
Chapter 9
Crowd Flow Segmentation Using Lagrangian
Particle Dynamics

Saad Ali and Mubarak Shah

Abstract A crowd of people is composed of groupings that arise due to
interdependence among its members. Advanced visual surveillance and monitoring
capabilities for crowded scenes can make use of this inherent group-based
composition of human crowds to understand its global motion dynamics and to
compartmentalize it into sub-parts for detailed analysis. In this chapter we propose
an algorithm that uses motion information to locate such distinct crowd groupings
in terms of flow segments in videos of large dense crowds. The flow segments
are located using a particle-based representation of the motion in the video. This
representation enables detection of boundaries between dynamically distinct crowd
groupings.

9.1 Introduction

A crowd of people is composed of groupings that arise due to interdependence
among its members [2, 14]. This interdependence could be a result of a social
relationship (e.g. members of the same family or close circle of friends), a common
purpose (e.g. to walking towards the same exit door) or an act of participating in a
collective activity (e.g. running in a marathon). Advanced visual surveillance and
monitoring capabilities for crowded scenes can make use of this inherent group-
based composition of human crowds to understand its global motion dynamics
and to compartmentalize it into sub-parts for detailed analysis. In this chapter we
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Fig. 9.1 Left: A frame depicting groups of people walking in multiple directions. Right: The crowd
groupings (segments) located by the proposed algorithm

propose an algorithm that uses motion information to locate (or segment) such
distinct crowd groupings in terms of flow segments in videos of large dense crowds.
Figure 9.1 show an instance of a crowded scene where the proposed algorithm dis-
covered various flow segments that belong to distinct crowd groupings in the scene.

Flow segment-based, and in turn group-based, visual analysis of crowded scenes
provides multiple benefits: (i) enables a more elaborate and clutter free visualization
of various moving groups of people in the scene; (ii) overcomes shortcomings of
traditional ‘detection and tracking’ surveillance approaches that rely on accurate
detection of each individual in the scene; (iii) mitigates influence of number of pixels
on an individual person and is able to provide reasonable insight into motion of large
crowds even at low resolutions.

Lagrangian Particle-based Representation: For segmenting crowd flows, the
key idea developed in this chapter is a particle-based representation of the motion
in the video. This representation enables detection of boundaries between various
dynamically distinct crowd groupings. These boundaries, which are otherwise
invisible or imperceivable to human eye, naturally emerge when people walk in
different directions or at different speeds.

The proposed particle-based representation consists of particle trajectories that
are obtained by examining a cloud of particles (usually in the form of a regular grid)
as it mixes and gets transported over time under the action of optical flow generated
by the crowd motion. The process of particle propagation using optical field (or
motion field in general) is called ‘advection’. If we assume that this optical flow
field is generated by a certain underlying dynamical system (whose exact form and
description is unknown) then one can use these trajectories to reveal representative
characteristics of the phase space of this dynamical system where phase space is
defined as a space of variables using which all possible states of a dynamical system
are represented. The characteristics can include locations of the barriers, mixing
properties, location of sources, and sinks in the phase space. Under our assumption
the phase space is directly related to the flow field of the crowd, these characteristics
can be mapped directly to physical properties of the crowded scene. For example,
a barrier in the phase space maps either to a physical obstacle in the scene or to a
boundary between crowd groups moving in different directions.
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Formally if we assume that the underlying dynamical system is a non-
autonomous dynamical system then the barriers are the invariant manifolds of the
phase space and are often called Coherent Structures (CS) [4]. Generally speaking,
Coherent Structures (CS) are separatrices/material lines (i.e. a boundary having
two different types of flows on opposite sides) that influence the kinematics of
the particle cloud over finite time intervals, and they divide the flow, and in turn
the phase space, into dynamically distinct regions where all the particles within the
same region have a similar fate or, in other words, coherent behavior. Intuitively
speaking, coherent structure is to optical flow data what “edge” is to image data.
Note that when coherent structures are studied in terms of quantities derived from
particle trajectories, they are named as Lagrangian Coherent Structures (LCS).

Note that there are two approaches by which the field of motion can be described:
(i) Lagrangian, and (ii) Eulerian. In the Lagrangian approach, properties of the flow
are gathered along the path taken by a particle, while in the Eulerian approach
properties of the flow are observed at a fixed spatial location. Since in our case
particles are allowed to move under the influence of the optical flow, we call our
representation a ‘Lagrangian particle-based representation’.

