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Abstract Wireless Sensor Networks are vulnerable to a plethora of different fault
types and external attacks after their deployment. We focus on sensor networks
used in healthcare applications for vital sign collection from remotely monitored
patients. These types of personal area networks must be robust and resilient to sensor
failures as their capabilities encompass highly critical systems. Our objective is to
propose an anomaly detection algorithm for medical wireless sensor networks, able
to raise alarms only when patients enter in emergency situation and to discard faulty
measurements. Our proposed approach firstly classifies instances of sensed patient
attributes as normal and abnormal. Once we detect an abnormal instance, we use
regression prediction to discern between a faulty sensor reading and a patient entering
into a critical state. Our experimental results on real patient datasets show that our
proposed approach is able to quickly detect patient anomalies and sensor faults with
high detection accuracy while maintaining a low false alarm ratio.
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Introduction

With the rise and precision of current medical procedures and the healthy lifestyles
of many individuals turning towards a healthier lifestyle, the average lifetime
expectancy is ever increasing [1]. Doctors are able to better diagnose and treat
patients while the ability of individuals to cope and recover from illnesses is stagger-
ing. Technological advances incorporated with vast and accurate knowledge of the
human anatomy have allowed healthcare professionals the ability to handle almost
any scenario they encounter in individuals at hospitals and emergency treatment
facilities [1, 2]. As the average individual lifetime expectancy has increased, this has
also directly impacted our planets population and as such, a shortage of qualified
healthcare professionals to treat the sick and needy has become an issue.

Scientists and researchers have developed numerous solutions to this problem,
one of which allows patients to be remotely monitored utilizing networks of wire-
less sensors which relay, in real time, patient information to doctors and healthcare
providers. Advances in sensor technologies and high throughput networks continue
to refine the accuracy and increase the integrity and public trust of these systems. As
a direct result, more individuals elect to utilize these systems as they allow greater
freedom and mobility while maintaining the quality of care equivalent to direct med-
ical interaction and attention found previously only in hospitals, clinics, and other
specialized care facilities.

In medical applications, implementations of specialized Wireless Sensor Net-
works (WSN), known as Personal Area Networks (PAN) and Wireless Body Area
Networks (WBAN), are comprised of numerous small devices attached to or
implanted in the body of a patient. At present, many existingmedical wireless devices
are used to collect various patient metrics and vital signs, such as Heart Rate (HR),
pulse, oxygen saturation (SpO2), Respiration Rate (RR), Body Temperature (BT),
Electro CardioGram (ECG), ElectroMyoGram (EMG), Blood Pressure (BP), Blood
Glucose Levels (BGL) and Galvanic Skin Response (GSR).

These networked medical sensors accumulate and transmit collected data to a
central device (i.e., base station, PDA, smart phone) for processing and storage,
This data may be then reevaluated and used to trigger medical alarms for caregivers
or healthcare professionals, upon detection of anomalies in the physiological data,
or clinical deterioration of monitored patients, to quickly react [2–4] by taking the
appropriate actions.

The use of PANs and WBANs has been extended to monitor individuals having
chronic illnesses (i.e., cardiovascular, Alzheimer’s, Parkinson’s, Diabetes, Epilepsy,
Asthma) where these networks have enhanced the quality of life by: (i) reducing the
healthcare costs (overcapacity, waiting, sojourn time, number of nurses, etc.), and
(ii) providing mobility, while continuously collecting and relaying critical physio-
logical data to their associated healthcare providers, e.g., long-term monitoring of
patient recovery from surgical procedure after leaving the hospital, kinematic and
rehabilitation assessment.
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These types of Personal Area Networks (PAN), while extremely useful, are not
without problems such as faultymeasurements, hardware failure, and security issues.
These networked small, lightweight wireless sensing devices also have additional
drawbacks such as reduced computational power and limited capacity and energy
resources. Sensor measurements from these networks are prone to a variety of other
types of anomalies including environmental noise, constant faults resulting from
bad sensor connections, energy depletion, badly placed sensors, malicious attacks
through data injection,modification or replay attackswhichmay cascade and directly
affect the collection point leading to unexpected results, faulty diagnosis, and a
reduction in public trust of these systems.

Medical sensors with wireless capabilities are available in the market (MICAz,
TelosB, Imote2, Shimmer [5], etc.). For example, ECG wireless sensor is connected
to three electrodes attached to the chest for real time monitoring of heart problems.
The pulse oximeter is used to measure the pulse and blood oxygenation ratio (SpO2),
through the use of infrared light and photosensor. These valuable information can be
exploited to detect asphyxia, insufficient oxygen (hypoxia) or pneumonia. A normal
SpO2 ratio typically exceeds 95%.When this ratio is lower than 90%, an emergency
alarm must be triggered due to possible lung problems or respiratory failure.

