
Chapter 4
Analysis of Crowd Dynamics with Laboratory
Experiments

Maik Boltes, Jun Zhang, and Armin Seyfried

Abstract For the proper understanding and modelling of crowd dynamics, reliable
empirical data is necessary for analysis and verification. Laboratory experiments
give us the opportunity to selectively analyze parameters independently of undesired
influences and adjust them to high densities seldom seen in field studies. The setup
of the experiments, the extraction of the trajectories of the pedestrians and the
analysis of the resulting data are discussed.

Two strategies for the time-efficient automatic collection of accurate pedestrian
trajectories from stereo recordings are presented. One strategy uses markers for
detection and the other one is based on a perspective depth field. Measurement
methods for quantities like density, velocity and specific flow are compared. The
fundamental diagrams from trajectories for different experiments are analyzed.

4.1 Introduction

Design of egress routes for buildings and large scale events is one application for
models of pedestrian streams [1–5]. Typical questions regarding the capacity of
facilities for pedestrians are: Is the width of a door or a corridor large enough to
evacuate a certain amount of people in a given time? How long does it take to
clear a building? The methods and tools available to evaluate or to dimension these
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facilities can be categorized in legal regulations, handbooks [6–8] and computer
simulations [9–12]. Legal regulations are based on prescriptive methods using static
rules which depend on the occupancy of the building. Two examples of rules are the
minimal width of doors in dependence of the number of people in the room and the
maximal length of an escape route. But static rules cannot consider the dynamics of
an evacuation process and methods with a higher fidelity are necessary to resolve
the development over time. Handbooks for example, use macroscopic models of
streams and provide a description of the evacuation process in time and space. These
models forecast when and where congestions will occur. However, macroscopic
models give only a coarse description of pedestrian flow by modeling the streams
as an entity with quasi-constant size and density. Microscopic models instead
describe the individual movement of all pedestrians and are thus able to resolve
the dynamics on an individual scale. Regardless of the fidelity of the models the
basic aim should be to describe quantitatively the transport properties of pedestrian
streams.

Quantities describing the performance of facilities and the transport properties
of pedestrian streams are borrowed from the physics of fluids. The flow J gives
the throughput at a certain cross section and is defined as the number of persons
N passing the cross section in the time interval Δ t. To express the degree of
congestion the density ρ = N/A, which is the number of persons in an area A, is
used. The velocity v specifies how long it takes to reach the exit of the building.
These quantities depend on each other and the empirical relation between them
(J(ρ) or v(ρ)) is commonly called the fundamental diagram. This relation is a
basis for quantifying the transport properties of driven systems in stationary states.
One major problem is that the empirical data base is rudimentary and inconsistent.
Even basic questions and relations are queried and discussed contradictory in
the literature [13]. E.g., how the maximal possible flow through a bottleneck
depends on the width of the opening [14, 15], at which density jams occur [16]
or whether the fundamental diagrams for uni- or bidirectional streams differ or
not [17].

Several research groups started in the last decade performing experiments to
address these as well as other questions. Before introducing our contribution we
give an overview of the activities by countries and by citing the recent articles
without any claim to comprehensiveness. These are in China [18–25], in France
the Pedigree project [26–29], in the Netherlands [30, 31], in Japan [32–35] and in
Germany [36,37]. We want to note that these experiments and field studies cover in
their differentness the complexity and diversity of pedestrian traffic.

Since the year 2005 we performed in cooperation with the universities of Cologne
and Wuppertal more than 300 experiments to improve the database for model
validation. We focused on experiments under well controlled laboratory conditions
due to several reasons. Pedestrians are subject to a lot of influences which cannot
be controlled in field studies. To study the influence of one single parameter it is
helpful to control external influences (light, sound, ground, etc.), boundaries and
initial conditions. Even under laboratory conditions this is difficult to achieve, see
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e.g. [31]. Moreover, the variability allows a survey of a parameter range e.g. for
the bottleneck width or length, or the density inside a corridor. Another reason for
performing controlled experiments is the interest in high densities, which are seldom
observable in field studies. With increasing number of participants we improved
the methods to extract the individual walking paths automatically from video
footage.

For the design of the experiments we started with simple geometries (corridors,
bottlenecks, etc.) and flow types (unidirectional, bidirectional). Then we extended
the experiments to consider more complex scenarios with bends, stairs and merging
streams. The experiments are designed to ensure that the influence of one parameter
on the quantity of interest can be studied. The data can then be used to develop and
to systematically validate mathematical models.