LCS Detection: In order to develop an algorithm for detection of LCS (or
boundaries between distinct crowd groupings) we make use of several advances
in the areas of nonlinear dynamical systems [5, 12], fluid dynamics, [4, 6, 17] and
turbulence theory [7,11]. In these disciplines several approaches have been proposed
to compute LCS based on whether the underlying dynamical system is periodic [15],
aperiodic [3], or quasi-periodic. The crowd movements are generally aperiodic (i.e.
time dependent) in a generic setting as there are no or little prior constraints on
its speed and direction over longer durations of time. In this chapter we employ
the Lyapunov Exponent (LE) approach to locate LCS of the phase space. The LE
measures the exponential rate of convergence or divergence between two particle
trajectories. For a given crowd video, we use a grid that covers the optical flow field
of the video and compute the finite-time estimate of Lyapunov Exponents (LEs)
for trajectories starting at each point of the grid. This process returns a finite-time
scalar Lyapunov Exponent (FTLE) field over the phase space. We use the result by
Haller [4] that show coherent structures appearing as ridges in the FTLE field. In
turn these ridges can be used as the boundary between various dynamically distinct
crowd groupings for segmentation purposes.

We compute two types of LCS: (1) attracting LCS and (2) repelling LCS. The
attracting LCS, represented by a forward FTLE field, are computed by advecting the
particle grid forward in time, while the repelling LCS, represented by a backward
FTLE field, are computed by advecting the particle cloud grid in time. The two
FTLE fields are combined to generate a single scalar field that is segmented using
an image segmentation algorithm (e.g., a watershed segmentation algorithm in this
case). The steps involved crowd flow segmentation are summarized in the block
diagram in Fig. 9.3.

Assumptions: Motion of crowds can exhibit a wide range of behaviors and can
be captured using a variety of camera setups (e.g. pole mounted or a ground-based
camera). Therefore, it is pertinent to layout the assumptions and constraints on the
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type of motion and scenes that an processed using the proposed algorithm. Some of
these are listed next:

• Crowded scene is viewed from a distance by a camera installed over a tall
structure. This constraint results from the abstraction of crowd (or people) as
particles. If a scene is viewed from a closer distance, then the algorithm requires
a top-down view where only heads of individuals are visible, thereby minimizing
artifacts resulting from in-dependent movement of other body parts. Side views
of the scene are least preferable within the particle based framework.

• The density of the crowd varies from 3 person per meter square to 7 meter per
second square.

• The crowd is formally structured and focused on some collective activity. This
constraint results from the fact that LCS detection algorithm exploits in some
sense the ‘common fate’ principle (i.e. trajectories belonging to the same group
have the same destination) to localize boundaries between trajectories moving
in different directions. If the crowd motion is random or haphazard this may no
longer be true.

• Each spatial location in the scene supports one dominant motion. That is, for a
any fixed spatial location the distribution of direction and speed of optical flow
vectors cannot be multi-modal. This is necessary as algorithm assumes analysis
is done only at one time scale and during that time only one type of dominant
motion is expected at a location.

• It should be noted that crowd behavior is dynamic in nature and can change
drastically. Therefore, in order to perform any video based analysis of crowd
motion a sliding window based approach should be adopted. The temporal extent
of the window can be kept constant or can be dynamically adopted based on
level of activity in the scene. Approaches summarized in this chapter adhere
to this principal and performs flow segmentation within of a sliding temporal
window.

Chapter Organization The remaining portion of the chapter is organized as
follows: Sect. 9.2 provides a overview of the background material and formal
definition of various concepts. Section 9.3 discusses the crowd segmentation
algorithms and walks the reader through various intermediate steps. Section 9.4
describes experimental setup and presents qualitative results.

9.2 Background, Definitions and Notations

Key background concepts, mathematical notations, and formal definitions are
provided in this section. The nomenclature of Shadden et al. [18] is used for this
purpose.