Sensor readings are unreliable and inaccurate [6, 7], due to constrained sensor
resources and wireless communication interferences, which make them susceptible
to various sources of errors. An improperly attached pulse oximeter clip or an exter-
nal fluorescent light may cause inaccurate readings. In [3], the authors found that
the sensing components were the first source of unreliability in medical WSNs, not
networking issues. Faulty measurements from sensors negatively influence the mea-
sured results and lead to diagnosis errors. Furthermore, this may threaten the life of
a patient after alerting emergency personnel for a code blue.

There may bemany reasons for abnormal readings inWSNs [8], such as hardware
faults, corrupted sensors, energy depletion, calibration, electromagnetic interference,
disrupted connectivity, compromised sensors, data injection, patient with sweating,
detached sensor, and heart attacks or some other health degradation, etc. Therefore,
an important task is to detect abnormal measurements that deviate from other obser-
vations, and to distinguish between sensor faults and emergency situations in order
to reduce the false alarm rate.

Over time, these networks accumulate vast amounts of historical data about an
individual. Due to the enormity of information, it often becomes difficult to observe
and extract sensor metric correlations and to distinguish between a patient entering a
critical health state and a faulty sensor component. Therefore, an anomaly detection
mechanism is required to identify abnormal patterns and to detect faulty data.

In contrast to signature based intrusion detection systems, where signatures are
required to detect attacks, anomaly based systems [9] look for unexpected patterns
in data measurements received from sensors. The abnormal pattern is a deviation
from a dynamically updated normal model for sensed data, and is more adequate for
WSNs given the lack of attack signatures. It is also important to note that anomaly
based systems face challenges related to the training phase as it is difficult to find
normal data in order to establish an appropriate normal profile.
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Various anomaly-based detection techniques for sensor fault identification and
isolation have been proposed and applied [9–12]. Distributed detection techniques
identify anomalous values at individual sensors to prevent the transmission of erro-
neous values and reduce energy consumption. These techniques require resources
that are not available in the sensors, and their accuracy is lower than centralized
approaches, which have global view for spatio-temporal analysis.

Physiological parameters are correlated in time and space, and correlation must
be exploited to identify and isolate faulty measurements, in order to ensure reli-
able operation and accurate diagnosis result. Usually, there is no spatial or temporal
correlation among monitored attributes for faulty measurements.

In this chapter,we focus on anomaly detection inmedicalwireless sensor readings,
and we propose a new approach based on machine learning algorithms to detect
abnormal values. First we use J48 [13] decision tree algorithm to detect abnormal
records, and when detected, we apply linear regression [14] to pinpoint abnormal
sensor measurements in an abnormal record. However, physiological attributes are
heavily correlated, and changes occur typically in at least two or more parameters,
e.g., in Atrial Fibrillation (AF) and Asthma disease, the heart rate and respiration
ratio increase simultaneously.

Our proposed solution is intended to provide reliability in medical WSNs used
for continuous patient monitoring, where we detect anomalies in a patient’s health,
and differentiate between the individual entering a critical health state and faulty
readings (or sensor hardware). We seek to reduce the false alarm rate triggered by
inconsistent sensors readings.

The rest of this chapter is organized as follows. In section“Related Work”, we
review related work on anomaly detection and machine learning algorithms used in
medicalWSN. Section“Background” describes briefly linear regression and decision
tree algorithm (J48) used in our detection system.The proposed approach is explained
in section“Proposed Approach”. In section“Experimental Results”, we present our
results from experimental evaluation, where we conduct a performance analysis of
the proposed solution over medical dataset. Finally, section“Conclusion” concludes
the chapter with a discussion of the results and future work.

Related Work

WSNs are becoming a major center of interest as they provide a viable solutions
to avoid unnecessary casualties in many fields such as military, civil protection or
medicine. Various vital sign monitoring systems have been proposed, developed
and deployed, such as MEDiSN [4] and CodeBlue [15, 16] for monitoring HR,
ECG, SpO2 and pulse, LifeGuard [17] for ECG, respiration, pulse oximeter and BP,
AlarmNet [18] and Medical MoteCare [19] for physiological (pulse and SpO2) and
environmental parameters (temperature and light), Vital Jacket [20] for ECG and
HR. A survey of medical applications using WSNs is available in [21, 22].
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However, collected data by WSNs have low quality and poor reliability. Many
approaches for anomaly detection in WSNs have been proposed to detect abnor-
mal deviation in collected data, and to remove faulty sensor measurements. Authors
in [23] propose an algorithm for the identification of faulty sensors using the mini-
mum and the maximum values of the monitored parameters. Any received measure-
ment outside the [min-max] interval is considered an outlier or inconsistent data. In
medical applications, we can not assume that all patients will have the same attribute
interval ranges as the min-max values depend on sex, age, weight, height, health
condition, etc.

