this section, we first provide a brief background on SVM and k-nearest

neighbor (K-NN) classifiers that were used to compare with our proposed method

in Section “Classification Algorithms”. We describe the result of the comparison

in terms of detection accuracy in Section “Accuracy Evaluation” and computation

time in Section “Evaluation of Computation Time”. Next, we present the

evaluation result that our proposed method works better with the HSV color space

than with the RGB color space in terms of detection accuracy in Section “Accuracy

Comparison Between RGB and HSV Color Spaces”. Next, we present an accuracy

comparison when selecting different color planes as an index plane in Section

“Accuracy Comparison of the Proposed Method with Different Index Axes”. We

provide some sample results in Section “Evaluation Examples”. Finally,

Section “Computer-aided Quality-Assisted Colonoscopy System” describes a real

application that uses the proposed method in a clinical trial.

For our experiments, we used a set of 68 real colonoscopy and upper endoscopy

videos. This video set contains 20 videos recorded from Fujinon scope, and

48 videos recorded from Olympus scope to make it scope-independent. The average

Fig. 6 Examples of convex hulls. (a) Positive class examples projected on a positive plane (plane

#200) as looking into the HSV cube in Fig. 5(b) from top. (b) Convex hull (red polygon) for the
positive plane and (c) Convex hull (green polygon) after first level outlier removal. First row:

Green bite-block, second row: Blood, and third row: Stool
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length of the videos is around 20 min, and their frame size is 720 � 480 pixels.

These frames have a black boundary around the edges of the frame as seen in Fig. 1.

We ignore all the black boundaries. From this video set, we extracted a total of

2,000 video frames showing positive regions of each object as summarized in

Table 1. Our domain expert confirmed the ground truth classification. From these

frames, we obtained only unique positive examples of a total of 290,000 pixels for

this experiment as seen in Table 2. For the evaluation of bite-block detection,

currently we have only Olympus video frames. All the computations in our

experiments were performed on a PC-compatible workstation with an Intel Core

i7 quad core CPU, 8GB RAM, and Windows 7 operating system.

Classification Algorithms

We compare the proposed method with two most popular classifiers: SVM and

k-Nearest Neighbor (K-NN). We explain each classification algorithm in brief in

the followings.

Support Vector Machine

SVM is a supervised learning model for classification and regression analysis [22].

From a given set of labels and corresponding training data, SVM builds support

vectors, which are points in space. SVM takes a training data set D given in (4) as

input. The set D is a set of n points (i.e., xi, in p , a set of real numbers in

p-dimensional space and the corresponding yi which is a class label of either

1 (positive) or�1 (negative)). The aim is to find a hyper plane that clearly separates

the two classes into two regions while maximizing the margin between the two

classes. Any hyper plane can be written as a set of points (i.e., xi) satisfying the

condition given in the (5).

Table 1 Number of frames

used for the experiment
Object class Fujinon Olympus Total frames

Bite-block 0 700 700

Blood 100 400 500

Stool 300 500 800

Total 400 1,600 2,000

Table 2 Number of

examples (pixels) used

for the experiment

Object class Positive examples

Bite-block 140,000

Blood 44,000

Stool 106,000

Total 290,000
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D ¼ xi; yið Þ��xi∈p, yi∈ �1,1f g� �n
i¼1

(4)

wx� b ¼ 0 (5)

Here, w is the normal vector of the hyper plane; w·x is the dot product of the

vectors x and w. The offset of the hyper plane relative to the origin along the normal

vector is b/w. If the data set is linearly separable, the two hyper planes that form

the margin between two classes can be written as given in (6) and (7). The distance

between these two hyper planes is 2/w. By minimizing the ||w||, one can maximize

the margin between the two hyper planes.

wx� b ¼ 1 (6)

wx� b ¼ �1 (7)

If the data set is not linearly separable, we need a kernel function, which maps

the points in the data set into a higher dimensional data space where the data set can

be linearly separable. Radial basis function (RBF) [22], which is one of the recently

used kernel functions, was used in this study.

K-Nearest Neighbor

K-NN (k-nearest-neighbor) [23] has been widely used for classification problems. It

is based on a distance function that measures the difference or similarity between

two instances. The standard Euclidean distance d(x, y) between two instances x and
y is often used as the distance function as defined in (8).

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ai xð Þ � ai yð Þð Þ22

s
(8)

Where ai(x) is the value of the ith attribute of x, and ai(y) is the value of the ith
attribute of y.

Given an instance x, K-NN assigns the most common class of x’s k nearest

neighbors to x, as shown in (9). We use C and c to denote the class variable and its

value, respectively. The class of the instance x is denoted by c(x).

c xð Þ ¼ argmax
c∈C

Xk
i¼1

δ c, c yið Þð Þ (9)

where y1, y2,. . ., yk are the k nearest neighbors of x, k is the number of the neighbors,

and δ(c, c(yi)) ¼ 1 if c ¼ c(yi), and δ(c, c(yi)) ¼ 0 otherwise.

378 J. Muthukudage et al.



Accuracy Evaluation

We compare the proposed method with the K-NN and SVM classifiers using a

commonly used performance metric accuracy. As seen in Table 3, Actual Class is

the class to which a particular example belongs (positive or negative), and the

Predicted Class is the result from the classifier, which can be categorized into TP—

True Positive, TN—True Negative, FP—False Positive, and FN—False Negative.

Accuracy is defined as (TP+TN)/(TP+FP+FN+TN), and it represents the number of

correctly classified instances.

We partitioned the testing dataset of pixels (shown in Table 2) into 90 partitions,

each having 10,000 data points by adding appropriate numbers of negative pixels to

capture the computation time of the three techniques more accurately. We named

these partitions as partition 1, partition 2, . . . and partition 90. The tests were

performed on these partitions in incremental manner. For instance, the first test

was done on the data points from partition 1, and the second test was done on the

data points from both partition 1 and partition 2, and so on. For each test, a tenfold

cross-validation [24] was conducted to achieve a better estimation. Accuracy

comparisons for three object detections are given in Fig. 7. The proposed method’s

accuracy is very close to the accuracy of SVM, and far better than that of the KNN

in the bite-block detection (Fig. 7a) and that of the blood detection (Fig. 7b). For the

stool detection, the accuracy of the proposed method is better than those of both

classifiers (Fig. 7c). This is due to the fact that the hue range for the stool examples

is much larger than that for the bite-block and blood examples, and the proposed

method is more robust than SVM and KNN in handling variations in our

applications. The hue range is getting larger when more data points are included

and causes the accuracies of SVM and KNN to be lower with the increasing size of

the data set as shown in Fig. 7c.

Evaluation of Computation Time

We compare the computation time of the proposed method and the K-NN and the

SVM classifiers. Figure 8 shows the comparison of execution times for detection of

the three object classes. The x-axis represents the number of data points in the

Table 3 Accuracy metric Predicted class

Positive Negative

Actual Class Positive TP FN

Negative FP TN
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testing set and the y-axis represents the time taken to classify all the points in

the testing set (positive and negative), which was only the detecting time excluding

the training time. Figure 8 shows that the proposed method is one or two times

faster than the other two techniques.

Fig. 7 Accuracy

comparisons of proposed

(Hull) with SVM and K-NN

for (a) Bite-block, (b)

Blood, and (c) Stool

detections
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Accuracy Comparison between RGB and HSV color spaces

For this comparison, the red axis was used as the index axis for the RGB color space

and the value axis was used as the index axis in the HSV color space. The accuracy

calculation was done in the same way in Section “Accuracy Evaluation”. Table 4

shows that theHSV color space outperforms the RGB color space in all three classes

of object detection.

Fig. 8 Execution time

comparisons of the

proposed method (Hull),

SVM, and K-NN for (a)

Bite-block, (b) Blood,

and (c) Stool detections
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Accuracy Comparison of the Proposed Method
with Different Index Axes

Experiments were conducted using the proposed method with different index axes

(selecting Hue or Saturation axis instead of Value axis). The results are shown in

Table 5, where Hue, Saturation (Sat), and Value (Val) were each used as an index

axis. Testing was carried out in the same way as in Section “Accuracy Evaluation”.

As seen in the table, when the index axis is Value, the accuracy for detection of all

three classes of objects is better.

Evaluation Examples

Figure 9 shows some example frames detected by the proposed method. The

numbers (i.e., 1, 2, and 3) on each frame of the first column represent the regions

Table 4 Accuracy comparison between RGB and HSV color spaces

Number of data

points (* 100 K)

Bite-block Blood Stool

RGB HSV RGB HSV RGB HSV

1 0.97 0.99 0.99 0.99 0.99 0.99

2 0.98 0.99 0.96 0.99 0.99 0.99

3 0.98 0.99 0.96 0.99 0.99 0.99

4 0.98 0.99 0.96 0.99 0.98 0.99

5 0.98 0.99 0.95 0.99 0.98 0.99

6 0.98 0.99 0.95 0.99 0.98 0.99

7 0.98 0.99 0.95 0.99 0.98 0.99

8 0.98 0.99 0.96 0.99 0.98 0.99

9 0.98 0.99 0.96 0.99 0.98 0.99

Average 0.98 0.99 0.96 0.99 0.98 0.99

Table 5 Accuracy of the proposed method with different index axes

Data points

(*100 K)

Green bite-block Blood Stool

Hue Sat Val Hue Sat Val Hue Sat Val

1 0.99 0.99 0.99 0.71 0.88 0.99 0.99 0.99 0.99

2 0.99 0.99 0.99 0.76 0.85 0.99 0.99 0.99 0.99

3 0.99 0.99 0.99 0.83 0.86 0.99 0.96 0.98 0.99

4 0.99 0.99 0.99 0.86 0.87 0.99 0.93 0.95 0.99

5 0.99 0.99 0.99 0.89 0.87 0.99 0.91 0.94 0.99

6 0.99 0.99 0.99 0.91 0.88 0.99 0.9 0.93 0.99

7 0.99 0.99 0.99 0.92 0.89 0.99 0.9 0.93 0.99

8 0.98 0.98 0.99 0.93 0.91 0.99 0.92 0.94 0.99

9 0.97 0.97 0.99 0.94 0.92 0.99 0.92 0.94 0.99

Average 0.99 0.99 0.99 0.86 0.88 0.99 0.94 0.95 0.99
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manually segmented and annotated for the ground truth. For instance, Region 1 in

Fig. 9a was labeled as stool by the domain expert. The first row of Fig. 9 consists of

the original frames with the ground truth marked for stool, green bite-block, and

blood. The second row contains the results (blue-colored areas) from the proposed

method for each frame in the first row.

Computer-aided Quality-Assisted Colonoscopy System

We placed our novel computer-aided quality assist colonoscopy system at Mayo

Clinic Rochester to conduct a clinical trial to evaluate its impact in improving

inspection quality of the colon. This new system based on a real-time video

processing framework and middleware called SAPPHIRE [9] accepts video signals

from a colonoscope and processes the information in each video frame for quality

metric generation in real-time using a set of software modules. The proposed stool

and bite-block detection modules were implemented as dynamic-linked libraries

and integrated with SAPPHIRE. The stool module estimates the amount of stool

debris in the colon when a colonoscopy procedure is performed. The bite-block

module detects a procedure type (either colonoscopy or upper endoscopy) at the

beginning of the procedure so that only colonoscopy-related modules run on

that colonoscopy procedures. Figure 10 shows a sample snapshot of the output of

this system; stool-related metric is marked in a red box shown on a head up

display (HUD).

Fig. 9 Detected examples. (a) Frame with a stool region, (b) Frame with a green bite-block

region, (c) Frame with a blood region, (d) Detected regions (with blue markings) from (a) using

the stool model, (e) Detected regions (with blue markings) from (b) using the green bite-block

model, and (f) Detected regions (with blue markings) from (c) using the blood model. ((a) and (d)

are frames from Fujinon scope, and (b), (c), (e), and (f) are frames from Olympus scope)
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Conclusion and Future Work

Detecting objects from colonoscopy videos is very essential for both post-

processing and real-time quality measurements. We propose a method to detect a

bite-block, blood, and stool pixels using color features. Our method provides an

acceptable accuracy and very fast detection time. Our proposed method offers a

significant reduction in execution time when compared to K-NN and SVM, which is

essential for real-time environments. In addition, our method is an incremental

learning method to learn new positive class examples without running the entire

training process from beginning as we can recompute each positive plane sepa-

rately. This adds the valuable ability of incremental learning to our method. The

proposed method is applicable everywhere that needs a color-based region or object

detection. As future work, we will work on a method to create a combination of a

concave hull and a convex hull to model positive examples in a given positive

plane. This would improve the overall detection accuracy even more.
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Colon Surface Registration Using Ricci Flow

Wei Zeng, Rui Shi, Zhengyu Su, and David Xianfeng Gu

Abstract Shape registration is very fundamental for shape analysis problems,

especially for abnormality detection in medical applications. In virtual colonos-

copy, CT scans are typically acquired with the patient in both supine and prone

positions. The registration of these two scans is desirable so that the user can clarify

situations or confirm polyp findings at a location in one scan with the same location

in the other, thereby improving polyp detection rates and reducing false positives.

However, this supine-prone registration is challenging because of the substantial

distortions in the colon shape due to the patient’s change in position. In this work,

we present an efficient algorithm and framework for performing this registration

through the use of conformal geometry and Ricci flow to guarantee that the

registration is a diffeomorphism (a one-to-one and onto mapping). The taeniae

coli and colon flexures are automatically extracted for each supine and prone

surface, employing the colon geometry. The two colon surfaces are then divided

into several segments using flexures, and each segment is cut along a taenia coli and

conformally flattened to the rectangular domain using Ricci flow. Corresponding

feature points between supine and prone are found and used to adjust the conformal

flattening to be quasi-conformal, such that the features become aligned. We present

multiple methods of visualizing our results, including 2D flattened rendering,

corresponding 3D endoluminal views, and rendering of distortion measurements.

We demonstrate the efficiency and efficacy of our registration method by illustrat-

ing matched views on both the 2D flattened colon images and in the 3D volume

rendered colon endoluminal view. We analytically evaluate the correctness of the

results by measuring the distance between features on the registered colons.
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Keywords Ricci flow • Conformal mapping • Quasi-conformal mapping

• Diffeomorphism • Surface matching • Surface registration

Introduction

Colorectal cancer is the third most incident cancer and the second leading cause of

cancer-related mortality in the USA [1]. Optical colonoscopy (OC), whereby

precancerous polyps can be located and removed, has been recommended for

screening and has helped to greatly reduce the mortality rate of colorectal can-

cer [2]. Virtual colonoscopy (VC) techniques have been developed as viable

noninvasive alternatives to OC for screening purposes [3, 4]. For a VC procedure,

computed tomography (CT) scans of the abdomen are commonly acquired with the

patient in both supine (facing up) and prone (facing down) positions. From these

scans, the colon wall can be extracted as in Fig. 1 and visualized by the VC user as a

volume rendered endoluminal view, mimicking the endoscopic view of an OC.

The use of computer-aided detection (CAD) of colonic polyps has also been

suggested [5–7]. A CAD scheme can help to reduce the necessary reading and

interpretation time of the user and can act as a second reader to improve detection

rates in VC. Though various CAD methods can achieve different accuracies, a

common problem among them is the presence of false positives in the results.

A reduction of these false positives would help the user to focus on true suspicious

areas and not waste time on unimportant regions.

In addition to the general VC and CAD techniques, researchers have worked to

find new ways of visualizing the data to aid the user in identifying polyps or

assisting with interventional needs. Volumetric curved planar reformation has

been used to aid the viewer in locating polyps with a 3D surface superimposed

over the standard CT slices [8]. For simulating intestinal surgery, a system has been

developed to visualize the colon and provide collision processing [9]. There has

also been work in creating a correlation between the VC navigation view and the

OC view based upon the different view paths [10]. In this work, we aim to add

another visualization tool to the doctor’s toolbelt. The main goal of our work is to

allow the user to view one location on the colon (whether in a 2D flattened view or a

3D endoluminal view) in one scan, and then jump to and view the identical region

in the other scan. We also show how the user can visualize the deformation of the

colon surface if such a utility is desired.

Throughout the development of VC, the registration of the supine and prone

scans has remained a constant and challenging problem [11–13]. Being able to

register these two scans is useful for both a routine VC system and a CAD system.

In the case of a VC system, providing the user the ability to jump from one area in

one scan to the same area in the other scan would allow for the easy comparison of

these areas when something might be unclear in one of the scans, or for confirming

a finding. For a CAD system, a proper registration could help achieve greater

accuracy while at the same time reducing false positive results. We are presently
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interested in performing supine-prone registration due to the visualization possibil-

ities that it presents, both for viewing corresponding regions of the colon surface

and for visualizing the elastic deformation of the colon.

In this paper, we present a method of supine-prone registration using conformal

colon flattening. Conformal colon flattening has been introduced as an enhance-

ment for VC navigation [14] and has been utilized successfully for CAD [5].

According to conformal geometry theory, there exists an angle preserving map

which periodically flattens the colon surface onto a planar rectangle. This mapping

minimizes the total stretching energy. Because the conformal mapping is

locally shape preserving, it offers an effective way to visualize the entire colon

surface and exposes all of the geometric structures hidden in the original shape

embedded in 3D.

The characteristics of the deformation between supine and prone are determined

by the elasticity properties of the tissues and muscles. The strain-stress relations for

different types of tissues or muscles are different. If the strain-stress relation

deformation is independent of the orientation, then local deformation is practically

a scaling, and the global deformation is conformal. In that case, we can flatten each

supine and prone surface to a planar rectangle conformally, and those two rectangles

should be similar. By aligning the planar rectangles, we can get a one-to-one and

onto mapping and obtain the registration between them. In this work, we introduce

this registration approach and carefully design experiments to test whether the

deformation between supine and prone is conformal or not. Our experimental results

show that the deformation is not conformal, but close to conformal.

An elastic deformation with bounded angle distortion is called a quasi-

conformal map. The angle distortion for a quasi-conformal map can be represented

as a complex valued function, the so-called Beltrami coefficient. The Beltrami

coefficient fully controls the quasi-conformal map, which is determined by the

elasticity of the underlying material. By better understanding the deformation

between supine and prone, we can understand the elasticity of the tissues and

muscles and vice versa.

Fig. 1 A colon

reconstructed from its

(a) supine and (b) prone

scans
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The nonrigid elastic deformation between supine and prone colons poses a great

challenge for shape registration. In this work, we locate and match the anatomical

landmarks [15], including flexures and taeniae coli, and internal features on

conformally flattened supine and prone surfaces [16], and compute the registration

by harmonic maps with these feature constraints. The resulting supine-prone

registration is a quasi-conformal map (diffeomorphism), which reflects the elastic

deformation of the muscle and tissue. The distortion is evaluated by the Beltrami

coefficients. Our experiments on 6 pairs of supine-prone colons obtained an average

ℝ3 distance error of 7.85 mm for the feature points and polyps evaluated. To the

best of our knowledge, this is the first work to apply geometric mapping for supine-

prone colon registration by converting the 3D registration problem to a 2D image

matching problem. The whole process is efficient and automatic, and our registra-

tion method performs better than other existing methods (see section “Analytic

Registration Evaluation”).

Figure 2 shows our registration pipeline, which primarily consists of five stages.

As the input, the supine and prone CT scans are subjected to the pre-processing

steps, including cleansing, segmentation with topological simplification, and sur-

face mesh reconstruction, which have been studied previously and are outside the

scope of this paper. Given the supine and prone surfaces, anatomical landmarks are

extracted (see section “Taeniae Coli and Flexures Extraction” and [15]). Using

these landmarks, the colon surfaces of both supine and prone are decomposed to

segments. For each segment, a flat rectangular conformal mapping is obtained

(see section “Conformal Colon Flattening”). Based on these flat images, feature

points are detected and their correspondences between supine and prone are

obtained (see [15]). With the feature correspondence constraints, the supine-prone

registration is performed using harmonic maps (see sections “Quasi-Conformal

Map” and “Surface Registration Framework”).

Given the completed supine-prone registration, we present the methods in which

we visualize the results of our registration algorithm. We first demonstrate flattened

rendering of the colon in the native 2D registration format (see section “Flattened

Colon Rendering”). For the endoluminal views which would be used by a radiol-

ogist reading a case, we detail a method to provide correlated views between supine

and prone (see section “Visualization of Quasi-Conformality”). To better under-

stand where the deformation occurs most on the colon surface, we show the

visualization of the Beltrami coefficient both in 2D and 3D (see section “Visuali-

zation of Quasi-Conformality”). The results of our registration are analyzed and
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Fig. 2 The pipeline for supine-prone colon registration
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discussed in section “Experimental Results”. We verify the efficacy of our work

using both objective analytic and subjective visual methods. We present the related

work in the next section and brief background information on conformal mapping

and quasi-conformal mapping in section “Conformal Geometry Theory” to famil-

iarize the reader with the terms.

Related Work

Early work on supine-prone registration for VC applications focused on using the

centerlines and various landmarks. A basic method applies linear stretching and

shrinking operations to the centerline, where local extrema are matched and used to

drive the deformations [11]. Improved methods of centerline correlation were also

investigated for use in reducing false positive results [13]. Correlating individual

points along the centerline through the use of dynamic programming has also been

suggested [12, 17].

More recently, the taeniae coli (three bands of smooth muscle along the colon

surface) have been used as features which can be correlated between the two

scans [18, 19]. This relies on a manual identification of one of the three taeniae

coli, and then an automatic algorithm repeats the line representing the identified

taenia coli at equal distances. Further progress has been made where the haustral

folds and the points between them can be automatically detected, and the taeniae

coli are identified by connecting these points [20]. However, this method is only

feasible on the ascending and transverse portions of the colon.

Deformation fields have also been suggested for use in supine-prone registration.

Motion vectors can be identified for matched centerline regions, interpolated for

non-matched regions, and then propagated to the entire volume [21]. It has also

been proposed to use a free-form deformation grid to model the possible changes in

the colon shape from supine to prone [22].

Conformal mapping has been successfully used for many medical applications,

such as brain cortex surface morphology study [23] and colonic polyp detec-

tion [5]. In this work, we perform the supine-prone registration through conformal

mapping based on Ricci flow. The colon surface is reconstructed from CT images,

represented as a topological cylinder in the discrete form of a triangular mesh, and

conformally mapped to a planar rectangle. The subsequent registration is carried

out through the 2D conformal mapping images of the supine and prone colons.

Ricci flow was first introduced by Hamilton [24] and later it was generalized

to the discrete case [25]. Ricci flow is a powerful tool to compute surface

uniformization, deforming any arbitrary surfaces to one of the 3 canonical spaces

with different background geometries, the sphere, the Euclidean plane, or the

hyperbolic disk. The discrete computational algorithms can be found in [26–29].

Ricci flow can also be generalized to compute general quasi-conformal maps by the

auxiliary metric method [30]. Discrete surface Ricci flow method has been

successfully used in many applications in both engineering and medical imaging,
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such as general 3D shape matching, registration and tracking [27, 31, 32], shape

indexing and comparison in Teichmüller space [33], homotopy detection [29],

vestibular system morphometry [34], brain mapping [35, 36], 3D human facial

expression recognition [37], virtual colonoscopy [16, 38], wireless sensor network

routing, load balancing and data storage [39–42], and so on.

Because the deformation from supine to prone is not conformal, we generalize

the conformal colon flattening method to a quasi-conformal flattening for registra-

tion purpose. Most existing colon registration methods cannot guarantee the map-

ping to be a diffeomorphism (one-to-one and onto mapping). Due to the

complicated geometric structure of the colon surface, the existing methods often

introduce folding or singularities in the mapping. Our method is based on the

biophysical nature of the deformation from supine to prone, which is physically

elastic and anisotropic. Due to the material properties of the muscles and tissues, the

deformation can be exactly modeled as a quasi-conformal map. Our experimental

results validate that the mapping is indeed quasi-conformal.

Conformal Geometry Theory

This section briefly introduces the background knowledge in conformal geometry,

necessary for the discussion in the work. For more details, we refer readers to [43]

for Riemann surface theory, [44] for Teichmüller theory, [45] for quasi-conformal

mapping, and [46] for differential geometry.

Conformal Mapping

Let S1, S2 be two metric surfaces, with Riemannian metrics g1 and g2, respectively.

A map φ : S1 ! S2 is angle-preserving or conformal, if and only if the pull back

metric induced by ϕ satisfies

ϕ�g2 ¼ e2λg1;

where e2λ is called the conformal factor. The simplest conformal mapping is the

complex holomorphic functions f : ℂ ! ℂ, satisfying the Cauchy–Riemann

equation

@�zf ðzÞ ¼ 0;

where z ¼ uþ iv and the complex differential operators are

@z ¼ 1

2
ð@u � i@vÞ; @�z ¼ 1

2
ð@u þ i@vÞ:
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Locally, a conformal mapping is a scaling transformation; therefore, it preserves

local shapes. As shown in Fig. 3, the 3D surface of Michelangelo’s David head is

conformally mapped to the planar rectangle, although the global shape has been

distorted, the local shapes are well preserved. On the planar image, one can still

easily locate the main geometric features. This property is valuable for virtual

colonoscopy, where the colon wall surface is conformally flattened onto a 2D

image. Because the mapping is shape-preserving, the polyps can be detected on

the planar image directly.

Given an oriented metric surface (S,g), U � S is a neighborhood, then there is a

conformal mapping φ from the unit diskD to U, such that the Riemannian metric is

written in a special form

g ¼ e2λðu;vÞðdu2 þ dv2Þ ¼ e2λðzÞdzd�z;

where z ¼ uþ iv are called isothermal parameters of the surface. Suppose the

surface is covered by an atlas, such that all local coordinates are isothermal

parameters, and all the chart transitions are biholomorphic, then the atlas is called

a conformal structure of the surface, induced by the Riemannian metric. A surface

with a conformal structure is called a Riemann surface.

Uniformization

The surface uniformization theorem claims that for any metric surface (S,g), there
exists a unique conformal factor e2λ, such that the Riemannian metric e2λg induces

a constant Gaussian curvature, which is one three possible choices fþ1; 0;�1g
depending on the surface topology.

As shown in Fig. 4, for closed surfaces, genus zero surfaces can conformally

mapped to the unit sphere S2 , genus one surfaces can conformally deformed to

Euclidean metric E2, high genus surfaces can conformally deformed to hyperbolic

Fig. 3 Conformal mapping preserves local shapes

Colon Surface Registration Using Ricci Flow 395



metric ℍ2. For compact surfaces with boundaries, all the boundaries are mapped to

circles on the canonical domains, as shown in the right half of the figure.

The uniformization theorem allows us to map all types of shapes to one of the

three canonical domains, the sphere, the plane, or the hyperbolic disk and register

the shapes on the 2D canonical domain. This simplifies the problem of surface

matching and registration and has been broadly applied in medical imaging field.

Quasi-Conformal Mapping

Figure 5 shows another characteristic of conformal mappings, it maps infinitesimal

circles to infinitesimal circles. In contrast, a general diffeomorphism maps

infinitesimal circles to infinitesimal ellipses. The general diffeomorphisms are

represented as quasi-conformal map.

Given two Riemann surfaces S1 and S2 with conformal atlases, choose a local

conformal parameter (isothermal parameters) z for S1 and w for S2, respectively. Let
f : S ! D is a diffeomorphism between the surfaces, then its local representation is

w ¼ f(z), the Beltrami coefficient of the mapping f is defined as

μðzÞ ¼ @�zf

@zf
ðzÞ: (1)

Fig. 4 Uniformization for surfaces, computed by discrete surface Ricci flow

Fig. 5 Comparison between conformal mapping (frame 2 and 3) and a general diffeomorphism

(frame 4 and 5)
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Globally, one can use Beltrami differential μðzÞd�z=dz to represent the mapping.

At each point z, the eccentricity and the orientation of the infinitesimal ellipse are

given by

K ¼ 1þ jμj
1� jμj ; θ ¼ 1

2
argμ

as shown in Fig. 6.

General diffeomorphisms between surfaces (induced by natural deformations)

are quasi-conformal mappings. Each quasi-conformal mapping is associated with

its Beltrami differential. Inversely, the mapping can be uniquely determined by its

Beltrami differential (under certain normalization conditions) by solving the

so-called Beltrami equation,

@�zf ðzÞ ¼ μðzÞ@zf ðzÞ: (2)

For example, consider all the normalized diffeomorphisms from the unit disk to

itself, f : D ! D, such that f(0) ¼ 0 and f(1) ¼ 1, then the space of normalized

diffeomorphisms and the space of Beltrami coefficients have a one-to-one

correspondence.

fNormalized Diffg � fBeltrami Coefficientg:

Suppose (S1,g1) and (S2,g2) are two metric surfaces, with local isothermal

parameters z and w, respectively. φ : (S1,g1) ! (S2,g2) is a quasi-conformal

mapping with Beltrami coefficient μ. Then the same mapping φ : ðS1; ~gÞ ! ðS2; g2Þ
under the auxiliary metric

~g ¼ jdzþ μd�zj2; (3)

is conformal. Therefore a quasi-conformal mapping can be converted to be a confor-

mal mapping under the auxiliary metric associated with the Beltrami coefficient.

Fig. 6 Geometric

interpretation of Beltrami

coefficient
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Surface Ricci Flow

Surface Ricci flow is a powerful tool to design Riemannian metrics using prescribed

Gaussian curvatures, it can be applied for computing surface conformal mappings

and quasi-conformal mappings directly.

Let both g and g are Riemannian metrics of a surface S, g ¼ e2λg , then the

Gaussian curvature and geodesic curvature induced by them satisfies the following

Yamabe equation:

�K ¼ e�2λðK � ΔgλÞ
�kg ¼ e�λðkg � @n;gλÞ

:

The surface uniformization metric can be obtained by solving the Yamabe

equation. Surface Ricci flow is an effective tool for it.

The normalized surface Ricci flow is given as

@tgðtÞ ¼ ðρ� 2KðtÞÞgðtÞ;

where ρ is the mean value of the scalar curvature

ρ ¼ 4πχðSÞ
Að0Þ

where A(0) is the total area of the surface at time t ¼ 0, χ(S) is the Euler

characteristic number of the surface. It can be shown that the normalized surface

Ricci flow preserves the total area

@tAðtÞ ¼ 0;

furthermore, the curvature evolves according to a nonlinear heat diffusion process

@tKðtÞ ¼ ΔgðtÞKðtÞ þ KðtÞð2KðtÞ � ρÞ:

Hamilton and Chow [24, 47] proved that normalized surface Ricci flow con-

verges to the constant Gaussian curvature metric.

Harmonic Mapping

Suppose φ : (S1,g1) ! (S2,g2) is a smooth mapping between two metric surfaces.

We choose isothermal parameters of the two surfaces, z for S1 and w for S2,
respectively, the Riemannian metrics can be represented as

g1 ¼ σðzÞdzd�z; g2 ¼ ρðzÞdwd �w:
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The harmonic energy of the mapping is defined as

EðφÞ ¼
Z
S1

ρðwðzÞÞ
σðzÞ ðjwzj2 þ jw�zj2ÞσðzÞ i

2
dz ^ d�z (4)

The so-called harmonic maps are the minimizers of the harmonic energy. The

necessary condition of φ to be a harmonic is the Euler–Lagrange equation

wz�z þ ρw
ρ
wzw�z � 0:

Given a degree one map, we can use the following nonlinear heat diffusion

method to deform it to a harmonic map,

@wðz; tÞ
@t

¼ � wz�z þ ρwðwÞ
ρðwÞ wzw�z

� �
: (5)

From the Definition 4, we see the harmonic energy is solely determined by

the conformal structure of the source and the Riemannian metric of the target.

One can deform the conformal structure by a Beltrami differential μ, then obtain

the conformal coordinates ζ(z), which can be obtained by solving the Beltrami

equation.

Harmonic map is the smoothest map in the homotopy class (Fig. 7). If the

surfaces are topological disks, the restriction of φ on the boundary is a homeomor-

phism, then the harmonic map is a diffeomorphism. Furthermore, if the target

surface has Riemannian metric with negative Gaussian curvature, then degree one

harmonic map must be a diffeomorphism. Harmonic maps have been applied for

brain mapping and colon registration in medical imaging.

Fig. 7 A harmonic map from a human face surface to a planar rectangle
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Computational Strategies

There are many methods for conformal surface mapping in the literature. In the

following, we focus on the discrete surface Ricci flow method.

Discrete Surface Ricci Flow

In practice, surfaces are represented as simplicial complex, namely triangle mesh

as shown in Fig. 8. We use M ¼ (V,E,F) to denote the mesh with vertex set V ,

edge set E, and face set F. A discrete Riemannian metric on a triangle mesh is a

function defined on the edges, l : E ! ℝ+, satisfies triangular inequality, on each

face [vi,vj,vk],

lij þ ljk > lki:

The discrete Gaussian curvature is defined on the vertices K : V ! ℝ, as

angle deficit,

KðvÞ ¼ 2π �P
i αi v 62 @M

π �P
i αi v 2 @M

�

where αi’s are corner angles adjacent to the vertex v, ∂ M represents the boundary

of the mesh (Fig. 9).

Then the discrete curvatures also satisfy Gauss–Bonnet theorem, namely, the

total curvature is a topological invariantX
v 62@M

KðvÞ þ
X
v2@M

KðvÞ ¼ 2πχðMÞ:

Fig. 8 Smooth surfaces are approximated by triangle meshes
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Surface Ricci flow conformally deforms the Riemannian metric, conformal

transformation preserves infinitesimal circles. Thurston proposes to replace infini-

tesimal circles to circles with finite sizes, and by changing the circle radii to

approximate the conformal deformation.

Figure 10 shows the common configurations. For the first frame, which is

classical Thurston’s circle packing, a circle is centered at each vertex vi, and
denoted as (vi,γi), two circles at the end vertices of an edge [vi,vj] has an intersection
angle ϕi j, during the deformation, ϕi j keeps unchanged. The edge length

l2ij ¼ γ2i þ γ2j þ 2γiγj cosϕij:

The second frame shows the inversive distance circle packing, where two circles

at an edge are disjoint, the edge length is given by

v
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vFig. 9 Discrete curvatures
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l2ij ¼ γ2i þ γ2j þ 2γiγjIij;

where Ii j is called the inversive distance, which is a constant during Ricci flow. The
third frame shows the discrete Yamabe flow, where

l2ij ¼ 2γiγjIij:

The last frame shows the circle packing with imaginary radius, the edge length is

given by

l2ij ¼ �γ2i � γ2j þ 2γiγjIij:

The power circle is the circle orthogonal to all the three circles centered at the

vertices. In Yamabe flow case, the power circle is the circum circle of the triangle;

in the case of circle packing with imaginary radius, the power circle is the equator

of a hemisphere, which goes through the points (xi,yi,γi2), where vi ¼ (xi,yi). The
center of the power circle is called the power center. The lines through the power

center perpendicular to edge [vi,vj] separates the edge to di j and dj i, the distance

from the power center to this edge is hk. Let ui ¼ logγi. By using cosine law, it can

be easily shown that

@lij
@ui

¼ dij;
@lij
@uj

¼ dji;

and

@θi
@uj

¼ @θj
@ui

¼ hk
lij
:

Therefore, differential 1-form

ω ¼
X
i

Kidui;

is a closed 1-form, dω¼ 0, where Ki is the discrete Gaussian curvature at vi. We can

define the discrete surface Ricci energy as

Eðu1; . . . ; unÞ¼
Z ðu1;...;unÞ X

i

ð �Ki � KiÞdui;

where �Ki is the desired Gaussian curvature at vi. We can compute the gradient of the

Ricci energy is

rEðu1; . . . ; unÞ ¼ ð �K1 � K1; �K2 � K2; . . . ; �Kn � KnÞT : (6)
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Let [vi,vj] be an edge, adjacent to two faces [vi,vj,vk] and [vj,vi,vl], then we define
the edge weight wi j as

wij ¼ hk þ hl
lij

:

The Hessian matrix is given by

@2E

@ui@uj
¼ @Ki

@uj
¼

�wij ½vi; vj� 2 EP
k wik i ¼ j

0 otherwise

8<
: (7)

If the triangulation is Delaunay, namely all the power centers are inside the

triangle, then the edge weights are positive. Then the Hessian matrix is diagonal

dominant, the energy is convex on the space {(u1,. . .,un)j∑iui ¼ 0}. The metric

which produces the target curvature is the unique global minimizer of the Ricci

energy. By the convexity of the energy, the metric is unique.

The discrete surface Ricci flow is the gradient flow of the Ricci energy,

dui
dt

¼ �Ki � Ki: (8)

Because the Ricci energy is convex, it can be efficiently optimized using

Newton’s method.

Conformal Colon Flattening

The colon wall surface can be flattened onto a planar rectangle, to expose all the

interior geometric features. We use the discrete Yamabe flowmethod as an example

to explain the algorithm in detail. The following symbols are applied: the radius

vector u ¼ (u1,� � � ,un)T, the curvature vector k ¼ (K1,� � � ,Kn)
T, the target curvature

vector k ¼ ð �K1; � � � ; �KnÞT, the Hessian matrix of the Ricci energy H. The input is a
triangle mesh, and the target curvature, and a threshold ε. The output is the unique
discrete metric, which produces the target curvature

1. Determine the target curvature �Ki for all vertices.

2. Initialize ui ¼ 0 for all vertices.

3. Compute the edge length using the formula

lij ¼ e
ui
2 l0ije

uj
2 ;

where li j
0 is the initial edge length induced by the Euclidean metric.

4. Compute all the corner angles, vertex curvatures.

5. Compute the circum circles, and the edge weights wi j’s.
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6. Construct the Hessian matrix H, solve the linear system

δu ¼ H�1ðk� kÞ;
7. Update the radius vector

u ¼ uþ δu:

8. Repeat step 3–7, until kk� kk < E.

For example, we would like to flatten the colon surface onto the 2D plane. The

colon surface is reconstructed from CT images and represented as a triangle mesh

M. The colon wall surface is a topological cylinder, the surface is of genus zero with

two boundaries, @M ¼ γ0 � γ1. We set the target curvature to be zero everywhere,

and run the above algorithm to compute a flat Euclidean metric. Then we find a

shortest path τ connecting γ0 and γ1, we slice the surface along τ to get a mesh �M,

which is a topological disk. Then we isometrically embed the faces of the mesh �M
using the flat metric, face by face until flatten the whole mesh onto the plan.

Figure 11 shows one example of colon flattening.

Quasi-Conformal Map

The quasi-conformal mapping computation is converted to conformal mapping

based on auxiliary metric. Suppose M is the input triangle mesh, first we compute

a conformal mappingφ : M ! D to map the surface onto the planar domainD, then
we compute a quasi-conformal mapping τ : D ! D, the composition τ 	 φ : M ! D
gives the quasi-conformal mapping from the surface to the planar domain D, as

shown in the following commutative diagram.

M D

D

ϕ τ

τ◦ϕ

Fig. 11 Colon flattening using Ricci flow
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The conformal mapping φ : M ! D can be carried out directly using the Ricci

flow method. Therefore, we only need to focus on the quasi-conformal mapping

τ : D ! D. The key idea is to run Ricci flow on the auxiliary metric. The auxiliary

metric is constructed as follows. AssumeD is a domain on the complex planeℂ. Let
[vi,vj] be an edge adjacent to two faces [vi,vj,vk] and [vj,vi,vl], the Beltrami coeffi-

cient is defined on each face μi jk and μj il, respectively. The complex coordinates of

vi,vj are zi and zj, respectively. The discrete auxiliary metric on [vi,vj] is given by

~lij ¼ 1

2
ðzj � ziÞ þ μkijð�zj � �ziÞ
��� ���þ 1

2
ðzj � ziÞ þ μljið�zj � �ziÞ
��� ���: (9)

Harmonic Map

Harmonic maps can be computed by minimizing the harmonic energy, or equiva-

lently solving elliptic geometric partial differential equations. Suppose we want to

compute a harmonic map from a mesh M to the planar disk D , φ : M ! D , the

mapping φ is approximated by piecewise linear maps. By using Finite element

method, the harmonic energy of mapping has closed form,

EðφÞ ¼
X

½vi;vj�2M
wijjφðviÞ � φðvjÞj2;

where wi j is the cotangent edge weight. Suppose [vi,vj] is adjacent to two faces

[vi,vj,vk] and [vj,vi,vl], then the edge weight is given by

wij ¼ 1

2
ðcot θijk þ cot θjil Þ;

where θki j is the corner angle in [vi,vj,vk] at the vertex vk. The harmonic map

satisfies the following Laplace equation

ΔφðviÞ ¼ 0 vi 62 @M
φðvkÞ ¼ gðvkÞ vk 2 @M:

�
(10)

where the discrete Laplace–Beltrami operator is given by

ΔφðviÞ ¼
X

½vi;vj�2M
wijðφðvjÞ � φðviÞÞ:

If the triangle mesh is Delaunay, then θi j
k + θj i

l < π, the Laplace–Beltrami

operator Δ is positive definite, so the solution is unique.

The harmonic map can handle hard constraints easily. The landmark constraint

can be added in the same way as the boundary vertices. Therefore, it is very flexible
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to incorporate landmarks. But, the harmonic maps with constraints may not be

homeomorphic any more.

In practice, we need to compute harmonic maps under the conformal structure

deformed by a Beltrami differential μ. We first use Ricci flow to compute the

canonical uniformization Riemannian metric, then construct local conformal coor-

dinate charts. On each chart, for each triangle, we deform it according to auxiliary

metric equation (9) and compute the deformed corner angles using cosine law, and

update the cotangent edge weight. Then we can solve the Laplace equation (10).

Surface Registration Framework

The framework of Surface Matching and Registration can be summarized in

diagram (11). Suppose Sk,k ¼ 1,2 are the input surfaces. In order to compute the

optimal diffeomorphism φ : S1 ! S2 to register them, we conformally map them

onto the plane by φk : Sk ! Dk, where Dk are called conformal parameter domain,
then construct a planar diffeomorphism h : D1 ! D2, the registration between two

surfaces is given by f ¼ φ�1
2 	 h 	 φ1 . Therefore, 3D matching and registration

problems are converted to 2D domains, which simplifies the computation and

provides a key to constructing a globally optimal diffeomorphism between surfaces.

S1
f

S2

φ1 φ2

D1
h

D2

ð11Þ

The quality of the planar diffeomorphism is crucial for the whole mapping

quality. We applied the following strategy for finding the optimal mapping,

1. Set the initial Beltrami coefficient to be 0 everywhere, μ0 � 0.

2. Construct a harmonic map hn : D1 ! D2 with respect to the current Beltrami

coefficient μn, with hard feature constraints.

3. Update the Beltrami coefficient

μ ¼ @�zhn
@zhn

;

4. Because hn may not be a homeomorphism, at some points the norm of μ may

exceed 1, so we need to truncate it

μnþ1ðpÞ ¼ μ jμðpÞj < 1

1� E jμðpÞj 
 1

�

5. Repeat steps 2–4, until the process converges.
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Visualization

Our method of performing supine-prone registration, whereby the 3D matching

problem is reduced to a 2D image registration problem, presents several advantages

for the corresponding visualization system. Since the registration is in the form of

2D image maps, a rendering of these flattened colon segments allows for the user to

view the entire colon segments, supporting easier verification of the accuracy of the

registration and easy navigation. Since these flattened colons also form a one-to-one

and onto mapping, it is possible to correlate endoluminal views based on the

viewing vector. Lastly, a visualization of the Beltrami coefficient on the colon

surface is possible, allowing for the user to view where most of the elastic distortion

has occurred.

We introduce a new path through the colon which we call the flattened center-
line. With a colon segment mapped to a plane such that the segment boundaries are

on top and bottom (resulting in a plane taller than it is wide), horizontal line

segments then correspond to loop curves on the colon surface. The mass center of

a loop is taken to be the central point for that plane of the colon segment. By

calculating these mass centers along the entire flattened colon, we generate a path of

points which generally mimics that of a centerline. However, since this is calculated

from the flattened colons, we refer to it as the flattened centerline. To avoid

confusion, we will use the term skeleton to refer to the 3D medial axis centerline

which is conventionally calculated for VC systems [48].

The flattened centerline can be efficiently calculated as a series of points through

the colon lumen using the GPU to render the flattened colon mesh. For a desired

number of points in the flattened centerline, the colon mesh is scaled so the longest

side of the rectangular mesh is equal to this desired number of points. The mesh is

rendered such that the color of each vertex is the original coordinates of the vertex

in the volume, with the values interpolated to fill the triangles. Each row of pixels

can then be averaged to obtain the mass center for that row, which is the point for

that position on the flattened centerline.

Taeniae Coli and Flexures Extraction

The taeniae coli and the flexures (see Fig. 12) are important anatomical landmarks

of the colon which do not change despite the change in position of the patient.

Corresponding anatomical landmarks in supine and prone colons are automatically

extracted in a robust manner, which are then used to cut each colon into its

anatomical segments, as well as slicing the colon open for flattening.

The colon contains five segments, which, starting from the cecum, are the

ascending colon (A), the transverse colon (T), the descending colon (D),

the sigmoid colon (S), and the rectum (R), as shown in Fig. 12a. The first major

flexure occurs between the ascending colon and the transverse colon (A-T flexure).

Colon Surface Registration Using Ricci Flow 407



This is the flexure close to the liver and is called the hepatic flexure. The second

major flexure occurs between the transverse colon and the descending colon (T-D

flexure). This flexure is close to the spleen and is named the splenic flexure. The

third flexure occurs between the descending colon and the sigmoid (D-S flexure),

and the final flexure is between the sigmoid and the rectum (S-R flexure). All of

these flexures form very sharp bends and are distinguishable from other smaller

bends. Theoretically, the A-T flexure forms the topmost point of the ascending

colon and the T-D flexure forms the topmost point of the descending colon.

Flexures can help in virtual navigation and supine-prone alignment and cutting.

Taeniae coli are three bands of longitudinal muscle on the surface of the colon.

They form a triple helix structure from the appendix to the sigmoid colon and are

ideal references for virtual navigation. The taeniae coli are named taenia

omentalis, taenia mesolica, and taenia libera according to the position on the

transverse colon. Taeniae coli can be regarded as ridge breakers for the haustral

folds (located between the haustral folds). It is relatively easy to extract the taenia

omentalis as it is clearly visible on the transverse and ascending colons. Similar to

reported approaches [49, 50], we identify the taeniae coli by detecting the haustral

folds, which are computed initially using the heat diffusion and fuzzy C-means

clustering algorithms [50]. Using these haustral folds, we extract the taenia

omentalis and the other two taeniae coli [18]. Although we extract all three

bands of taeniae coli, we mostly use the taenia omentalis for subsequent

processing. Figure 12b shows the front view of a taenia coli on the prone colon

surface. In our experience, we have been able to extract the taenia coli automat-

ically through the entire colon. However, if fully automatic extraction is impos-

sible in some dataset, a semiautomatic method using a manually placed marker

could be employed to improve reliability.

Fig. 12 Anatomical landmarks. (a) Flexure and (b) Taeniae coli
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Flattened Colon Rendering

As our registration results are natively two flat colon meshes with a one-to-one

correspondence, our initial visualization is based off of this. Volumetric rendering

of flattened colons has been presented and suggested for use in VC naviga-

tion [14]. We perform our rendering in much the same way, though we make use

of the flattened centerline rather than the skeleton for generating viewpoints, as the

flattened centerline is more apt to this task.

With supine and prone placed side by side, it is easy for the user to scan through one

colon, and if something suspicious is noted, immediately look at the same location on

the neighboring colon. Since the flattened colons are both mapped to planes of the

same size, there is a direct one-to-one and ontomapping. This is also trivial to implement

in a user interface. We use this view as the basis for our visual inspection of the

registration accuracy. An example of this can be seen in Fig. 13, where we compare

the flattened, but unregistered, colons against the flattened and registered colons.

Using the flattened viewing method, the alignment of the colon anatomy between

supine and prone is immediately obvious compared to the unregistered segments.

Visualization of Quasi-Conformality

The elastic deformation between supine and prone is measured by the Beltrami

coefficients in Eq. (1) through the resulting registration. In general, this information

would likely not be of interest to a radiologist reading a VC study. However,

visualizing the amount of distortion in this way may be useful to a doctor seeking

to better understand how the colon deforms in certain regions.

Fig. 13 Visual verification for supine-prone colon registration using volume rendering. (a) and

(b) are the original conformal flattened views of the ascending colon segments (Segment A) of the

supine and prone surfaces, respectively. After registration with 16 feature points, a polyp found on

the flattened supine surface (yellow circle in (c)) can be located on the flattened prone surface

(yellow circle in (d)) at nearly the same position. (e) and (f) are enlargements of the neighborhoods

of the same polyp on the supine and prone surfaces, respectively
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The quasi-conformal mapping deforms the circles to ellipses. Figure 14 illus-

trates that the deformation from supine to prone is quasi-conformal. A general

fundamental domain is chosen for the supine segment. We use its flat coordinates

(as in Fig. 13a) as the texture coordinates and compute the circle-packing texture

mapping (zoomed-in view shown in (a)), where the circularity is preserved. After

registration to the flattened map of the prone segment, the supine planar image is

changed (as in Fig. 13c) and the circles are accordingly deformed to ellipses

(zoomed-in view shown in (b)). Using the one-to-one and onto mapping between

supine and prone, we can efficiently compute the Beltrami coefficients on the

triangular mesh surface. The quasi-conformality of the mapping is evaluated by

the local stretching and angle distortion. The maximal local stretching is 11, math-

ematically called 11-Quasi-Conformal Mapping.
Based on the diffeomorphism constructed between supine and prone, we simu-

late the deformation process by a linearly interpolated morphing sequence. Then,

we transfer the texture coordinates to each intermediate mesh surface consistently.

Through the texture correspondence, we can visually get a better understanding of

how the deformation behaves from supine to prone and vice versa. After registra-

tion, the supine and prone have the same mesh connectivity, but different geometry.

As shown in Figs. 15 and 16, the morphing views sp1, sp2, sp3, sp4 between supine

and prone are generated by the linear interpolation of geometry at each vertex.

Directly from the stretching-colored views (a), one can easily comprehend where

the main deformation happens. The global surface distortion is mainly affected by

the local stretching deformation, valued by the ratio between the long axis and short

axis of the ellipse locally. The local angle distortion, however, is intrinsic to the

material properties of the organ muscle and tissue. Compared with the stretching,

the angle distribution is more uniform through the whole deformation, as shown in

(b). Here, the red color denotes the largest stretching (angle distortion), blue color

the lowest stretching, and yellow and green in between. The consistent texture

mapping of checker-board (c) and circle-packing (d) textures also demonstrates the

quasi-conformality of the deformation.

Fig. 14 Visualization of

quasi-conformality: (a)

circles on the source

(supine) are mapped to (b)

ellipses on the target (prone)

by the registration map. The

narrower ellipses

correspond to the larger

deformation
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Experimental Results

We validate our algorithms using real VC colon data from the publicly available

National Institute of Biomedical Imaging and Bioengineering (NIBIB) Image and

Clinical Data Repository provided by the National Institute of Health (NIH). We

perform electronic colon cleansing incorporating the partial volume effect [51],

segmentation with topological simplification [5], and reconstruction of the colon

surface via surface nets [52] on the original CT images in a pre-processing step.

Though the size and resolution of each CT volume varies from dataset to dataset,

the general data size is approximately 512 � 512 � 450 voxels and the general

resolution is approximately 0.7 � 0.7 � 1.0 mm. In this paper, the colon surface is

modeled as a topological cylinder and discretely represented by a triangular mesh.

Fig. 15 Visualization of the quasi-conformality (I). The morphing views s p1,s p2,s p3,s p4 of

geometry between supine and prone are generated by the linear interpolation of the one-to-one

registration. The deformation is simulated on the colon segment geometry and four consistent

textures are mapped to it to illustrate the corresponding parts of the geometry. In (a) and (b), red
indicates the largest stretching (angle distortion) and blue indicates the least
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We have developed our algorithms using generic C++ on the Windows XP

platform. The linear systems in solving the Laplace equation are solved using the

Matlab C++ library. All of the experiments are conducted on a workstation with a

Core 2 Quad 2.50GHz CPU with 4GB RAM. The colon surface used for our testing

has 200K faces. Our method is efficient and effective. Table 1 shows the statistics

for the conformal mapping of each segment. We cut each segment open by the

corresponding taeniae coli and map it to a rectangle by the discrete Ricci flow

method. Different segments will have different sizes of rectangles, e.g., the ratio

between the height and the width of the rectangle, the so-called conformal module.
Conformal module is a conformal invariant. Surfaces with the same conformal

module are conformal to each other. Table 2 shows the conformal modules for

5 corresponding supine and prone segments, respectively, where the different

conformal modules verify that the supine and prone colon surfaces are not confor-

mal, but with nonrigid elastic deformations.

We evaluate our registration results using two methods. The first is an objective

analytic evaluation, whereby distances between corresponding points on the regis-

tered colons are calculated. The second method is a more subjective visual

Fig. 16 Visualization of the quasi-conformality (II). The quasi-conformality of the deformation is

also visualized by the texture mapping sequences (c) and (d)
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verification, whereby we observe the correct alignment of corresponding features

in both flattened 2D views and endoluminal views using our consistent view

camera mapping.

Analytic Registration Evaluation

Our first evaluation is a distance measurement between corresponding features

located on the registered colon surfaces. Since our registration is in the 2D space

using the flattened colon surfaces, a point (x,y,z) in ℝ3 on the original colon surface

will be at a location (u,v) inℝ2 on the registered surface. Thus, for a point p0¼ (up,vp)
on the supine colon surface and its corresponding point q0 ¼ (uq,vq) on the prone

colon surface, a perfect registration with zero error is present when up ¼ uq and vp ¼
vq. For two corresponding points, we compute the L2 norm of their 2D coordinates

with the width of the flattened images fixed to a unit length of 1. Note that the width

along the flattened image is equivalent to the colon circumference for that location.

We also compute the 3D distance error in millimeters. For the two corresponding

points p0 and q0 inℝ
2, we know their locations r0 and s0 inℝ

3. If we take the supine

surface (containing p0) as the truth and wish to measure the registration error on the

prone surface (containing q0), we can identify the point p1 ¼ (uq,vq) in ℝ2 on the

supine surface and similarly its location r1 in ℝ3. The distance error in millimeters

is then given to be jr1 � r0j.

Table 1 Statistics for

conformal mapping
Colon Segment # Vertices # Faces Time(s)

Supine Ascending (A) 35,251 70,366 21

Transverse (T) 43,255 86,364 27

Descending (D) 44,910 89,659 23

Sigmoid (S) 37,237 74,296 22

Rectum (R) 39,712 79,315 23

Prone Ascending (A) 36,629 73,139 20

Transverse (T) 42,452 84,781 25

Descending (D) 44,587 88,981 26

Sigmoid (S) 38,499 76,823 22

Rectum (R) 38,177 76,276 23

Table 2 Conformal modulus

comparison between the

corresponding supine and

prone segments

Segment M o d of Supine M o d of Prone

Ascending (A) 5.41089 3.85803

Transverse (T) 6.20148 5.87936

Descending (D) 7.77978 6.15164

Sigmoid (S) 3.77068 3.89906

Rectum (R) 3.62033 3.46039

The conformal module for each segment is defined as the ratio of

height and width of the flat rectangle map, Mod ¼height/width.

The corresponding segments are not conformally equivalent
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We obtain the corresponding feature points for evaluation in two ways. The first

is by manually identifying points of interest (e.g., a polyp) on both colon surfaces.

We manually select the center of polyps on the registered flat images. For the polyp

shown in Fig. 13, the distance error is 0.0265 in ℝ2 and 5.31 mm in ℝ3. We have

evaluated our algorithm using a total of 20 pairs on 6 datasets, and the average

distance error is 0.0305 in ℝ2 and 5.65 mm in ℝ3.

Our second method of finding corresponding points is to use a subset (half) of the

whole features. We use these features for evaluation purposes, and only the

remaining half are used in the harmonic mapping step. Note that this inherently

reduces the quality of the registration, and thus a registration using all feature points

will contain less error. We generally computed 16 pairs of feature points for each

segment, about 2 feature points along one folding with obvious correspondence. For

the registration shown in Fig. 13, the distance error in terms of feature points

evaluation is computed to be 0.0325 in ℝ2 and 7.51 mm in ℝ3. The average ℝ3

distance on 6 datasets is 7.85 mm.

A comparison between our method and other methods is performed using our

analytic evaluation results in ℝ3. For those papers that present their distance error,

we compare our results with their results in Table 3. Our method produces a

registration with significantly smaller distance error between corresponding points

than other methods.

Visual Registration Verification

Perhaps a better indicator of the utility of our registration is a visual evaluation of

the results, as this mimics most closely how the user of a VC system would use our

results. For this, we utilized both the flattened rendering and the 3D correlated

endoluminal renderings. In our experience, the correlation between the flattened

renderings was good, as was the endoluminal views. In Fig. 13, we show three

supine-prone colon segments, flat rendered, both unregistered and registered. The

images of the registered segments clearly show very good alignment of the supine

and prone colon structures, whereas the unregistered segments show poor alignment.

Table 3 Comparison of

average distance error

between our quasi-conformal

registration method and other

registration methods

Methods Dist. Error

Our Quasi-Conformal Mapping 7.85 mm

Centerline registration + statistical analysis

(Li et al. [53]) 12.66 mm

Linear stretching / shrinking of centerline

(Acar et al. [11]) 13.20 mm

Centerline feature matching + lumen deformation

(Suh and Wyatt. [21]) 13.77 mm

Centerline point correlation

(de Vries et al. [12]) 20.00 mm

Taeniae coli correlation

(Huang et al. [18]) 23.33 mm
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We have also shown our results to a radiologist who was involved with the early

conception of the VC system and thus has over ten years of experience in reading

them. He noted that the flat rendering was realistic, and that the anatomy between

supine and prone was easily compared and well correlated. He also noted the good

correlation between the endoluminal views, and gave his opinion that such views

were easier to compare than the flattened views due to his greater familiarity with

them (he had not been exposed to flattened rendering prior to viewing this work).

Analysis and Discussion

The deformation between supine and prone scans of the colon surface is elastic, and

from physics, elastic deformations are quasi-conformal. Therefore, in principle, our

geometric model derives from the real biophysical properties of the muscle. Intu-

itively, the deformation at each point is determined by the elasticity properties of

the colon surface, which are fully represented by the Beltrami coefficients. The

physical property is fully encoded in the Beltrami coefficient function.

Previous works have most often focused on centerline alignment. The ground

truth for colon deformation is the entire surface deformation, the centerline conveys

only very limited information. Since our method uses the surface instead of the

centerline, it is expected that we achieve better results than the more crude

centerline methods, which has been shown in Table 3.

For the method of registration based on global deformation [22], a deformation

field is defined for the whole volume which includes the volume inside the colon

surface. Our method focuses on the intrinsic surface deformation itself. In reality,

different colon surface parts can touch each other, and this kind of deformation

cannot be captured by a method based on global deformation. In addition, volu-

metric deformation requires much higher storage requirements, and the resolution

of the deformation field on the surface is much lower. Our method only considers

the surface, and thus it has much more efficient storage and much higher resolution

for the conformal field.

We can use the proposed method to register colons as a whole, instead of

segmenting them into 5 segments. Then flexure landmarks can be used as internal

features in the computation of harmonic map.

Conclusions and Future Work

Shape registration is very fundamental for shape analysis problems, especially for

abnormality detection in medical applications. We introduce an efficient frame-

work for the registration of supine and prone colons, through the use of conformal

geometry, to improve the accuracy of polyp detection. With the automatically

extracted anatomical landmarks, namely the taeniae coli and flexures, we
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consistently segment the colon surface and conformally flatten the colon surfaces to

the rectangular domain using the discrete surface Ricci flow method. Then we align

the flattened domains by adjusting the conformal mapping to be quasi-conformal

through the harmonic map with feature constraints. We demonstrate the efficiency

of our method by both analytic evaluation and the 2D and 3D consistent registration

views. The Beltrami coefficient is employed to analyze the physical deformation of

the colon muscle and tissue.

With the ability to measure and view the elastic distortion between segments of

the supine and prone colons, we are seeking further outlets to which this work can

be applied. We are looking at applying this registration to our CAD work to achieve

better sensitivity and specificity. Additionally, we are looking to extend our work

from 2D surface registration to 3D volumetric registration for colon wall segmen-

tations which contain thickness.
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Efficient Topological Cleaning for Visual

Colon Surface Flattening

Wei Zeng, Rui Shi, Zhengyu Su, and David Xianfeng Gu

Abstract Conformalmapping provides a uniqueway to flatten the three-dimensional

(3D) anatomically complicated colon wall. Visualizing the flattened 2D colon wall

supplies an alternative means for the task of detecting abnormality as compared to

the conventional endoscopic views. In addition to the visualization, the flattened

colon wall carries supplementary geometry and texture information for computer-

aided detection of abnormality. It is hypothesized that utilizing both the original 3D

and the flattened 2D colon walls shall improve the detection capacity of currently

available computed tomography colonography. One of the major challenges for the

conformal colon flattening is how to make the input colon wall inner surface to be

genus zero, as this is required by the flatten algorithm and will guarantee high flatten

quality. This paper describes an efficient topological cleaning algorithm for the

conformal colon flattening pipeline. Starting from a segmented colon wall, the

Marching Cube algorithm was first applied to generate the surface, then we apply

our topological clearance algorithm to remove the topological outliers to guarantee

the output surface is exactly genus 0. The cleared or denoised colon surface was then

flattened by a Ricci flow. The pipeline was tested by 14 patient datasets with

comparison to our previous work.
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Introduction

Virtual colonoscopy (VC), mimicking the conventional optical colonoscopy (OC),

is a medical imaging procedure which uses X-rays or magnetic resonance

(MR) signals and computers (1) to produce two- and three-dimensional

(3D) images of the colon (large intestine) from the lowest part, i.e., the rectum,

all the way toward the lower end (i.e., the cecum) of the small intestine and (2) to

visualize the colon mucosal surface by endoscopic views on a screen [1, 2]. The

procedure has shown the potential to screen colonic polyps and detect colon

diseases, including diverticulosis and cancer [3].

Traditional paradigm in VC employs X-ray computed tomography or computed

tomography colonography (CTC) to achieve the tasks of screening and detection due

to the high speed of CT scanning and high contrast between colon wall and colon

lumen filled by CO2 or air in CT images. While MR colonography (MRC) has an

attractive point of non-ionization radiation [4], it faces several drawbacks, e.g.,

lower spatial resolution, prone to motion artifacts, and noticeable susceptibility

artifacts on the interface between air and tissue/colon wall. Therefore, MRC remains

in the early research development stage, while CTC has been successfully demon-

strated to be more convenient and efficient than OC as a screening modality [3].

A combination of VC screening with OC follow-up for therapeutic intervention

could be a cost-effective means to prevent the deadly disease of colon cancer.

However, because of the length of the colon with complicated structures,

inspecting the entire colon wall is time consuming and prone to errors by current

VC technologies. Moreover, because of the complicated colon structure, the field-

of-view (FOV) of the VC endoscopic views is limited, resulting in incomplete

examinations. Flattening the 3D wall into a 2D image would effectively increase

the FOV and provide supplementary information to the VC endoscopic views [5].

Thereafter, various flattening techniques [6–11] have been developed, among which

the conformal mapping algorithm [8, 10] showed advantages in generating 2D colon

wall image with minimal distortion by preserving the structural angles.

Paik et al. [9] used cartographic projections to project the whole solid angle of

the camera. This approach samples the solid angle of the camera and maps it onto a

cylinder which is finally mapped to a 2D planar image. However, this method

causes distortions in shape. Bartrol et al. [7] moved a camera along the central path

of the colon. However, this approach does not provide a complete overview of the

colon. Haker et al. [5] employed certain angle-preserving mappings, based on a

discretization of the Laplace–Beltrami operator, to flatten a surface onto a plane in

a manner which preserves the local geometry. However, the flattened result of their

method is not efficient for applications like polyp identification, and it requires a

highly accurate and smooth surface mesh to achieve a good mean-curvature

calculation. Wang et al. [11] explored a volume-based flattening strategy to visu-

alize the textures of the original 3D colon wall in the flattened 2D image. However,

the distance-based mapping may not be accurate enough for detection of small

polyps. The associated computation is intensive.
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Hong et al. [8, 12] utilized conformal structure to flatten the colon wall onto a

planar image. Their method is angle preserving and minimizes the global distortion.

First, the colon wall is segmented and extracted from the CTC image dataset. The

topology noise (i.e., minute handle) is removed by a volumetric algorithm.

The holomorphic 1-form, a pair of orthogonal vector fields, is then computed on

the 3D colon surface mesh using the conjugate gradient method. The colon surface is

cut along a vertical trajectory traced using the holomorphic 1-form. Consequently,

the 3D colon surface is conformal mapped onto a 2D rectangle. The flattened 2D

mesh is then rendered using a direct volume rendering method accelerated with the

GPU strategy. For applications like polyp detection, the shape of the polyps is well

preserved on the flattened colon images, and thus provides an efficient way to

enhance the navigation of a virtual colonoscopy system.

Unfortunately, the denoise algorithm in [8, 12] cannot always get genus 0 surface

(actually only one case succeeds out of 14). In this paper, topological denoise is

solved by our new algorithm, which guarantees the output surface to be genus 0.

This efficient denoise algorithm greatly improved the efficiency and accuracy and

deliver comparable flattening results.

Topological Denoise Framework

Figure 1 shows the colon flattening pipeline with and without the topological

denoise. From acquired CTC datasets, our first task was to segment each image

data volume and extract the corresponding colon wall. This was achieved by a

statistical maximum a posteriori expectation-maximization (MAP-EM) algorithm

[13]. Then a triangle mesh of the colon wall mucosal surface was generated by the

standard Marching Cube algorithm. To remove topology handles, we apply a

surface-based denoise algorithm. In our present pipeline, the Marching Cube

algorithm was applied prior to topological denoising. After denoising, we devel-

oped Ricci flow method to perform the conformal flattening task.

Conformal mapping has many unique properties in flattening the colon wall, as

shown in [8]. However, as we mentioned, previous denoise methods cannot guar-

antee the output surface is genus 0. Our contribution: we developed and applied a

new topological denoise algorithm, which is very efficient and can guarantee the

output surface to be genus 0.

CTC data

Denoise
(New Method)

Conformal Flattening

Marching
Cube 2D MeshMAP-EM

Conformal
Flattening

Denoise
(Old Method) Smoothing

Fig. 1 Pipeline for our previous and current methods
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Surface Topology

This section briefly introduces the background knowledge in surface topology,

especially algebraic topology theory.

Homotopy

A surface S is a two-dimensional manifold, a path is a continuous map from the unit

interval to the surface,

γ : ½0; 1� ! S;

Two paths γ0,γ1 are homotopic, if there exists a homotopy between them,

Fðt; �Þ : ½0; 1� � ½0; 1� ! S;

such that

Fð0; �Þ ¼ γ0ð�Þ;Fð1; �Þ ¼ γ1ð�Þ;
and denoted as γ0 � γ1. Intuitively, if two paths can deform from one to the other

without leaving the surface, then they are homotopic (Fig. 2).

A path is called a loop, if its end point coincides with its starting point γ(0) ¼
γ(1). A special loop is called a trivial loop,

eðtÞ ¼ p; 8t 2 ½0; 1�:

Consider all the loops through a fixed base point p ∈ S,

L :¼ fγ : ½0; 1� ! Sjγð0Þ ¼ γð1Þ ¼ pg;

we use [γ] to denote the homotopy class of a loop γ. Then the loop space ℒ can be

classified by the homotopy relation, the quotient space

L= �¼ f½γ�jγ 2 Lg

has a natural group structure.

γ

α

β

S

Fig. 2 α is homotopic

to β, but not homotopic to γ
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We define the product of two loops as the concatenation of them, operator � :
ℒ�ℒ!ℒ,

γ1 � γ2 ¼
γ1ð2t� 0Þ0 � t � 1=2

γ2ð2t� 1Þ1=2 � t � 1

(
(1)

It is obvious that the product of the trivial loop e(t)� p and any loop γ equals to γ
itself,

γ � e ¼ e � γ:

We reverse the orientation of a loop,

γ�1ðtÞ :¼ γð1� tÞ;

then γ�1 is the inverse of γ,

γ�1 � γ ¼ γ � γ�1 ¼ e:

It is easy to be verified, if γ1,γ2 are homotopic to ~γ1;~γ2, respectively, then

γ1 � γ2 � ~γ1 � ~γ2;

this means the product can be defined on homotopy classes without any ambiguity,

½γ1� � ½γ2� ¼ ½γ1 � γ2�;

and

½γ��1 ¼ ½γ�1�:
Therefore all homotopy classes of loops through a base point under the product

form a group, which is the so-called the first fundamental group of the surface, and
denoted as π1(S,p).

Fundamental Group

Definition 1 (Fundamental Group). All the homotopy classes of loops with base

point p under the product Eq. (1) form a group, the so-called fundamental group of

the surface, denoted as π1(S,p).
Let p, q ∈ S are two different base points on the surface. Let τ : [0,1] ! S is a

path connecting them, such that τ(0) ¼ p and τ(1) ¼ q. For each loop γ ∈ π1(S, p),
there is a unique loop ~γ 2 π1ðS; qÞ,
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~γ ¼ τ 	 γ 	 τ�1;

this gives an isomorphism between the two fundamental groups π1(S,p) and π1(S,q),

π1ðS; pÞffi π1ðS; qÞ;

therefore, the fundamental group is independent of the choice of the base point. So

we can omit the base point and simply denote the fundamental group as π1(S).
The fundamental group of a compact surface is finitely generated. Suppose

{γ1,γ2,. . .,γm} are the generators of π1(S,p), then any loop γ ∈ π1(S,p) can be

represented as

γ ¼ γn1i1 γ
nk
ik
� � � γnkik ;

where 1 � i1,i2,. . .,ik � m, and all powers n1,n2,. . .,nk are integers. We call such

representation of the loop a word. It is possible that some complicated words can

shrink to a point, namely, the product of generators may be trivial, we call all such

words relations.

Surfaces are connected sum of tori.

Definition 2 (Connected Sum). The connected sum S1# S2 is formed by deleting

the interior of disksDi� Si and attaching the resulting punctured surfaces Si�Di to

each other by a homeomorphism h : ∂ D1 ! ∂ D2, where Di represents the

boundary of Di. Let p ∈ D1 and q ∈ D2, p is equivalent to q, p � q if q ¼ h( p)
(Fig. 3). So

S1#S2 :¼ fðS1 � D1Þ [ ðS2 � D2Þg= � :

Theorem 3 (Classification for Compact Orientable Surface). Any closed
connected orientable surface is homeomorphic to either a sphere or a finite
connected sum of tori,

S ¼ S2#T1#T2 � � �#Tg;

where S2 is the unit sphere, Ti is a torus, i ¼ 1, 2,� � � , g. g is called the genus of the
surface, and each Ti is a handle.

∂D1 ∂D2

S1
S2

S1#S2

#

Fig. 3 Connected sum
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Intuitively, each handle is a torus Ti, which is the direct product of two circles,

Ti ¼ S1 � S1. We denote the first circle as ai and the second as bi, then all such pairs
{(ai,bi)} are the generators of π1(S,p).

Definition 4 (Canonical Fundamental Group Basis). A fundamental group basis

{a1,b1,a2,b2,. . .,ag,bg} is canonical, if

(1) ai and bi intersect at the same point p.
(2) ai and aj, bi and bj, ai and bj only touch at p.

As shown in Fig. 4, if we slice the surface along the canonical fundamental

group generators, we will get a 4g-gon. The boundary is

a1b1a
�1
1 b�1

1 a2b2a
�1
2 b�1

2 � � � agbga�1
g b�1

g

which can shrink to a point. For general compact orientable closed surfaces, the

following theorem holds:

Theorem 5 (Fundamental Groups of General Surfaces). The fundamental

group of the surface S ¼ S2#gT
2 is the group with generators {a1,b1,a2,b2,� � � ,

ag,bg} and one relation Πg
k¼1½ak; bk� ¼ e, where ½a; b� ¼ aba�1b�1.

Covering Spaces

Definition 6 (Covering Space). Let π : ~S ! M be a continuous map and π is onto.
Suppose for all q ∈ S, there is an open neighborhood U of q such that

π�1ðUÞ ¼ [j2J ~Uj;

for some collection f ~Uj; j 2 Jg of subsets of ~S satisfying ~Uj \ ~Uk ¼ if j6¼k, and with

pj ~Uj
: ~Uj ! U a homeomorphism for each j ∈ J. Then p : ~S ! M is a covering.

The automorphisms of the covering space which are commutative with the

projection are called deck transformations.

a1

b1

a2

b2 a1

b1

a−1
1

b−1
1

a2
b2

a−1
2

b−1
2

q

Fig. 4 Canonical fundamental group generator
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Definition 7 (Deck Transformation). Suppose π : ~S ! S is a covering. An

automorphism τ : ~S ! ~S is called a deck transformation if π ∘ τ ¼ π.
All the deck transformations form a group Deckð~SÞ , the deck transformation

group. S is homeomorphic to the quotient space

~S=Deckð~SÞffi S:

Definition 8 (Fundamental Domain). A closed subset D 2 ~S is called a funda-

mental domain of the Deckð~SÞ, if

~S ¼
[

τ2Deck
τD;

~S is the union of conjugates of D, and the intersection of any two conjugates has no

interior.

Among all covering spaces for a given surface, the one with the simplest

topology is the so-called universal covering.

Definition 9 (Universal Covering). Suppose π : ~S ! S is a covering. If ~S is simply

connected (π1ð ~M; ~qÞ ¼ hei), then the covering is the universal covering.
The universal covering space can be constructed explicitly as the follows:

~S :¼ fγ : ½0; 1� ! Sjγð0Þ ¼ pg= �

namely, the space of all homotopy classes of paths starting from the base point p is

isomorphic to the universal covering space of the surface.