Let a compact set D ⊂ R
2 be the domain of the phase space under study. This

domain corresponds to the 2D-spatial extent of the video depicting crowd motion.
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Next, define a time-dependent optical flow field v(x,t) on D that satisfies C0 and C2

continuity in time and space, respectively. The C0 and C2 assumptions are required
to keep the optical flow field smooth. Here, t corresponds to the t-th frame of the
video. Then a particle trajectory x(t : t0,x0), starting at point x0 at time t0 can be
defined as a solution of

ẋ(t; t0,x0) = v(x(t; t0,x0), t), (9.1)

x(t0; t0,x0) = x0, (9.2)

where ẋ is the time derivative. It can also be observed that a trajectory, x(t : t0,x0),
of a particle depends on the initial position x0 and the initial time t0. From the above
mentioned continuity constraints of optical flow, v(x,t), it follows that the particle
trajectory, x(t : t0,x0), will be C1 in time and C3 in space.

As the goal is to analyze the transport properties (using particle trajectories) of
the phase space and, in turn, the underlying crowd, the solution of Eq. (9.1) can be
viewed as a transport device or map that takes particles from their initial position
x0 at time t0 to their position at time t. Formally, this solution is referred as a “flow
map,” denoted by φ t

t0 , and that satisfies:

φ t
t0 : D → D : x0 �→ φ t

t0(x0) = x(t; t0,x0). (9.3)

In addition, the flow map φ t
t0 satisfies the following properties:

φ t0
t0 (x) = x, (9.4)

φ t+s
t0 (x) = φ t+s

s (φ s
t0(x)) = φ t+s

t (φ t
t0(x)). (9.5)

These properties follow directly from the existence and uniqueness theorem that
allows one to conclude that there exists only one solution to a first-order differential
equation that satisfies the given initial condition. Next we describes the key concept
of FTLE field and discuss the steps involved in its computation from the flow
map φ .

9.2.1 Finite Time Lyapunov Exponent Field

As mentioned earlier crowd segments/groupings are located using LCS, and the
localization of LCS in turn requires computation of the FTLE field. The Lyapunov
exponent is an asymptotic quantity that measures the extent to which an infinitely-
close pair of particles separate in an infinite amount of time. In the theory of
dynamical systems, it is used as a tool for measuring the chaoticity of the system
under consideration by measuring the rate of exponential divergence between
the neighboring trajectories in the state/phase space. Traditionally, for any given
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dynamical system, ẋ = f (x), the maximum Lyapunov characteristic exponent is
defined as γ = limt→∞χ(t), with

χ(t) =
1
t

ln
| ξ (t) |
| ξ (0) | , (9.6)

where ξ (t) is the current state of the system, while ξ (0) is the initial state of the
given system. These states are usually obtained by solving the differential equation
controlling the evolution of the system.

When the Lyapunov exponent analysis is performed over a grid of particles over
finite times, it generates a FTLE field. In our formulation, the state of the system is
defined as the maximum possible separation between a particle and its neighbors.
Essentially, this means that the Lyapunov exponent now can be defined as a ratio of
the initial separation to the maximum possible separation between the particle and
its neighbors. Using this definition of the Lyapunov exponent, FTLE field σT (x0, t0)
can be computed using the flow map φ t0+T

t0 , which contains the final locations of
the particles at the end of particle advection. The flow map, as mentioned earlier,
quantifies the transport properties of the phase space by taking a particle from the
initial position, x0, at time t0 to its later position at time t0 +T .

One important point to note is that the FTLE does not capture the instantaneous
separation rate, but rather measures the average, or integrated, separation rate
between trajectories. This distinction is important because, in time-dependent
complex crowd flows, the instantaneous optical flow is not very informative.
However, by accounting for the integrated effect of the crowd-flow using particle
trajectories in the FTLE field, we hope to extract information that is more indicative
of the actual transport behavior.

The formal derivation of the expression of FTLE proceeds as follows [7, 18].
Consider a particle x ∈ D at initial time t0 (Fig. 9.2). Following advection, the
position of the particle after a time interval T is x �→ φ t0+T

T (x). Now, when advected
through the flow, any arbitrary particle that is infinitesimally close to x at time t0
will behave in a manner similar to x locally in time. However, as the advection time
increases the distance between these neighboring particles will change. Now, if we
represent the neighboring particle by y = x+ δx(0) (Fig. 9.2), where δx(0) is an
arbitrarily-oriented unit vector, then after a time interval T , the distance between
them becomes:

δx(t0 +T ) = φ t0+T
t0 (y)−φ t0+T

t0 (x) (9.7)

=
dφ t0+T

t0 (x)

dx
δx(0)+O(‖δx(0)‖2). (9.8)