Authors in [24] propose a hierarchical (cluster based) algorithm to detect out-
liers from compromised or malicious sensors. The proposed method is based on
transmission frequency, and KNN distance between received values from different
sensors. However, it is impractical in medical applications to put redundant sensors
for monitoring the same parameters. A simple prediction and fault detection method
for WSNs was proposed in [25]. The proposed algorithm is based on the detection
of deviations between the reference and the measured time series. The proposed
approach uses a predefined threshold and has been evaluated on the 3 types of faults:
short time, long time and constant fault.

Authors in [11] propose a distance based method to identify insider malicious
sensors, while assuming neighbor nodes monitoring the same attributes. Each sensor
monitors its one hop neighbors and uses Mahalanobis distance between measured
and received multivariate instances from neighboring sensors to detect anomalies
in a distributed manner. Authors in [26] propose a voting based system to detect
such events. Authors in [10] propose a failure detection approach for WSNs, which
exploits metric correlations to detect abnormal sensors and to uncover failed nodes.

Authors in [27] explore four classes of methods for fault detection: rule-based,
estimation-based, time series analysis, and learning based methods. They investigate
fixed and dynamic threshold, linear least squares estimation, Auto Regressive Inte-
grated Moving Average (ARIMA), Hidden Markov Model (HMM), etc. The authors
found no best class of detection methods suitable for every type of anomaly.

Data mining techniques and machine learning algorithms have also used in
WSNs to detect anomalies in multidimensional data. For example, Naïve Bayes [28],
Bayesian network [29], Support Vector Machine (SVM [30]), etc. Authors in [31]
propose an approach based on Support Vector Machine (SVM) and k-nearest neigh-
bor (KNN) for anomaly detection in WSNs. Authors in [32] use an unsupervised
approach for anomaly detection inWSNs, which is based on DiscreteWavelet Trans-
form (DWT) and Self-Organizing Map (SOM). The DWT is used to reduce the size
of input data for SOM clustering.

Authors in [33] propose the use of logistic regression modeling with a static
threshold to evaluate the reliability of a WSN in the industrial field with a large
number of sensors, and without updating the training model to be able to identify the
cause of a potential loss of reliability. On the same scale of large sensor networks,
authors in [13] propose a diagnosis method based on the enhanced C4.5 (J48 or
decision tree algorithm) which merges the local classifiers into a large spanning tree
to answer for the whole network accuracy. Another type of WSN deployment is
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presented in [28], which shows how to monitor the physical activity of a person
using Sun SpOT sensors attached to the thighs. Authors use naïve Bayes based
machine learning algorithm to determine if the person is sitting, standing, lying
or walking. However, they do not consider that the values may be corrupted due to
faulty hardware. Similarly, the authors in [34] present a system capable of discerning
between mental stress states from relaxation states using logistic regression based
on the heart rate variability.

In this chapter, we will use decision tree (J48) and linear regression algorithms
to detect abnormal records and to pinpoint abnormal sensors reading. J48 is used
to classify records and to reduce temporal complexity, and linear regression is used
to predict current values. As physiological parameters are correlated, if only one
monitored attribute deviates from estimated value, we classify the reading as faulty
and perform data cleaning, and in the other cases, we trigger an alarm for patients
entering into a critical state.

Background

In this chapter,we considerN medicalwirelessmotes (S1, . . . , SN ) attached to patient
in order to monitor specific physiological parameters, as depicted in Fig. 8.1. These
sensors transmit the collected data to the base station (smart phone) for real time
analysis and alerting healthcare professionals when required. The base station may
also transmit collected data to a remote/local DB for storage. The base station has
higher computational power, memory storage and a greater transmission range than
sensors. Collected data is analyzed at the base station before transmission to detect
anomalies and raise alarms when a patient enters a critical state.

Fig. 8.1 WSN for collecting vital signs and raising alarms
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The collected measurements for physiological parameters are represented by the
data matrix X = (

Xij
)
where i is the time instance, j represents the monitored

parameter. We denote by Xk = (X1k,X2k, . . . ,Xtk) the time series associated with
each parameter. Xk is a column in the data matrix X given in Eq.8.1.