Theorem 10 (Universal Covering Space for Surfaces). The universal covering

spaces of orientable closed surfaces are sphere S2 (genus zero), plane E2 (genus
one), and disk ℍ2 (high genus).

Geodesics and Cut Locus

Suppose the surface is with a Riemannian metric g ¼ (gi j), then it determines the

Levi–Civita connection. The connection is represented by the Christoffel symbols

Γi
kl ¼

1

2
gim

@gmk
@xl

þ @gml
@xk

� @gkl
@xm

� �

Suppose v ¼ viei and u ¼ ujej, then

rvu ¼ rviei u
jej ¼ virei u

jej ¼ viujreiej þ viejrei uj
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therefore

rvu ¼ viujΓk
ij þ vi

@uk

@xi

� �
ek:

Definition 11 (Geodesic). Suppose γ : [0,1] ! (S,g) is a path on the surface, if it

satisfies

r _γ _γ � 0;

then γ is a geodesic.
The geodesic is fully determined by the starting point γ(0) and the initial tangent

direction _γð0Þ. For any point p ∈ S, and tangent direction v ∈ TpS, there exists a

unique geodesic γ(t) ¼ γ(t;p,v), such that γ(0) ¼ p and _γð0Þ ¼ v.

Definition 12 (Exponential map). The exponential map is defined as

expp : TpS ! S; v ¼ γð1; p; vÞ:

We fix the base point p, and issue geodesics from p, until the boundary of the

geodesic disk meets itself. The locus where the geodesic front meets is the cut locus.

Definition 13 (Cut locus). Fix a point p∈ S, the cut locus is the closure of points q,
where the exponential map e x pp is not diffeomorphic at q.

The cut locus forms a graph, the surface removes the cut locus is a

topological disk.

Surface Ricci Flow

Suppose S is a surface in three-dimensional Euclidean space ℝ3, therefore it has

naturally the induced Euclidean metric g. The Gaussian curvature is determined by

the Riemannian metric g, and satisfies the following Gauss–Bonnet theorem:

Theorem 14 (Gauss–Bonnet Theorem) The total Gaussian curvature of a closed
metric surface is Z

S

KdA ¼ 2πχðSÞ;

where χ(S) is the Euler number, which equals to χðSÞ ¼ 2� 2g for closed surface
with genus g.

Ricci flow is a powerful curvature flow method invented by Hamilton [14] for

the purpose of proving Poincaré’s conjecture. Intuitively, it describes the process to
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deform the Riemannian metric according to curvature such that the curvature

evolves like a heat diffusion process:

dg

dt
¼ �2Kg: (2)

The convergence of surface Ricci flow was also proved in [14].

Theorem 15 Suppose S is a closed surface with a Riemannian metric. If the total
area is preserved, the surface Ricci flow will converge to a Riemannian metric of
constant Gaussian curvature [14].

Figure 5 shows the conformal parameterization of colon surface computed by

Ricci flow, which preserves angle.

Algorithm

Topological Denoise

In previous works like [8], the denoise process started from the segmentation of the

colon incorporated the simple point concept in a region growing based algorithm to

extract a topologically simple segmentation of the colon lumen.However, the denoise

algorithm cannot guarantee the output surface is genus 0 in practice, so we developed

a new efficient surface-based denoise algorithm to remove the topological noise. As

our method find tiny handles based on surface topology and remove them one by one,

the final surface is guaranteed to be genus 0. The pipeline is like the following:

Fig. 5 Conformal Mapping

preserves angle: the angle

on the texture domain is

well preserved after mapped

to the surface, so the shape

information of colon

surface is well preserved
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Algorithm 1: Topological Denoise Algorithm

Input: Surfaces M.

Output: Genus 0 surface �M.

1. Compute the homotopy basis G of M using Algorithm 2.

2. For each point p on homotopy basis G, grow a patch P.
3. Find the shortest homotopy loop pl starts at p in patch P.
4. Find the shortest loop m i n{pl} among all the vertices on G.

5. Cut M along m i n{pl} and fill the 2 holes appeared, get �M.

6. If �M is not genus 0, goto step 1.

The idea of efficient topological denoise algorithm is like following: we can

compute the shortest loop goes though vertex v for all the vertices in mesh M, then

find the shortest one among them, it must be the shortest handle loop in M.

Furthermore, all the handles of a surface must be “go around” by the homotopy

basis. As a result, we just need to compute the shortest loops for vertices on the

homotopy basis G instead of all vertices of surface M, which leads to a 10 times

speedup. Compared to the old voxel-based denoise algorithm, our surface-based

method is much faster and guarantees the output surface to be exactly genus

0. Figure 6 shows a tiny handle went though by the homotopy basis.

A homotopy basis at s can be thought of as a homology basis where all

loops meet at a common vertex s, called the basepoint. Erickson and

Whittlesey [15] proved that a shortest homotopy basis at a point on a mesh

with n vertices can be computed in O(n l o g n) time. Figure 7 shows the

homotopy basis for genus 1 surface, Algorithm 2 gives the algorithm for com-

puting the homotopy basis:

Fig. 6 A typical tiny hole

and the homotopy basis

(labeled by yellow line)
goes around it
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Algorithm 2: Homotopy Basis Algorithm

Input: Surfaces M.

Output: The homotopy basis G of �M.

1. Find the maximum spanning tree T from a basepoint s.
2. Find a maximum spanning tree T∗ on the edges of the dual graph which do not

cross edges in T.
3. Find all edges {e1,e2. . . e2g} which are neither in T nor are crossed by

edges in T∗.
4. Find the loops containing each ei (using T ), these loops form the homotopy

basis.

Discrete Ricci Flow

The computation of the conformal mapping of a triangular mesh is based on the

discrete Ricci flow [16, 17], as Algorithm 3 shows.

Algorithm 3: Discrete Ricci Flow

Input: Surface M.

Output: The metric U of M.

1. Assign a circle at vertex vi with radius ri; For each edge [vi, vj ], two circles

intersect at an angle ϕij, called edge weight.

2. The edge length lij of [vi, vj ] is determined by the cosine law:

l2ij ¼ r2i þ r2j � 2rirjcosϕij

3. The angle θijk, related to each corner , is determined by the current edge

lengths with the inverse hyperbolic cosine law.

4. Compute the discrete Gaussian curvature Ki of each vertex vi:

(continued)

Fig. 7 Left: a and b are 2 homotopy basis for a genus 1 surface. Middle: The surface becomes a

topological disk after cut along the it’s homotopy basis. Right: Flatten the surface onto the plane
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Algorithm 3:Discrete Ricci Flow (continued)

Ki ¼
2π �

X
fijk2F

θjki ; interior vertex

π �
X
fijk2F

θjki ; boundary vertex

8>><
>>: (3)

where θijk represents the corner angle attached to vertex vi in the face fijk
5. Update the radius ri of each vertex vi: ri ¼ ri � EKiri
6. Repeat the step 2 through 5, until kKik of all vertices are less than a specific

error tolerance.

Applications and Experimental Results

Colon Flattening

As discussed, the Ricci flow method will deform the Riemannian metric to the

uniformization metric, which induces constant curvatures everywhere. This constant is

solely determined by the topology of the surface. In our case, the colon wall surface is a

topological cylinder. Hence, the uniformization metric induces zero Gaussian curvature

for the interior points, and a zero geodesic curvature along the boundaries. However, if

there are topological noises on the colon surface, commonly fake handles, then the Ricci

flowconverges to anegative constant curvaturemetric andhence the colon surface cannot

be conformally flattened onto the Euclidean plane, as shown in Fig. 8a. By running our

topological denoise algorithm, the flatten result becomes reasonably good for visualiza-

tion and geometry processing applications, as shown in Fig. 8b.

Fig. 8 The flattening of the ascending segment of the colon using (a) Run Ricci flow directly, and

(b) Run our denoise method to clean the topological noise first
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Visualization of Polyps

One of the important applications of using colon flattening is to provide a better

way for the physicians to visualize and sometimes even detect the polyps.

Especially, the polyps present behind the colon folds are hidden and missed

during the VC navigation of a 3D model. By using our method, all the shapes

on the colon surface are preserved even if the colon surface has many fake

handles. Therefore, the shape of the polyps is preserved and hence forms an

effective means of polyp visualization. Furthermore, the volume rendering of

the flattened colon provides a realistic rendering of the polyps. In addition, the

physicians can even zoom-in at the suspicious regions to confirm the location of

the polyps. Thus, even relatively smaller polyps can also be seen without any

problem.

Figure 10 shows a colon surface flattening result with topology cleaning and the

polyp detected. Figure 9 shows a closeup view of some of the polyps observed by

navigating along the flattened colon surface that is obtained using our method. As

you can see, the shape of all the polyps has been well preserved which is very

important for the polyp detection. Figure 9a shows a polyp of larger size, while

Fig. 9b shows a polyp of smaller size. Irrespective of their size all the polyps were

successfully captured. Figure 9c shows a polyp that is hidden behind a fold. It is

difficult to find such polyps by navigating inside the normal colon but by flattening

the colon, even the polyps hidden behind the colonic folds can be observed as

shown in Fig. 9c. In order to be able to inspect polyps of all sizes, we have rendered

the flattened colon using very high resolution of 12,000� 1,000. Some more polyps

found by using our method can be seen (shown in the yellow circles) in the top

Fig. 9 Closeup view of (a) large polyp, (b) small polyp, and (c) polyp behind a fold on the

flattened colon surface
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image of Fig. 11a, b. We have verified the locations of all the polyps by checking

with both the OC and VC reports provided by the Walter Reed Army Medical

Center for all the colon models. The inspection of the flat colon will only help us to

mark the suspicious locations. Not all these locations might be polyps. Hence, note

that by providing a flattened colon visualization, we are only providing a

better means of navigation to look for the suspicious locations so that no areas of

the colon are missed. We do not provide an automatic way of polyp detection.

By performing further analysis on this flattened colon such as the size, shape,

and density analysis we can detect the polyps automatically which we plan to do

in the future.

Fig. 11 Visualization of the registration results for the ascending segment of (a) supine and (b)

prone. Yellow circles locate the polyps

Fig. 10 Topological cleaning. (a) The 3D colon model with topological noise such as handles.

A close-up of the handle can be seen. (b) The corresponding flattening of the 3D colon to 2D

rectangle after running our cleaning method. A closeup view of a polyp that is behind a fold on the

flattened colon surface can be seen
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Colon Registration

Our topological noise algorithm can also benefit colon surface registration. We first

run our denoise algorithm to remove all fake handles, then run the state-of-the-art

flattening and quasi-conformal registration. Hence, we are able to register supine

and prone colons, even in the case when the colon surfaces have lots of handles as

shown in Fig. 11.

Figure 11 shows the supine and prone colon registration result of the ascending

segment of a colon model (with handles) using quasi-conformal mapping. There are

two polyps in the colon segment (shown in the yellow circles) of Fig. 11 and we can

see a good visual correspondence between the locations of both the polyps in supine

and prone. For the analytical evaluation, we followed a similar approach in [18] and

computed the distance error in millimeters for all the six registration results. The

average distance error is 8.14 mm, which is reasonably good.

Experiment Result

CTC datasets was random selected from a database. The presented algorithm was

implemented in a similar manner as the previous algorithm [8] for a fair compar-

ison. These algorithms were executed on a PC platform of Intel Xeon X5450

3.0GHz CPU and 8.00 GB RAM. To get the maximum quality, we use the original

un-simplified mesh for conformal mapping. The triangle number of the 14 datasets

ranges from 700 to 1,200 k. The method in [8] can only find around half of the

handles, while our method can completely remove all the handles. Table 1 shows

Table 1 Denoise results and time efficiency

Data

Index

#Mesh

triangles

# Handles removed

by our method

# Handles removed

by [8]

# Running

time

3033P 830 K 8 5 8.6 min

3033S 1,120 K 26 10 10.3 min

3034P 764 K 24 21 8.1 min

3034S 800 K 7 2 8.2 min

3035S 1,060 K 13 6 10.2 min

3036P 875 K 13 8 8.5 min

3037S 836 K 6 0 8.5 min

3038P 1,167 K 16 10 10.8 min

3039P 920 K 7 5 9.4 min

3039S 1,040 K 9 8 10.0 min

3041P 902 K 15 8 9.7 min

3041S 886 K 4 1 9.1 min

3043P 917 K 11 5 9.4 min

3053S 958 K 4 4 9.6 min
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the denoise result comparison between our method and the method in [8], as well as

the total running time for denoise and conformal flattening. Notice that only 1 out of

14 case (3053S) reached genus 0 using method in [8], which means most of the data

are not qualified as input of the conformal flattening algorithm, while all 14 reached

genus 0 using our denoise algorithm.

For the final colon image, Fig. 12 shows a whole flattened colon image processed

by our topological denoise algorithm. Figure 13 shows the flattening results for

more colons denoised by our algorithm.

Fig. 12 Whole flattened colon image processed by our denoise algorithm Yellow circles locate the
polyps
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Fig. 13 Flattened results for more datasets processed by our denoise algorithm
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Fig. 13 (continued)
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Discussion

The key parts of our method is the new efficient topological denoise algorithm. Our

new topological denoise algorithm guarantees the output to be exactly genus 0. As a

result, the whole mapping process becomes much faster and more stable.
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Towards Self-Parameterized Active

Contours for Medical Image Segmentation

with Emphasis on Abdomen

Eleftheria A. Mylona, Michalis A. Savelonas, and Dimitris Maroulis

Abstract Medical doctors are typically required to segment medical images by

means of computational tools, which suffer from parameters that are empirically

selected through a cumbersome and time-consuming process. This chapter presents

a framework for automated parameterization of region-based active contour regu-

larization and data fidelity terms, which aims to relieve medical doctors from this

process, as well as to enhance objectivity and reproducibility. Leaned on an

observed isomorphism between the eigenvalues of structure tensors and active

contour parameters, the presented framework automatically adjusts active contour

parameters so as to reflect the orientation coherence in edge regions by means of the

“orientation entropy.” To this end, the active contour is repelled from randomly

oriented edge regions and is navigated towards structured ones, accelerating contour

convergence. Experiments are conducted on abdominal imaging domains, which

include colon and lung images. The experimental evaluation demonstrates that the

presented framework is capable of speeding up contour convergence, whereas it

achieves high-quality segmentation results, albeit in an unsupervised fashion.

Introduction

Medical image segmentation is an essential instrument in computer-aided

diagnosis, being potentially crucial for localization of pathologies, study of

anatomical structures, computer-integrated surgery, and treatment planning.

In particular, abdominal image segmentation allows medical doctors (MDs) to

investigate abdominal organs, as visualized by noninvasive imaging modalities.

As part of their clinical diagnosis, MDs are typically required to examine and
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interpret abdominal images obtained by CT scans, in order to extract vital informa-

tion on abdominal organs, which is associated with their anatomy and pathology.

Although such images may contain detailed information, they are often plagued

by noise, artifacts, as well as heterogeneity, which yield to inhomogeneous

background.

Medical image segmentation has to be a robust and reproducible process without

human intervention, so as to substantially support diagnosis and clinical evaluation.

However, most segmentation methods are highly parametric, and human interven-

tion is often inevitable. In this regard, automatic medical image segmentation

techniques are in demand, so as to ease MDs’ workload and bolster the objectivity

of the segmentation results.

Region-based active contour models are widely applied for medical image

segmentation due to their inherent noise-filtering mechanism and their topological

adaptability. Moreover, they are robust to weak edges and intensity inhomogeneity

[1–4]. Researchers have developed various region-based active contour variations

for abdominal image segmentation. Dhalila et al. [5] propose a semiautomatic active

contour variation for the segmentation of the abdominal region of the human body.

In the first phase, user intervention is a prerequisite for manual segmentation of a

certain number of slices, whereas in the second phase, segmentation is automatic.

Jiang et al. [6] propose an approach based on active contour for segmentation of the

liver region in abdominal CT images. The active contour model is combined with

threshold and morphology-based techniques in order to extract the initial contour

and segment the liver slice by slice. Plajer et al. [7] present an active contour

algorithm for lung tumor segmentation in 3D-CT image data. The algorithm is

based on a mixed internal–external force as well as on a cluster function.

The development of such powerful computational tools contributes to the early

diagnosis of the pathology in abdominal organs. However, the vast majority of

these tools are dominated by parameters, and although these parameters have a

major impact on the segmentation quality, they are empirically determined through

the tedious and time-consuming process of trial and error. Parameters are often

selected on the basis of a limited amount of experimental results and the visual

impression of the domain user, whereas they may be valid for a specific dataset.

To this end, the objectivity and reproducibility of the segmentation results are

highly questioned. Furthermore, empirical parameterization presumes certain

technical knowledge by the end user with respect to the algorithm’s intrinsic

mechanisms. Nevertheless, this is not the case in the context of medical imaging

where the end user is usually a MD.

Previous Work

Several region-based active contour variations have been developed in order to

tackle with empirical parameterization. Ma and Yu [8] attempt to balance region-

based forces by means of mathematical morphology without separately adjusting
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each individual parameter. McIntosh and Hamarneh [9] adapt regularization

weights across a set of images. Although one weight value may be optimal for

some regions in an image, it may not be optimal for all regions. Erdem and Tari [10]

and Kokkinos et al. [11] focus on edge consistency and texture cues by utilizing

data-driven local cues. However, certain technical knowledge by the domain user is

still required. Pluemptiwiriyaweg et al. [12] and Tsai et al. [13] dynamically update

active contour parameters during contour evolution. Nonetheless, possible errone-

ous behavior of the contour in the early stages of evolution, with effects on

convergence, has not been considered. Furthermore, parameters are not spatially

adaptive, failing to capture local image content. Keuper et al. [14] and Liu et al. [15]

propose a method for dynamic adjustment of active contour parameters, applicable

on the detection of cell nuclei and lip boundaries, respectively. Both methods

require a priori knowledge considering the shape of the target region. Iakovidis

et al. [16] and Hsu et al. [17] introduce a framework for optimization of active

contour parameters based on genetic algorithms. However, these heuristic

approaches converge slowly in locally optimal solutions. Allili et al. [18] present

an approach for estimating hyper-parameters capable of balancing the contribution

of boundary and region-based terms. In their approach, empirical parameter tuning

is still involved. Yushkevich et al. [19] develop an application for level-set seg-

mentation of anatomical structures. Although their GUI is friendly to non-expert

users, parameter settings are still empirically determined. Dong et al. [20] present

an algorithm to capture brain aneurysms from the vascular tree, by varying the

regularization term based on the surface curvature of a pre-segmented vessel.

However, the regularization weight does not rely on image content. On the con-

trary, it depends on the shape of the target region, thus limiting the applicability of

the method on different target shapes.

This chapter presents a framework for automated parameterization of

region-based active contours, which is applicable on medical image segmentation.

The presented framework is inspired by the observation of an isomorphism between

the eigenvalues of structure tensors and the active contour regularization and data

fidelity parameters. The latter are capable of describing the orientation coherence of

edge regions similarly to the former by means of the measure called orientation

entropy (OE). This measure obtains low values in structured regions, which contain

edges with low orientation variability, and high values in unstructured regions,

which contain edges of multiple orientations. Accordingly, OE is capable to adjust

forces driving the contour away from unstructured edge regions and guide it

towards more structured ones, which are naturally associated with the boundaries

of medical objects. Hence, iterations dedicated to false local minima are bypassed,

speeding up contour convergence.

The presented framework aims to:

(a) Relieve MDs from the cumbersome and time-consuming process of empirical

parameterization

(b) Cope well with the large variability of the shape of target regions in abdominal

images
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(c) Remain insensitive to noise, artifacts, and heterogeneity

(d) Provide objectivity and reproducibility

Parameter-Adjustment Framework

The presented parameter-adjustment framework exploits the attractive properties

of structure tensor eigenvalues.

Structure Tensors

Structure tensors [21] have been extensively utilized in image analysis for various

tasks such as anisotropic filtering [22] and motion detection [23].

In Weickert’s diffusion model [24], the structure tensor D is a symmetric,

semi-positive 2 � 2 matrix (also called “second-moment matrix”), capable of

describing the orientation coherence of an edge region and is defined as

D ¼ v1 v2ð Þ λ1 0

0 λ2

� �
v1 v2ð ÞT ¼ dx dyð Þ Ixx Ixy

Iyx Iyy

� �
dx dyð ÞT (1)

where I is the input image, v1, v2 are orthonormal eigenvectors, and λ1, λ2 are the
corresponding eigenvalues given by

λ1,2 ¼ 1

2
Ixx þ Iyy �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ixx � Iyy
� �2 þ 4I2xy

q� �
(2)

where the + sign belongs to λ1. The eigenvectors and eigenvalues of the structure

tensor reflect the local orientation of edge regions. The eigenvectors form the

orthogonal basis so that the variance of the projection on one of the tensor’s

axes is maximal and the projection on one of the remaining axes is minimal [25].

The eigenvalues describe the orientation coherence along the corresponding

eigenvectors. It is worth to be noted that λ1 is the principal eigenvalue and is

longitudinal with respect to the principal axis of the tensor ellipsoid, whereas

λ2 is the minor eigenvalue and is vertical with respect to the same principal axis.

Figure 1 depicts an elliptical representation of a 2D structure tensor.

Providing that an image region contains either edges of approximately the same

orientation, or edges of multiple orientations, it can be identified by means of a

structure tensor as a structured or unstructured edge region, respectively. The

boundaries of medical objects are naturally associated with structured edge regions,

whereas unstructured edge regions are associated with noise, artifacts, and/or

background clutter. In this light, structure tensors are capable of providing maps

of target and nontarget edge regions in the context of a medical imaging application.
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Region-Based Active Contours

The energy functional of the region-based active contours that is minimized can be

written as follows:

Etotal ¼ wreg � Ereg þ wdf � Edf (3)

where Ereg and Edf are the regularization and data fidelity energy terms,

respectively, whereas wreg and wdf are the corresponding weighting parameters.

Energy terms are scalar functions, which most often discard any information

associated with the orientation coherence of edge regions. However, forces guiding

contour evolution are vectors which are affected by the orientation coherence

of edges.

Regularization forces are tangent with respect to the principal axis of the

contour, whereas data fidelity forces are vertical, attracting the contour towards

target edges. Providing that the contour is initialized as an ellipsoid, the regulariza-

tion weight wreg is longitudinal with respect to the principal axis of the contour,

whereas the data fidelity weight wdf is vertical with respect to the same principal

axis. Figure 2 depicts an elliptical representation of an active contour.

It can be noted that the regularization weight wreg corresponds to the same

direction as the principal eigenvalue λ1, whereas the data fidelity weight wdf

corresponds to the same direction as the minor eigenvalue λ2. This isomorphism

associates the regularization and data fidelity parameters with the eigenvalues of the

structure tensor.

Fig. 1 Elliptical

representation of a 2D

structure tensor

Fig. 2 Elliptical

representation of active

contour
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Orientation Estimation

Inspired by the aforementioned observation, regularization and data fidelity

parameters of region-based active contours are automated in order to reflect the

orientation coherence of edge regions, in a similar fashion to Weickert’s diffusion

model [24]. The orientation coherence is estimated by means of the orientation

entropy (OE). The latter is calculated on directional subbands in each scale of the

contourlet transform (CTr) [26], which, apart from intensity, also represents tex-

tural information. This approach provides an inherent filtering mechanism, capable

of filtering out randomly oriented edges associated with noise, artifacts, and/or

background clutter. Moreover, CTr is directly implemented in the discrete domain,

as opposed to similar transforms, such as curvelets [27].

The Contourlet Transform

CTr is an anisotropic directional image representation scheme, which effectively

quantifies diffusion over contour segments with varying elongated shapes and

directions. Aiming at a sparse image representation, it employs a double iterated

filter bank, which captures point discontinuities by means of the Laplacian pyramid

(LP) and obtains linear structures by linking these discontinuities with a directional

filter bank (DFB). The final result is an image expansion that uses basic contour

segments. Figure 3 illustrates a CTr iterated filter bank.

The downsampled low-pass and band-pass versions of the image contain lower

and higher frequencies, respectively. It is evident that the band-pass image contains

detailed information of point discontinuities which are associated with target edges.

Furthermore, DFB is implemented by an l-level binary tree which leads to 2l

Fig. 3 CTr iterated filter bank. LP provides a downsampled low-pass version and a band-pass

version of the image. Consequently, a DFB is applied to each band-pass image
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subbands. In the first stage, a two-channel quincunx filter bank [28] with fan filters

divides the 2D spectrum into vertical and horizontal directions.

In the second stage, a shearing operator reorders the samples. As a result,

different directional frequencies are captured at each decomposition level. The

number of iterations depends mainly on the size of the input image. The total

number of directional subbands Ktotal is calculated as

Ktotal ¼
XJ
j¼1

Kj (4)

where Kj is a subband DFB applied at the jth level (j ¼ 1, 2, . . ., J).
Figure 4 depicts the CTr filter bank applied on a sample grid of a lung CT scan,

decomposed to the finest and second finest scales which are partitioned into four

directional subbands. Each q � q image grid is fed into the CTr filter bank through

an iterative procedure. This grid must be appropriately selected in order to preserve

the orientation of the main structures of the target region. The band-pass directional

subbands represent the local image structure. It should be mentioned that the

presented framework is not confined in using CTr and could also embed alternative

multi-scale or multi-directional approaches for image representation.

In the context of the presented framework, OE is calculated for each subband

image Ijk as follows:

OEjk ¼ �
XNjk

n¼1

XMjk

m¼1

pjk m; nð Þ � logpjk m; nð Þ (5)

pjk m; nð Þ ¼
��Ijk m; nð Þ��2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNjk

n¼1

XMjk

m¼1

Ijk m; nð Þ� 	2
vuut

(6)

Fig. 4 CTr filter bank on a sample grid of a lung CT scan decomposed to two levels of LP and four

band-pass directional subbands
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where OEjk is the OE of the subband image Ijk in the kth direction and the jth
level of decomposition,Mjk is the row size, andNjk is the column size of the subband

image. OE obtains high and low values in cases of unstructured, nontarget and

structured, target edge regions, respectively. Figure 5a depicts a schematic repre-

sentation of several elliptical structure tensors consisting of single and multiple

orientations, whereas Fig. 5b depicts the OE behavior on each structure tensor

of Fig. 5a.

Automated Parameter Adjustment

Regularization and data fidelity parameters are automatically adjusted according to

the following equations:

wauto
reg / 1=wdfð Þ � N �M, wauto

df ¼ argIjkmax OEjk Ijk
� �� �

(7)

The core idea is to guide the active contour towards structured, target edge

regions in the early stages of evolution by appropriately amplifying data fidelity

forces in randomly oriented, high-entropy regions. As a result the contour will be

repelled and iterations dedicated to erroneous local minima will be bypassed,

speeding up contour convergence towards target edges. Equation (7) is an interpre-

tation of orientation entropy values adaptive to the orientation of data fidelity

forces. Apart from separately adjusting each parameter, the presented framework

also achieves a balanced trade-off between regularization and data fidelity

parameters. It should also be noticed that the automated parameterization is spa-

tially adaptive, so as to reflect local variations over the image.

Figure 6 illustrates the improvement in contour evolution achieved by the

presented framework as compared to the typical contour evolution obtained by

empirical parameterization. Figure 6a depicts a synthetic image containing a target

Fig. 5 Schematic representation of (a) elliptical structure tensors and (b) OE behavior on each

structure tensor
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region over an inhomogeneous background, resembling a typical medical image

case, whereas Fig. 6b depicts a sketch of orientation variability of the synthetic

image. Red arrows correspond to structured, target edge regions, whereas black

ones indicate unstructured, nontarget ones.

In the case of empirical parameterization, the contour will be trapped in false

local minima associated with background clutter in the early stages of evolution

(Fig. 6c). Since region-based forces (short white arrows) are uniformly weighted

irrespectively of OE, the contour will be kept away from target edge regions for

more iterations (Fig. 6d).

In the case of automated parameterization, OE is considered. For as long

as the contour lies in unstructured edge regions associated with background

clutter, OE obtains high values and the data fidelity parameter is increased. Thus,

region-based forces (long white arrows) are appropriately amplified, repelling the

contour away from such regions and navigating it towards more structured ones

(Fig. 6e). Once the contour approximates the vicinity of structured edge regions,

OE obtains low values and the data fidelity parameter is decreased. Hence, region-

based forces (short white arrows) are appropriately reduced in order to facilitate

convergence (Fig. 6f). To this end, contour convergence is achieved in less

iterations.

Fig. 6 Contour evolution of the presented framework vs. empirical parameterization, (a) syn-

thetic image, (b) sketch of orientation variability, (c, d) evolution of empirical parameterization,

and (e, f) evolution of the presented framework
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Results

The presented framework is embedded into the Chan–Vese model [29] by replacing

the optimal fixed parameters with the automatically adjusted parameters, in order to

evaluate the segmentation performance of the automated vs. the empirically fine-

tuned version. The Chan–Vese model determines the level set evolution by solving

the following equation:

∂ϕ
∂t

¼ wfixed
reg � δ ϕ x; yð Þð Þ � div ∇ϕ

∇ϕj j
� �

� wfixed
df I x; yð Þ � c1ð Þ2

þ wfixed
df I x; yð Þ � c2ð Þ2 (8)

where ϕ is the level set function, I the observed image, c1, c2 the average intensities

inside and outside of the contour, respectively, wfixed
reg the fixed regularization

parameter, and wfixed
df the fixed data fidelity parameter. For the empirical case, the

optimal parameters are set according to the original paper [29]. For the presented

framework, the regularization and data fidelity parameters are automatically calcu-

lated according to (7).

Experiments are conducted on three datasets consisting of abdominal imaging

modalities such as colon and lung images. Additional experiments are conducted on

one dataset containing mammographic images in order to evaluate the presented

framework on a different imaging modality comprising abnormalities of various

sizes and shapes. All imaging modalities were investigated by MD experts who

provided ground truth images.

The first dataset consists of 32 endoscopy frame images containing polyps

provided by the Gastroenterology Section, Department of Pathophysiology, Medi-

cal School, University of Athens, Greece, and partially by the Section for Minimal

Invasive Surgery, University of Tübingen, Germany. The endoscopic data was

acquired from sixty-six different patients with an Olympus CF-100 HL endoscope.

All frame images consist of small-size adenomatous polyps which are not easily

detectable and are more likely to become malignant.

The second dataset consists of 30 axial CT scans of the lung parenchyma

obtained by the lung image dataset consortium image collection (LIDC-IDRI)

[30]. The aim of segmentation is to separate the lung parenchyma from the

surrounding anatomy, which is typically impeded by airways or other “airway-

like” structures in the right and left lung. The segmentation result is used for the

computation of emphysema measures.

The third dataset consists of 26 CT scans of the thorax obtained by the NSCLC

Radiogenomics collection [30]. The segmentation result is used for the evaluation

of the condition of the lungs and for further physiological measurements.

The fourth dataset consists of 50 mammographic images containing

abnormalities randomly obtained by the Mini-MIAS dataset [31]. The background

tissue is characterized as (a) fatty, (b) fatty glandular, and (c) dense glandular,
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whereas the abnormality is classified as (a) well defined/circumscribed and (b) ill

defined. In terms of its severity, the abnormality is defined as either benign or

malignant. Figures 7, 8, 9, and 10 depict segmentation results obtained by the

automated version using the presented framework as well as by the empirical

version in the same iteration that the automated version has converged.

Fig. 7 (a–c) Endoscopy images containing polyps, (a1–c1) ground truth images, (a2–c2)

segmentations obtained by the empirically fine-tuned version, in the same iteration that the

automated version has converged, and (a3–c3) segmentation results of the automated version
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Considering Figs. 7, 8, 9, and 10 and by comparing sub-images (a2)–(c2) to

(a3)–(c3), it is evident that contour convergence is delayed in the empirically

fine-tuned version. However, in the automated version, contour convergence is

accelerated since the former is capable of distinguishing randomly oriented,

Fig. 8 (a–c) Lung CT scans, (a1–c1) ground truth images, (a2–c2) segmentations obtained by the

empirically fine-tuned version, in the same iteration that the automated version has converged, and

(a3–c3) segmentation results of the automated version
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high-entropy edges from target ones, as explained in Fig. 6. Region-based forces

which guide contour evolution are appropriately amplified in unstructured, nontar-

get edge regions driving the contour away. Hence, iterations dedicated to false local

minima, associated with such regions, are avoided.

Fig. 9 (a–c) Thorax CT scans, (a1–c1) ground truth images, (a2–c2) segmentations obtained by the

empirically fine-tuned version, in the same iteration that the automated version has converged, and

(a3–c3) segmentation results of the automated version
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Quantitative Evaluation

The experimental results are quantitatively evaluated by means of the region

overlap measure, known as the tanimoto coefficient (TC) [32], which is defined by:

TC ¼ N A \ Bð Þ
N A [ Bð Þ (9)

Fig. 10 (a–c) Mammographic images containing abnormalities, (a1–c1) ground truth images,

(a2–c2) segmentations obtained by the empirically fine-tuned version, in the same iteration that the

automated version has converged, and (a3–c3) segmentation results of the automated version
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where A is the region identified by the segmentation method under evaluation, B is

the ground truth region, and N() indicates the number of pixels of the enclosed

region. The automated version achieves an average TC value of 82.9 � 1.6 %,

which is comparable to the TC value of 80.7 � 1.8 % obtained by the empirically

fine-tuned version, with regards to all images tested. Nevertheless, the automated

version converges in 10–20 times less iterations. The empirically fine-tuned version

achieves a TC value of 52.4 � 11.3 %, in the same iteration that the automated
version has converged.

Table 1 shows, for each utilized dataset, the iterations that the automated version

has converged as well as TC values obtained by the empirical and automated

version, for these same iterations. Figure 11 compares the segmentation perfor-

mance of the automated vs. empirical parameterization for each utilized dataset

presented in Table 1.

The experimental results are also evaluated on the convergence rate of both

versions by means of the difference mean intensity value (DMI). DMI is calculated

between the inside and outside region terms of the contour according to the

following algorithm:

8 Iteration i

1. Calculate inside jI(x,y) � c1j2 and outside jI(x,y) � c2j2 region terms.

2. Normalize and quantize both terms in the range [0, 255].

3. Calculate mean values.

4. Calculate DMI.

Table 1 TC values obtained

by the empirical and

automated version, in

the iteration that the

latter has converged

Dataset Iterations

TC (%)

Empirical Automated

Endoscopy 6 51.4 � 3.8 82.3 � 1.4

Lung 33 49.1 � 2.2 81.8 � 0.3

Thorax 23 52.5 � 4.2 82.7 � 0.5

Mammogram 19 48.3 � 6.5 83.2 � 1.2

Fig. 11 TC for the

segmentations of

automated vs. empirical

parameterization presented

in Table 1
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During contour evolution, DMI is increased, and once contour converges to the

actual target boundaries, DMI obtains its highest value.

Table 2 shows for a sample of each utilized dataset DMI values obtained by the

empirical and automated version in the early stages of contour evolution.

It can be observed that DMI reaches higher values in the automated version in

the early stages of contour evolution, regardless of the medical imaging modality.

This convergence acceleration has been theoretically justified in Section “Parame-

ter-Adjustment Framework.”

Conclusion

Medical image segmentation plays a fundamental role in medical research since it

aids MDs’ clinical evaluation by providing vital information on abdominal organs.

Empirical parameterization in segmentation techniques is not accurate since the

segmentation results are dependent on the visual impression of a MD. Thus, it is

crucial to develop automated algorithms which are accurate and do not require any

user intervention.

In this chapter, a framework for automated adjustment of active contour

regularization and data fidelity parameters is presented and applied for medical

image segmentation. The presented framework is inspired from the properties of

structure tensors. The latter are appropriate descriptors of the orientation coherence

of edge regions. This information is accordingly incorporated into the active contour

parameters by means of OE. In this light, region-based forces are boosted on nontar-

get, unstructured regions, driving the contour away and guiding it towards the target,

structured ones. Thus, iterations dedicated to false local minima are avoided and

contour convergence is accelerated. More importantly, MDs are set free from the

laborious process of empirical parameterization, and objectivity is bolstered.

The presented framework is evaluated on abdominal imaging modalities, includ-

ing colon and lung images as well as on mammographic images, by comparing its

segmentation performance with the empirically fine-tuned version. The experimen-

tal results demonstrate that the automated version is capable of meliorating contour

evolution as well as maintaining a high segmentation quality, comparable to the one

obtained empirically. Furthermore, it copes well with the variability of target

regions and remains insensitive to noise, artifacts, and heterogeneity.

Table 2 DMI values

obtained by the empirical

and automated version, in

the early stages of contour

evolution

Dataset

DMI

Empirical Automated

Endoscopy 8.2 14.0

Lung 3.4 7.1

Thorax 5.8 8.3

Mammogram 28.2 30.8
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Bridging the Gap Between Modeling

of Tumor Growth and Clinical Imaging

Behnaz Abdollahi, Neal Dunlap, and Hermann B. Frieboes

Abstract This chapter gives a brief overview of the biological processes involved

in vascularized tumor growth, followed by a summary of recent mathematical

modeling to simulate the biology of tumor growth and angiogenesis. It provides

an overview of medical image analysis and describes recent efforts in the area of

coupling such tumor models with imaging data. We do not discuss the research

of obtaining tumor-specific information from medical imaging data, for which

extensive work has been done in image processing and signal analysis. The chapter

concludes with a sample simulation of vascularized tumor growth showing the

critical role of vascularization in tumor invasiveness and highlighting the potential

of gaining further insight into tumor behavior from a more expansive future

integration of 3D tumor models with clinical imaging data.

Introduction

Modeling of tumor growth at the centimeter tissue-scale is typically represented

using diffusion reaction equations describing the space and time dynamics of mass

and diffusible substances (see recent reviews [1–8]). Parameters in these models

can be coupled with biological and clinical data in order to more faithfully represent

tumor growth and treatment response, including measurements from in vitro cell

culture, intravital microscopy, and histopathology [9–16]. Data from medical
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images has also been employed to define values for tumor model parameter values

[17–21]. Image series taken from patients contain visual information about

anatomical and diffusion properties of tumor tissue. It is challenging, however, to

incorporate biological and imaging information into mathematical models of tumor

growth. A first step in this process is to synthesize the biological information so that

it can be properly represented by mathematical models.

Onset of Cancer

Healthy cells exist with an established pattern of cellular behavior and life

expectancy. Each cell in an organism carries a full copy of the organism’s

DNA, containing the instructions that determine the cell’s behavior. Numerous

endogenous as well as exogenous mechanisms exist to ensure that cells maintain

homeostasis and preserve the integrity of their nuclear DNA in order to maximize

the success of an organism’s life. For cancer to occur, several of these mechanisms

have to jointly fail in order for a cell to start rapid and sustained proliferation

with a degenerate DNA or avoid senescence [22]. These mechanisms include cell-

induced apoptosis, destruction by macrophages, and DNA repair mechanisms.

Once abnormal cell survival persists, a group of cells forms that may grow to

around 1–2 mm in size. These cells in the early stages of tumor growth are

supported by the preexisting vasculature sustaining the surrounding normal tissue.

Nearby capillaries act as a source of oxygen and nutrients (e.g., glucose, glutamine)

via diffusion. The size of the growing tumor is thus restrained by its ability to obtain

sufficient oxygen and nutrients, and some of the tumor cells may undergo necrosis

as a result of an inadequate supply of these substances. It is believed that some

tumors may remain for a long time in this state of dormant “equilibrium.” However,

due to processes that are not fully understood, some of these micro-sized tumors

may be driven to grow further; as a result, they will start generating growth

factors to stimulate the surrounding vasculature to dramatically increase access to

the organism’s nutrients. Once a tumor is vascularized, its malignancy is consider-

ably increased.

Onset of Angiogenesis

The angiogenic phenotype is the result of a net balance of endogenous growth

factor stimulators and inhibitors of angiogenesis [23]. Both hypoxia and hypogly-

cemia may stimulate pro-angiogenic expression. Tumor cells prefer glucose as a

nutrient, even under aerobic conditions. An increased rate of glycolysis in a system

with poor blood and lymphatic vasculature will lead to insufficient removal of lactic

acid, thereby increasing the acidity (lowering the pH) of the tumor extracellular

matrix with respect to the surrounding tissue. At low pH and O2, cells (normal or
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tumorigenic) will increase the net expression of angiogenic stimulators.

The expression of angiogenic growth factors (such as fibroblast growth factors

[FGF] and vascular endothelial growth factors [VEGFs]) is increased in tumor

regions under oxygen and nutrient stress. Possible sources include the cancerous

cells and macrophage cells that typically permeate tumors, as well as normal cells

in the vicinity.

The angiogenic factors stimulate the surrounding vascular endothelial cells to

remodel the existing vessel network to expand without necessarily creating new

vessels [24–27]. The secretion of growth factors can also lead to new vessel

formation as the vasculature becomes unable to support the metabolic needs of

the tumor and normal cells. This process of angiogenesis generates new blood

vessels from the preexisting vascular network [28, 29] through endothelial cell

sprouting, proliferation, anastomosis, and remodeling. Vessel remodeling and

angiogenesis thus cause oxygen and cell nutrients circulating in the vasculature to

be transported and released closer to the tumor.

Capillary Development

Angiogenic cytokines act by stimulating vascular endothelial cells in the tumor

vicinity to increase in vascular permeability, dilation, and tortuosity. The cells

express proteolytic enzymes to degrade the vessel basement membrane, and

then they penetrate it via pseudopodia. In this fashion the endothelial cells start

migrating through the extracellular matrix separating them from the source of

angiogenic stimulation (i.e., along a chemotactic gradient). The cells also

prefer to move along a haptotactic gradient of lower fibronectin density. As they

migrate, the cells align themselves into small tubular structures, undergoing con-

tinuous remodeling and regression. The integrity of these proto-capillaries remains

weak until the resynthesis of the basal lamina is complete and the vessel lumen

structure is established. The tubules become hollow as the network matures. After

reaching a certain distance from the parent vessel, the new capillary sprouts may

change direction to meet with each other and fuse together, generating

anastomoses. The edge of this network may exhibit a higher rate of branching at

the leading edge (“brush-border effect” [30]) as it expands towards the tumor and

eventually penetrates it.

The interaction between the surrounding vasculature and tumor cells is

abnormal due to incoherent signaling from the tumor cells. The vessels thus

produced are inefficient, tortuous, and leaky [31–34]. Compared with vascular

networks formed during normal biological processes (e.g., during development

and wound healing), tumor-induced vascular networks may be leaky and perform

inadequately, producing immature and tortuous vessels [33]. This phenomenon

generates increased flow resistance through the network and ultimately leads

to a heterogeneous supply of cell substrates within the tumor microenvironment [35].

Bridging the Gap Between Modeling of Tumor Growth and Clinical Imaging 465



Fragility of Tumor Vasculature

Most likely due to highly active angiogenesis and microvascular remodeling, most

tumor vessels have an irregular diameter and abnormal branching pattern [33].

The vessels leak blood into the tumor tissue, and this leakiness correlates with

histological grade and tumor malignancy. At least three sources are implicated in

leakage of plasma: openings between cells lining the vessels, holes through the

lining cells themselves, and endothelial fenestrae [33]. The bulk of the leakiness is

most likely due to the intercellular openings. In some tumors, blood vessels have

discontinuous endothelial cell lining, so that blood flows directly past exposed

tumor cells. Also, tumor cells may be incorporated as structural elements of the

vessel wall. Hemorrhaging may also be caused by sprouting angiogenesis driven by

growth factors that predispose to bleeding. Extravasated blood pools, bordered

by tumor cells, can exist for several minutes after hemorrhage [33].

Tumor Vascularization and Metastasis

Having obtained access to the organism’s vasculature, cancer cells can then proceed

to proliferate further beyond the original tumor size. In addition to being porous,

tumor vessels are also thin-walled compared to the normal vasculature. The rapid

proliferation of tumor cells may cause blood vessels to collapse inside the tumor

due to mechanical pressure, thus provoking tumor cell necrosis. For reasons that are

not fully clear, some tumor cells may also degrade the vasculature basal lamina and

then migrate away from the tumor site to other sites in the organism, where they

establish themselves and originate secondary tumors. This process is called metas-

tasis. Intriguingly, it has been observed that metastatic growth can suppress the

growth of a primary tumor. Also, a primary tumor may suppress metastasis from a

different type of tumor.

Normal Wound Dermal Repair

Angiogenesis and tissue vascularization are not only a property of growing tumors.

In cutaneous wounds that are undergoing healing, for example, angiogenesis

involves non-leaky vessels with smooth-muscle cells contained in the vessel wall.

Normally, the process has three overlapping phases: inflammation, proliferation,

and remodeling [36]. The inflammation phase includes blood clot formation and

the immune system response, as well as the beginning of epidermis regeneration.

The proliferation phase encompasses the migration as a structural unit of

macrophages (in the lead), fibroblasts (in the middle), and blood capillaries
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(in the rear) across the wound bed. The macrophages release chemotactic agents

into the wound bed, thus attracting fibroblasts and capillaries into the wound. The

fibroblasts build the extracellular matrix that facilitates further cell migration and

provides mechanical support for the new blood capillaries. The blood capillaries

supply nutrients to the structural unit as it continues to migrate across the wound.

The remodeling phase involves wound contraction, maturation of wound bed tissue

as it evolves from a highly cellular and vascularized state to form scar tissue (with

few cells and blood vessels), and the maturation of the extracellular matrix [36].

Tumor angiogenesis may be viewed as a crude wound healing process gone awry.

The normal healing process, dramatically thwarted in cancer, has led some to call

tumors as “wounds that never heal.”

Modeling of Tumor Growth

Mathematical modeling of vascularized tumor growth has sought to elucidate

these complex processes from a biophysical perspective, with the ultimate goal to

provide insight to improve patient treatment. Tumor models are typically either

discrete or continuum, depending on how the tumor tissue is simulated. Discrete

models simulate individual cells according to a specific set of biochemical and

biophysical rules. This type of modeling is useful for studying cell-cell and

cell-microenvironment interactions, natural selection, carcinogenesis, and genetic

instability [1]. Analyses of cell population dynamics have also been used to study

biological characteristics that apply to cells in particular populations, such as

therapy response.

Continuum models simulate tumors as a collection of tissue, employing

principles from continuum mechanics to describe cancer-related variables as

continuous fields using partial differential and integro-differential equations [1].

Variables may include cell volume fractions as well as cell substrate concentrations

such as oxygen and nutrients. In particular, multiphase (mixture-theory) models

are capable of describing interactions between multiple solid cell species, and intra-

cellular and extracellular liquids [1].

In contrast to discrete and continuum models, hybrid approaches utilize both

continuum and discrete representations of tumor cells and microenvironment

components. The goal is to directly fit the discrete scale to molecular and cell-

scale data, and then upscale this scale to inform the phenomenological parameters

of models at the continuum tissue-scale [1].

Recent reviews on mathematical tumor modeling include [1, 3–8, 37, 38].

In addition to avascular growth, models have focused on tumor-induced angiogen-

esis and vascular growth [39–41], invasion and metastasis [42], intra-cellular

pathways [43], stem cells [44], and treatment [10, 45]. As reviewed in Lowengrub

et al. [1], the development of more quantitative and sophisticated models coupled
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with enhanced computational power has enabled more realistic multiscale tumor

models, where temporal and multiple spatial scales are coupled within a single

framework [37, 40, 41]. Hybrid models simulating tumor tissue at both single-cell

and tissue levels have also been recently developed [46].

Modeling of Tumor Angiogenesis

The process of tumor angiogenesis has been modeled using continuum, fully

discrete, composite continuum–discrete, and hybrid continuum–discrete mathemat-

ical models (see recent reviews [1–8, 38]). Most models do not couple the tumor

and angiogenesis processes dynamically; typically, one of these processes is held

static. Models focusing on the angiogenic response have taken two approaches. One

of the approaches implements vessels as continuous curves, interconnected lattice

patterns, line segments, or collections of individual endothelial cells. Vessel sprout

branching and anastomosis have been modeled in this way as well as vascular

endothelial cell activation, proliferation and migration via haptotaxis up gradients

of ECM-bound chemokines (e.g. fibronectin), chemotaxis up gradients of tumor

angiogenic factors (TAFs) (e.g., VEGF), and proteolysis of the extracellular matrix

[47–57]. Vascular network remodeling and blood flow have also been simulated

(e.g., [58–66]). Additionally, models of tumor growth in static network topologies

(e.g., [67, 68]) as well as multiscale models of fluid transport in tumors have also

been implemented in this way [69].

Focusing on the angiogenic response, the other approach describes blood vessel

densities rather than vessel morphology, using continuum partial differential

equations (e.g., [70–81]). In this approach, the dynamics of the vessel densities

and angiogenic factors are described by applying continuum conservation laws, and

hence these models do not provide blood flow or morphological information

about the vasculature. Biochemical and biomechanical models capable of describ-

ing the morphology of the vasculature have been developed in the context of

vasculogenesis in vitro, accounting for chemotactic response and cell–ECM

interactions. Refer, for example, to [82–84] for discrete models and to [85–94]

for continuum models.

Coupling of Tumor Modeling and Angiogenesis

Angiogenesis and tumor growth are coupled in that tumor cells in hypoxic regions

release a net balance of pro-angiogenic growth factors that attract endothelial cells

and stimulate the neovascular network to develop towards the tumor. This process

expands the source of oxygen and cell nutrients in the microenvironment.

The tumor reacts by increasing cell proliferation in regions where cell nutrients

are more abundant. The oxygen changes the distribution of hypoxic tumor regions,
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which affects the net release of pro-angiogenic factors. A neovascular network also

responds to pressure variation introduced by increased tumor cell proliferation and

migration in addition to heterogeneous blood flow.

Tumor growth was first fully coupled with tumor-induced angiogenesis for an

arbitrary network topology in the model by Zheng et al. [40]. This 2D model

coupled a version of the continuum–discrete model of Anderson and Chaplain

[48] with the tumor growth model of Cristini et al. [95]. Models of angiogenesis

and vascular tumor growth have also been implemented in the context of discrete

cell-based systems (e.g., [55, 96–98]). The effects of blood flow through the

neovascular network on tumor growth have been considered using cellular autom-

aton models for tumor growth combined with dynamic network models for the

vasculature [39, 97, 99–101]. The effects of an arterio-venous network were

modeled in Welter et al. [102]. Macklin et al. [41] recently extended the model of

[40] by incorporating a version of the dynamic model of tumor-induced angiogen-

esis developed by McDougall et al. [62] to explicitly analyze the effects of vessel

remodeling and blood flow. Lloyd et al. [103] recently simulated the vascular

growth of a 2D tumor by coupling an elastic tumor growth model developed earlier

with models for angiogenesis, flow through the developing neovascular network

and network remodeling. Vascular tumor growth has also been studied in 3D using

a tumor mixture model and lattice-free description of tumor-induced angiogenesis

[13, 104].

Important aspects in solid tumor growth and vascularization include the flow of

interstitial fluid and the associated interstitial fluid pressure (IFP). Theoretical and

experimental work has shown that tumors may present elevated IFP, which

becomes a physical barrier for small molecules and cell nutrients to be delivered

into the tumor. Elevated tumor IFP may also exacerbate biochemical signal

gradients (e.g., angiogenic factors) released into the surrounding tissues. This

work has helped to understand both biochemical signaling and treatment prognosis.

Mathematical models have been developed to investigate the role of IFP and IFF

on tumor-induced angiogenesis and on the transport of TAFs [105–107]. Building

upon previous work [48, 58–60, 62, 108, 109], the vascular model of Macklin

et al. [41] incorporates vessel sprouting, branching and anastomosis, endothelial

cell (EC) migration and proliferation, vascular network remodeling, and blood flow.

In the model, the tumor and angiogenesis components are coupled via angiogenic

growth factors secreted by tumor cells as well as oxygen released from the blood

vessels. The total effects of growth-promoting factors affect the tumor cell pheno-

type and growth factor secretion, which initiates branching and sprouting in the

vasculature. Blood is simulated to flow through the neovascular network once

newly formed vessels anastomose. Stresses induced by the blood flow (e.g., shear

stresses) as well as the proliferating tumor cells induce continuous remodeling of

the vascular network.

This detailed framework was very recently extended inWu et al. [110] to include

fluid/oxygen extravasation as well as a continuous lymphatic field in order to study

the micro-environmental fluid dynamics and their effect on tumor growth

by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and
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lymphatic drainage. This model further elucidates the nontrivial relationship

between key elements contributing to the effects of interstitial pressure in solid

tumors. For example, it was found that small blood/lymphatic vessel resistance

and collapse may contribute to lower transcapillary fluid/oxygen flux, thus retarding

the tumor growth. The results further reveal that poor lymphatic function coupled

with elevated interstitial hydraulic conductivity may be a key reason of the devel-

opment of IFP plateau profiles within tumors (observed experimentally) and leads

to solid tumor pressure, a broad-based collapse of the tumor lymphatics, and a more

uniform distribution of oxygen. A more elevated vascular hydraulic conductivity

within tumors may control the rate that IFF fluxes into the lymphatics and host

tissues. The results suggest the intriguing possibility of developing strategies

for targeting tumor cells based on examination of the interstitial fluid emanating

out of tumors.

Tumor Clinical Image Analysis

The goal of image analysis is to extract particular information from medical

images that may be of clinical significance. Medical imaging techniques create

images from inside the human body using technologies such as X-ray, CT

(computed tomography), MR (magnetic resonance), SPECT (single-photon emis-

sion computed tomography), and PET (positron emission tomography); choosing an

appropriate imaging technique is based on clinical evaluation of the patient and the

disease type. Segmentation, registration, motion detection, and reconstruction can

be used to extract particular information from these images. Image segmentation and

3D reconstruction, in which lesions are visualized in three dimensions, are com-

monly used to screen cancer patients [111], especially those suspected to suffer from

lung cancer. Figure 1 shows sample CT image evaluations of patients with lung

cancer tumors before and after treatment. The location and shape of the lesions may

influence the choice of method to segment the images [112].

Imaging as a Tool for Patient Screening

The importance of cancer screening has been highlighted in the recently published

National Lung Cancer Screening Trial (NLST) by demonstrating a 20 % reduction

in mortality with the use of low-dose helical CT as opposed to chest X-ray [114].

Screening has the potential to allow for early detection of lung cancer resulting in a

phenomenon termed “stage migration.” Patients will potentially be diagnosed at an

earlier stage and thus more likely cured with treatment. Unfortunately, current

diagnostic tools have limitations. In a study by Ko et al. [115], a small nodule

size of �5 mm in diameter (nodule detection sensitivity: �5 vs. >5 mm, 74 %

vs. 82 %), ground-glass opacity nodules (nodule detection sensitivity: ground-glass
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opacity vs. solid, 65 % vs. 83 %), and lesion location (nodule detection sensitivity:

central vs. peripheral, 61 % vs. 80 %) were shown to be major factors that

contribute to the difficulty in detecting nodules. Nodule detection can be improved

by advances in computer-aided detection (CAD) systems that are being developed

and evaluated to provide a second perspective for nodule detection on CT. The use

of CAD can help improve radiologist performance for the detection of unidentified

lung cancers during lung cancer screening with CT [116, 117].

When interpreting findings from CT, radiologists must take multiple factors into

account when determining whether or not a lesion is malignant or benign. Specific

features that must be considered include nodule morphology, growth rate assess-

ment, clinical features incorporated into a Bayesian analysis, hemodynamic

characteristics on CT, and metabolic characteristics on 18F-FDG PET. Morphologic

criteria allow for predicting the odds ratio of malignancy based on specific radio-

graphic criteria: lobulated margin, a spiculated margin, and the absence of a

satellite nodule [118]. Determination of growth rate over a 2-year period has also

been shown to be a cost-effective and reliable method. Unfortunately, this method

Fig. 1 Representative CT images of patient samples with both diffuse consolidation and mass-

like fibrosis before and after stereotactic body radiotherapy [113]. Reprinted with permission from

Int J Radiat Oncol Biol Phys, Vol. 84, Dunlap et al., Computed tomography-based anatomic

assessment overestimates local tumor recurrence in patients with mass-like consolidation after

stereotactic body radiotherapy for early-stage non-small cell lung cancer, p. 1074, Copyright

(2012), with permission from Elsevier
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relies heavily on volumetric analysis of a nodule where current segmentation

methods are unreliable [119]. Bayesian analysis combines individual probabilities

of malignancy in order to estimate the overall odds favoring malignancy. These

features include cavities of 16 mm in thickness, irregular or spiculated margin on

CT scans, patient complaints of hemoptysis, a patient history of malignancy, patient

age >70 years, nodule size of 21–30 mm in diameter, nodule growth rate of 7–465

days, an ill-defined nodule on chest radiographs, patient a current smoker, and

nodules with indeterminate calcification on CT scans [120]. Evaluation of tumor

vascular with dynamic helical CT has also been proven to be beneficial. Threshold

attenuation value can be used to predict the likelihood of malignancy based on

changes in Hounsfield units (HU) after contrast administration. Current established

standard for differentiating benign from malignant nodules is 15 HU [121]. Finally,

incorporating metabolic imaging can improve diagnostic accuracy in a noninvasive

way. Studies indicate sensitivity of 88–96 % and a specificity of 70–90 % for

malignant nodules [122].

Despite the number of methods clinically available for predicting the likelihood

of malignancy, the workup and management relies heavily on clinical interpretation

with no one superior model or algorithm. Improvements are required in order to

expand diagnostic accuracy while remaining cost-effective from a screening stand-

point. By establishing more robust models for predicting malignancy, a larger

number of patients can be offered potentially curable treatment with early stage

disease.

Extraction of Tumor Model Parameters from Imaging

The spatial reconstruction of a specific lesion depends on many factors, including

image resolution, which is scanner-dependent; the contrast level of the tumor tissue;

the appearance of very small cells in images; the number and thickness of available

slices; and the techniques used for segmentation [111]. Variability in these factors

prevents the definition of a uniform set of techniques for extracting tumor model

parameter information using medical image analysis. Due to low resolution, imag-

ing techniques cannot accurately localize tumor cells; underestimation or overesti-

mation can be a problem even if the segmentation technique is chosen on technical

grounds. If the tumor tissue is not properly isolated, most of the segmentation

methods will image through to adjacent tissues with similar intensities. Another

issue is that some of the tissues could be mistakenly considered cancerous in CT or

MR images. Also, the lesion could be too close to normal tissue in such a way that it

is challenging for current segmentation techniques to accurately extract it. These

issues suggest that a universal approach for analysis cannot be defined based on

currently available imaging methods, and they imply that the power of medical

image analysis may be maximized by combining with techniques that take into

account other biological aspects. For example, histological information could be

indirectly extracted from medical images, as we discuss below.
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The tissue density in CT scans is measured in Hounsfield units (HU). Each organ

has a different density, so the CT images show them with a different gray scale. The

Hounsfield unit is a normalized value of the calculated X-ray absorption coefficient

of a pixel in CT. The tissue appears brighter when the Hounsfield Unit number is

higher. Tumors in CT can be detected if the tumor cell density is greater than a

certain threshold, which depends on the scanner resolution. Correlation between

histology and CT has shown that over half of tumors identified by histology may be

missed in CT images [123]. Typically, a tumor with 50 μm in diameter contains

~1,000 cells and a tumor with 200 μm diameter contains ~5,000–8,000 cells [123].

Table 1 shows the mean tumor cell density for different lung cancer types based on

experimental results [124].

It is challenging to find a direct relation between a vessel’s geometry detected in

imaging and histological features like endothelial cell density. Lower density

tissues are not shown in MR and CT images. Vessels feeding into tumors are

usually newer with low density, so that only the biggest vessels are detected. Yet

the relation between tumor vascularization and tumor stage is critical. Histological

features of angiogenesis—microvessel density (MVD), identification of receptor

for VEGF, and number of circulating endothelia cell (CEC)—fail to provide a

complete picture of tumor angiogenesis [125].

Perfusion imaging measures blood volume in tissues; a relation between volume

and histological features may be assumed. Perfusion imaging is typically used as a

method for determining prognosis in the clinic [126]. In research, imaging of

perfusion through a tissue has been used to measure vascular geometry and histo-

logical features of tumor angiogenesis and also to estimate microvascular flow

through capillaries and venules [127]. Measurements of perfusion flow can provide

intravascular blood volume (reflecting the MVD) and mean transit time of blood

through the tissue. Some studies show a potential correlation between perfusion

imaging and MVD [123, 125, 126, 128], but others did not observe such a correla-

tion [124]. In a clinical study of lung carcinoma angiogenesis using contrast-

enhanced dynamic CT images, VEGF and MVD were correlated with maximum

values of time attenuation curves instead of perfusion images [125].

Ideally, information obtained about tumor perfusion could be used to model

tumor response to blood-borne agents. Recently, a framework for the automated

evaluation of vascular perfusion curves measured at the single vessel level through

intravital microscopy has been proposed [129]. Primary tumor fragments, collected

from triple-negative breast cancer patients and grown as xenografts in mice, were

Table 1 Mean tumor density for different lung cancer types (adapted from [124])

Tumor type Mean HU before contrast Mean HU after contrast

Adenocarcinoma 51.5 68.7

Epidermoid carcinoma 60 86

Small cell 50.3 60.2

Large cell 53.4 62.1

Undifferentiated malignant cell 32.3 55.8
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injected with fluorescence contrast and monitored using intravital microscopy. The

time to arterial peak and venous delay, two features whose probability distributions

were measured directly from time-series curves, were analyzed using a Fuzzy

C-mean (FCM) supervised classifier in order to rank individual tumors according

to their perfusion characteristics. The resulting tumor rankings correlated inversely

with experimental nanoparticle accumulation measurements, enabling prediction of

nanotherapeutics delivery into the tumor tissue.

Coupling Tumor Modeling with Image Analysis

The complexity of mathematical tumor models depends in part on the number of

biological and physical factors under consideration. It is difficult to extract values

for the tumor model parameters from the sparse data available for any particular

patient. Medical image analysis can measure the shape, size, volume, and place-

ment of tumors from MR and CT images for individual patients, yet these

techniques are limited. For instance, the threshold for cell detection is a density

of 8,000 cells/mm3 in MRI, which may miss a significant number of active tumor

cells and thus potentially lead to inaccurate prognoses [130, 131]. We review a set

of methods by Konukoglu et al. [131] which integrate mathematical modeling of

tumor growth with data from patient-specific medical images, with the goal to offer

disease development modeling.

Typically, reaction-diffusion equations model tumor growth at the tissue-scale

contain terms that describe the change in cells in space and time, and their collective

proliferation rate. The local diffusion of the cells is defined as a tensor in

the calculations. A typical differential equation may take the form [131]:

∂u
∂t

¼ ∇ � D xð Þ∇uð Þ þ ρu 1� uð Þ where D∇u � n∂Ω�! ¼ 0 (1)

where u is the tumor cell density, D is the local diffusion tensor, ρ is the prolifera-

tion rate, and Ω is the boundary of the domain tissue, which in most models that

have incorporated imaging data has been the brain. The diffusion term of the tumor

cells is ∇ � (D(x) ∇ u) and the reaction term is ρu(1 � u) [131]. The tumor cell

density observed clinically is linked to the reaction-diffusion model by defining a

density function based on the image intensity of the lesion [132]. Although the

parameter estimation has focused mainly at brain tissue because of image avail-

ability and easier tumor identification, the modeling concepts apply generally to

solid tumors.

The main challenge of integrating this type of reaction-diffusion model with

imaging data is that the model describes the evolution of tumor cell densities

in time, while in the image sequences only the shape of the tumor in space is

observed [131, 132]. Medical images are usually not available longitudinally in
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time because most patients are not regularly scanned during the illness progression.

As a result, the tumor cell density needs to be estimated from what is observed

in the images. Velocity growth of the tumor can be estimated from images

(as described below for the example of brain tumors). Parameters such as the real

geometry of an organ, estimated speed in different tissues (e.g., white and gray

matter in brain), geometry of the tumor margin, tumor cell density and its relation to

tumor size would need to be extracted from the images to help formulate the

simulated evolution of the tumor in time and space.

The diffusion tensor and the reaction parameters are estimated from the medical

images, meaning that the evolution of the tumor equation can be specified for each

individual patient. To illustrate this process, we consider in more detail the case of

tumors in the brain, for which extensive modeling work has been done (e.g., Hogea

et al. [133] and Swanson et al. [134, 135]). These methods usually assume that the

velocity of tumor growth differs in different types of tissue (e.g., white and gray

matter), so different diffusion tensors are defined based on the location of the tumor.

The diffusion tensor for brain tissue is defined as:

D xð Þ ¼ dgI, x∈ gray matter

D xð Þ ¼ dwDwater, x∈whitematter

whereas tumor cells are modeled to diffuse isotropically in the gray matter, the

diffusion in the white matter is proportional to the diffusion tensor of water. Tumor

cells diffuse isotropically in gray matter with rate dg, dw is the diffusion rate in

white matter, and Dwater is the diffusion tensor of water molecules [136]. Medical

images provide data to estimate the tumor growth parameters for individual

patients: the velocity of the tumor growth (v), the diffusion of the tumor (D), and
proliferation rate (ρ). Here, we summarize different mathematical relation between

these three parameters. The calculated parameters are based on an assumption that

the tumor margin evolves linearly in time [137]. One possible linear relation is

defined as: v2/4ρ, which uses Fisher’s approximation. The diffusion coefficients

in white and gray matters are, respectively, Dg ¼ v2g/4ρ and Dw ¼ v2w/4ρ [138].

The tumor margin in image sequences approximates the velocity rate [134].

Another mathematical estimation is stated as v ¼ 2
ffiffiffiffiffiffi
ρD

p
[135]. The tumor

margin advances as a traveling wave, which expands radially and linearly, and

the diffusion coefficient D changes centrifugally. If T1 and T2 weighted images are

available, then the gradient between these two can be defined as the ratio of

diffusion over proliferation [135], where the tumor margin is detected from T1

weighted mages and the edema is detected from T2 weighted images [135]. The

gradient has also been defined as v ¼ 4
ffiffiffiffiffiffi
Dρ

p
[139]. Dρ delineates the kinetics of

the tumor growth; simulations have shown that D/ρ can indicate the spatial extent

of nonvisible tumor tissue [139]. The results show that utilizing
ffiffiffiffiffiffiffiffiffi
D=ρ

p
instead of

Dρ may reflect the tumor growth rate more accurately [139].

Another method defines a biophysical reaction-diffusion function while adding a

mechanical advection term [140]. For individual patients the parameters of the
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tumor growth are estimated from available image sequences. The mechanical

advection term translates the elasticity of the tissue through which the tumor cells

diffuse. This model employs different velocities depending on the tumor location;

however, the unavailability of serial scans of the lesion precludes the measurement

of precise parameter values. The model constraints can be defined in such a way

that the problem becomes an optimization exercise with new parameters. The very

first scan where the tumor is observed is defined at t ¼ 0, and the diffusivity and

elastic material coefficients are the new model parameters.

Parameters (e.g., diffusion, velocity, and tumor proliferation) extracted from

images through these techniques have been used in modeling the tumor evolution in

time and space (spatial-time models). Jbadi et al. [138] modeled the diffusion of

tumor cells in anisotropic tissue. They proposed a new definition rate for the

diffusion tensor in water, based on calculating the highest eigenvalue of the tensor

of water molecules at each point. Another method considers a probabilistic

approach [132]. The tumor growth evolution (ρ(u(t)jθx, θt, θp)) is a conditional

probability where tumor growth parameters describing time, location, diffusion,

and proliferation rate are approximated. θx is the tumor location parameter, θt is the
parameter change in time, and θp is the personalized parameter: diffusivity and

proliferation rate. These parameters are defined based on image sequences.

Some of the modeling work focuses on matching the spatial-time evolution

predicted by the model with the known tumor cell density from series of scans

that have been prepared independently. The object is to minimize the difference

between the estimated tumor cell density calculated from the model with the given

tumor cell density from a particular subject [133]. A recent method proposes a

modified anisotropic model which models the tumor delineation considering the

curved front and the effect of time in its speed [131].

Spatial-time tumor growth models have mainly considered avascularized

tumors, whereas it is vascularized tumors that are the most dangerous. Further,

the extent of tumor vascularization may affect the chosen treatment. Yet informing

the model parameters from vascular imaging information is challenging due to the

problem of vessel segmentation. Vessels can be visible in MR and CT images; they

usually appear brighter in CTA (computed tomography angiography) and MRA

(magnetic resonance angiography) images taken with contrast agents. In general,

automatic segmentation vessel trees entail two main steps: extracting features from

image slices, and then reconstructing the 3D model of the vessels. Even if the

appearance of vessel features is accurately extracted from the images, the 3D

reconstruction of curvature is complex: number of vessel branches, curvature

shape of the vessel, and numerous other factors affect the accuracy of the segmen-

tation in 3D [141]. Vessels connect to tumors with infinite possibilities: the appear-

ance of vessel branches is different for each individual patient, so one cannot define

a predefined model to be able to quantify this information.
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Example of Vascularized Tumor Modeling in 3D1

Once a model is adequately calibrated, the cell density information in time and

space in 3D simulations can be compared to what is observed in imaging in space at

a particular time. Further, a prediction of tumor invasiveness may be possible based

on vasculature function. Development of this work depends on technology that

enables more detailed imaging analysis of tumor vasculature, in particular, involv-

ing the extraction of model parameters regarding vascular densities and vessel

morphologies. The following simulations highlight the promise of elucidating

further insight into tumor behavior by coupling modeling with tumor and vascular

parameters that could be obtained from medical imaging. Frieboes et al. [15]

simulated the growth of a tumor assuming that the solid (internal tumor) pressure

does not shut down any of the vessels. In Fig. 2 (t ¼ 3), the tumor is shown starting

as a small, round avascular nodule. Angiogenic regulators diffuse from the interior

to the outside as necrosis forms in the core (darker color), stimulating the formation

of new capillaries in the vicinity of the tumor (small lines) from a preexisting

vasculature (not shown). Endothelial cells in these vessels proliferate up a gradient

of angiogenic regulators, first forming branches and then looping to conduct blood

(darker lines). The nodule is able to grow larger as it becomes surrounded by

conducting vessels (t ¼ 8). The tumor shape assumes a slightly more asymmetric

form (t ¼ 15), determined by the heterogeneity in cell proliferation and death,

which is in turn based on the availability of cell substrates in the microenvironment

as a function of the vasculature. The amount of necrosis remains stable as hypoxic

cells gain access to substrates. The simulation shows that viable tumor tissue cuffs

around the locations of vessels as observed clinically [13, 104] as well as experi-

mentally [142], with tissue distal from the conducting vessels being necrotic.

At later stages (t ¼ 54) the tumor continues growing uniformly and fairly com-

pactly in time, consistent with the prediction of Cristini et al. [95], in which

nonuniformity in the environment is required for asymmetric growth of

vascularized tumors. The vasculature is uniformly distributed around and inside

the lesion.

The model predicts that tumor invasiveness depends critically on its coupling

with the vasculature. Observations of tumor vasculature function from imaging,

when integrated with this type of modeling, could provide further insight into tumor

behavior within living patients. Frieboes et al. [15] further simulated the growth of a

tumor with one single viable cell species in 3D and included the effects of vessel

regression (shutdown) due to the solid (internal tumor) pressure. Figure 3 shows a

tumor starting as a small, round avascular nodule at t ¼ 1, which becomes

surrounded by new capillaries through the process of angiogenesis (e.g., t ¼ 8

and t ¼ 20). At t � 23 the cell proliferation exerts enough pressure that the

1 This section contains excerpts reprinted with permission from J Theor Biol, Vol. 264, Frieboes

et al., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogen-

esis, pp. 1254–1278, Copyright (2010), with permission from Elsevier.
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blood flow in some of the capillaries becomes impeded, shuts down, and the vascular

network regresses. Hypoxia is then locally increased, triggering a higher release of

angiogenic factors. The viable cells downgrade their proliferation. Eventually cell

homeostasis is disrupted to such an extent that several regions of the tumor undergo

necrosis, causing the tumor to regress, thus exacerbating the morphological instabil-

ity through uneven shrinking of the tumor mass (t ¼ 25). A similar effect has been

observed through the model when simulating anti-angiogenic therapy [143], which

may shut down the tumor vasculature in an uneven manner and exacerbate tumor

break-up and invasion [142, 144–146].

A new round of vessel generation is triggered at t ¼ 25 induced by the produc-

tion of angiogenic regulators as a result of increased hypoxia in response to

continued cell proliferation and tumor necrosis. This second wave of angiogenesis

leads to a larger tumor with a more complex morphology than at earlier times, until

the pressure from cell proliferation disrupts the blood flow (t ¼ 49) once again.

By this time, however, the tumor has gained enough mass so that the disruption

predominantly affects the right hemisphere, which leads to tissue break-up in this

Fig. 2 Simulation of tumor growth in 3D and quantification of tissue density based on vasculari-

zation [15]. Upper three panels: A tumor grows uniformly and compactly over time as the

surrounding capillary vasculature is stimulated through angiogenesis to supply it with increasing

oxygen and nutrient. Tumor invasiveness is lessened compared to the case in Fig. 1, since hypoxic

cells are better able to gain access to oxygen and nutrients. Viable tumor tissue (orange/red color)
is shown in 3D contours representing density values of 0.1, 0.2, and 0.6 (min.: 0.0; max.: 1.0).

Conducting vessels are shown in blue and nonconducting in gray. Time unit ¼ 1 day. Lower three
panels: Slices of tumor (plane x ¼ 10) at various times of growth show that viable tumor tissue

cuffs around the vessel locations (darker areas), as is typically observed clinically for solid

tumors, with areas more distal from the vessels being dead. Color coding: density of viable tissue;

highest ¼ 1.0 (unit length ¼ 100 μm). Reprinted with permission from J Theor Biol, Vol.