Since the distance δx(0) is infinitesimally small, we can drop the higher order terms
in the Taylor series expansion of the flow map around the location x. The magnitude,
‖ δx(t0 +T ) ‖, of the final separation can be computed by taking the standard L2

norm
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Fig. 9.2 Computation of FTLE. The initial separation between particle x and y = x+ δx(0) is
δx(0). In order to compute the FTLE between them, we need to find out the magnitude of the final
separation after a time interval T

‖δx(t0 +T )‖2 =

∥
∥
∥
∥
∥

dφ t0+T
t0 (x)

dx
δx(0)

∥
∥
∥
∥
∥

2

. (9.9)

We are interested in finding out the maximum possible separation between the
particle, x, and all its neighbors, which, in other words, means that we seek to
maximize ‖ δx(t0 +T ) ‖2 over all possible choices of δx(0):

‖ δx(t0 +T ) ‖2= max
|δx(0)|=1

∥
∥
∥
∥
∥

dφ t0+T
t0 (x)

dx
δx(0)

∥
∥
∥
∥
∥

2

. (9.10)

Using the operator norm, the above equation can be written as:

‖ δx(t0 +T ) ‖2 = max
|δx(0)|=1

∥
∥
∥
∥
∥

dφ t0+T
t0 (x)

dx
δx(0)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

dφ t0+T
t0 (x)

dx

∥
∥
∥
∥
∥

2

.

(9.11)

The right-hand side of the above equation is the matrix L2 norm that can be
computed simply by using the standard property that states that, for any matrix A,
the matrix L2 norm is the square root of the maximum eigenvalue of the positive

definite symmetric matrix AT A. If we consider A =
dφ t0+T

t0
(x)

dx , then AT A is
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Δ = AT A =
dφ t0+T

t0 (x)

dx

∗
.
dφ t0+T

t0 (x)

dx
, (9.12)

where superscript ‘*’ refers to the transpose operator. It is interesting to note that
Δ is also known as the finite time version of the Cauchy-Green deformation tensor.

The quantity
dφ t0+T

t0
(x)

dx is the spatial gradient tensor of the flow map. The maximum
eigenvalue of Δ is represented by λmax(Δ).

Now, knowing the magnitude of the maximum possible separation, λmax(Δ), and
the initial separation, δx(0), between the particle and its neighbors, we can compute
the FTLE field, σ , with a finite integration time T corresponding to point x ∈ D at
time t0 as:

σT
t0 =

1
T

ln
√

λmax(Δ). (9.13)

Since, δx(0) is a unit vector, we eliminated it from the above equation. The above
quantity is computed for each x ∈ D to obtain the entire FTLE field at time t0.

9.2.2 Lagrangian Coherent Structures

The LCS corresponds to the boundaries between the crowd flows of distinct
dynamics. They appear as ridges in the FTLE field of the video. The relationship
between ridges in the FTLE field and the LCS can be explained in the following
way. If two regions of a phase space have qualitatively different dynamics, then
we expect a coherent motion of particles within each region, and, therefore, the
eigenvalues of Δ will be close to 1, an indication that the fate of nearby particles
is similar inside the region. At the boundary of the two regions, particles will move
in incoherent fashion, and, therefore, will create much higher eigenvalues. These
higher values will make the ridge prominent in the FTLE field and point to the
locations of the LCS.

We compute two types of LCS, namely “Attracting Lagrangian Coherent Struc-
tures” (ALCS) and “Repelling Lagrangian Coherent Structures” (RLCS). The
former will emphasize those boundaries between the crowds from which, in a
given time interval (forward in time), all nearby particle trajectories separate; the
later will emphasize those boundaries between the crowds from which in a given
time interval (backward in time), all nearby particle trajectories separate. For the
computation of ALCS, the particle grid is initialized at the first optical flow field
and advected forward in time, followed by the computation of forward FTLE field.
For the computation of RLCS, the particle grid is initialized at the last optical flow
field and advected backward in time, followed by the computation of backward
FTLE field.
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9.3 Crowd Segmentation: The Algorithm

In this section, we bring together all the concepts explained so far and describe
the algorithmic steps that involved in carrying out the segmentation of crowd into
dynamically distinct groupings. A block diagram in Fig. 9.3 provides a higher-level
view of the algorithmic steps.