X =
t1
t2
...

tm

X1 X2 X3 · · · Xn⎡

⎢⎢⎢
⎣

x11 x12 x13 · · · x1n

x21 x22 x23 · · · x2n
...

...
...

. . .
...

xm1 xm2 xm3 · · · xmn

⎤

⎥⎥⎥
⎦

(8.1)

The collected data on the smart phone must be processed in real time for online
anomaly detection. These measurements are probably of low quality and reliability,
due to the constrained resources of sensors and the deployment context (sweat,
detached, damaged sensor, interrupted communications, etc.). The accuracy of this
monitoring system relies on the received data, where faulty measurements trigger
false alarms for caregiver. Therefore, to increase the accuracy of diagnosis result,
faulty observations must be detected and isolated to reduce the false alarms and to
prevent faulty diagnosis.

To detect abnormal values, we use decision tree algorithm (J48) to classify records
(or line) as normal or abnormal. When an abnormal record is detected, the linear
regression algorithm is used to predict current measurements for each parameter, and
when the difference between predicted and current value is larger than the predefined
threshold, a correlation analysis is conducted to differentiate between faulty sensor
and patient health degradation.

In the rest of this section,webriefly reviewdecision tree (J48) and linear regression
algorithms used in our approach. For detailed information about these algorithms,
please refer to [14].

Decision Tree J48

J48 [13] is an implementation of the decision tree algorithm C4.5 (proposed by Ross
Quinlan), and belongs to the family of the supervised machine learning approaches.
Like other decision tree algorithms used in classification, J48 uses training set to
generate an optimal tree structure, which will be used to classify the arriving data
flow (test set).

The decision tree classification is a process starting at the root of the tree, where
each node of the tree is an independent decision that leads to another node, and
continues until a leaf node is reached. The leaf nodes represent the outcome of the
classification. In our model, the tree nodes are the monitored physiological attributes
and the leaf nodes are the class (normal and abnormal).

The decision process in J48 is based on the information carried by each attribute.
This information is used by the algorithm to establish a hierarchical classification
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from root to leafs of the decision tree, and it is represented by the Information Gain
IG(X,Xk) in Eq.8.4:

IG(X,Xk) = H(X) −
∑

xik∈X

|xik |
|X| H(xik) (8.2)

Where H(X) is the entropy of the association between a training record (ri) and the
nominal class (normal or abnormal) given in Eq.8.3, and xik are the values taken by
the attribute Xk .

H(X) =
∑

ri∈X

p(ri)log2(
1

ri
) (8.3)

The attributes with higher Information Gain are placed on the top of the tree, as the
most relevant decisions are taken on early for faster classification and to optimize the
calculation time. The Information Gain does not take into account the distribution of
attribute values between the classes. The Gain Ratio (GR) is used to take into account
the class splitting factor of each attribute :

GR(X,Xk) = IG(X,Xk)

SI(X,Xk)
(8.4)

Where the Splitting Information is given by:

SI(X, xik) = −
n∑

c=1

|xik |
|X| log2

|xik|
|X| (8.5)

Where n is the number of classes, and SI(X, xik) is the entropy of the apparition of
the xik within each class. Therefore, by calculating the gain ratio for each attributes,
we will be able to hierarchically distribute those attributes into the tree nodes.

Linear Regression

Linear regression is a statistical method which models a dependent variable yik using
a vector of independent variables xik called regressors. The goal is to predict the
value of yik at time instant ti given the value of other attributes. The model itself is
represented by the following relationship:

yik = C0 + C1xi1 + C2xi2 + · · · + Cnxin (8.6)

Where yik is the dependent variable, xik are the regressors and Cn are the coefficients
of the regressors (weights). These coefficients are calculated in the training phase as
the covariance of Xk and Yk is divided by the variance of Xk .
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Ck = Cov(Xk,Yk)

Var(Xk)
=

∑ (
xik − X̄k

) (
yik − Ȳk

)

∑
(xik − X̄k)

(8.7)

The linear regression is used to predict the value of yik by using the other attributes
in the same instance xij|j �=k , and to compare the predicted (yik) with the actual value
of xik to find if it fits within a small margin of error.

Proposed Approach

We consider a general scenario for remote patient monitoring, as shown in Fig. 8.1,
where many wireless motes with a restricted resources are used to collect data, and a
portable collection device (e.g., smart phone) with higher resources and greater trans-
mission capability than WSN motes, is used to analyze collected data, and to raise
alarms for emergency team when abnormal patterns are detected. We seek to detect
abnormal values, in order to reduce false alarms resulted from faulty measurements,
while differentiating faults from a patient’s health degradation.