264, Frieboes et al., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion

and angiogenesis, pp. 1265–1266, Copyright (2010), with permission from Elsevier
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region. The resulting hypoxia upregulates angiogenesis towards the right side of the

tumor, as seen at t ¼ 54. The new vascular network is concentrated more towards

the center of the tumor and not at the leading clusters, since these have better access

to the surrounding (existing) host vasculature (not shown). By t ¼ 63 vessels

become disrupted on the left lobe, which initially shrinks and furthers the splitting

of the tumor into two pieces. As cell proliferation once again increases due to

enhanced vascularization, the two parts grow larger and begin to reconnect

(t ¼ 79). The stability of the tumor morphology and its invasiveness is directly

Fig. 3 Simulation of vascularized tumor growth in 3D [15]. Morphological stability of the tumor

and its invasiveness are directly linked to the availability of cell substrates regulated by the

dynamically evolving vasculature. At time t ¼ 23, the supply of cell substrates is shut off by the

collapse of vessels due to increasing pressure from the surrounding proliferating cells. The tumor

mass then undergoes temporary regression (t ¼ 25). By t ¼ 29, neovascularization is apparent in

response to the increased hypoxia in the interior of the tumor. By t ¼ 48 the tumor has re-grown

and is once again highly vascularized. At t ¼ 49 the vessels in the right hemisphere are crushed by

the tumor cells. The tumor morphology becomes more unstable, breaking up into two pieces

(t ¼ 63). Renewed vascularization eventually helps to restabilize the mass (t ¼ 79). Viable tumor

tissue (blue color) is shown in 3D contours representing density values of 0.1, 0.2, and 0.6 (min.:

0.0; max.: 1.0); complete absence of viable tissue is shown in gray. Conducting vessels: brown;
nonconducting: white. Time unit ¼ 1 day (grid length ¼ 200 μm). Reprinted with permission

from J Theor Biol, Vol. 264, Frieboes et al., Three-dimensional multispecies nonlinear tumor

growth-II: Tumor invasion and angiogenesis, pp. 1267–1268, Copyright (2010), with permission

from Elsevier
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linked to the availability of cell substrates regulated by the evolving vasculature in

response to cell proliferation and death.

This simulation shows strong nonlinear coupling between the tumor-induced

angiogenesis and the progression of the tumor. The pressure-induced vascular

response of constricting the radii of the neovasculature and inhibiting blood-tissue

oxygen transfer not only dramatically affects the tumor growth, but also signifi-

cantly affects the growth of the neovascular network. The modeling thus provides

not only a means to quantitatively evaluate the growth of tumors in space and time,

but also serves as a means to generate hypotheses from clinical observations.

In conclusion, much work remains to be done to fully integrate mathematical

models of tumor growth with data obtained from clinical imaging. As technology is

further developed to improve the analysis of this imaging, and as tumor models

undergo further refinement to more faithfully represent cancer biology, the gap

between modeling and imaging is expected to narrow, thus enabling a more

seamless integration to the benefit of cancer patients.
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Evaluation of Medical Image Registration

by Using High-Accuracy Image Matching

Techniques

Zisheng Li and Tsuneya Kurihara

Abstract An effective method for quantitatively evaluating deformable image

registration without any manual assessment is developed in the work of this

chapter. Fiducial landmarks for spatial evaluation are firstly detected using a

feature-point detector in a fixed image, and corresponding points in the registered

moving images are localized with a high-resolution image matching algorithm.

Distance between the reference points and the correspondences can be used to

estimate image registration errors. With the developed method, users can evaluate

different registration algorithms using their own image data automatically.

Introduction

Image registration aims to find a spatial transformation that maps points from one

image, a moving image, to corresponding points in another image, a fixed image.

Medical image registration is fundamentally used in many applications, such as

diagnosis, planning treatment, guiding treatment, and monitoring disease progres-

sion. Thus, it is necessary to validate whether a rigid/deformable registration

algorithm satisfies the needs of an image processing application with high accuracy,

robustness, and other performance criteria.

The most straightforward method for estimating image registration error is to

compare a given registration transformation with a “gold standard” transformation

[1], whose accuracy is high. However, the lack of a gold standard prevents any

automatic assessment of registration accuracy. An attempt that stands out in this

regard is the “Retrospective Image Registration and Evaluation (RIRE) project” [2]

for evaluation of brain-image rigid registration. The RIRE project used bone-

implanted fiducial markers to obtain a marker-based rigid transformation as the
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gold standard transformation. Registration error was measured by calculating

the error relative to the gold standard over a set of specified regions. For deformable

image registration, synthetic images and phantoms were utilized as reference

standards to provide qualitative evaluation of registration performance [3–6]. How-

ever, such standards lack sufficient realism, compared with that derived from actual

patient image data. “Non-rigid Image Registration Evaluation Project (NIREP)” in

[7] and recent work in [8, 9] provided intensity-based metrics for evaluating the

registration performance of brain images, using manually segmented anatomical

regions from actual clinical data. These projects required manual annotation and

segmentation to create evaluation databases, and the evaluation data only included

brain images. On the other hand, a number of studies utilized expert-determined

landmark features to evaluate spatial accuracy of deformable registration for lung

images [10–12]. Moreover, the work in [13] utilized both manually labeled regions

and expert-determined landmark pairs for evaluation of registrationmethods on lung

images. However, suchmanual annotation and segmentation require that individuals

trained to interpret medical images be involved in the validation of registration

algorithm. In addition, the manual assessment tasks are very time-consuming.

The work of this chapter aims to quantitatively evaluate the spatial accuracy of

deformable image registration by using automatic feature point matching on lung

images. Candidates of fiducial landmarks for spatial evaluation are detected in a

fixed image, by using a 3D SIFT (scale-invariant feature transform) keypoint

detector [14, 21]. Then, correspondences of such SIFT keypoints in the registered

moving image are matched and localized with a 3D phase-based image matching

algorithm [15, 29]. By calculating distance between the feature point pairs, it is

possible to obtain a quantitative registration error without any manual assessment

of the registration algorithm [30].

Framework of Automatic Spatial Accuracy Evaluation

Since it is very difficult and time-consuming to manually annotate actual clinical

data to create a ground truth for accuracy evaluation, the development of an

automatic method is necessary. In order to obtain a quantitative measurement of

image registration error, distance between landmarks or regions in a fixed image

and their corresponding ones in a registered moving image should be accurately

estimated. It is therefore necessary to develop an accuracy-evaluation framework

that mainly consists of two stages: fiducial point detection and corresponding point

matching. The framework of the method is illustrated in Fig. 1.

In the procedure of landmark detection, firstly, 3D SIFT keypoint detection

[14, 20], which detects local extrema from image pyramids consisting of differences

in Gaussian-blurred images at multiple scales, is applied to the fixed image.

After the SIFT feature points detection in the fixed image, a 3D phase-based image

matching algorithm is developed to match the corresponding landmarks in the

registered moving image. A discrete Fourier transform (DFT) of image blocks around
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SIFT feature points and that of their candidate correspondences is computed, respec-

tively. Phase components of the image-block pairs in the frequency domain are used to

estimate locations of the correspondences. The image-block matching method can

achieve high accuracy at the sub-voxel level [15, 29]. Even under rotation,

the matching method can give good performance by coarse-to-fine and iterative

procedures. As a result, it is possible to measure a registration error by using the

distance between the SIFT keypoints and their correspondences. Note that although

this work focuses on registration validation on thoracic CT images, the proposed

method can be extended to different types and modalities of images, since both the

feature detection and imagematching algorithms can be applied to general image data.

Feature Point Detection

In this work, a 3D landmark detector is required to extract fiducial landmarks as

reference points for spatial accuracy evaluation of image registration. Harkens

et al. [16] investigated nine 3D differential operators for the detection of anatomical

landmarks in medical images. Recently, the SIFT detector and descriptor

introduced by Lowe [17] has become very popular and been widely adopted in

research work of medical imaging [14, 18–21, 30]. In this work, SIFT detector,

which was extended to 3D in [14, 20], is also adopted to extract candidates of

fiducial landmarks for registration evaluation.

Candidate Feature Point Detection

Original SIFT feature points are detected by using difference-of-Gaussian (DoG)

images [17]. For a medical image, which is usually a 3D volume, the DoG images

can be computed as follows [14]:

Fixed image

Registered moving image

Feature point matching
with 3D POC algorithm

Error calculation

Start

End

Feature point detection with
3D SIFT algorithm

Fig. 1 Framework of

registration evaluation
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D x; y; z; σð Þ ¼ L x; y; z; kσð Þ � L x; y; z; σð Þ, (1)

where k is a constant multiplicative factor. L(x,y,z,σ) is obtained by smoothing the

original image I(x,y,z) with a variable-scale Gaussian filter G(x,y,z,σ):

L x; y; z; σð Þ ¼ G x; y; z; σð Þ � I x; y; zð Þ ¼ 1ffiffiffiffiffi
2π

p
σ

� �3 e� x2þy2þz2ð Þ=2σ2 � I x; y; zð Þ: (2)

Figure 2 illustrates the computation of a group of DoG images. Using such DoG

images, local extrema can be detected at the pyramid level of σ. For a voxel v in a

DoG image with scale σ, the intensity of v is compared with those of its 80 neighbor

voxels (26 neighbor points at the same scale σ, and 27 counterparts at the scale

of k1σ and k� 1σ, respectively). The voxel with the most or least extreme value of

intensity is considered as a candidate of feature point. Figure 3 illustrates the

procedures of local extrema detection. In this work, multi-scale searching

parameters are set as that k ¼ 2.01/3 and σ ¼ {1.00,1.26,1.58,2.00,2.52,3.17,4.00}.

Feature Point Refinement and Filtering

For 3D medical images, a large number of candidate feature points, i.e., the scale-

space extrema, are usually detected. It is necessary to eliminate candidates that have

low contrast or are poorly localized along edges. Moreover, locations of the feature

Fig. 3 Local extrema

detection. This figure is

a modified version of Fig. 2

in [14]

k1s

k2s
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s
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Fig. 2 Framework of

registration evaluation
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points are needed to be refined to provide better accuracy. In 2D SIFT algorithm

[17], an approach was developed to estimate the feature point locations, combined

with a thresholding on the local contrast. In addition, edge-like features were

removed by testing the relative ratios of 2D Hessian eigenvalues. In this work,

following the work in [20], the feature point refinement and filtering procedures are

extended to 3D.

Feature Point Localization Refinement

The initial implementation of 2D SIFT [24] simply located keypoints at the

coordinate of the detected maxima or minima. Brown and Lowe [25] developed a

method for fitting a 3D quadratic function to the local sample points to determine

the interpolated locations and scales of the extrema. For 3D medical images, this

approach was extended to a fitting problem for a 4D scale-space function,D(x,y,z,σ)
[20]. The Taylor expansion (up to the quadratic terms) of D(x,y,z,σ), at a certain

point x ¼ (x,y,z,σ)T, is formulated:

D xð Þ ¼ Dþ ∂DT

∂x
xþ 1

2
xT

∂2
D

∂x2
x, (3)

The location of the extremum, x̂ , is determined by taking the derivative of

this function with respect to x and setting it to 0:

∂D
∂x

þ ∂2
D

∂x2
x̂ ¼ 0: (4)

Therefore, the sub-voxel location of the extreme is obtained:

x̂ ¼ �∂2
D

∂x2

�1

� ∂D
∂x

: (5)

As suggested by Brown and Lowe [25], the Hessian and the derivative of D are

approximated by using finite differences of neighboring points.

Removal of Low-Contrast Feature Points

The function value at the extremum, D x̂ð Þ, is useful for rejecting unstable extrema

with low contrast. D x̂ð Þ can be obtained by substituting (5) into (3):

D x̂ð Þ ¼ Dþ 1

2

∂DT

∂x
x̂ : (6)
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In 2D SIFT method [17], all extrema with a value of D x̂ð Þ less than 0.03 were

discarded experimentally. In [20], the threshold of 0.03 was suggested for CT

images, whereas a less selective value of 0.01 was suggested for the less contrasted

appearance of MR and CBCT images.

Rejecting Poorly Localized Points Along Edges

For stability of image matching, it is not sufficient to reject keypoints with low

contrast. The DoG function will have a strong response along edges, even if the

location along the edge is poorly determined and unstable to small amount of noise.

Such edge responses were eliminated by using the ratio of eigenvalues of 2D

Hessian matrix [17].

In this work, adopting an approach developed in [20], the elimination of poorly

localized feature points is extended to 3D. Feature points localized along edges and

along ridges, other than blob-like structures, are rejected. Such blob-like structures

can be characterized by the following properties:

(a) All principal curvatures are of the same sign.

(b) They all have a magnitude of the same order.

Feature points that satisfy the above two conditions are considered as fiducial

landmarks for registration evaluation in this work.

Similar to the 2D case, edge responses in 3D space can be measured by a 3 � 3

Hessian matrix:

H ¼
Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

2
4

3
5: (7)

The matrix is computed from finite differences at the location and scale of the

feature point. And the principal curvatures are proportional to the eigenvalues

of H [26]. Let α � β � γ be the three largest eigenvalues in decreasing order of

signed magnitude. The trace and the determinant of H can be computed as:

tr Hð Þ ¼ αþ β þ γ ¼ Dxx þ Dyy þ Dzz; (8)

det Hð Þ ¼ αβγ

¼ DxxDyyDzz þ 2DxyDyzDzz � Dxx Dyz

� �2 � Dyy Dxzð Þ2 � Dzz Dxy

� �2
: (9)

In addition, the sum of principal second-order minors∑ det P
2(H) is computed as:

X
detP2 Hð Þ

��� ¼ βγ þ γαþ αβ

¼ DyyDzz � Dyz

� �2 þ DzzDxx � Dxzð Þ2 þ DxxDyy � Dxy

� �2
,

(10)
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When the eigenvalues are either all positive or all negative, condition (a) is

satisfied, which corresponds to a dark blob or a bright blob, respectively [27]. This

is equivalent to the condition:X
detP2 Hð Þ > 0, and tr Hð Þ det Hð Þ > 0: (11)

In order to satisfy condition (b) to reject plate-like or tubular structures, let

r and s be the ratios such that α ¼ rβ and β ¼ sγ. Then,

tr
�
H
�3

det Hð Þ ¼
rsþ sþ 1ð Þ3

rs2
, (12)

which depends only on the ratio of the eigenvalues rather than their individual

values, and increases with both rs and s. In order to check that the ratio t ¼ rs of
principal curvatures is below some threshold, tmax, we only need to check:

tr Hð Þ3
det Hð Þ <

2tmax þ 1ð Þ3
tmax

2
: (13)

Otherwise, features look more like edges or ridges than blobs, and are discarded.

In [20], an upper threshold tmax ¼ 5 was experimentally determined for CT images,

whereas tmax ¼ 20 was found to be suited to MR and CBCT images.

Feature Point Matching

To measure distance between the reference points and their correspondences, an

image matching method based on a 3D phase-only correlation (POC) function is

applied. The original POC function [22, 31, 32] was calculated with a 2D DFT to

estimate displacement between image blocks, and it was extended to a 3D imple-

mentation while maintaining good performance [15, 29].

3D Phase-Only Correlation Function

POC function [22] is a correlation function used in the phase-based image matching

to evaluate similarity between two images. According to [22], image matching with

POC can achieve sub-pixel accuracy, and it can be extended to 3D while

maintaining the excellent performance [15, 29]. This section will introduce the

3D POC function which is applied in image matching of the accuracy evaluation.
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Consider two N1 � N2 � N3 volumes r(n1,n2,n3) and f(n1,n2,n3), where

n1 ¼ � M1, . . ., M1, n2 ¼ � M2, . . ., M2, n3 ¼ � M3, . . ., M3 andN1 ¼ 2M1 + 1,

N2 ¼ 2M2 + 1, N3 ¼ 2M3 + 1. The 3D DFT of the two volumes is given by

R k1; k2; k3ð Þ ¼
X

n1, n2, n3
r n1; n2; n3ð ÞWk1n1

N1
Wk2n2

N2
Wk3n3

N3

¼ AR k1; k2; k3ð Þe jθR k1;k2;k3ð Þ, (14)

F k1; k2; k3ð Þ ¼
X

n1, n2, n3
f n1; n2; n3ð ÞWk1n1

N1
Wk2n2

N2
Wk3n3

N3

¼ AF k1; k2; k3ð Þe jθF k1;k2;k3ð Þ, (15)

where k1 ¼ � M1, . . ., M1, k2 ¼ � M2, . . ., M2, k3 ¼ � M3, . . ., M3 and

WN1
¼ e

�j2πN1 ,WN2
¼ e

�j2πN2 ,WN3
¼ e

�j2πN3. AR(k1,k2,k3) and AF(k1,k2,k3) are amplitude

components, and ejθR k1;k2;k3ð Þ and ejθF k1;k2;k3ð Þ are phase components. The normalized

cross spectrum P̂ k1; k2; k3ð Þ is defined as

P̂ k1; k2; k3ð Þ ¼ R k1; k2; k3ð ÞF k1; k2; k3ð Þ
R k1; k2; k3ð ÞF k1; k2; k3ð Þ
��� ��� ¼ ej θR k1;k2;k3ð Þ�θF k1;k2;k3ð Þf g, (16)

where F(k1,k2,k3) denotes the complex conjugate of F(k1,k2,k3). The POC function

p̂ n1; n2; n3ð Þbetween r(n1,n2,n3) and f(n1,n2,n3) is the 3D inverse DFT (3D IDFT) of

P̂ k1; k2; k3ð Þ, and is given by

p̂ n1; n2; n3ð Þ ¼ 1

N1N2N3

X
k1, k2, k3

P̂ k1; k2; k3ð ÞW�k1n1
N1

W�k2n2
N2

W�k3n3
N3

: (17)

If two image volumes are similar, their POC function gives a distinct sharp peak.

If not, the peak drops significantly. The height of the peak can be used as a good

similarity measure for image matching, and the location of the peak shows the

displacement between the two image volumes.

In order to illustrate how to estimate the sub-voxel displacement between

two volumes, let (δ1,δ2,δ3) represent a sub-voxel displacement, and f(n1,n2,n3) be
the displaced volume of r(n1,n2,n3) with (δ1,δ2,δ3), i.e., f(n1,n2,n3) ¼ r(n1 � δ1,
n2 � δ2, n3 � δ3). In this case, the normalized cross spectrum and the POC func-

tion of r(n1,n2,n3) and f(n1,n2,n3) become

P̂ k1; k2; k3ð Þ ffi W�k1δ1
N1

�W�k2δ2
N2

�W�k3δ3
N3

, (18)
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p̂ n1; n2; n3ð Þ ffi α

N1N2N3

� sin π n1 þ δ1ð Þð Þ
sin π

N1
n1 þ δ1ð Þ

� � � sin π n2 þ δ2ð Þð Þ
sin π

N2
n2 þ δ2ð Þ

� �

� sin π n3 þ δ3ð Þð Þ
sin π

N3
n3 þ δ3ð Þ

� � : (19)

For image matching, the similarity between two images can be estimated by

the peak value α, and the image displacement can be estimated by the peak position

(δ1,δ2,δ3).

Techniques for High-Accuracy Image Matching
Using 3D POC

This section will introduce some techniques for high-accuracy sub-voxel image

matching in 3D POC matching algorithm [15, 29].

Windowing to Reduce Boundary Effects

Due to the DFT’s periodicity, an image can be considered to “wrap around” at a

border, as a result, discontinuities which are not supposed to exist in real world,

occur at every border in 3D DFT computation. In order to reduce such discontinu-

ity, 3D window function can be applied to the input volumes. Referring to [29], a

3D Hanning window is used:

ω n1; n2; n3ð Þ ¼
1þ cos πn1

M1

� �
2

�
1þ cos πn2

M2

� �
2

�
1þ cos πn3

M3

� �
2

: (20)

Spectral Weighting Function

For natural images, typically the high frequency components may have less

reliability (low S/N ratio) compared with the low frequency components.

A low-pass-type weighting function H(k1,k2,k3) can be applied to P̂ k1; k2; k3ð Þ in

frequency domain and eliminate the high frequency components. The useful

weighting function is the DFT of 3D Gaussian function defined as [29]
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H k1; k2; k3ð Þ ¼ e
�2π2σ2

k1
n1

� �2

þ k2
n2

� �2

þ k3
n3

� �2
� 	

, (21)

where σ is a parameter that controls the pass-band width. When calculating the POC

function, P̂ k1; k2; k3ð Þ is multiplied by H(k1,k2,k3) in frequency domain. Therefore,

(19) becomes

p̂ n1; n2; n3ð Þ ¼ 1

N1N2N3

X
k1, k2, k3

H
�
k1, k2, k3

�
P̂
�
k1, k2, k3

�
W�k1n1

N1
W�k2n2

N2
W�k3n3

N3

ffi α

2πσ2
e� n1þδ1ð Þ2þ n2þδ2ð Þ2þ n3þδ3ð Þ2ð Þ=2σ2 :

(22)

Peak Estimation of POC Function

By calculating the POC function, one can obtain a data array of p̂ n1; n2; n3ð Þ for

each discrete index (n1,n2,n3). It is possible to find the location of the peak that may

exist between image voxels by fitting the function in (22) to the data array around

the correlation peak [31], where α, δ1, δ2, and δ3 are fitting parameters. When the

POC function obtains the maximum value at n1 ¼ a1, n2 ¼ a2, and n3 ¼ a3, where
a1, a2, a3 are integers, δ1 can be estimated by

δ1 ¼ log p̂ a1 þ 1ð Þf g � log p̂ a1 � 1ð Þf g
2log p̂ a1 � 1ð Þf g � 4log p̂ a1ð Þf g þ 2log p̂ a1 þ 1ð Þf g � a1, (23)

where p̂ n1ð Þ ¼ p n1; n2; n3ð Þ��
n2¼a2,n3¼a3

. The estimation of δ2 and δ3 is in the same

way. Using the estimated δ1, δ2, δ3, and (22), peak value of the POC function can be

obtained:

α ¼
ffiffiffiffiffi
2π

p
σ � p̂ a1; a2; a3ð Þ � e

a1þδ1ð Þ2þ a2þδ2ð Þ2þ a3þδ3ð Þ2
2σ2 : (24)

Procedures of 3D POC Image Matching

The procedures of image matching using the 3D POC function are described in this

section. The algorithm consists of two stages [29, 31, 32]: coarse-to-fine voxel-level

correspondence estimation and sub-voxel-level estimation. Figure 4 illustrates the

overview of the coarse-to-fine correspondence search procedures.
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Voxel-Level Estimation

The correspondence search performs POC-based volume block matching, which

starts at the coarsest volume layer, and moves the operation to finer layers

gradually. Let p ¼ ( p1,p2,p3) be one of the reference points in image r, and

q ¼ (q1,q2,q3) be the corresponding point in image f, which is the target of the

volume block matching.

Step 1

For l ¼ 1, 2, � � �, lmax, create volumes rl and fl in the l-th layer, i.e., coarser versions
of r and f, recursively as follows:

rlþ1 n1; n2; n3ð Þ ¼ 1

8

X
b1, b2, b3

rl 2n1 þ b1, 2n2 þ b2, 2n3 þ b3ð Þ, (25)

f lþ1 n1; n2; n3ð Þ ¼ 1

8

X
b1, b2, b3

f l 2n1 þ b1, 2n2 þ b2, 2n3 þ b3ð Þ, (26)

where b1, b2, b3 ∈ {0,1}, and r0 ¼ r, f 0 ¼ f.

Fig. 4 Coarse-to-fine search procedures. This figure is a modified version of Fig. 1 in [29]
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Step 2

Assume that at the coarsest layer lmax, the coordinates of reference point and their

correspondence are the same, which are as follows:

plmax ¼ 2�lmaxp1
�� ��; 2�lmaxp2

�� ��; 2�lmaxp3
�� ��� �

, (27)

qlmax ¼ 2�lmaxp1
�� ��; 2�lmaxp2

�� ��; 2�lmaxp3
�� ��� �

: (28)

Next, let l ¼ lmax � 1, and move to Step 3.

Step 3

At the l-th layer, the coordinate of the reference point pl is as follows:

pl ¼ 2�lp1
�� ��; 2�lp2

�� ��; 2�lp3
�� ��� �

, (29)

and the initial value ql
0
of the correspondence ql is given by:

ql
0
¼ 2qlþ1: (30)

Step 4

For the volume rl, a searching window (a 3D volume block) centered at pl is

set. Similarly, for the volume f l, a searching window centered at ql
0
is also set.

According to Sect. 4.1, the displacement δl in voxel level can be estimated with the

peak position of the POC function of the above two searching blocks. As a result,

the coordinate of the correspondence at the l-th layer can be obtained:

ql ¼ ql
0
þ δl: (31)

Step 5

Let l ¼ l � 1, and iteratively repeat Steps 3–5 until l ¼ 0.

Sub-voxel-Level Estimation

At the sub-voxel-level estimation stage, the correspondence search is performed at

the basic image layer, i.e., l ¼ 0. For the volume r ¼ r0, a searching window

centered at p ¼ ( p1,p2,p3) is set. Similarly, for the volume f ¼ f 0, a searching

window centered at q0 is also set, where q0 is obtained at the voxel-level estima-

tion stage with (31). The sub-voxel displacement δ can be obtained with the 3D

POC function of the searching blocks in the sub-voxel-level estimation stage,

using (23). As a result, coordinate of the correspondence in sub-voxel level can be

obtained by:

q ¼ q0 þ δ: (32)
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Iterative Processing

When transformation such as rotation is occurred on the image blocks, it is difficult

to obtain accurate matching results by a single run of POC matching. In this case,

iterative processing is necessary. Firstly, a rigid transformation is obtained by an

initial matching. The transformation is applied to the moving image to reduce the

rotation between the image-pairs. Then, block matching is performed again,

followed by a resulted transformation. Experimentally, three to five runs of such

iterative processing are able to give good matching results for registration evalua-

tion in this work.

Combination of 3D SIFT Detection and 3D POC Matching

Since 3D POC can provide accurate image matching results, it is supposed that

distance between corresponding landmark pairs can be used to validate accuracy of

an image registration. However, one of the main problems in 3D POC matching is

the selection of reference points. In [29], the reference points for image matching

are determined by CT value empirically, but this determination is not appropriate

for registration evaluation. In this work, 3D SIFT keypoint detector is applied to

detect fiducial points in fixed images. Corresponding points in registered moving

images are then searched for and localized using the 3D POC image matching.

In Sect. 5 of this chapter, it will be proved that the distance between the SIFT

feature points and their correspondences (localized by 3D POC image matching) is

an appropriate measure of image registration error.

Outlier Removal

Since the accuracy of landmark matching affects the reliability of registration

evaluation, outliers in the image matching need to be removed. In this work, a

RANSAC algorithm [23] is applied as follows:

Step 1

Randomly select three landmark pairs from the obtained corresponding landmarks

pi and qi, and estimate a rigid transformation TR(x), from the selected landmark

pairs, where x represents a certain landmark.

Step 2

Apply the rigid transformation to all of the landmarks pi, and compute the

distance between the transformed landmarks and their corresponding ones:

d2i ¼ qi � TR(pi)
2.
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Step 3

When landmark-pair-distance is smaller than a threshold fth, such landmarks

are considered as inliers. Threshold fth is computed by f th ¼ F�1
mr

αrð Þσ2r , where F�1
mr

αrð Þ represents the threshold value of Chi-square distribution with the degrees of

freedom mr; αr is the proportion of inliers that are determined by the threshold; σr
is the standard deviation of di. In this work, αr ¼ 0.9 is experimentally determined,

and the degrees of freedom is mr ¼ 3. As a result, the threshold value is

F�1
3 (0.9) ¼ 6.251.

Step 4

Estimate the iteration number by

Nr ¼ log 1� ξð Þ
log 1� 1� Eð Þ2

� � , (33)

where E is the current proportion of outliers. Equation (33) ensures that within Nr

trials, the probability to obtain a sample set with no outliers is ξ. ξ is set as 0.99 in

this work.

Step 5

Repeat Steps 1–4 until the iteration number exceeds Nr.

Step 6

Select the obtained inliers with the largest number within Nr trials.

Experimental Results

In this section, experimental results will be given. Firstly, the accuracy of the image

matching based on 3D POC function is measured to prove the effectiveness of the

algorithm for image registration evaluation. In the rest experiments, clinical data

are used to evaluate the performance of deformable image registration algorithms.

3D Feature Point Matching Error

Five sets of lung CT images of five patients from DIR-Lab dataset [11] were used to

validate the accuracy of feature point matching in this work. Fixed and moving

images were set as the maximum inhalation and exhalation component phase

images, respectively. Each image was cropped to include the entire rib cage and

subsampled to 256 � 256 voxels in the axial plane. The image resolution is

0.97–1.16 mm in the axial plane and 2.5 mm in the z-direction.
Pulmonary landmark feature points, typically vessel bifurcations, were manually

annotated on the five image-pairs by experts in thoracic imaging. The number of
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registered feature pairs per image-pair ranged from 1,166 to 1,561. For each image-

pair, a random set of 300 landmark pairs are publicly available [11].

In this work, such landmark pairs were used to validate the accuracy of the POC

matching algorithm. Landmarks on fixed images of the dataset were used as

reference points of the POC method, and 3D Euclidean distance of the matched

corresponding points and the annotated points on moving images was computed as

point matching error. The parameters of the POC matching algorithm are listed in

Table 1. Mean computation time of 300 points for the POC matching algorithm was

about 6 s.

Such matching error was compared to the repeated registration error measured

by Castillo et al. [11]. In [11], random samples of 200 annotated landmarks on each

fixed image were selected, and the corresponding landmarks on moving images

were re-annotated by a secondary reader. The inter-observer registration error was

quantified as the 3D Euclidean distance between the original landmarks on the

moving images and the corresponding points re-annotated by the secondary reader.

In this work, the matching error of the POC method was compared with the inter-

observer error measured in [11]. Table 2 shows the error measurement results.

Mean inter-observer registration error of the five image-pairs in [11] was

0.89 mm, while the point matching error measured in this work was 1.15 mm.

One should note that the random point-sets selected in the two experiments are not

the same, and the point matching error is larger than the inter-observer registration

error only in a small extent. It can be concluded that the POC matching algorithm

can provide high accuracy for 3D landmark matching and that it is effective for

measuring spatial error of registration quantitatively.

Evaluation of Deformable Registration Results

In the rest parts of the experiments, a deformable registration algorithm based on

free-form deformation (FFD) with B-spine functions [28] was developed and

evaluated by using the SIFT feature point detection and POC matching techniques

in this work.

Table 1 Parameters of POC matching algorithm

Number of coarse-to-fine levels lmax ¼ 3

Iteration times titer ¼ 5

Block size in voxel-level search 16 � 16 � 16 [voxel]

Block size in sub-voxel-level search 16 � 16 � 16 [voxel]

Table 2 Inter-observer error and point matching error [mm]

Case 1 Case 2 Case 3 Case 4 Case 5 Mean

Inter-observer error 0.83 0.74 1.14 0.79 0.95 0.89

Point matching error 0.97 0.93 1.12 1.32 1.40 1.15
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Clinical data used in the registration experiments are the same data used in

Sect. 5.1. The FFD-based deformable registration was applied to the lung CT

image-pairs, and registered moving images were created according to the registra-

tion results.

In the evaluation experiments, firstly, to improve the point matching accuracy

and computational efficiency, lung regions of fixed images were roughly

segmented. A CT value threshold (250–800) was experimentally set, and voxels

that have a CT value within the threshold range were considered as being inside of

the lung regions. SIFT feature points were detected in such regions of each fixed

image. Then, the POC matching algorithm was performed to estimate locations of

the corresponding points in the registered moving images. The number of SIFT

feature points detected from each fixed image was from 1,702 to 3,140. Mean 3D

Euclidean distances between SIFT feature points in the fixed images and the

matched correspondences in the moving images were computed as the automati-

cally measured spatial errors.

The running time of SIFT feature point detection was about 4 s, and that of POC

matching was about 27–48 s. All the evaluation tasks were run on a system with

Intel® Core™ i7 3.07-GHz CPU and 12-GB memory. Example results of landmark

matching for evaluating a deformable registration are given in Fig. 5 ((a): fixed

image; (b): moving image after registration). It is clear that every fiducial point in

the fixed image has a corresponding point that is accurately located in the registered

moving image.

As ground-truth data for accuracy evaluation, manually annotated landmarks of

the DIR-Lab dataset mentioned in Sect. 5.1 were used. Manually evaluated spatial

errors were measured by using distances between the annotated landmarks and the

transformed corresponding points in the moving images. These manually measured

errors were compared with the automatically measured errors, and the results are

plotted in Fig. 6. It is clear from the figure that the spatial errors obtained in this

work are similar with those obtained by using manually annotated landmarks.

In other words, the registration evaluation method in this work is effective and is

possible to measure spatial errors of deformable registration quantitatively without

any manual assessment.

Conclusion

In the work of this chapter, a method for quantitatively evaluating deformable

image registration in an automatic way is developed. With this method, fiducial

points of fixed images for the evaluation are detected by 3D SIFT keypoint detector,

and corresponding points in the registered moving images are localized with 3D

POC image matching algorithm. Experimental results show that the developed
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Fig. 5 Example results of

landmark matching. (a)

Fixed image. (b) Moving

image after registration
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method can provide high enough accuracy that the distance between the fiducial/

corresponding point pairs can be used to measure image registration error. With the

proposed method, users can assess their own image data with different registration

algorithms quantitatively and automatically.
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Preclinical Visualization of Hypoxia,

Proliferation and Glucose Metabolism

in Non-small Cell Lung Cancer and Its

Metastasis

Xiao-Feng Li and Yuanyuan Ma

Abstract Lung cancer is responsible for more deaths than any other cancers; most

cancer-related deaths are due to the development of metastatic diseases rather than

the progression of the primary tumors. Tumor hypoxia has been commonly

observed in a broad spectrum of primary solid malignancies, which is associated

with tumor progression, increased aggressiveness, enhanced metastatic potential,

and poor prognosis. Hypoxic cancer cells are resistant to radiotherapy and some

forms of chemotherapy. In this chapter, nuclear molecular imaging microenviron-

ment including hypoxia, proliferation, and glucose metabolism in lung cancer

metastases was discussed.

Introduction

Lung cancer is responsible for more deaths than any other cancer, approximately

85 % human lung cancers are non-small cell lung cancer (NSCLC). Most cancer-

related deaths are due to the development of metastatic diseases rather than the

progression of the primary tumors [1]. Hypoxic cancer cells are generally more

resistant to ionizing radiation and chemotherapy than oxic cells, and hypoxia is an

important determinant of relapse-free survival and overall clinical outcome [2–4].

Regions of local hypoxia are common features of most human primary solid
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cancers [2, 5–7]. It has been recently demonstrated, in animal models of colorectal

cancer and NSCLC, peritoneal cavity microscopic metastases of less than 1 mm

diameter are extremely hypoxic [8–12].

In studies of macroscopic tumors, pO2 probe measurements and noninvasive

hypoxic tracers imaging are able to assess hypoxia status. However, assessing of

hypoxia in micrometastases may require invasive methods [9], relying on detection

of either an exogenous substance such as 2-nitroimidazole compounds pimoni-

dazole, EF5, and CCI-103F, which are selectively reduced in hypoxic regions of the

tumors (generally when pO2 <10 mmHg) [13] or the expression of endogenous

markers of hypoxia such as hypoxia-inducible factor 1α (HIF1α), carbonic

anhydrase 9 (CA9), and glucose transporters 1 [13–16]. Microscopically spatial

pattern of these markers can be visualized by immunohistochemical methods.

Spatial pattern of binding of radiolabeled hypoxia tracers in tumor sections may

be visualized by autoradiography. Radiolabeled tracers including 18F-misonidazole

(18F-FMISO) [17–19], copper (II)-diacetyl-bis(N(4)-methylthiosemicarbazone)

[20–22], and 124I-labeled iodo-azomycin galactopyranoside [23, 24] among others

have developed for imaging tumor hypoxia. Since the presence and the degree of

tumor hypoxia affects disease outcome in patients, from the disease management

point of view, noninvasive detection hypoxia and also other microenvironmental

components in cancers and/or metastases are critically important for cancer

managements and outcome prediction.

Hypoxia, Proliferation and Angiogenesis in Micrometastases

We have recently observed the hypoxic status of microscopic tumors established

intraperitoneally and intradermally using the HT29 and HCT-8 colorectal cancer

lines [8, 9, 25] and NSCLC A549 and HTB177 cells [11, 12] using pimonidazole

immunohistochemical staining technique. In general, submillimeter peritoneal

tumor deposits showed intense hypoxia (hypoxic fraction as high as 90 %) with

little or no blood perfusion; tumors that ranged from 1 mm to 4–5 mm in diameter

seemed relatively well vascularized, well perfused, and generally displayed little

hypoxia. In tumors larger than 4–5 mm diameter, hypoxia reappeared in the

characteristically perinecrotic distribution pattern seen in macroscopic tumors

[8, 26] (Fig. 1). Accordingly, severe hypoxia may be a general feature in peritoneal

micrometastases. Future studies need to confirm whether this pattern of micro-

metastatic diseases found in mouse models also apply to cancer patients.

Micrometastases may have already existed in many patients when primary

cancers were initially diagnosed although lack of imaging evidence of distant

metastases. Submillimeter metastases in patients may be avascular and in a state

of dormancy [27, 28]. Cell proliferation in dormant tumors had been observed, but

results were mixed: cells were either found dividing very slowly or in G0 phase

[27–30], others have found proliferation in dormant tumors to be as high as in
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macroscopic vascularized tumors but that the dormant tumors did not grow beyond

a threshold size due to a kinetic balance between proliferation and apoptosis

[28, 31], and hypoxia status had not been observed in dormant micrometastases

in these studies. In animal model of metastases, we have noted that cellular

proliferation was in the nonhypoxic rim, not the interior hypoxic core of submilli-

meter avascular tumors, whereas proliferating cells were found throughout larger

tumors 1–4 mm in diameter which were less hypoxic [8, 9, 25]. This is in good

agreement with several studies that cellular proliferation and hypoxia are mutually

exclusive in macroscopic tumors [32–34]. Future studies would confirm whether

cancer cells in dormant metastases are proliferative; this issue is critically important

for systemic chemotherapy, as chemotherapeutic drugs generally target prolife-

rating cancer cells.

Hypoxia has been recognized as a primary physiological regulator of angiogen-

esis [35, 36]. The existence of severe hypoxia in microscopic tumors may be

common irrespective of cell lines and reflects the pre-angiogenic stage of tumor

development. As peritoneal and intradermal tumors increased in size to the diame-

ter range ~1–4 mm, there was a drastic reduction in tumor hypoxia coupled with

the appearance of functional tumor vascularization [8, 9, 25]. This suggests the

sequence of events may be that cells become hypoxic when tumors reach several

hundred micrometers, hypoxia drives angiogenesis, previously hypoxic cells

become oxygenated, and the neovascularized tumors grow beyond certain size

threshold. Apparently, the timing for hypoxia driving angiogenesis switch is criti-

cally important for anti-angiogenesis therapy. This is largely unknown in

metastases involving other organs and tissues rather than peritoneal cavity.

Fig. 1 Scatterplot showing the relationship between tumor size and pimonidazole-positive frac-

tion (PPF) for HT29 tumors. The x-axis represents effective tumor diameter (D) derived from the

cross-sectional area (A) of H&E images, D ¼ 2√A/π (Li et al. Cancer Res 2007;67:7646)

Preclinical Visualization of Hypoxia, Proliferation and Glucose Metabolism. . . 511



Animal Models of Metastases

To conduct preclinical study of tumor microenvironment, animal models of cancer

and metastases are required. Models of disseminated microscopic malignant

disease may be generated in the lung, bone, liver, and peritoneum by intravenous

[37–39], left ventricular [37, 40], intrasplenic [41], and intraperitoneal [8, 9, 11,

12, 25] injection of tumor cells, respectively (Fig. 2). We have shown that a model

of disseminated microscopic peritoneal and ascites tumors was suitable for studying

hypoxia [8, 9, 11, 12, 25]. In the model, disseminated peritoneal microscopic

tumors were induced by injecting suspensions of colorectal HT29 and HCT-8

cancer cells or NSCLC A549 and HTB177 cells into the peritoneal cavity of nude

mice. Mice sacrificed 4–7 weeks after tumor initiation displayed a distribution of

tumors of sizes ranging from a few hundred micrometers up to several millimeters

in diameter on or in the intestinal serosa. Ascites fluid containing a distribution of

free-floating tumor cell aggregates of up to 1 mm in diameter was frequently

presented in mice inoculated with HT29, A549 cells, but was rarely observed in

HCT-8 and HTB177 cell lines. Intradermal injection of similar tumor cell

suspensions could give rise to unitary microscopic tumors useful for studying

hypoxia [8, 25]. An intradermal tumor model has the potential advantage that

growth curves for microscopic tumors could be more easily generated via ultra-

sound or optical imaging. Subcutaneous xenografts generated by subcutaneously

injection of cancer cells are widely used for PET study.

Imaging Hypoxia in Metastases

We have recently reviewed that a model system is valid for assessing the microen-

vironmental features of individual microscopic tumors with targeted PET tracers,

including hypoxic status, proliferation, and blood perfusion [10]. Such model

system provides a diversity of tumors of differing size and hypoxic status growing

in the same animal, thereby reducing or eliminating issues associated with inter-

animal variability. To complement the high spatial resolution associated with

immunohistochemical detection of hypoxia markers, the intratumoral distribution

Fig. 2 Nude mice metastatic models
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of radiolabeled hypoxia tracers can be determined by digital autoradiography.

Studies comparing the spatial distributions of radiolabeled tracers and hypoxia

markers have been reported in macroscopic tumors [22, 33] and microscopic

diseases [8].
18F-misonidazole [17–19] and 124I-IAZGP [23, 24, 42] among others are used

for in vivo PET imaging of tumor hypoxia. We have recently reported the use

of correlative imaging methodologies to examine the uptake of IAZGP and
18F-misonidazole in microscopic [10, 12] and macroscopic [11, 12] tumors

and related this to microenviromental factors. Pimonidazole binding and CA9

expression in a small (~1 mm dimension) and relatively large tumor obtained

from an animal with disseminated colorectal cancer HT29 peritoneal disease, the

smaller tumor shows elevated uptake of 131I-IAZGP and near-ubiquitous staining of

pimonidazole and CA9, implying severely hypoxia. The larger tumor shows

reduced 131I-IAZGP uptake and low levels of pimonidazole binding and CA9

expression with significant Hoechst 33342 uptake indicating that the tumor was

well perfused. Microscopic ascites tumors had high 131I-IAZGP uptake coupled

with intense staining of pimonidazole and CA9 [10].

Intratumoral distribution of 18F-misonidazole was observed in subcutaneous

xenografts and peritoneal tumors of NSCLC; subcutaneous xenografts and perito-

neal metastases were generated utilizing human NSCLC A549 and HTB177

cell types in nude mice. High levels of 18F-FMISO uptake detected by digital

autoradiography and pimonidazole binding by immunohistochemical staining

were colocalized [11]. Such regions tended to correspond to low levels of cellular

proliferation and blood perfusion. Well-oxygenated cancer cells with a high prolif-

eration rate had low 18F-misonidazole uptake. Stroma and necrotic zones had lower
18F-misonidazole accumulation [11, 12].

In a PET study [12], we compared the intraperitoneal accumulation of
18F-misonidazole between peritoneal disease-free mice and mice with A549 or

HTB177 peritoneal metastases. All image sets for each animal were visually

examined using a rotating (cine) three-dimensional display. Figure 3 shows

representative PET coronal slices: In metastases-bearing mice, high radioactivity

accumulation was found on the left side of abdominal wall, and the overall

background in the peritoneal cavity (excluding the intestines) was apparently higher

than in the normal mouse. Necropsy revealed that the left peritoneal wall was the

site of multiple individual tiny lesions. In both the disease-free and metastases-

bearing mice, there was significant uptake of 18F-misonidazole in the gut and

bladder and to a lesser extent in the liver. Tumors from the left peritoneal wall

were removed for sectioning, H&E staining demonstrated multiple individual

micrometastases (generally less 1 mm in diameter), and some of them fused

together. The micrometastases had little Hoechst 33342 uptake, indicating a

lack of blood perfusion, and a high fraction of pimonidazole binding and high
18F-misonidazole accumulation, indicating severely hypoxic tissue. There was

little 18F-misonidazole accumulation in the stroma. Ascites was collected from

the peritoneal cavity, and single cells or ascites tumors were harvested by centrifu-

gation, and these stained positive for pimonidazole. Therefore, 18F-misonidazole

PET is able to detect micrometastases in the peritoneal cavity [12].
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Figure 4 shows a representative 18F-misonidazole PET mid-coronal slice of a

macroscopic A549 subcutaneous tumor, showing considerable heterogeneity in

the spatial distribution of the tracer. Autoradiography, pimonidazole, glucose

transporter-1 expression, and Hoechst 33342 images were obtained on the

same section, and H&E staining was performed on an adjacent section.
18F-misonidazole colocalized with pimonidazole, which was roughly similar to

glucose transporter 1, and these regions mutually excluded Hoechst 33342. Regions

of low pimonidazole binding also had low 18F-misonidazole uptake. Necrosis

and stroma were also associated with low 18F-misonidazole activity. Therefore,
18F-misonidazole accumulated in hypoxic cancer cells, and low radioactivity

regions were either nonhypoxic cancer tissue or stroma and necrosis [12].

Fig. 3 (a) PET coronal slices of intraperitoneal distribution of 18F-misonidazole in a peritoneal

disease-free mouse (left) and a mouse with peritoneal metastases after A549 cell inoculation

(middle) with necropsy- confirmed peritoneal wall carcinomas (right). High radioactivity accu-

mulation was found on the abdominal wall as indicated, and the overall background in the

peritoneal cavity (excluding guts) was apparently higher than control. (b) 18F-misonidazole

(18F-FMISO) distribution in A549 i.p. tumors in mice (n ¼ 5). (c) Multiple individual lesions

attaching to the peritoneal wall where PET imaging had revealed a high level of 18F-misonidazole:

Hematoxylin and Eosin stain showing multiple individual micrometastases (generally less 1 mm in

diameter) which had little Hoechst 33342 uptake, associated with a high fraction of pimonidazole

binding and high 18F-misonidazole accumulation by autoradiography. (d) Single cells or ascites

tumors harvested from ascites of the mouse were stained positive for pimonidazole, Hematoxylin

and Eosin stain provides as a reference. All scale bars are as indicated. Adapted from [12]
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In summary, 131I-IAZGP and 18F-misonidazole have been validated as hypoxia

imaging tracers in microscopic and macroscopic tumor models colorectal cancer

and NSCLC.

Imaging Glucose Metabolism with 18F-FDG

18F-FDG PET has emerged as an important clinical tool for cancer detection,

staging, and monitoring of response and is routinely used in the clinical manage-

ment of several cancer types. The uptake of 18F-FDG, an analog of glucose, is

largely proportional to the rate of glucose metabolism enabling this parameter to be

Fig. 4 Intratumoral distribution of 18F-misonidazole in a macroscopic A549 subcutaneous xeno-

graft by PET and autoradiography and its relationship to tumor microenvironment. Autoradiogra-

phy, pimonidazole, glucose transporter-1 expression, Hoechst 33342, and Hematoxylin and Eosin

stains were obtained from the same frozen tissue section. Stroma and pimonidazole-negative

cancer cells associated with low 18F-misonidazole accumulation. Glucose transporter-1-

expressing regions are much wider than those positive for pimonidazole. All scale bars are

1 mm. Adapted from [12]
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quantified [43]. In hypoxic conditions, cancer cells may undergo a switch from

aerobic to anaerobic glucose metabolism. This adaptive response involves the

coordinated expression of many HIF-regulated proteins, such as glucose

transporters 1, and various glycolytic enzymes [44].

In vitro experiments show that incubation in hypoxic conditions induces an

increase in cellular 18F-FDG uptake [45–47]. It was recently shown that the

intratumoral distribution of 18F-FDG in R3327-AT rat prostatic carcinoma

xenografts positively correlated with that of the hypoxic marker pimonidazole

[33]. We have recently observed glucose uptake in microscopic tumors grown

intraperitoneally in nude mice using 18F-FDG digital autoradiography and to relate

this to physiological hypoxia and glucose transporter-1 expression [25]. Human

colon cancer HT29 and HCT-8 cells were injected intraperitoneally into nude mice

to generate disseminated tumors of varying sizes. Following overnight fasting,

animals, either breathing air or carbogen (a gas mixture of 95 % O2 and 5 %

CO2), were intravenously administered 18F-FDG together with the hypoxia marker

pimonidazole and the cellular proliferation marker bromodeoxyuridine 1 h before

sacrifice. Hoechst 33342, a perfusion marker, was administered 1 min before

sacrifice. The intratumoral distribution of 18F-FDG was assessed by digital autora-

diography of frozen tissue sections. This was compared with the distributions of

pimonidazole, glucose transporter-1 expression, bromodeoxyuridine, and Hoechst

33342 as visualized by immunofluorescent microscopy. In air-breathing condition,

small tumors (generally less than 1 mm in diameter) had high 18F-FDG accumula-

tion and were severely hypoxic with high glucose transporter-1 expression and low

proliferation. Larger tumors (1–4 mm diameter) generally had low 18F-FDG accu-

mulation and were not significantly hypoxic with low glucose transporter-1 expres-

sion but high proliferation. Carbogen breathing significantly decreased 18F-FDG

accumulation and tumor hypoxia in microscopic tumors but had little effect on

glucose transporter-1 expression. We concluded that micrometastases have high
18F-FDG uptake, therefore, high glucose demand which is spatially associated with

physiological hypoxia and high glucose transporter-1 expression. This enhanced

uptake was abrogated by carbogen breathing, indicating that in the absence of

physiological hypoxia, high glucose transporter-1 expression, by itself, was insuffi-

cient to ensure high 18F-FDG (glucose) uptake [10, 25].

Therefore, 18F-FDG uptake was significantly increased in microscopic perito-

neal tumors and only hypoxic regions of macroscopic tumors [11]. This enhanced

uptake could be abrogated by carbogen breathing; physiological hypoxia was a

necessary condition for increased 18F-FDG uptake.

Intratumoral distribution of 18F-FDG and 18F-misonidazole detected by autora-

diography was similar and that both tracers accumulated in hypoxic zones [11]. We

extended our observation of 18F-FDG and 18F-misonidazole using PET on the same

tumor-bearing animals. 18F-FDG and 18F-misonidazole PET scans were performed

separated by a 24 h interval in the same animals. The intratumoral distribution of
18F-FDG and 18F-misonidazole was roughly similar, although areas of mismatch

were apparent [12].
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Imaging Proliferation with18F-Fluorothymidine

18F-fluorothymidine PET has been used to assess proliferation in cancer.
18F-fluorothymidine preferentially accumulated in areas of tumor that showed

high uptake of bromodeoxyuridine and low staining of pimonidazole. This was

demonstrated for NSCLC cell lines A549 and HTB177, grown as either subcutane-

ous xenografts or disseminated peritoneal disease; high18F-fluorothymidine uptake

was found in the regions with high levels of bromodeoxyuridine binding

(proliferative) cancer cells where pimonidazole stained negatively indicating well

oxygenated. Low 18F-fluorothymidine accumulation was found in cancer cells

which were stained positive for pimonidazole (hypoxia) but low for bromodeox-

yuridine (low proliferation). Stroma and necrotic zones also associated with low
18F-fluorothymidine accumulation. 18F-fluorothymidine uptake significantly

correlated with proliferation index [10, 11].

Discussion

Microscopic tumors derived from colorectal cancer cells and NSCLC cell lines

grown intraperitoneally in nude mice are severely hypoxic [8, 9, 11, 12, 25]. PET

tracer 18F-misonidazole is able to detect hypoxic cancer cells in microscopic

peritoneal metastases and macroscopic xenografts; the hypoxia-specific binding

feature of 18F-misonidazole was subsequently verified by autoradiography and

immunohistochemical examinations of exogenous and endogenous hypoxia

markers of frozen sections obtained after PET scans of the same animals.

Severe hypoxia of peritoneal micrometastases may result in anticancer therapy

resistance; hypoxic cells are more resistant than aerobic cells to ionizing radiation

and chemotherapy. However, the presence of severe hypoxia may have its advan-

tage as a specific target for molecular imaging of micrometastatic disease, which is

still difficult to detect with current anatomic imaging modalities such as CT and

MRI. We have examined the capacity of 18F-misonidazole PET and found

that the collection of multiple micrometastases was able to be detected noninva-

sively by 18F-misonidazole PET. Furthermore, there was an apparent increase in
18F-misonidazole activity in ascites in which single cancer cells and clusters of

cancer cells were harvested and all were stained positive for pimonidazole. Abnor-

mal accumulation of 18F-misonidazole in the peritoneal cavity would be a sign of

the presence of micrometastases, and increased radioactivity in ascites may be a

sign of presence of cancer cells which are hypoxic. Current PET technique may be

impractical for directly assessing hypoxia in individual microscopic tumors which

are too small to be seen [9], but a collection of multiple micrometastases is able to

be detected [12].
18F-misonidazole in PET may noninvasively detect hypoxic status in NSCLC

either on the microscopic or macroscopic level. As the presence of hypoxia is a
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general feature of solid malignancies [2, 5–7], to some extent, 18F-misonidazole

PET would be useful to distinguish cancers from benign diseases, such as lung

nodules in patients; this issue may need further investigation.

In NSCLC mouse models, 18F-FDG also mostly accumulates in hypoxic and

nonproliferative cancer cells, and so behaves similarly to 18F-misonidazole in terms

of its intratumoral distribution [11]. Tumor microenvironment is fluctuating, and

changes in hypoxia have been reported in experimental xenografts growing

in animals [48] and solid cancers in patients [49], on a time scale of 1–3 days.
18F-misonidazole and 18F-FDG was compared in the same tumors by PET

scans performed 24 h apart, the intratumoral distribution of 18F-FDG and
18F-misonidazole were roughly similar, and some mismatch was present, possibly

due to changes in hypoxia occurring over 24 h. Interestingly, serial PET studies

indicated that, neither 18F-FDG nor 18F-misonidazole, intratumoral distribution

could be fully replicated by subsequent day PET scan (unpublished data).
18F-misonidazole accumulated in hypoxic regions of xenografts and therefore

can be used to assess the hypoxic volume. We found that low 18F-misonidazole

radioactivity regions were either nonhypoxic cancer cells or noncancerous stroma

and necrosis. Although hypoxia plays an important role in cancer biology,

the presence of oxic cancer cells cannot be ignored. Oxic cancer cells are

highly proliferative and, therefore, are of importance for cancer management.
18F-fluorothymidine generally accumulates in proliferating cancer cells [11]; there-

fore, if 18F-fluorothymidine is injected immediately after 18F-misonidazole PET,

the combined scans should visualize both hypoxic and oxic (proliferative)

cancer cells. 18F-FDG shares a similar intratumoral distribution pattern with
18F-misonidazole [12], so that a combination of 18F-FDG and18F-misonidazole

for a single PET scan may not provide additional information.

The microenvironment of NSCLC is complex and highly heterogeneous, being

composed of viable, minimally proliferative, and hypoxic cancer cells; nonhypoxic

and highly proliferative cancer cells; and noncancerous stroma and necrotic

zones [5, 11, 50]. In general, cellular proliferation and hypoxia are mutually exclu-

sive [8, 11, 32–34]. We have successfully compared 18F-FDG, 18F-fluorothymidine,

and 18F-misonidazole uptake by relating them to specific components of the

intratumoral microenvironment. Each of the PET tracers with pimonidazole and

bromodeoxyuridine was injected simultaneously; digital autoradiography was com-

pared with histological visualization of tumor hypoxia, proliferation in same or

closely adjacent section [25]. Another way to compare PET tracers would be to

conduct serial PET scans on the same tumor, and this has been done to compare

tumor uptake of 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole, both clini-

cally and preclinically (reviewed in [11]). However, the results have beenmixed and

controversial. One possibility is that intratumoral microenvironment is fluctuating

during the intervals between scans. Rapid change in hypoxia in experimental

xenografts growing in animals and solid cancers in patients has been reported.

Ljungkvist and coworkers have demonstrated that hypoxic human head–neck cancer

cells had a rapid turnover rate; debris from pimonidazole-labeled hypoxic cancer

cells was found in the necrotic zone 1–3 days later, and new hypoxia formed during
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the period [48]. Nehmeh and colleagues found a significant difference in

intratumoral 18F-misonidazole distribution between two 18F-misonidazole

PET/CT scans in the same head–neck cancer patients over a 3-day interval, which

was possibly due to a change in tumor hypoxia during the period [49]. Future

investigations would need to address the timing for stability of tumor microenviron-

ment components.

High 18F-fluorothymidine uptake was found in regions where there was greater

binding of bromodeoxyuridine. Therefore, 18F-fluorothymidine PET/CT maps

the amount of proliferative cells in cancers, and 18F-fluorothymidine may be able

to use to observe the change in proliferation following anticancer therapies.

Maximal intratumoral uptake of 18F-fluorothymidine is around 30 % of maximal
18F-FDG and 18F-misonidazole uptake. This may be due to the fact that only

approximately less than 30 % of the cells in the nonhypoxic zones accumulated
18F-fluorothymidine, whereas all cancer cells in hypoxic zones were presumably

able to accumulate both 18F-FDG and 18F-misonidazole [11].

Conclusion

Tumor microenvironment is complex and highly heterogeneous, and the presence

of hypoxia is a general feature of most primary solid cancer and in peritoneal

microscopic carcinomatosis. 18F-fluorothymidine generally accumulates in

proliferating cancer cells, whereas 18F-misonidazole and 18F-FDG mostly accumu-

late in hypoxic and nonproliferative cancer cells. Accordingly, PET imaging with
18F-misonidazole, 18F-fluorothymidine, and 18F-FDG enables to noninvasively

detect the hypoxia status, proliferation, and glucose metabolism in macroscopic

tumors and micrometastases.
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Abstract Ex vivo thermoacoustic (TA) imaging of large porcine specimens

demonstrates the feasibility of performing whole organ TA imaging. A smaller

system optimized for ex vivo prostate cancer imaging has been developed and is

currently in use to determine whether the TA contrast mechanism can visualize

prostate cancer.

Electromagnetic design of the testbeds is detailed. Choice of irradiation fre-

quency is explained and irradiation pulsewidth is matched to transducer bandwidth.

Power deposition in specimens is estimated from directional coupler measurements

during scanning. These measurements confirm that tissue heating is microdegrees

per irradiation pulse.
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Introduction

Each diagnostic imaging modality provides different information about tissue

properties. Ultrasound (US) reveals mechanical tissue properties whereas X-ray

(XR) and X-ray computed tomography (XR CT) reveal projections and recon-

structed slices of X-ray attenuation, which is closely related to tissue density.

Magnetic resonance imaging (MRI) reveals hydrogen content as well as relaxation

properties. Positron emission tomography (PET) reveals metabolic activity. All but

PET propagates energy into the imaging region of interest (ROI) and collects the

same type of energy. US transmits and receives mechanical pressure waves; XR and

XR CT transmit and receive X-rays. MRI propagates very high frequency (VHF)

electromagnetic energy to excite magnetic spins and measures fluctuations in the

magnetic field caused by those spins. PET provides inverse source images of a

radioactive isotope injected into the patient, which is taken up by regions of high

metabolic activity. Thermoacoustic computerized tomography (TCT) is a hybrid

imaging technique, which provides additional complementary information.

Conversion of electromagnetic (EM) energy into mechanical energy, manifested

as ultrasound pulses, is the basis for thermoacoustic (TA) imaging. TCT signals are

generated by rapid heating, which causes thermal expansion, exciting mechanical

pressure waves. The TCT contrast mechanism therefore is correlated to dielectric,

thermal, and mechanical tissue properties. TCT may prove useful for applications

that elude current clinical imaging methods, most notably differentiating vulnerable

from stable plaque and imaging prostate cancer. Aggressive tumor growth

is supported by a large blood supply with high electrical conductivity, which is

hypothesized to distinguish cancerous from normal tissue in TA imaging. The

patient is irradiated with a short but high-power EM pulse, which rapidly heats

the ROI to create outgoing pressure waves. Optimization of both EM and acoustic

aspects is required for this technology to gain widespread utilization for the

noninvasive detection and pinpoint localization of tumors with dense surrounding

vasculature.

Historical Background

Thermoacoustics (TA) is a well-known phenomenon, with a history that dates back

more than 100 years to AG Bell’s observation of the photoacoustic effect [1].

Ultra-high frequency-induced auditory effects were first observed in the 1960s

[2]. The auditory effect was attributed to thermal expansion [3, 4], which was

validated experimentally in water [5]. Experimental validation followed in tissue

mimicking human head phantoms [6] and in vivo in small animal heads [7].

Application of the thermoacoustic effect to diagnostic imaging was first

proposed in the 1980s. Caspers and Conway proposed generating TA signals with

submicrosecond microwave pulses with carrier frequency of 9 GHz [8], while
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Bowen and colleagues used 2.45 GHz [9, 10]. Experimental thermoacoustic

projection images [10, 11] were quickly followed by design of a full-fledged

tomographic imaging system [12] and measurements [13]. Kruger pursued

photoacoustic (PA) imaging using optical irradiation pulses with 1,064 nm

wavelengths, but later moved to lower frequency (433 MHz) excitation. 433 MHz

irradiation was used to image the kidney of a small (30 kg) pig [14] and also a

human breast [15]. These were relatively easy test cases, compared to in vivo

abdominal imaging. The piglet kidney was small, so EM penetration was excellent.

The low dielectric constant of fatty breast tissue permits deeper EM penetration

than dense organs and muscle. These results provided compelling proof of princi-

ple, although the advent of high-field MRI raised doubts about the feasibility of

propagating 433 MHz into an adult torso. 300 MHz circularly polarized B1 fields

are routinely propagated into adult heads by 7TMRI scanners, but whole body MRI

at 7T remains elusive because it is so difficult to achieve B1 uniformity throughout

an adult abdomen. Two texts [16, 17] and review articles [18, 19] provide excellent

overviews.

Governing Equations

Thermoacoustic pressures are governed by the inhomogeneous acoustic wave

equation. Following the notation of [17],

∂2

∂t2
� ν2sΔ

 !
p x; tð Þ ¼ β

κ

∂2
T x; tð Þ
∂t2

(1)

with homogeneous initial and boundary conditions. In soft tissue the speed of sound,

νs ~ 1.5 mm/μs, thermal expansion coefficient, β ~ 3.6e–4/�C, and compressibility

κ ~ 4.6e–10/Pa. The heating rate is

∂T x; tð Þ
∂t

¼ 1

C
SAR (2)

where SAR is specific absorption rate of the electromagnetic excitation pulse in

W/kg, and C ~ 4.2 kJ/kg/�C is the specific heat capacity of soft tissue. In VHF and

microwave regimes, SAR is defined as

SAR ¼ σ E x; tð Þj j2
ρ

(3)

where σ is electrical conductivity in Siemens/meter and ρ is tissue density. Equation
(1) can be written in detail as
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∂2

∂t2
� ν2sΔ

" #
p x; tð Þ ¼ βσ

κCρ

� �
xð Þ ∂

∂t
E x; tð Þj j2 (4)

The tissue parameters νs, κ, β, ρ, and C are often assumed constant but can

vary with respect to x. EM loss is proportional to electrical conductivity. Addition-

ally, dispersion cannot be ignored so conductivity is also frequency-dependent,

σ ¼ σ(x,f ) where f denotes frequency. These are all intrinsic tissue properties,

but the electromagnetic field, E(x,t) is applied by the experimental setup in short,

high-power pulses. An idealized system excites with an electric field that is

impulsive in time and uniform in space, i.e., E x; tð Þj j2 � Ej j2δ tð Þ:
Most TA systems propagate EM pulses with only 2–3 cm depth penetration.

We have developed a benchtop TCT system that provides excellent depth penetra-

tion of the EM pulse and yet generates TA pulses of sufficient strength to be

detected after travel through 6 cm of soft tissue. The applied electric field is

nearly constant in the ROI, but susceptibility effects can cause significant spatial

variations. The applied field is not impulsive in time, but it is reasonable to

assume that it is separable as E x; tð Þj j2 ¼ E xð Þj j2I tð Þ and the governing equation

becomes

∂2

∂t2
� ν2sΔ

" #
p x; tð Þ ¼ S xð ÞI0 tð Þ (5)

where S xð Þ ¼ βσ Ej j2
κCρ

� �
xð Þ is the thermoacoustic source term which is recovered

from measurements of p at receiver locations, x, located outside of the ROI.

Ideal TCT Pressures

Idealized TCT pressures have straightforward mathematical representation and

reconstruction of TCT data bears similarities to reconstruction methods for other

imaging techniques. An idealized TCT system propagates impulsively in time so

that I(t) ¼ δ(t) and in this case the pressures generated can be written in terms of

spherical means of the source term, S [20].

pδ x; tð Þ ¼ ∂
∂t

Z
x�yj j¼νst

S yð Þ
4πν2s x� yj jdy (6)

where the subscript, δ, indicates that the pressures were excited impulsively.

Mathematically, idealized TA pressures are equivalent to derivatives of the

spherical Radon transform. Physically, TA pressures are nearly equivalent to

reflection tomography data. TA pressures generated by impulsive irradiation and
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reflection tomography data both represent spherical integrals of a source term, S,
centered at the transducer focal spot, x. Reflection tomography assumes 2-way

travel in which pulses emitted by a transducer are recorded after experiencing

only one scattering event. In contrast, TCT measurements represent 1-way travel

from object to transducer. TCT sinograms represent internal sources of acoustic

pressures, much as PET sinograms represent internal radiation sources. The differ-

ence between TCT and PET, however, is that TCT sinograms represent spherical

integrals whereas PET sinograms represent line integrals. TCT differs from

ultrasound transmission tomography, for which measured pressures are processed

to provide line integrals of “slowness” [21, 22], attenuation [23] or both [24–26].

These methods reconstruct line integrals using techniques developed for

X-ray CT. Ultrasound tomography accounting for refraction, scattering, and dif-

fraction remains a topic of research. We cite just a few of the numerous results

applied to breast cancer imaging [27–29]. Fourier interpolation of diffraction

tomography data had long permitted bandlimited recovery of the refractive index

of weak scatterers, but backpropagation of the acoustic field improved image

quality [30].

Mathematically exact reconstruction of S from measurements of pδ restricted

to a surface surrounding the ROI is a well-studied problem. Explicit inversion

formulae for this spherical Radon transform were first derived in series form for

circular and spherical measurement apertures [31, 32] while inversion of standard

filtered backprojection (FBP) type was derived for a planar measurement geometry

[33]. Mathematically exact FBP inversion was derived in [34] and quickly

generalized to other measurement geometries [35]. Most of these results assume

that the excitation pulse is impulsive in time, but neither ultrasound transducers nor

high-power EM amplifiers can transmit true delta functions.

Experimentally Realized TCT Pressures

DuHamel’s principle explicitly reveals the extent to which the true pulse, with

temporal envelope I, bandlimits TCT pressures

pI x; tð Þ ¼ I � pδ½ � x; tð Þ (7)

where the convolution is performed with respect to time. This is derived by

exploiting linearity of the wave equation and considering the source, S, as a sum

of impulsive sources at times 0 < s < t [20]. By the convolution theorem,

FpI x; fð Þ ¼ FI fð ÞFpδ x; fð Þ (8)

where F denotes the Fourier transform with respect to time. The irradiation

pulsewidth therefore directly bandlimits TA pulses, and therefore also bandlimits

reconstructed images [36].
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Necessary Steps for Translation from Benchtop
to Clinical Prototype

Before clinical prototypes can be deployed to validate the TA contrast mechanism

in vivo, it is necessary to show that VHF EM pulses can generate useful TA signals

without overheating the patient. This requires judicious choice of system

parameters, including irradiating EM frequency and pulsewidth as well as choice

of ultrasound receivers.

Choice of EM Frequency

TA imaging systems must irradiate with an electric field that penetrates the entire

ROI and yet is lossy enough to generate sufficiently strong acoustic pressures to

survive the outgoing trip across the ROI. Near infrared radiation (NIR) is extremely

lossy in soft tissue, with a typical penetration depth of only 1.7 cm [17]. Microwaves

heat tissues with high water content efficiently, but with limited depth penetration

[19, 37]. Additionally, diffraction of short wavelength microwaves can cause TA

signal dropout [38]. In contrast, VHF frequencies penetrate large tissue volumes

well with good uniformity, as witnessed by the success of whole-body 3T MRI,

which excites spins using 128 MHz. Precisely because these EM pulses are not

lossy in soft tissue, they generate a weaker TA signal than microwave or PA

irradiation. Nevertheless, the TA pulses generated are sufficiently strong to survive

passage through 5–6 cm of soft tissue [39, 40]. Unlike other systems that irradiate

with microwave or optical pulses, 100 MHz EM radiation can penetrate an adult

torso, creating the potential for an abdominal TCT system for applications that

allow placement of an ultrasound array within just a few centimeters of the ROI.

Both optical and VHF EM energy heat blood, although the contrast mechanisms

are dramatically different. NIR energy heats hemoglobin, and by varying optical

wavelengths, PA systems discriminate between oxy- and deoxyhemoglobin

[41, 42], as do pulse oximeters. Because VHF energy heats ions, blood and

physiologic saline each generate a strong TA signal, which is not the case for

pure water. The electrical conductivity of physiologic saline ranges from approxi-

mately 0.8 S/m at 30 MHz to 1.6 S/m at 100 MHz [43]. Blood is equally lossy near

100 MHz, but the conductivity of pure water is six orders of magnitude lower.

Therefore we excite TA signal with a carrier frequency at the top of the frequency

modulated (FM) radio band, 108 MHz.

Choice of EM Pulsewidth

Ideal irradiation would be instantaneous, but that is physically unrealizable. TA

pulses generated by instantaneous irradiation would be bandlimited only by the

content of the tissue. Attenuation limits the clinical utility of high frequency
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ultrasound for abdominal applications, so an irradiation pulsewidth of 70 ns would

essentially bandlimit TA pulses to 14 MHz, approximately the bandwidth of higher

frequency clinical ultrasound transducers. The VHF-pulsed amplifier used to

generate the results presented here is limited in peak power output and response

time. The results presented below were generated by either 900 or 700 ns irradiation

pulsewidths, for the large organ and prostate testbeds, respectively.

Optical pulsewidths of order 10 ns are capable of generating PA pulses with

essential bandwidth up to 100 MHz. However, such high ultrasound frequencies are

quickly attenuated because acoustic attenuation in soft tissue is exponential with

respect to both travel distance and frequency:

p x; fð Þ ¼ e�a x�yj jf bp y; fð Þ (9)

In soft tissue b is slightly larger than 1, and a ranges from 0 to 0.2 Np cm�1

MHz�b [44].

Small ROI applications are therefore suitable for photoacoustic tomography

(PAT). Conversely, microwave and radiofrequency TCT systems struggle to propa-

gate 100 ns pulses; most systems irradiate with 400 ns to 1 μs pulsewidths,

generating very low frequency TA (below 1 MHz). Outgoing TA pulses are there-

fore attenuated very little. Extremely broadband TA signals have been generated

[45, 46], but acoustic attenuation quickly decimates the high frequency components

of the TA pulse. Because TA bandwidth directly impacts image resolution [36], TCT

system design must balance bandwidth, signal strength, and depth penetration.

Transmit pulses were optimized for diffraction tomography in [32] and the result

applies to EM pulses used to generate TCT signals. Additional care is required for

TCT to ensure that the irradiating electric field is sufficiently strong throughout the

imaging volume.

Materials and Methods

The testbeds represent slight modifications of the first generation system [47],

propagating submicrosecond TE10 pulses past the specimen. Testbed design was

performed using ANSOFT high frequency structural simulator (HFSS) to minimize

reflected power at transitions between air-filled rigid coaxial line and fluid-filled

waveguide section. Specifically, S-parameters were optimized to maximize trans-

mission (S21) and minimize reflection (S11 and S22). To validate testbed EM

performance broadband S-parameters were measured. The basic experimental

setup during scanning involves collecting complete 4-channel measurements of

incident and reflected pulses at both testbed ports whenever possible. During TCT

sinogram acquisition, however, two channels are used to record TCT signal, leaving

only two channels for monitoring EM pulses. Ultrasound hardware remains essen-

tially unchanged between systems. The tomographic gantry hardware permits
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acquisition of “step-and-shoot” volumetric data. In all systems the axis of rotation

and translation runs along the x direction, although the axes are rotated differently

in the two systems.

EM Hardware

The testbeds have the dimensions of a TE103 cavity, but with different

y-dimensions, depending upon the size of the object to be imaged. The testbed

designed for imaging large organs was fabricated in the standard orientation of a

TE10 waveguide, with vertically polarized electric field propagating horizontally

along the z-axis. This testbed permits variable height in the y-direction, whereas the
testbed optimized for prostate imaging has the y-dimension fixed at 6 cm. Addi-

tionally, the orientation of the smaller prostate imaging system is rotated so that the

x-axis of translation and rotation is vertical.

Carefully designed coaxial-to-waveguide transitions at each port efficiently

propagate TE10 pulses through the testbed to a load [47]. Directional coupler line

sections and plug-in elements at input and output ports as shown in Fig. 1 allow

direct measurement of incident and reflected pulses, from which power loss in the

system can be calculated. The SAR in the tissue specimen is estimated by compar-

ing power loss in the loaded vs. the unloaded system. In these benchtop systems

SAR during TA signal production is tens of kW/kg, but duty cycle can be extremely

low, keeping average SAR is on the order of 1 W/kg.