9.3.1 Optical Flow Computation

Given a video sequence, the first task is to compute the optical flow between the
consecutive frames of the video. We employ two different schemes for this purpose.
The first scheme consists of a block-based correlation in the Fourier domain. The
process starts by selecting a square patch centered at the same pixel location of
two consecutive frames F1 and F2, of the given video. The pixel values in both
blocks are mean normalized, and a correlation surface is constructed by performing
cross correlation in the frequency domain. The peaks are located in the correlation

Fig. 9.3 Block diagram of the crowd-flow segmentation algorithm. (1) The input is a video of
a crowded scene. (2) Computation of optical flow from the frames of the video. (3) Forward
and backward advection of particle grid resulting in forward and backward particle flow maps.
(4) Computation of respective FTLE fields from the forward and backward particle flow maps.
(5) Fusion of forward and backward FTLE fields and label assignment using the watershed
segmentation algorithm. (6) Detection of abnormal events (or crowd-flow instabilities)
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Fig. 9.4 (Color online) Examples of optical flow fields computed by using the algorithm of [1].
Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding frames

Fig. 9.5 (Color online) Examples of optical flow fields computed by using the algorithm of [1].
Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding frames

surface and are used to calculate the displacement. Note that all the pixels inside
a block are assigned the same displacement value. The process is repeated for all
possible blocks in the given frame. Local outliers in the displacement vectors are
replaced in a post-processing step, by using adaptive local median filtering. The
removed vectors are filled by interpolation of the neighboring velocity vectors.
A typical size of the block employed in our experiments is 16 × 16 pixels. The
second scheme that we used is proposed in [1] where grey value constancy, gradient
constancy, smoothness, and multi-scale constraints were used to estimate a high-
accuracy optical flow.

To analyze the crowd-flow in a given interval of T frames, we pool the optical
flow fields, v(1),v(2), . . . ,v(T ), to generate a 3D volume of optical flows. To
simplify the notation, we have removed the dependence of v on location x. This
3D volume of optical flow is used to advect the particles, where parameter T is
used as the integration time. we use the symbol Bt+T

t to represent a the 3D volume
of optical flow fields v(t),v(t + 1), . . . ,v(t +T ). Figures 9.4–9.7 show color-coded
optical flows computed from different sequences in our data set.
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Fig. 9.6 (Color online) Examples of optical flow fields computed by using the block-based
correlation algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for
the corresponding frames

Fig. 9.7 (Color online) Examples of optical flow fields computed by using the block-based
correlation algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for
the corresponding frames

9.3.2 Particle Advection

The next step is to advect a grid of particles through the 3D volume of flow fields,
Bt+T

t , that corresponds to the time interval t to t +T . we start by launching a grid
of particles over the first optical flow field, v(t), in Bt+T

t . Ideally, the resolution of
the grid should be the same as the number of pixels in each frame of the video. An
example of this Cartesian mesh of particles placed over the flow field of a crowd
video and the trajectories of particles are provided in Fig. 9.8.

Next, the Lagrangian trajectory [x(t +T ; t,x0,y0),y(t +T ; t,x0,y0)] correspond-
ing to a particle at grid location (x0,y0) is computed by solving the ordinary
differential equations numerically:
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Fig. 9.8 The particle advection process. (a) Frames from the input video. (b) A grid of particles
is overlaid on the flow field of the input sequence. (c) Trajectories of the particles are obtained by
advecting them through the flow field

dx
dt

= u(x,y, t),
dy
dt

= v(x,y, t), (9.14)

subject to the initial conditions [x(0),y(0)] = (x0,y0). t + T represents the time
up-till which we want to compute the trajectory. we use the fourth order Runge-
Kutta-Fehlberg algorithm along with cubic interpolation [13] of the velocity field
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Fig. 9.9 (a) The Lagrangian trajectories obtained by forward integration. (b) The Lagrangian
trajectories obtained by backward integration

to solve this system. The backward particle advection is carried out by initializing
the grid of particles over the last optical flow field v(t + T ) in the 3D volume of
optical flow fields Bt+T

t . The direction of the optical flow vectors is reversed for the
backward integration. Figure 9.9a provides a visualization of the Lagrangian tra-
jectories obtained by forward integration, while Fig. 9.9b provides the visualization
of the Lagrangian trajectories obtained by the backward integration. The length of
integration, T = 50, was used for this purpose.

Note that, in our case the domain D is not closed and trajectories can leave the
domain. The particles that leave the domain are not advected anymore, and their
last available positions are kept in the flow map. That is, we do not perform any
re-seeding of the particles if they leave the domain.