The proposed approach is based on decision tree and linear regression. It builds a
decision tree and looks for linear coefficients from normal vital signs that fall inside
restricted interval range of monitored attributes. In the rest of this chapter, we focus
only on the following vital signs: HR ∈ [80 − 120], pulse ∈ [80 − 120], respiration
rate ∈ [12− 30], SpO2 ∈ [90− 100], T◦ ∈ [36.5− 37.5]. Attributes values that fall
outside these (restricted) normal intervals are considered abnormal. HR and pulse
reflect the same attribute from different sensors, where pulse is obtained from the
pulse oximeter and HR is measured as the number of interbeat intervals (R-R) in
ECG signal.

Algorithm 1 Anomaly detection approach
1: for all received record Ri during T do
2: Classify Ri using J48;
3: if Class(Ri) == ’ABNORMAL’ then
4: for all xik do
5: x̂ik = ∑n

j=1,j �=k Cjxij

6: ctr+ = (
∣
∣xik − x̂ik

∣
∣ ≥ 0.1 ∗ x̂ik) ? 1 : 0

7: end for
8: if ctr ≥ 2 then
9: Raise alarm for healthcare;
10: end if
11: end if
12: end for

Equation8.8 shows the residual threshold used to detect abnormal measurement:

ei = ∣∣xik − x̂ik
∣∣ ≥ 0.1 ∗ x̂ik (8.8)
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The proposed approach is based on two phases: training and detection. In the training
phase, machine learning methods generate a model to classify data, and in the testing
phase, inputs are classified as abnormal if they deviate from the established model.
The J48 decision tree model (built using training data within restricted intervals) is
used in our approach to classify each received record as normal or abnormal. In our
experiments, the decision tree was the most efficient classification algorithm. The
tree model is a set of rules (if-then) which is inexpensive to build, robust, and fast in
processing as it is based on numerical comparisons for classification. Furthermore,
abnormal instances detected by J48 will only trigger the forecasting with linear
regression, and this is why we use restricted small intervals for monitored attributes
in the training phase.

If a record is classified as abnormal by J48, we recursively assume that an attribute
(xik) is missing, and the coefficients of linear regression are used to estimate the
current value for this attribute (x̂ik) with respect to the others (xij|j �=k), as given in
Eq.8.9 for heart rate estimation:

ˆHRi = C0 + C1Pulsei + C2RESPi + · · · + C5Ti (8.9)

If the Euclidian distance between current (HRi) and estimated ( ˆHRi) values is larger
than the predefined threshold (10% of estimated value) for only one attribute, the
measurement is considered faulty and replaced by estimated value with linear regres-
sion. However, if at least two readings are higher than the threshold, we trigger an
alarm for response caregiver emergency team to react, e.g., heavy changes in the HR
and reduced rate of SpO2 are symptoms of patient health degradation and requires
immediatemedical intervention. Themajority voting is the optimal decision to detect
events and correct faults, as the probability ofmany attributes (2 ormore in our exper-
iments) being faulty is very low.

J48 is used to reduce the computation complexity, and to prevent the estimation
of each attribute for each instance on the base station. J48 is based on few compar-
isons for classification, and the combination of both approach for fault detection and
classification is used. Sliding windows are not used in our experiments to reduce the
complexity. When the model is well specified within the training data, updating or
rebuilding the models requires additional complexity (temporal and spatial) without
a large impact to the performance.

Experimental Results

In this section, we present the performance analysis results of the proposed approach
for anomaly detection in medical WSNs. Afterwards, we conduct an analysis to
study the impact of the decision threshold on true positive and false alarm ratios.
We used real medical data from the Physionet database [35], which contains 30392
records, and each record contains 12 attributes (ABPmean, ABPsys, ABPdias, C.O.,
HR, PAPmean, PAPsys, PAPdias, PULSE, RESP, SpO2, T◦). We only focus on 5
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Fig. 8.2 (a) Heart Rate (HR), (b) Pulse, (c) Respiration rate, (d) Oxygenation ratio and body
temperature

attributes: HR, PULSE, RESP, SpO2 and T◦. The variations of Heart Rate (in beat
per minute - bpm), Pulse and respiration rate are presented in Fig. 8.2a, b and c
respectively. Figure8.2d shows the variations of SpO2 (oxygenation ratio) and the
body temperature (constant value: 37◦C).