Active Components

A �10 dBm input pulse from a tunable signal generator (Rohde & Schwarz,

SML10) is amplified from a fraction of a milliwatt to a peak power exceeding

40 kW by a custom designed RF amplifier (QEI VHF-50KP). This 3-stage amplifier

Fig. 1 (Left) A single VHF pulse in grey. Pulse envelope in thick black represents I1/2. (Right)
Spectrum of TA pulse
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propagates pulsewidths no longer than 1 μs. The first stage is solid-state and

performs the lion’s share of the amplification, sending a 500 W square pulse to

the first of two pulsed vacuum tubes. The intermediate pulse amplifier (IPA) is a

vacuum tube (CPI #3CPX5000A7). It responds sluggishly, with rise and fall times

exceeding 100 ns. This tube generates nearly 6.5 kW near the end of a 880 ns pulse.

The final pulse amplifier (PA) tube (#3CPX800A7) further distorts the pulse shape,

severely band-passing the irradiation pulse. The first two stages are monitored using

directional coupler line sections which provide 27 dB attenuation, and are then

further attenuated by an additional 20 dB. The final PA output is attenuated by

62 dB. Envelopes of the pulses generated by a�10 dBm pulse of 880 ns pulsewidth

are shown in Fig. 1. High-power pulses propagate along air-filled Electronics

Industry Alliance (EIA) 1–5/800 rigid copper coaxial line to the testbed. A TE10

pulse propagates along the fluid-filled testbed. Additional ports added to the testbed

permit positioning of the object under test by positioners that extend through a

custom designed port outside of the testbed (Fig. 3). The entire setup is housed

inside a 100 dB Faraday cage (Lindgren #14-W-5/S-I).

Fig. 2 Envelopes of VHF

pulses at each stage of the

amplifier.

Fig. 3 (Left) Large testbed for imaging large organs. (Right) Optimized for prostate imaging
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Passive: Common Elements for Both Testbeds

Passive components include testbeds optimized for ex vivo large organ and prostate

imaging, as well as the materials that load the testbed. The thermoacoustic testbeds

propagate a submicrosecond TE10 pulse with carrier frequency 108 MHz and peak

power of 40 kW. The dielectric is primarily deionized (DI) water mixed with 15 g/L

glycine, which reduces the wavelength by nearly an order of magnitude compared

to that in a vacuum. Testbeds have dimensions of a TE103 cavity, with a ¼ 19 cm

and c ¼ 64 cm. However, coupling irises were carefully designed to provide a good

match between the rigid EIA 1 5/800 coax attached to each port.

Testbeds exploit reciprocity and efficiently transmit power to a dummy load, so

that electromagnetic quality is nearly one. While resonance would increase field

strength, it would also diminish our ability to irradiate the object with

submicrosecond pulses. Incident and reflected pulses at each port are monitored

using line sections (Bird #4715-000) fitted with 50 dB directional coupler slugs

(Bird #0274-000). Incident pulses at each port have 2 kV peak amplitude, so they are

attenuated by an additional 30 dB (80 dB total) to prevent over-ranging on

the oscilloscope (Tektronix DPO 7140). EM pulses are collected using the

oscilloscope’s full bandwidth of 1 GHz and a sampling rate of 5 GHz. Incident

and reflected power at each port are calculated using these measurements (Fig. 3).

US Hardware

The testbeds have dual-channel capability, enabling either faster data acquisition or
broader bandwidth imaging. Although TA pressures are relatively weak, we choose

critically damped transducers over more sensitive lightly damped transducers. This

is done because TA pressures tend to be very broadband compared to ultrasound

pulse echoes, and the more heavily damped transducers have a broad bandwidth.

Focused immersion transducers (Olympus V303, V306) with point target focus of

0. 600 ~ 1.5 cm and center frequencies 1 and 2.25 MHz were positioned directly

below and above the kidney, respectively. This was done to maximize bandwidth of

the aggregate measured signal. To minimize scan time when imaging fresh surgical

prostate specimens, we use a match pair of 2.25 MHz transducers with 0.800 point
target focus. The 2.25 MHz transducer captures first sidelobe of the power spectrum

of a 700 ns irradiation pulse. These lobes lies between 1.4 and 2.9 MHz. TA signal

is amplified 54 dB by low noise preamplifiers (Olympus #5662).

EMI Shielding

Great care is taken to electromagnetically shield the transducers and cables.

Transducers are recessed 1 cm in an EM cutoff chimney to minimize their exposure

to the E-field inside the testbed. Doubly shielded transducer cables (Olympus #BCU-
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58-10DSW) carry the TA signal to a penetration panel on the Faraday cage. Addi-

tionally, standard ductwork is used to further shield the transducer cable from stray

electromagnetic interference (EMI) from the amplifier as shown in (Fig. 5).

In addition to the cables’ mechanical shielding, inline low-pass filters (Mini Circuits)

suppress any of the high-power 108 MHz excitation pulse that may still be picked

up by the transducer. This is done to protect a 54 dB preamplifier (Olympus, #5662).

Thermal and Mechanical Hardware

Temperature of the glycine solution is monitored by a templogger (TDC

D10370003, ThermoWorks, Lindon, UT), whose probe is permanently mounted in

one corner of the testbed near port 2. The object under test is rotated and translated

by a dual motion actuator and driver (Haydon Kerk #LR35KK4AD-05-940 and

#DCM8028, respectively), so that data is collected in “step-and-shoot” mode.

Testbeds: Dimensions and Orientations, Ey for Each

E-field strength along the centerline of the waveguide is estimated using the relative

permittivity of water as a function of temperature according to [48]

Ey ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πfPμo=βab

p
(10)

Here, β ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=λ2 � 1=a2

q
, λ ¼ c=f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
∈r Tð Þp

, c is the speed of light in a vacuum,

f is frequency, εr is relative permittivity, P is power, μo is free-space permeability,

and a ¼ 0.19 m is the testbed x-dimension. b is the testbed y-dimension, which

differs depending upon testbed. b ¼ 10 cm for the large testbed and b ¼ 6 cm for

smaller testbed.

The smaller testbed has b ¼ 6 cm and propagates pulses of 700 ns duration and

22.5 kW incident power. Using the empirically estimated relative permittivity

Fig. 4 (Left) Filtered sinogram corresponding to slice #31. (Center) Slice #31 reconstruction.

(Right) Photograph from nearby slice
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for 6 �C glycine of ε0r ¼ 92 yields a field strength near the input port of Ey ¼ 15.5

kV/m. Loss in an unloaded testbed filled with glycine is about 35 %, reducing the

field strength to only 10 kV/m near the output port. Prostate specimens are posi-

tioned between the ports, and a conservative estimate of electric field strength

experienced is 12 kV/m.

Similar calculations for the larger testbed with b ¼ 10 cm propagating 900 ns

pulses with incident power 25 kW implies a field strength near the input port of 12.6

and 10 kV/m near the kidney. Not only does the smaller testbed concentrate the

electric field, but it also permits positioning the ultrasound receivers closer to

the specimen. Both effects improve signal to noise ratio (SNR).

Specimen Prep and Scanning

LabVIEW software (2010 version, National Instruments, Austin, TX) controls the

tomographic gantry and signal generator (SML-01, Rohde and Schwarz, Columbia,

MD), while also controlling data acquisition on a 4-channel digital oscilloscope

(DPO 7104, Tektronix, Beaverton, OR). LabVIEW runs directly on the digital

oscilloscope, which has an onboard Windows PC. The program communicates to

the actuator via a universal serial bus (USB) data acquisition board (#6008,

National Instruments), and to the signal generator via a standard general purpose

interface bus (GPIB) cable. Both testbeds acquire in step-and-shoot mode over

cylindrical measurement apertures.

Great care is taken to prevent tissue damage during scanning. To minimize water

absorption 0.2 M glycine (15 g/L glycine powder in deionized (DI) water) serves as

acoustic couplant and also as waveguide dielectric. To minimize autolysis the

specimen, and therefore couplant, are chilled.

The benchtop systems described below collects complete data in “step-and-

shoot” fashion over a cylindrical measurement aperture. The transducer focal

point remains outside of the specimen as it rotates, as indicated by the dashed

lines in Fig. 4b.

Gantry for Imaging Large Porcine Kidneys

Early work imaging swine kidneys was performed with a horizontal gantry axis and

a single 1.8-degree rotation between tomographic views. Because total scan time

was not a concern we drove the amplifier at a pulse repetition frequency (PRF) of

20 Hz and translated 2 mm between acquisition slices. “Jerking” of the specimen by

rapidly rotating between tomographic views required waiting 3 s after rotation to

allow the specimen to come to rest. Hollow-glass positioners were custom designed

to maintain the TE10 electric field inside the testbed while securely rotating the

object. Glass rods had 4 mm OD and 2 mm ID. To preserve the TE10 field care was

taken to ensure that they were filled with acoustic coupling fluid. One end of each
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glass rod protruded approximately 1 cm into small cuts in the tissue specimen. The

rod which “translated” the specimenwas bound securely to the specimen using thread

and small hooks in the rods. A custom adapter coupled the stepper motor to

positioners. Buoyant forces on an immersed specimen are significant, but neverthe-

less long kidneys sag somewhat between positioners, degrading positioning accuracy.

Small Testbed for Imaging Fresh Human Prostates

This system has two advantages over the larger system. Firstly, the axis of rotation

is vertical, improving positioning accuracy because gravitational forces on the

specimen do not change during rotation about a vertical axis. Secondly, EM

efficiency is improved because the electric field is concentrated and EM pulsing

is optimized.

The third generation testbed gantry also collects volumetric data in “step and

shoot” mode, but with gantry axis vertical and perpendicular to the direction of EM

propagation. The translation distance between acquisition slices is 3 mm. To avoid

suddenly jerking the specimen, each 1.8� rotation is executed in 64, 0.028125�

substeps with a 0.025 s delay between each substep. This smoother specimen

rotation approximates the continuous gantry motion of modern-day clinical CT

scanners. An additional delay is imposed after the final substep to ensure that the

specimen comes to rest before data acquisition commences. An even longer delay is

imposed after each translation step. Validation performed using lamb kidneys can

be viewed online at http://www4.uwm.edu/letsci/physics/research/patchs/upload/

MicrosteppingGantry.mp4.

The system is loaded with fresh prostate specimens that include the whole

prostate, as well as varying amounts of surrounding tissue, much of which is

adipose tissue situated below the prostate. Samples are suspended below the stepper

motor actuator by a monofilament (polydioxanone) surgical suture (PDS*II,0,

Ethicon, Somerville, NJ). This study underwent a full committee review and was

approved by the Institutional Review Board (IRB) of the Medical College of

Wisconsin (MCW). An IRB-approved written informed consent was obtained

from each participant prior to the start of any research procedures. Specimens are

scanned for no more than 4 h and fixed immediately in formalin. Histology has not

been impaired in any of the specimens scanned to date.

Besides concentrating the E-field by mechanically reducing the size of the

testbed, software modifications minimize average SAR without degrading TA

signal strength, despite a fivefold increase in PRF to 100 Hz. We pulse EM only

during data acquisition in order to reduce average SAR. The average acquisition

time per tomographic view is approximately 4 s, with more than half this time

devoted to specimen positioning. To minimize average SAR the signal generator is

switched off during gantry motion, settling time, and data storage. To ensure that

recorded data represent a true average of 32 TA pulses, we add 20 % to the signal

generator’s firing time immediately before recording data to the disk. At a 100 Hz

PRF, only 384 ms are required for data averaging. Additionally, the amplifier may
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fire during the 300 ms switching time. While transmitting 700 ns pulses at a 100 Hz

rate, the duty cycle is 0.007 %, but this is reduced conservatively to 0.001 % by

switching the amplifier off during specimen positioning and data storage.

We note that our PRF of 100 Hz is limited not by the amplifier, but rather by

the mechanical system. Only 50 μs are required for TA data acquisition, but the

impulsive EM irradiation causes low frequency vibrations of the testbed, which

arrive later and require up to 10 ms to decay. Although our current PRF of 100 Hz is

5 times faster than that of lasers used for photoacoustics, it is still slower than the

amplifier’s 1 % duty cycle limit. Driving at a PRF of 25 Hz provides extremely

stable power output, but 100 Hz makes power output variable, even though pulse

shapes are preserved. Incident power upon port 1 of the testbed is variable, but

percent loss in the passive testbed is stable.

Reconstruction

For our cylindrical measurement surface, a mathematically exact FBP formula [35]

exists for ideal TCT data, which is neither attenuated, nor diffracted.

S xð Þ ¼ 2

Z
y∈∂Ω

p y; tð Þ � tpt y; tð Þ½ �t¼ x�yj j=νs
n � x� yð Þ
x� yj j3 dy

where ∂ Ω is the cylindrical measurement aperture and n is the inward unit normal

vector.

In practice, however, both attenuation and diffraction degrade data quality so we

emphasize small time data by applying an ad hoc weighting scheme only vaguely

akin to Parker’s half-scan weights [49]

w y; xð Þ ¼
yconj � x

��� ���
y� xj j þ yconj � x

��� ���
where yconj is the conjugate source location, defined just as the conjugate ray is

defined in X-ray CT [50]. Note that w(yconj,x) + w(y,x) ¼ 1.
Backprojecting small time data out of plane implies a strong cone angle.

Because our transducers are only mildly directional, we find that backprojecting

in plane yields comparable (sometimes better) image quality than volumetric

backprojection.

For the prostate specimen data we collect in the small testbed, we exploit the

transducers’ bandlimited frequency response, and filter by merely applying a

Hilbert transform rather than high-pass differentiation. The Hilbert transform plus

the transducers’ apodized frequency response functions effectively differentiate

with respect to time, yielding pt. To remove noise, TA pulses are bandlimited,
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typically with lower limit of 100 kHz and upper limit in the range 3–5 MHz.

A smooth rolloff was applied to either end of the spectrum. Taking νs ¼ 1.5 mm/

mus bounds the wavenumber k ¼ 2πf/vs ∈ (0.42,15)1/mm. Our transducers are

recessed in an EM cutoff chimney. For most points x inside the reconstruction

region, k|x � y| � 1 and the derivative term predominates, p(y,t) 	 tpt(y,t). Com-

bining this with the fact that we are replacing the surface integral of volumetric

backprojection with integrals over the circle for in-plane backprojection yields the

approximate reconstruction

S xð Þ � R

Z
y∈S1

w y; xð Þ HBpmeas y; tð Þ½ �t¼ x�yj j=νs
n � x� yð Þ
x� yj j2 dy

where “H” and “B” denote the Hilbert transform and bandlimiting transforms, R is

the radius of the cylindrical measurement surface, and pmeas represents the

measured data.

Pre-processing

These formulae ignore several strong sources of highly correlated errors in the

measured data. In the subsections below we outline methods for removing the most

significant sources of error, EMI, and multiple reflections at the tissue-couplant

interface.

EMI Correction

EMI is severe in our simple benchtop system because the piezoelectric trans-

ducer acts as an antenna and the electronics are too simple to protect the preamps

from excessively high voltages. Single element transducers are shielded from the

very strong electric field because they are recessed 1 cm in 100-schedule 40 cutoff

chimneys. Nevertheless, they detect the VHF excitation pulse, which is amplified

by 54 dB. Additionally, stray RF leakage from the amplifier is detected despite

doubly shielded transducer cables (Olympus DSW). Unfortunately, the EMI

oscillates with a frequency driven by the EM pulsewidth, which is precisely in

the frequency range of the excited thermoacoustic (TA) pressures. Unlike the

desired TA pulses, EMI starts immediately and decays (approximately) expo-

nentially, whereas the TA pulses arrive after 10–15 μs and have essential support

corresponding to the diameter of the object under test, as shown in Fig. 5.

We outline a correction scheme that is effective for removing most EMI, but

note that a hardware solution will be required for high-quality and robust

clinical imaging.

EMI is an additive error and is typically consistent between views, resulting in

ring artifacts in reconstructed images. We utilize a hybrid approach to correction:
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1. Perform sino-space correction on time- and band-passed data (in that order).

2. Perform Fourier-space correction, nulling as small a number of Fourier

components as possible.

3. Time-pass again to remove streaks that were smeared throughout the sinogram

and into areas clearly outside the tissue.

4. Combine sinograms from two different transducers before reconstructing. If data

quality from one of the two transducers is clearly superior, weight that

transducer’s data more heavily.

This procedure is detailed on a single slice of a volumetric acquisition in which

270� of data were collected by each transducer at each slice. Examples of “raw”

sinograms suffering severe EMI are shown below (Fig. 6):

Fig. 5 A raw TCT projection has EMI for t < 15 us, and the first arrival of TA pressures occurs at

about 12 microseconds

Fig. 6 Raw sinograms suffer significant EMI. (Left) Transducer #1. (Right) Transducer #2
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Note that these sinograms are displayed in the raw view order, and have not yet

been adjusted to account for the fact that they are 180� out of phase. Because

our transducers are recessed 10 mm inside a cutoff chimney, there cannot be

meaningful TA signal during the first 6.5 μs. Similarly, adding the testbed width

of 60 to 10 mm offset inside the transducer chimney implies at most a 70 mm

acoustic pathlength, so pulses detected after 50 μs clearly are the result of multiple

reflections. Therefore we can null all data for t < 6.5 mus and 50 mus < t. For
small specimens these time limits can be tightened. For example, for this specimen

we nulled data for t < 5 mus and smoothed the temporal window over the next 3 μs,
for 5 < t < 8 mus. Similarly, we smoothed the temporal window from 1 to 0 over

the time span of 45–50 mus. The result is shown in Fig. 7.

Next a bandpass filter is applied. The sinograms in Fig. 8 are bandpass filteredwith

a frequency range between 0.1 and 4 MHz, using a smooth apodization of width

0.05 MHz. An example is shown in Fig. 8 (left). These sinograms are then EMI

Fig. 7 Time-passed sinograms. (Left) Transducer #1. (Right) Transducer #2

Fig. 8 Bandpassed transducer 1 data. (Left) User defined region outlined in blue. (Right) After
sino-space correction
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correctedmanually, usingMATLAB subroutines that allow the user to select a region

of significant EMI. This region is outside of the specimen, where signal should

be zero. The average value of each column inside the selected ROI is subtracted

from corresponding columns throughout the image, reducing the remaining EMI

for small times. The correction presented in Fig. 8 (right) was performed only for

columns that had a minimum of ten rows inside the user-defined ROI.

When EMI persists well into the region of the sinogram containing non-zero

pressures, it cannot be corrected by a sinogram space method alone. Additionally,

although EMI appears very consistent between rows in Figs. 6 and 7, after sino-

space correction slight row-to-row variations become clear. We attempt to mini-

mize the effect of these infrequent and intermittent problems later.

To minimize the EMI remaining in the central part of the sinogram, we resort to

a Fourier space correction. Sinogram space is parametrized by view angle, θ, and
time, t. Reciprocal space of the 2D Fourier transform of a sinogram is parametrized

by kθ and kt (temporal frequency). EMI is consistent between tomographic views,

and is therefore captured in the kθ ¼ 0 components of the 2D Fourier transform.

Additionally, EMI tends to be driven by the irradiation pulsewidth, and the 700 ns

irradiation pulses propagated by our system generate EMI within the frequency

range. kt ∈ [0.5,1.5]MHz. The remaining EMI is minimized by applying a kernel

like that plotted in Fig. 9 (left) to the kθ ¼ 0 components of the 2D Fourier

transform of the sinogram, as depicted in Fig. 9 (right).

The resulting sinograms after inverse Fourier transform are shown in Fig. 10.

The vast majority of EMI errors are removed, but not all. EMI is particularly

difficult to remove when experimental factors cause slight variations in EMI

between views. Transducer #1 suffered only a slight variation in EMI between

the first few degrees acquired and the rest of the rotation. Transducer #2, however,

suffered significant variation in EMI throughout the 270 acquisition and faint

artifacts persist in the sinogram out to nearly 20 μs.

Fig. 9 (Left) Kernel. (Right) log10 of the absolute value of the 2D FT of the measured views of the

sinogram in Fig. 8 (right) after application of the kernel to the view-angle DC row
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Fourier-space correction can smear streaks throughout the image and into areas

outside of the tissue, so time-passing can be performed again at this stage to reduce

those. This combined sinogram-space + Fourier-space correction method elimi-

nates most of the EMI in our sinograms.

The ultrasound hardware in our current testbed is sensitive to the electromagnetic

irradiation pulse. Therefore, transducers and cables are carefully shielded from the

strong electric field to which the object is exposed. In vivo imaging, however,

requires that the TRUS probe be located near the ROI—and therefore be exposed

to the irradiating E-field. Clinical TCT systems will require far more sophisticated

ultrasound hardware to mitigate EMI in the raw signals. Fortunately, such hardware

solutions appear feasible. For instance, Verasonics research ultrasound systems have

an input signal range of 1.6 V peak-to-peak. At higher voltages, the input diodes

conduct and keep the input to the receiver at safe levels. The EMI signal is not likely

to damage these diodes and receiver recovery time should be a microsecond or less,

before arrival of the TA pulse.

A final correction step to remove artifacts due to acoustic reflections between

tissue and acoustic couplant can also be employed to minimize the remaining EMI,

inside a user-defined ROI.

Remove Multiple Reflections

Good acoustic couplants are designed to match the acoustic impedance of the tissue

being imaged. Our glycine solution is essentially water, which provides a far better

match to organ tissue than oils used in microwave-induced TA systems [51].

Nevertheless, the density of most internal organs is greater than that of water and

acoustic impedance is not perfectly matched. Acoustic reflections at the tissue/

couplant interface are expected. Instantaneous and spatially homogeneous heating

of geometrically simple objects is derived in [52]. A theoretical TA pulse generated

by a homogeneous sphere that is perfectly matched to the acoustic couplant is a

Fig. 10 Sinograms after EMI correction. (Left) Transducer #1. (Right) Transducer #2
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simple N wave. A sphere that has 10 % greater density generates a train of smaller

pulses following the first, as plotted in Fig. 11. These multiple echoes are not

accounted for in the analytical inversion formulae discussed in section “Ideal TCT

Pressures.”

An ad hoc method for removing multiple reflections from sinograms is

implemented manually. The user selects a region that should theoretically be

zero, as shown in Fig. 12. Data in each row of the masked region is smoothed to

zero from left to right, as time increases. This was initially done to minimize the

effect of reflections between the tissue and acoustic couplant, which are most

detrimental for large times. We have found this technique can be useful to mitigate

EMI, which occurs early in the TA pulses Fig. 12 (right).

Fig. 11 Idealized TA pulses generated by a homogeneous sphere of radius 20 mm and at distance

40 mm from the receiver. (Left) Entire pulse, (right) zoomed in on multiple reflections generated

by the dense sphere

Fig. 12 Temporal mask applied to smooth to zero regions of the sinogram that precede and follow

the desired TA signal. (Left) User-selected region contains multiple reflections. (Right) The

sinogram is simply inverted with respect to time and the same method is used to minimize the

effect of EMI occurring before arrival of the TA pulse
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Combine Partial Scan Datasets to Create a Single Full-Scan Sinogram

Finally, the two sinograms from the different transducers are combined by rotating

one of them to account for the difference in view angle, applying partial scan weights

and summing the data.When one transducer provides superior data quality compared

to the other, the weighting is skewed to use fewer views from the inferior transducer.

In the example shown in Fig. 13, 270� of data were collected by each transducer.
Both transducers collected projections over the view-angle ranges [0, 90�) and

[180�, 270�). Data collected over these ranges should be identical, but clearly are

not. The most significant discrepancy is due to the residual EMI in transducer

2. Time shifts between the sinograms can be caused by mispositioning of a

transducer in its chimney. Mispositioning the gantry axis can cause misalignment

of the sinograms so they are not precisely 180� out of phase. 2D convolution of

overlapping regions in the sinograms is performed via FFT to estimate the shifts

in time and view angle, much as motion correction is performed in Propeller MRI

[53, 54]. Although they appear to be 180� out of phase, sinogram #2 was shifted by

1.1 mus relative to sinogram #1 in Fig. 13.

Measurements collected by transducer #1 were significantly cleaner than those

collected by transducer #2. Therefore, the data from transducer #1 is used prefer-

entially. Data is smoothed over view angle ranges of at least 18�, where data from
both transducers is available. In this case the smoothing regions are θ∈ [0, 18�) and
θ ∈ [252�, 270�). Sinogram #2 is time shifted (if necessary) to properly align the

sinograms into a third, complete sinogram, which is used as input to the reconstruc-

tion algorithm. Although some errors remain, most of the signal represents physical

properties of the specimen.

Parellelizing the Backprojection Step

Reconstruction as outlined above is a classic example of an FBP method.

Backprojection is an embarrassingly parallel computation, and by judiciously

distributing computational work, nearly linear speed up can be obtained when

scaling to multicore clusters. We distributed computational work by view angle.

Fig. 13 Corrected and weighted partial-scan sinograms from transducer 1 (left) and transducer

2 (center). These sinograms are summed to form a complete sinogram ready for reconstruction

(right)
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We used MATLAB Parallel Computing Toolbox’s Message Passing Interface

functions to run the massively parallel computation on the Milwaukee Institute’s

MATLAB cluster running the Distributed Computing Toolbox. We observed nearly

linear speed up with the number of cores up to 100 cores (2 views per core). Beyond

this threshold speed up becomes sublinear as data transfer costs overwhelm the

gains from the division of computational labor.

Performance statistics for the reconstruction algorithm on the now defunct

MATLAB on the TeraGrid resource are reported below. Timing results are for

the reconstruction of simulated spherical phantom data with 200 views, 6,000 time

steps, and 21 slices. As this simulated data does not suffer from transducer direc-

tionality, full volumetric back-projection includes the contributions from all out of

plane slices. Backprojection time is reported in seconds for a 256 
 256 
 21

reconstruction volume (Table 1).

EM Design and Validation

Testbed design was performed using ANSYS HFSS finite element software to

optimize power transmitted through the testbed (S21) and minimize reflected

power at each port (S11 and S22) [47]. Because tissue specimens vary dramatically

in size and shape optimization was performed on “unloaded” testbeds, filled only

with the desired dielectric. The first generation system was designed assuming

room temperature DI water as dielectric, but subsequent systems were designed

assuming chilled glycine solution as dielectric.

Broadband Measurements: S-Parameters

Because dielectric properties of pure water are well known, S-parameters were

measured and modeled using DI as dielectric. Adding glycine powder to DI was

expected to increase permittivity, although we are unaware of publications of

dielectric properties of 15 g/L glycine solution. Conductivity and permittivity

of glycine solution were therefore empirically estimated by fitting HFSS models

to measured S-parameters. Finally, we measured and modeled the S-parameters of

the large testbed filled with glycine solution and loaded with an ellipsoidal kidney.

Table 1 Timing of full

volumetric back-projection

times vs. number of workers

# Cores BP time (s)

128 292

64 486

32 825

16 1,501

8 2,879
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S-Parameters were measured using a network analyzer (E5061A, Agilent, Santa

Clara, CA) calibrated using a type N calibration standard (#85032E, Agilent).

Measurements were taken at 6 �C. Temperatures were recorded using a templogger

probe. Modeling was performed using finite element software (ANSYS HFSS,

Canonsburg, PA) assuming perfect electric conducting (PEC) testbed walls.

Complex permittivity of DI water at 6 �C is ερ ¼ 85.53�j0.785, with tan

δ ¼ 9.179e�3. Electrical conductivity of ultrapure water is σ ¼ 5.5e�6 S/m, so

loss is almost entirely due to the complex part of permittivity, rather than

conductivity.

tan δ ¼ E00

E0
þ σ

ωE0
¼ 0:785

85:53
þ 5:5e� 6

2π � 108e6 � 8:85e� 12 � 85:53 e10�2 þ 10�5

HFSS models of the testbeds filled with 6 �C pure water yields good transmis-

sion, with S21 > �1 dB near 108 MHz. S-Parameters were measured 3 times, with

slightly warmer DI water temperatures near 8 �C.
Measured and modeled S-parameters agree well above �10 dBm, although

measurements are unable to replicate the dramatic resonances modeled. Measured

S21 is slightly lower than modeled, indicating slightly greater loss than modeled, as

shown in Fig. 14. Assuming PEC boundary conditions underestimates loss slightly.

Additionally, the aluminum testbed walls likely create ions in DI water and increase

loss. Plots of measured S11 (Fig. 14) and S21 are both shifted 0.6–0.8 MHz to the left

of the model plots, indicating higher relative permittivity in the model than

measured. We attribute these shifts to experimental error, or perhaps more accu-

rately, testbed fabrication error.

Adding 15 g/L glycine to DI water dramatically shifts the s-parameter plots even

further to the left and increases loss slightly. This indicates both relative permittiv-

ity and conductivity are higher in glycine solution. We therefore empirically

increase both real and imaginary parts of relative permittivity by about 6 % to

εr ¼ 93.32–j0.9594. This yields a reasonable approximation but slightly

Fig. 14 S-Parameters of unloaded testbed, filled with DI water. S21 left, S11 right
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underestimates loss. Increasing conductivity slightly to σ ¼ 4e�3 S/m yields a

good match between measured and modeled S21. For both DI and glycine solution,

measured S11 fails to demonstrate the dramatic resonances of the models, but

agreement is reasonable above �10 dBm and below 120 MHz. Temperature of

the glycine solution was closer to 7 �C at time of measurement (Fig. 15).

Finally, to model the large system loaded with a porcine kidney, representative

values of kidney permittivity and conductivity were taken from [44]. For both

glycine solution and kidney, we used the same loss tangent for DI water. Parameters

used in the HFSS simulations are listed in Table 2 (Fig. 16).

A slightly larger kidney specimen was used to collect S-parameters, with length

10.5 cm and mass 157 g. S-Parameters were collected with the kidney approxi-

mately centered along the x-axis, and at four different orientations about the x-axis.
EM loss in the kidney was minimal when it was positioned horizontally,

minimizing its surface area exposed to the traveling TE10 pulse. Rotating by 90�

Fig. 15 S-Parameters of unloaded testbed, filled with DI water. S21 left, S11 right

Table 2 Dimensions and masses of physical kidney specimens used to collect TCT data, as well

as model S-parameters in HFSS

Kidney specimen use Length (cm) Width (cm) Height (cm) Mass (g)

Cut for scanning 10 6.5 3 147.5

Modeled in HFSS 10 7 3.5 135

Fig. 16 Ellipsoidal kidney geometry used for simulations. (Left) “Vertical” orientation. (Right)
“Horizontal” orientation
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maximized the surface area exposed to the oncoming EM pulse, and loss was

maximized. Although the specimen was not symmetric, there was no detectable

difference in loss for the two different horizontal or vertical orientations. We note

that the kidney specimen was “flatter” in shape than the modeled ellipsoid, which

showed almost no difference between orientations (Fig. 17).

Narrowband and Rapid Measurements Immediately Before

and After Scanning

High-power, submicrosecond EM pulses and pulse envelopes are shown in Fig. 18.

These voltages allow us to compute incident and reflected power at each port.

Subtracting port 1 reflected and port 2 incident power from port 1 incident power

yields power loss in the system. Power loss in the tissue specimen is estimated by

comparing power loss in the loaded vs. the unloaded testbed. We verify that

Fig. 17 S-Parameters for testbed loaded with chilled glycine and kidney specimen, oriented both

horizontally and vertically. S21 on left; S11 on right

Fig. 18 Envelopes of

an incident pulse, and

envelopes of pulses

transmitted through

unloaded (“UnL”) testbed

filled only with glycine as

well as testbed loaded (“L”)

with both specimen and

glycine solution
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reflected power remains below 2–3 % even when the testbed is loaded with a large

specimen.

Peak and average SAR are calculated from voltage envelopes measured at

the input and output ports, according to P ¼ V2/2Ω where Ω represents impedance

of 50 Ω, V represents voltage, and SAR ¼ P/m, where m represents specimen

mass. Because power output from the amplifier varies from pulse to pulse, we

rely upon the fact that power loss in the passive testbed is constant. To estimate

power loss in the specimen, we multiply the incident power by the difference in

fraction lost between unloaded (containing only glycine solution) and specimen-

loaded testbed

Ploss ¼ P1inc %lossL �%lossUð Þ (11)

Subscripts L and U denote specimen-loaded and unloaded, respectively. P1inc
represents incident power at the input port 1 and Ploss represents power lost in the

specimen. Normalizing Ploss by specimen mass yields peak SAR during EM

irradiation; multiplying by the duty cycle yields average SAR.

2-Channel Narrowband Measurements During Scanning

To monitor EM power deposition during TCT scanning, 6 EM pulses are recorded

prior to acquiring each single-slice TCT sinogram. During TCT data acquisition,

two of the oscilloscope channels are used to collect TCT data, leaving only two

channels to capture incident and transmitted EM pulses.

TCT data is acquired by a pair of single element transducers each listening to the

TA pulses from opposite sides of the testbed. In principle, when identical

transducers are used the specimen needs to be rotated by only 180� before moving

on to the next slice. To ensure adequate matching of these limited-angle sinograms,

however, we rotate prostate specimens at least 232� per slice, resulting in different

specimen orientations about the x-axis when EM pulses are collected.

Because reflected power remains low in the loaded testbed and EM wavelength

is large compared to prostates, this gives a reasonable method for monitoring power

deposition during data acquisition.

Results

We present reconstructions of large porcine kidney specimens and the tissue

heating measurements and reconstructions, SAR, preliminary reconstructions of

fresh prostate specimens and system characterization.
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Images of Porcine Kidneys

Reconstructions clearly reveal fluid-filled calyces filled with low conductivity

glycine solution, which provides strong TA signal contrast with kidney tissue.

In Figs. 4, 19, and 20, reconstructions are presented along with photographs of

slices cut from approximately the same location. To section the kidney into thin

(1.5–2 mm) slices, it was necessary to freeze the kidney. Freezing deformed its

shape and made it impossible to slice the kidney at precisely the z-locations
corresponding to data acquisition and image reconstruction. However,

reconstructions track the progression of multiple small calyces (slice #31)

collecting into just a few larger cavities near the renal pelvis (slice #26) and back

into small calyces near the other end of the kidney (slice #12). The glycine-filled

cavities almost surely changed shape during freezing. Additionally, a slice sensi-

tivity profile (SSP) was generated by scanning a 2.45 mm thick washer with outer

diameter of 22.25 mm. Data was collected over a cylindrical aperture of radius

44 mm. The washer was centered at the origin providing the SSP at r ¼ 11.125 mm

with full width half max of nearly 18 mm, or 6 slice thicknesses, indicating severe

Fig. 19 (Left) Slice #26, through the renal pelvis. (Right) Photograph from nearby slice

Fig. 20 (Left) Slice #12, at other end of kidney. (Right) Photograph from nearby slice
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blurring between slices. Therefore, our TCT reconstructions do not faithfully

represent the exact size of the cavities during scanning. For instance, calyces in

Fig. 3 appear separated in the photographs, but run together in the reconstruction.

Nevertheless, the TCT reconstructions consistently detect high-contrast inclusions

of only a few mm in size, consistent with in-plane resolution of 5 mm in our single-

slice system [39] (Fig. 21).

SAR and Heating of Porcine Kidneys

SAR of the specimen immediately prior to acquisition of each slice is presented in

Fig. 22. Note that the peak SAR during EM pulsing is measured in kW/kg—more

than four orders of magnitude greater than allowed average SAR. While transmit-

ting 900 ns pulsewidths with 100 Hz repetition frequency, the duty cycle is 0.009 %.

For typical porcine kidneys, this typically yields average SAR in excess of 4 W/kg,

although for porcine kidneys in this second generation testbed, we have not

witnessed SAR greater than 10 W/kg. Because we are working ultimately towards

in vivo imaging, we optimized the scanning process to refrain from pulsing during

specimen repositioning, keeping average SAR below 4 W/kg. Additionally, this

optimized scan process reduces wear and tear on the amplifier tubes. We use the

same optimized pulsing approach in our current study imaging surgical prostate

specimens.

Several factors contribute to SAR variations between different slices: experi-

mental uncertainty, variation of specimen location and orientation within electric

field, temperature variations of glycine solution and specimen, as well as possible

leeching of electrolytes from specimen into couplant. During volumetric TCT

scanning in our system, the specimen is translated 3 mm between slices and

Fig. 21 Slice sensitivity

profile at r ¼ 11.125 mm
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moves along the x-axis of a testbed with dimensions of a TE103 cavity of width

19 cm. The ultrasound transducers “listen” along the centerline of the waveguide,

where x ¼ 9.5 cm andEy achieves its maximum value. During acquisition of the first

slice, the specimen lies entirely in the region x � 9.5 cm. During subsequent slices,

the specimen is progressively more centered with respect to the x-axis, and therefore
experiences a stronger Ey field. After the center of the specimen crosses the center-

line of the testbed, the field incident upon the specimen decreases. To reduce scan

time, we have been acquiring “partial scan” data from many prostate specimens.

We sometimes rotate the specimen as few as 234� before translating to acquire the

next slice. Therefore, prostate orientation may be rotated about the x-axis for

each slice. However, prostate dimensions in the axial directions are less than 6 cm

< λ/5 so rotation about the x-axis should cause minor changes to SAR.

Temperature and pressure jumps induced by a single EM pulse are easily

inferred from these measurements. Assuming thermal confinement, homogeneous

initial conditions and tissue properties (density, specific heat, and speed of sound),

the pressure jump during a single EM pulse is given by integrating (1) [16], so that

δp ¼ β
.
κ δT where δT � 1

.
CSARδt (12)

Multiplying the peak SAR during the EM pulse by pulsewidth and dividing by

specific heat yields temperature jumps of approximately 20 microdegrees,

δT �
80 kW

kg

4 kJ
kg�C

900e�9s � 20e�6�C

TA pressures are proportional to temperature jumps, so multiplying by

β/κ ¼ 0.8 MPa/� C yields TA pressures on the order of tens of Pascals. These are

spatial averages throughout the entire specimen, but TA signal generation varies

spatially with electric field strength and tissue properties.

Fig. 22 (Left) Peak SAR during EM pulse. (Right) Average SAR before optimizing scan

procedure denoted by “x”, after optimization denoted by “o”
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Preliminary Reconstruction of Sinograms Collected
in the Small Testbed

A reconstruction from one of the first prostate specimens we scanned is shown in

Fig. 23. 3 mm metallic surgical staples were inadvertently left on the anterior of the

specimen, and generated strong artifacts in the reconstruction. We now take care to

remove surgical staples prior to positioning the specimen in the testbed. Although

the system’s ability to localize such small inclusions is encouraging, it also

indicates that brachytherapy seeds will wreak havoc with prostate cancer imaging.

Straws filled with physiologic saline validate that the system provides at least 3 mm

in-plane resolution. Additionally, scanning 4.8 mm straws filled with whole blood

product over a range of temperatures verifies the increase in TA signal production

with temperature as shown in Fig. 23.

Discussion

These ex vivo results leave little doubt that whole organ TCT imaging is feasible

in vivo. Clinical MRI systems routinely propagate VHF excitation pulses into

patients with good uniformity. Tissue heating required to generate detectable pulses

is low enough that TCT imaging can be performed without causing thermal

damage.

Clinical utility of TCT has not yet been demonstrated and will require a clear

understanding of the TCT contrast mechanism. Isolating exactly which tissue

parameters contribute most to TA signal production is an open question. Pulse

echo ultrasound fails to reveal PCa, indicating that mechanical properties of healthy

and cancerous prostate tissue are indistinguishable. Additionally, the specific heat

Fig. 23 (Left) Reconstruction of a prostate on which surgical staples were affixed. (Center)
Reconstructions of 3 mm straws filled with PBS. (Right) SNR vs. temperature of 4.8 mm straws

filled with whole blood product
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capacities of healthy and cancerous prostate tissue appear indistinguishable [55].

TA signal generation is clearly a function of thermal expansion coefficient β,
which, in turn, is a function of temperature. β is well understood for pure water:

β ¼ 0 at 4 �C and increases with temperature above 4 �C. Unfortunately, surgical
specimens must be kept chilled prior to formalin fixation so we are forced to work at

low temperature. We expect that TCT imaging in vivo will generate far stronger

signal at body temperature, 37 �C.
Electrical conductivity is clearly an important factor in TA signal production,

but few direct measurements of dielectric properties of human prostate tissue have

been reported in the VHF regime. Dielectric spectroscopy of fresh prostate tissue at

low frequencies (1 kHz to 1 MHz) appears to discriminate between healthy and

cancerous tissue [56] and surprisingly, PCa was found to have lower conductivity

than glandular and stromal tissue over the frequency ranges of 100 Hz to 100 kHz

[56, 58]. Mixed results were reported by Lee et al. [59]: PCa suppressed conductiv-

ity from 100 kHz to 2 MHz, but had higher conductivity at 4 MHz. Dielectric

properties of rat prostates have also been reported at 915 MHz [60].

There are many limitations of these results, starting with the amplifier used to

excite TA pressures, to the transducers that detect those pulses, the simplistic

electronics that amplify the measured voltages and finally the need to chill the

acoustic couplant. The amplifier was able to generate TA signal using pulsewidths

of 700–900 ns, which bandlimited TA pulses produced. EMI will be an issue for

any TA imaging system, but this system’s electronics passed the submicrosecond

EMI signal to the preamplifiers. Single element transducers may be more sensitive

than transducer arrays, but they are far more directional and narrowband than

clinical transducer array elements. Additionally, they require repositioning the

specimen causing lengthy scan times. Because scan times are long, we are forced

to keep surgical specimens chilled, which reduced SNR. In vivo TA imaging

prototypes can avoid these problems, if sufficient resources are invested into their

development.

Many in vivo TA imaging applications will suffer limited angle artifacts,

because it will not be possible to position the transducer at all points on a measure-

ment aperture surrounding the ROI. Additionally, it is not clear that in vivo

scanning at body temperature will increase TA signal strength enough to offset

the sensitivity loss of many clinical transducer array elements compared to the

single element transducers.

Exciting with stronger electric fields would increase SAR and induce stronger

pressures—and require less signal averaging. Noise in our TA pulses is essentially

white, decreasing like N�1/2, where N is the number of signal averages required.

SAR is proportional to the square of the electric field strength, so a modest increase

in field strength allows dramatic reduction in N because the signal-to-noise ratio

(SNR) is proportional to SNR / ffiffiffiffi
N

p
Ej j2 . Doubling the field strength implies a

16-fold reduction in N. In our small benchtop system, averaging N ¼ 32 pulses per

view is required to provide adequate SNR for tomographic reconstruction. Increas-

ing electric field strength by a factor of 321/4 ¼ 2.4 would eliminate the need for
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signal averaging in our benchtop system. Clinical systems should irradiate with

stronger, and probably circularly polarized, electric fields to ensure good field

penetration and strong TA signal. Clinical systems could easily maintain low

average SAR, either by reducing number of signal averages, shortening EM

pulsewidth, or reducing duty cycle. Shortening the EM pulsewidth would increase

TA bandwidth and improve resolution of reconstructed images. Reducing duty

cycle could be achieved using an ultrasound array rather than single-element

transducer. An ultrasound array would capture many TA tomographic views simul-

taneously and further reduce the number of EM excitations required.

Quantitative information from benchtop studies like this one will be useful for

the development of clinical TCT systems. Although it is premature to establish a

detailed system design, practical clinical systems will almost surely use ultrasound

arrays to provide spatial encoding and propagate the EM pulse from a coil through

air, similar to MRI systems. Because TA signal strength is proportional to SAR, in

order to generate SAR levels in an adult torso comparable to those we generate in

our small benchtop system, we suspect that far stronger VHF pulses must be applied

by coils designed to propagate traveling waves [61]. MRI systems require magnetic

field homogeneity of parts per million. In contrast, TCT systems could likely

tolerate a significant gradient in the electric field, as long as the field strength is

known and remains well above zero.

In summary, TA signal generated by high-power, submicrosecond VHF pulses

can safely generate detectable TA signal with sufficient depth penetration for whole

organ imaging.
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Automated Prostate Cancer Localization

with Multiparametric Magnetic Resonance

Imaging

Yusuf Artan, Imam Samil Yetik, and Masoom A. Haider

Abstract Prostate cancer is a leading cause of cancer death for men in the world.

Fortunately, the survival rate for early-diagnosed patients is relatively high. There-

fore, in vivo imaging plays an important role for the detection and treatment of the

disease. Accurate prostate cancer localization with noninvasive imaging can be

used to guide biopsy, radiotherapy, and surgery as well as to monitor disease

progression. Magnetic resonance imaging (MRI) performed with an endorectal

coil provides higher prostate cancer localization accuracy, when compared to

transrectal ultrasound (TRUS). However, in general, a single type of MRI is not

sufficient for reliable tumor localization. As an alternative, multispectral MRI, i.e.,

the use of multiple MRI-derived datasets, has emerged as a promising noninvasive

imaging technique for the localization of prostate cancer; however, almost all

studies are with human readers. There is a significant inter- and intra-observer

variability for human readers, and it is substantially difficult for humans to analyze

the large dataset of multispectral MRI. To solve these problems, this study presents

an automated localization method. We first perform tests to see the best performing

combination of multiparametric MRI, then develop localization methods using

cost-sensitive support vector machines (SVMs), and show that this method results

in improved localization accuracy than classical SVM. Additionally, we develop
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a new segmentation method by combining conditional random fields (CRF) with a

cost-sensitive framework and show that our method further improves cost-sensitive

SVM (C-SVM) results by incorporating spatial information. We test SVM, C-SVM,

and the proposed cost-sensitive CRF on multispectral MRI datasets acquired from

21 biopsy-confirmed cancer patients. Our results show that multispectral MRI helps

to increase the accuracy of prostate cancer localization when compared to single

MR images and that using advanced methods such as C-SVM as well as the

proposed cost-sensitive CRF can boost the performance significantly when com-

pared to SVM. We finally discuss potentially effective methods of localization

using texture as the next steps of research.

Introduction

Prostate cancer is a major health problem for men, presenting a challenge to

urologists, radiologists, and oncologists. Recent cancer studies have determined

that 217,730 men were diagnosed and 32,050 died of prostate cancer in the United

States in 2010 [1]. Despite the significant mortality rate, prostate cancer treatments

have resulted in substantial progress over the past decades [2]. Currently popular

methods for the detection of prostate cancer include the digital rectal examination

(DRE) and PSA testing and, if needed, transrectal ultrasound (TRUS)-guided

biopsy. TRUS-guided biopsy samples are taken from the expert designated regions,

and pathologists confirm the presence or absence of cancer in the obtained cores.

However, cancer may be invisible on ultrasound or missed due to the limited

number of biopsy samples, leading to delayed diagnosis (and thus delayed treat-

ment) of the disease. Accurate image guidance is extremely useful in ensuring that

the tissue is collected from suspicious regions for cancer. Therefore, investigation

of imaging methods to detect and localize these regions is an active research area.

TRUS is one of the widely used imaging methods for prostate cancer because it

is readily available, inexpensive, and repeatable. TRUS enables the accurate deter-

mination of prostate size and depicts zonal anatomy, but its ability to detect cancer

tissue is limited with sensitivity and specificity varying around 40–50 %. As an

alternative to TRUS, MRI has been used to localize prostate cancer with varying

degrees of success over the past years [3–5]. MRI provides the best description of

the contours of the prostate as well as its internal anatomy. However, both TRUS

and MRI lack satisfactory specificity rates for prostate cancer detection as noted in

earlier studies [4]. Therefore, researchers investigated methods to boost the perfor-

mance of prostate cancer localization using MRI. One method is to use additional

MR imaging techniques that allow functional assessment such as diffusion-

weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI. DWI

measures the Brownian motion of free water molecules in the tissues, and

DCE-MRI depicts the vascularity and vascular permeability of tissue by following

the time course of signal over time.

Earlier studies reported that T2-weighted MRI alone has sensitivity and speci-

ficity of 22–85 % and 50–99 %, respectively, for tumor detection, depending on the
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patient population characteristics and technical issues [6]. Similarly, DWI alone has

a sensitivity and specificity of 57–93 % and 57–100 %, and DCE-MRI has reported

sensitivity and specificity ranges of 52–96 % and 65–95 %. Recently, several

studies have demonstrated the potential of combining morphological and metabolic

information for localizing cancer [7–10]. Multiparametric MRI, i.e., a combination

of DWI and DCE-MRI images, has shown a considerable potential to improve

prostate cancer localization accuracy [8–15].

In one study, Haider et al. [10] performed T2-weighted imaging and DWI

in 49 patients using an endorectal coil at 1.5 T and showed sensitivity is

significantly higher with T2-weighted plus DWI 81 % than with T2-weighted

imaging alone 54 %, and T2-weighted plus DWI shows loss in specificity

compared with T2-weighted imaging alone 84 % vs. 91 %. In another study,

Ocak et al. [8] interpreted DCE-MRI in conjunction with T2-weighted MRI in

order to improve the cancer detection. This study reports that 94 % sensitivity and

37 % specificity for T2-weighted image can be improved to 70 % sensitivity

and 88 % specificity.

Although various studies have been performed with human observers using

multispectral MRI, only a few studies have been done to automatically localize

prostate cancer with multispectral MRI [14–16]. There is a significant inter- and

intra-observer variability for human readers, and it is difficult for humans to

analyze multiple image datasets motivating the need for automated methods.

The first part of this chapter is based on support vector machines (SVM) [17],

which have demonstrated success in a broad range of applications, including

brain tumor detection, microcalcification detection, and cervical cancer segmenta-

tion [18, 19]. SVMs are maximummargin classifiers that have strong generalization

properties.

However, classical SVM classifiers do not explicitly utilize relative cost of

error. To address this, we utilize a cost-sensitive extension of SVM, which is

based on prior applications of SVM. This cost-sensitive extension of SVM has

been referred to as 2υ-SVM in the literature, and it has found applications in

various fields [13]. In this chapter, we apply the cost-sensitive SVM (C-SVM) to

prostate cancer localization and compare the results to classical SVM. We also

introduce several training methods to obtain the optimal SVM parameters: minimi-

zation of the total number of misclassifications, maximization of detection while

keeping the false-positive rate below a threshold value, and maximization of

the area under the receiver operating characteristic (ROC) curve. During the

training stage, each of these training methods will output their optimal SVM

parameters to be used in testing. Then, we describe methods that combine spatial

information with SVM. Even though SVM is a maximum margin classifier that

is superior to many other supervised learning algorithms, it ignores the spatial

information for a given segmentation task. Previous studies have noted that most

learning tasks involve much richer structure than a simple categorization of the

instances into one of the classes [13, 17]. Therefore, it is beneficial to incorporate

spatial information in the problem formulation. An earlier study developed a spatial

SVM classifier by incorporating neighborhood information in the SVM formulation
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in an fMRI study [20]. However, this study does not take the cost information

into account, and the formulation relies on the extreme sparseness of the data.

In this study, we develop a new method that combines the cost-sensitive framework

with conditional random fields (CRF) for improved performance of prostate

cancer localization.

MRF and CRF are popular probabilistic graphical methods to incorporate

contextual information in the segmentation process [21, 22]. MRF is an undirected

graphical model proposed for modeling the spatial interaction between neigh-

boring pixels in images, which encourages connected segmentation results

by defining pairwise potentials between neighboring labels. However, MRF

assumes conditional independence, and interaction among observed data is ignored.

Because of the interconnection of the tumor region, tumor pixels are highly

dependent on surrounding pixels, and hence, assumption of strong independence is

not appropriate.

Unlike generative probabilistic models such as MRF and Hidden Markov

Models (HMM), CRF describes the spatial dependencies in a probabilistic frame-

work that directly models the posterior probability distribution over labels, given

the observations. In contrast to MRF, CRF allows us to capture dependencies

between the observations without resorting to any model approximations and has

been shown to be useful in various segmentation applications [21–23]. However,

our recent study showed that using CRF in its classical framework does not always

yield accurate segmentation results for prostate cancer [16]. This study presents a

novel integration of CRF and SVM in a cost-sensitive framework to obtain

satisfying localization performance. Although CRF-based methods have not been

applied to prostate cancer localization, they have been used in other areas. One

study applied CRF in functional MR images, but did not consider combining

C-SVM with CRF model [23]. Another study used SVM and CRF together in the

area of brain image segmentation [24]; however, that application does not take into

account the cost information in the SVM algorithm, and alternative training

algorithms for the proper selection of optimal SVM parameters are not considered.

Unlike these studies, we propose to combine C-SVM and CRF to achieve accurate

prostate cancer localization with various alternatives for training.

The contribution of this chapter is threefold. First we perform a preliminary

analysis to determine which combination of multiparametric MRI performs best in

terms of localization performance. Secondly, we provide a framework, by using

machine learning techniques, to remove the observer variability in tumor identifica-

tion usingmultispectral MRI dataset that includes DCE-MRI in addition to DWI and

T2-weighted that were used in [15]. We also show that using additional MR image

types improves tumor localization significantly compared to a single MR type. The

final contribution of this chapter is the introduction of cost-sensitive conditional

random fields and its application to prostate cancer localization with multispectral

MRI. We present visual, quantitative, and statistical analysis to demonstrate that the

proposed cost-sensitive CRF achieves better localization than classical and C-SVM.

We also outline methods that utilize texture that will potentially be very effective in

prostate cancer localization in the future.
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The remainder of the paper is organized as follows. In Section “Methodology,”

we describe the methodology that is used to select the multiparametric image

combination that will be used throughout the study. Then, segmentation

methodologies are described. In this section, the basic concepts of SVM, C-SVM,

and the proposed cost-sensitive CRF as well as the optimal parameter selection

methods are described. Section “Experiments and Results” provides the details of

the multispectral MRI dataset used in this study and presents our segmentation

results. This section also compares the performances of SVM, C-SVM, and cost-

sensitive CRF. In Section “Discussion,” we discuss our results and compare our

findings with the earlier, mostly human reader, studies. Finally, conclusions are

presented in Section “Conclusion.”

Methodology

We now briefly describe the basics of support vector machine (SVM) and its

cost-sensitive extension. Additionally, we propose a new segmentation method

using cost-sensitive CRF and develop training schemes in order to obtain optimal

parameters for C-SVM and CRF. Before performing segmentation, multispectral

images are needed to be preprocessed as explained next.

Feature Selection to Determine the Optimum Combination
of Multiparametric MRI

We have several types of multiparametric MR image types that are available.

Therefore, before developing methods for automated cancer localization, we

performed a detailed and exhaustive image analysis to determine the most effective

MR image types in terms of their ability of cancer localization. For this purpose, all

seven quantitative image maps, namely, (1) apparent diffusion coefficient (ADC)

maps derived from diffusion-weighted images, (2) T2 maps, (3) kep derived from

DCE MRI, (4) kel derived from DCE MRI, (5) initial area under the curve 30 s

(IAUC30), (6) IAUC60, and (7) IAUC90 are usesd. For these seven image types, we

have constructed 127 image combinations that include all possible combinations.

Then, for all these combinations, we have calculated the Fisher ratio between two

groups of pixels (tumor vs. normal). Then, all these 127 possible combinations were

ranked. The highest performing combination was selected as the optimum multi-

spectral MRI combination. This combination was T2-ADC-kep and used throughout
the study.

In addition to exhaustive comparison of all possible combinations, we used a

feature selection method based on linear programming. Our relevant feature identi-

fication is based on the property that minimizing an l1 norm of linear decision

boundary, w, via linear programming yields a sparse hyperplane, in which most
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components are zero [25]. This linear decision boundary separates the two classes as

explained in detail in [25]. The rationale is that zero elements are irrelevant features

that would not contribute to the decision process. A tractable convex optimization

formulation of this problem has been proposed in earlier studies [25]. Table 1 shows

absolute value of the relevancy of each feature with respect to the decision process.

Hence, only three features are considered in the rest of our analysis.

Preprocessing and Ground Truth

Multispectral MRI dataset used in this chapter consists of three different types of

MR images per the preliminary feature selection study. Each multispectral compo-

nent represents a particular anatomical and functional response of the prostate

gland. Feature vectors used for segmentation are intensity values of multispectral

MR images. For each type of multispectral MR images, a single slice of size

256 � 256 from a 3D MRI is chosen by clinicians to be used in our experiments.

The prostate consists of various zones such as transition zone (TZ) and peripheral

zone (PZ). However, only the PZ region is considered since 70 % of the prostate

cancer occurs in this region [26]. Several other studies presented their sensitivity/

specificity results using only PZ region as well [3, 8]. A manual registration was

implemented for each patient to align the PZ region across different image types.

All images are median filtered using a 3 � 3 window to improve signal-to-noise

ratio, remove the spikes, and suppress possible registration errors. For each of the

multispectral images, applying a simple transformation to the intensity values

normalized PZ region intensities. Normalization is applied such that intensities in

the PZ region had zero mean and unit standard deviation for all the training and

testing subjects for a particular multispectral image. Then,

Y
ij
¼ X

ij
� μj
σi

(1)

where Xij is the image type i for patient j, Yij is the normalized image type i for
patient j, and μj, σi refers to the mean and standard deviation of multispectral image

type i. This brings intensities of different types of MR images within the same

dynamic range, improving the stability of the classifiers. The ground truth is

obtained based on pathology. A radiologist transfers the tumor regions on the

histological slides to the MR images by viewing the histological slides, ex vivo

MR images of these slides, and in vivo MR images. True-positives and true-

negatives are defined on a pixel basis, providing a considerable amount of data

points for evaluation.

Table 1 Identification of relevant features by minimizing an l1 norm of linear decision boundary

T2 ADC kep kel IAUC30 IAUC60 IAUC90

0.6438 0.5210 0.2044 0 0 0 0
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Segmentation Methods

Multispectral MR images show a discernible intensity difference that differentiates

between cancerous and normal tissue. Therefore, intensity values of anatomical and

functional images are used as our features to construct the classifiers. In the

following sections, we present a comparison of the performance of several

classification methods, SVM, C-SVM, and the proposed cost-sensitive CRF. A

total of 21 patients are used in the training and testing steps. During the

experiments, based on the ground truth obtained from pathology, leave-one-out

cross validation is implemented using twenty subjects for training and one subject

for testing for each of the 21 subjects.

The support vector machine (SVM) is a universal supervised learning algorithm

based on statistical learning theory [17]. Learning is the process of selecting the best

mapping function f(x,w) from a set of mapping models parameterized by a set of

parameters w ∈ Ω, given a finite training dataset (xi,yi) for i ¼ 1, 2, . . ., N, where
xi ∈ Rd is a d-dimensional input (feature) vector, yi ∈ {�1, 1} is a class label, and

N is the number samples in the training dataset. The objective is to estimate a

mapping function f(x ! y) in order to optimally classify future test samples.

Suppose we have a mapping that separates the set of positive samples from

negatives. This amounts to finding weights w and the bias b such that

yi < w, xi > þb > 0 for i ¼ 1, 2, . . . ,N (2)

If there exists a hyperplane satisfying (2), the set is said to be linearly separable.

For a linearly separable set, it is always possible to rescale w and b in (2) such that

yi < w, xi > þb � 1 for i ¼ 1, 2, . . . ,N (3)

In this way, closest training point to the dataset has a distance of 1= wk k. Among

the alternative hyperplane that satisfy (3), SVM selects the one for which the

distance to the closest point in the training data is maximal. Since the distance to

the closest point is 1= wk k, SVM finds the hyperplane by minimizing wk k2 under

constraints given by (3). The quantity 2= wk k is called the margin; hence, SVM is

called a maximum margin classifier. When the classes are not linearly separable,

constraints are relaxed by adding nonnegative slack variables (ξ1, ξ2, . . ., ξN) in the
formulation of the optimization problem. The optimum classifier can be found by

solving

min
1

2
wk k2 þ C

XN
i¼1

ξi

st: yi < w, xi > þbð Þ � 1� ξi for i ¼ 1, 2, . . . ,N
ξi � 0 for i ¼ 1, 2, . . . ,N

(4)
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where C is the weight for the penalty term for misclassifications. SVM is a

frequently used algorithm in image classification applications [19, 27] with several

variations. In this study, we use the υ-SVM since selection of υ is easier than

alternatives [28]. The υ-SVM has the following primal formulation:

min
1

2
wk k2 � υþ

XN
i¼1

ξi

st: yi < w, xi > þbð Þ � 1� ξi for i ¼ 1, 2, . . . ,N
ξi � 0 for i ¼ 1, 2, . . . ,N

(5)

In prostate cancer localization, however, there is a disadvantage to υ-SVM
formulation since it penalizes errors of both classes equally [28]. A reformulation

of (5) is called 2υ-SVM, given by

min
1

2
wk k2 � υþ γ

N

X
i∈Iþ

ξi þ
1� γ

N

X
i∈I�

ξi

st: yi < w, xi > þbð Þ � 1� ξi for i ¼ 1, 2, . . . ,N
ξi � 0 for i ¼ 1, 2, . . . ,N

(6)

where γ ∈ [0,1] is a parameter controlling the trade-off between false-negatives

and false-positives and I+, I� are the numbers of training samples that belong to the

positive and negative classes, respectively. Solution to above primal formulation is

obtained by transforming this convex optimization problem into a corresponding

dual formulation resulting in a quadratic cost function. Two parameters in linear

2υ-SVM that determine the classifier performance, γ and υ, are selected as

explained next.

Optimal parameter selection in SVM [29, 30] is crucial to classifier effective-

ness. However, optimal SVM parameters certainly differ depending on the defined

error criterion. 2υ-SVM parameter selections require a full grid search over υ and γ
values to reach the optimum parameters. SVM trained in this way will be referred

throughout as C-SVM. One study [13] proposed a variant of coordinate descent

algorithm that would speed up the search process. However, due to non-smoothness

of the probability of positive and probability of false-negative values, the proposed

accelerated algorithm could not be applied in this study. The parameter υ was

searched in the range [0.01, 0.50] over 50 points, and γ was searched in the range

[0.10, 0.90] over 17 points, respectively. These resolutions are chosen in an ad hoc

manner based on experience related to the smoothness of the underlying function.

Increasing the number of sampling points of υ and γ may result in slightly better

estimates; however, it would be a computationally intensive task not producing

significant differences given typical error functions. Figure 1 shows such a typical

error vs. weights values of a single value with 17 samples we use. Notice that

minima would not change significantly when the number of samples is increased.

In this study, we utilize and compare three different training methodologies.

In our experiments, we implemented 2υ-SVM with the linear kernel based on
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our preliminary investigation. We trained the 2υ-SVM using cross validation to

determine the optimal υ and γ parameters. Now, we describe the proposed training

schemes that are used to choose υ and γ parameters.

The objective of the first training method is to minimize the number of pixel

misclassifications from both classes. A full grid search is conducted on υ and γ
parameters to find the lowest error rate. SVM trained by this method will be referred

to as SVM1 for classical SVM and C-SVM1 for C-SVM. In the second training

method, optimal υ and γ parameters are obtained by performing a full grid search,

where υ and γ are selected such that detection probability is maximized while

constraining false-positive probability to be below a threshold value referred to as

SVM2 for classical SVM and C-SVM2 for C-SVM. Third training method utilizes

area under the ROC curve (AUC) metric to assess the performance of a classifier.

For each υ and γ pair in the grid, Platt’s function is used to convert SVM decisions

into posterior probabilities [26, 27], and ROC curves are obtained using these

posterior probabilities. SVM trained by this method are similarly referred as

SVM3 for classical SVM and C-SVM3 for C-SVM.

Bias Selection. In the training stage, we determine the optimal υ and γ pair to be

used in testing process using one of the training methods mentioned above.

However, to make a fair comparison between classical and C-SVM classifiers,

the bias of each constructed classifier is adjusted to achieve a false-positive rate of

0.30 for the training dataset. This bias adjustment is performed for all classical

SVM and cost-sensitive C-SVM classifiers during the training and not changed for

Fig. 1 Error rate vs. γ (weights) of a single υ value with 17 sampling points we use

Automated Prostate Cancer Localization with Multiparametric Magnetic. . . 567



individual test subjects. The false-positive rate used is selected based on a clinically

acceptable performance.

Even though SVM benefits from the maximum margin property, it does not

utilize spatial information in the classification process. Therefore, we propose a

new segmentation method that uses CRF in a cost-sensitive framework as described

next. CRF was proposed initially by Lafferty et al. [31] in the context of segmenta-

tion and labeling of 1D text sequences. Similar to MRF, it is used to model the

spatial interaction in images. For an observed data x and corresponding labels y,
MRF models the posterior probability using Bayes’ rule:

p y
��x� � / p x; yð Þ ¼ p x

��y� �
p yð Þ

where the prior over the labels is assumed to be stationary and Markovian and

likelihood is assumed to have a factorized form p x
��y� � ¼ Y

i∈S

p xi
��yi� �

where S is the

set of nodes. Recently, it has been noted [22] that a factorized form of the likelihood

model is too restrictive in certain image classification applications because label

interactions do not depend on the observed data. Therefore, CRF directly models

the posterior probability distribution p(y|x) for a given input image sample x and

label y using a Gibbs prior model. Before we present the CRF definition as stated in

[31], we first restate the notation. Suppose that the observed features from a given

training image are given by x ¼ {xi}i ∈ S where xi ∈ Rd is the feature vector for

node i. Corresponding labels at image nodes are given by y ¼ {yi}i ∈ S. CRF

constructs a discriminative conditional model p(y|x) from the jointly distributed

observations x and y, and the prior, p(y), is not modeled explicitly.

CRF Definition. Let G ¼ (S, E) be a graph such that the vertices of G index y. Then
(y, x) is said to be a conditional random field if, when conditioned on x, the random

variables yi obey the Markov property with respect to the graph: p yi, x
��yS� if g

� �
¼ p yi, x

��yS�Ni

� �
where S-{i} is the set of all nodes in the graph except the node i, Ni

is the set of neighbors of the node i in G, and yΩ represents the set of labels at the

nodes in the set Ω [31].

Recently, another study [22] introduced a two-dimensional extension of CRF by

using the local discriminative models to capture the class associations at individual

nodes as well as the interactions on the neighboring nodes for a 2D graph:

p y
��x� � ¼ 1

Z
exp

X
i∈S

A yi; xð Þ þ
X
i∈S

X
j∈Ni

V yi; yj; x
� �( )

(7)

where Z is a normalizing constant known as the partition function, A(yi,x) is the
node potential at node i, and V(yi,yj,x) is the edge potential between nodes i and
j that encourages spatial smoothness. The terms A(yi,x) and V(yi,yj,x) can be seen as
unary data term and smoothness term, respectively. Node potential A(yi,x) is a
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measure of how likely the node i will take label yi given image node x ignoring the

effects of other node labels in the image. Generalized linear models are used

extensively in statistics to model the class posterior given the observations. In our

formulation, A(yi,x) is modeled using a local discriminative model that outputs the

association of the node i with class yi:

A yi; xð Þ ¼ ln
1

1þ exp �yiw
Txð Þ

� �
(8)

where w is the normal to the linear decision boundary that is obtained from C-SVM

as explained next in more detail. The edge potential is a function of all observations

of x. The aim of the smoothness term is to have similar labels at a pair of nodes for

which the node value supports such a hypothesis. For a pair of neighboring nodes

(i, j), let μij denote a new feature vector obtained by taking the absolute difference

of xi and xj, μij ¼ [1, |xi � xj|], where xi is simply chosen to be the pixel intensity at

node i.

V yi; yj; x
� �

¼ yiyjκ
Tμij (9)

and κ contains the model parameters. The first component of μij is fixed to one to

accommodate the bias parameter. In summary, the node potential acts as a unary

term for individual nodes, while the edge potential is a data-dependent discrimina-

tive label interaction (smoothness term). In the classical approach to constructing

(7), the parameters of the node potential w and edge potential κ are determined

jointly in the training stage, where they are initialized with logistic regression and

randomly, respectively [21]. However, in a recent study, we have shown that this

approach does not result in accurate prostate cancer segmentation [16].

Therefore, in this chapter, node potential parameter w is obtained from SVM,

and edge potential parameter κ is estimated subsequently. Use of a standard

maximum-likelihood approach to learn κ parameter involves the evaluation of

partition function Z. In general, evaluation of Z is considered as an NP-hard

problem [21]. Therefore, we resort to approximation method, pseudo likelihood,

to estimate the κ parameter. In this study, we adopted pseudo likelihood [32] to

estimate κ due to its simplicity and efficiency. In the pseudo likelihood approach,

the factored approximation is

κ̂ ¼ argmax
κ

X
m

X
i

lnp ymi
��ymNi

, xm, κ
� �

(10)

where κ refers to the neighbors of the node i and ymi is the observed label for node

i in the mth training image. Further, (10) can be expressed as shown in (11), where τ
is regularization constant. To ensure that the log likelihood is convex and prevent

over-fitting due to the pseudo likelihood approximation, we assign a Gaussian prior
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on κ with zero mean and covariance τ2 I, where I is the identity matrix. Then we

compute the local consistency parameters using its penalized log likelihood:

κ̂ ¼ argmax
κ

XM
m¼1

X
i∈S

ln δ yiw
Tx

� �� �þX
j∈Ni

yiyjκ
Tμij xð Þ � ln Zm

i

� �( )
� 1

2τ2
κTκ

(11)

where

Zi ¼
X

yi∈ �1, 1f g
ln δ yiw

Tx
� �� �þX

j∈Ni

yiyjκ
Tμij xð Þ

( )

When τ, chosen by cross validation, is given, the penalized likelihood in (11) is

quadratic with respect to κ. Therefore, (11) is convex and can be maximized using a

simple gradient descent algorithm. Note that node potentials act as a constant in this

optimization process.

Finally, for a given test image x, we perform mean-field inference [33] using the

estimated model parameters w and κ to obtain an optimal label configuration y.
Next, we describe the multispectral MRI dataset used in this study and present the

results obtained using the methods that were described.

Experiments and Results

Description of Multispectral MRI Data

In this chapter, multispectral MR images are obtained from 21 biopsy-confirmed

prostate cancer patients. Axial-oblique fast spin-echo (FSE) T2-weighted, echo

planar DWI, multi-echo FSE, and DCE-MRI were acquired before surgery using a

1.5-T MRI system (Echospeed or Excite HD; GE Healthcare, Milwaukee, WI) with

a 4-channel phased-array surface coil coupled to an endorectal coil (MEDRAD,

Warrendale, PA). All data were obtained with the image plane perpendicular to the

rectal wall/prostate interface.Median time between imaging and surgery was 33 days

(range 1–129 days). Acquisition parameters for T2-weighted MRI were the follow-

ing: TR/TE ¼ 6,550/101.5 ms; 320 � 256 matrix; echo-train length (ETL) ¼ 16;

bandwidth (BW) ¼ 20.83 kHz; number of excitations (NEX) ¼ 3; field of view

(FOV) ¼ 14 cm; and no phase wrap. The DWI parameters were the following:

TR/TE ¼ 4,000/77 ms; 128 � 256 matrix; ETL ¼ 144; BW ¼ 166.7 kHz; NEX

¼ 10; FOV ¼ 14 cm; and b ¼ 0, 600 s/mm2. Multi-echo FSE images were acquired

at ten echo times (9.0–90.0ms, in 9ms increments) for T2mapping (TR ¼ 2,000ms;

256 � 128 matrix; ETL ¼ 10; BW ¼ 31.25 kHz; NEX ¼ 1; FOV ¼ 20 cm).

Datasets for DCE analyses consisted of T1-mapping from multi-slice, multi-flip

fast-spoiled gradient echo images (FSPGR) (flip angles: 2, 5, 10, 20; TR/TE ¼ 8.5/

4.2ms; 256 � 128matrix; ETL ¼ 8;BW ¼ 31.25 kHz;NEX ¼ 1; FOV ¼ 20 cm),
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followed by 50 phases of multi-slice FSPGR MRI (flip angle ¼ 201; TR/TE

¼ 4.3/1.9 ms; 256 � 128 matrix; BW ¼ 62.5 kHz; NEX ¼ 0.5; FOV ¼ 20 cm;

temporal resolution ¼ 10s). Two phases were acquired before injection of 20 mL

contrast agent (gadopentetate dimeglumine (Magnevist; Bayer Schering Pharma,

Berlin, Germany)) at a rate of 4mL/s, followed by a 20mL saline flush using a power

injector (MEDRAD Spectris MR injection system).

On T2-weighted MRI, cancers exhibit low T2 signal, but common benign

processes such as prostatic inflammation, post-biopsy hemorrhage, and fibrosis

also exhibit low T2 signal [8], also motivating the need for DWI and DCE-MRI.

T2 maps are calculated from a series of echo time measurements and eliminate the

fluctuations in signal intensity as a function of proximity to the endorectal coil seen

in T2-weighted, as well as providing quantitative values. ADC maps are derived

from DWI parametric maps, and several recent studies [10] have shown the

usefulness of ADC maps for localizing prostate cancer.

Dynamic contrast-enhanced (DCE) MRI is a well-known method for detecting

and quantifying tumor angiogenesis. To obtain DCE-MRI data, contrast agent was

injected into the patient, and multiple MR images were acquired at the same spatial

location over approximately 10 min. One goal of DCE-MRI is to characterize tissue

regions with expectation that certain processes such as blood flow, vascular

characteristics, or tissue integrity are different in pathological tissue with respect

to normal tissue. The results of dynamic contrast-enhanced MRI are used to calcu-

late time concentration curves, and pharmacokinetic parameters were obtained

using Brix model [34] allowing rate constants, such as kep (wash-in rate), kel
(wash-out rate), and A (contrast agent dose and tissue-dependent parameter), to

be estimated [35]. Rate constants are known to be elevated in cancerous

tissue [5, 7]. Recent studies [8] noted that DCE-MRI improves the specificity of

MRI over conventional T2-weighted MRI for the detection and localization

of prostate cancer. A full MRI and parametric dataset is shown for an example

patient in Fig. 2(a–d).

The available MRI dataset consists of several functional, anatomical, and

parametric image types; however, based on preliminary feature selection analysis,

we restrict our attention to three types of images (1) T2-maps, (2) ADC, (3) kinetic

parameter kep that have information from three main groups (T2, DWI, and

DCE-MRI).