9.3.3 Particle Flow Maps and FTLE Field

During forward and backward integration, a separate pair of flow maps, namely φx

and φy, is maintained for the grid of particles. These flow maps are used to relate
the initial position of each particle to its later position obtained after the advection
process. This way, the particle flow maps integrate the motion over longer durations
of time, which is lacking in the instantaneous optical flow. Here, the first map, φx,
keeps track of how the x coordinate of particles is changing, and, similarly, φy keeps

track of the y coordinate of particles. we use notation φ f
x and φ f

y to refer explicitly to
forward flow maps, and φ b

x and φ b
y to refer explicitly to backward flow maps. When

the explicit references are not important, we omit the superscripts.
At the start, these maps are populated with the initial positions of the particles,

which are the pixel locations at which the particle is placed. The particles are then
advected under the influence of Bt+T

t using the method described in Sect. 9.3.2. The
positions of the particles are updated until the end of the integration time length T .

The computation of the FTLE field from the particle flow maps requires
computation of the spatial gradients of the particle flow maps, i.e., dφx

dx , dφx
dy , dφy

dx ,

and dφy
dy . This step is accomplished by using a finite differencing approach for taking
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Fig. 9.10 The spatial gradients of the particle flow maps for the sequence shown in Fig. 9.4
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Fig. 9.11 The spatial gradients of the particle flow maps for the sequence shown in Fig. 9.5

derivatives. Figures 9.10 and 9.11 show spatial gradients of particle flow maps for
two different sequences in the data set. It can be observed that a high gradient is
present where the neighboring particles are behaving differently over the length of
the integration. The Cauchy-Green deformation tensor is computed by substituting
the spatial gradients of the particle flow maps in Eq. (9.12). Finally, the FTLE field
is computed by finding the maximum eigenvalue of the Cauchy-Green deformation
tensor and plugging it in Eq. (9.13). Figures 9.12–9.15 show a number of FTLE
fields corresponding to different crowd sequences in our data set. In these examples,
the combined FTLE field is obtained by adding the forward and backward FTLE
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Fig. 9.12 FTLE field for the sequence shown at the top. The sequence has multiple groups
of people intermingling with each other. The ridges are prominent at the locations where the
neighboring crowd groups have dynamically distinct behavior. (a) The forward FTLE field
obtained by the forward integration of particles. (b) The backward FTLE field obtained by the
backward integration of particles. (c) The combined FTLE field

fields. It can be observed that ridges in these fields (Figs. 9.12–9.15), which point
to the location of LCS, are very prominent, and, therefore, can be used to separate
regions of the crowd-flow that are dynamically distinct from each other.

The utility of computing forward and backward FTLE fields becomes obvious
from the analysis of the FTLE fields shown in Fig. 9.13. In this video sequence
traffic from the ramp is merging onto the main highway. When the particles are
advected forward in time, no LCS appear at the intersection of the ramp and
the main highway (Fig. 9.13a). The reason is that the particles at the intersection
move forward coherently in time as the destinations of the underlying traffic flow
on the ramp and the main highway are the same. But when these particles are
advected backward in time, the LCS appear at the intersection (Fig. 9.13b) since
the particles at the intersection do not have the same destination backward in time
because the underlying traffic is originating from different locations. In other words,
by backward integration, we am able to take into account the origin of the flow
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Fig. 9.13 FTLE field for the sequence shown at the top. The sequence has multiple lanes of traffic,
and the traffic from the ramp is merging onto the main highway. (a) The forward FTLE field
obtained by the forward integration of particles. Note that no LCS are present at the intersection
of the ramp and the highway. (b) The backward FTLE field obtained by the backward integration
of particles. Note that LCS have now appeared at the intersection of the ramp and the highway. (c)
The combined FTLE field

Fig. 9.14 The combined FTLE fields for the sequences shown at the top
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Fig. 9.15 The combined FTLE fields for the sequences shown at the top

in addition to its destination. This capability is important to completely resolve
different crowd-flow segments present in the scene. This point will become clearer
when we present the segmentation results in a later section.