Figure8.3a, b shows the predicted and error (difference between actual and pre-
dicted) values for HR with linear regression. The measured values of HR (actual) are
presented in Fig. 8.2a. To test the efficiency of the used algorithms, we compare the
results (predicted and error) with different classifiers using the WEKA [36] toolkit:
Decision Table, Additive Regression and KNN for K = 3.

Figure8.3c, d shows the same results (predicted and error respectively) with addi-
tive regression tree, where the error is higher than linear regression. Figure8.4a, b
shows the results for KNN which is more computationally expensive (slow) and
has an error higher than additive regression. Figure 8.4c, d shows the results of
the decision table classifier, which had the worst results of all the classifiers used.
Figure8.5c shows themean absolute error for each of these classifiers,where decision
table achieves the prediction with the highest mean error rate, followed in descending
order by KNN, additive and linear Regression. Linear regression had the lowest error
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Fig. 8.3 (a) Predicted HR using linear regression, (b) Errors of prediction, (c) Predicted HR using
additive regression, (d) Errors of prediction

percentage and the best overall performance out of the three classifiers, which is also
why we use this classifier in the rest of this chapter.

Figure 8.5a shows the variations of the pulse and the respiration rate. Figure8.5b
shows the raised alarms by our proposed approach. The first alarm is raised when
reported values for pulse and SpO2 (Fig. 8.5a) are abnormal in the same instant (both
attributes are measured by the same sensor). The second alarm is triggered by the
abnormal values of the HR attribute. These abnormal values are visible in Fig. 8.2a,
b, c, and d when corresponding attributes suddenly fluctuate or decrease to zero.

To evaluate the performance of the proposed approach,weused theROC (Receiver
Operating Characteristic) to show the relationship between the true positive rate
(Eq.8.10) and the false positive rate (Eq.8.11).

TPR = TP

TP + FN
(8.10)

Where TP is the number of true positives, and FP is the number of false positives.
The false positive rate (FPR) is defined as:
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Fig. 8.4 (a) Predicted HR using KNN (k=3), (b) Errors of prediction, (c) Predicted HR using
decision table, (d) Errors of prediction

FPR = FP

FP + TN
(8.11)

The ROC curve is used for accuracy analysis. A ROC curve is a graphical rep-
resentation of the true positive rate versus the false positive rate when varying the
value of the decision threshold. In general, a good detection algorithm must achieve
a high detection ratio with the lowest false alarm rate. Figure8.5d shows the ROC for
the proposed approach where the first nominal classifier is J48, Logistic regression,
NaïveBayes andDecision Table respectively. The J48 classifier achieves the best per-
formance with TPR = 100% and FPR = 7.4%. These results demonstrate that our
proposed approach can achieve very good accuracy for detecting motes anomalies.

Conclusion and Perspectives

In this chapter, we proposed a new framework which integrates decision tree and
linear regression for anomaly detection in medical WSNs. The proposed approach
achieves both a spatial and temporal analysis for anomaly detection. We have



220 O. Salem et al.

0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

100

120

Time

PULSE
RESP

(a)

0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

100

120

Time

bp
m

HR
Alarms

(b)

LinReg AddReg K−NN DecTable
0

1

2

3

4

5

M
ea

n 
er

ro
r 

(%
)

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

J48
Logistic
NaïveBayes
DecTbl

(d)

Fig. 8.5 (a) Pulse and respiration rate, (b) Raised alarms, (c) Mean error rate with # classifiers,
(d) ROC

evaluated our approach on real medical data with many (both real and synthetic)
anomalies. Our experimental results demonstrated the capability of the proposed
approach to achieve a low false alarm rate with high detection accuracy.

We are currently investigating the performance of the proposed approach on real
medical wireless sensor traffic using Shimmer platinum development kit [5]. In the
future, knowing that most collected sensor measurements are normal, we look to
experiment with data aggregation locally on the sensor motes to reduce the amount
of exchanged data between the wireless sensors and the sink node without sacrificing
accuracy.

Acknowledgments This research was supported by Korea Science and Engineering Foundation,
under the World Class University (WCU) program with additional support from NSF grants CCF-
0545488 and OISE-0730065 and the National Science Research Center (CNRS) LaBRI, France.



8 Anomaly Detection Scheme for Medical WSN 221

References

1. Pardeep Kumar and Hoon-Jae Lee. Security Issues in Healthcare Applications Using Wireless
Medical Sensor Networks: A Survey. Sensors, 12(1):55–91, 2012.

2. JeongGil Ko, Chenyang Lu, Mani B. Srivastava, John A. Stankovic, Andreas Terzis, and Matt
Welsh.Wireless Sensor Networks for Healthcare.Proceedings of the IEEE, 98(11):1947–1960,
2010.