Upon the completion of radical prostatectomy, the extracted prostate was placed

in formalin for 24 h and embedded in HistOmer gel prior to ex vivo MRI.

T2-weighted (T2w) images were taken at a 5� intervals and the angle corresponding
to the plane of in vivo imaging was determined. The gel-embedded prostate was cut

into regular 3 mm sections using a rotary blade, along the angle plane determined

during the ex vivo imaging sessions. For all sections, standard pathological

techniques are used to prepare hematoxylin and eosin (H&E)-stained whole-

mount histological slides. A pathologist assesses the whole-mount sections and

region of tumor was outlined as ground truth. Then, this tumor location is

transferred to the in vivo MRI by an expert radiologist, who views in vivo MRI,

histological slide, and the ex vivo MRI of this histological slide. A digitalized
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histological section of a patient is shown in Fig. 2e from the same patient and

location with in vivo MR images shown in Fig. 2(a–d). Histological analysis helps

us to determine the malignant and benign prostate tissues with higher accuracy than

the analysis of cancer lesion by a radiologist viewing only the in vivo MR images.

Application of Segmentation Methods to Prostate Cancer
Localization with Multispectral MRI

In this section, classification methods explained in section “Methodology” are

applied and evaluated using multispectral MR images. A comparison of conven-

tional SVM, C-SVM, and the proposed cost-sensitive CRF is presented. Majority

(70 %) of cancer nodules are located in the peripheral zone [26]; therefore, we have

considered only the peripheral zone of the prostate in this study. Many other studies

were conducted using only PZ region of the prostate [3, 8], which would allow

us to compare our quantitative results to these previous studies. All experiments

are performed using leave-one-out. That is, the test subject is not used in the

training stage.

To illustrate the performance improvements through the use of multispectral MR

image data visually, we present segmentation results for several subjects in Fig. 3.

These example segmentation results from a group of subjects allow us to see

the benefit of multispectral MRI visually. Segmentation results using SVM,

C-SVM, and cost-sensitive CRF are shown in Fig. 4, where the superiority of the

cost-sensitive CRF can also be observed visually.

Statistical and Quantitative Analysis of Results

In addition to visual evaluation, we use several quantitative measures to evaluate

the results including specificity, sensitivity, dice measure (DSC) [36], and area

under the ROC curve. ROC is a common method used to quantify the classifier

performance. To compare performances of different classifiers, we reduce the ROC

Fig. 2 Prostate MRI and parametric maps. (a) T2-weighted MRI, (b) T2 maps, (c) apparent

diffusion coefficient (ADC), (d) kep, (e) digitized whole-mount H&E histology slide
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Fig. 3 Segmentation results of cost-sensitive CRF using T2 maps (Column 2), T2 maps and ADC

(Column 3), and T2 maps, ADC, and kep (Column 4). White pixels denote the tumor locations in

the image

Fig. 4 Segmentation results of classical SVM (Column 2), cost-sensitive SVM (C-SVM) (Column

3), and cost-sensitive CRF (Column 4). White pixels denote the tumor locations in the image
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curve to a scalar value, area under curve (AUC), representing the performance of

the classifier. In this study, ROC curves are estimated using maximum likelihood

and assuming bivariate normal data with ROCKIT software (version 0.9.1-beta, CE

Metz, University of Chicago) [37]. We used average AUC values obtained from

21 patients to compare performances of different methods, and also included

sensitivity/specificity, and dice measure to assess the performances of the various

methods and combinations of MRI types. Sensitivity and specificity are defined as

Sensitivity ¼ TP=TPþ FN

Specificity ¼ TN=FPþ TN

where TP and FP denote the numbers of true-positive and false-positive pixels,

respectively. Similarly, TN and FN show the numbers of true-negatives and

false-negative pixels. DSC (dice measure), a quantity that measures the accuracy

of localization for the detected tumor, is

DSC A;Bð Þ ¼ 2 A \ Bj j
Aj j þ Bj jð Þ

where A is the segmentation result, B is the ground truth, and the operation |.|

denotes the number of segmented pixels.

Due to the relatively small number of patients (21 patients), Fisher’s exact test

[38] is used to measure the statistical significance of our results. It is commonly

used in medical image analysis to examine the association of two types of classifi-

cation. p-value with Fisher’s test provides the probability of obtaining a test statistic
at least as extreme as the one that was actually observed. Lower p-values indicate a
less likely, thus a more significant result. In general, a p-value of less than or equal

to 5 % is deemed to be statistically significant.

Table 2 shows the average DSC measures for all three training methods using all

three features (T2-ADC-kep) where we have performed a leave-one-out cross

validation and bias adjustment for all 21 patients. Segmentation performances of

different training methods are not very different, with Method 1 producing slightly

larger DSC values. In the rest of the discussion, we present only results from error

minimization (Method 1) resulting in higher DSC. However, we should note that

other training schemes proposed might be useful for various other clinical

applications. For example, higher specificity or sensitivity might be preferred in

the price of decreased DSC.

Table 2 Mean � standard

deviation of dice measure

using T2, ADC, and kep

Method Method1 Method2 Method3

SVM 0.38 � 0.21 0.36 � 0.19 0.37 � 0.20

C-SVM 0.40 � 0.19 0.37 � 0.19 0.38 � 0.21

CRF 0.46 � 0.26 0.44 � 0.25 0.43 � 0.27

Method 1 refers to training scheme using misclassification error

minimization, Method 2 to Neyman Pearson, and Method 3 to

area under curve
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Figure 5 shows the average ROC graph for 21 test patients with leave-one-out

applied for all patients. This figure shows that using a richer set of MR images

increases the classifier performance considerably. Table 3 shows the average AUC

values of 21 patients for several image combinations, and Table 4 shows the p-
values for T2, T2-ADC, and T2-ADC-kep with SVM and cost-sensitive SVM

classifiers. We observe that T2-ADC-kep combination yields the highest AUC

values for both methods. This clearly demonstrates the advantage of using multi-

spectral MRI in prostate cancer segmentation. p-values from Table 4 shows that

Fig. 5 Average ROC curves and standard deviations of 21 test images for C-SVM using (1) T2

maps (2) T2 maps, ADC (3) T2 maps, ADC, and kep

Table 3 Mean � standard deviation for area under curve (AUC) for 21 patients for SVM and

C-SVM

Method T2 T2ADC T2ADCkep

SVM1 0.74 � 0.13 0.76 � 0.13 0.77 � 0.11

C-SVM1 0.74 � 0.13 0.78 � 0.12 0.79 � 0.12

Table 4 p-values of area under the curve (AUC) using T2 maps, ADC, and kep for SVM, C-SVM,

and CRF with bias shifting

Method T2 vs. T2ADC T2 vs. T2ADC T2ADC vs. T2ADCkep

SVM1 0.0133 0.0133 0.0946

C-SVM1 0.0133 0.0133 0.0133
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performance improvements are statistically significant as more features are used for

both SVM and C-SVM, except for the single case of T2-ADC vs. T2-ADC-kep with
SVM. The performance improvement is statistically significant for the same

combinations with C-SVM indicating that C-SVM can better utilize multispectral

MRI data.

Further, to show that C-SVM is superior to classical SVM, Fig. 6 shows the

average ROC curve of 21 test patients, with leave-one-out for each patient, for

classical and C-SVM. We use training Method 1 and all three types of modality

images: T2, ADC, and kep for this figure. In most of the subjects that we have

investigated, C-SVM performs better than classical SVM.

On the other hand, Table 5 provides average sensitivity, specificity, and DSC

values for performance comparison using different feature vectors with all classifi-

cation methods. This table shows that combining CRF with C-SVM provides

considerably improved performance compared to using only SVM/C-SVM

classifiers. There is a noticeable increase in mean values of dice measure (DSC)

with the proposed cost-sensitive CRF. However, we can also observe that the

sensitivity of the CRF method is inferior to the sensitivity of the other two methods,

because CRF is producing much larger specificity values. Therefore, although CRF

is preferable when sensitivity and specificity are considered together, a clinical

application that particularly needs high sensitivity in the price of decreased speci-

ficity can require C-SVM to be used instead of CRF. Also, Tables 6 and 7 present

the p-values of dice measures for different classifiers and multispectral images,

respectively. Table 6 indicates that the improvements when using three image types

Fig. 6 Average ROC curves and standard deviations of 21 patients using T2, ADC, and kep
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are statistically significant with CRF. Next, Table 7 shows that the improvements

of CRF compared to SVM and C-SVM are statistically significant as evident by

p-values when all three-image types are used. These tables show that advanced

methods such as CRF and C-SVM can better utilize multispectral MRI data.

Results presented so far were obtained after adjusting the bias of the classifier to

achieve 0.70 specificity in the training stage for each patient. Note that specificity

values presented in Table 8 are for the test images and they show a specificity value

close to 0.70. However, one might wonder how the result would change if we did

not perform this shift in classical SVM and used the bias provided by SVM

algorithm. Table 8 shows the sensitivity, specificity, and DSC without any bias

adjustments with training Method 1. Comparison of Tables 5 and 8 shows that the

segmentation performance is considerably improved through the proposed bias

adjustment. Note that bias adjustment is done during training, and this bias value

does not change for separate test subjects.

Table 5 Mean � standard deviation for sensitivity, specificity, and DSC using T2 maps, ADC,

and kep for SVM, C-SVM, and CRF with bias shifting

Method Sens/specs T2 T2ADC T2ADCkep

SVM Sens. 0.68 � 0.31 0.75 � 0.24 0.66 � 0.30

Spec. 0.63 � 0.30 0.62 � 0.22 0.70 � 0.26

DSC. 0.35 � 0.20 0.37 � 0.19 0.38 � 0.21

C-SVM Sens. 0.72 � 0.27 0.72 � 0.27 0.73 � 0.25

Spec. 0.62 � 0.27 0.66 � 0.23 0.67 � 0.22

DSC. 0.36 � 0.19 0.38 � 0.20 0.40 � 0.19

CRF Sens. 0.58 � 0.39 0.66 � 0.33 0.64 � 0.34

Spec. 0.73 � 0.14 0.73 � 0.26 0.78 � 0.22

DSC. 0.35 � 0.28 0.42 � 0.26 0.46 � 0.26

Table 6 p-values of dice measure (DSC) using T2 maps, ADC, and kep for SVM, C-SVM, and

CRF with bias shifting

Method T2 vs. T2ADC T2 vs. T2ADCkep T2ADC vs. T2ADCkep

SVM 0.0946 0.1917 0.1917

C-SVM 0.0946 0.0392 0.0392

CRF 0.0946 0.0392 0.001

Table 7 p-values of dice measure (DSC) using T2 maps, ADC, and kep for SVM, C-SVM, and

CRF methods

Method CRF vs. SVM CRF vs. C-SVM C-SVM vs. SVM

T2 0.0392 0.0392 0.3318

T2-ADC 0.0946 0.0946 0.0133

T2-ADC-kep 0.0392 0.0392 0.3318
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In summary, the visual, quantitative, and statistical results presented here show

that proposed cost-sensitive CRF is superior to the classical techniques of SVM and

C-SVM, and using multispectral MRI significantly improves localization perfor-

mance when compared to single type of MRI.

Prostate Cancer Localization with Texture

General image segmentation studies often utilize filter banks in their analysis. Filter

banks are known to be the most efficient and accurate way to derive texture

features. Recently, Leung et al. [39] introduced a set of filter banks known as

Leung-Malik (LM) filters for natural image segmentation study. We plan to com-

bine filter bank-derived features with random walker (RW) algorithm [40] to

develop robust, accurate image segmentation technique. We present quantitative

and qualitative performance comparison between pixel intensity and filter bank-

derived features using toy images. We show that filter bank and RW combination

results in better segmentation in general image segmentation tasks.

Filter Banks. Filter banks have been ubiquitously used in image segmentation

applications. Recently, Leung-Malik (LM) filter banks received significant atten-

tion due to their high performance in segmenting natural scene images [39]. The

LM filter set is a multi-scale, multi-orientation filter bank with 48 filters. It consists

of first and second derivatives of Gaussians at 6 orientations and 3 scales, making a

total of 36; 8 Laplacian of Gaussian (LOG) filters; and 4 Gaussians. The compo-

nents of LM filter bank are shown in Fig. 7. Given input image is convolved with

each of the filters shown in Fig. 7, after each filtering step, we smooth the response

image by applying a low-pass filter on the response image. In order to show

the effectiveness of the random walker image segmentation with filter banks, we

have used toy examples. For quantitative comparison between intensity and filter-

based RW algorithms, we use the dice measure. In our experimental setting, we

have an image with a set of initialization points referred as seeds that indicates

Table 8 Mean � standard deviation for sensitivity, specificity, and DSC using T2 maps, ADC,

and kep for SVM, C-SVM, and CRF without bias shifting

Method Sens/specs T2 T2ADC T2ADCkep

SVM Sens. 0.80 � 0.20 0.83 � 0.19 0.74 � 0.25

Spec. 0.40 � 0.24 0.47 � 0.23 0.60 � 0.24

DSC. 0.32 � 0.16 0.34 � 0.19 0.36 � 0.19

C-SVM Sens. 0.85 � 0.19 0.84 � 0.19 0.70 � 0.29

Spec. 0.50 � 0.25 0.48 � 0.22 0.68 � 0.29

DSC. 0.34 � 0.18 0.35 � 0.18 0.38 � 0.21

CRF Sens. 0.73 � 0.30 0.81 � 0.24 0.66 � 0.33

Spec. 0.60 � 0.31 0.57 � 0.28 0.72 � 0.28

DSC. 0.34 � 0.23 0.39 � 0.20 0.42 � 0.27
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different classes. Segmentation results using a set of simple images are shown in

Fig. 8 using intensity and filter bank-based random walker.

Table 9 shows the quantitative dice measure for both segmentation schemes.

Difference between the mean values clearly shows the benefit of using filter banks

with random walker algorithm. Notice that from Fig. 8 intensity alone is not able to

capture the texture properties, hence results in a worse segmentation.

Since the tumors on the prostate, especially in the transition zone, show consid-

erable difference in texture when compared to the normal tissue, localization

methods using texture are potentially very effective and need to be further

investigated.

Discussion

There exist several prostate cancer segmentation studies with multispectral MRI in

the literature [8, 10, 14]. However, most of these are with human readers; therefore,

a direct comparison of our results with those studies is difficult. There is a notable

inter- and intra-observer variability for human readers, and it is tedious for humans

to analyze multiple image datasets. Therefore, automated methods have an intrinsic

advantage over human readers since they remove observer variability and can

easily be repeated.

Another difficulty for comparison is that the study population differs from one

study to another and sensitivity/specificity critically depends on the sampling

variation. Girouin et al. [9] report sensitivity/specificity value of 50–60 % and

13–21 % over 46 patients using only T2-weighted (1.5 T) MRI in cancer detection.

Further, Girouin presents sensitivity/specificity value of 78–81 % and 32–56 % for

the same dataset using T2-weighted (3.0 T) MRI. Futterer et al. [5] present their

results for six patients using T2-weighted (1.5 T) MRI, and their results show a

Fig. 7 The Leung-Malik filter bank. The filter bank consists of an edge and bar filter both at scales

3 and 6 orientations and 2 rotationally symmetric filters of 49 � 49 pixels
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significantly higher values, sensitivity/specificity is 83 % and 83 %, respectively.

However, studies that include higher number of patients do not confirm Futterer’s

results [3, 8, 41]. Clinical results with DCE-MRI at 1.5 T have been inconsistent

with sensitivities and specificities varying from 51 % to 89 % and 67 % to 87 %,

respectively [42]. A recent study by Ocak et al. [8] interpreted DCE-MRI in

conjunction with T2-weighted MRI in order to improve the cancer detection. This

study reports that 94 % sensitivity and 37 % specificity for T2-weighted image can

be improved to 70 % sensitivity and 88 % specificity. We were able to achieve 64 %

sensitivity and 78 % specificity with 21 patients using the automated localization

methods presented in this chapter. Note that automated localization avoids any

Fig. 8 (a) Original image, (b) Seed points, blue (foreground), green (background), and red
(boundary), using (c) intensity RW (d) LM-based RW

Table 9 Mean � standard deviation for DSC using random walker

with intensity and filter bank features

Measure RW LM filter RW

DSC 0.73 � 0.15 0.93 � 0.06
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human interference in the decision process, therefore, allows us to remove observer

variability. Furthermore, automated methods are more efficient in tumor localiza-

tion. On the other hand, they may not be able to capture certain aspects of the

human experience that clinicians learn over many years.

The limitations of this study are the limited number of patients and possible

misalignment between pathology and ground truth. Since the alignment is not

100 % accurate, we anticipate a certain amount of error in the location and size

of the tumor.

Conclusion

In this chapter, we presented a framework for selecting the most effective

combination of multiparametric MRI for prostate cancer localization and methods

for automatically localizing prostate cancer with multispectral MR images using

supervised classification algorithms. Currently, the most often used invasive

method for prostate cancer detection requires needle biopsy samples that are guided

by TRUS images. However, TRUS is used only to locate the prostate and cannot

accurately localize the cancer.

Multispectral MR imaging has shown promising results in detecting prostate

carcinoma more accurately. However, almost all of these studies are with human

readers, causing significant observer variability. The only automated method that

was applied to prostate cancer is classical SVM [15] and is a supervised method

that does not utilize training data [14]. In this study, we presented automated

methods for prostate cancer segmentation with multispectral MRI using supervised

classification algorithms: SVM, which was used in earlier studies and included for

comparison purposes, C-SVM, and the proposed cost-sensitive CRF. Automated

methods are not only more efficient but also remove the inter-observer variability,

which is a particularly severe problem with multispectral MRI.

In this study, we used additional parameters to control class-related cost in the

SVM formulation, which allowed us to increase overall segmentation accuracy.

Next, we noticed that, even though classical SVM and C-SVM allow a simple

categorization of instances into one of the classes, they do not use spatial informa-

tion from the images. Therefore, we incorporated probabilistic graphical models to

utilize the structure in the images. A probabilistic graphical model, CRF, allows one

to use image structure for segmentation purposes. However, our previous results

have shown that using classical CRF with logistic regression initialization of

w parameter does not yield accurate segmentation results. Therefore, we integrated

the C-SVM algorithm developed for classification of independent instances with

graphical models that can exploit the inherent structure in the image result, yielding

a novel cost-sensitive CRF technique.

In this chapter, we have also used three training schemes and compared their

performances. Each of these training schemes achieves a different objective. In our

discussion, we presented results using training Method 1 since it resulted in higher

Automated Prostate Cancer Localization with Multiparametric Magnetic. . . 581



DSC values for this dataset. However, the other training schemes could be useful

for certain other clinical applications. For instance, there could be cases where the

sensitivity or specificity is more important than DSC measure for a particular

application. After performing experiments using real MRI data, our results concur

with the findings of earlier studies with human readers showing that increasing the

number of MR types increases the accuracy of detection and localization. From our

results, the following can be deduced:

• Most effective combination of multiparametric MRI for prostate cancer locali-

zation consists of T2maps-ADC-kep.
• C-SVM is superior to classical SVM in prostate cancer segmentation using

multispectral MRI. For instance, Table 3 shows that average AUC increases

from 0.77 for classical SVM to 0.79 for C-SVM. Figure 4 presents an illustration

of the performance of classical and C-SVM for several test patients.

• Average specificity/sensitivity and dice measure results considerably improve

when proposed cost-sensitive CRF is used. Table 5 shows that dice measure

increases from a mean value of 0.38 for classical SVM to 0.46 for CRF if we use

T2-ADC-kep features to construct the classifier.

• Shifting the bias to achieve a constant false-positive rate yields better localiza-

tion results compared to using the bias provided by SVM. A comparison of the

corresponding values between Tables 5 and 8 shows such improvements for

the majority of the cases. For example, cost-sensitive CRF dice measure

increases from 0.39 to 0.42 for T2-ADC combination when we adjust the bias

with the proposed method.

Fisher’s exact test is also used to show that almost all of these improvements are

statistically significant. Future work will include a more comprehensive compari-

son of the integrated SVM-CRF model to other discriminative models. Considering

the lack of shape of the prostate tumors, and the fact that the tumor and healthy

regions may have overlapping intensities, context-based segmentation methods for

prostate cancer detection have to be investigated further. We have also discussed a

group of methods that use texture for prostate cancer localization that potentially

can be very effective in the future.
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Abstract Low-dose-rate prostate brachytherapy is a treatment option for low- and

mid-risk prostate cancer through introduction of radioactive seeds into the prostate.

Seed placement deviations are common and associated with postoperative

complications. Dynamic dosimetry is a method to accurately localize the true
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position of the seeds inside the tissue, calculate the delivered dose, and adapt

the implant plan accordingly to compensate for seed placement deviations in the

operating room. A practical method for dynamic dosimetry relies on localization of

the implanted seeds in 3D space from several C-arm images and registering them to a

3D ultrasound volume of the prostate region. In this chapter we introduce a system

and workflow for intraoperative dosimetry for prostate brachytherapy. In the

suggested workflow, C-arm images are acquired from different angles and are

used to reconstruct the seeds in 3D space. For this purpose, we rely on a method

based on dimensionality reduced linear programming to match the projections of a

seed in different images and localize the seed positions after automatic C-arm pose

correction. In the next step of the workflow, the reconstructed seeds are registered to

an ultrasound volume of the prostate in a point-to-volume registration scheme. We

tested our method on data from 16 patients and compared our dosimetry results with

results from Day-1 CT. In comparison, we achieved absolute error of 2.2 � 1.8 %

(mean � STD) in estimating the percentage of the prostate volume that receives

100 % of the prescribed dose (V100) and absolute error of 10.5 � 9.5 % in predic-

tion of the minimum dose delivered to 90 % of the prostate (D90).

Introduction

Prostate cancer is the leading cancer and the second cause of cancer death among

men in the United States [1]. Radical prostatectomy, external beam radiation

therapy, and prostate brachytherapy are treatment options for prostate cancer.

Low-dose-rate prostate brachytherapy (hereafter, brachytherapy) is an outpatient

treatment option that has shown at least equal or better outcomes with high rate of

cancer-free survival and fewer side effects compared to the radical prostatectomy

which is considered as the gold standard. Low-dose-rate prostate brachytherapy is a

form of radiation therapy in which radioactive seeds are implanted inside the

cancerous prostate to irradiate the cancerous tissue. The most common seeds used

in practice are I-125, Pd-103, and Cs-131 and are almost as small as a grain of rice.

The seed positions are accurately planned before implantation to assure delivery of

sufficient dose to the target gland yet sparing the organs at risk such as urethra,

rectum, and bladder. The quality of the treatment depends on the accuracy of seed

placement.

During the operation, a transrectal ultrasound (TRUS) probe mounted on a

stepper that allows translation and rotation of the probe is used for image guidance.

A guiding template—a grid with holes—is also mounted on the stepper that allows

the needles to move nominally parallel to the long axis of the TRUS probe. C-arm

fluoroscopy is frequently used to visualize the distribution of the implanted seeds

(see Fig. 1) and oftentimes needle positioning during the procedure.

Seeds can deviate from their planned positions for many reasons, including

prostate motion and deformation [2], prostate swelling due to insertion trauma [3],

needle deflection [4], and seed migration. Therefore, the real distribution of the
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implanted seeds never perfectly matches the plan. The resultant suboptimal dose

distribution can lead to under-dosing of the cancerous gland or overdosing of the

organs at risk. Consequences are complications such as sexual and urinary dysfunc-

tion, rectal ulceration, and cancer recurrence.

The treatment quality is assessed traditionally using CT one day or up to 4 weeks

after the operation, when modifications to the treatment are difficult or impossible.

Accurate localization of the implanted seeds in real time during the operation would

enable the physician to detect the under-dosed regions and predict the regions with

high chance of over-radiation while the patient is still on the operating table. In this

case, optimal dose coverage could be achieved before the patient leaves the

operating room. Real-time seed localization followed by dose calculation and

modification, a process called “Dynamic Dosimetry”, has been a topic of extensive

research during the past decade [5, 6]. In addition to providing real-time evaluation

of the procedure, dynamic dosimetry can simplify the quantitative postoperative

dosimetry by replacing the postimplant CT.

Since TRUS is the main imaging modality during prostate brachytherapy, an

extensive body of research has been dedicated to seed localization in ultrasound.

Methods such as processing the B-mode images [7], singular spectrum analysis [8],

analyzing the radio-frequency signal [9], trans-urethral ultrasound [10], Doppler

Fig. 1 (a) Brachytherapy setup, showing the TRUS probe, guiding template, stepper, C-arm, and

radio-opaque fluoroscope tracking fiducial (FTRAC). (b) A sample axial TRUS image of the

prostate with implanted seeds. (c) A sample X-ray image showing the seeds
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ultrasound imaging of magnetically vibrated seeds [11], and vibroacoustography

[12] have been tried. However, ultrasound-only seed localization methods have not

shown the necessary robustness for clinical application. Ultrasound (US) images

are of relatively low quality when the tissue is implanted with metallic seeds.

For example, distal seeds (with respect to the US probe) can be located in the

shadow of proximal seeds. Some seeds are oriented at an angle with respect to

the incoming ultrasound beam that causes reflection of the beam away from the

probe, rendering them invisible. US images are also rife with seed-looking artifacts

caused by calcifications and air bubbles (see Fig. 1). In fact, it has been shown that

even careful manual identification of the seeds in B-mode images cannot result in

reliable dosimetry [13].

A commercially available method for an approximate dynamic dosimetry is to

manually identify the seeds on the sagittal ultrasound image as they are ejected

from the needle. Although this method has shown successful results [5, 14], it

cannot account for seed motion after deposition. Therefore, the final resting place of

the seeds remains unknown and the actual dose is not known with great accuracy.

A promising alternative for ultrasound-only seed localization and dosimetry

is multimodality integration of ultrasound and fluoroscopy. C-arm fluoroscopy is

widely used in brachytherapy practice for projection visualization of the seeds.

Several X-ray images taken from different angles can be used to reconstruct

the seed positions in 3D. However, C-arm fluoroscopy images have almost no

soft-tissue contrast (see Fig. 1). Since for dosimetry the seeds must be localized

with respect to prostate boundaries, seeds localized with C-arm fluoroscopy should

be registered to ultrasound.

In this chapter, we introduce a fully automatic and practical system and workflow

for reconstruction of the seeds in 3D using C-arm fluoroscopy and registering them

to ultrasound images.

Dynamic Dosimetry Using Ultrasound-Fluoroscopy

Registration

A possible workflow for dynamic dosimetry using ultrasound-fluoroscopy registra-

tion consists of the following. (1) During the operation, when needed, a TRUS

volume of the prostate region is acquired. The TRUS volume can be reconstructed

from axial images taken during the retraction of a tracked TRUS probe from the

prostate base to apex (see Fig. 2a, b). Alternatively, the volume can be recon-

structed from sagittal images acquired during a rotational sweep. (2) Following

US imaging, at least 3 C-arm fluoroscopy images are acquired at different

C-arm positions (see Fig. 2c). Conveniently, these images are taken by rotating

the C-arm in a cone around the anterior-posterior (AP) axis of the patient. The

TRUS probe is retracted before C-arm imaging to avoid occlusion of the seeds.

(3) The X-ray images are processed for seeds and fiducials that are used for C-arm
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pose computation. (4) The seeds are reconstructed in 3D by solving a matching

problem that finds the correspondence between different seed projections of a

particular seed in different images (Fig. 2d). (5) Finally, the reconstructed seeds

are registered to the TRUS volume and used for implant evaluation and dosimetry

(Fig. 2e). Based on the dosimetry information, the under-dosed and likely-to-be

overdosed regions can be identified and the rest of the implant plan can be modified

accordingly.

Reconstruction of Seeds in 3D Space

An essential component in our dynamic dosimetry system is the reconstruction of

seeds in 3D space from several X-ray images taken from different angles. Two main

methods have been devised for seed reconstruction in 3D—digital tomosynthesis

and matching-based methods. In the former, the background is removed from the

X-ray images and the seed projection regions are back-projected toward the

corresponding X-ray sources. The corresponding back-projections for each seed

intersect in the seed location. Digital tomosynthesis inherently solves the matching

problem and recovers hidden seeds [15–20]. Since tomosynthesis-based reconstruc-

tion methods only require separation of the seeds from the background in a binary

image; hence, explicit localization of the seed projection centers in the images and

Fig. 2 The workflow for dynamic dosimetry using ultrasound-fluoroscopy registration. (a) Sev-

eral axial slices of TRUS images. (b) A reconstructed TRUS volume. (c) Three X-rays acquired at

different angles. (d) Reconstructed seeds in 3D space. (e) A sample axial slice of TRUS volume

overlaid with the registered seeds (green squares), prostate contour (red), and 100 % isodose line

(green)
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declustering are not necessary. However, tomosynthesis-based methods suffer from

false positives and are relatively time-consuming. In the matching-based seed

reconstruction methods, a seed is localized in 3D space by triangulation. In order

to do so, the correspondence between the seed projections in different X-ray images

should be known. Since this correspondence is not known, the matching problem

and the reconstruction are solved together. For matching-based reconstruction

methods, seed projection centroids should be identified in the images. However,

in every image there can be several overlapping or hidden seeds, where the seed

centroids cannot be reliably identified. Recent studies have engineered seed recon-

struction methods that can solve the matching problem and recover the hidden seeds

[21–25]. Compared to tomosynthesis-based methods, matching-based seed recon-

struction requires fewer X-ray images.

Most reconstruction methods assume accurately known pose of the C-arm during

image acquisition obtained through external tracking of the C-arm device or accu-

rate geometry of radiotherapy simulators. External tracking of a C-arm device is not

always practical and radiotherapy simulators are not available in every brachyther-

apy operating room. As a solution, seeds have been used as fiducials to improve an

initial estimation of C-arm pose during seed reconstruction [19, 26–29]. In our work,

we use reduced dimensionality matching for prostate brachytherapy seed recon-

struction with automatic pose correction (APC-REDMAPS) [25, 29]. This is a fast,

practical, and robust matching-basedmethod that is able to concurrently estimate the

pose of the images as well as solve for the matching problem despite presence of

hidden seed projections.

Our seed reconstruction method requires seed projection centroids to be

segmented in the X-ray images. In addition, a relatively accurate C-arm pose is

required for fast and successful reconstruction. The C-arm pose can be calculated

using a fluoroscope tracking fiducial, named FTRAC, introduced by Jain et al. [30]

that consists of 2 ellipses, 3 parallel lines, and 9 beads as shown in Fig. 3. The

FTRAC can be mounted on the guiding template used for prostate brachytherapy.

The C-arm pose can be recovered after segmentation of the projections of the

FTRAC in the X-rays with the tracking accuracy of 0.33� in rotation and

0.56 mm in translation [30]. In the following, we describe the algorithms for

segmentation of the fiducial and seed projections in the X-ray images as well as

our method for solving the matching problem and pose correction.

Seed and Fiducial Segmentation in X-Ray Images

Our X-ray processing algorithm is responsible for automatic segmentation of the

FTRAC ellipses, lines, beads as well as the center of seed projections in the image

without a manually selected region of interest [31]. In addition, if some seed

projections are overlapped, the image processing can detect and separate them

into their constituent projections. We assume that the X-rays are corrected for

image distortions caused by the image intensifier. The correcting function

parameters can be calculated preoperatively using a calibration device which is
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also used to identify the C-arm calibration parameters. We also assume that the

seeds and FTRAC are fully visible in the C-arm images and the FTRAC image does

not overlap with the seed projections (Fig. 4). This can be achieved by limiting the

C-arm rotation to a �10� cone around the patient’s AP axis. The image processing

algorithm requires that the FTRAC appears on the right side of seeds and in an

almost vertical position in the X-ray image. Mounting the FTRAC on the grid as

shown in Fig. 3b satisfies this requirement (see Fig. 4 for an example).

Fiducial Segmentation

The X-ray processing starts with segmenting the FTRAC lines and beads. The

FTRAC specific design, in which the beads are positioned on the top of the three

parallel lines, is taken into account for simultaneous segmentation. The algorithm

Fig. 3 (a) The fluoroscope tracking fiducial (FTRAC). (b) FTRAC mounted on the guiding

template. (c) An X-ray image of FTRAC, showing the projections of the ellipses, lines, and beads
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starts with generating a binary image by applying a top-hat by reconstruction

operation using a disk-shaped structuring element on the complemented X-ray

image followed by the Otsu thresholding [32]. The region properties of the

connected components including their area, eccentricity, solidity, and location are

used to distinguish beads from seeds. As the beads are located on parallel

lines, the Hough transform is applied to the image and the strongest three parallel

lines in an almost vertical orientation on the right side of the image are selected.

The line positions are further refined and then used to localize the beads in the

image [31].

Following the detection of the FTRAC beads and lines, a pipeline of morpho-

logical image filters including top-hat operation and image opening, thresholds,

and edge thinning algorithms are applied to the images to detect the edges of

the ellipses. Then, knowing the position of the beads, the candidate edges for the

two ellipses are separated. Finally, an ellipse detection algorithm based on random

sample consensus (RANSAC) is employed to fit two ellipses to the detected edges.

For more details on the ellipse detection we refer the readers to [31].

Seed Segmentation

Once the FTRAC is segmented, the X-ray processing can continue onto seed

segmentation without interference from the fiducial. The pipeline continues with

generating a binary image by applying a top-hat by reconstruction operation using a

disk-shaped structuring element on the complemented X-ray image followed by the

Otsu thresholding. To reduce false positives, connected components within

Fig. 4 The result of seeds and FTRAC segmentation on a clinical image. (a) The original image.

(b) Segmented seeds, ellipses, beads, and lines (shown by numbers).Magenta dots indicate single
seeds are marked by magenta dots and separated overlapping seeds by cyan circles
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the region of the FTRAC or outside the densest seed cloud region of connected

components are removed.

Most of the remaining connected components correspond to single seed

projections, although some may correspond to multiple overlapping seed projec-

tions. A metric based on the rearrangement of Beer’s law can serve as an estimate of

the number of seed projections within each connected component:

Ix x; yð Þ ¼ I0e
�μ

ð
dz

�ln
Ix x; yð Þ

I0
¼ μ

ð
dz (1)ðð

� ln
Ix x; yð Þ

I0
dxdy ¼ μ

ððð
dxdydz ¼ μV

Here, Ix(x,y) is the X-ray image intensity at position (x, y), I0is the incident X-ray
intensity, z is the axis orthogonal to the image plane along the line of projection, and

V is the volume of the object(s) imaged. Therefore, a calculation of

ðð
� ln

Ix x;yð Þ
I0

dxdy can serve as a metric for estimating the number of seed projections within each

connected component, since the resulting value is a constant μV for single seed

projections and n times the constant μV for n seed projections. For more details on

the metric, we refer the readers to [31].

The coordinates of the seed projections can finally be calculated through

application of the k-means clustering algorithm [33], which partitions data into a

user-defined number of clusters. For this case, the input data are the pixel coordi-

nates within a specific connected component weighted by intensity, and the number

of clusters is the now computed metric for the connected component. The output

partition separates any overlapping seeds and the centroid of each partition results

in the desired seed projection position.

Solving the Matching Problem

As mentioned, we need at least three X-ray images taken at different angles to

reconstruct the seeds. Without loss of generality and for the sake of simplicity, we

assume that we have only three X-rays. Assume that the images are processed so the

seed projections are segmented in the images. To start with, let’s assume that the

C-arm poses (the relative positions and orientations of the X-ray images in 3D

space) and the correspondences between the seed projections in different images

are known (see Fig. 5 for an example). For each of the corresponding seed

projections pi1, pi2 and pi3 in images 1, 2 and 3, respectively, there is a line

Lij, j ∈ {1,2,3} that connects that projection to its corresponding C-arm source
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position rj, j ∈ {1,2,3}. Then, the reconstructed seed position si is the point with
minimum aggregate distance from these lines and is calculated as:

si ¼
X3
j¼1

I � vijv
0
ij

� �" #�1 X3
j¼1

I � vijv
0
ij

� �
rj, (2)

where, vij is the unit vector along Lij, I is the identity matrix, and (.)0 denotes the
transpose of a matrix or a vector. We define the “reconstruction accuracy” as

the root mean square distance from the reconstructed seed to Lij’s [25], which is

zero in ideal case with known image poses.

In the problem of seed reconstruction for prostate brachytherapy, the correspon-

dence between seed projections is not known. In addition, there are hidden seed

projections in the images. Therefore, seed localization and the correspondence

problem should be solved jointly. This problem can be formulated as a combinato-

rial optimization problem:

min
xijk

XN1

i¼1

XN2

j¼1

XN3

k¼1

cijk Φ; tð Þxijk, (3)

Fig. 5 (a) Schematic diagram of reconstruction of three seeds from their projections in 3 X-ray

images. The correspondence between the seeds and different projections are shown. (b) All

possible matching solutions between the seed projections in different images. Each edge in this

figure has a weight equal to the reconstruction accuracy. The correct matches for the simple case

shown in (a) are indicated by thick edges
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s:t:
XN2

j¼1

XN3

k¼1

xijk � 1, 8i

XN1

i¼1

XN3

k¼1

xijk � 1, 8j
XN1

i¼1

XN2

j¼1

xijk � 1, 8k

XN1

i¼1

XN2

j¼1

XN3

k¼1

xijk ¼ N

xijk∈ 0; 1f g, 8i, j, k

(4)

where N is the total number of implanted seeds, N1, N2, N3 are the numbers of

segmented seed projection centroids in images 1, 2, 3, respectively. cijk is the cost
of matching the seed projection i from image 1 with seed projection j from image

2 and seed projection k from image 3. The variable xijk is equal to 1 if seed

projections i in image 1, j in image 2, k in image 3 are selected as a match, i.e.,

originate from the same physical seed, and equal to 0 otherwise. The matching

cost cijk is a function of C-arm pose rotationΦ ¼ (ϕ1,ϕ2,ϕ3) and translation t ¼ (t1,
t2,t3). We use the reconstruction accuracy as the matching cost [25, 29]. Since xijk is
binary, this combinatorial optimization problem becomes a binary integer program-

ming problem. The inequalities in (4) guarantee that each seed projection is selected

at least once. Seed projections are allowed to be selected more than once to recover

the hidden seeds. The equality constraint assures that the number of reconstructed

seeds is equal to the number of implanted seeds.

Due to the large number (around 100) of implanted seeds during a brachytherapy

session, the above mentioned problem is of large dimensionality and cannot be

solved fast enough for practical purposes. Therefore, APC-REDMAPDS reduces

the dimensionality of this matching problem through a pruning algorithm [25].

Lee et al. has shown that over 99 % of the variables in (3) can be eliminated [25].

Moreover, the dimensionality reduced binary programming in (3) can be solved

using linear programming with relaxed fractional constraints in near real time. If the

C-arm poses are known relatively accurately, the reduced linear programming

renders a binary solution that is global optimum of (3). However, if the C-arm

pose is not known very accurately, the solution may not be binary and, if rounded,

may not be globally optimal. Therefore, APC-REDMAPS is designed to solve the

matching problem and improve the pose estimations, iteratively.

Automatic Pose Correction

In order to solve the matching problem 100 % correctly, the pose of the C-arms

should be known precisely, which is not the case in clinical practice. However, the

linear programming approach described above has shown to correctly recover most
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of the seed correspondences for image pose errors up to 5� in rotation and 10 mm in

translation [25].

If the C-arm poses are precisely known, the lines that emanate from

corresponding seed projections intersect at a single point. Therefore, if the recon-

structed seed is projected back on the images, the distance between the projection of

the reconstructed seed and the corresponding segmented seed projection on each

image should be zero. However, in the presence of C-arm pose errors, there are

errors between the projections of the reconstructed seed and its segmented seed

projections on the images. We use the term “projection error” for this error. The

projection error is employed within APC-REDMAPS to improve the pose estima-

tion accuracy. The matching and pose improvement problems are solved iteratively

until convergence.

Let sWi ¼ [sWix ,s
W
iy ,s

W
iz ,1]

0 represent the position of the ith seed in the 3D homoge-

neous world coordinate system. The projection of this seed on the jth image can be

calculated in the image homogeneous coordinate system as:

pij ¼
f=σx 0 ox 0

0 f=σy oy 0

0 0 1 0

2
4

3
5 R ϕj1;ϕj2;ϕj3

� �
tj

0 1

� �
sWi , (5)

where the left matrix is the projection matrix that consists of the C-arm focal length

f, the origin of the image (ox, oy), and the pixel spacings (σx, σy), all of which can be
preoperatively calibrated. The right matrix is the C-arm pose matrix which is

defined by the C-arm rotation and translation parameters. Equation (5) renders

the x-y coordinates of the seed projection as pxij pyij
� 	0

. Then, the projection error

for seed i in image j can be calculated as:

Δeij ¼
pxij Φi; tið Þ
pyij Φi; tið Þ

� �
� qxij

qyij

� �
, (6)

where, qxij qyij
� 	0

denote the position of the segmented seed centroid in the image.

A linear approximation of Δeij with respect to the pose error can be written as:

Δeij ¼ J

Δϕj1

Δϕj2

Δϕj3

Δtj1
Δtj2
Δtj3

2
6666664

3
7777775
¼ JΔEj (7)

The Jacobian matrix J can be explicitly calculated as detailed in [29]. The pose

error ΔE is estimated from (7) using Newton’s method [34]. Each C-arm pose is

iteratively updated using:
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Rkþ1
j ¼ Rk

jΔR
k
j , tkþ1

j ¼ tkj þ Δtkj , (8)

where, ΔRk
j and Δtkj are calculated from ΔEk

j and k is the iteration number.

APC-REDMAPS has been extensively validated on simulated and clinical data

sets. Trial on clinical data sets showed that APC-REDMAPS can significantly

improve the seed reconstruction results and achieve matching rates of �99.4 %,

reconstruction error of �0.5 mm, and the matching solution optimality of �99.8 %

[29]. Figure 6 shows the necessity of automatic pose correction and the efficacy of

APC-REDMAPS in pose correction.

Ultrasound-Fluoroscopy Registration

Registration of ultrasound and fluoroscopy (RUF) for image guidance in prostate

brachytherapy has been extensively studied before. Todor et al. [35] put radio-

opaque markers on the TRUS probe and used it for registration. Jain et al. [36] used

mechanical registration of the FTRAC to the TRUS probe for this purpose and

French et al. [37] used the images of the probe in the X-rays. For C-arm imaging the

TRUS probe should be retracted, at least partially, to avoid occlusion of the seeds.

This results in motion and deformation of the prostate in the posterior direction

as the physicians usually press the probe against the prostate to achieve a good

acoustic coupling. However, the marker- and fiducial-based registration methods

rely on a relationship between the seed positions and the fiducials or marker that

change by the retraction of the probe.

Fig. 6 Reconstruction results without (a) and with (b) automatic pose correction. The

reconstructed seeds are projected back on the clinical image and are shown as purple circles.
The segmented seed centroids are shown as red dots
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A seed-based registration method was used by Su et al. [38], Orio et al. [39], and

Tutar et al. [40] in which manually selected seeds in ultrasound images were

registered to seeds reconstructed from X-rays. Manual seed localization in ultra-

sound is difficult, time-consuming, subjective, and prone to errors. Moradi et al. [41]

proposed a method for automatic yet partial seed segmentation in ultrasound using

3D template matching of radio-frequency signal. However, the detection rate in this

method is low.

Fallavollita et al. [42] introduced an image-based ultrasound to fluoroscopy

registration employing several filters such as phase congruency, noise reduction,

and beam profiling to filter the ultrasound volume. They achieved successful

registrations in a phantom study; however, their study on a single-patient data set

showed only qualitative good results despite the complexity of the filters used.

We also use an image-based point-to-volume registration method that registers

the reconstructed seeds from X-rays to an ultrasound volume of the prostate.

Ultrasound and fluoroscopy are not generally compatible for intensity-based regis-

tration as fluoroscopy images have almost no soft tissue contrast. However, seed

implantation inside prostate changes the ultrasound images, advantageously. Metal-

lic seeds are hyper-echoic and result in bright regions in ultrasound images that

correlate with the C-arm reconstructed seeds. We take advantage of this correlation

for our registration purpose. However, the ultrasound volume should be processed

such as described below in order to enhance the seed footprints and increase the

robustness of the registration.

Ultrasound Image Processing

In the first step, a volume of interest (VOI) is selected. The VOI is selected as a cube

that encloses the prostate and the seeds within. Image cropping can be done

automatically, if the prostate contours are available. However, manual selection

of the VOI is also fast and easy. As the seeds are hyper-echoic, they appear as

outliers in VOI image intensity distribution (see Fig. 7a). Therefore, a threshold

based on the image intensity statistics can be used to remove the background

such that:

IT x; y; zð Þ ¼ 0 if Iu x; y; zð Þ � μu þ ασu
1 if Iu x; y; zð Þ � μu þ ασu



(9)

where μu and σu are the mean and standard deviation of image intensity in the VOI,

respectively, and α is the threshold parameter. If α is too large, many of the true

seeds will be removed and there will not be sufficient number of seeds for registra-

tion. On the other hand, if α is too small, the thresholded image contains many false

positives that can produce local optimums for the registration. We chose α ¼ 2.5

throughout this work for all of our phantom and clinical data sets. We have shown

in [43] that our registration algorithm is robust to reasonable variations in α. In fact,
we have shown that changing α ∈ {2,2.5,3} results only in submillimeter
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variations in the position of the registered seeds. The result of the thresholding step

can be seen in Fig. 7b. Note that this threshold does not detect all the seeds nor

remove all the false positives. However, our registration algorithm is robust to these

missing seeds and false positives as it uses mutually present seeds in ultrasound

volume and C-arm reconstructed seeds to calculate the registration parameters.

A binary image is not suitable for registration as it does not have an intensity

gradient to guide the optimizer. As it can be seen in Fig. 7b, IT is a sparse binary

image. Therefore, variation of the registration parameters in an optimization loop

may result in no or very small variation in the objective function—similarity metric

in our case—if the initial registration is not very accurate. An image with a smooth

intensity variation, on the other hand, increases the basin of convergence and

the likelihood of arriving at the global optimum. In order to create such an image,

we first apply a Euclidian distance transform to each slice of the binary image to

create a distance transform image ID such that:

ID x; y; zð Þ ¼ min
xs, ys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xsð Þ2 þ y� ysð Þ2

q
s:t:IT xs; ys; zð Þ ¼ 1:

(10)

In other words, the intensity of the distance transform image ID(x,y,z) is equal to
the distance of a pixel to the closest white pixel in the same slice (see Fig. 7c).

Fig. 7 US image processing steps. (a) A mid-gland slice of the VOI. (b) After thresholding. (c)

After distance transform. (d) After Gaussian blurring
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Finally, an image with a smooth intensity variation IG is produced by applying a

Gaussian blurring function to the distance transform image ID, such that:

IG x; y; zð Þ ¼ exp � I2D x; y; zð Þ
2σ2

� 
, (11)

where, σ is the standard deviation of the Gaussian blurring function. As shown in

Fig. 7d, the Gaussian blurred image has a smooth intensity variation with maximum

values around the seed candidates. This can act as an attractive force to, iteratively,

drive the C-arm reconstructed seeds toward the seeds in ultrasound volume. The

parameter σ plays an important role in the behavior of the registration algorithm.

If σ is too small, the seeds are not spread enough and the optimization will not have

a sufficiently large capture range. If σ is too large, the optimization algorithm can

be trapped in local minima as the effect of false positives is enhanced. In this work,

we chose σ such that the Gaussian function decreases to 75 % of its peak value at

1 mm away from the center of a seed.

Affine Transformation

As mentioned, retraction of the probe for C-arm imaging results in deformation of

the prostate. As the probe pressure is mainly in the AP direction and fairly uniform,

we use a 1D scaling in AP direction to compensate for it. To this end, we assume a

TRUS coordinate system such that the x axis is parallel to the horizontal axis of the
image from left to right, the y axis is parallel to the vertical axis of the image from

bottom to top, and the z axis runs in the superior-inferior direction. We use an affine

transformation T : 3 ! 3 between the C-arm coordinate system and TRUS

coordinate system as:

T xð Þ ¼
1 0 0

0 λ�1 0

0 0 1

2
4

3
5R θð Þxþ t, (12)

where, R is the rotation matrix, θ ¼ (θx,θy,θz) represents the rotations around

different axes, t ¼ [tx,ty,tz]
0 is the translation vector, λ is the scaling factor, and

x represents the coordinates of a point in the C-arm coordinate system.

Point to Volume Similarity Metric

In order to achieve a computationally fast registration, we assume that the TRUS

volume is fixed in space and the C-arm reconstructed seeds can move and rotate
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as a set of points. We need to define a similarity metric between a set of points

and a 3D image volume. To this end, we assume cuboids of the size Δx � Δy � Δz
around each C-arm reconstructed seed and measure the processed TRUS volume

intensity inside all the cuboids. Note that the axes of the cuboids are always

parallel to the TRUS coordinate axes (there is no need to rotate the cuboids). The

size of a cuboid in this work is 2 � 2 � 6 mm3 that is slightly bigger than a seed.

The cuboids are used to guide the C-arm seeds toward the center of the bright

regions in the processed TRUS volume. Therefore, we define our point to volume

similarity metric as the summation of image intensity over all the cuboids and

formulate it as:

S ¼
XN
n¼1

ðΔz2
�Δz

2

ðΔy2
�Δy

2

ðΔx2
�Δx

2

IG T sið Þ þ
x
y
z

2
4

3
5

0
@

1
Adxdydz, (13)

where si represents the coordinates of seed i in the C-arm coordinate system.

Optimizer

For our registration, we have three rotation parameters θ, three translation

parameters t, and one scale to optimize. We impose realistic constraints on our

registration parameters and formulate the registration problem as the following

constrained optimization:

θ�; t�; λ�ð Þ ¼ argmin S θ; t; λð Þ

s:t:
θmin � θ � θmax

tmin � t � tmax

λmin � λ � λmax

8<
: (14)

We employ the Covariance Matrix Adaptation-Evolutionary Strategy

(CMA-ES) for optimization [44]. This is a robust and efficient stochastic optimiza-

tion method capable of optimizing nonlinear and nonconvex problems. For each

iteration of the optimization, CMA-ES calculates the similarity metric over a set of

randomly distributed samples. The samples are drawn from a multivariate normal

distribution. The samples with the highest similarity metric in the population and

information from the previous iterations are used to update the covariance matrix of

the normal distribution as the iterations continue. Given a relatively good initial

estimate for the registration parameters, as we discuss later, the constrained optimi-

zation in (14) can deliver successful registration.
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Experiments and Results

Validation on Phantom

First, we conducted a phantom experiment on a commercial CIRS-053 prostate

brachytherapy training phantom (CIRS Inc., VA, USA). The phantom, implanted

with 48 dummy seeds, was imaged using ultrasound and CT. In this experiment, we

employed CT instead of fluoroscopy because it was easier to obtain a ground truth

registration between CT and US. However, the seeds were segmented in CT, turned

into a set of points, and treated as C-arm reconstructed seeds. In order to obtain a

ground truth registration between the TRUS and CT coordinate systems, the

phantom was equipped with some fiducials visible in CT that defined the phantom

coordinate system. During TRUS imaging, both the probe and the fiducials were

tracked using a Cetrus optical tracker (NDI, ON, Canada) and a calibrated pointer

(Traxtal Inc., ON, Canada) to provide the registration between the TRUS and

phantom coordinate systems (see Fig. 8). The TRUS calibration was performed

following the method described in [45]. After CT imaging, the fiducials were

carefully localized in CT images and were used to establish the registration between

CT and phantom coordinate systems, and consequently between TRUS and

CT coordinate systems. The segmented seeds in CT were transformed to the

TRUS coordinate system using this registration and assumed as ground truth seed

positions.

In order to test the performance of the registration algorithm, independent

perturbations of �15� around each axis and �15 mm along each axis were applied

to the ground truth seeds. We simulated the effect of the missing seeds by adding

some seeds to the ground truth CT seeds. Similarly, the effect of false positive

seeds was simulated by removing some seeds from the ground truth CT seeds.

Fig. 8 The phantom

experiment setup. The

ground truth registration

between the TRUS and CT

coordinate system is defined

by optically tracking

fiducials visible in CT
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For example, to simulate the effect of missing seeds in the TRUS volume, we added

5 or 10 seeds, at random positions, to the CT seeds. As these seeds do not have a

counterpart in the TRUS volume, they act as missing seeds in the TRUS volume.

The positions of these additional seeds were randomly selected for each value of

perturbation. Similarly, in order to simulate false positives in the TRUS volume, we

randomly removed 5 or 10 seeds from CT seeds data set. Since the TRUS seeds that

corresponded to these seeds in the complete set do not correspond to any seeds in

the reduced set, they act as false positives. These seeds were randomly removed

from the complete set for each value of perturbation. We limited the search region

to tmax ¼ � tmin ¼ [20,20,20]0 mm and θmax ¼ � θmin ¼ [20�, 20�, 20�] and

1 � λ � 1.3.

The registration algorithm successfully converged close to the ground truth

seeds with a maximum average registration error of 1.34 mm in all 930 simulations.

This shows the large capture range of our algorithm as well as its high accuracy.

The registration error was measured as the average seed-to-seed distance between

the registered and the ground truth seeds. Figure 9 shows two transverse slices of

the phantom with overlaying registered and ground truth seeds. The registration

error for different simulation conditions is summarized in Table 1.

Fig. 9 Two transverse slice images of the phantom overlaid with ground truth seeds (red circles)
and registered seeds (green squares)

Table 1 Mean and standard

deviation (SD) of registration

errors for phantom study
Seed cloud

Registration error (mm)

Mean � SD (Max)

Complete 0.77 � 0.40 (1.99)

Missing 5 0.79 � 0.40 (2.01)

Missing 10 0.84 � 0.42 (2.18)

Extra 5 0.86 � 0.46 (3.10)

Extra 10 0.93 � 0.52 (3.81)

Overall 0.84 � 0.45
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Validation on Clinical Data Sets

We also tested our dosimetry system on 16 patient data sets treated at the Johns

Hopkins Hospital, Baltimore, MD, USA. The clinical workflow started by

anesthetizing the patient. Then the TRUS probe was mounted on the stepper and

inserted into the patient’s rectum. The TRUS probe position was adjusted until

good imaging quality was achieved. Several transverse TRUS images of the

patient’s prostate with slice spacing of 5 mm were acquired and used for dose

planning. The operating physician contoured the prostate and the organs at risk

(rectum and urethra) on these images and planned the position of the seeds to

achieve sufficient prostate coverage while having a tolerable dose on the organs at

risk. After planning, the seeds were delivered using needles and a Mick applicator

(Mick Radio-Nuclear Instruments, NY, USA). The patients in our study received

60–105 (median ¼ 77) Pd-103 seeds (Model 200, TheraSeed, Theragenics, GA,

USA). A BK Pro Focus (BK Medical, MA, USA) ultrasound machine was used

during the implant for image guidance.

Right after all the seeds were implanted, the physician acquired a set of transverse

TRUS slices by retracting the probe from a 5–10 mm superior to the prostate base to

5–10 mm inferior to the apex. The margins were chosen to ensure that all the seeds

were covered during the imaging. The standard brachytherapy treatment system

automatically recorded the images taken at 1 mm intervals, while the physician was

continuously retracting the TRUS probe. The axial slices have in-plane pixel spacing

of 0.19 mm. The TRUS probe was fully retracted after volume acquisition. Then

9 X-ray images were acquired by rotating a GE OEC 9600 mobile C-arm

(GE Healthcare, WI, USA) around the patients’ AP axis within a 20� cone. The

FTRACwas mounted on the guiding template during C-arm imaging.Wemade sure

that all the seeds and FTRAC are in the image and the FTRAC is located on the right

side of the seeds in the image. The C-arm device was postoperatively calibrated

using a special calibration phantom to measure its image pixel spacing, image

center, focal length, and image distortion correction parameters.

In our study, the X-ray images were corrected for geometric distortion and the

seeds and FTRAC were segmented using the method explained in section “Seed

and Fiducial Segmentation in X-Ray Images.” An initial estimate of the C-arm

poses was obtained from the FTRAC and passed to the seed reconstruction algo-

rithm along with the seed projection centroids. APC-REDMAPS solved for the

matching problem in the presence of some hidden seeds and corrected for the pose

estimation errors. The seeds were reconstructed in 3D from 5 to 6 images and

passed to the registration algorithm.

The VOI in x-y plane was chosen in an axial image of the mid-gland as a rectangle

that tightly encloses the prostate. All the acquired TRUS slices were included in the

VOI, so the VOI covers the whole volume in the z direction. The VOI was processed
using the filters described in section “Ultrasound Image Processing.” In order to

achieve higher registration speed, the Gaussian blurred VOIwas subsampled in axial

planes by a factor of two to a pixel size of 0.38 � 0.38 mm2.
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The registration algorithm was initialized by aligning the center of mass of the

C-arm seeds with the center of the VOI. The rotation parameters were initialized by

registering the seeds to their planned positions using the iterative closest point (ICP)

method. The scale factor was initialized to λ ¼ 1. For the study on the clinical data,

the translation, rotation, and scale parameters were constrained to tmax ¼ � tmin

¼ [15,15,15]0 mm, θmax ¼ � θmin ¼ [15�, 15�, 15�], and 1 � λ � 1.3, respec-

tively. These search regions are sufficiently large for our application. A transla-

tional search region of �15 mm is larger than 50 % of the prostate for a

supermajority of cases. Also the seeds as a whole are unlikely to rotate more than

15� with respect to their planned position. Since the probe is always pushing against
the prostate and compressing it, we assumed λ � 1. We visually inspected the

results of registration to ensure a successful registration. Several mid-gland slices of

TRUS images overlaid with registered seeds are shown in Fig. 10.

As part of the clinical protocol, CT scanning was done one day after the implant

(Day-1) to perform postoperative dosimetry. The seeds were localized in CT

images by a board-certified medical physicist, and the prostate, urethra, and rectum

were contoured by a radiation oncologist. The localized seeds and organ contours

were used to calculate the dose coverage and dosimetry parameters. In order to

evaluate the performance of the seed reconstruction algorithm, the reconstructed

seeds were compared against the CT seeds. The number of reconstructed seeds from

X-rays always matched the number of seeds identified in CT. We measured the

seed reconstruction as the seed-to-seed distance between the reconstructed seeds

and CT seeds after a rigid registration. In order to do so, after the rigid registration, a

one-to-one relation is established between each seed in the CT seeds set and the

reconstructed seeds using the Hungarian algorithm. The results for the seed

Fig. 10 The results of ultrasound-fluoroscopy registration shown for the mid-gland slice of some

of the patients. The seeds are shown as yellow squares. The red contours show the prostate

contours. The green contours show the 100 % prescribed isodose line
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reconstruction errors are shown in Table 2. All the seeds were included in calculat-

ing the reconstruction errors (false reconstructions were not excluded). Therefore,

some large reconstruction errors in Table 2 can be influenced by 1–2 falsely

reconstructed seeds in the whole batch. It should be noted that the C-arm

reconstructed seeds are from X-rays acquired right after the implant (Day-0),

while the CT images are acquired on Day-1. Therefore, the position of the seeds

in these two modalities can differ due to edema-induced changes in the prostate

volume and deformation of the prostate.

Since there is no ground truth available for the position of the seeds in TRUS

images, we cannot directly evaluate the performance of the registration algorithm.

Therefore, we evaluated our registration algorithm in a dosimetry study. In such a

comparison, the delivered dose parameters are calculated using the TRUS-

Fluoroscopy registration and compared against the CT-based dosimetry results.

Since we need both seed positions and organ contours to calculate the dose

parameters, prostate was contoured in the TRUS images as well by the operating

radiation oncologist. For nine patients (patients 1–9), the operating radiation

oncologist contoured the prostate in the postimplant TRUS images, while only

preimplant organ contours were available for the rest of the patients (patients 10–16).

The dose parameters calculated in this work are: the percentage of the prostate

volume covered with 100 % of the prescribed dose (V100), and the minimum

percentage of prescribed dose delivered to 90 % of the prostate volume (D90).
We followed TG-43 formalism for dose calculation [46]. Table 2 shows these dose

parameters using Day-1 CT and ultrasound-fluoroscopy registration.

Table 2 Validation results on clinical data, showing the number of implanted seeds, mean � SD

of reconstruction errors, prostate volume in CT and US, and the dose parameters calculated from

CT- and RUF-based dosimetry

Patient ID Num Seeds Recon error (mm)

Prostate vol (cc) V100 (%) D90 (%)

CT US CT RUF CT RUF

1 76 2.1 � 1.8 38.6 34.5 98.2 94.2 124.9 121.5

2 90 2.1 � 2.5 46.3 40.1 98.1 98.2 132.1 146.1

3 64 1.2 � 0.7 31.6 29.9 92.4 96.0 102.5 114.2

4 105 2.2 � 1.5 54.3 47.2 99.0 97.6 117.6 111.1

5 91 1.7 � 0.9 41.9 41.6 99.0 97.6 128.7 132.3

6 73 1.8 � 1.8 36.5 37.0 95.3 95.4 109.3 114.7

7 61 2.3 � 1.9 20.7 30.3 99.9 97.3 165.8 127.6

8 67 2.3 � 0.9 32.0 31.5 96.4 95.1 113.8 120.5

9 102 1.3 � 0.8 48.8 51.5 98.7 97.7 126.9 131.8

10 78 2.2 � 4.2 49.5 40.5 98.9 97.6 124.0 140.3

11 76 2.1 � 1.1 49.3 32.2 92.2 96.8 104.3 108.7

12 85 1.2 � 0.7 53.1 33.8 92.7 98.2 106.8 127.4

13 78 2.0 � 1.0 40.3 31.2 99.7 96.7 140.5 126.1

14 83 2.6 � 5.0 42.3 29.8 98.8 93.9 121.2 120.9

15 60 4.8 � 2.0 31.6 25.6 96.1 97.5 108.6 110.9

16 73 1.9 � 1.8 30.8 24.6 99.9 99.8 152.7 169.0
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We also calculated the following prediction errors, compared to Day-1 CT-based

dosimetry:

eD90 ¼ D90CT � D90RUF
eV100 ¼ V100CT � V100RUF

, (15)

where, D90CT and V100CT are the dose parameters calculated based on Day-1 CT

and D90RUF and V100RUF are the same dose parameters calculated based on RUF.

Table 3 shows a summary of comparison between the dose parameters calculated

based on Day-1 CT and RUF. As it can be seen in this Table, our registration

method resulted in errors of less than 5.5 % in prediction of V100 with an average

absolute error of 2.2 %. A paired t-test failed to show statistically significant

difference between the CT-based and RUF-based V100 at a 5 % significance

level ( p-value ¼ 0.624). We achieved an average absolute error of 10.5 % for

prediction of D90. Once again, a paired t-test failed to show statistically significant

difference between the CT-based and RUF-based D90 calculation at a 5 % signifi-

cance level ( p-value ¼ 0.459).

Discussion

We compared our dosimetry results against CT which is the standard of care. The

comparison results show the potentials of our method as an intraoperative dose

assessment method. Several factors can affect the dose parameters prediction

accuracy, such as seed localization error, registration error, and errors in delineation

of organs in CT and ultrasound.

The prostate swells as a reaction to the trauma of needle insertion. As a result

the prostate volume increases during the operation. As the edema subsides after

the operation, the prostate volume decreases. Therefore, there is an inherent differ-

ence between the prostate volume during CT imaging and TRUS imaging. The

prostate swelling results in movement of the seeds inside the prostate as well.

Table 3 Comparison

of dosimetry parameters

calculated based on Day-1 CT

and registration of ultrasound

and fluoroscopy

Parameter Mean � SD (%) Range (%)

V100CT 97.2 � 2.7 92.2–99.9

V100RUF 96.8 � 1.6 93.9–99.8

D90CT 123.7 � 17.7 102.5–165.8

D90RUF 126.4 � 15.5 108.7–169.0

eV100 0.4 � 2.9 �5.5–4.9

eD90 �2.7 � 14.2 �20.6–38.2

|eV100| 2.2 � 1.8 0.0–5.5

|eD90| 10.5 � 9.5 0.4–38.2
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Therefore, the relative position of the seeds at the time of CT imaging is not the

same as the relative position of the seeds at the time of C-arm imaging. In addition,

there are some errors in segmentation of seed projections and in matching and

reconstruction of the seeds that can be seen in Table 2 and result in some errors in

prediction of dose parameters.

Another source of error stems from differences in delineation of the prostate in

two different modalities—CT and TRUS. As mentioned, CT images do not show

sufficient soft tissue contrast and as a result, prostate delineation in CT is different

from TRUS. In addition, our prostate delineations in TRUS were performed

postimplant for patients 1–9 and preimplant for patients 10–16. Prostate delineation

in preimplant prostate is easier. However, it does not show the changes in prostate

volume during the operation (see Fig. 11). Moreover, the registration between the

preimplant contours and the postimplant prostate volume is established via tracking

of the TRUS probe. Therefore, any motion of the prostate with respect to the probe

is not taken into account. On the other hand, postimplant prostate delineation is

more accurate as it takes into account the prostate swelling and motions of the

prostate with respect to the probe. However, prostate contouring in postimplant

TRUS images is difficult as the seeds deteriorate the quality of ultrasound images

(see Fig. 10). These errors contribute to the discrepancy between the CT and RUF

dose parameter calculations. Lindsay et al. [47] showed that the uncertainties in

prostate segmentations can affect the dosimetry results as severely as uncertainties

in seed localizations. For comparison, we define the prostate volume measurement

error ev as the difference between the prostate volumes segmented in CT and TRUS.

As Table 4 shows, there is a statistically significant difference between ev’s
computed using preimplant prostate contour and postimplant prostate contour.

However, it did not result in a statistically significant difference in the dose

parameter prediction errors.

Fig. 11 Preimplant

prostate contour overlaid

on a mid-gland slice of

postimplant prostate.

The discrepancy between

the contour and the real

prostate boundaries is easily

detectable at the prostate

lateral lobes
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The most significant prostate contouring error can be seen for patient 7, for

whom the postimplant prostate contouring in TRUS resulted in a prostate volume of

almost 50 % larger than that of Day-1 CT. Such a change in prostate volume is

unlikely. If we remove this patient from our cohort, the prediction error for D90 for
patient with postimplant prostate contour decreases to 7.0 � 3.8 %.

It should be noted that prostate contouring is not necessary for the physician to

spot the cold spots or the likely hot spots as he/she can rely on his/her dose distribu-

tion visualization within the prostate. In such a scenario, the isodose contours are

calculated based on the registered positions of the seeds and overlaid on the TRUS

images, without updating or contouring the prostate or other organs at risk.

Our data was collected after all the seeds had been implanted. In such a case, our

initialization method resulted in initial registrations sufficiently close to the optimal

value for the registration algorithm to converge. We envisage our intraoperative

dosimetry method to be used at several occasions during the operation when only a

portion of the seeds are implanted. In such a case, aligning the center of the

reconstructed seeds with the center of the TRUS volume may not provide a good

translational initial condition. Although this matter requires further validation,

aligning the center of reconstructed seeds with the center of planned seeds up to

that point can provide a good initialization. However, as our registration algorithm

is computationally fast, it can be run several times with different initial conditions,

if necessary.

All parts of our image processing, seed reconstruction, and registration were

implemented in Matlab. The X-ray image processing is done during the image

acquisition as soon as an image is acquired, while the operator moves the C-arm to

the next image acquisition pose. So, image acquisition and preprocessing add less

than a minute to the current workflow. The average time for seed matching,

automatic pose correction, and seed reconstruction is 6 s on a PC with 2.5 GHz

CPU. The final ultrasound-fluoroscopy registration takes 30 s on average. Including

the time for image acquisition, verification of the results after each step, and rarely

Table 4 Effect of prostate

delineation on dosimetry

parameters: nine patients

havepostimplant contours

and seven have preimplant

contours

Prostate segmentation Mean � STD p-value

ev(cc)
Preimplant 11.3 � 5.2

0.0012
Postimplant 0.8 � 5.1

evj j ccð Þ Preimplant 11.3 � 5.2
0.0031

Postimplant 3.7 � 3.4

ev100(%)
Preimplant �0.3 � 3.8

0.4437
Postimplant 0.9 � 2.1

ev100j j %ð Þ Preimplant 3.0 � 2.1
0.1649

Postimplant 1.7 � 1.4

eD90(%)
Preimplant �6.4 � 12.2

0.3715
Postimplant 0.2 � 15.6

eD90j j %ð Þ Preimplant 10.7 � 8.1
0.9683

Postimplant 10.5 � 11.0
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required manual correction, our intraoperative dosimetry can provide the results in

a few minutes. Hence, it has great potential for practical clinical use.

The seed segmentation method described here was optimized for segmentation

of Pd-103 seeds. I-125 seeds have a different seed projection that is longer than

Pd-103 seeds. Therefore, overlapping seed projections are more common. Alterna-

tive solutions for I-125 seed segmentation using region-based active contours

and separation of overlapping projections using template-based declustering

technique have been proposed and validated [48, 49]. In addition, tomosynthesis-

based reconstruction methods can be used to localize the seeds in 3D as shown

in [19, 20].

We used the FTRAC to get an initial estimate of the C-arm pose. An alternative

to explicit segmentation of the FTRAC in the images is pose recovery using an

intensity-based registration of the FTRAC [50]. If the motion of the C-arm in

limited to rotation, the C-arm pose can be estimated using accelerometers attached

to the C-arm [51, 52]. Likewise, the rotation of the C-arm can be measured using

protractors. This approach combined with motion compensation can be used to

reconstruct seeds in both matching- and tomosynthesis-based reconstructions as

reported in [19, 28].

Conclusions and Future Work

We introduced a fully automatic and complete system for intraoperative prostate

brachytherapy dosimetry. Our system is based on registration of ultrasound and

fluoroscopic imaging and includes an X-ray image processing module for segmen-

tation of the seed projections and tracking fiducial, a seed reconstruction module

with automatic pose correction for 3D localization of the seeds, and an image-based

nonrigid ultrasound-fluoroscopy registration module for registering the recon-

structed seeds to the ultrasound prostate volume.

We have tested our method on 16 clinical data sets and compared our dosimetry

parameters with Day-1 CT as ground truth. We achieved absolute prediction errors

of 2.2 � 1.8 % and 10.5 � 9.5 % for V100 and D90, respectively. Considering the

accuracy of our results, minimal manual interaction requirement, computation time,

and ease of use, our algorithm is a promising tool for enabling intraoperative

dynamic dosimetry and improving prostate brachytherapy treatment quality.
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Abstract In prostate cancer radiotherapy, the accurate identification of the prostate

and organs at risk in planning computer tomography (CT) images is an important

part of the therapy planning and optimization. Manually contouring these organs

can be a time-consuming process and subject to intra- and inter-expert variability.

Automatic identification of organ boundaries from these images is challenging due

to the poor soft tissue contrast. Atlas-based approaches may provide a priori

structural information by propagating manual expert delineations to a new individ-

ual space; however, the interindividual variability and registration errors may lead

to biased results. Multi-atlas approaches can partly overcome some of these

difficulties by selecting the most similar atlases among a large data base, but the

definition of similarity measure between the available atlases and the query indi-

vidual has still to be addressed. The purpose of this chapter is to explain atlas-based

segmentation approaches and the evaluation of different atlas-based strategies to

simultaneously segment prostate, bladder, and rectum from CT images. A compar-

ison between single and multiple atlases is performed. Experiments on atlas rank-

ing, selection strategies, and fusion-decision rules are carried out to illustrate the

presented methodology. Propagation of labels using two registration strategies is

applied and the results of the comparison with manual delineations are reported.
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Introduction

Prostate cancer is one of the most commonly diagnosed male cancers worldwide

[1], with 190,000 new cases diagnosed in USA in 2010 [2] and 71,000 new cases in

France in 2011 [3]. In Australia, prostate cancer is the most commonly diagnosed

cancer behind skin cancer and is the second highest cause of cancer-related deaths

behind lung cancer [4]. External beam radiation therapy (EBRT) is a major clinical

treatment for prostate cancer which has proven to be efficient for tumor control [5].

EBRT uses high-energy X-ray beams combined from multiple directions to deposit

energy (dose) within the patient tumor region (the prostate) to destroy the cancer

cells. Modern treatment techniques offer nowadays improved treatment accuracy

through a better planning, delivery, visualization, and the correction of patient setup

errors.

The standard clinical protocol for EBRT treatment planning is shown in Fig. 1.

During the planning step, CT images from patients are acquired. The treatment

targets (prostate and potentially seminal vesicles) along with important normal

tissues (rectum, bladder, and femoral heads) are manually delineated using

the scans. If MRI is used for the prostate definition then alignment of the MRI and

the CT is performed to transfer the MRI structure contours to the CT scan. A defined

prostate volume is then expanded to constitute the Planning Target Volume (PTV)

for treatment (Fig. 2). These spatial margins between the organs and the PTV allow

for uncertainties in delineation, patient setup, motion, and organ deformations [6–8].

The next step is the use of computer planning tools to determine the directions,

strengths, and shapes of the treatment beams which will be used to deliver a

prescribed dose to the defined target while minimizing the dose to the normal

tissues, according to a certain number of recommendations (e.g., [9]). Thus, a

treatment plan consists of dose distribution information over a 3D matrix of points

overlaid onto the individual’s anatomy. Dose volume histograms (DVHs) summa-

rize the information contained in the 3D dose distribution and may serve as tools

for quantitative evaluation of treatment plans. The International Commission on

Radiation Units and Measurements (ICRU) 50 and 62 reports define and describe

several target and critical structure volumes that aid in the treatment planning

process and that provide a basis for comparison of treatment outcomes. For

example, to comply with ICRU recommendations for prostate, 95 % of the PTV

is irradiated with at least 95 % of the prescribed dose. For the rectal wall the

maximal dose should be less or equal than 76 Gy and the irradiated volume at 72 Gy

must be less than 25 %. Finally, during the dose delivery step, which may last

several weeks, the patient is carefully positioned at the accelerator and the treat-

ment is performed according to the planning. A frequent method to align the patient

for treatment is to use small implanted fiducial markers in the prostate. These are

visible under X-ray imaging and show precise prostate position within the body.