9.3.4 FTLE Field Segmentation

The LCS in the FTLE field can be treated as the watershed lines dividing individual
catchment basins. Each catchment basin represents the distinct crowd grouping that
is present in the scene. The catchment basins are homogeneous in the sense that
all the particles belonging to the same catchment basin have the same origin and
destination. To generate a distinct labeling for each catchment basin, we employ
the watershed segmentation algorithm [16]. The final segmentation map is created
by removing those segments where the magnitude of the flow is zero. we call such
segments “vacuum segments.” Note that, due to the unique strength of the FTLE
field based representation, we do not have to pre-specify the number of crowd-flow
segments. This way, we are able to overcome the problem of specifying the number
of segments or clusters which is common in most of the clustering and segmentation
algorithms [19].

9.4 Experiments and Discussion

This section discusses the experimental setup and the data sets used in the
experiments. It also presents the segmentation results along with a discussion of
the interpretation of the results.
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Fig. 9.16 Example of sequences used in our experiments

9.4.1 Datasets and Experimental Setup

We have tested our approach on videos taken from the stock footage web sites
(Getty-Images [9], Photo-Search), and Video Google [10] which are now part of
UCF Crowd data set [8]. Two types of crowded scenarios are covered in these
videos: the first scenario consists of scenes involving the high-density crowds, while
the second scenario consists of high-density traffic scenes. Traffic scenes can be
treated as a close approximation of the motion of crowds of people and, therefore,
provides us with useful data for testing the performance of the proposed algorithm.
Another set of videos were taken from the National Geographic documentary,
entitled “Inside Mecca,” which covers the yearly ritual of Hajj performed by close
to two million people. Therefore, this event provides a unique opportunity for
capturing data about the behavior of large gatherings of people in a realistic setting.
Figure 9.16 shows key frames from some of these sequences.

For each video, the optical flow is computed by using the algorithms previously
described in Sect. 9.3.1. The computation of the optical flow is performed at a
coarser resolution than the resolution of the image to reduce the computational
cost. Next, a grid of particles is placed over the flow field. The resolution of the
grid is kept the same as the number of pixels on which the flow field is computed.
The forward and backward particle flow maps are generated using the advection
algorithm described in Sect. 9.3.2. The corresponding FTLE fields are computed
from the spatial gradient tensor of the flow maps using Eq. (9.13). The backward
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Fig. 9.17 The flow segmentation result on a video taken from the National Geographic documen-
tary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow segmentation mask
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Fig. 9.18 The flow segmentation result on a video from “Video Google.” Left: A frame from the
video. Right: The crowd-flow segmentation mask

and forward FTLE fields are fused to generate a combined FTLE field. The fusion
is carried out by adding the values of both fields. Finally, the segmentation is
performed using the watershed segmentation algorithm.

9.4.2 Segmentation Results

This section presents qualitative analysis of the results obtained on different video
sequences. Figures 9.17–9.25 show the segmentation results on all the sequences in
the data set.

The first sequence, shown in Fig. 9.17, are extracted from the National Geo-
graphic documentary entitled “Inside Mecca”. The sequence depicts thousands of
people circling the Kabba in a counter-clockwise direction. In this case, the group of
people circling in the center is part of the same flow segment because of its common
dynamics and desirable goal. The optical flow field of the crowd motion offers a
unique challenge as one can observe from the color-coded optical flow shown in
Fig. 9.4. The different colors emphasize that the flow vectors along the circular path
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Fig. 9.19 The flow segmentation result on a video taken from the stock footage web site “Getty
Images.” Left: A frame from the video. Right: The crowd-flow segmentation mask
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Fig. 9.20 The flow segmentation result on a video taken from the National Geographic documen-
tary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow segmentation mask

have different directions and magnitudes. This means that a simple clustering of
these vectors will not allow us to assign these vectors to the same cluster when,
in fact, they all belong to one cluster. The result is shown in Fig. 9.26a, where
mean-shift clustering was used to cluster the optical flow vectors extracted from
the instantaneous optical flow field. The clustering results are shown for different
choices of the band-width parameter. But even with different values of bandwidth,
the mean-shift is not able to correctly localize the circular segment. However, using
our method where we integrate the motion information over longer durations of
time, we are able to correctly segment the complex crowd motions (Fig. 9.17). The
LCS structures previously shown in Fig. 9.14a, show that the dynamic behavior of
the crowd moving in a circle is preserved by emphasizing the boundaries of the
coherent flow regions. Another result of a similar type of motion is presented in
Fig. 9.21. In this case, there is an additional group of people that is walking on top of
the roof. Our method is able to localize this additional crowd-flow segment as well.