3. Octav Chipara, Chenyang Lu, Thomas C. Bailey, and Gruia-Catalin Roman. Reliable Clinical
Monitoring using Wireless Sensor Networks: Experiences in a Step-down Hospital Unit. In
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (SenSys’10),
pages 155–168, 2010.

4. JeongGil Ko, Jong Hyun Lim, Yin Chen, Rvazvan Musvaloiu-E, Andreas Terzis, Gerald M.
Masson, Tia Gao, Walt Destler, Leo Selavo, and Richard P. Dutton. MEDiSN: Medical Emer-
gency Detection in Sensor Networks. ACM Transactions on Embedded Computing Systems
(TECS), 10(1):1–29, 2010.

5. Adrian Burns, Barry R. Greene, Michael J. McGrath, Terrance J. O’Shea, Benjamin Kuris,
Steven M. Ayer, Florin Stroiescu, and Victor Cionca. SHIMMER™- A Wireless Sensor Plat-
form for Noninvasive Biomedical Research. IEEE Sensor Journal, 10(9):1527–1534, 2010.

6. Honggang Wang, Hua Fang, Liudong Xing, and Min Chen. An Integrated Biometric-based
Security FrameworkUsingWavelet-DomainHMMinWireless BodyAreaNetworks (WBAN).
In IEEE International Conference on Communications (ICC’11), pp. 1–5, 2011.

7. Yang Zhang, N. A. S. Hamm, N. Meratnia, A. Stein, M. van de Voort, and P. J. M. Havinga.
Statistics-based outlier detection for wireless sensor networks. International Journal of Geo-
graphical Information Science (GIS), 26(8):1373–1392, 2012.

8. Yang Zhang, Nirvana Meratnia, and Paul J. M. Havinga. Outlier Detection Techniques for
Wireless SensorNetworks:ASurvey. IEEE Communications Surveys and Tutorials, 12(2):159–
170, 2010.

9. Raja Jurdak, X. Rosalind Wang, Oliver Obst, and Philip Valencia. Wireless Sensor Net-
work Anomalies: Diagnosis and Detection Strategies, volume 10, chapter 12, pages 309–325.
Springer, 2011.

10. Xin Miao, Kebin Liu, Yuan He, Yunhao Liu, and Dimitris Papadias. Agnostic Diagnosis:
Discovering Silent Failures inWireless Sensor Networks. In IEEE INFOCOM’11, pages 1548–
1556, 2011.

11. Fang Liu, Xiuzhen Cheng, and Dechang Chen. Insider Attacker Detection in Wireless Sensor
Networks. In IEEE INFOCOM’07, pages 1937–1945, 2007.

12. Yu-Chi Chen and Jyh-Ching Juang. Outlier-Detection-Based Indoor Localization System for
Wireless Sensor Networks. International Journal of Navigation and Observation, 2012, 2012.

13. Xu Cheng, Ji Xu, Jian Pei, and Jiangchuan Liu. Hierarchical distributed data classification in
wireless sensor networks. Computer Communications, 33(12):1404–1413, 2010.

14. Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical Machine Learning Tools
and Techniques (Third Edition). Morgan Kaufmann Publishers Inc., 2011.

15. DavidMalan, Thaddeus Fulford-jones, MattWelsh, and SteveMoulton. CodeBlue: AnAdHoc
Sensor Network Infrastructure for Emergency Medical Care. In Proceedings of International
Workshop on Wearable and Implantable Body Sensor Networks, 2004.

16. Havard Sensor Networks Lab. CodeBlue: Wireless Sensors for Medical Care. http://fiji.eecs.
harvard.edu/CodeBlue, Last visited January 2013.

17. K. Montgomery, C. Mundt, G. Thonier, A. Thonier, U. Udoh, V. Barker, R. Ricks, L. Gio-
vangrandi, P. Davies, Y. Cagle, J. Swain, J. Hines, and G. Kovacs. Lifeguard - A personal
physiological monitor for extreme environments. In Proceedings of the IEEE 26th Annual
International Conference on Engineering in Medicine and Biology Society, pages 2192–2195,
2004.

18. A.Wood, G.Virone, T. Doan, Q. Cao, L. Selavo, Y.Wu, L. Fang, Z. He, S. Lin, and J. Stankovic.
ALARM-NET: Wireless sensor networks for assisted-living and residential monitoring. Tech-
nical report, University of Virginia, 2006.

http://fiji.eecs.harvard.edu/CodeBlue
http://fiji.eecs.harvard.edu/CodeBlue


222 O. Salem et al.

19. Karla Felix Navarro, Elaine Lawrence, and Brian Lim. Medical MoteCare: A Distributed
Personal Healthcare Monitoring System. In International Conference on eHealth, Telemedi-
cine, and Social Medicine (eTELEMED’09), pages 25–30, 2009.