Image guidance may also be used to align the treatment target each day for the

entire course (Fig. 3).
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Fig. 1 Workflow for traditional prostate cancer image-guided radiation therapy. The prescribed

radiation dose for EBRT is generally delivered over several weeks in small daily amounts

(fractions)

Fig. 2 Sagittal views of a male pelvis showing the original CT scan (a) with overlaid delineations

of the bladder, rectum and prostate (b) and with the planning target volume (PTV) (c) defining the

area which will receive the prescribed radiation dose
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One of the main challenges in prostate radiotherapy is to control the tumor, by

accurately targeting the prostate, while sparing neighboring organs at risk (OAR)

(bladder and rectum). Several strategies have been developed in order to improve

local control, particularly by increasing the radiation dose with highly conformal

techniques demonstrating a strong dose-effect relationship [10]. The precision of

treatment delivery is steadily improving due to the combination of intensity

modulated RT (IMRT) and image-guided RT (IGRT) and intraprostatic fiducial

markers. New delivery systems are also populating clinical centers (ARC-Therapy,

cyberknife). Hence, the possibilities for achieving better control by increasing the

dose are within reach. However, dose escalation is limited by rectal and urinary

toxicity [11, 12]. Toxicity events (incontinence, rectal bleeding, stool lose) are

frequent with standard prescribed doses (70–80 Gy) and may even significantly

increase for higher doses [13]. Thus, accurate delineation of both prostate and

OARs (i.e., bladder, rectum) from planning images are crucial to exploit the new

capabilities of the delivery systems [14]. Identifying the boundaries of pelvic

structures are of major importance not only at the planning step, but also in other

radiotherapy stages such as patient setup correction, accumulating dose computa-

tion when IGRT is used [15, 16], or for toxicity population studies [17] (Fig. 4).

Nowadays, the organ contouring tasks are mainly carried out manually by

medical experts. However, the CT offers poor soft tissue contrast and therefore

segmenting pelvic organs is highly time-consuming (between 20 and 40 min to

delineate each). Manual contouring requires training and is prone to errors, espe-

cially in the apical and basis regions [18, 19]. These uncertainties lead to large intra-

and inter-observer variation [20] and may impact treatment planning and dosimetry

[19, 21]. Previous studies, for instance, have reported a prostate delineation vari-

ance of 20:60 % [20]. For the rectum and bladder this difference may be as high as

2.5 to 3 % [19]. Although improved organ contrast may be obtained with Magnetic

Resonance Images (MRI), and several studies are in progress to introduce MRI in

the radiotherapy planning [22, 23], CT scans are still required to perform this task

since dose computation relies on electron density.

Therefore, there is a strong case for more reliable semi- or fully automatic CT

segmentation techniques. When dealing with automatic segmentation methods for

Fig. 3 Typical intensity modulated radiation therapy (IMRT) plan (axial, coronal, and sagittal

views) showing iso-dose curves and the (PTV), obtained after organ delineations
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prostate cancer treatment, there are several difficulties which may arise. Firstly,

there is a poor contrast between prostate, bladder, and rectum and, secondly, there

may exist a high variability in the amount of bladder and rectum filling. These

challenges restrict the use of classical intensity-based segmentation methods. In

addition the high intra- and interindividual variability may cause model-based

methods to fail [24] (Fig. 5).

Atlas-based approaches are common methods for organ segmentation, not only

for obtaining a final contour, but also to provide initial organ positions for further

segmentation algorithms. In atlas-based methods a precomputed segmentation or

prior information in a template space is propagated towards the image to be

Fig. 4 Axial view of manual segmentation of bladder, prostate, and rectum overlaid on CT scan

Fig. 5 Two examples of pelvic structures in CT (sagittal views). The poor contrast between

structures hampers organ segmentation
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segmented via spatial normalization (registration). These methods have been

largely used in brain MRI [25, 26], head and neck CT Scans [27–29], cardiac aortic

CT [30], pulmonary lobes from CT [31], and prostate MR [32, 33]. In the atlas-

based methods image registration is a key element, as label propagation relies on

the registration of one or more templates to a target image.

In this chapter a brief overview of image registration and atlas methods will be

provided. Atlas-based methods which can perform the segmentation of the

individuals’ pelvic structures, prostate, and OAR from CT scans will be discussed

and evaluated against clinical datasets.

Image Registration

Introduction

Atlas-based segmentation is heavily dependent on the quality of image registration.

Medical image registration involves determining the spatial transform which maps

points from a moving image to homologous points on an object in a fixed image.

The general idea of the registration may be summarized as in Fig. 6.

The basic input data to the registration process are two images: one is defined as

the fixed image F(X) and the other as the moving image M(X). The output of the

registration is a spatial transformation T allowing the warping or the alignment of

the moving image, on the fixed image, according to a similarity metric.

Fig. 6 Computerized registration framework
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As depicted in Fig. 6, there are four main components involved in image

registration: a similarity measure between two images; the transformation model

used to map points between images; a method to find the optimal transform

parameters; and finally an interpolator to calculate moving image intensities at

non-grid positions [20].

In this sense, registration may be seen as an optimization problem

T̂ Θ ¼ argmin
TΘ

C TΘ;F xð Þ,M xð Þð Þ (1)

aimed at estimating the spatial mapping that better align the moving image with the

fixed image according to a cost function:

C ¼ s F xð Þ,T M xð Þð Þð Þ (2)

where s(F(x), T(M(x)) is the similarity which provides a measure of how well the

fixed image is matched by the transformed moving image. This measure forms the

quantitative criterion to be optimized over the search space defined by the

parameters of the transform. The similarity may lie on control points, features,

anatomical structures, intensities, etc. Here, we restricted the study to the intensity

similarity metrics.

Transform

The transform component T(X) represents the spatial mapping of points from the

fixed image space to points in the moving image space. The transformation model

can either apply to the entire volume (global) or to each voxel (local).

The two global methods are: rigid registration which allows only rotations and

translations; and affine registration which extends rigid registration with the addi-

tion of skew and scaling parameters.

Deformable (also known as nonrigid or nonlinear) registration affects individual

voxels within the volume. This enables the matching of soft tissues which may

deform between scans (e.g., a patient’s bladder on two CBCT volumes) or when

performing interindividual mapping. Typically a regularization constraint is also

implemented to constrain the allowable solution space. Deformable methods can be

complex and difficult to validate [34]. Common deformable transforms include

BSpline free form deformation (FFD) [35], thin plate splines [36], and optical flow-

inspired approaches (Demons algorithm) [37]. The output from deformable regis-

tration is generally a volume (the deformation field) which contains displacement

vectors for each voxel as illustrated in Fig. 7.
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Image Similarity Metrics

When the similarity between two images is based on intensity levels, several metrics

can be considered [38]. These can be computed via their voxel-wise differences, for

example, with the sum of squared differences (SSD), or via the cross-correlation

(CC) or the mutual information (MI). These metrics are computed over the whole

image as follows:

SSD ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F xið Þ � T M xið Þð Þð Þ2
r

(3)

where F(xi) is the fixed image and T(M(xi)) represents the transformed moving

image. The CC as

CC ¼

X
i

F xið Þ � F xð Þ��T M xið Þð Þ � T M xð Þ� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

F xið Þ � F xð Þ� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

T M xið Þð Þ � T M xð Þ� �� �2r (4)

and the MI, computed as

MI F;Mð Þ ¼ H Fð Þ þ H Mð Þ � H F;Mð Þ (5)

where H(x) is the individual entropy of an image x, given by

H Fð Þ ¼ �
X
i

p ið Þlogp ið Þ (6)

Fig. 7 Example of a nonlinear transformation (b) obtained when registering the moving image (a)

into the space of the fixed image (c)
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and

H F;Mð Þ ¼ �
X
i, j

p i; jð Þlogp i; jð Þ (7)

is the joint entropy and p the joint probability. The idea behind the term�H(F,M ) is

that maximizing MI is related to minimizing joint entropy. A more robust version of

the MI is the normalized mutual information (NMI) proposed by Studholme

et al. [39] and computed as

NMI F;Mð Þ ¼ H Fð Þ þ H Mð Þ
H F;Mð Þ (8)

An important consideration with similarity metrics is the computational cost and

the need of a large number of samples for the algorithms to be robust. Novel ways

of computing MI have been proposed [40], yielding comparable results with less

samples. This approach approximates the entropy computation using the high-order

description. For a complete survey of MI, the reader may refer to [41].

Optimization

The images (or image features) are ideally related to each other by some transfor-

mation T. As shown in Fig. 6, the iterative process of optimization aims at finding

T with a cost function determined by the similarity metric. As the cost function may

have multiple local minima, a weighted regularization term may be added to

penalize undesirable deformations as

C ¼ s F xð Þ,T M xð Þð Þð Þ þ wΨ (9)

Examples of Ψ include the curvature, the elastic energy, or volume preserving

constraints. This term ensures smoothness of T in the nonparametric approaches.

There are several ways to perform the optimization of T. These include the

deterministic gradient-based algorithms such as gradient descent, quasi-Newton,

or nonlinear gradient descent; or the stochastic gradient-based algorithms such as

the Kiefer-Wolfowitz, simultaneous perturbation, Robins Monro and Evolution

Strategy, where they derive search directions with stochastic approximations of

the derivative.

A full evaluation of optimization techniques in a nonrigid registration context

was presented by Klein et al. [32]. They compared several methods with respect to

speed, accuracy, precision, and robustness. By using a set of CT images of heart and

MR images of prostate, it was shown that a stochastic gradient descent technique,

the Robins-Monro process outperformed the other approaches. Acceleration factors

of approximately 500 compared to a basic gradient descent method were achieved.
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Interpolation

As depicted in Fig. 6, after a transformation is applied to the moving image, an

interpolation is performed which enables evaluation of the moving image

intensities at non-grid positions. To resample the moving image in the fixed

image grid, the transformation can be applied either in a forward or backward

manner. In the forward way, each voxel from the moving image can be directly

transformed using the estimated mapping functions. Because of the discretization,

this approach can produce holes and/or overlaps in the transformed image.

Hence, the backward approach is more convenient and usually implemented. In

this approach, the image interpolation takes place on the regular grid in the space of

the fixed image. Thus, the registered image data from the moving image are

determined using the coordinates of the target voxel and the inverse of the estimated

transformation. In this way, neither holes nor overlaps can occur in the output

image. Thus, depending on the required precision different alternatives exist for this

resampling, for instance the nearest neighbor (NN), tri-linear, BSpline (BS), Cubic

interpolations (CI), etc. However, some artifacts may be introduced as a conse-

quence of the iterative process. These interpolation-related errors in image registra-

tion have been studied by Pluim et al. [42]. Thevenaz et al. [43] have proposed a

different approach to image resampling. Unlike the other methods, their resampling

functions do not necessarily interpolate the image intensity levels but values

calculated as certain functions of the intensities. The authors demonstrated how

this approach outperforms traditional interpolation techniques. Several survey

papers on resampling techniques have been published recently [44–47].

In practical terms, although higher-order methods may yield good result in terms

of accuracy, the tri-linear interpolation offers a very good trade-off between accu-

racy and computational complexity. Cubic or spline interpolation is recommended

when the transformation involves significant geometrical differences, as several

voxels may be interpolated in between available information. Nearest neighbor

interpolation produces several artifacts, but is advised when the image to be

transformed contains low number of intensities. For example, when propagating

labels in atlas-based segmentation approaches, this is the preferred approach.

General Atlas Construction and Segmentation Strategies

Introduction

The key idea in atlas-based segmentation is to use image registration to map one or

more pre-labeled images (or “atlas”) onto a new patient image. Once a good

correspondence between structurally equivalent regions in the two images is

achieved, the labels defined on the atlas can be propagated to the image. Rohlfing

et al. [48] have identified four main methods to generate the atlas which is
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registered to a target volume: i) using a single-labeled image, ii) generating an

average shape image, iii) selecting the most similar image from a database of scans;

or finally iv) registering all individual scans from a database and using multi-

classier fusion to combine the pair-wise registration results.

An atlas Ai is constituted by a template image Ii and, a set of generated labels ζi
defined in the same coordinate system. In the case of pelvic structures from CT

scans, the set of labels ζi ¼ {prostate,rectum,bladder}. The general framework of

atlas-based segmentation, as depicted in Fig. 8, relies on the registration of the

template Ii, to the query image Iq in order to obtain a transformation TIi!Iq , that

maps ζi into Iq. If the mapping is anatomically correct, the yielded segmentation is

accurate and anatomically meaningful. It is worth nothing that the similarity

between the images Ii and Iq, as explained in previous sections, may impact the

registration results and therefore the segmentation.

Several issues may arise under this framework in order to produce accurate

segmentations. Firstly, the selection and generation of the initial patient scan which

may be representative of a population; secondly, the registration strategy to bring Ii
into the space of Iq; and finally, the propagation of the labels ζi into Iq.and the

subsequent generation of the new segmentation ζq.
Concerning the first issue, a typical individual from a given population may

constitute an atlas, where the segmentation ζimay be manually generated on Ii. This
is the simplest strategy, but with the problems related to the interindividual

variability and inter-observer rating arising. However, in order to attenuate the

dependency on a single observer, a group of experts can generate the set of labels,

adding robustness to the definition of ζi. To cope with the interindividual

variability, several individuals from a population can be used to constitute the

atlas. In this case, two kinds of strategies may be followed. Either an atlas is built

Fig. 8 Atlas-based segmentation strategy

Multi-Atlas-Based Segmentation of Pelvic Structures from CT Scans 633



from the population by averaging the data (Ii, ζi i ¼ 0, . . ., M ) or alternatively each

individual is considered as a single atlas. In that case, for a given query, there is a

previous selection of the best n atlases Ai, i ¼ 0, . . ., M which better fit to the query

Iq. The last strategy allows for a reduction of the bias inherent to using a single

template, but new questions arise concerning the best atlas selection strategy and

label fusion decisions to constitute the final segmentation ζq. These points are

detailed in the following sections. Proposed experiments compare the performances

of those for segmenting prostate, bladder, and rectum.

Average Atlas Construction

An atlas can be computed in an iterative process as depicted in Fig. 9. This approach

was used in a comparative study that we presented in [17], but also is detailed in

[49]. In this scheme, an arbitrary but representative individual is selected as the

initial template, defining the atlas space alignment. The first iteration involves

the registration of every other individual to the selected template using a rigid or

affine registration method (i.e., robust block matching approach [50], followed by a

nonrigid registration [37] in the subsequent iterations). At the end of each iteration,

a new average atlas is generated and used in the subsequent iteration.

After the average template is obtained, a probabilistic set of soft labels ζi
(probability maps) is eventually generated by propagating the manual segmen-

tations of these organs for each case using the obtained affine transform and

deformation field into the atlas space. Figure 10 shows an example of the obtained

Fig. 9 Iterative averaging for obtaining a template
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template after five iterations and Fig. 11 depicts an overlaid of the probabilistic

labeling for the prostate in the atlas coordinate system.

The drawbacks of this strategy within the context of CT pelvic segmentation

come from the large interindividual variability and the poorly contrasted average

Fig. 11 Generation of organ probability maps by propagating labels into the common template

Fig. 10 Coronal (top) and axial (bottom) views of an individual’s male pelvis CT scan (left

column) and an averaged template (right column)
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atlas which is produced after several iterations. In order to diminish the bias

inherent to using a single template, one potential strategy is to select one patient

among typical individuals from a database, who is quite similar to the majority of

individuals. Additional benefits may be brought to the segmentation by combining

the results from multiple atlases, improving the accuracy as explained in the next

section.

Multi-Atlas Strategy: Selecting the N Best Atlas
from a Database

Previous works have shown the benefits of combining multiple atlases (multi-

atlases-based approaches), improving the segmentation accuracy (e.g., [25, 26,

30, 51]). Thus, given a query individual, different possibilities appear. Either the

closest individual from the database is selected as the best atlas or all the atlases are

combined together as in the strategy depicted in Fig. 12. In this approach, the atlases

are firstly ranked according to the similarity to the query image. This is done after a

rigid or affine registration step which allows for the interindividual differences to be

assessed. Then, in the steps 2 and 3, labels from the top n-ranked atlases are

propagated towards the individual CT via nonrigid registration to more accurately

Fig. 12 Multi-atlas-based segmentation process. Atlas are first ranked according to the similarity

to the query image, then, labels from the top n-ranked atlases are propagated towards the

individual CT and finally, in a fusion-decision step, organ segmentations are obtained
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match template anatomies. Finally, in a fusion-decision step, organ segmentations

are obtained by combining different labels. The particular case n ¼ 1 corresponds

to the most similar individual atlas strategy.

The questions arising in this scheme concern (i) the method for selecting the

atlases to be used and particularly the most convenient similarity metric,

(ii) the nonrigid registration technique, and (iii) the fusion-decision rules (discussed

in the next subsection).

The similarity measure can be based on the difference of intensity levels, for

example, as explained in previous sections: the SSD, the cross-correlation, or the

mutual information. The similarity can be also based on information obtained from

the deformation [52], such as the Jacobian. The drawback of the Jacobian is the

dependency on the registration method used to align the images. Two registration

strategies are tested and discussed later in a further section, namely FFD [35] and

the demons algorithm [53].

Label Fusion

For both the average and multi-atlas approaches, a method for combining labels is

required. This fusion step occurs at the voxel level during each training iteration of

average atlas construction, and when combining propagated labels from selected

atlases in a multi-atlas scheme.

Majority voting simply counts the number of label overlaps (or votes) on a single

voxel from each registered atlas and chooses the voxels receiving the most votes to

produce the final label. In a probabilistic voting scheme, the labels mapped to the

each voxel are combined to give an estimate of label likelihood (i.e., a value of

0 means that no labels were mapped to that voxel location, and a value of 1 for a

voxel means that all labels were mapped to that voxel location). The probabilistic

segmentation can then be thresholded at a particular probability (typically 0.5) to

give a degree of confidence for the label location. A more elaborate approach

assigns a weight to voxels that are located at a particular location (e.g., the center

of a structure of interest) or which contain more similar intensities (both within the

training image-labeled regions, or globally) [30, 54].

An alternate method to fusing labels which has been applied to prostate segmen-

tation was proposed in the Selective and Iterative Method for Performance Level

Estimation (SIMPLE) approach. In this method the labels to fuse are selected

according to a similarity metric. The quality of the label segmentation is then

improved by discarding the poorly correlated labels from the fused result. This

process then iterates until a desired level of label similarity is achieved [55].

The Simultaneous Truth and Performance Level Estimation (STAPLE) is a

popular approach which uses Expectation Maximization to iterate between the

estimation of the “true” consensus segmentation and the estimation of reliability

parameters for each of the propagated segmentations [56]. The sensitivity and

specificity of each propagated label are used to weight the contributions when
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generating the consensus label estimate. The current consensus estimate can, in

turn, be used to measure the reliability of the raters and this forms the basis of the

EM iterations [25].

Experiments and Results

Average Atlas-Based Segmentation

This section describes the construction and application of an average atlas to

perform segmentation using a single template. The work in this section was

motivated by the importance of applying spatial specific predictive models for

toxicity [17].

Data and Methods

The study consisted of 19 patients who were receiving EBRT for prostate cancer.

Each patient underwent a planning CT scan and 8 more weekly CT scans. All CT

scans were acquired without contrast enhancement. The size of the images in the

axial plane was 512 � 512 pixels with 1 mm resolution 3-mm thick slices. For each

patient, the femur, the bladder, the rectum, the prostate, and the seminal vesicles

(SV) were manually contoured by the same observer of these organs for each case

using the obtained affine transform and deformation field previously computed.

An arbitrary but representative case in our database was selected as the initial

atlas, defining the atlas space alignment. A pipeline as detailed in Fig. 9 was applied

to generate an average template. The first iteration involved the registration of every

other case to the selected individual case using a robust block matching approach

[50], followed by a diffeomorphic demons nonrigid registration [37] in the

subsequent iterations. At the end of each iteration, a new average atlas was

generated and used in the subsequent iteration. In this study, five iterations were

performed.

After generation of the probabilistic labels (Prostate, rectum, bladder) in the

common space, the atlas was used in a segmentation step to constrain the organs

of interest. Thus, a scheme based on affine, followed by a diffeomorphic Demons

nonrigid registration, led us to map the atlas onto each individual’s CT scan. The

obtained affine transform and deformation fields were then used to map the probabi-

listic labels onto each individual scan. These registered labels were thresholded at

50 % to provide the organ segmentations for each individual scan.
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Results

The generated atlas and an example of probabilistic label are shown in Fig. 13.

Figure 14 depicts the overlap between the atlas and a single individual. The

nonrigid registration scheme obtains good correspondence between the two images,

although the soft tissue contrast is still quite low. Notably the bladder and rectum

alignment is better with the template than the prostate, as the intensity contrast in

those organs is higher. The automatic hard segmentations were quantitatively

compared against the manual segmentations using the Dice Similarity Coefficient

(DSC) [57]:

DSC ¼ 2 X \ Yj j
Xj j þ Yj j (10)

Fig. 13 Prostate probability maps overlaid on the generated average atlas orthogonal axial (a),

coronal (b) and sagittal (c) views

Fig. 14 Axial slice showing registration result between the atlas and a single individual
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A leave-one-out cross-validation was performed (at each iteration a single

individual was extracted from the training data and used as a test). The DSC results

appear summarized in Fig. 15.

In general a good agreement was obtained with this approach. The main cause of

error in the automatic segmentation results is related to interindividual organ variation.

Obesity appears to be a source of error, as it induces a quite important variability to

the training data set. We must also consider the high inter-observer variability which

also creates bias in the obtained results. This could be alleviated with the contribution

of additional subjects to the atlas or with the computation of a set of atlases to stratify

subjects. This will allow to group portions of the populations that can be further

mapped together into a single template.

Discussion

The automatic segmentation of the prostate, rectum, bladder from CT images using

a probability atlas scheme had reasonable correspondence with the manual segmen-

tation and may provide useful initial constraints for further segmentation methods,

such as active contours or statistical models (e.g., [58, 59]). However, these

examples point out the main concerns of a single average atlas. The contrast is

Fig. 15 Results from leave-one-out validation using the average atlas. DSC results are displayed

for all labeled organs (bladder, rectum, and prostate)
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very low, there is a large interindividual variability, and considered structures are

heterogeneous leading in several cases to low DSC scores.

Several problems appear when a single patient scan is used as the initial target

for average atlas construction since the atlas is biased towards that patient’s

anatomy. It is expected that further improvement is brought by the selection and

combination of several scans which are more similar to the query image as

explained in the next section.

Evaluation of Multi-Atlas-Based Segmentation

In this section, we evaluated several multi-atlas-based strategies, as an extension of

[51], taking into account the different stages of the pipeline depicted in Fig. 12.

(i) Selection of the atlases based on three different metrics: SSD, cross-correlation,

and mutual information; (ii) nonrigid registration using both FFD and the demon’s

algorithm with multi-atlas label propagation; (iii) multi-label decision fusion using

classical voting rule compared to the STAPLE method [56]. Figure 16 summarizes

the considered methods.

Data and Methods

The images used in this experiment consisted of 30 patients treated for prostate

cancer, who underwent a planning CT scan. All CT scans acquired were 2-mm

slice thickness with 512 � 512 pixels of 1 mm in the axial plane. For each patient,

the organs were manually contoured by the same expert observer, following the

clinical protocol for the therapy. In this study, only the segmented prostate, bladder,

and rectum were considered.

Following a leave-one-out cross-validation scheme we assessed the impact of

the atlas selection methods by comparing individual’s manual segmentations with

the obtained hard segmentations using the DSC. Thus, at each iteration a single

individual was extracted from the training data and used as a test. The comparisons

were done in two steps: first after affine alignment, aimed at quantifying the

reliability of the similarity criteria; then, as depicted in Fig. 16, the set of atlas

was ranked according to a given similarity criteria and the ith-ranked atlases were

considered. This atlas was used to segment the query image via two nonrigid

registration strategies (FFD and Demons) that were compared. In a further experi-

ment, a multiple atlas strategy allowed for two label fusion methods (VOTE and

STAPLE) to be compared.
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Selecting Only the ith-Ranked Atlas

For each template, the registered individuals were ranked according to the similar-

ity criteria computed on the masks of the union of the prostates, the union of the

bladders, and the unions of the rectums after a rigid registration. Then we computed

the average dice score for only the ith-top-ranked individual (with i ¼ 1 . . . 30).
Finally, Pearson score (R) was computed between the rank and the average dice

score with the aim of assessing the best similarity metric able to predict the best

template from a database.

Increasing the Number of Ranked Atlas. Selection

of the Best n-Ranked Atlas

In an additional experiment, we assessed the effect of the number of atlases selected

after ranking, by progressively including a new atlas to the segmentation step. The

two schemes of decision rule were tested, voting and STAPLE, and two nonrigid

registration strategies were compared (FFD and Demons) as depicted in Fig. 20.

Results

We first computed the average DSC when using only the ith-ranked atlas to

segment, where i spans 1 to 29. Figure 16 depicts for a single individual an example

of overlapping between top-ranked and bottom-ranked atlases and a single individ-

ual. A significant difference between propagated structures appears depending on

the atlas used to segment. In average, the SSD seems to be a better predictor of

overlapping for the prostate and the rectum. The results of correlations between

ranking and DSC for three organs and similarity measures are summarized in

Table 1. The largest dependency with the rank appears in the bladder when the

CC is used. Indeed, this organ is very prone to deformations and exhibits a

high interindividual variability that was better detected with the CC (R ¼ 0.76)

than with the SSD R ¼ 0.45. Unlike these measures, the MI offers a poor agree-

ment, therefore it was not considered in the following experiments. We are in a

monomodality context, and MI would be supposed to work better for measuring

similarities between multimodal images.

A significant improvement in the overlap was brought by the demons nonrigid

registration. In average, for the prostate 23.2 % ( p < 0.0001), for the rectum 24.8 %

(p < 0.0001), and for the bladder 35.0 % (p < 0.0001). Further, with the demons

algorithm the dependency on the selected ith-ranked atlas tends to becomeweaker, as

shown by the correlation coefficients, which for some cases tends to be lower. This

is due to the fact that the nonrigid registration is more accurate, which compensates

for large differences between individuals. Consequently, the overlap was signifi-

cantly improved when the lower-rank atlases were selected. The poor contrast

642 O. Acosta et al.



between the prostate and bladder led in some cases tomis-registration problemswhen

the images are quite dissimilar. The rectum, when not empty, was also poorly

registered, although the results are still dependant on the rank of the selected atlas.

Increasing the Number of Ranked Atlases Within the Segmentation

Results of progressively increasing the number of atlas within the segmentation are

depicted in Figs. 17 to 24. Firstly, a comparison between different registration

strategies (rigid, FFD, Demons) are depicted (Figs. 17 to 20). In this case, the

majority vote was used for label fusion because it yielded the best result to compare.

It can be seen that as the number of atlas increases, there is a clear improvement

Fig. 16 Top: example of bladder segmentation with three different atlases (from top-ranked to

bottom-ranked). The query individual is matched to the atlas data set via three similarity metrics:

CC, SSD, and MI. The most similar atlas yields a better result

Table 1 Correlation (R)
between the average Dice

score and the rank of the atlas

used to segment, firstly, after

affine registration (AFF) and

then after nonrigid

registration (NRR)

Organ Registration MI CC SSD

Prostate AFF 0.10 �0.53 �0.65

Bladder AFF 0.27 �0.76 �0.45

Rectum AFF 0.47 �0.56 �0.62

Prostate NRR 0.38 �0.55 �0.63

Bladder NRR 0.50 �0.72 �0.42

Rectum NRR 0.60 �0.54 �0.67
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when using demons. The same trend exists for the three obtained organ

segmentations after the inclusion of 20 atlases shown in Fig. 20.

Figures 21, 22, 23 and 24 compare STAPLE to majority vote. In case of

STAPLE, the trust given to each atlas was the same. It is shown that as the number

of selected atlases increased, the performance of the segmentations was firstly

improved in both cases. Then, after several atlases were included the quality

Fig. 17 DSC scores for prostate segmentation as the number atlases increased. Comparison

between the different registration strategies

Fig. 18 DSC scores for bladder segmentation as the number atlases increased. Comparison

between different registration strategies
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Fig. 19 DSC scores for rectum segmentation as the number of atlases increased. Comparison

between different registration strategies

Fig. 20 Example of segmentations for prostate, rectum, and bladder, after including 20 atlases.

Comparison between rigid, FFD, and demons registration. Label fusion with majority voting. Blue
label is the ground truth, red is the obtained segmentation
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tends to a stable value with a lower variance for the vote, unlike STAPLE, which

exhibits a different behavior. Indeed for the three organs the quality of the

segmentations steadily decreases for STAPLE. Results on these data suggest that

the vote-decision rule is more robust to high interindividual variability. In average,

for the prostate and the rectum the differences between both methods became

statistically significant ( p < 0.0001) after 12 top-ranked atlases were combined.

For the bladder, these differences are significant ( p < 0.01) after 23 atlases.

Fig. 21 Dice scores for prostate segmentation as a function of the number of best atlases used.

Comparison between vote and STAPLE

Fig. 22 Dice scores for bladder segmentation as a function of the number of best atlases used.

Comparison between vote and STAPLE
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Fig. 23 Dice scores for rectum segmentation as a function of the number of best atlases used.

Comparison between vote and STAPLE

Fig. 24 Comparison between vote and STAPLE after inclusion of 20 atlases (registration was

performed with demons)



Conclusion

We have presented a study aimed at evaluating different atlas selection strategies

for segmentation of organs in pelvic CT for prostate cancer radiotherapy planning.

We quantified the influence of multiple atlas selection based on three similarity

measures and computed both the effects of the ranking according to these measures

and the dependency on the number of atlases used. Results suggest that SSD is a

better predictor for mapping than the MI and is slightly similar to the

CC. Considering the fusion-decision rules the majority vote performed better than

STAPLE. With the vote, combining more than one similar atlas may be more

robust, but as the number of dissimilar atlases increased, the results tend to remain

stable, at the expense of computation time. A good compromise would be to use the

top 20 % ranked atlases. To increase the specificity of similarity measures as

predictors for segmentation, more local similarity measures may be used, computed

only in regions close to the considered organs or including other individual’s

characteristics, such as the patient weight. Another possibility relates to the inclu-

sion of additional individuals within the atlas data base for query. Finally, different

nonrigid registration methods can be validated within the same framework.

Summary

Atlas-based methods provide very useful tools for image analysis and generating

automatic organ labels. This chapter has provided an overview of atlas-based

analysis applied to planning images in EBRT treatment for the prostate.

All atlas-based approaches depend on the quality of image registration used.

Careful decisions need to be made about the transformation model, similarity

metric, and the optimization method used to deform a moving volume onto a target

volume.

Two main types of atlas have been described. The first is an average atlas

approach where a single average volume is generated from a training set along

with a set of labels. This average atlas is then registered to a target volume, and the

same transform or deformation is then applied to the atlas labels to provide

automatic label, or segment, the target volume. A constraint with the average

atlas approach is that atlas is biased towards the initial target patient selected during

atlas construction and the atlas may not generalize to a wider population with

different anatomy.

The second, multi-atlas, approach involves pair-wise registration between each

volume in an atlas set and the target volume. Following this, the registered volumes

and the target volume are compared and the transformed labels from the most

similar registration results are combined (or fused) to provide an automatic seg-

mentation. There are a number of methods to fuse labels; however, the most

common method involves a simple voting approach.
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A number of previous papers have suggested that when adequate patients are

included in the atlas set, the multi-atlas approach has been found to lead to

improved segmentation results. Experiments involving both types of atlas have

been presented in this chapter, and the results have found that for CT monomodal

atlas-based analysis the use of a multi-atlas approach with correlation or SSD is

better suited to handle large inter-patient anatomical variations.
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Propagating Segmentation of a Single

Example to Similar Images: Differential

Segmentation of the Prostate in 3-D MRI

Emmanouil Moschidis and James Graham

Abstract In this chapter, we address the online and real-time segmentation

propagation from one example onto similar images. We consider segmentation as

a process consisting of two stages: the localization of the anatomy of interest and its

boundary delineation. For each stage, we identify and evaluate different potential

candidate methods. All methods are assessed regarding their ability to tackle the

differential segmentation of the prostate on a dataset of 22 three-dimensional

magnetic resonance images of individuals with benign prostatic hyperplasia

(BPH). The estimation of the volume of different anatomical zones of the prostate

is important for monitoring the progress of the disease. Differential segmentation of

the prostate is challenging due to contrast challenges at different locations from

surrounding tissues. Also, the high variation of appearance of the prostate across

individuals affects the repeatability of frameworks that leverage prior knowledge

from one image example. Our observation is that the repeatability is improved,

when a two-stage methodology is employed, based on DROP (deformable registra-

tion using discrete optimization) registration followed by graph cuts-based segmen-

tation. Our methodology achieves automatically results close to the ground truth,

which can serve as an advanced starting point of an interactive process with reduced

human operator workload.

Introduction

The main objective of this study is to offer assistance in the context of an interactive

framework for building models of three-dimensional (3-D) medical images. In such

a framework, a human operator obtains by interaction the surfaces of the anatomy
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of interest, which will be subsequently modeled. These surfaces are extracted from

images, which are similar to each other in the sense that they depict the same

anatomy of interest and they are acquired by the same imaging modality using the

same protocol.

While the extraction of the organ surfaces can be tackled interactively on each

image separately, this approach results in an inefficient pipeline with increased

workload. As segmentation advances, the number of processed images and there-

fore the knowledge about the anatomy of interest increases. If this insight is

exploited, there is the potential for the design of a framework, which can reduce

the amount of user intervention by predicting the segmentation of unseen images.

The accuracy of the prediction with respect to the ground truth is associated with

the reduction of the amount of intervention that is further required until the desired

segmentation is obtained; an accurate prediction requires fewer interactive

maneuvers than an inaccurate one. Consequently, the provision of an accurate

segmentation prediction reduces the operator’s workload.

In this chapter, we address the problem of minimizing the user interaction when

similar images are processed, given a single previously segmented image as an

example of the desired outcome. We tackle this by propagating the segmentation

example onto the subsequently processed images. This way the user is freed from

the entire process and may intervene only if necessary at a later refinement stage or

in case the framework fails to provide satisfactory outcomes. Our main assumption

is that the processed images do not exist as a dataset, but they rather appear one at a

time (online), as often happens in real life. Therefore, groupwise approaches are not

included in the evaluation. Also, since one single image cannot capture the varia-

tion of a population, we exclude model-based methods and we restrict our study to

data-driven ones. We illustrate the approach using the example of differential

segmentation of the prostate in fat-suppressed T2-weighted magnetic resonance

(MR) images. The prostate is anatomically divided into several zones, but in MR

images, two regions can be identified: the central gland and the peripheral zone.

Figure 1 shows a schematic diagram of the relationship between these regions and

examples of their appearance in MR images.

We consider segmentation as a process that consists of two distinct tasks: the

localization/recognition of the anatomy of interest and its boundary delineation, as

suggested in [2]. Consequently, we suggest a two-staged framework that handles

these two tasks separately. For each stage we identify and evaluate potential

candidate methods against ground truth. Our evaluation can be regarded as an

assessment of the extent of the effectiveness of data-driven methods towards the

solution of this particular problem.

The results of the experimental work presented in this chapter demonstrate that

the suggested framework can provide results close to the ground truth, without any

user interaction, serving as an advanced starting point of an interactive process with

a small number of further interactive maneuvers. Moreover, we observe that the

framework’s repeatability improves when the segmentation task is tackled in two

distinct stages. Parts of the work that is discussed in this chapter have also appeared

in [3–5].
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Background

Differential Segmentation of the Prostate

The prostate is a gland of the size and shape of a chestnut [6]. It exists only in men

and is located immediately below the urinary bladder, where it surrounds a part of

the urethra. Its function is the production of a slightly alkaline fluid (40 % of the

volume of the semen), which assists towards the neutralization of the acidity of the

vaginal tract, thus prolonging the sperm lifespan. In addition, it assists the motility

of the sperm cells [6]. Benign prostatic hyperplasia (BPH) is a noncancerous

enlargement of the prostate that affects 50 % of men over 60 years old [7].

Approximately a third of them will develop lower urinary tract symptoms, and a

quarter of them will need to be operated. For the remaining BPH patients, drug

treatment is increasingly utilized [7, 8].

The prostate is anatomically divided into the peripheral (PZ), central (CZ),

transitional (TZ), and fibromuscular (FZ) zones. In BPH, the prostatic enlargement

is mainly due to the volumetric increase in the TZ. Therefore, the estimation of the

TZ volume and the TZ ratio (TZ volume/total prostate volume) is important for

monitoring the progress of the disease and the effectiveness of drug treatments [8].

In MRI, two regions are identified: the PZ and the central gland (CG), which

includes the other three anatomical zones (Fig. 1). However, in BPH, the TZ is

the predominant zone in the CG, due to its expansion, and therefore TZ and CG can

be considered as equivalent [1]. Differential segmentation—identifying the

surfaces of both the CG and PZ—is challenging. The appearance of the central

and peripheral glands varies significantly among individuals (Fig. 1). Furthermore,

surrounding tissue (seminal vesicles, blood vessels, the urethra, and the bladder)

present contrast challenges at different locations.

Fig. 1 Two axial midsections of the prostate of fat-suppressed T2 MRI from different individuals

(the red and green contours delineate the peripheral zone and the central gland respectively) (a, b)
and a three-dimensional schematic depiction of the anatomical zones of the prostate (c) [1]

© 2006 IEEE
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While a number of studies recently have addressed segmentation of the prostate

in MR images [9–19], segmentation of separate zones has attracted rather less

attention [3, 20–24]. These studies fall into two categories: those that employ

algorithms trained on multiple image examples in an attempt to model in detail

the morphology and shape of the different zones of the prostate and those that tackle

the segmentation task interactively. Of the former group, Allen et al. [1] combine a

3-D point distribution model with a Gaussian mixture model, while others apply

trained classifiers, such as an evidential C-means classifier in [20] and a Random

Forest classifier used within a contextual Markov random field model in [21], or

trainable graph-based models [22]. Litjens et al. [18] report that a trained linear

discriminant classifier outperforms a multi-atlas approach. Interactive or semi-

interactive methods [3, 24] base the segmentation on graphical representations.

Given the difficulties in the segmentation task, we have taken the direction in this

study of seeking to reduce the workload of interactive methods by leveraging the

prior knowledge arising from a single previously segmented example.

Segmentation Propagation from One Image Example

As differential segmentation of the prostate is a challenging task, we assume that

expert interaction will be required and investigate methods for minimizing the

workload required to achieve a final segmentation. It can often be the case that

images are acquired in a sequential (online) manner, rather than being available in a

group. In this study we consider the use of a single example as a guide for further

segmentations, reducing the level of intervention in subsequent cases. Forward

propagation of the template segmentation results in an approximate segmentation

for new cases. If this approximate segmentation is accurate, the interactive work-

load required is correspondingly reduced.

One of the few studies of the literature, which addresses the same problem as we

formulate it in this chapter, is the study of Cootes and Taylor in [25]. They adopt a

shape representation based on finite element methods (FEMs) [26, 27] when prior

knowledge is based on a single image example, whereas they employ an active

shape model [28] strategy when multiple image examples are available. When only

a single example is available, the allowable shape variation is expressed in terms of

the vibrational modes of the FEM model. As further examples are added, this

artificial representation of variability is replaced by observed statistical variability.

A single image example is also employed by Rother et al. [29] in a method they

call cosegmentation. This denotes simultaneous segmentation of the common parts

of a pair of images. In order to tackle this task, they employ an algorithm, which

matches the appearance histograms of the common parts of the images. At the same

time, the imposition of MRF-based spatial constrains guarantees the spatial coher-

ence of the resulting segmented regions. Results are presented for applications such

as video tracking and interactive cosegmentation. Similar ideas have been reported

in [30–35]. Most of these methods aim at segmenting 2-D colored natural images.
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Photographs generally demonstrate good contrast between foreground and back-

ground and, due to the variation in color, simple statistics such as color histograms

can offer effective discrimination of segments (e.g., [29]). However, histogram-

based classification has little to offer in the context of segmentation of greyscale

medical images, especially in cases where foreground and background demonstrate

similar intensity variations or in case of images with complex appearance.

Active Graph Cuts (AGC) [36] leverages previous segmentations to achieve

convergence in a new image in a different way. AGC, when provided with an initial

cut, constructs two disjoint subgraphs from the original graph. The initial cut

defines the boundary of the two subgraphs. Subsequently, the max-flow/min-cut

problem is solved on each of these two subgraphs separately. The combined

solution from these subgraphs provides the overall segmentation outcome in the

image. We consider and evaluate AGC in our work. To the best of our knowledge, it

is the first time that this algorithm is implemented and evaluated independently with

respect to its performance on 3-D medical image segmentation tasks.

Atlas-based segmentation is one additional segmentation approach in which

often a single image example, termed the atlas, is employed as the prior knowledge

about the anatomy of interest [37]. An atlas constitutes a complete description of

the geometrical constraints and the neighborhood relationships of the anatomy of

interest and is often created by manual segmentation of one image. The segmenta-

tion of subsequent images is obtained via registration of the processed image and

the atlas. Registration constitutes a procedure, which establishes a point-to-point

correspondence between two images [38]. When deformable registration is

employed for achieving the dense correspondence of the two images, the atlas

is deformed and its labels are mapped onto the processed image, also termed

reference image or target image. This process is often referred to as warping,
fusion, or matching [38].

One issue associated with frameworks leveraging prior knowledge is the effect

of the latter on their performance. If the sample that encapsulates the prior knowl-

edge is representative of the processed population, good results are obtained.

However, in the case that it consists of one image, as in this study, the results

decline drastically if this image is an outlier with respect to the population. This in

turn reduces the framework’s repeatability. This is an issue which has attracted

considerable attention in the context of atlas-based segmentation [37]. Solutions

towards this problem typically involve the combination of multiple atlases into a

mean atlas or alternatively the selection of a single atlas that demonstrates a high

degree of similarity with the processed image from a group of atlases. A more

recent approach is the multi-atlas label fusion [37]. In the context of this strategy,

the segmentation suggestions from multiple atlases onto the target image are

utilized as individual classifiers, which are combined via a voting scheme. These

approaches improve the repeatability of atlas-based methods. However, they all

employ multiple atlases. In our study, we are restricted to utilize one single example

as prior knowledge. Therefore, the repeatability issue remains.
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In the work presented in this chapter, we follow an approach that is driven by

registration, similarly to atlas-based segmentation. However, in order to improve its

repeatability, we employ a two-staged strategy, as outlined above. Each of the

stages, localization/recognition of the anatomy of interest and delineation of its

boundary, is tackled separately. In the first stage, the localization task is tackled via

registration; in the second stage, a semi-automatic refinement of the segmentation

boundary is realized via graph cuts [39, 40]. We show that adopting this strategy

improves the repeatability of the framework (in comparison to the single-stage

processing approach) and the sensitivity to unhelpful templates is reduced. While

we address this in the context of interactive segmentation, a similar conclusion

applies in “automatic” atlas-based segmentation, especially on occasions where a

single atlas is employed. In addition, for each stage of our approach we identify and

evaluate potential candidate methods against ground truth. Therefore, our study can

also serve as a comparative performance evaluation of registration and segmenta-

tion strategies. In the next sections, we will discuss further the different components

of the suggested framework.

Methods

Figure 2 summarizes our segmentation strategy, its constituent stages, and the

operations performed in each of these stages, illustrated here in two-dimensions

for the sake of clarity. The segmented example consists of the raw image and a

binary mask.

The registration (warping) stage is followed by boundary delineation using

graph cuts. As we shall discuss further in the following sections, we employ

graph cuts to operate on a zone, which is created via successive erosions and

dilations of the warped binary mask produced by the framework’s first stage. This

operation aims at the refinement of the boundary of the anatomy of interest, in cases

where registration has failed to provide an accurate segmentation boundary.

Dataset

We use a dataset consisting of 22 3-D T2 fat-suppressed MR images of the prostate

from individuals with BPH. T2 fat-suppressed MRI provides good contrast not only

between the prostate and its surrounding tissue but also between the prostatic

anatomical zones. The images were acquired using a 1.5 T Philips Gyroscan ACS

MR scanner. After their acquisition, all images were manually cropped close to the

prostate (Fig. 3). The ground truth for each image is a binary volumetric mask

produced after averaging the manual delineation of two radiologists on the cropped

images. Prior to the experiments, the intensities of all images were normalized to lie

in the bounded interval [0, 255]. Lastly, all images were resampled to allow for an

iso-voxel resolution and volumes of equal sizes to be created.
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Localization of the Anatomy of Interest

The framework’s first stage addresses the localization of the anatomy of interest.

We evaluate four different registration methods and AGC. In the following

paragraphs, we provide the necessary background information with respect to

these techniques.

a. Registration

Registration is a process that establishes a point-to-point correspondence between two

images. The images are considered to be identical, but one of them is treated as being

corrupted by spatial distortions; therefore, they cannot be aligned in their current

form. The two images are known as target and floating image. The terms reference or
fixed and template ormoving image respectively are also encountered in the literature

[38, 41]. The aim of registration is to compute the exact geometrical transformation

Fig. 2 Overview of the suggested framework

Fig. 3 An axial midsection of a T2 fat-suppressed image of the prostate (a), and the raw responses

of a Canny (b), a Phase Congruency (c), and a SUSAN (d) feature detector. The settings of the

parameters of each detector are outlined in the experiments section of this chapter
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that the floating image needs to suffer, in order to match the target image. For a

more comprehensive review of registration and its constituent components as a

framework, readers can refer to the relevant literature (e.g., [38, 41, 42]).

In the context of our framework, the example image plays the role of the

template image (Fig. 2). The registration scheme computes the spatial transforma-

tion, which best aligns this image to the image to be segmented, denoted as New

Image in Fig. 2. Subsequently, the spatial transformation is applied to the template

image’s binary mask. The deformed (warped) binary mask constitutes the segmen-

tation suggestion of the framework’s first stage. It also represents the prior knowl-

edge with respect to the segmentation outcome, in the new image’s coordinate

system.

The registration methods that we assess are the B-Spline-based registration

method of Rueckert et al. which employs nonrigid free-form deformations [43];

Thirion’s demons registration method [44]; the deformable registration method of

Glocker et al. [45], which employs MRFs and discrete optimization [46]; and the

groupwise registration method of Cootes et al. [47], utilized here in a pair-wise

fashion. The implementations of Kroon and Slump [48] were used for the first

two registration methods, whereas the authors’ implementations were provided

for the latter two methods. In the next paragraphs, we highlight briefly the main

components of these registration methods.

The B-Spline method of Rueckert et al. [43] employs a hierarchical transforma-

tion model, which combines global and local motion of the anatomy of interest.

Global motion is described by an affine transformation, whereas local motion is

described by a free-form deformation, which is based on cubic B-Splines. The

overall transformation is performed within a multi-resolution setting, which

reduces the likelihood of occurrence of a deformation field with invalid topology

due to folding of the control points (grid points). The similarity metric employed in

this method is normalized mutual information, and the optimization component is

based on a gradient descent approach [49].

The underlying concept of the original demons method [44] is that every voxel

of the template image is displaced by a local force, which is applied by a demon.

The demons of all voxels specify a deformation field, which describes fluidlike

free-form deformations; when this field is applied to the template image, the latter

deforms so that it matches the reference image. The algorithm operates in an

iterative multi-resolution fashion for increased robustness and faster convergence.

The original demons algorithm, as presented in [44], is data driven and demon-

strates analogies with diffusion models and optical flow equations. Since its original

conception, several variants have emerged in the literature [50]. In our study, we

use and evaluate the implementation of Kroon and Slump [48], which employs a

variant suggested by Vercauteren et al. in [51]. In this variant, the authors follow an

optimization approach to demons image registration; more specifically, they

employ a gradient descent minimization scheme and operate over a given space

of diffeomorphic spatial transformations. Diffeomorphic transformations can be

inverted, which is often desirable in image registration. Lastly, Kroon and Slump
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employ the joint histogram peaks as the similarity metric of their implementation,

which allows for the computation of local image statistics [48].

The registration method of Glocker et al. [45], denoted as DROP (deformable

image registration using discrete optimization), follows a discrete approach to

deformable image registration. Similarly to the method of Ruckert et al., local

motion of the anatomy of interest is modeled by cubic B-Splines. The difference,

however, is that image registration is reformulated as a discrete multi-labeling

problem and modeled via discrete MRFs. In addition, their optimization scheme

is based on a primal-dual algorithm, which circumvents the computation of the

derivatives of the objective function [46, 52]. This is due to its discrete nature.

In their approach, they also follow a multi-resolution strategy, which is based on a

Gaussian pyramid with several levels. Moreover, diffeomorphic transformations

are guaranteed through the restriction of the maximum displacement of the

control points. The authors’ implementation, which is available online [53],

features a range of well-known similarity metrics. In this study, the sum of absolute

differences was employed.

The registration method of Cootes et al. [47], denoted as GWR, belongs to the

groupwise approaches to image registration. Groupwise registration methods aim to

establish dense correspondence among a set of images [47], as opposed to pair-wise

approaches. In the context of groupwise registration, every image in the set is

registered to the mean image, which evolves as the overall process advances.

Groupwise registration is often employed in the context of automatic building of

shape and appearance models from a group of images, given few annotated

examples (e.g., [54]). Conversely, models of shape and appearance can assist

registration, when integrated in the process, by imposing certain topological

constraints in the spatial deformations. As a result of this integration, Cootes

et al. follow a model-fitting approach in their registration method; for each image

that is registered to the reference (mean) image, the parameters of the mean texture

model are estimated, so that the texture model fits the target image. The overall aim

in the process is to minimize the residual errors of the mean texture model with

respect to the images of the set. This is achieved via an information theoretic

framework, which is based on the minimization of description length (MDL)

principle, described in [55]. Piecewise affine transformations are employed for

the spatial transformations, which guarantee invertibility of the deformation field.

A simple elastic shape model is employed to impose shape constraints to the

transformation. Similarly to the previous methods, the registration technique of

Cootes et al. follows a multi-resolution approach [47]. In our work, we utilize this

method in a pair-wise fashion. We achieve this by employing the reference image to

play the role of the mean image. Consequently, the texture and shape model are

derived from this single image.

b. Active Graph Cuts

AGC [36] exploits an approximate segmentation as initialization, in order to

compute the optimal final segmentation outcome via max-flow/min-cut algorithms.

The authors pose no restriction on the nature of images that this algorithm may
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process and they claim that convergence is achieved even when the approximate

segmentation is very different from the desired one. In the context of our study, this

approximate solution is provided by the surface of the segmented example image.

While it does not perform registration, AGC does provide a method of propagating

an initial segmentation and is a likely candidate method for the first stage of our

framework. For the needs of our experimental work, we realized our own imple-

mentation of the method in MATLAB®. To the best of our knowledge, this is the

first independent implementation and evaluation of this technique in the context of

3-D medical image segmentation. In the following paragraphs, we provide further

details about the method.

AGC is a graph-based method; therefore, in the context of this technique, an

image is represented as a graph. Its initialization, termed “initial cut”, is a set of

contiguous graph edges, which separates the overall graph into two subgraphs that

form two independent flow networks. The vertices adjacent to the initial cut are

connected to the source graph terminal. Their t-link weight is equal to the capacity

of the adjacent graph edge, which is part of the initial cut. In order to solve the

max-flow/min-cut problem, different algorithms may be employed. In [36],

the authors suggest a preflow-push [56] approach to tackle this problem on the

subgraphs. Preflow-push strategies operate locally and thus flood the network

gradually. This in turn generates intermediate cuts as the algorithm progresses.

However, in our work, we are rather interested in the final min-cut instead of the

intermediate cuts. Therefore, we employ an implementation of a max-flow/min-cut

algorithm [57], which follows the augmenting paths approach as described in

[58]. The final segmentation outcome is provided by the aggregation of the

solutions of the max-flow/min-cut problem on the two subgraphs.

The authors provide no instruction about the positioning of the sink graph

terminal on the two subgraphs in [36]. In our work, we observed that different

choices may significantly affect the segmentation outcome. For the sake of consis-

tency, with respect to this problem, in all our experiments, the voxels at the image

borders were connected to the sink graph terminal of the subgraph that lies outside

the initial cut, whereas for the subgraph that is contained by the initial cut, the

voxels at a fixed distance, using a distance transform, from the centroid of the initial

cut were connected to the sink.

Delineation of the Anatomical Boundary

In the previous sections, we highlighted the candidate methods for the first stage

of our framework: localization of the anatomy of interest in the “New Image” of

Fig. 2. The second stage of our framework aims for the delineation of an accurate

boundary of the anatomy of interest, given the output of the first stage as

initialization.

In a previous study [57], we demonstrated that graph cuts segmentation [39, 40]

offers significant advantages over several other methods in the context of
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interactive segmentation. In the work presented in this chapter, we employ graph

cuts in a semi-automated fashion to refine the boundary of the anatomy of interest.

As shown in Fig. 2, graph cuts (GC) operates in a zone that surrounds the initial

boundary defined by successive erosions and dilations of the initial binary segmen-

tation. Erosion and dilation are morphological operations, which result into con-

traction and expansion of a binary object respectively [59]. The width of the zone is

controlled via a user-defined parameter and depends on the number of erosions and

dilations performed on the segmented image example. This is the only interaction

that takes place during delineation of the anatomy of interest.

For this stage of our framework, we employ GC with a modified objective

function and assess its performance as a means of accurate boundary delineation

against the original GC. More specifically, we modify the objective function’s

boundary term, in order to enable GC to couple with feature detectors. The concept

of employing feature detectors to enhance the boundary localization ability of GC is

recent. A similar approach to our work [4–6] is followed by Krčah et al. [60], who

employ the Hessian matrix as means of increasing the contrast at the boundaries of

bones in three-dimensional CT scans. However, the GC boundary term that they

employ is not the same as the one that we suggest. In our work, we couple GC with

three well-known edge detectors, namely, Canny [61], phase congruency [62],

and SUSAN [63]. The three GC variants are denoted as GC + C, GC + PC, and

GC + S, respectively. Subsequently, we evaluate the performance of these variants

with respect to their ability to provide accurate delineation of the anatomy of

interest, as part of our framework’s second stage. In the following paragraphs, we

provide further details about our modified boundary term and the boundary

detectors that we apply.

a. Coupling Graph Cuts with Feature Detectors

In interactive GC segmentation [39, 40], an image is represented as a graph. The

user selects voxels that belong to the interior and the exterior of the object of

interest, referred to as foreground and background seeds, respectively. The optimal

foreground/background boundary is then obtained via global minimization of a cost

function with min-cut/max-flow algorithms (e.g., [58]). Such a function is usually

formulated as

E Að Þ ¼ λ � R Að Þ þ B Að Þ (1)

where

R Að Þ ¼
X
p∈P

Rp Ap

� �
(2)

B Að Þ ¼
X
p;qf g∈N

B p;qf g � δ Ap;Aq

� �
(3)

and
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δ Ap;Aq

� � ¼ 1, if Ap 6¼ Aq

0, otherwise

�
(4)

R(A) and B(A) are the regional and boundary term of the energy function, respec-

tively. The coefficient λ weighs the relative importance between the two terms.

N contains all the unordered pairs of neighboring voxels and A is a binary vector,

whose components Ap, Aq assign labels to pixels p and q in P, respectively, on a

given 2-D or 3-D grid.

The regional term assesses how well the intensity of a pixel p fits a known model

of the foreground or the background. These models are either known a priori or

estimated by the user input, when this is sufficient. Otherwise, the regional term is

weighted low relative to the boundary term or in practice λ ¼ 0. This approach

is followed in [39] as well as in this study. The boundary term encompasses the

boundary properties of the configuration A, represented in the weighted graph. Each
edge in this graph is usually assigned a high weight if the pixel intensity difference

of its adjacent nodes is low and vice versa. The exact value of these weights is

calculated with the following Gaussian function [40]:

B p;qf g ¼ K � 1

dist p; qð Þ � exp
� Ip � Iq
� �2
2σ2

(5)

where Ip and Iq are the intensities of two pixels p and q and dist( p,q) the Euclidean
distance between them. dist( p,q) is set to 1 in case of equally spaced grids

(iso-voxel volumes) when only the immediate neighbors are taken into account.

Setting K to 1 leads to a Gaussian function with its peak equal to 1, which is useful

for the normalization of the graph weights. σ therefore is the only free parameter,

which controls the full width at half maximum of the Gaussian function.

In (5), the effect of the Ip � Iq
�� �� term is to position the min-cut at locations where

neighboring voxels demonstrate high-intensity difference, which corresponds to

peaks and valleys in the gradient image. This works well for images that demonstrate

boundaries with good contrast between foreground and background. However,

medical images are often noisy and often demonstrate weak contrast or textured

boundaries which are further compromised by partial volume effects. In such chal-

lenging boundary conditions, the previous approach can face difficulties in

localizing the boundary accurately. To address this problem, we suggest a modifica-

tion in GC’s boundary term, which allows the method to couple with feature

detectors. The modified boundary term is described below.

Feature detectors typically produce a response (voxels with high grey-level

intensity values) at image locations where, based on local image evidences, the

likelihood for the presence of a salient feature is high. In order to allow GC to

couple with feature detectors, we modify its weighting function as follows. As we

wish the min-cut to occur at maxima (ridges) in the feature output, we replace the

Ip � Iq
�� �� term in this function with (Rp + Rq)/2, where Rp and Rq is the response of
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the feature detector on pixel p and q, respectively. Consequently, we have the

modified boundary term:

B p;qf g ¼ exp� ε � Rp þ Rq

� �2� �
(6)

where ε ¼ 1/8σ2. Similarly to σ in (5), ε controls the full width at half maximum of

the peak of the Gaussian function. Within the following sections, we briefly

describe the three well-known feature detectors that we use: Canny [61], phase

congruency [62], and SUSAN [63]. Figure 3 also depicts the raw response of these

feature detectors on an example T2 fat-suppressed image of the prostate.

b. Canny Edge Detector

The Canny edge detector was derived to be an “optimal” edge detector. Its

implementation is straightforward in two and three dimensions due to the separa-

bility of the Gaussian filter, which is its main computational element [61]. The

parameters of the Canny edge detector implementation are the size of the Gaussian

filter and its standard deviation. Due to the fact that Canny is a gradient-based edge

detector, the strength of its response at a certain image location depends on the

magnitude of the gradient at this location.

c. Feature Detection from Phase Congruency

In [62], Kovesi employs the Fourier domain of an image to identify image

features. His work is based on the local energy model, introduced by Morrone

et al. [64] and Morrone and Owens [65], which suggests that humans perceive

features at image locations that demonstrate maximal phase congruency in their

Fourier components. Phase congruency can be calculated using log Gabor

wavelets. A Gabor wavelet is a filter, which is constructed via the modulation of

a Gaussian kernel function by a sinusoidal plane wave [66]. The computation of

phase congruency is complex as it involves the use of multiple filters at different

scales (wavelengths) and orientations. In addition, phase congruency is suscepti-

ble to noise. Therefore, a noise reduction strategy is routinely followed prior to its

computation [62]. Also, due to the fact that image features are identified in the

frequency domain, the strength of the phase congruency response, as a feature

detector, does not depend on the gradient of the image. This is a major qualitative

difference between feature detection based on phase congruency and gradient-

based schemes, such as Canny detection. We computed phase congruency

employing the code available from [67].

d. The SUSAN Feature Detector

SUSAN is an acronym, which stands for smallest univalue segment assimilating

nucleus [63]. The SUSAN edge detection scheme employs a circular mask (sphere

in 3-D), which is moved over the processed image. The advantage of circular masks

is that they provide isotropic responses. The typical radius of the SUSAN mask is
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3.4 voxels, which corresponds to a mask that covers an area of 37 pixels in 2-D and

179 voxels in 3-D. During edge detection, the nucleus of the mask is placed at each

voxel of the image. Then, the brightness of each voxel within the mask is compared

with the brightness of the nucleus. Those voxels that demonstrate similar brightness

to the nucleus (within a user-specified tolerance) belong to the USAN area. The size

of the USAN area plays an important role in this feature detection scheme. The

USAN area reaches its maximum size when the mask is over image areas that

demonstrate relatively uniform voxel intensity, whereas its size gets smaller when

the mask approaches an edge or a corner. The SUSAN detector is devised to provide

responses, when the USAN area is smaller than a predefined threshold and no

response otherwise [63]. The SUSAN edge detection scheme does not need any

noise reduction, it does not involve the computation of image derivatives, and it is

computationally efficient. In our work, we implemented the SUSAN edge detector

in MATLAB®.

Evaluation Framework

We assess the performance of our methodology with a score of classification

accuracy (CA), the Tanimoto coefficient (Tc), and the maximum point to surface

distance between the segmentation and the ground truth surface (MaxDist).

In order to calculate the CA metric, all the voxels are classified into true- and

false-positives (TP, FP) and true- and false-negatives (TN, FN). The CA score is

then defined as

CA %ð Þ ¼ 100� TPj j þ TNj j
TPj j þ TNj j þ FPj j þ FNj j % (7)

The Tc score is computed as

Tc %ð Þ ¼ 100� TPj j
TPj j þ FPj j þ FNj j% (8)

Finally, the MaxDist score is calculated via a 3-D distance transform. The

distance is given in voxels, but since we use images with isotropic voxels, the results

can be report in millimeters as well.

In the case of CA and Tc scores, accurate segmentation outcomes are

represented by large values, whereas in case of the MaxDist score, accurate

segmentation outcomes are represented by small values.
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Experiments and Results

Localization of the Anatomy of Interest

This section concerns the performance evaluation of the four deformable registra-

tion methods discussed in the previous sections and AGC. These methods are

employed to provide the localization of the anatomy of interest in a new unseen

image, given a single image as an example with respect to the desired segmentation

outcome. During the experiments, each image in every dataset was selected once as

a template image and its ground truth surface was propagated to the remaining

images of the same dataset with each of the assessed methods.

When propagation of the segmentation surface was performed via registration,

for each pair of images, the spatial transformation was first computed, and then the

template image’s ground truth surface was warped onto the target image’s space to

produce the new segmentation outcome. When propagation of the segmentation

surface was performed via AGC, a similar strategy was followed: each image’s

ground truth surface was set as the initial cut for the remaining images of each

dataset, providing thus the required initialization for the AGC algorithm.

In these experiments, all registration methods were employed with their default

settings. Figure 4 summarizes the results of the performance evaluation of the four

registration methods and AGC. GWR provided results that demonstrated (in most

cases) the best mean values of the three employed scores that quantify segmentation

accuracy, with DROP providing comparable results. More specifically, GWR

demonstrated mean values of the three performance scores of CA ¼ 93.5 %,

Tc ¼ 69.6 %, and MaxDist ¼ 5.5 mm for the total prostate segmentation task

Fig. 4 Summary of the performance of the first stage’s candidate methods with respect to the

accuracy metrics. The error bars represent the �1.96 � standard error of the mean
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and CA ¼ 94.8 %, Tc ¼ 58.9 %, and MaxDist ¼ 5.4 mm for the central prostatic

gland segmentation task. DROP achieved mean values of the three scores of

CA ¼ 92.3 %, Tc ¼ 69.6 %, and MaxDist ¼ 8.3 mm for the total prostate seg-

mentation task and CA ¼ 94.1 %, Tc ¼ 60.2 %, and MaxDist ¼ 8.1 mm for the

central prostatic gland segmentation task.

In terms of computational efficiency, DROP was by far the most computation-

ally efficient method and GWR the most expensive. For instance, GWR required

more than an hour to register two prostate images, whereas DROP performed

the same task in few seconds. Computational efficiency is a favorable quality

in the context of interactive segmentation systems. Therefore, DROP was adopted

as the most appropriate method for our framework’s first stage.

In our experiments, AGC consistently failed to produce plausible segmentation

outcomes. This is quantitatively depicted in the results presented in Fig. 4. It is

conceivable that segmentation of medical images is a challenging task for a

max-flow/min-cut segmentation strategy, which is not provided with a good

initialization. It is easier to understand this if we recall that AGC employs only

the boundary term of a GC objective function. Therefore, in complex images, when

wrong initial labeling is provided, the algorithm is susceptible to the detection of

undesirable edges, thus providing erroneous segmentation outcomes.

Delineation of the Anatomical Boundary

In this section, we present the results of the evaluation of candidate methods for our

framework’s second stage, using different GC variants operating in a zone

surrounding the boundary defined by the first stage. The voxels that lie within the

eroded warped volume are selected as foreground seeds for the GC segmentation,

whereas the voxels that lie outside the dilated warped volume are selected as

background seeds (see Fig. 2). The zone width is a user-defined parameter that

was kept constant for every dataset, to allow for unbiased experimental results.

More specifically, this zone was 6 voxels wide (2 voxels outside and 4 voxels inside

the boundary suggested by DROP) for segmentation of the prostatic central gland

and 9 voxels wide (3 voxels outside and 6 voxels inside the DROP boundary) for the

total prostate. We decided to create an asymmetric zone due to the frequent

misplacement of the segmentation boundary by the registration stage outside the

anatomy of interest. The width of the zone for the central gland is narrower than for

the total prostate because this anatomical structure is relatively small. Conse-

quently, a large number of erosions may leave no foreground seeds for GC to

operate.

The following parameter settings were used throughout the experiments: when

GC was employed with its original boundary term (5), σ was set equal to 1.5; in the

case of our modified boundary term (6), ε was set equal to 0.02. The Canny edge

detector used a Gaussian kernel of length 7, with standard deviation 0.7. In case of

phase congruency, log Gabor filters with 6 different scales and 6 orientations were
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utilized. The minimum wavelength (smallest scale) was set to 5 voxels. Lastly,

the SUSAN tolerance threshold was set to 24 (levels of grey). The output of all

feature detectors was normalized to lie in the interval [0,255]. All parameters were

set to these values via manual experimentation on few images.

The raw response of Canny and SUSAN edge detectors is readily computed in

3-D. However, the code employed for the computation of phase congruency in this

study only tackles the task in 2-D. In order to produce an estimate of phase

congruency in 3-D, the measure was computed along the three different anatomical

planes, and the results were combined by selecting the maximum value from every

plane for each voxel. Computation of phase congruency directly in 3-D is obviously

preferred; however, such a task is nontrivial. For example, the orientations that need

to be considered in 3-D are many more than in 2-D. Rajpoot et al. [68] suggest the

use of the monogenic filter to tackle the computation of phase congruency in 3-D.

However, when we experimented with their code, their approach produced noisier

raw responses than the one we employed.

Figure 5 summarizes the results of the performance evaluation of the candidate

methods for the second framework stage. The results of the DROP registration

without further segmentation are also included, to allow for direct observation of

the effect of the additional processing on the DROP outcome. Overall, the changes

in segmentation performance with respect to accuracy due to it are small. The main

effect is a slight reduction of the MaxDist error.

In the segmentation of the central gland, GC + S gave less variable results than

GC. However, in the total prostate, the use of edge detectors did not seem to provide

any advantage over the original GC, possibly due to the already good object/

background contrast.

In the case of the central gland segmentation, the paired t-test suggests that there
is no significant difference between the performances of GC + S and GC, when the

accuracy is assessed with the CA metric. However, this test suggests that GC + S

performs significantly better than GC ( p < 0.03), when the Tc and MaxDist scores

Fig. 5 Summary of the performance of the second stage’s candidate methods with respect to the

accuracy metrics. The error bars represent the �1.96 � standard error of the mean
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are used. The Wilcoxon signed-rank test [69] suggests that GC + S performs

significantly better than GC ( p < 0.01), in case of all the employed accuracy

scores. The Wilcoxon signed-rank test does not assume that the compared samples

are normally distributed. This statistical test may be more appropriate for our

assessment, as there is no guarantee that our experimental measurements are

normally distributed.

The major advantage of the additional processing step is the increase of the

framework’s repeatability, compared to the repeatability of the framework when

we employ a single-stage processing approach based on DROP registration.

Figures 6, 7, and 8 show the variation in segmentation accuracy as different

examples are employed as templates, with and without application of the GC

stage, using the CA, Tc, and MaxDist metrics, respectively. This improvement is

clearest when the framework’s performance is measured using the CA and

MaxDist metric (Figs. 6 and 8). These figures suggest that in all datasets the

second stage offers a reduction of the framework’s dependency on the selected

template. A qualitative example of the effect of the framework’s second stage is

also depicted in Fig. 9.

Fig. 6 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the CA score. The whiskers are

1.5 � the interquartile range. Values outside them are considered outliers (red crosses) [4]

© 2011 IEEE
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Fig. 8 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the MaxDist score. The whiskers are

1.5 � the interquartile range. Values outside them are considered outliers (red crosses)

Fig. 7 Pairs of box and whisker plots depicting the repeatability of stage 1 (left image) and stage

2 (right image) for each segmentation task with respect to the Tc score. The whiskers are 1.5 � the

interquartile range. Values outside them are considered outliers (red crosses)



Summary

In this chapter, we presented the results of a performance evaluation study of

candidate methods for an interactive segmentation framework, which leverages

prior knowledge from one single image example, in order to minimize the amount

of required user intervention when similar images are processed. The suggested

framework operates in two stages: localization (registration) followed by delinea-

tion (segmentation). The experimental results suggest that this framework

can provide results close to the ground truth, without any user interaction, for a

challenging segmentation task, when a deformable registration is followed by

a graph cuts segmentation. These results can serve as an advanced starting point

of an interactive process that can lead to the desired segmentation outcome with a

small number of further interactive maneuvers.

Using segmentation of the central gland and total prostate in 3-D MR images as

an example application, we show that one of the effects of the additional processing

step is the decrease of the MaxDist error. While the CA and Tc scores give overall

indications of agreement between the segmentation outcome and the ground truth,

they are rather insensitive to local segmentation errors. The MaxDist score gives a

handle on local segmentation problems, such as individual surface points being

moved away from the true surface. Such cases can result in interactive workload,

even if the overall CA and Tc scores are low.

In addition, while the second segmentation stage does not necessarily deliver

large improvement over registration-based label propagation in individual cases,

we have shown that a two-stage approach improves the framework’s sensitivity to

the selected template image. While we have addressed this in the context of

interactive segmentation, the results of this study can be applied in “automatic”

atlas-based segmentation as well, where a single image is often used as a template.

Clearly, as online segmentation proceeds, knowledge from increasing numbers of

segmented images can be used to inform the interactive process. Ultimately, with

sufficient segmented examples, a model can be built. The phase where several

Fig. 9 An example of axial midsection of a prostate, depicting the ground truth (left), the
segmentation outcome produced by DROP (middle), and GC initialized by DROP (right). The
yellow and cyan contours delineate the central gland and the total prostate, respectively. The result
of the GC+S variant is depicted for the segmentation of the central gland
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segmented images are available, but not sufficient to build a reliable model is the

subject of further development of this work.

In this chapter, we also suggest a modification of the GC boundary term, which

allows the method to couple with feature detectors. In our experiments, we assess

the performance of GC when coupled with three well-known feature detectors

against the original GC approach. Our experimental results suggest that the use of

feature detectors may not provide any advantage over the original GC, when images

demonstrate good object/background contrast. It may, however, improve the

boundary identification ability of GC in challenging cases, where information

from gradient is insufficient for the identification of the boundary of the anatomy

of interest, such as in the prostate central gland. In this study, we coupled GC with

feature detectors that respond to grey-level boundaries. However, detectors that

identify textured edges may also be employed with our modified boundary term.
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degree in medical image analysis from the University of Manchester in 2012.

Since April 2012, he has worked as a research associate at the Institute of Popula-

tion Health of the University of Manchester in the Centre for Imaging Sciences. His

main research interests include image segmentation, image registration, and

applications of pattern recognition, machine learning, and combinatorial optimiza-

tion techniques in biomedical image analysis. Other interests include virtual and

augmented reality in healthcare and medical decision support systems.

Dr. James Graham graduated in Physics from the University of Edinburgh in

1974. He obtained the Ph.D. in Structural Biology from the University of

Cambridge in 1978. He has been active in Computer Vision and Biomedical

Image Analysis for over 25 years. He is currently Reader in the Centre for Imaging

Sciences at the University of Manchester.

Propagating Segmentation of a Single Example to Similar Images. . . 681



3D Registration of Whole-Mount Prostate

Histology Images to Ex Vivo Magnetic

Resonance Images Using Strand-Shaped

Fiducials
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J.L. Chin, C. Crukley, G.S. Bauman, A. Fenster, and A.D. Ward

Abstract Determining the intra-prostatic spatial distribution and grade of prostate

cancer before treatment may support improved diagnosis, therapy selection, or

guidance of intra-prostatic lesion-focused therapies (e.g., radiation boosting

or ablative focal therapy). Several in vivo imaging modalities are showing promise

for imaging the intra-prostatic distribution of cancer. Evaluations of such imaging

modalities ideally include comparisons to registered histological examinations of
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prostatectomy specimens, the clinically accepted “gold standard” for staging and

grading prostate cancer. The registration of histology to ex vivo magnetic resonance

(MR) images supports these challenging in vivo registrations by reconstructing 3D

spatial information that is lost during the process of acquiring histology sections. In

the work described in this chapter, ex vivo MR and histology images were acquired

from nine formalin-fixed radical prostatectomy specimens which had been marked

with extrinsic fiducials designed to be visible in these modalities. The histology

images were registered retrospectively to the MR images using a novel algorithm

based on the minimization of fiducial registration error between fiducial cross-

sections on histology images and parametric fiducial curves on MR images. The 3D

target registration error (TRE) was quantified based on the post-registration mis-

alignment of manually identified homologous landmarks (3–7 per section, 184 in

total), and was compared to two previously developed methods: (1) a method based

on the guidance of the coarse slicing of specimens and (2) a method based on

additional imaging of the images of the thick tissue slices. The proposed method

yielded a mean � standard deviation TRE of 0.71 � 0.38 mm, 0.38–0.63 mm

lower [95 % confidence interval (CI)] than the image-guided-slicing-based method,

and within 0.13 mm (95 % CI) of the tissue-slice-imaging-based method. One

component of the proposed method was able to refine the result from the image-

guided-slicing-based method to within 0.13 mm (95 % CI) of the proposed method.