The next result that we would like to discuss is shown in Fig. 9.20. This sequence
contains complex motion dynamics as there are several groups of people that are
intermingling with each other and moving in various directions. The challenges
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Fig. 9.21 The flow segmentation result on a video from “Video Google.” Left: A frame from the
video. Right: The crowd-flow segmentation mask
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Fig. 9.22 The result of the flow segmentation on a high-density traffic scene. This segmentation
was obtained by using both the forward and backward FTLE fields. Left: A frame from the video.
Right: The crowd-flow segmentation mask
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Fig. 9.23 Result of the flow segmentation on a high-density traffic scene. The segments corre-
spond to group of cars that are behaving dynamically different from each other

posed by this sequence are different in that the mixing barriers between various
crowd groupings must be correctly located. The segmentation result shown in
Fig. 9.20 demonstrate that we am able to localize most of the distinct crowd
groupings that were present in the scene. The discovered barriers between the crowd
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Fig. 9.24 The result of the flow segmentation on a high-density traffic scene. This segmentation
was obtained by using only the forward FTLE field. Left: A frame from the video. Right: The
crowd-flow segmentation mask
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Fig. 9.25 The result of the crowd-flow segmentation on a marathon sequence. Left: A frame from
the video. Right: The crowd-flow segmentation mask

Fig. 9.26 A comparison with respect to the mean shift segmentation. (a) The segmentation
obtained for the sequence shown in Fig. 9.17. (b) The segmentation obtained for the sequence
shown in Fig. 9.20

groupings can be observed in the combined FTLE field shown in Fig. 9.12c. The bar-
riers which appear in the form of ridges in the FTLE field, encapsulate each crowd
group. A comparison is again performed with the mean-shift clustering approach
(Fig. 9.26b), but, again, the mean shift is not able to localize all the crowd-flow
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segments. This again points to the utility of integrating motion information over
longer periods of time, which helps to get a better picture of the crowd motion.
Some other example results on sequences involving groups of people are presented
in Figs. 9.18, 9.19, and 9.25.

Next, we discuss segmentation results on a high-density traffic sequence
(Fig. 9.23). The results on this sequence highlight the utility of using both forward
and backward integration of particles through the 3D volume of optical flows. In
this sequence, vehicles are moving in two opposite directions on the main highway,
while a flow of traffic is merging onto the main highway from the ramp. The
challenge in this sequence is to find the right membership of the flow generated
by the traffic on the ramp by resolving its origin and destination. If we only use
the forward integration, it is obvious that all the particles initialized over the ramp
will have the same fate as the particles on the main highway. This means that the
traffic on the ramp will become part of the flow generated by the lane on the right-
hand side of the highway. Another way to look at the forward integration is from
the viewpoint of flow continuity, where out-going flux on the ramp is equal to the
additional flux received by the highway at this location. The segmentation result
shown in Fig. 9.23 validates the above observation where same labeling is being
assigned to the ramp and to the right lane of the main highway. This ambiguity can
be resolved by the addition of the backward integration of particles. Since they are
considered backwards in time, the particles on the two sections of the road do not
share the same origin or, in other words, the outgoing flux is not equal to the flux
received by the two sections of the road. The segmentation result shown in Fig. 9.24
demonstrates that by using both forward and backward integration of particles, a
flow segmentation that is more refined is obtained. The result on another traffic
sequence is shown in Fig. 9.22.

9.5 Summary

This chapter has developed an algorithm for segmenting scenes of crowds of people
into ‘crowd groupings’ that are dynamically distinct. For this purpose, the spatial
extent of the video is treated as a phase space of a non-autonomous dynamical
system in which transport from one region of the phase space to the other is
controlled by the optical flow. Next, a grid of particles is advected forward and
backward in time through this phase space and the amount by which the neighboring
particles diverged is quantified by using a Cauchy-Green deformation tensor. The
maximum eigenvalue of this tensor is used to construct a Finite-Time Lyapunov
Exponent (FTLE) field, which revealed the time-dependent invariant manifolds of
the phase space called Lagrangian Coherent Structures (LCS). The LCS in turn
divided the crowd-flow into regions of different dynamics.

The strength of this approach lies in the fact that it bypasses the need for low-level
detection of individual objects altogether, which will be impossible in a high-density
crowded scene, and generates a concise representation of the complex mechanics of
human crowds using only the global analysis.
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