20. Jolla P. Silva Cunha, Bernardo Cunha, A. S. Pereira, W. Xavier, N. Ferreira, and L. Meireles.
Vital-Jacket®: A wearable wireless vital signs monitor for patients’ mobility in cardiology
and sports. In International Conference on Pervasive Computing Technologies for Healthcare,
PervasiveHealth, 2010.

21. Kres̆imir Grgic, Drago Z̆agar, and Vis̆nja Kriz̆anovic. Medical applications of wireless sensor
networks - current status and future directions. Medicinski Glasnik, 9(1):23–31, 2012.

22. Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare: A survey. Computer
Networks, 54(15):2688–2710, 2010.

23. Torsha Banerjee, Bin Xie, and Dharma P. Agrawal. Fault tolerant multiple event detection in
a wireless sensor network. Journal of Parallel and Distributed Computing, 68(9):1222–1234,
2008.

24. Yiying Zhang, Han-Chieh Chao, Min Chen, Lei Shu, Chul hyun Park, and Myong-Soon Park.
Outlier Detection and Countermeasure for Hierarchical Wireless Sensor Networks. IET Infor-
mation Security, 2009.

25. Yuan Yao, Abhishek Sharma, Leana Golubchik, and Ramesh Govindan. Online Anomaly
Detection for Sensor Systems: A Simple and Efficient Approach. Performance Evaluation,
67(11):1059–1075, 2010.

26. Sung-Jib Yim and Yoon-Hwa Choi. An Adaptive Fault-Tolerant Event Detection Scheme for
Wireless Sensor Networks. Sensors, 10(3):2332–2347, 2010.

27. Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. Sensor Faults: Detection
Methods and Prevalence in Real-World Datasets. ACM Transactions on Sensor Networks,
6(3):1–39, 2010.

28. Xiuxin Yang, Anh Dinh, and Li Chen. Implementation of a Wearerable Real-Time System for
Physical Activity Recognition based on Naïve Bayes Classifier. In International Conference
on Bioinformatics and Biomedical Technology (ICBBT’10), 2010.

29. Alfonso Farruggia, Lo Re Giuseppe, and Marco Ortolani. Probabilistic Anomaly Detection for
Wireless Sensor Networks. In Proceedings of the 12th international conference on Artificial
intelligence around man and beyond, pages 438–444, 2011.

30. Ajay Singh Raghuvanshi, Rajeev Tripathi, and Sudarshan Tiwari. Machine Learning Approach
for Anomaly Detection in Wireless Sensor Data. International Journal of Advances in,
Engineering and Technology, 1(4):47–61, 2011.

31. Miao Xie, Jiankun Hu, Song Han, and Hsiao-Hwa Chen. Scalable Hyper-Grid k-NN-based
Online Anomaly Detection in Wireless Sensor Networks. IEEE Transactions on Parallel and
Distributed Systems, PP(99):1–11, 2012.

32. Supakit Siripanadorn, Wipawee Hattagam, and Neung Teaumroong. Anomaly Detection in
Wireless Sensor Networks using Self-Organizing Map and Wavelets. International Journal of
Communications, 4(3):74–83, 2010.

33. FeiHuang, Zhipeng Jiang, SanguoZhang, and SuixiangGao. Reliability Evaluation ofWireless
Sensor Networks Using Logistic Regression. In Proceedings of the 2010 International Con-
ference on Communications and Mobile, Computing (CMC’10), pp. 334–338, 2010.

34. Jongyoon Choi, Beena Ahmed, and Ricardo Gutierrez-Osuna. Developpement and Evalua-
tion of an Ambulatory Stress Monitor Based on Wearable Sensors. IEEE Transaction and
Information Technology in Biomedicine, 16(2):279–286, 2012.

35. Physionet. http://www.physionet.org/cgi-bin/atm/ATM.
36. Weka data mining tool. http://www.cs.waikato.ac.nz/~ml/weka/.

http://www.physionet.org/cgi-bin/atm/ATM
http://www.cs.waikato.ac.nz/~ml/weka/

	8 Anomaly Detection Scheme for Medical Wireless Sensor Networks
	Introduction
	Related Work
	Background
	Decision Tree J48
	Linear Regression

	Proposed Approach
	Experimental Results
	Conclusion and Perspectives
	References