The proposed method also resulted in a 70 % decrease in specimen processing time

compared to the image-guided-slicing-based approach previously implemented at

our center.
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Introduction

The noninvasive determination of spatial distribution and grade of prostate cancer

before treatment has the potential to support improved diagnosis, therapy selection,

and focal therapy. For example, the accurate assessment of tumor grade and extent

is required to support the decision to pursue active surveillance versus radical

therapy. The current standard of systematic biopsies may fail to sample areas of

cancer and/or the areas of highest cancer grade. Biopsies accurately targeted to the

most suspicious lesions may increase the accuracy of diagnosis based on histologi-

cal examination of biopsy tissue. Beyond biopsy, application of conformal

treatments to intra-prostatic lesion (gross tumor) volumes with focused therapy

(e.g., radiation boost or ablative focal therapy) requires precise tumor delineation

before therapy. Monitoring of response to treatment or progression of cancer for

men on active surveillance currently relies on prostate-specific antigen testing, an

indirect assessment of tumor response. Noninvasive monitoring of intra-prostatic

disease could augment decisions regarding treatment for these men. All of these

clinical applications could be supported by imaging.

Many imaging modalities are showing promise for staging or grading prostate

cancer in vivo, including single positron emission computed tomography using

prostate-specific membrane antigen (PSMA) antibody-based tracers (Prostascint)

[1, 2], positron emission tomography using choline-based tracers (e.g., 11C-choline

[3, 4] and 18F-fluorocholine [5, 6]) and multi-parametric magnetic resonance

(MR) imaging, comprising T2-weighted [7, 8], dynamic contrast enhanced

[9, 10], diffusion-weighted [11, 12], and spectroscopic [13, 14] MR protocols.

The evaluation of these imaging modalities ideally includes a comparison to tissue

histopathology from prostatectomy specimens, the currently accepted clinical “gold

standard.” In the case of imaging of cancer distribution in the prostate, accurate

registration of histopathology obtained from prostatectomy specimens with the

in vivo imaging is required to assess the accuracy of the imaging in localizing

and grading of intra-prostatic cancer foci.

Such imaging to histopathology registrations are challenging, in part, due to the

processes involved in cutting histology sections from specimens for examination as

part of current clinical protocols. For example, after radical prostatectomy, the

prostate specimens are chemically fixed in formalin, causing tissue deformation and

shrinkage. The fixed specimens are cut into 3–5-mm-thick slices, such that much of

the spatial relationship between these pieces of tissue is lost. The slices are

chemically treated to replace all water in the tissue with paraffin and are embedded

in paraffin blocks, inducing further shrinkage. The paraffin blocks are mounted into

a microtome cutting machine by hand, and oriented to align the front face of the

tissue slice, seen through the translucent paraffin, with the microtome blade,

introducing operator variability. Paraffin and tissue are sliced off the block until a

full cross-section of tissue is visible (leaving as much tissue as possible in the

paraffin block for medical records), and then a 4-μm-thick histology section is cut,

resulting in a loss of 3D context and variability in the position and orientation
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within the tissue slice from which the histology section is taken. This section is

unwrinkled and allowed to expand on a water bath before being mounted to a glass

slide, potentially introducing further deformation. The deformation, loss of spatial

information, and variability due to operators or processes, all present challenges to

the registration of histology to in vivo images.

The techniques used to address these challenges fall into two major categories.

Prospective techniques alter the processes involved in cutting histology sections

from specimens to mitigate deformation, avoid loss of spatial information, or

reduce variability. Retrospective techniques use assumptions about these processes

and information (e.g., images or measurements) collected before, during, or after

these processes to virtually undo the deformation, reconstruct lost spatial informa-

tion, or account for variability. Many reconstruction methods use a combination of

techniques from these two categories.

One common approach to the reconstruction of clinical specimens is to prospec-

tively control the slicing of specimens into tissue slices [15–18], often using image

guidance and specialized cutting devices to orient and position the cuts. These

methods typically assume that histology sections are parallel and evenly spaced at a

measured or pre-specified interval, an assumption usually supported by controlling

the cutting of the initial tissue slices but undermined by the variability of the cutting

process on the microtome [19]. An advantage of these approaches is that the

position and orientation of the resulting histology can be pre-specified (to within

the error of the image guidance and variability in the tissue slice and histology

sectioning processes), allowing visual comparison of histological information from

a single histology section with axis-aligned, rather than oblique, images. However,

pre-specified tissue slice positions and orientations may not match those typically

used in the standard pathology workflow and clinical reporting.

A second approach uses extrinsic fiducials and/or additional imaging to

retrospectively reconstruct 3D spatial relationships of tissue sections lost during

the histology acquisition, rather than prospectively constraining the spatial relation-

ships. Extrinsic fiducials have been used to reorient histology images relative to one

another [20, 21]. Additional imaging (typically photographs of tissue slices) has

been used to account for tissue deformation [16, 22–25]. As in the guided-slicing

approaches, these methods typically assume that histology sections are parallel and

evenly spaced at a known interval, supported by prospectively controlling the

cutting of tissue slices or retrospectively measuring them.

A third approach retrospectively reconstructs the spatial relationships between

histology sections by registering histology images to 3D in vivo or ex vivo images

of the intact prostate. Approaches that register directly to in vivo images hold the

potential to reconstruct histology images with little disruption to the pathology

workflow; however, they rely on the presence of intrinsic image information that

may be disrupted by anatomic variability or even the disease processes of interest.

Approaches that register to ex vivo images introduce some disruption to the

pathology workflow due to additional imaging and have a similar reliance on

intrinsic image information, but typically have more control over the imaging,

allowing for images with a higher resolution and potentially more information in
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common with histology. Augmenting the intrinsic image information with extrinsic

fiducials avoids the reliance on common image information (except for validation

purposes), at the cost of additional disruption to the workflow to add the fiducials.

In the selection of appropriate methods for histology reconstruction, consider-

ation of reconstruction accuracy is important. In the context of studies evaluating

imaging modalities based on registration to 3D reconstructed histological informa-

tion, reconstruction accuracy affects the studies’ statistical power [26, 27] (i.e., the

likelihood of the studies finding true statistically significant effects). Because of this

effect, the use of a method with higher reconstruction error in a given study creates

a requirement for a larger sample size, which can increase the effort needed for

patient accrual, expose additional subjects to nonstandard-of-care tests and

interventions and, given the high per-patient cost of imaging evaluation studies,

substantially increase the cost of a study (see section “Comparison with Other

Algorithms” in the discussion for an illustration). Thus, it is important to consider

the comparison of registration accuracy amongst potential reconstruction methods

for such studies.

Our institution has previously developed two approaches for histology registra-

tion. We first developed a prospective guided-slicing-based method [17] that used

extrinsic strand-shaped fiducials internal to the prostate, ex vivo MR imaging, and

time-consuming image guidance of amagnetically tracked stylus tomark the desired

cutting plane with the goal of obtaining histology images along pre-specified planes

corresponding to the in vivo imaging planes. To eliminate the need for magnetic

tracking and image-guided slicing, we developed a second retrospective method

[28] that used both internal and external fiducials, as well as additional ex vivo

MR imaging of the tissue slices, yielding accurate registrations that accounted for

the variability of microtome cutting and allowed the pathologist to slice specimens

according to the standard pathology workflow.

The goal of the work described in this chapter was to evaluate a novel retrospec-

tive registration based on the optimization of correspondence errors of internal and

external fiducials between histology and ex vivo imaging that did not use additional

imaging of tissue slices (simplifying the process and reducing cost and processing

time). We compared the accuracy of this method to our previously developed

methods. In particular, the intent of the comparison to the image-guided-slicing-

based method was to elucidate whether the image-guidance procedures were

necessary for accurate registration, and the intent of the comparison to the tissue-

slice-imaging-based approach was to elucidate whether the additional imaging

contributed to increased registration accuracy. Because the use of internal fiducial

markers may be prohibited in some centers, representing a barrier to translation, we

also compared the proposed method to a variation that omitted internal fiducials.

The intent of this comparison was to measure the loss of registration accuracy

resulting from the elimination of internal fiducials from the registration workflow.

Finally, in order to facilitate the acquisition of histology sections corresponding to

pre-specified imaging planes (necessary to display corresponding histological

information from an entire histology section alongside an imaging-axis-aligned

in vivo image, and not possible with the proposed algorithm alone), we evaluated
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whether refining the results from our image-guided-slicing-based method using the

optimization of fiducial correspondence errors in the proposed method would

improve the accuracy of the image-guided-slicing-based method. This combination

could potentially yield the accuracy of the registration-based method and the

control of image-guided slicing. For these comparisons, we quantified the target

registration error (TRE) of the registrations using homologous intrinsic landmarks

identified on histology and MR images. These evaluations can be summarized by

five questions answered by this work, enumerated as follows.

1. How accurate was the proposed method?

2. How did the accuracy of the proposed method compare to that of our previous

image-guided-slicing-based method?

3. How did the accuracy of the proposed method compare to that of our previous

tissue-slice-imaging-based method?

4. How did the use of internal fiducials impact registration accuracy?

5. Does applying fiducial correspondence error optimization to the image-guided-

slicing-based method improve its accuracy?

This study was originally published in the Journal of Magnetic Resonance

Imaging [29].

Materials and Imaging

As part of an ongoing prospective prostate imaging evaluation study, we obtained

radical prostatectomy specimens from nine subjects. The inclusion criteria included:

(1) aged 18 or older, (2) clinical stage T1 or T2 prostate cancer histologically

confirmed on biopsy and (3) suitable for and consenting to radical prostatectomy.

The exclusion criteria included: (1) prior therapy for prostate cancer, (2) use of

5-alpha reductase inhibitors within 6 months of the study start, (3) inability to

comply with preoperative imaging, (4) allergy to contrast agents, (5) sickle cell or

other anemias, (6) sources of artifact within the pelvis such as hip or penile

prostheses, and (7) contraindications to MRI such as electronic implants, metal in

the orbit or aneurysm clips. This study protocol was approved by the Human

Subjects Research Ethics Board of our institution, and informed consent was

given by all subjects.

Tissue Processing

An overview of the tissue processing for the study specimens is illustrated in Fig. 1.

Prostate specimens were fixed in 10 % buffered formalin for 48 h immediately

following surgery. Following fixation, extrinsic fiducials (described in detail in

section “Fiducial Marking”) were applied to the specimen, and the marked
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specimen was imaged following the protocol described in section “Whole Speci-

men Ex Vivo MR Imaging.” As in our hospital’s standard prostate slicing protocol,

the prostatic apex was removed and sliced parasagittally, the mid-gland was sliced

into thick transverse slices, and the base was sliced parasagittally. Unlike our

hospital’s standard protocol, the orientation of the cut removing the apex was

guided to coincide with in vivo imaging for another study [17], the mid-gland

was embedded in agar prior to slicing, the mid-gland was sliced on a rotary cutter to

yield parallel 4.4 � 0.2-mm-thick slices, and in preparation for whole-mounting,

the slices were not quartered. Only the mid-gland tissue slices were used for this

study. The tissue slices were imaged following the protocol described in section

“Tissue Slice MR Imaging.” The tissue slices were decalcified and paraffin-

processed following our hospital’s large specimen processing schedule. Four-

micrometer-thick whole-mount histology sections were cut from the resulting par-

affin blocks and stained with hematoxylin and eosin (H&E). The resulting histology

slides were digitized following the protocol described in section “Digital Histology

Imaging.”

Whole Specimen Ex Vivo MR Imaging

MR images of the intact prostate specimen (referred to as specimen MR images
throughout this chapter) were acquired using a Discovery MR750 (GE Healthcare,

Waukesha, WI, USA) at 3T using an endorectal coil (Prostate eCoil, Medrad, Inc.,

Warrendale, PA, USA). Specimens were positioned in approximately anatomical

Fig. 1 An overview of the processing of the prostate specimens for histology and the imaging

used in this study
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orientation in a sealed syringe, immersed in a fluorinated lubricant (Christo-Lube,

Lubrication Technology Inc., Franklin Furnace, OH, USA) to reduce the proton

signal surrounding the specimen and to eliminate artifacts. Specimens were imaged

using two protocols: (1) a T1-weighted protocol used in the registration and

accuracy evaluation that was sensitive to a gadolinium-based contrast agent in the

extrinsic fiducials (3D SPGR, TR 6.5 ms, TE 2.5 ms, bandwidth �31.25 kHz, eight

averages, field of view (FOV) 140 � 140 � 62 mm, slice thickness 0.4 mm, slice

spacing 0.2 mm, 256 � 192 matrix, 312 slices, flip angle 15�, 25 min) and (2) a

T2-weighted protocol used only in the accuracy evaluation that was sensitive to

anatomical detail (3D FSE, TR 2,000 ms, TE 151.5 ms, bandwidth�125 kHz, three

averages, FOV 140 � 140 � 62 mm, slice thickness 0.4 mm, slice spacing

0.2 mm, 320 � 192 matrix, 312 slices, 25 min).

Tissue Slice MR Imaging

MR images of the 4.4-mm-thick tissue slices (referred to as tissue slice MR images
throughout this chapter) were also acquired. Tissue slices were immobilized with

gauze in tissue-processing cassettes and immersed in Christo-Lube within a plastic

bag. The tissue slices were imaged with the same MR scanner and coil as the

specimen MR images, using the same MR protocols adjusted for a larger FOV to

allow for spacing between slices and for the thickness of the cassettes.

Digital Histology Imaging

H&E-stained histology slides were digitized on a ScanScope GL (Aperio

Technologies, Vista, CA, USA) bright field slide scanner at a 0.5 μm pixel size.

These images were downsampled to yield images with a 0.03 mm pixel size

(referred to as histology images throughout this chapter) for interactive fiducial

and landmark localization (described in detail in sections “Fiducial Marking” and

“Registration Accuracy”).

Methods

Fiducial Marking

Prostate specimens were marked with two previously reported [17] types of strand-

shaped fiducial markers designed to be visible on specimen MR and histology

images: (1) external fiducial markers affixed to the surface of the specimen and

(2) internal fiducials passed through the specimen. The strand shape of the markers
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ensures the fiducials reliably intersect the thin histology planes. Fiducials were laid

out as shown in Fig. 2. This layout was chosen such that the spatial configuration of

fiducials intersecting with two different planes (i.e., two potential histology-

specimen MR image alignments) could be distinguished under an affine transfor-

mation. Neighboring external fiducials, with the exception of fiducials 1 and 2 used

to mark anterior left, were placed at approximately 45� angles relative to each other,
so that the spatial configuration was sensitive to inferior–superior displacement and

oblique orientation of the planes.

The external fiducials comprised cylinders of cortex tissue from lamb kidney

~30 mm in length and 1 mm in diameter (extracted using the cannula of a biopsy

needle), soaked in a 1:40 solution of gadolinium-based contrast agent (Magnevist,

Bayer AG, Germany) to 10 % buffered formalin. These fiducials were affixed to the

surface of the specimen with a toughened, heat-resistant, ethyl cyanoacrylate glue

(Loctite 411, Henkel Inc., Germany). The use of tissue as the fiducial material

enabled the fiducials to adhere to the positively charged glass when the histology

sections were mounted to slides, as tissue is typically negatively charged. Kidney

cortex tissue in particular had material properties that were conducive to its use as a

Fig. 2 An (a) anterior and (b) posterior view of a prostate showing the schematic layout of strand-

shaped fiducials on the specimen, showing external fiducial curves m1 through m7, with internal

fiducials m8,m9, andm10 shown as unlabeled dotted lines. (c) Cross-sectional view corresponding

to dashed line in panels (a) and (b), showing fiducial cross-sections h1 through h10. (d) Internal
and (e) external fiducials appearance on T1-weighted specimen MR and histology images
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fiducial: (1) it was firm enough to stay intact through the physical and chemical

processes of fiducial application and histology processing, (2) it was soft enough to

avoid scoring the histology section when cut on a microtome, and (3) its appearance

on histology images was distinct from that of prostate tissue, supporting fiducial

localization. The gadolinium-based contrast agent enabled the fiducial to be visible

on T1-weighted specimen MR images. The appearance of the external fiducials on

T1-weighted specimen MR and histology images is shown in Fig. 2e.

The internal fiducials comprised cotton threads soaked in a 1:40 solution of

gadolinium-based contrast agent to blue pathologist’s ink (Tissue Marking Dye,

Triangle Biomedical Sciences Inc., Durham, NC, USA). These threads were

introduced through the specimen by passing a Quincke tip 18-gauge spinal cannula

with stylet (BD Medical Inc., Franklin Lakes, NJ, USA) through the prostate,

removing the stylet, passing the soaked cotton thread through the cannula, and

removing the cannula, leaving the thread in place. The cotton thread was left in

place during MR imaging and removed prior to tissue slicing. The gadolinium-

based contrast agent and pathologist’s tissue ink supported the visibility of the

internal fiducials on the MR and histology images, respectively. The Quincke tip

cannula has a bevel to one side that results in tissue being separated and moved

laterally instead of being damaged. The appearance of the internal fiducials on

T1-weighted specimen MR and histology images is shown in Fig. 2d.

The external and internal fiducials were interactively localized on the

T1-weighted specimen MR images and histology images. On histology images,

centers of the cross-sections of external and internal fiducials were manually

selected in 3D Slicer (Surgical Planning Lab, Harvard Medical School, Boston,

USA). On specimen MR images, the endpoints of the fiducials were manually

selected in 3D Slicer, and the centerline of the entire fiducial strand was automati-

cally computed using a fast-marching algorithm [30]. For some histology images, a

subset of the fiducials were not visible, either due to an external fiducial being lost

during processing or due to the histology section being taken from a plane past the

endpoint of the fiducial. These histology sections were reconstructed using only

the remaining visible fiducials.

Histology Registration

Each histology image was registered by minimizing the fiducial registration

error (FRE) between the fiducial cross-sections on the histology image and the

fiducial centerline on the corresponding specimen MR image over the space of

affine transformations. Unlike minimizing the FRE of two sets of points over

the affine transformations, minimizing the FRE between a set of points and a set

of curves cannot be solved analytically. As this minimization may have local

minima, and an exhaustive search of the nine-dimensional affine transformation

space is computationally expensive, the minimization was instead performed using

a three-step optimization: (1) identifying a plane in the specimen MR image for
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initialization using a discretized exhaustive search in a low-dimensional space,

(2) computing a point-wise correspondence based on the identified plane between

fiducial cross-sections on histology images and points along the fiducial strand on

specimen MR images, and (3) optimizing the FRE iteratively in a high dimensional

space. While steps 1 and 2 are closely linked, separating these two steps allows a

more direct comparison to existing registration methods that can yield a slicing

plane as an output. This algorithm is described formally in the following sections.

Reconstruction Algorithm Notation

The center point of the cross-section of the i-th fiducial on a histology image

is denoted by the 2D point hi (illustrated in Fig. 2c). The centerline of the i-th
fiducial strand on a specimen MR image is denoted by the 3D parametric curve

mi(si ∈ [0,1]) (illustrated in Fig. 2a, b). Each point hi corresponds to some point

alongmi(si ∈ [0,1]), which can be uniquely defined by a particular value of si. Thus,
we can describe all of the fiducial point correspondences as a correspondence vector

s ¼ hs1,s2, . . .,s10i. For example, the correspondence vector h0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.6i would represent nine fiducials cross-sections on the histology

image corresponding to the midpoints of the corresponding fiducial strands on the

specimen MR image, and the tenth fiducial cross-section corresponding to a point

60 % along the length of the corresponding fiducial strand measured from the

inferior-most endpoint.

The FRE after an affine transformation A was computed as

FRE Að Þ ¼
X10
i¼1

Ahi � C Ahi,mið Þk k2,

where C(p,m) denotes the closest point on curve m to point p.
Correspondence vectors do not, in general, correspond to an affine transforma-

tion; however, each correspondence vector s defines a least squares best-fit affine

transformation denoted As. In the iterative optimization, FRE is optimized over the

space of correspondence vectors using the best-fit transformation

FRE sð Þ ¼
X10
i¼1

Ashi � C Ashi,mið Þk k2:

Reconstruction Algorithm Step 1: Plane Identification

An iterative minimization of FRE may converge to local minima. To mitigate this

risk, we initialized the iterative minimization using the result of a discretized

exhaustive search. Such a search in the nine-dimensional unbounded 2D–3D affine

transformation space is not feasible. Instead, the search for an initialization was

performed in a bounded three-dimensional space constrained to reasonable
transformations, defined as the subspace of affine transformations that exactly
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align three fiducial cross-sections on a histology image to three points on the

corresponding fiducial curves on the specimen MR image,

eA ¼ mi1 si1ð Þ mi2 si2ð Þ mi3 si3ð Þ
1 1 1

� �
hi1 hi2 hi3
1 1 1

� �þ
si1si2si3h i∈ 0; 1½ �3

�����
)(

where i1, i2, and i3 are the selected fiducial indices, and the operationM
+ denotes the

matrix pseudoinverse. The minimization of FRE over this space was realized by

exhaustively iterating over si1si2si3h i at 0.01 intervals for the three curve parameters.

The optimal curve parameters ši1ši2ši3h i define an initialization plane P through the

points mi1 ši1ð Þ, mi2 ši2ð Þ, and mi3 ši3ð Þ. This step is referred to as plane identification
throughout this chapter.

The fiducial indices were selected to denote widely spaced fiducials including at

least one diagonal fiducial. Fiducial indices 2, 4, and 7 (illustrated asm2,m4, andm7

in Fig. 2a, b) were selected when all three were visible on the histology image;

otherwise, fiducial indices were selected manually.

Reconstruction Algorithm Step 2: Correspondence Vector Identification

To initialize the iterative optimization, we computed the correspondence vector that

represents the closest point to the initialization plane P for each fiducial curve. This

step is referred to as correspondence vector identification throughout this chapter.

This approach was also used to compute correspondence vectors from planes

generated by the alternative methods examined in this chapter, by computing

the correspondence vector that represents the closest point to the plane from the

alternative method for each fiducial curve. The generation of these planes is

described in section “How Did the Accuracy of the Proposed Method Compare to

That of Our Previous Image-Guided-Slicing-Based Method? (Question 2)” for

the image-guided-slicing-based method and in section “How Did the Accuracy of

the Proposed Method Compare to That of Our Previous Tissue-Slice-Imaging-

Based Method? (Question 3)” for the tissue-slice-imaging-based method.

The initialization correspondence vector defines a least squares best-fit affine

transformation that was used to assess the registration accuracy before iterative

optimization.

Reconstruction Algorithm Step 3: Iterative Optimization

The iterative optimization of FRE was performed on the bounded ten-dimensional

space of correspondence vectors, using a Nelder-Mead greedy simplex minimiza-

tion, implemented as fminsearch in Matlab. The resulting correspondence vector

defines a least squares best-fit affine transformation, taken as the result of the

algorithm. This step is referred to as iterative optimization throughout this chapter.
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Registration Accuracy

The registration error was measured using the post-registration 3D misalignment

between pairs of homologous intrinsic point landmarks visible on histology and the

specimen MR images. Landmarks were interactively localized in 2D on histology

images and in 3D on the specimen MR image using 3D Slicer. Landmarks included

corpora amylaceae, cysts, and atrophic ducts ~1 mm in diameter. The homology of

the landmarks between histology and specimen MR images was determined based

on spatial relationships with other salient image features close to the landmarks.

Landmarks were identified by one observer (E.G.) under advisement from one

radiologist (C.R.) and two genitourinary pathologists (M.M. and J.A.G.). An

illustrative selection of landmarks is shown in Fig. 3.

The identification of homologous landmarks was supported by the use of tissue

slice MR images. Because these images represent the same tissue as is imaged in

specimen MR images, they could be virtually reassembled and aligned with the

specimen MR image; this constrained the volume of the image to search for

landmarks (after allowing for some tissue slice to specimen MR image misalign-

ment) as histology sections were cut from a single tissue slice. Furthermore,

because the Christo-Lube infiltrated cysts and ducts that were exposed on the cut

faces of tissue slices and gave a signal void, many potential landmarks were

emphasized on tissue slice MR images, supporting the identification of these

same landmarks on specimen MR images.

The reconstruction error was measured based on the misalignment of homolo-

gous landmarks on histology and specimen MR images after registration. The

misalignment vector for each landmark is denoted as TREj. Reconstruction error

was quantified as the mean TRE, i.e., the mean magnitude of vectors TREj across

184 landmarks. The anisotropy of the reconstruction error was assessed by

aggregating the vectors TREj under different reference frames and comparing the

variances. First, the anisotropy with respect to the MR image coordinates was

assessed by computing the variances along the principal components of the set of

vectors {TREj|j ∈ 1.. J}, which shared a common specimen MR-image-aligned

reference frame; an isotropic error would be expected to yield three equal variances.

Second, the anisotropy with respect to the histology image coordinates, which do

not share a reference frame after registration, was assessed by decomposing each

TREj into an out-of-plane component normal to the histology plane and an in-plane

component parallel to the histology plane, computing the in-plane and out-of-

plane variances. In this case, an isotropic error would yield an in-plane variance

twice the out-of-plane variance because it can be considered as the sum of two

1-dimensional variances.

Because the measurement of TRE depends on the localization of landmarks

which is subject to operator variability, the target localization error (TLE) was

estimated for these landmarks on histology and specimen MR images. The TLE

was quantified as an unbiased estimator of the standard deviation of repeated

localizations of the same landmarks a day apart,
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TLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ
j¼1

1

K � 1

XK
k¼1

pj,k �
1

K

XK
k¼1

pj,k

�����
�����
2

vuut ,

where pj,k represents the k-th localization of the j-th landmark as a 2D (for histology

images) or 3D (for specimen MR images) point, K ¼ 7 repeated localizations and

J ¼ 16 landmarks.

Fig. 3 Illustrative homologous landmarks (white arrow) used to measure the TRE. The homology

of these landmarks was determined based on salient nearby features (black arrows), and were

confirmed by a genitourinary pathologist (J.A.G.) and a radiologist specializing in prostate

imaging (C.R.)
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Experiments

In this work, we characterized the registration accuracy of four approaches before and

after iterative optimization. Based on these measurements, we addressed five key

questions, as follows. (1) How accurate was the proposed method? (2) How did the

accuracy of the proposed method compare to that of our previous image-guided-

slicing-based method? (3) How did the accuracy of the proposed method compare to

that of our previous tissue-slice-imaging-basedmethod? (4)Howdid the use of internal

fiducials impact registration accuracy? (5) Does applying fiducial correspondence

error optimization to the image-guided-slicing-based method improve its accuracy?

How Accurate Was the Proposed Method? (Question 1)

To assess the reconstruction error of the proposed method, we computed the TRE

after step 3 of the algorithm, and assessed the mean TRE and the anisotropy of the

reconstruction error, as described in section “Registration Accuracy.” Additionally,

we assessed the robustness of the method by documenting the fiducial cross-

sections that were absent on histology, and assessing the correlation of the number

of remaining fiducials used in the registration with the TRE.

How Did the Accuracy of the Proposed Method Compare to That

of Our Previous Image-Guided-Slicing-Based Method? (Question 2)

Our previously developed image-guided-slicing-based method yielded histology to

MR image registrations, but involved complicated and time-consuming image

guidance. To assess whether the image guidance was necessary for the registration,

or whether the proposed method could achieve more accurate registrations using

the same fiducials and imaging as our previous image-guided-slicing-based

method, we compared the proposed method to the image-guided-slicing-based

approach. Because the specimens in this study had been sliced using the image-

guided-slicing-based approach [17], we were able to directly compare our retro-

spective reconstruction to this previous prospective approach. Although the previ-

ous approach selected the slicing planes to correspond to in vivo imaging planes, it

also indirectly defined cutting planes on specimen MR images and assumed histol-

ogy corresponded to these planes, yielding an output analogous to the plane

identification step of the proposed algorithm (the first step in which a discretized

exhaustive search for an initial plane was performed in a bounded three-

dimensional space constrained to reasonable transformations). Applying the corre-

spondence vector identification step of the proposed algorithm (the second step
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where the correspondence vector best fit to a given plane is calculated) to these

planes yielded an affine registration based on image-guided slicing. We calculated

the mean TRE of this registration and compared it to the proposed method.

How Did the Accuracy of the Proposed Method Compare to That

of Our Previous Tissue-Slice-Imaging-Based Method? (Question 3)

While our previously developed tissue-slice-imaging-based method [28] yielded

accurate registrations, it introduced an additional imaging step, increasing costs,

processing time, and complexity. To assess whether this additional imaging was

necessary for registration, we directly compared the proposed method to our

tissue-slice-imaging-based method. In this previously developed method, the his-

tology was first corresponded with the tissue slice MR image, ensuring that

histology corresponded only to tissue within one tissue slice, and not across

multiple slices (which is not possible, as each histology section is cut from a single

tissue slice). The tissue slices were then virtually assembled using fiducial

correspondences between tissue slices and the assembly was aligned to the speci-

men MR image using a least squares best-fit rigid transformation of fiducial

markers. As in section “How Did the Accuracy of the Proposed Method Compare

to That of Our Previous Image-Guided-Slicing-Based Method? (Question 2),” the

correspondence vector identification step (the second step where the correspon-

dence vector best fit to a given plane is calculated) of the proposed algorithm was

applied to the resulting plane yielding a corresponding affine registration, and the

iterative optimization step (the final step of the algorithm in which iterative

optimization of FRE was performed on the bounded ten-dimensional space of

correspondence vectors) was applied to refine the registration. Mean TRE was

calculated after steps 2 and 3. Note that unlike many approaches that use tissue

slice imaging [16, 22–25], the previous approach does not assume histology

corresponds to the front face of the tissue slices, thus accounting for variability in

microtome sectioning.

How Did the Use of Internal Fiducials Impact Registration Accuracy?

(Question 4)

Although the application of our internal fiducials to the specimen is non-disruptive

to clinical pathology assessment, it could be a barrier to translation of the proposed

method to centers where such treatment of the tissue is prohibited, and additionally

it adds complexity and time to the fiducial application process. In order to evaluate

whether these internal fiducials were necessary for accurate registration, we

performed the proposed registrations without using the internal fiducials, calculated

the mean TRE, and compared it to that of the proposed algorithm.
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Does Applying Fiducial Correspondence Error Optimization

to the Image-Guided-Slicing-Based Method Improve its Accuracy?

(Question 5)

The goals of the image-guided-slicing-based method (to obtain histology images

along pre-specified planes) and the proposed method (to accurately determine the

correspondence of histology to 3D imaging taking into account the variability in

the process of acquiring histology) are not mutually exclusive. For example, if the

application of the histology-imaging registration requires that histological informa-

tion from a single section be displayed alongside axis-aligned imaging, image-

guided slicing could be used to approximately constrain the position and orientation

of the histology and the iterative refinement of FRE could be used to find

the retrospective registration accurately. To assess the accuracy of this approach,

the iterative optimization step of the proposed algorithm (the final step of the

algorithm in which iterative optimization of FRE was performed on the bounded

ten-dimensional space of correspondence vectors) was applied to the correspon-

dence produced by the image-guided-slicing-based method, and the mean TRE was

compared to that of image-guided-slicing-based method alone. This mean TRE

was also compared to that of the proposed method.

Statistical Analyses

Statistical analyses were performed in Prism 5.04 (Graphpad Software, Inc., San

Diego, USA). The TRE of each of the proposed algorithms were characterized

using descriptive statistics [mean � standard deviation (SD)] aggregated over all

fiducials. Five key statistical comparisons were made for this study: one comparing

the mean TRE of the image-guided-slicing-based method before and after iterative

optimization, and four more comparing the mean TRE of the proposed method to

each of the other methods. The mean TREs were first compared using a one-way

repeated-measures analysis of variation (ANOVA) with five levels corresponding

to the proposed algorithm, the proposed algorithm without internal fiducials, the

image-guided-slicing-based method, the image-guided-slicing-based method with

iterative optimization, and the tissue-slice-imaging-based method. Pairwise post

hoc analyses using Bonferroni multiple comparison correction was used to assess

the five key comparisons. To mitigate the impact of positive skew in the statistical

comparisons, TRE measurements were transformed using a square-root function

before statistical testing. After transformation, the D’Agostino and Pearson omni-

bus normality test detected deviation from normality only for the algorithm without

internal fiducials, so post hoc analyses including this algorithm were confirmed

with the nonparametric Wilcoxon matched-pairs signed rank test. Ninety-five

percent confidence intervals (CI) on the differences were generated based on the

post hoc analyses using the untransformed data, and should be interpreted in

the context of their non-normality. To assess the robustness of the proposed method
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to the absence of some fiducial cross-sections on histology images, a Spearman

correlation test was performed between the TRE for each landmark and the number

of fiducials remaining on the corresponding histology image.

Results

The quantified registration accuracies and comparisons between them are given in

Tables 1 and 2. A box plot of the five registration methods compared in this work is

shown in Fig. 4. More in-depth results are given in the following sections.

Landmark Identification

Homologous landmark pairs were identifiable on all 34 histology–specimen MR

image pairs, resulting in three to seven homologous landmarks on each of the three to

five histology images per specimen (184 landmarks in total). Illustrative examples of

the identified landmarks and the nearby salient features used to establish homology

are shown in Fig. 3. The distribution of the landmarks is shown in Fig. 5, with

75 landmarks in the peripheral zone, 8 in the central zone, 66 in the transitional zone,

Table 1 TRE for four algorithms before and after iterative optimization.

Algorithms compared in post hoc analyses are connected by lines, solid where a

statistical difference was found, dashed when the analysis failed to detect a

statistical difference

Table 2 Post hoc analyses comparing the five algorithms as 95 % CI (mm) on differences of mean

TRE. For conciseness, algorithms after iterative optimization are marked “w/IO”

Method A Method B 95 % CI (mm) TREA � TREB

Image-guided slicing Proposed method w/IO [0.38,0.63]

Image-guided slicing Image-guided slicing w/IO [0.38,0.62]

Image-guided slicing w/IO Proposed method w/IO [�0.12,0.13]

No internal fiducials w/IO Proposed method w/IO [0.09,0.34]

Tissue slice imaging w/IO Proposed method w/IO [�0.13,0.11]
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Fig. 4 Box plot of the

TREs from the five

algorithms compared in

this study, with 5–95 %

whiskers

Fig. 5 Distribution of homologous landmarks in normalized coordinates. Landmark coordinates

were stretched such that the left/right, anterior/posterior, and inferior/superior extents matched for

all specimens. Landmark symbols denote the zonal anatomy in which the landmark was identified
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and 11 in the anterior fibromuscular stroma; the remaining 24 landmarks were not

definitively categorized. Notably, no landmarks were identified near the apex and

base because only mid-gland tissue slices were included in this study.

How Accurate Was the Proposed Method? (Question 1)

The key findings of this experiment were that the mean � SD TRE was

0.71 � 0.38 mm and that the specimen processing time, comprising fiducial mark-

ing, specimen MR imaging, localizing fiducials, and executing the reconstruction

algorithm took 3 h; this was 8 h faster than the image-guided-slicing-based method

and 2 h faster than the tissue-slice-imaging-based method.

Illustrative co-registered histology and specimen MR images are shown in

Fig. 6. The mean � SD TRE of 0.71 � 0.38 mm was found to be anisotropic

with variances of 0.33, 0.13, and 0.09 mm2 in the principal directions of variation,

measured in the MR image coordinate frame. However, the principal direction of

variation was not aligned with an image axis. In the histology image coordinate

frame the in-plane variance was 0.24 mm2, and the out-of-plane variance was

Fig. 6 Illustrative co-registered histology and specimen MR images.White arrows show example

validation landmarks. Figure reproduced with permission from the Journal of Magnetic Resonance

Imaging [29]
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0.39 mm (larger than the variances in the MR image coordinate frame). The TLE on

histology images was 0.05 mm and the TLE on specimenMR images was 0.16 mm;

these errors, combined in quadrature, are sufficiently small to interfere minimally

with the measurement of TRE.

Of the 340 fiducial cross-sections expected on the histology images, 20 were not

visible: 7 due to the sectioning plane being located past the endpoint of the fiducial

and 13 due to the fiducial being lost during processing. The 95%CI on the Spearman

correlation coefficient for number of fiducials used in the registration [7 (N ¼ 1),

8 (N ¼ 5), 9 (N ¼ 7) and 10 (N ¼ 21)] with the TRE was �0.23 to 0.06.

The proposed method took 3 h per specimen, comprising 90 min for fiducial

marking, 80 min for specimen MR imaging, 12 min for localizing fiducials, and

1 min for executing the reconstruction algorithm. In comparison, the image-guided-

slicing-based method described in this work took ~11 h per specimen and the tissue-

slice-imaging-based method took ~5 h per specimen.

How Did the Accuracy of the Proposed Method Compare to
That of Our Previous Image-Guided-Slicing-Based Method?
(Question 2)

The key finding of this experiment was that the image-guided-slicing-based

approach yielded a mean � SD TRE of 1.21 � 0.74 mm, 0.38–0.63 mm higher

(95 % CI) than the proposed algorithm.

How Did the Accuracy of the Proposed Method Compare
to That of Our Previous Tissue-Slice-Imaging-Based Method?
(Question 3)

The key finding of this experiment was that the mean � SD TRE of the tissue slice

imaging method was 0.70 � 0.36 mm, within 0.13 mm (95 % CI) of the proposed

algorithm. A Bland-Altman plot comparing the TRE of the tissue-slice-imaging-

based method to the proposed method is shown in Fig. 7a.

How Did the Use of Internal Fiducials Impact Registration
Accuracy? (Question 4)

The key finding of this experiment was that the proposed algorithm without internal

fiducials yielded a mean � SD TRE of 0.92 � 0.82 mm, 0.09–0.34 mm higher

(95 % CI) than the proposed algorithm with internal fiducials. Notably, all nine of
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the outliers visible in Fig. 5 correspond to sections where one or more external

fiducials were not visible on the histology image. When these sections were

omitted, the difference remained significant but was less than 0.14 mm (95 % CI).

Does Applying Iterative Optimization to the Image-Guided-
Slicing-Based Method Improve Its Accuracy? (Question 5)

The key finding of this experiment was that after iterative optimization, the image-

guided-slicing-based approach yielded a mean � SD TRE of 0.71 � 0.37 mm,

0.38–0.62 mm lower than before iterative optimization and within 0.13 mm (95 %

CI) of the proposed algorithm. A Bland-Altman plot comparing the TRE of the

image-guided-slicing-based method to the proposed method is shown in Fig. 7b.

The addition of iterative optimization to this method would require the localization

of fiducials and execution of the software, adding approximately 15 min to the

processing time.

Discussion

In this chapter, we presented a method for the accurate 2D–3D registration of

whole-mount mid-gland prostate histology to ex vivo specimen MR images

which yielded a submillimeter mean TRE, and reduced the time per specimen by

70 % relative to our previously implemented image-guided-slicing-based approach.

These registrations, in conjunction with 3D–3D ex vivo–in vivo image regis-

trations, can be used to support the evaluation of prostate imaging modalities.

Fig. 7 Bland-Altman plots comparing (a) the mean TRE of the proposed algorithm (TREP) to that

of the image-guided-slicing-based method after iterative optimization (TREIGSIO), and (b) the

mean TRE of the proposed algorithm to that of the tissue-slice-imaging-based method (TRETSI)
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Evaluation of the Proposed Algorithm

The accuracy of the registration algorithm was characterized and compared to four

alternative registration approaches. The mean � SD TRE of the proposed algo-

rithm was 0.71 � 0.38 mm with a higher component of error perpendicular to the

identified histology image plane.

The method proved to be robust to the absence of one to three external fiducial

cross-sections on histology images, an important result since this absence was

observed for 5 % of cross-sections across 38 % of subjects. Although we failed to

show a correlation between the number of fiducials visible on histology and the TRE,

we speculate that missing higher numbers of fiducials than observed in this data set

may result in an increase in registration error. The missing fiducials are due in part to

the loss of fiducial cross-sections during tissue processing and in part due to tissue

slicing not passing through the fiducials. The former could be mitigated by careful

handling of the fiducial marked specimen during tissue processing, in particular

when cutting tissue into thick slices. The latter problem could be mitigated by using

longer fiducials covering a greater extent of the specimen.

Comparison with Other Algorithms

The mean TRE for the proposed algorithm without using tissue slice imaging was

within 0.13 mm of the tissue-slice-imaging-based approach previously developed

in our institute, suggesting the additional cost, complexity, and processing time of

tissue slice MR imaging may not be warranted. The mean TRE was 0.38–0.63 mm

lower than the image-guided-slicing-based method. The iterative optimization

component of the algorithm (step 3) improved the mean TRE of the image-

guided-slicing-based approach by 0.38–0.62 mm to be within 0.13 mm of the

proposed method. Thus, if there is a need for controlling the histology section

position and orientation, such as a need to display whole histology sections

corresponding to whole imaging-axis-aligned in vivo images, then an image-guid-

ance-based method could be combined with the proposed optimization of FRE to

avoid sacrificing registration error.

Registration errors have resulted in researchers limiting the sizes of cancerous

foci considered in studies [31, 32], and may have resulted in underestimations of the

true underlying differences between cancerous and benign tissue [33]. The required

accuracy for histology to in vivo imaging registrations depends on the research

questions being answered. Furthermore, for a given study design, the TRE has an

impact on the statistical power and the required sample size of the study. The

reported mean TRE values can be considered in the context of a typical application

of histology to in vivo imaging registrations: a prostate imaging validation study

to detect signal differences between the cancer foci and normal tissue regions.

A recent model of the statistical relationship between registration error and the
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statistical power for this type of imaging validation study [26, 27] can be used to

quantify the impact of registration errors on the required sample size. Because the

model also provides a mapping frommean TRE to the registration error metrics used

in themodel, this model can be used to compare the reportedmean TRE values under

the assumptions that the tumors are modeled as spherical regions, misalignment can

be modeled as 3D Gaussian translational registration error and the reported TRE

dominate the overall registration error from histology to in vivo images. In this

scenario, using the proposed method with a mean TRE of 0.71 mm as a baseline, the

image-guided-slicing-based method with a mean TRE of 1.21 mm would require

28 % more subjects to achieve the same statistical power. Considering the high cost

per subject of imaging validation studies (e.g., $10,000 USD per subject in an

ongoing prostate imaging study at our institution), this could have a substantial

impact on the cost of the study. For example, in the aforementioned prostate imaging

study, which plans to accrue 66 subjects, this 28 % increase in sample size would

correspond to an additional cost of $190,000. Such sample size increases also

increase the effort needed to accrue additional patients, time to complete studies,

and expose additional subjects to nonstandard-of-care tests and interventions.

As we have demonstrated, the proposed method can be used without internal

fiducials; however, this resulted in an increase in mean TRE. Using the previously

described scenario, the proposed method without internal fiducials would require

11 % more subjects than with the internal fiducials, an increase that would corre-

spond to an additional cost of $80,000 in the prostate imaging study at our institu-

tion. Some of this difference, however, was due to reduced robustness to missing

fiducials on histology images. If all external fiducials were intact, the impact of

absent internal fiducials was minimized, suggesting that the decrease in accuracy

could be mitigated by careful handling and the use of longer extrinsic fiducial

markers.

The proposed method requires some alteration of the pathology workflow,

introducing fiducials and ex vivo MR imaging. However, this disruption is reduced

compared to our previously implemented image-guided-slicing-based approach.

The time required to collect data was reduced by 70 %. Furthermore, the retrospec-

tive registration allows the specimen to be cut following the standard slice

orientations used in the pathologist workflow and in the resulting clinical reports.

Application

The proposed registration method has been applied in conjunction with precise

contouring and grading of histology images and an interactive registration from

ex vivo specimen MR images to in vivo multi-parametric MR images, enabling

the mapping of information from histological examination to in vivo MR images

for the evaluation of prostate cancer imaging. Oblique slices from two such

cases containing Gleason score 7 peripheral zone cancer foci are shown in

Fig. 8, illustrating the variability in the appearance of Gleason score 7 foci on

T2-weighted MR imaging.
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Limitations

The conclusions of this work should be considered in the context of two key

limitations. First, only affine registrations were considered in our experiments.

While previous work suggests that much of the deformation between whole-

mount prostate histology and fixed ex vivo specimens can be accounted for by linear

transformations, there is also evidence that some submillimeter nonlinear deforma-

tion is induced during the acquisition of histology [19]. Second, while the proposed

method can theoretically be applied to specimens sliced without any guidance, it was

tested on data from an existing study using image-guided slicing. This allowed for

the direct comparison of image-guided-slicing-based and retrospective registra-

tions; however, the variation in orientation of histology sections may underestimate

what would be typically seen with less-controlled tissue handling.

Conclusion

In conclusion, the proposed fiducial-based 3D prostate whole-mount histology to

ex vivo specimen MR image registration algorithm reduced our specimen

processing time by 8 h per subject, a 70 % reduction, and yielded a mean � SD

TRE of 0.71 � 0.38 mm. Our previous method based on the image-guided slicing

of specimens into thick tissue slices yielded a mean TRE that was 0.38–0.63 mm

higher (95 % confidence interval) and the proposed method executed without

Fig. 8 Oblique slices from in vivo T2-weighted MR images from two subjects with contours of

Gleason score 7 peripheral zone cancer foci mapped from histology images using the proposed

method in conjunction with an interactive ex vivo to in vivo deformable registration. These cases

illustrate the variable appearance of Gleason score 7 foci on T2-weighted MRI, and in particular

the variability in the appearance of tumor boundaries
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internal fiducials yielded a mean TRE that was 0.09–0.34 mm higher (95 %

confidence interval). Under a statistical model relating TREs to the statistical

power of an imaging study to detect mean signal differences between the smallest

clinically significant [34] cancer foci and benign regions, the observed differences

in registration error could result in 28 % and 11 % increases in sample size for the

image-guided-slicing-based method and the proposed method without internal

fiducials, respectively.
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Dr. José A. Gómez is a Pathologist at London Health Sciences Centre in London,

Ontario, specializing in Genitourinary Pathology. He is also an Associate Professor

in the Department of Pathology at the Schulich School of Medicine and Dentistry,

The University of Western Ontario in London, Ontario. Dr. Gómez’s primary areas
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Anatomical Landmark Detection

David Liu and S. Kevin Zhou

Abstract We present a landmark detection method that detects a large number of

anatomical structures efficiently in a medical image. The method consists of two

steps. The first step performs nearest neighbor matching, which exploits holistic

image context to quickly obtain coarse estimates of landmark positions. The second

step refines landmark positions while minimizing the overall computation time, by

exploiting unary and pairwise context in a submodular optimization framework.

The system is validated on a database of 2,500 CT volumes and shows significant

speedup over traditional methods. Additionally, we present a method for training

individual landmark detectors based on the Multiple Instance Learning framework.

We introduce a spatial regularization term that encourages a concentrated detection

response map, which is particularly suitable for medical images since landmarks are

unique in a given image. This method gives better results than prior work when

using few or even zero annotations.

Keywords Landmark detection • Multiple instance learning • Spatial regulariza-

tion • Submodular optimization • Nearest neighbor

Introduction

An important area in medical image analysis is the development of methods for

quickly finding the positions of certain anatomical structures, such as liver top, lung

top, aortic arch, iliac artery bifurcation, femur head left and right, to name but a few.

In multi-modality image registration (such as PET-CT) or in registration of

follow-up scans, the fusion of multiple images can be initialized or guided by the

positions of such anatomical structures [9, 25]. In vessel centerline tracing, vessel
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bifurcations can provide the start and end points of certain vessels to enable fully

automated tracing [3]. In organ segmentation, the center position of an organ can

provide the initial seed points to initiate segmentation algorithms [40]. In seminar

reporting, automatically found anatomical structures can be helpful in configuring

the optimal intensity window for display [38], or offer the text tooltips for structures

in the scan [45].

We define an anatomical landmark (or landmark in brief) as a distinct and unique

point position in an image that coincides with an anatomical structure. Some

anatomical landmarks have little ambiguity, such as the apex of the left or right

lung in a CT image. Other landmarks such as the liver center lack distinctiveness,

because the center of mass of the liver often does not coincide with a unique

anatomical structure and becomes ill-defined. In such a case, one can define a

hypothetical bounding box that tightly bounds the liver, and define the liver center

as the center of the bounding box.

We are interested in the problem of efficiently detecting a large number of

landmarks from such scans, without reading DICOM tags or any textual informa-

tion. This is challenging due the presence of imaging noise, artifacts, and body

deformation. The field of view is also unknown. A practical landmark detection

method must meet the following requirements. First, it must be robust to deal with

pathological or anomalous anatomies such as fluid-filled lungs, air-filled colons,

inhomogeneous livers caused by different metastasis, and resected livers after

surgical interventions, different contrast agent phases, scans of full or partial

body regions, and extremely narrow field of views. Figure 1 shows some examples

of CT scans that illustrate the challenges. Second, since landmark detection is

mostly a pre-processing step for computationally heavier tasks such as CAD and

registration, it must run fast so that more time can be allocated for heavier tasks.

Finally, the landmark detection accuracy depends on the subsequent applications.

For example, for body region detection, exact 3D point positions are not needed; for

registration, accurate landmarks are desired.

Fig. 1 The database used in this chapter has thousands of 3D CT scans with different body regions

and severe pathologies
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Landmark Detection Methods

State-of-the-art landmark detection methods are based on statistical learning

[50]. In this paradigm, each landmark has a dedicated detector [32, 55]. In [37],

volumes have consistent field of view, e.g., the database consists of only liver

scans. In such a case, it is possible to predefine a region of interest (ROI) for each

landmark detector. In general, however, the position of each landmark can vary

significantly across different scans; in most cases, some landmarks such as the

head or toe are not even present in a body scan. Under such cases, running

multiple detectors independently of each other can result in false detections [32,

39]. To handle the problem of false detections, one can exploit the spatial

relationship information between landmarks to reduce false detections. A model

for describing the spatial relationship between landmarks is the Markov Random

Field [4, 5].

Another important factor to consider when designing multiple landmark detec-

tors is speed. Naively running each detector on the whole volume yields a time

complexity proportional to the number of detectors and volume size. This poses

significant computational resources when the number of landmarks of interest is

large, or when the volumes are large. More efficient detection can be achieved with

a sequential method [32]. This method assumes at least one of the landmark

positions is known. Since the relative positions of landmarks in the human body

are constrained (e.g., the kidney is below the heart in a typical CT scan), one can

define a search range (sub-volume) for each unknown landmark relative to the

known landmark positions. Detecting a landmark within a local search range

instead of within the whole volume achieves faster speed.

In practice, however, none of the landmark positions is known a priori, and

therefore the sequential method described above needs some pre-processing work

to find the first landmark, also called the anchor landmark [32]. There are two major

difficulties in finding the anchor landmark. First, as mentioned earlier, detectors are

prone to false positives when used alone. This poses a chicken-and-egg problem: To

find the anchor landmark robustly, we need to rely on the positions of other

landmarks, which are, however, unknown. A second problem exists, even if the

detectors had zero false positive rates: typical CT scans have small (partial) field-

of-view, as opposed to imaging the whole body from head to toe. Since we do not

know which landmarks are present in a partial field-of-view volume, it would

require trying many detectors, each one running in the whole volume, until a

landmark is found present. This process is a computational bottleneck of the

sequential method. In other words, the key problem in the sequential method is to

find the anchor landmark robustly and efficiently. This brings us to the topic of

context exploitation in the next section.
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Context Exploitation

Designing a useful landmark detection method should effectively exploit the rich

contextual information manifested in the body scans, which can be generally

categorized as unary (or first-order), pairwise (or higher-order), and holistic
context.

The unary context refers to the local regularity surrounding a single landmark.

The classical object detection approach in [49, 50] exploits the unary context to

learn a series of supervised classifier to separate the positive object (herein land-

mark) from negative background. The complexity of this approach depends on the

volume size.

The pairwise or higher-order context refers to the joint regularities between two
landmarks or among multiple landmarks. Liu et al. [32] embed the pairwise spatial

contexts among all landmarks into a submodular formulation that minimizes the

combined search range for detecting multiple landmarks. Here the landmark detec-

tor is still learned by exploiting the unary context. In [55], the pairwise spatial

context is used to compute the information gain that guides an active scheduling

scheme for detecting multiple landmarks. Seifert et al. [44] encoded pairwise

spatial contexts into a discriminative anatomical network.

The holistic context goes beyond the relationship among a cohort of landmarks

and refers to the whole relationship between all voxels and the landmarks; in other

words, regarding the image as a whole. In [58], shape regression machine is

proposed to learn a boosting regression function to predict the object bounding

box from the image appearance bounded in an arbitrarily located box and another

regression function to predict the object shape. Pauly et al. [38] simultaneously

regress out the locations and sizes of multiple organs with confidence scores using a

learned Random Forest regressor. To some extent, image registration [22] can be

regarded as using the holistic context.

In [32], no holistic context is used. Instead, the aforementioned “anchor land-

mark” is searched to trigger the whole detection process. There are two major

problems of finding the anchor landmark. First, as mentioned earlier, detectors are

prone to false positives when used alone. Detecting the “anchor landmark” utilizes

only the unary context in exhaustive scanning. Since any false positive detection of

the “anchor landmark” causes catastrophe in detecting the remaining ones, some-

times it requires trying many detectors, each one running in the whole volume, until

a landmark is found present.

In this chapter we present an approach that leverages all three types of contexts.

It consists of two steps:

– The first step uses nearest neighbor (NN) matching, which exploits holistic

context to perform matching and transfers landmark annotations. This is signif-

icantly different from the regression approach as in [58] which scans through the

image searching for landmarks. This is also different from the “anchor land-

mark” approach in [32]. Detecting the “anchor landmark” utilizes only the unary

context in exhaustive scanning. Since any false positive detection of the “anchor
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landmark” causes catastrophe in detecting the remaining ones, sometimes it

requires trying many detectors, each one running in the whole volume, until a

landmark with very high confidence score is found. Finally we achieve a much

faster algorithm for detecting landmarks.

– The second step uses submodular optimization to minimize overall computa-

tion time. The method exploits both unary and pairwise contexts and aims to

minimize the overall computation. The approach was first introduced in [32] to

minimize the total search range and later extended to minimize overall com-

putation time in [31] by modifying the cost function in the submodular

formulation.

Coarse Landmark Detection Using Nearest

Neighbor Matching

Our method consists of two steps. The first step is coarse detection and involves

finding a rough position estimate for all landmarks. After coarse detection, we

refine the landmark positions through landmark detectors. This section focuses on

the coarse detection step.

Assume that a volume is represented by a D-dimensional feature vector. Given a

query (unseen input) vector x∈ RD, the problem is to find the element y∗ in a finite

set Y of vectors to minimize the distance to the query vector:

y� ¼ argmin
y2Y

dðx; yÞ (1)

where d(.,.) is the Euclidean distance function. Other choices can be used too. Once
y∗ is found, the coarse landmark position estimates are obtained through a “trans-

fer” operation, to be detailed in section “Transferring Landmark Annotations”.

Volume Features

To facilitate the matching, we represent each volume by a D-dimensional feature

vector. In particular, we adopt a representation of the image using “global

features” that provide a holistic description as in [47], where a 2D image is

divided into 4 � 4 regions, eight oriented Gabor filters are applied over four

different scales, and the average filter energy in each region is used as a feature,

yielding in total 512 features. For 3D volumes, we compute such features from

nine 2D images, consisting of the sagittal, axial, and coronal planes that pass

through 25 %, 50 %, and 75 % of the respective volume dimension, resulting a

4,608-dimensional feature vector.
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Efficient Nearest Neighbor Search

In practice, finding the closest (most similar) volume through evaluating the exact

distances is too expensive when the database size is large and the data dimension-

ality is high. Two efficient approximations are used for speedup. Vector quantiza-

tion [33] is used to address the database size issue and product quantization [24] for

the data dimensionality issue.

A quantizer is a function q(.) mapping a D-dimensional vector x to a vector

qðxÞ 2 Q ¼ fqi; i ¼ 1; 2; . . . ;Kg . The finite set Q is called the codebook, which

consists of K centroids. The set of vectors mapped to the same centroid forms a

Voronoi cell, defined asVi ¼ fx 2 RDjqðxÞ ¼ qig. The K Voronoi cells partition the

space of RD. The quality of a quantizer is often measured by the mean squared error

between an input vector and its representative centroid q(x). We use the K-means

algorithm [33] to find a near-optimal codebook. During the search stage, which has

high speed requirement, distance evaluation between the query and a database

vector consists of computing the distance between the query vector and the nearest

centroid of the database vector.

These volume feature vectors are high dimensional (we use D ¼ 4,608 dimen-

sions), which poses difficulty for a straightforward implementation of the K-means

quantization described above. A quantizer that uses only 1∕3 bits per dimension

already has 21536 centroids. Such a large number of centroids make it impossible to

run the K-means algorithm in practice. Product quantization [24] addresses this

issue by splitting the high-dimensional feature vector into m distinct sub-vectors as

follows,

x1; . . . ; xD�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
u1ðxÞ

; . . . ; xD�D�þ1; . . . ; xD|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
umðxÞ

(2)

The quantization is subsequently performed on the m sub-vectors q1(u1(x)),. . .,
qm(um(x)), where qi, i ¼ 1,. . .,m denote m different quantizers. In the special case

where m ¼ D, product quantization is equivalent to scalar quantization, which has

the lowest memory requirement but does not capture any correlation across feature

dimensions. In the extreme case where m ¼ 1, product quantization is equivalent to

traditional quantization, which fully captures the correlation among different fea-

tures but has the highest (and practically impossible, as explained earlier) memory

requirement. We use m ¼ 1,536 and K ¼ 4 (2 bits per quantizer).

A Note on Product Quantization and Related Work

The explosion of the amount of digital content has stimulated search methods for

large-scale databases. An exhaustive comparison of a query with all items in a

database can be prohibitive. Approximate nearest neighbors (ANN) search methods
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are invented to handle large databases, at the same time seeking a balance between

efficiency and accuracy. Such methods aim at finding the nearest neighbor with

high probability. Several multi-dimensional indexing methods, such as KD-tree

[16], have been proposed to reduce the search time. However, for high-dimensional

feature vectors, such approaches are not more efficient than the brute-force exhaus-

tive distance calculation, whose complexity is linear with the database size and the

data representation dimension [24].

One of the most popular ANN techniques is Locality-Sensitive Hashing [10].

However, most of these approaches are memory consuming. The method of [54]

embeds the vector into a binary space and improves the memory constraint.

However, it is outperformed in terms of the trade-off between accuracy and

memory usage by the Product Quantization method [24].

Volume Size Clustering

The anisotropic resampling of volumes into the same size, as done in section “Vol-

ume Features”, causes distortion in appearance. This could have negative impact on

nearest neighbor search. For example, when a head scan and a whole body scan are

resampled to the same number of voxels, their appearances could become more

similar than they were in their original sizes, and hence negatively affecting the

results in Eq. (1). We use the K-means algorithm [33] to cluster all database

volumes into 30 categories based on the volume’s physical dimensions. Given a

query volume, it is first assigned to the category of volumes with similar physical

sizes. Nearest neighbor search is then only performed within this category.

Transferring Landmark Annotations

Given a query, we use the aforementioned method to find the most similar database

volume. Assume this database volume consists of N landmarks with positions

{s1,. . .,sN}. We simply “transfer” these landmark positions to the query, as illus-

trated in Fig. 2. In other words, the coarsely detected landmark positions are set as

{s1,. . .,sN}. In the next section, we discuss how to refine these positions.

Fine Landmark Detection with Submodular Optimization

After the step of NN matching, certain landmarks are located roughly. We now

trigger the landmark detectors to search for a more precise position for each

landmark only within local search ranges predicted from the first stage results.

Running a landmark detector locally instead of over the whole volume reduces the
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computation and also reduces false positive detections. The local search range of

each detector is obtained off-line based on spatial statistics that capture the relative

position of each pair of landmarks. Note that the two sets of landmarks in two stages

can be different.

In order to speed up the detection, the order of triggering the landmark detectors

needs to be considered. This is because, once a landmark position is refined by a

detector, we can further reduce the local search ranges for the other landmarks by

using the pairwise spatial statistics that embody the pairwise context.
The main goal in this section is to minimize the computational cost of multiple

landmark detection. The computational cost is controlled by (1) the size of the

image subspace (or search space) in which a detector is performing the search and

(2) the unit cost of the landmark detector. We will first focus on item (1), and later

extend the framework to item (2).

Having n landmarks detected, with N � n landmarks remaining to detect, which

detector should one use next, and where should it be applied, so that the overall

computational cost is minimized? These two questions are tightly related, and the

answer is simple: determine the search space for each detector based on the already
detected landmarks and pick the detector that has the smallest search space. We

will show theoretical guarantees of the algorithm in section “Greedy Algorithm”,

Fig. 2 Coarse landmark detection, a 2D illustration. Real system operates on 3D volumes. Upper
figure: nearest neighbor search. Lower figure: annotated positions of database volume are trans-

ferred to query. The real system operates on 3D volumes
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and then in section “Another Search Space Criteria” extend the algorithm to take

multiple factors into account, including the size of the search space and the unit cost

of the detector (classifier).

Search Space

In sequential detection, landmarks already detected provide spatial constraints on

the landmarks remaining to be detected. Consider an object consisted of N distinct

landmarks. Denote by

Λð1Þ:ðnÞ ¼ flð1Þ � lð2Þ � . . . � lðnÞg; n � N; (3)

the ordered set of detected landmarks. Denote by U the un-ordered set of landmarks

that remains to be detected. For each landmark li ∈ U, its search space Ωli is

determined jointly by landmarks in Λ(1):(n), for example, by the intersection of the

individual search spaces,

ΩliðΛð1Þ:ðnÞÞ ¼
\

j;lj2Λð1Þ:ðnÞ

ΩliðfljgÞ; (4)

whereΩliðfljgÞ denotes the search space for landmark li conditioned on the position
of a detected landmark lj. This is illustrated in Fig. 3. This definition could be

restrictive, so we will discuss alternatives in sections “Another Search Space

Criteria” and “Multiple Search Space Criteria”.

Denote the search volume (or search area) of search space ΩliðΛÞ as VðΩliðΛÞÞ,
which calculates the volume of ΩliðΛÞ . Without loss of generality, assume the

search volume is the cardinality of the set of voxels (pixels) that fall within the

search space. Define the constant Ωϕ � Ωk(ϕ),8k, as the space of the whole image,

Fig. 3 Illustration of the search space definition in Eq. (4). Detected landmarks l1 and l2 provide
search spaces for un-detected landmarks l3 and l4 (not shown). Final search spaces V3 and V4 for l3
and l4 are obtained by intersection. A greedy algorithm would prefer landmark l4 over l3 as the next
landmark to detect since V4 is smaller than V3
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which is a tight upper bound of the search space. The search volume has the

following property:

Theorem 1 8S � T,

VðΩðSÞÞ � VðΩðS [ flgÞÞ 	 VðΩðTÞÞ � VðΩðT [ flgÞÞ (5)

Set functions satisfying the above property are called supermodular [43].
Let us simplify the notation by omitting the subscript li from Ωli . Define the

complementΩðSÞ ¼ Ωϕ n ΩðSÞ; 8S, where Ωϕ has earlier been defined as the space

of the whole volume.

Lemma 1 Ω(S [{ l}) ¼ Ω(S) \ Ω({l})
This follows from the definition.

Lemma 2 If S � T, then Ω(S) 
 Ω(T)

Proof T ¼ S [ (T ∖ S) ) From Lemma 1, ΩðTÞ ¼ ΩðS [ ðT n SÞÞ ¼ ΩðSÞ\
ΩðT n SÞ � ΩðSÞ.
Lemma 3 ΩðSÞ n ΩðS [ flgÞ ¼ ΩðSÞ \ ΩðflgÞ
Proof LHS ¼ ΩðSÞ n ðΩðSÞ \ ΩðflgÞÞ ¼ ΩðSÞ \ ðΩðSÞ \ ΩðflgÞÞ ¼ ΩðSÞ\
ðΩðSÞ [ΩðflgÞÞ ¼ ðΩðSÞ \ ΩðSÞÞ [ ðΩðSÞ \ ΩðflgÞÞ ¼ RHS.

Lemma 4 If Ω(T) � Ω(S), then VðΩðSÞ n ΩðTÞÞ ¼ VðΩðSÞÞ � VðΩðTÞÞ
Lemma 5 If Ω(T) � Ω(S), then V (Ω(T) � V (Ω(S))

Finally we prove the supermodularity of V (Ω(.)) in Theorem 1.

Proof of Theorem 1 From Lemma 2, Ω(S) 
 Ω(T ). Then ΩðSÞ \ ΩðflgÞ 
 ΩðTÞ
\ΩðflgÞ. From Lemma 3, we have Ω(S) ∖ Ω(S [{ l}) 
 Ω(T ) ∖ Ω(T [{ l}). From
Lemma 5, we have V (Ω(S) ∖Ω(S [{ l}))	 V (Ω(T) ∖Ω(T [{ l})). From Lemma 4,

Q.E.D.

Lemma 6 F(.) in Eq. (7) is nondecreasing.

Proof From Lemma 2 and Lemma 5, we have 8S � T, we have V (Ω(T )) �
V (Ω(S)), which shows V (.) is nonincreasing. Consequently, F(.) is nondecreasing.

Greedy Algorithm

The goal is to find the ordered set Λ(2):(N ) that minimizes the cumulated search

volume, i.e. ,

Λ0
ð2Þ:ðNÞ ¼ argmin

Λð2Þ:ðNÞ

XN

i¼2
VðΩlðiÞ ðΛð1Þ:ði�1ÞÞÞ: (6)
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Note that in Eq. (11) we do not include the first landmark l1 as its search space is

typically the whole image when no landmarks have been detected a priori. The first

landmark can be detected using the method in section “Transferring Landmark

Annotations”, or by the method in section “Finding the Anchor Landmark”. We

will discuss these different methods in detail in section “Comparing Holistic-

Anchoring and Sequential-Anchoring”.

Define the cost function Ck(Λ) ¼ V (Ωk(Λ)),8k. A greedy algorithm for finding

the ordering {l(1),. . .,l(N )} that attempts to minimize the overall cost is to iteratively

select the detector that yields the smallest cost. This is illustrated in Fig. 4 and

proceeds as follows.

This simple algorithm has nice theoretical properties. Define

FkðΛÞ ¼ CkðϕÞ � CkðΛÞ (7)

Hence, Fk(ϕ) ¼ 0. From Lemma 6, Fk(.) is a nondecreasing set function. From

Eq. (1) and (7), 8S � T,

FkðSÞ � FkðS [ flgÞ � FkðTÞ � FkðT [ flgÞ (8)

Fig. 4 Illustration of the greedy algorithm. Different box colors (red and blue) indicate search

ranges provided by other landmarks (liver and aortic root)
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which means Fk(.) is submodular [43]. Furthermore, since Ck(ϕ) is constant over k,
Eq. (11) becomes

Λ0
ð2Þ:ðNÞ ¼ argmax

Λð2Þ:ðNÞ

XN

k¼2
FkðΛð1Þ:ðk�1ÞÞ: (9)

Lemma 7 F(.) ¼ ∑Fk(.) is submodular if 8k, Fk(.) is submodular [43].
Together, these properties bring us to the theorem that states the theoretical

guarantee of the greedy algorithm.

Theorem 2 If F(.) is a submodular, nondecreasing set function, and F(ϕ)¼ 0, then
the greedy algorithm finds a set Λ0, such that FðΛ0Þ 	 ð1� 1=eÞmaxFðΛÞ [36].

Optimizing submodular functions is in general NP-hard [34]. One must in

principle calculate the values of N! detector ordering patterns. Yet, the greedy

algorithm is guaranteed to find an ordered set Λ such that F(.) reaches at least

63 % of the optimal value.

Note that the ordering found by the algorithm is image-dependent, since the

search space of the next detector is dependent on the position of the landmarks

already detected. Therefore, the algorithm is not performing an “off-line” schedul-

ing of detectors. For another example, when the search space of a landmark is

outside the image or if its detection score is too low, then this landmark is claimed

missing. This would influence the subsequent detectors through the definition of the

search space and affect the final ordering.

Another Search Space Criteria

Another useful definition of search space can be defined as follows:

ΩliðΛÞ ¼ min
l2Λ

fΩliðlÞg (10)

In each round of the greedy algorithm, each detected landmark provides a search

space candidate for each un-detected landmark. Each un-detected landmark then

selects the smallest one among the provided candidates. The greedy algorithm then

selects the un-detected landmark that has the smallest search space. This is illus-

trated in Fig. 5. We call this search space criteria the min-rule, and the one in

section “Search Space” the intersection-rule.
Denote mliðSÞ ¼ argminl2S ΩliðflgÞ as the landmark in the set of detected

landmarks S that provides the smallest search range for detector li. Here we show

that this definition also satisfies Theorem 1.

Lemma 8 8S � T,V (Ω(S)) 	 V (Ω(T))

Proof From definition, Ω(S) ¼ minl∈SΩ({l}), and Ω(T ) ¼ minl∈TΩ({l}). Since
S � T, we have Ω(S) 	 Ω(T ), and hence V (Ω(S)) 	 V (Ω(T )).
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Proof of Theorem 1

Case (i): mliðTÞ ¼ mliðT [ flgÞ . This means including l does not decrease the

search space, and hence V (Ω(T )) ¼ V (Ω(T [{ l})). But from

Lemma 8, V (Ω(S)) 	 V (Ω(S [{ l})) always holds. Hence VðΩðSÞÞ
�VðΩðS [ flgÞÞ 	 VðΩðTÞÞ � VðΩðT [ flgÞÞ.

Case (ii): mliðTÞ 6¼ mliðT [ flgÞ . This means l provides a smaller search space

than any other landmark in T, and hence mliðflgÞ ¼ mliðT [ flgÞ. Since
S � T, we also have mliðflgÞ ¼ mliðS [ flgÞ. Hence, V (Ω(S [{ l})) ¼
V (Ω(T [{ l})). But from Lemma 8, V (Ω(S))	 V (Ω(T )) always holds.
Hence VðΩðSÞÞ � VðΩðS [ flgÞÞ 	 VðΩðTÞÞ � VðΩðT [ flgÞÞ.

Multiple Search Space Criteria

Since submodularity is closed under linear combination with nonnegative scalars

[43], multiple submodular functions can be optimized simultaneously. For exam-

ple, one could combine the min-rule and intersection-rule. Note that the set of

individual search spaces fΩliðfljgÞgi;j¼1;...;N need not be the same for the min- and

intersection-rules. Under this combination, some detectors could obtain a search

range from the min-rule, and some from the intersection-rule.1, 2

Fig. 5 Illustration of the search space definition in Eq. (10). Detected landmarks l1 and l2 provide
search spaces for un-detected landmarks l3 and l4 (not shown). Final search spaces V3 and V4 for l3
and l4 are the minimum sets. This time, a greedy algorithm would prefer landmark l3 over l4 as the
next landmark to detect since V3 is smaller than V4

1 If ΩliðfljgÞ;8i; j; were the same for min- and intersection-rules, then the intersection-rule will

always be selected, since the intersection operation yields non-larger spaces than individual ones.
2 Linear combination is a common approach for finding Pareto-optimal solutions [6]. Since it can

happen that Fi(S) > Fi(T ) while Fj(T ) > Fj(S), all we can hope for are Pareto-optimal

solutions [6].
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Cost of Detector

The algorithm introduced so far only considered the search space. In practice,

different detectors have different costs and this should be taken into account during

optimization. For example, if we have two detectors, then the algorithm above

would select the next detector that has a smaller search space. However, this

detector might have a much higher unit computational cost due to, for example,

higher model complexity. One should multiply (and not linearly combine) search

volume with the unit cost, since a detector is applied to each voxel within the search
space and only the product reflects the cost correctly.

Fortunately, multiplication of a submodular function by a nonnegative scalar

also maintains submodularity [43]. Denote qi as the computational cost of detector i.
The product qiCðΩliðΛÞÞ then considers the joint computational cost. Since 8i; qi
	 0; qiCðΩliðΛÞÞ is submodular, the greedy algorithm can be applied and the same

theoretical guarantees still hold.

The computational cost of a detector (classifier) can be estimated from, for

example, the number of weak learners in boosting-based classifiers [50], the

expected number of classifiers in a cascade of classifiers [50], or the empirical

running time. Denote by α[lj] the unit computation cost for evaluating the detector

for landmark lj . The goal is then to find the ordered set Λ(1):(N ) that minimizes the

total computation, i.e.,

Λ0
ð1Þ:ðNÞ ¼ argmin

Λð1Þ:ðNÞ
fα½lð1Þ� VðΩ½lð1Þ�Þ þ

XN

i¼2
α½lðiÞ�VðΩ½lðiÞjΛð1Þ:ði�1Þ�Þg: (11)

When α[lj] ¼ 1 for all j, this reduces to searching the minimum overall search

range. We find that unit computation cost is roughly proportional to the physical

disk size needed to store the detector model; hence, we set α[l(i)] as the model

disk size.

The greedy algorithm for finding the ordering {l(1),. . .,l(N )} that attempts to

minimize the overall cost proceeds as follows:

In other words, in each round one triggers the detector that yields the smallest

computation.

Again, the greedy algorithm is guaranteed to find an ordered set Λ such that the
invoked cost is at least 63 % of its optimal value [32]! It is worth emphasizing that

the ordering found by the algorithm is data-dependent and determined in run-time

on the fly.
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Finding the Anchor Landmark

The algorithm in the previous section finds an image-dependent ordering of detec-

tors assuming at least one landmark l(1) has already been detected. We call l(1) the
anchor landmark. Note that the anchor landmark can be a different landmark for

different images. In section “Coarse Landmark Detection Using Nearest Neighbor

Matching” we presented an approach for finding a coarse position estimate of

certain landmarks based on NN matching. We call it the holistic-anchoring

approach. An alternative approach was presented in [32], which finds the anchor

landmark through running individual detectors. We call it the sequential-anchoring

approach. Here we review this alternative approach and compare it with the

holistic-anchoring approach in section “Comparing Holistic-Anchoring and

Sequential-Anchoring”

Define f(l ) as the estimated frequency of appearance of landmark l in an image.

Then, define the ordering of trials

m1 ¼ argmaxlff ðl1Þ; . . . ; f ðlNÞg (12a)

m2 ¼ argmaxlff ðl1Þ; . . . ; f ðlNÞjm1not presentg (12b)

m3 ¼ argmaxlff ðl1Þ; . . . ; f ðlNÞjm1;m2not presentg (12c)

and so on. We can use this ordering of trials to detect the anchor landmark.

Intuitively, since landmark m1 appears most frequently, searching for it in the

first trial would reduce most significantly the need for a subsequent trial (whole-

image search). Landmark m2 is the most frequent landmark under the condition that

m1 does not exist in the volume. This conditioning is to avoid m2 being a landmark

that is in the vicinity of m1, in which case if m1 is occluded, most likely m2 is also

occluded.

Since all of the detectors have similar accuracy and computational cost, such an

ordering based on conditional frequency performs well. However, if some detectors

have very different accuracy or cost than the others, those characteristics should

also be taken into account.

The system starts with detecting the anchor landmark and initiates the greedy

algorithm. If the greedy algorithm determines a search space but the corresponding

detector fails to find the landmark, the greedy algorithm simply proceeds to the next

round. If all subsequent landmarks are not found, the system is restarted with a

different anchor landmark. The chance that the system produces more false posi-

tives than running the detectors independently is low. This is because, while the

false positive rate of each detector could be high, the chance that multiple detectors

produce false positives within their assigned search spaces is exponentially low. In

fact there is a relationship between the overall false positive rate, detection rate, and

the size of the individual search spaces. We have experiments and discussions on

this topic in section “A Spatial Cascade of Classifiers”.
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Comparing Holistic-Anchoring and Sequential-Anchoring

In this experiment, we use the NN matching for detecting body regions that need

rough landmark locations by utilizing the holistic context. This matching-based

approach requires a database sufficiently large so that, given a query, the best match

in the training database indeed covers the same body region(s) as the query. We

collect 2,500 volumes annotated with 60 anatomical landmarks, including the left/

right lung tops, aortic arch, femur heads, liver top, liver center, coccyx tip, etc. We

use 500 volumes for constructing the training database and the remaining 2,000

volumes for testing. To ensure that each query finds a good match, we construct the

database of 100,000 volumes in a near-exhaustive manner: In each iteration, we

randomly pick one of the 500 volumes and then randomly crop and slightly rotate it

into a new volume before adding it to the database. The annotated anatomical

landmark positions in the original volume are transformed accordingly. The system

runs on an Intel Xeon 2.33GHz CPU with 3GB RAM (Fig. 6).

Registration-based methods are not applicable since the test volumes cover a

large variety of body regions. If each region is detected separately say using [49],

the total detection time is proportional to the number of regions, as detecting each

region requires a scan over the whole volume. The work in [8] reports a detection

time around 2,000 ms for 9 landmarks, and median distance error around 22 mm on

a GPU (parallelized) implementation. The work in [32] has the highest accuracy

and fastest speed, so we compare against this work in better detail. As in Fig. 6 and

Fig. 7, the implementation of [32], which is tuned to a similar detection accuracy as

shown in Table 1, has a detection time of 450 ms for 6 landmarks that define the

presence of right lung, skull, aorta, sternum, and liver; but the maximum time is

4.9 s, significantly larger than the median. This poses a problem for time critical

subsequent tasks. The holistic-anchoring method has a nearly constant detection

Fig. 6 Speedup ratio

vs. volume size when

comparing holistic-

anchoring and sequential-

anchoring for detecting

body regions
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time of 5 ms, achieving a speedup of 90 times while maintaining similar detection

accuracy. The speedup is even more significant if more regions are of interest as the

detection does not depend on the number of regions. The NN matching code can be

optimized and parallelized for faster speed. In general, a large detection error from

NN matching, which is fine for body region detection purpose, is due to the large

variability in the landmark appearance and its relative location to other landmarks.

When accurate positions are desired, we combine the holistic-matching with

landmark detectors that exploit unary context. Now each landmark detector only

needs to search in a local neighborhood around the rough position estimate given by

the first stage, instead of searching in the whole volume. For detection of multiple

landmarks, we further utilize pairwise spatial context for more improvements

(Fig. 8).

Median time(ms) Average of Median errors (mm)
Sequential-anchoring 450 28.6
Holistic-anchoring 5 29.9

Fig. 7 The performance of detecting body regions using holistic-anchoring vs. sequential-

anchoring

Table 1 Median detection

errors (mm) for 6 different

landmarks that define 5 body

regions

Sequential-anchoring Holistic-anchoring

Lung apex right 24.1 27.1

Skull base 31.9 19.1

Aortic root 23.2 35.8

Lung center 20.6 24.5

Sternum bottom 37.3 35.1

Liver center 35.2 37.9

Fig. 8 Speedup ratio vs.

volume size when

comparing holistic-

anchoring and sequential-

anchoring for detecting the

liver top
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Detecting One Landmark

We consider detecting the liver top. In Fig. 8 and Fig. 9, the baseline approach uses

a Probabilistic Boosting Tree (PBT) [49] to scan through the whole volume. Our

method uses the PBT only to search in a local neighborhood. Evidently our method

is much faster than the state-of-the-art due to the additional leverage of holistic

context. A bigger volume yields more pronounced speedup (as large as six-fold) as

the use of holistic context breaks down the dependency on volume size.

Detecting Multiple Landmarks

We further experiment accurately detecting 7 landmarks listed in Table 2 with three

example landmarks of trachea bifurcation, liver bottom, and left kidney center

shown in Fig. 10. Table 2 presents the mean detection error and the 95th percentile

error that exhibits the robustness of the combined approach. The results in [32] are

also included for comparison. We obtain better detection results except for the left

kidney center, whose annotations are quite ambiguous, while consuming less time

with a mean computation of 1.1s vs 1.3s for [32]. Due to space limitation, we omit

the results of other anatomical landmarks.

Median
time (ms)

Average
of Median
errors (mm)

Baseline [49] 340 1.3
Our method 165 1.3

Fig. 9 Performance

comparison of accurately

detecting the liver top

Table 2 Errors (mm) in

accurately detecting

7 different landmarks

using NN matching and

submodular optimization

(mm) Mean Q95

Mean

[32]

Trachea

bifurcation

2.5 4.5 2.8

Left Lung Top 2.6 6.0 3.2

Right Lung Top 3.2 8.5 3.7

Liver Top 2.5 4.0 2.9

Liver Bottom 6.4 30.5 n.a.

Left Kidney

Center

8.4 50.7 6.3

Right Kidney

Center

6.4 39.2 7.0
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Coarse-to-Fine Detection

In earlier discussions, we assumed each landmark is associated with a single

detector. In implementation, a landmark has R ¼ 3 detectors, each trained at

different resolutions. Since training of landmark detectors is not the focus of this

paper, we refer the reader to prior work in [49, 50]. In detection, we employ a

coarse-to-fine strategy. Such multi-resolution techniques are frequently encoun-

tered when the solution to the original (high) resolution is either too complex to

consider directly or subject to large numbers of local minima. The general idea is to

construct approximate, coarser versions of the problem and to use the solution of

the coarser problems to guide solutions at finer scales.

We run the algorithm in section “Finding the Anchor Landmark” using the

coarsest-resolution detectors only. We then define a local (small) search space

around each detected landmark and run higher resolution detectors within the

local search space. The overall approach is efficient, because the coarse-resolution

detectors have already rejected most of the voxels in the image.

At the end, the posterior probability of position x is taken from all resolutions

using a log-linear model

pðxjIr1 ; . . . ; IrRÞ / exp
XR

i¼1
αriϕriðxÞ

� �
(13)

where Iri is the volume at resolution ri, pðxjIriÞ is the posterior probability from the

detector with resolution ri, and the potential functions are given by ϕriðxÞ ¼ log p

ðxjIriÞ. This can be shown equivalent to a products-of-experts model [21]. We also

experimented with the mixture-of-experts model [23] of the form

pðxjIr1 ; . . . ; IrRÞ /
XR

i¼1
αripðxjIriÞ: (14)

Fig. 10 Detected positions of trachea bifurcation, liver bottom, and left kidney center
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While the products-of-experts tends to produce sharper classification boundaries,

the mixture-of-experts tends to have a higher tolerance to poor probability estimates

[27]. Our experiments suggest the use of the mixture-of-experts.

Notice that each position is associated with multiple subwindows at different

resolutions, so a larger amount of local context is utilized. Using context in object

detection is discussed in prior work [49, 50]. Our approach combines results from

multiple resolutions and different subwindow sizes and hence is different from

approaches where a single, optimal window size is determined [51].

In the following experiment, the database consists of 2046 volumes. We split the

data into 70 % training, 10 % validation, and 20 % testing, while avoiding splitting

a patient with multiple scans into both training and testing. The pairwise search

spaces,ΩliðfljgÞ, for each pair of landmarks li,lj, are cuboids estimated from training

and validation data. Using only training data to define a tight cuboid for one

landmark given another could result in too confined search spaces if the detectors

have large errors in testing. We obtain this error information from the validation set

and enlarge the cuboids accordingly.

We have 63 landmarks including positions such as the center, top, and bottom of

organs, bones, and bifurcations of vessels. In Table 3 we show the speed of

landmark detection when all landmarks are detected independently versus the

proposed method with the min-rule. Q95 is the 95th percentile. D8mm denotes the

system using detectors trained at 8 mm resolution running the greedy method

(without coarse-to-fine), D4mm uses the coarse-to-fine strategy with 8 and 4 mm

resolution detectors, and D2mm uses detectors at all three (8,4, and 2mm)

resolutions.

Table 3 also includes experiments where only a subset of 25 landmarks are used

in the system. We observe that the detection time of the greedy approach is not

linearly proportional to the number of landmarks. In fact, when using “fewer”

landmarks, the maximum time “increased” from 2.44 to 5.08 s. This can be

understood because the search space of each detector is provided by the landmarks

already detected, some of which are not present in the 25-detector system.

The detection speed versus volume size is shown in Fig. 11. The reason that

smaller volumes do not consume much less time can be understood from Fig. 12,

which shows that smaller volumes often require more number of trials to find the

anchor landmark. Since each trial requires a whole image search, detection time

increases.

The detection errors of the coarse-to-fine strategy are shown in Table 4.

Table 3 Detection time (sec)

per volume. N is the number

of landmarks in the system

Mean Std Q95 Max

Independent D8mm N ¼ 63 17.30 6.16 46.24 84.51

Greedy D8mm N ¼ 63 1.14 0.47 1.92 2.44

Independent D8mm N ¼ 25 6.72 6.40 17.73 35.00

Greedy D8mm N ¼ 25 0.65 0.43 1.26 5.08

Greedy D4mm N ¼ 25 1.30 0.87 3.30 6.11

Greedy D2mm N ¼ 25 2.70 1.74 7.15 9.05
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Two comparisons to recent literature can be made. First, the work in [8] reported

a detection time around 2 s for 9 landmarks, and mean distance error around

28 mm. The system achieves lower distance errors in less time even on a standard

Fig. 11 Detection time as a

function of volume size.

Blue (+): independent
landmark detectors. Red (x):
Greedy search

Fig. 12 Number of trials to

find the anchor landmark as

a function of volume size

Table 4 Mean distance error

in millimeters
D8mm D4mm D2mm

TracheaBif. 11.9 3.6 2.8

L.LungTop 22.2 3.5 3.2

R.LungTop 13.8 3.7 3.7

LiverDome 14.8 3.4 2.9

L.Kidney 13.6 6.7 6.3

R.Kidney 15.1 5.6 7.0

Anatomical Landmark Detection 737



Intel Core2 Duo CPU 2.66GHz (whereas they used a GPU implementation for

speedup). Second, the work in [55] reported larger distance errors (kidney error

9mm, versus 6 mm when using coarse-to-fine 8mm- and 4mm-resolution detectors)

with detection time around 4 s for 6 landmarks, significantly slower than our system

(1.3 s for 25 landmarks using coarse-to-fine 8mm- and 4mm-resolution detectors).

In Table 5 we compare the different coarse-to-fine approaches discussed in

section “Coarse-to-Fine Detection”. The baseline approach finds the top candidates

at one resolution and initiates a finer-resolution detection around those top candi-

dates. This has a shifting problem (much like in visual tracking) when only

neighboring resolutions are considered and information from the earliest resolu-

tions are lost. The mixture-of-experts often has the most accurate results and has

reasonable tolerance to outliers.

Some detection results of vessels are shown in Fig. 13. Diseased vessels have

high appearance variations, and yet we detect the carotid, iliac, renal, and

brachiocephalic bifurcations with mean error 3.9, 7.2, 5.2, and 5.3 mm,

respectively.

Table 6 shows confusion matrices of 8 mm detectors. This will be discussed

further in section “A Spatial Cascade of Classifiers”.

A Spatial Cascade of Classifiers

One might worry that a sequential detection approach could break down if the

anchor landmark is incorrect or the first few detectors fail. Furthermore, the

proposed search strategy was driven by computational cost considerations, and

accuracy in terms of false positive rate and detection rate was not mentioned. Here

we argue that the sequential “accept or reject” behavior of our method behaves

similar to a Viola–Jones cascade of classifiers [50]. Intuitively, while the false

positive rate of the first detector could be high, the rate that the first n detectors all

fail is significantly lower.

More formally, if each detector has false positive rate fi and detection rate di, the
overall false positive rate and detection rate are f ¼ ∏ fi and d ¼ ∏ di assuming

independence. But f and d depend on the size of the search space, Ωlið:Þ. With a

slight abuse of annotation, assume search spaceΩli is a cuboid, and λΩlið:Þ; λ > 0, is

Table 5 Distance errors

in millimeters comparing

coarse-to-fine detection

using the product- and

mixture-of-experts

Q25 Q50 Q95

Iliac Bifurcation Baseline 6.76 13.96 22.72

Product 4.67 8.43 11.56

Mixture 3.95 7.06 13.99

Brachioc. Artery Baseline 4.20 5.46 9.89

Product 4.30 6.83 11.46

Mixture 3.63 5.19 8.77
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an enlarged or shrunk cuboid with the same center. The operating point of the ROC

curve can then be adjusted by tuning λ. As λ increases, the individual detectors

behave more independently and there is less cascade-effect. As λ decreases, di and fi
decrease, and so do d and f. Tuning individual classifiers to adjust the overall f and
d is also presented in the Viola–Jones cascade of classifiers.

On the other hand, in the Viola–Jones cascade, classifiers of the “same” land-

mark are chained together. Here, classifiers of “different” landmarks are chained

and provide robustness through their joint spatial relationship. As shown in Table 6,

this geometric cascade indeed reduces false positives without sacrificing the detec-

tion rate. Such a robustness property is desirable and is typically implemented by

random fields [4, 5] or voting procedures [11]. If desired, one can still enforce a

random field or perform voting on top of our method.

Fig. 13 Detected results of (a) carotid (b) iliac (c) renal (d) brachiocephalic artery bifurcations
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Submodularity

The problem of maximizing a submodular function is of central importance, with

special cases including Max Cut [19], maximum facility location [7]. While the

graph Min Cut problem is a classical polynomial-time solvable problem, and more

generally it has been shown that any submodular function can be “minimized” in

polynomial time, maximization turns out to be an NP-hard problem [42]. The work

of [32] is the first to apply the theory of submodularity to object detection. More

specifically, we prove the submoduarity of the cost functions based on two search

space criteria.

Information Gain and Entropy

Several works use maximization of information gain or entropy as objective func-

tion [28, 41, 55]. However, using information gain or entropy as objective could

actually lead to arbitrary bad computation time!

Table 6 Confusion matrices F PA F NA F PB F NB

SkullBase 0 (193) 0 [50] 1 (192) 0 [50]

R.LungTop 0 (84) 1 [114] 1 (83) 1 [114]

LiverDome 0 (86) 2 [65] 0 [86) 2 [65]

R.HipTip 0 (131) 0 [94] 1 (130) 0 [94]

R.Knee 0 (265) 0 [12] 0 (265) 0 [12]

LiverBott. 2 (33) 1 [33] 2 (33) 1 [33]

TracheaBif. 0 (44) 0 [41] 0 (44) 0 [41]

LiverCent. 0 (90) 1 [136] 2 (88) 1 [136]

L.HumerusHead 0 (96) 1 [12] 0 (96) 1 [12]

R.HumerusHead 1 (80) 2 [7] 1 (80) 2 [7]

L.LungTop 0 (61) 1 [21] 1 (61) 1 [20]

L.HipTip 0 (94) 1 [46] 2 (92) 2 [45]

L.FemurHead 0 (124) 0 [16] 0 (124) 0 [16]

R.FemurHead 0 (120) 0 [16] 0 (120) 0 [16]

CoccyxTip 0 (118) 0 [16] 0 (118) 0 [16]

PubicSymph.Top 0 (133) 0 [23] 0 (133) 0 [23]

SternumTip 3 (51) 1 [22] 3 (51) 1 [22]

AortaBend 0 (31) 1 [53] 1 (30) 1 [53]

Brachioceph. 1 (35) 3 [132] 1 (35) 3 [132]

R.Kidney 2 (59) 5 [61] 2 (59) 5 [61]

L.Kidney 0 (71) 0 [76] 0 (71) 0 [76]

The first two columns (with subscript A) show the number of

false positives and false negatives. Numbers in parentheses are

the number of true negatives. Numbers in brackets are the number

of true positives. The last two columns use detectors run inde-

pendently. Detections with distance error larger than 5 voxels are

false positives
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Assume we have three landmarks, A, B, and C, with position xA,xB,xC distributed
along a 1-D line with position parameters ðμA ¼ 0;ΣAA ¼ 1Þ; ðμB ¼ 10;ΣBB ¼ 30Þ;
ðμC ¼ 10;ΣCC ¼ 110Þ; andΣAB ¼ 5;ΣAC ¼ 110;ΣBC ¼ 50. This distribution could

model the height of different people, with landmark A aligned with the CT scanner.

Assume landmark A has already been detected. Which landmark should one detect

next? The approach in [55] selects C since it yields a higher information gain than

B. However, if the size of the search spaces of B and C are positively correlated

with conditional covariance ΣBjA and ΣCjA, the search space of B is actually smaller

than the search space of C. Without considering other factors, this means the

decision based on search space will be contrary to the one based on information

gain. With different covariance matrices, the difference could be arbitrarily large.

This can be understood when we realize that the objective of maximizing informa-

tion gain does not have a direct relationship with saving computation time.

The advantages of information gain mentioned in those work, however, should

not be neglected. Therefore, a framework that gracefully trades off between infor-

mation gain and computation time would be useful.

Speedups

Other methods for reducing computational cost (from an algorithmic perspective,

instead of hardware acceleration such as using GPU computing) in object detection

include tree-structured search [20], coarse-to-fine detection [14], cascade of clas-

sifiers [50], branch-and-bound [29], reduction of classifier measurements [46], and

searching in marginal space [57].

Multiple Objects of the Same Type in One Image

In medical imaging, most anatomical structures have distinct appearances. Real-

world image datasets (such as those obtained from hand-held cameras and cam-

corders) including the PASCAL dataset often contain multiple objects of the same

class (type). In that scenario, our algorithm can be embedded in a parts-based

framework such as [12, 13] to speed up the search for object-parts.

Scaling Up to Many Landmarks

Our goal is to detect in the order of thousands of anatomical structures. With such a

large number of detectors, the computational savings of our approach would be

significant.
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Multiple Instance Learning

In order to train a high-performing object detector, often a large amount of exact

annotations is needed, which is tedious to obtain. In this chapter, we introduce

Multiple Instance Learning (MIL) [26, 30, 52, 56] applied to anatomical landmark

detection. The method aims to alleviate the manual annotation burden and to

accommodate imprecise annotations. MIL uses instance bags as inputs for training.

A positive instance bag contains at least one positive and a negative bag contains all

negatives. In landmark detection, we construct a positive bag by placing a bounding

box big enough to guarantee that a true positive exists inside the bounding box.

The above construction yields a positive bag with only one or very few positive

instances. But traditional “Noisy-OR” rule [52] favors many high scores in a bag.

To better cope with the bag construction, we use the soft max function in our

formulation. This formulation not only generalizes the integrated segmentation and

recognition (ISR) rule [52] but also degenerates to the famous AdaBoost algorithm

when each positive bag has exactly one instance. This formulation is amenable to

analytical derivation too.

Conventional MIL methods treat instances in a bag independently. This ignores

the strong spatial context embedded in the bag construction, that is, neighboring

instances are arranged in a grid and hence strongly correlated. For example, Fig. 14

shows two example landmarks of tracheal bifurcation and liver top in a computed

tomography (CT) scan. These two landmarks are located at distinct positions with

spatial context. We propose to exploit this strong spatial context for better detec-

tion. Another practical consideration in landmark detection is the post-processing to

select the final results. Thus it is desirable to have a concentrated detection response

Fig. 14 The landmarks of tracheal bifurcation (left) and liver top (right) in a medical image

featuring rich contextual information
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map, which is explicitly encouraged by our approach, so that the final detection

results can be derived with more confidence.

Specifically we propose to use total variation (TV) to spatially regularize the

MILBoost, resulting a Boosting algorithm incorporating spatial context and accom-

modating inexact annotations. Figure 15 illustrates the effect of the TV regulariza-

tion that favors the output with a concentrated cluster or low perimeter. Finally, for

faster detection we also derive empirical rules for pruning training instances.

Related Work on Multiple Instance Learning

The approach in [26] based on neural networks is one of the earliest MIL formu-

lations though the term MIL was not yet used there. This is extended to a boosting

context in [52], which proposes a cost function for the MIL problem in the setting of

the AnyBoost framework [35]. Further in [52] MILBoost is shown to be superior to

AdaBoost when given data with high incertitude. We use a smoothed max-based

cost function, whose connection to existing formulations originally proposed in [26,

52] will be discussed later. Aside from these cost-based approaches there are also

other attempts to solve the MIL problem, e.g., by modeling likelihood ratios as done

in [30].

Spatial reasoning was applied to Boosting in [1], where the predicted label of a

pixel (or patch) is influenced by the labels of neighboring pixels (or patches).

Adding spatial regularization to Boosting in a non-MIL setting was done in

[53]. In [53] the authors were the first to introduce a regularization kernel which

is used to obtain base classifiers that output scores based on spatially clustered

pixels. This regularization, however, is limited in several aspects. First, in many

applications we do not expect discriminating pixels to be spatially clustered.

Fig. 15 A good response map should have a concentrated cluster as shown in the right map for

better detection confidence. A measure of the tightness is the perimeter of two level sets from two

maps, which is encouraged by our TV regularization framework
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For example, in face detection the discriminating parts such as eyes, mouth, and

nose are quite evenly distributed on the face and not clustered. Second, as [53] treats

a non-MIL setting, the spatial regularization there does not exploit spatial relation-

ships of instances in the same positive bag. Third, base classifiers could use features

dependent on more than one pixel. We therefore propose a different regularization,

which addresses all the above limitations.

Spatially Regularized MIL for Boosting

In MIL, instead of positive training instances we have positive bags. A positive bag

with just one instance will be treated exactly like a positive instance in AdaBoost

automatically by the formulas below. To make the notation more consistent and

without loss of generality we can assume that all negative instances come also in

bags with exactly one instance in it. We fix the notation as follows: Let n be the

number of bags with corresponding labels li 2 fþ1;�1g; i ¼ 1; . . . ; n . Bag i

consists of ni training instances: fx1i ; . . . ; xnii g. The classifier assigns to each training
instance a score f ðx j

i Þ ¼ y j
i ¼

PT
t¼1 λthtðx j

i Þ, where ht are the base classifiers, λt∈ℝ
denote their coefficients, and T is the number of base classifiers.

Formulation

We follow the AnyBoost framework [35] to minimize a cost function for our

classifier. The total cost combines two components, the data term D and the

regularization term R, into one:

Cð f Þ ¼ Dð f Þ þ λRð f Þ; (15)

where λ	 0 is the weight parameter which denotes howmuch we want to regularize

our results. According to the AnyBoost framework, Boosting may be seen as

gradient descent in the space of functions generated by the base classifiers.

In AdaBoost (which is equivalent to all bags having exactly one instance) we

assign scores yi to each instance and then compute Dð f Þ ¼Pn
i¼1

1
Nli

expð�liyiÞ ,
where N�1 ¼ #fij1 � i � n; li ¼ �1g and Nþ1 ¼ #fij1 � i � n; li ¼ þ1g is the
number of negative and positive bags, respectively. By the normalization, negative

and positive bags contribute equally to the cost.

InMILBoost we must modify the cost function only for positive bags. The goal is

to assign a score yi to the whole positive bag and then penalize a low score by adding

exp(�yi) to the cost function. Ideally we would like to have yi ¼ maxj¼1;...;ni y
j
i .

Unfortunately the max function is not differentiable. Therefore we use a smoothed

max function with smoothing parameter k:
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yi ¼ 1

k
log

Xni
j¼1

expðky j
i Þ

 !
:

This function approaches the max function as the parameter k goes to infinity and is
differentiable for all k > 0 (we used k ¼ 3). Note that this function is the identity

when we have exactly one instance in a bag, as is the case for negative bags. It also

degenerates to AdaBoost when each positive bag has exactly one instance.

So the cost function for MILBoost is

Dð f Þ ¼
Xn
i¼1

1

Nli

exp
�li
k

log
Xni
j¼1

expðky j
i Þ

 ! !
:

The gradient for sample xi
j arising from the data term is then as follows:

rDð f Þðx j
i Þ ¼

�li expð�liyiÞ
Nli

expðky j
i ÞPni

h¼1 expðkyhi Þ

 !
: (16)

This formulation achieves two goals: A positive bag has high score exactly when

at least one of its instances has high score and low score only when every instance

has low score. If we set k¼ 1, the smoothed max function turns out to be equivalent

to the integrated segmentation and recognition (ISR) rule [52] in the following

sense. The probability for bag i according to the ISR rule is defined as

pi ¼
Pni

j¼1
expðy ji Þ

1þ
Pni

j¼1
expðy ji Þ

, which is equal to σðyiÞ ¼ 1
1þexpð�yiÞ , where yi is the score of

bag i computed with the smoothed max function with smoothing parameter k ¼ 1

and σ(�) is the logistic function. Modeling probabilities as logistics of scores is

common in the Boosting literature, see, for example, Eq. (9) in [17].

By using the smoothed max function with a high enough smoothing parameter k,
the data term does not favor or penalize any specific distribution of scores inside a

positive bag, except that it favors at least one high score. This is in contrast to the

“Noisy Or” rule [52] which favors many high scores in a bag. Also the “Noisy Or”

rule may be less suited for larger positive bags, which occur naturally when using

inexactly annotated datasets in object detection, as then the “Noisy Or” rule will

have high probability even when the positive bag has many instances to which the

classifier assigns probabilities around 0.5 or a score of 0, respectively. Therefore the

smoothed max function is better suited for object detection than the “Noisy Or”

rule, as most positive bags only contain very few true positives.
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Regularization Term

As was already mentioned, in object detection the classifier should assign high

scores in a positive bag to a few clustered locations. To achieve this we propose to

add the following Total Variation (TV) regularization: R ¼Pn
i¼1

1
ni

Pni
j¼1 jjry j

i jj;
where jj∇yi

jjj is the norm of the discrete gradient. For 2D images or 3D volumes the

positive bag most likely will have a grid structure. For 2D images the gradient can

be written asry j
i ¼ ðyjrighti � y j

i ; y
jlower
i � y j

i Þ
>
, where jright is the index of the instance

on the right-hand side of xi
j and jlower is the index of the instance just below of xi

j. If

the bag does not have a grid structure but consists of discrete points sampled from a

manifold, then gradients can be defined as in section 2 of [18]. Via the regulariza-
tion, neighboring instances are not trained independently, in contrast to
AdaBoost [15].

The TV regularization allows for sharp peaks in the score map and favors

spatially connected subsets of instances to which it assigns high scores. These

subsets are favored to have low perimeter. This is also to be expected by the coarea

formula:
R
Ω jjryjjdx ¼ R1�1 Pðfy > tg;ΩÞdt, where P({y > t},Ω) is the perimeter

of the level set {x ∈ Ωjy(x) > t} in the set Ω. A suitable version of the coarea

formula of course also holds for our discrete setting. In other words, a regularized

detector will output scores whose level sets have low perimeter. This is visualized

in Fig. 15.

The regularization above is not differentiable, though convex. One may there-

fore either use sub-gradients or a smooth approximation to the above proposed

regularization. The latter can be achieved by replacing the norm above byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
k¼1 ðry j

i Þ2k þ E
q

; where ε > 0 is a constant and d is the dimension. Then the

above regularization is smooth also for points with zero gradients. The gradient for

sample xi
j arising from the smoothed regularization term is, in the notation from

[18], as follows:

rRð f Þðx j
i Þ ¼ � div

ry j
i

ni �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

k¼1 ðryjiÞ2k þ E
q

0
B@

1
CA: (17)

Other regularizations are possible. For example, we can use R ¼Pn
i¼1

Pni
j¼1

jjry j
i jj2 . This L2 regularization will result in a classifier which does not vary

strongly. This is desirable in case we have bags where neighboring probabilities

should be similar.
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Pruning in MIL

After training we obtain a series of T base classifiers. Evaluating all of them can be

costly during detection, especially when we have trained many base classifiers. To

lessen the computational load we propose to set rejection thresholds to reject false

negatives early on. This is achieved as follows: Say we have a sample x which we

want to classify and we have rejection thresholds θ(t) for t ∈ R  ℕ. If t ∈ R,
t < T and ∑l¼1

tλlhl(x) < θ(t), then reject x without evaluating the remaining T �
t base classifiers. By setting the rejection thresholds we do not want to reject any

true instances. In the context of MIL, however, we do not know which instances

inside a positive bag have a positive label, so setting rejection thresholds based on

them is not straightforward and therefore we cannot use formulas like the one in

section 2 of [56], which is applicable only to a non-MIL setting. We generalize the

approach in [56] and propose the following rejection thresholds which retain at least

one instance in each positive bag:

θðtÞ ¼ min
f1�i�n;li¼1g

max
f1�j�nig

Xt
s¼1

λshsðx j
i Þ

" #
: (18)

This is a good choice when we know that a bag contains usually one true positive,

as is often the case in object detection, see also the discussion in the introduction.

One can adapt the formula above in a straightforward manner for cases when we

want to retain a certain number of instances from a positive bag. The complete

algorithm is described in Fig. 16.

Comparing MILBoost with and Without Spatial
Regularization

First, we detect the tracheal bifurcation as in Fig. 14 with 274 training datasets:

80 bags with one instance (which originate from exact annotations from an expert)

and 194 bags with 1,000 instances each, of which one denotes the true (but

unknown) position of our landmark. Our negative instances are sampled from the

images at all positions different from the locations of instances in the positive bags.

Our base classifiers are histograms over rectangle features as in [48]. The second

experiment concerns the liver top, also shown in Fig. 14. Because the upper side of

the liver is rather flat, it is difficult to annotate it precisely, rendering a difficult

detection task. We used 300 training datasets: 100 annotations as accurate as

possible and 200 positive bags with 1,000 examples inside each bag. For testing

we consider an instance to be positive if it is not more than 2.5 mm away from the

exact object location. Datasets cover different contrast phases and diseased livers.

For comparison we consider MILBoost with no spatial regularization (this
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corresponds to setting λ ¼ 0 in Eq. (15)) and MILBoost with spatial regularization.

Our specific choice of λ was chosen by cross-validation.

Figure 17 shows the ROC curves for MILBoost with and without spatial regu-

larization for the two experiments. We tested the two methods on 100 test samples

in the first experiment and on 300 test samples in the second experiment. A sample

is counted as positive if it has a score higher than a certain threshold. The better

ROC curve arising from the regularization is attributed to the fact that many high

scores are penalized and therefore a lesser number of instances far from the true

position of the object are assigned high scores. In Fig. 18 we show score maps to

illustrate the influence of the regularization, which results in a more concentrated

cluster of high scores and a final detection with more confidence.

Detection with Zero Annotations

In this experiment, we leverage the rich anatomical contextual information

manifested in human body to test the idea whether we can use one landmark to

provide “virtual” annotations for the learning and detection of another landmark.

This way we learn the detector with zero annotation.

Fig. 16 The algorithm of MILBoost with spatial regularization
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Fig. 17 The ROC curves

for MILBoost with and

without spatial

regularization; top figure for

the tracheal bifurcation;

bottom figure for the

liver top

Fig. 18 The 2D slice of a score map for a classifier trained by MILBoost on the liver top dataset

without spatial regularization (left) and MILBoost with spatial regularization (right). Note that the
spatially regularized classifier will result in a lower false positive rate because it has fewer high

scores and these are clustered tighter around the object’s true position
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We experiment using the left lung apex and the tracheal bifurcation. From

training data statistics, we know that the average translational shift from the left

lung apex to the tracheal bifurcation is ½�48;�6;�88� mm. We simply shift the

200 lung apex annotations by such a constant amount to obtain “virtual” annota-

tions for the tracheal bifurcation. The positive bag is formed as in Fig. 19. The same

testing set is used as in the previous tracheal bifurcation detection task.

Figure 20 shows that the proposed MILBoost with spatial regularization consis-

tently outperforms the other three methods: the naive method that evaluates the

accuracy of the constant shift, the Probabilistic Boosting Tree (PBT) method [48],

and the conventional MILBoost method [52]. To derive the final detected location,

we used the mode of the response map. Figure 21 confirms the same finding both

using plots and by visual inspection.

Summary

We first introduced a fast and accurate method to detect landmarks in 3D CT data. It

is a state-of-the-art method in terms of detection speed and accuracy. The improve-

ments to prior work arise from the leverage of holistic contextual information in the

medical data via the use of an approximate nearest neighbor matching to quickly

identify the most similar database volume and transfer its landmark positions, and

the exploitation of unary and pairwise context via a submodular formulation that

Fig. 19 The crosses indicate annotated positions with blue for left lung apex and red for tracheal

bifurcation. Note that this is a 2D illustration; but the real system operates in 3D. (a) Exact

annotations. (b) Virtual annotations

Naive PBT [48] MILBoost [52] MILBoost with Spatial Reg.
Q50 16.4 20.3 12.1 6.6
Q95 31.9 42.1 40.4 21.4

Mean 17.7 21.8 16.3 8.4
Max 100.9 42.8 49.6 36.8

Fig. 20 The error distance (in mm) in detecting the tracheal bifurcation landmark detection using

virtual annotations
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aims to minimize the total computation for detecting landmark(s) and renders itself

to a computationally efficiently greedy algorithm. The method has been succes-

sively validated on a database of 2,500 CT volumes. The method can be applied to

different modalities such as MRI.

We then introduced a spatially regularized Multiple Instance Boosting algorithm

which performs well on data which is annotated poorly. The proposed spatial

regularization helps to incorporate the needed spatial context when dealing with

inaccurately labeled data and gives better results than prior work when using few or

even zero annotations.

Future directions include investigating the possibility to “convexify” the cost

function [30]. This might result in an overall convex cost function, as our regular-

ization is convex, too. In terms of application, one can incorporate the spatially

regularized multiple instance learning algorithm in a tracking framework [2] for

tracking medical devices such as catheters and guidewires in intervention

procedures.
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search space, 725–726, 728–729

speedups, 741

Viola–Jones cascade of classifiers,

738, 739

unary context, 720

Angiogenesis

biochemical and biomechanical model, 468

coupling, models, 468–470

in micrometastases, 511

oxygen and cell nutrients, 465

stimulators and inhibitors, 464

and tumor vascularity, 336

vessel morphology, 468

Apparent diffusion coefficient (ADC), 563,

564, 574

Approximate nearest neighbors (ANN),

722–723

Area under curve (AUC), 574

Arterioportal venous (AP) shunt, 321

B

Bayes’ rule, 568
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C

CAD system. See Computer-aided diagnosis

(CAD) system

Canny edge detector, 669

Cavernous hemangioma, 352–353

CEUS. See Contrast-enhanced ultrasound

(CEUS)

Chemical shift imaging

Dixon method, 112

dual-echo technique, 110

dual-flip-angle technique, 112

fat-water signal dominance ambiguity, 112

FSF map, 110

IDEAL technique, 112

limitations, 111

phase images, 110–111

simple and rapid method, 111

SIP and SOP signals, 109

T1 and T2* relaxation effects, 113–114

Chronic liver disease (CLD), 146, 148.

See also Cirrhosis

Chronic pancreatitis, 222–224

Cirrhosis

binomial classification, 148

classification procedure

Bayes classifier, 156–157, 159, 161, 162

confusion matrix, 157–158

k-nearest neighbor (kNN), 157

Parzen classifier, 157

statistical characteristics, 161

support vector machine, 156, 159

textural feature subset, 161, 162

complications, 146

data collection, 158

DWI

apparent diffusion coefficient, 269,

271, 272

conventional MRI, 268–269

portal vein, 269, 270

etiology, 267–268

factors, 146

HCC, 146, 162

liver surface contour detection

characterization, 147, 152

co-occurrence matrix, 154–155

2-D monogenic signal decomposition,

155–156, 163–164

extraction, 152–153

probability density function, 159

region of interest, 153–154

liver surface enhancement, 149

algorithm scheme, 162–163

de-speckle field, 150

noise response, 151

phase congruency, 150, 151, 159, 160

response vector, 150

parenchyma analysis, 148, 162–163

scatter plot, 158–159

US image pre-processing, 149

Classification accuracy (CA) score, 670

Colonoscopy

ASGE guidelines, 366

blood detection, 368

characteristics, 368

colorectal cancer, 366

computer-aided quality-assisted

colonoscopy system, 383–384

diagnostic accuracy, 368

effectiveness, 366

experimental method

accuracy metric evaluation, 379

computation time, 379–381

k-nearest neighbor, 378

vs. proposed method, 382

RGB and HSV color spaces, 381–382

support vector machine, 377–378

MPEG-2 format, 367

proposed methodology

convex hull model, 372–376

detecting stage, 374–375

HSV conversion, 371

outlier removal method, 373–374

positive plane generation, 371–372

training dataset generation, 370

real-time requirement, 367

suboptimal inspection, 367

SVM classifier, 369–370

upper endoscopy and procedures, 367–368

Color Doppler (CD), 7, 124

Computed tomography (CT). See also
Hepatocellular carcinoma (HCC)

CAD system, 3–4

CT during hepatic arteriography, 319

deconvolution-based method, 336

diffuse fatty liver disease

diagnosis of, 107

disadvantages, 108

dual-source/dual-energy CT, 108

fat quantification, 106–107

fatty infiltration, 104, 105

hepatic attenuation index, 106

MDCT scanners, 108

ROI placement, 104–106

visual assessment, 104–105

dual-energy CT, 339, 341

low-tube voltage CT, 341
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lung, 454

male pelvis, 625

organ contouring tasks, 626

pelvic structures, prostate cancer

radiotherapy (see Multi-atlas-based

segmentation)

perfusion technique, 338

deconvolution-based method, 336

hepatic blood flow, 336

impulse residue function, 335

time-density curve, 336

vascularity and angiogenesis, 336

renal cortex segmentation, 71–72

thorax, 452, 455

tracheal bifurcation, 742

Computer-aided diagnosis (CAD) system

anatomy

abdominal cavity, 4–5

bean-shaped organs, 4

cortex/medulla, 4–5

nephrons, 5–6

pelvis region, 4

size, 4

computed tomography, 3–4

creatinine clearance, 3

DCE-MRI, 4

drug toxicity, 2

fluid collections, 2

function

blood flow estimation, 7

excretion, 5

filtration, 6

reabsorption, 5, 6

secretion, 5, 6

graft dysfunction, 2

gray-scale sonography, 7–8

MRI (see Magnetic resonance

imaging (MRI))

neoplasms, 2

radionuclide imaging, 3

recurrent native renal disease, 2

signal intensity, 7

transducer, 6–7

ultrasound imaging (US), 3

collecting system, 7

DKT/SKT patients, 9

echogenicity, 7

immediate, slow and delayed graft

function, 9

objective and methods, 9–11

postoperative collections, 7

renal size, 7

resistivity index, 7–8

ureter condition, 7

urologic/vascular complications, 2

Conditional random fields (CRF)

definition, 568–570

and MRF, 562, 568

Conformal geometry theory

conformal mapping

isothermal parameters, 395

local shapes preserving, 395

surface uniformization theorem,

395–396

quasi-conformal mapping

Beltrami coefficient, 397

harmonic mapping, 398–399

surface Ricci flow, 398

Contourlet transform (CTr), 448–450

Contrast-enhanced ultrasound (CEUS), 7–8

automatic algorithm, 38

ellipsoid detection, 61–62

gas-filled microbubbles, 38

implicit template deformation

numerical implementation, 46

quantitative results, 47, 48

transformation model, 44–45

variational framework, 43–44

joint co-segmentation and registration

features, 54

generic framework, 55–56

kidney appearance, 54

kidney detection, 56–58

kidney segmentation, 59

MAP formulation, 53

results, 59–60

rigid transformation, 53

ROC and Precision-Recall curves,

54–55

two-fold cross-validation, 54

vs. US images, 53

material, 39–40

robust ellipsoid estimation

MVE estimators, 40

numerical optimization, 42–43

variational framework, 41

user interactions

constraints, 48–49

influence of, 51–52

optimization scheme, 49–51

volumetric assessments, 37–38

Cosegmentation, 660

Cost-sensitive SVM (C-SVM), 562, 563

segmentation results, 573
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Cost-sensitive SVM (C-SVM) (cont.)
T2 maps, 575

Covariance Matrix Adaptation-Evolutionary

Strategy (CMA-ES), 603

CRF. See Conditional random fields (CRF)

Cross-correlation (CC), 14, 16, 630, 637

CT. See Computed tomography (CT)

CT during arterial portography (CTAP),

185, 187

CT during hepatic arteriography (CTHA),

185, 187

D

DCE-MRI. See Dynamic contrast-enhanced

magnetic resonance imaging

(DCE-MRI)

Decompensated cirrhosis, 146

Deformable image registration using discrete

optimization (DROP), 665,

671–674, 676

Deionized (DI) water, 544–546

Dice similarity coefficient (DSC)

manual segmentations, 639

results, 640

scores for

bladder segmentation, 644

prostate segmentation, 644

rectum segmentation, 645

Difference-of-Gaussian (DoG), 491

Diffuse fatty liver disease

computed tomography

diagnosis of, 107

disadvantages, 108

dual-source/dual-energy CT, 108

fat quantification, 106–107

fatty infiltration, 104, 105

hepatic attenuation index, 106

MDCT scanners, 108

ROI placement, 104–106

visual assessment, 104–105

hepatic steatosis, 101

MRI

chemical shift imaging

(see Chemical shift imaging)

frequency-selective imaging, 114–115

MR spectroscopy (see Magnetic

resonance (MR) spectroscopy)

NAFLD, 100

nonalcoholic steatohepatitis, 100

ultrasonography

detection and estimation, 101

fat content assessment, 104

fatty fibrotic pattern, 102

FFS value, 103–104

hepatic steatosis manifestation,

101–102

hepatorenal sonographic index, 103

morbid obesity, 102

signs, 102, 103

three-point scoring system, 102–103

visual quantification, 103

Diffusion-weighted imaging (DWI), 560, 561,

570, 571

hepatocellular carcinoma, 173, 188, 192

liver

application, 256

breath-holding DWI, 254

choice of b-values/sequence
optimization, 255

cirrhosis (see Cirrhosis)
fat suppression, 255

fibrosis (see Fibrosis)
focal liver lesion (see Focal liver lesion)
free-breathing multiple

averaging DWI, 254

hepatocellular carcinoma

(see Hepatocellular carcinoma

(HCC))

limitation, 274

liver metastases, 265–267

qualitative and quantitative assessment,

255–256

respiratory-triggered DWI, 254

sequence parameters, 253, 254

treatment, 273–274

Discrete Fourier transform (DFT), 490–491

Dose volume histograms (DVHs), 624

Dual-echo technique, 110

Dual-flip-angle technique, 112

Dual kidney transplantation (DKT), 9

DWI. See Diffusion-weighted imaging (DWI)

Dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI), 9,

560–563, 570, 571, 580

kidney, 17

liver disease, 262, 264–265, 271, 273

E

EBRT. See External beam radiation therapy

(EBRT)

Electromagnetic (EM) energy

frequency, 528

pulsewidth, 528–529

Electromagnetic interference (EMI), 532–533
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bandpassed transducer 1 data, 539

Fourier-space correction, 541

hybrid approach, 537, 538

kernel, 540

raw sinograms, 538

raw TCT projection, 537, 538

time-passed sinograms, 539

Electronics Industry Alliance (EIA), 531, 532

External beam radiation therapy (EBRT), 648

clinical protocol for, 624

radiation dose, 625

F

Far-field slope (FFS) value, 103–104

Fibrosis

DWI

classification, 268

conventional MRI, 268

DCE-MRI, 271

perfusion-related diffusion, 270–271

stages of, 269–270

etiology, 267–268

Fiducial registration error (FRE), 692–694, 699

Filtered backprojection (FBP), 527, 536

Finite element methods (FEMs), 660

Fluoroscope tracking (FTRAC), 592–594,

606, 612

Focal liver lesion

automated diffusion coefficient, 256

cavernous hemangioma, 352–353

characteristics, 351

characterization, 256, 257

colon cancer, 256, 257

diagnostic accuracy, 257–259

focal fatty sparing, 360–361

focal nodular hyperplasia, 353–355

hepatic adenoma, 355–357

hepatic hemangioma, 257, 258

hepatic metastasis, 357–358

hepatocellular carcinoma, 358–360

peripheral cholangiocarcinom, 257,

260, 261

Focal nodular hyperplasia (FNH), 191–193,

353–355

Fractional plasma volume (FPV), 12

G

Gadolinium benzyloxypropionictetraacetate

(Gd-BOPTA), 128–130

Gadolinium ethoxybenzyl

diethylenetriaminepentaacetic acid

(Gd-EOB-DTPA), 128–130

Gadoxetic acid

biliary tree, 361–362

focal liver lesion (see Focal liver lesion)
molecular properties, 348–350

pharmacokinetics, 350

protocol optimization, 351

Glomerular filtration rate (GFR), 12, 17

Glucose metabolism, 515–516

Gradient vector flow (GVF), 281

Graph cuts method

energy (En) minimization, 86

feature detectors, 667–669

IGC-OAAM, 86

shape integrated graph cuts, 84–85

Groupwise registration methods, 665

H

HCC. See Hepatocellular carcinoma (HCC)

Hepatic adenoma, 355–357

Hepatic hemangiomas

atypical appearance

cirrhotic liver, 137

fatty liver, 137

flash-filling hemangioma, 133, 138

giant hemangioma, 135–136

sclerosed/hyalinized hemangiomas,

135, 140–142

magnetic resonance imaging

ADC values, 128

advantages of, 126

black-blood diffusion images, 128

DW images, 128

gadofosveset trisodium, 130, 136

gastrointestinal stromal tumor and liver

lesion, 130, 134–135

Gd-BOPTA, 128–130

Gd-EOB-DTPA, 128–130

liver lesion, 130, 131

total serum bilirubin, 130, 132–133

T1/T2-weighted images, 128

MDCT, 125–127

nuclear medicine, 130

pathology, 124

surgery, 139

ultrasonography, 124–125

Hepatic metastasis, 357–358

Hepatic steatosis. See Diffuse fatty
liver disease

Hepatocarcinogenesis, 176

Hepatocellular carcinoma (HCC)

AASLD guideline, 324–325

arterial phase imaging, 320–321

arterioportal venous shunt, 321
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Hepatocellular carcinoma (HCC) (cont.)
characteristic features, 332–333

cirrhosis, 329–331

cirrhotic livers, 317

contrast medium, 319

curative treatment options, 317–318

development of, 146

diagnostic criteria, 318

DWI

automated diffusion coefficient, 263

dynamic contrast-enhanced MRI, 262,

264–265

hyperintense nodule, 262, 267

increased vascularity, 260

large dysplastic nodule, 262, 264

moderately differentiated, 262, 265

poorly differentiated, 262, 266

spontaneous ruptured, 262, 268

dysplastic nodule, 325–326

early HCC, 326–327

etiology of, 318–319

focal liver lesions, 358–360

histologic features, 183

incidence, 169–170

iterative reconstruction, 337–339

IV injection optimal technique, 319

macroscopic classification, 181

mimics HCC

arterial portal shunting, 333, 334

focal nodular hyperplasia, 333, 335

hypervascular liver metastasis, 334, 337

liver hemangioma, 334, 336

moderately differentiated HCC, 328–329

MRI

bile duct invasion, 190–191

cirrhosis-associated hepatocellular

nodules, 185

confluent hepatic fibrosis, 191–193

diffusion and hepatobiliary phase,

183, 184

DWI, 173, 188

dysplastic nodule, 179–182

focal nodular hyperplasia, 191–193

gadobenate dimeglumine, 175–176

gadolinium-enhanced imaging,

172–174, 187

gadolinium ethoxybenzyl

diethylenetriaminepentaacetic acid,

175–176, 188

gradient recalled echo sequence,

171–172, 184

hemangioma, 191, 193–194

hemorrhagic HCCs, 185

hepatic vein invasion, 190

hepatobiliary contrast agent, 175–176

hepatocellular nodule, 176

hypovascular HCCs, 186

inner necrosis, 183, 186

lesion characterization, 172

mass-forming intrahepatic

cholangiocarcinoma, 194–195

mosaic pattern and capsular

enhancement, 183, 185

MR elastography, 173–174

portal vein invasion, 188–189

regenerative nodule, 177–178

signal intensity characteristics, 184

small arterial enhancing lesion, 195

superparamagnetic iron oxide,

174–175, 187

technetium-99m, 174

multidetector-row computed tomography,

318, 330–332

poorly differentiated HCC, 328–329

regenerative nodule, 324–325

scanning protocol, 322–324

sonography, 318

survival rate, 170

TACE, 318

three-dimensional images, 321

vascular invasion, 332–333

viral infection, 162

volume helical shuttle, 339, 340

well-differentiated HCC, 327–328

Hepatocellular uptake index (HUI), 245, 247

Hidden Markov Models (HMM), 562

High frequency structural simulator (HFSS),

529, 544–546

Homotopy

fundamental group, 425–427

trivial loop, 424

Hypoxia

distributions of radiolabeled tracers, 512,

513
18F-misonidazole, 513–515, 517
131I-IAZGP, 513, 515

micrometastases, 510–511

perinecrotic distribution pattern, 510, 511

I

Image registration

discrete Fourier transform, 490–491

3D POC, 495–497

deformable registration algorithm,

503–504
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and 3D SIFT detection, 501

image matching procedures, 498–500

iterative processing, 501

peak estimation, 498

point matching error, 502–503

reduce boundary effects, 497

spectral weighting function, 497–498

“gold standard” transformation, 489

RIRE project, 489–490

SIFT feature detection

DoG images, 491–492

image-block matching method, 491

localization refinement, 493

low-contrast feature points, 493–494

poorly localized feature points, 494–495

In-phase and out-of-phase images, 109–114

Institutional Review Board (IRB), 535

Intensity modulated radiation therapy (IMRT)

plan, 626

Intermediate pulse amplifier (IPA), 531

International Commission on Radiation Units

and Measurements (ICRU), 624

Iterative reconstruction (IR), 337–339

J

Joint co-segmentation and registration

features, 54

generic framework, 55–56

kidney appearance, 54

kidney detection, 56–58

kidney segmentation, 59

MAP formulation, 53

results, 59–60

rigid transformation, 53

ROC and Precision-Recall curves, 54–55

two-fold cross-validation, 54

vs. US images, 53

K

Kidney

abdominal cavity, 4–5

anatomical structure, 4–5, 69–70

appearance, 54

bean-shaped organs, 4

body’s garbage collection and disposal

system, 69

delineation, 87

detection, 56–58

diseases, 69–70

function

blood flow estimation, 7

excretion, 5, 69

filtration, 6

reabsorption, 5, 6

secretion, 5, 6

water levels control, 69

homeostatic functions, 69

nephrons, 5–6

segmentation and registration techniques

clustering method, 16

deformable boundary methods, 15–16

energy minimization-based

methods, 16

gross patient motion, 13

intrinsic effects, 13–14

LCDG model, 16

methodology, 17–19

MGRF model, 16

threshold-based techniques, 14–15

transmitted pulsatile effects, 14

transmitted respiratory effects, 13

signal intensity, 7

size, 4

transducer, 6–7

L

LabVIEW software, 534

Leung-Malik filter bank, 578, 579

Liver cirrhosis. See Cirrhosis
Liver function quantification, MRI

gadoxetate disodium

automatic extraction, 248

extracellular fluid-based enhancement

effect, 243–245

hepatic enhancement effect, 242

hepatocellular uptake index, 245, 247

nonlinear two-compartment model,

240–241

signal intensity, 242–243

T1-weighted 3-dimensional gradient

echo image, 245–247

Gd-based extracellular fluid contrast agent

linear two-compartment model,

234–236

rate coefficient (K1/k2), 237–239

time required (τ), 236–237
two-in-one-outlinear compartment

model, 239

Liver metastases, 212, 219, 265–267
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Live wire (LW) method, 76–77

Lymph node metastases, 219

M

Magnetic resonance imaging (MRI). See also
Multiparametric magnetic resonance

imaging

clinical diagnosis, 9, 13–14

contrast agent, 9, 12

diffuse fatty liver disease

chemical shift imaging (see Chemical

shift imaging)

frequency-selective imaging, 114–115

MR spectroscopy (see Magnetic

resonance (MR) spectroscopy)

3-D MRI, prostate in (see Segmentation

propagation)

ex vivo MRI, prostate histology images

(see Whole-mount prostate

histology, 3D registration)

functional parameters, 12

hepatic hemangiomas

ADC values, 128

advantages of, 126

black-blood diffusion images, 128

DW images, 128

gadofosveset trisodium, 130, 136

gastrointestinal stromal tumor and liver

lesion, 130, 134–135

Gd-BOPTA, 128–130

Gd-EOB-DTPA, 128–130

liver lesion, 130, 131

total serum bilirubin, 130, 132–133

T1/T2-weighted images, 128

hepatocellular carcinoma

bile duct invasion, 190–191

cirrhosis-associated hepatocellular

nodules, 185

confluent hepatic fibrosis, 191–193

diffusion and hepatobiliary phase,

183, 184

DWI, 173, 188

dysplastic nodule, 179–182

focal nodular hyperplasia, 191–193

gadobenate dimeglumine, 175–176

gadolinium-enhanced imaging,

172–174, 187

gadolinium ethoxybenzyl

diethylenetriaminepentaacetic acid,

175–176, 188

gradient recalled echo sequence,

171–172, 184

hemangioma, 191, 193–194

hemorrhagic HCCs, 185

hepatic vein invasion, 190

hepatobiliary contrast agent, 175–176

hepatocellular nodule, 176

hypovascular HCCs, 186

inner necrosis, 183, 186

lesion characterization, 172

mass-forming intrahepatic

cholangiocarcinoma, 194–195

mosaic pattern and capsular

enhancement, 183, 185

MR elastography, 173–174

portal vein invasion, 188–189

regenerative nodule, 177–178

signal intensity characteristics, 184

small arterial enhancing lesion, 195

superparamagnetic iron oxide,

174–175, 187

technetium-99m, 174

kidney segmentation and registration

techniques

clustering method, 16

deformable boundary methods, 15–16

energy minimization-based

methods, 16

gross patient motion, 13

intrinsic effects, 13–14

LCDG model, 16

methodology, 17–19

MGRF model, 16

threshold-based techniques, 14–15

transmitted pulsatile effects, 14

transmitted respiratory effects, 13

liver function quantification (see Liver
function quantification, MRI)

noninvasive technique, 9

pancreatic adenocarcinoma

breath-hold T1-weighted GES, 213

chronic pancreatitis, 216–217

vs. computed tomography, 217–218

conventional spin-echo images, 215

gadolinium contrast-enhanced

images, 214

liver metastases, 212, 219

lymph node metastases, 219

MRCP, 210, 211, 213, 214

performing postgadolinium gradient-

echo imaging, 214

peritoneal metastases, 220

postgadolinium T1-weighted

gradient-echo images, 215

preoperative staging, 218
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T1-weighted fat-suppressed SGE,

214–216

T2-weighted half-Fourier acquisition

snapshot turbo spin-echo, 214

T2-weighted single-shot echo train

spin-echo, 213–214

vascular encasement, 211, 218–219

pixel-by-pixel parametric maps, 12–13

renal CAD system

analytical function-based model, 20

classification of, 12, 20

diagnosis of, 20–23

empirical parameters, 17

exponential speed function, 17

functional parameters, 17

GFR, 17, 20

k-nearest neighbor classifier, 20

simulated and in-vivo data, 17

stochastic geometrical deformable

model approach, 20

renal cortex segmentation, 72

time-intensity curves, 12

Magnetic resonance (MR) spectroscopy

chemical moiety, 115–116

disadvantage of, 117

FSF, 116

point resolved spectroscopy, 116

STEAM sequences, 116

SVS techniques, 116

T1 and T2 relaxation effects, 117

time-consuming, 116

Mammographic images, 452, 456

Markov-Gibbs random field (MGRF) model,

16, 24

Mass-forming intrahepatic

cholangiocarcinoma, 194–195

Medical image segmentation

contourlet transform, 448–450

diagnosis and clinical evaluation, 444

endoscopy, 452, 453

lung CT scans, 454

mammographic images, 452, 456

parameterization, 450–451

quantitative evaluation, 456–458

region-based active contour models

energy function, 447

mechanism, 444

regularization forces, 447

structure tensors, 446–447

thorax CT scans, 452, 455

MIL. See Multiple instance learning (MIL)

MOAAM. See Multi-object active appearance

model (MOAAM)

Model-free segmentation approach

graph cuts, 288–292

initialization, 286–287

post-processing step, 292

preprocessing step, 283–286

shape and intensity constrains, 288

MR cholangiopancreatography (MRCP), 210,

211, 213, 214

MR colonography (MRC), 422

MR elastography (MRE), 173–174

MRI. See Magnetic resonance imaging (MRI)

Multi-atlas-based segmentation

bladder segmentation, 644, 646

computerized registration framework, 628

DSC results, 640

evaluation of

data and methods, 641

ith-ranked atlas, 642

n-ranked atlas, 642

results, 642–643

experiments, 638

fixed image, 628

general atlas construction and segmentation

strategies, 632–634

average atlas construction, 634–636

label fusion, 637–638

n-ranked atlases, 636–637

organ probability maps, 635

image similarity metrics, 630–631

interpolation, 632

leave-one-out validation, 640

moving image, 628

optimization, 629, 631

prostate probability maps, 639

prostate segmentation, 644, 646

rectum segmentation, 645, 647

transformation, 629–630

Multidetector-row computed tomography

(MDCT), 318

hepatic hemangiomas, 125–126

hepatocellular carcinoma, 318

Multi-object active appearance model

(MOAAM)

3D recognized shapes, 82–83

OAAM optimization, 80–82

OAAM segmentation, 79

refined shape model, 79–80

traditional AAM matching method, 78–79

Multiparametric magnetic resonance

imaging

DCE-MRI, 560–563, 570, 571, 580

methodology

ADC, 563, 564
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Multiparametric magnetic resonance

imaging (cont.)
Fisher ratio, 563

IAUC30, 563, 564

IAUC60, 563, 564
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kel, 563, 564
kep, 563, 564
preprocessing, 564

segmentation methods, 565–570

T2 maps, 563, 564
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multispectral MRI

data description, 570–572

segmentation methods, 572, 573

statistical and quantitative analysis, 572–578
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Multiple instance learning (MIL)

conventional methods, 742

MILBoost, spatial regularization,
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formulation, 744–745

total variation regularization, 746

non-MIL setting, 743, 744

pruning in, 747

zero annotations, 748, 750, 751
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NAFLD. See Nonalcoholic fatty liver disease

(NAFLD)

Nearest neighbor (NN) matching, 720–721

efficient nearest neighbor search, 722

landmark positions, transfer of, 723

product quantization, 722–723

volume features, 721

volume size clustering, 723

Newton’s method, 598

Nonalcoholic fatty liver disease (NAFLD)

cirrhosis, 146

prevalence, 100

Nonparametric model, 73

Non-small cell lung cancer (NSCLC)

angiogenesis, 511

animal models, 512

glucose metabolism, 18F-FDG, 515–516

and HTB177 cells, 512

hypoxia

distributions of radiolabeled tracers,
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18F-misonidazole, 513–515, 517
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micrometastases, 510–511
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micrometastases, 510–511

O

Optical colonoscopy (OC), 390

Organic anion transporting polypeptide

8 (OATP8), 348

Organs at risk (OAR), 626

Oriented active appearance model (OAAM)

initialization step, 87

optimization, 80–82

segmentation, 79
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Pancreatic adenocarcinoma

chemotherapy and radiation therapy, 220

epidemiology and risk factor

double duct sign, 210

pancreatic cancer liver metastases, 212

pancreatic head, 210

pancreatic neck and body, 210, 211

redisposing factors, 209

survival rate, 210, 213

MRI

breath-hold T1-weighted GES, 213

chronic pancreatitis, 216–217

vs. computed tomography, 217–218

conventional spin-echo images, 215

gadolinium contrast-enhanced

images, 214

liver metastases, 212, 219

lymph node metastases, 219

MRCP, 210, 211, 213, 214

performing postgadolinium

gradient-echo imaging, 214

peritoneal metastases, 220

postgadolinium T1-weighted

gradient-echo images, 215

preoperative staging, 218

T1-weighted fat-suppressed SGE,

214–216

T2-weighted half-Fourier

acquisition snapshot turbo

spin-echo (HASTE), 214

T2-weighted single-shot echo train

spin-echo (SS-ETSE), 213–214

vascular encasement, 211, 218–219

neoplastic lesion

metastases, 227–228
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pancreatic endocrine tumors,

224–226

pancreatic lymphoma, 227

periampullary and ampullary

carcinoma, 226–227

nonneoplastic solid lesion

acute pancreatitis, 222

chronic pancreatitis, 222–224

focal fat replacement, 220–222

Pancreatic endocrine tumor, 224–226

Pancreatic lymphoma, 227

Peripheral zone (PZ), 564

3D Phase-only correlation (POC), 495–497

deformable registration algorithm, 503–504

and 3D SIFT detection, 501

image matching procedures, 499–501

iterative processing, 501

peak estimation, 498

point matching error, 502–503

reduce boundary effects, 497

spectral weighting function, 497–498

Photoacoustic (PA) imaging, 525

Pimonidazole-positive fraction (PPF), 511

Planning target volume (PTV), 624, 625

Point resolved spectroscopy (PRESS), 116

Polyp visualization, 434–435

Power Doppler (PD), 7, 124

Principal component analysis (PCA), 282

Probabilistic boosting tree (PBT), 734,

750, 751

Prostate brachytherapy

C-arm fluoroscopy, 590

dynamic dosimetry system (see
Registration of ultrasound and

fluoroscopy (RUF))

prostate delineation, effect of, 611

TRUS, 588, 589

ultrasound images, 590

Prostate cancer

filter banks, 578–579

multiparametric magnetic resonance

imaging (see Multiparametric

magnetic resonance imaging)

radiotherapy, pelvic structures

(see Multi-atlas-based

segmentation)

USA and Australia, diagnosis in, 624

Prostate-specific membrane antigen

(PSMA), 685

Pulsatility index (PI), 3, 7, 11

Pulse repetition frequency (PRF), 534–536
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Random sample consensus (RANSAC), 594

Receiver operating characteristic (ROC) curve,

561, 567, 572, 574–576

Region of interest (ROI), 526–529, 540, 541

Registration of ultrasound and fluoroscopy
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affine transformation, 602
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optimization, 603

seed reconstruction method, 591–592,

595–597

automatic pose correction, 597–599

fiducial segmentation, 593–594

linear programming approach, 597–598

seed segmentation, 594–595
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ultrasound image processing
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Gaussian blurred image, 601, 602

VOI image, 600, 601

validation
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volume similarity metric, 602–603

Renal blood flow (RBF), 12

Renal cortex segmentation
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computed tomography, 71–72
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experimental results, 87–90

graph cuts method

energy (En) minimization, 86
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Renal cortex segmentation (cont.)
live wire method, 76–77

MRI, 72

nonparametric model, 73

temporal Markov model, 73

ultrasound imaging, 72

Renal plasma flow (RPF), 2

Resistivity index (RI)

definition, 7

flow quantification, 7

Respiratory-triggered DWI, 254

Ricci flow method, 393, 400, 405, 429–430,
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Robust ellipsoid estimation
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numerical optimization, 42–43

variational framework, 41

ROCKIT software, 574

RUF. See Registration of ultrasound and

fluoroscopy (RUF)

S

SAR. See Specific absorption rate (SAR)

3D Scale-invariant feature transform (SIFT)

DoG images, 491–492

image-block matching method, 491

localization refinement, 493
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poorly localized feature points, 494–495

Segmentation propagation

anatomical boundary, delineation of

Canny edge detector, 669, 673

graph cuts, 667–669, 672

phase congruency, 669

SUSAN feature detector, 669–670, 673

anatomy of interest, localization of
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B-Spline-based registration

method, 664

experiments and results, 671–672

registration, 663–665

second stage’s candidate methods, 673

whisker plots, 674, 675

atlas-based segmentation, 661

dataset, 662–663

differential segmentation, prostate,
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Selective and Iterative Method for

Performance Level Estimation

(SIMPLE), 637

Seminal vesicles (SV), 638

Shape-based liver segmentation approach

CAD systems, 280

deformable model-based approach, 281

GVF active contour, 281

intensity-based approaches, 280

Jaccard coefficient, 310

JAMIT dataset, 296, 298, 300, 308

2D visualization, 303–304

liver tumor detection, 292

parameter setting, 293

MAP estimation, 281–282

MICCAI2007 training dataset, 292, 311

clinical data, 295–299

2D visualization, 302–304

evaluation metrics, 293–294

parameter setting, 293

proposed approach, 305–306

model-free segmentation approach

graph cuts, 288–292

initialization, 286–287

post-processing step, 292

preprocessing step, 283–286
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principal component analysis, 282

rule-based classification approach, 281

single/joint histogram, 280

Signal to noise ratio (SNR), 534, 552, 553

Simultaneous Truth and Performance Level
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Single kidney transplantation (SKT), 9

Single-voxel spectroscopy (SVS)
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Slice sensitivity profile (SSP), 549, 550

Specific absorption rate (SAR)
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EM pulse, 551

porcine kidneys, heating of, 550–551

Squared differences (SSD), 630

Stimulated-echo acquisition mode (STEAM)

sequences, 116

Submodular optimization, 723–725

anchor landmark, 731

coarse-to-fine detection, 735

confusion matrices, 738, 740

detection speed vs. volume size,

736, 737

distance errors, 737, 738

cost of detector, 730

greedy algorithm, 726–728

holistic-anchoring and sequential-

anchoring, 732–735
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errors in, 734

median detection errors, 733

multiple landmarks, detection of, 734

one landmark, detection of, 734

performance of, 733

speedup ratio vs. volume size, 732, 733

information gain and entropy, 740–741

maximization, 740

multiple objects, 741

multiple search space criteria, 729

search space, 725–726, 728–729

Viola–Jones cascade of classifiers, 738, 739

Supine-prone colon registration

analytic registration evaluation, 413–414

Beltrami coefficient, 391

CAD system, 390

characteristics, 391

conformal colon flattening, 403–404

conformal geometry theory

conformal mapping, 394–396

quasi-conformal mapping, 396–399

conformal mapping, 393

deformation fields, 393

elastic deformation, 391

harmonic maps, 392, 405–406

quasi-conformal mapping computation,

404–405

Ricci flow method, 393, 400–403

surface matching and registration

framework, 406

virtual colonoscopy, 390

visualization

flattened colon rendering, 409

quasi-conformality, 409–411

taeniae coli and flexures extraction,

407–408

visual registration verification, 414–415

Support vector machine (SVM), 369–370

cost-sensitive extension, 561

definition, 565

liver cirrhosis, 148, 156, 159

segmentation results, 573

υ-SVM, 565

2υ-SVM, 565, 566

T

TA imaging. See Thermoacoustic

(TA) imaging

Tanimoto coefficient (Tc) score, 670

Target localization error (TLE), 695, 696, 703

Target registration error (TRE), 705

Bland-Altman plots, 703, 704

image-guided-slicing-based method, 699

iterative optimization, 700

measurement of, 695, 696

TCT. See Thermoacoustic computerized

tomography (TCT)

Temporal Markov model, 73

Thermoacoustic computerized tomography

(TCT), 524

DuHamel’s principle, 527

EMI, 538

internal sources, 527

reconstruction methods, 526

Thermoacoustic (TA) imaging

clinical prototypes

EM frequency, 528

EM pulsewidth, 528–529

electrical conductivity, 525, 526, 553

EM design and validation

broadband measurements,

s-parameters, 544–547

2-channel narrowband

measurements, 548

narrowband and rapid measurements,

547–548

EM hardware

active components, 530–531

passive components, 532

EMI shielding, 532–533

Fourier transform, 527

heating rate, 525

history, 524–525

inhomogeneous acoustic

wave equation, 525

reconstruction

backprojection, 543–544

bandlimiting transforms, 537

EMI correction, 537–541

Hilbert transform, 536, 537

MATLAB, 544

multiple reflections, removal of,

541–542

prostate specimens, 552

single full-scan sinogram, 543

relative permittivity, 533–534

SAR

definition, 525

porcine kidneys, heating of, 550–551

specimen preparation and scanning

fresh human prostates, 535–536

gantry, large porcine kidneys, 534–535

SSP, 549, 550

TCT pressures

DuHamel’s principle, 527
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Thermoacoustic (TA) imaging (cont.)
internal sources, 527

reconstruction methods, 526

thermal and mechanical hardware, 533

US hardware, 532

Topology

colon flattening, 433

colon registration, 435

covering spaces, 427–428

discrete Ricci flow, 432–433

geodesics and cut locus, 428–429

homotopy

fundamental group, 425–427

trivial loop, 424

polyp visualization, 434–435

surface Ricci flow, 429–430

topological denoise, 423, 430–432,

437–439

Transcatheter arterial chemoembolization

(TACE), 318

Transition zone (TZ), 564

Transrectal ultrasound (TRUS), 560, 581,

588–591, 606, 610

TRE. See Target registration error (TRE)

Tumour growth

angiogenesis

biochemical and biomechanical

model, 468

coupling, models, 468–470

oxygen and cell nutrients, 465

stimulators and inhibitors, 464

vessel morphology, 468

cancer, onset of, 464

capillary development, 465

clinical image analysis

parameter information, 472–474

patient screening, 470–472

3D simulations, 477–480

normal wound dermal repair, 466–467

vascularization, 466

U

Ultrasound (US)

CAD system

collecting system, 7

DKT/SKT patients, 9

echogenicity, 7

immediate, slow and delayed graft

function, 9

objective and methods, 9–11

postoperative collections, 7

renal size, 7

resistivity index, 7–8

ureter condition, 7

CEUS (see Contrast-enhanced ultrasound

(CEUS))

diffuse fatty liver disease

detection and estimation, 101

fat content assessment, 104

fatty fibrotic pattern, 102

FFS value, 103–104

hepatic steatosis manifestation,

101–102

hepatorenal sonographic index, 103

morbid obesity, 102

signs, 102, 103

three-point scoring system, 102–103

visual quantification, 103

hepatic hemangiomas, 124–125

renal cortex segmentation, 72

V

Very high frequency (VHF). See
Thermoacoustic (TA) imaging

Virtual colonoscopy (VC), 390, 422

Volume helical shuttle (VHS), 339, 340

Volume of interest (VOI), 600, 601, 606, 607

Volumetric overlap error, 88

W

Whole-mount prostate histology, 3D

registration, 686–688

application, 706–707

experiments

image-guided-slicing-based method,

697–699

internal fiducials, 698

proposed method, 697

statistical analyses, 699–700

tissue-slice-imaging-based method, 698

fiducial marking, 690–692

Gleason score 7, 706, 707

histology registration, 692–693

correspondence vector

identification, 694

iterative optimization, 694

plane identification, 693–694

reconstruction algorithm notation, 693

limitations, 707
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materials and imaging

digital histology imaging, 690

tissue processing, 688–689

tissue slice MR imaging, 690

whole specimen ex vivo MR imaging,

689–690

prospective techniques, 686

registration accuracy, 695–696

results

image-guided-slicing-based method,

703, 704

internal fiducials, 703–704

landmark identification, 700–702

proposed method, 702–703

tissue-slice-imaging-based

method, 703

retrospective techniques, 686

statistical relationship, 705–706

Wireless capsule endoscopy (WCE), 366,

368, 369
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