4.2 Experiments and Data Capturing

4.2.1 Experiment Overview

Performing experiments under laboratory conditions gives the opportunity to
analyze parameters of interest under well defined constant conditions. For self-
initiated experiments the location and the structure of the test persons (e.g. culture,
fitness, age, gender, size) can be determined. For this reason, series of pedestrian
experiments have been designed and carried out since 2005.

The first experiments were designed to study the relation between density
and velocity of single file movement [38]. With the same experimental setup the
influence of motivation and culture [39] was analyzed.

After the one dimensional experiments, we have made experiments on plane
ground focusing on bottlenecks and corridors. 99 runs with up to 250 test persons
have been performed [40].

For the development of an evacuation assistant in the project Hermes [41] the
experimental database was expanded by experiments on different types of stairs,
straight corridors, corners and T-junctions. 170 runs with up to 350 people have
been made in artificial environments, and additionally inside the facilities of the
stadium for which the evacuation system has been developed.

In Sect. 4.3 some details of these experiments will be described.
For capturing the experiments by video recordings the cameras can be chosen

appropriate to the coverage area and ceiling height. Overhead recordings perpendic-
ular to the floor allow a view without occlusion for a range of body heights, so that
an individual detection and tracking without estimation of the persons’ route can
be performed. To get constant lighting conditions the experiments have primarily
been made indoor with uniform artificial light. The extraction process of the route
of every person is outlined in the following sections.
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4.2.2 Trajectory Extraction

The goal of the extraction process are trajectories, pi(t), i ∈ [1,N], as exact as
possible for all N persons at any time t in particular in crowded scenes. For this
reason markers are used to improve the robustness of the automatic extraction
wherever applicable.

For the same reason of exactness all automatic results are inspected by humans,
who are able to correct the trajectories directly within our software. Under labo-
ratory conditions almost no error occurs, but in real facilities like stairways in a
stadium the number of incorrect detections increases. Problems faced include the
varying lighting conditions and the distance of up to 13 m to the head of the persons.
The manual visual inspection of the automatically extracted trajectories is one
reason for the off-line detection from video recordings. The more important reason
for the downstream extraction from recordings is the possible later visual analysis
of effects evaluated from the trajectory data. For these advantages we acknowledge
the problems of huge recording space requirements and privacy protection.

Before extracting metric information the video has to be calibrated. For the
correction of the lens distortion a model of a pinhole camera with distortion
is adopted (considering radial and tangential distortion up to fourth order). The
perpendicular view and cameras with quadratic pixel allow an easy specification
of a pixel to meter ratio considering the perspective view. For more information we
refer to [42].

4.2.2.1 Detection with Markers

For the description of the detection process we restrict to one experiment performed
in the project Hermes [41]. Details of the artificial setup of this experiment, a
merging flow through a T-junction with a corridor width of 2.4 m and 303 test
persons, can be found in Sect. 4.3.3.

The experiments have been recorded with two synchronized stereo cameras of
type Bumblebee XB3 (manufactured by Point Grey). For the T-junction experiment
they were mounted a = 784 cm above the floor with the viewing direction perpen-
dicular to the floor.

The overlapping field of view of the stereo system is α = 64◦ at the average
head distance of about 6 m from the cameras. Thus all pedestrians with the
discovered height range can be seen without occlusion at any time. The cameras
have a resolution of 1,280× 960 pixels and a frame rate of 16 frames per second,
Δ t = 1/16.

The marker has a simple structure to detect it from distances up to 13 m. All
pedestrians wear a white bandana with a centered black dot of 4 cm diameter
(Fig. 4.1).
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Fig. 4.1 (Color online) Left: Rectified image of one stereo camera of a T-junction experiment.
Right: Color coded disparity map restricted to the distance of the upper body part (570–735 cm).
The background is greyed out

The recognition of the marker is done by detecting directed isolines of the same
brightness and subsequent analysis of the size, shape, arrangement and orientation
of approximating ellipses.

Perspective Depth Field

For the detection with markers the perspective depth field, which can be obtained
from a stereo camera, is only used for background subtraction and the measurement
of the head distance to the camera.

This depth field h contains the distance to every pixel of the camera and is
inversely proportional to the disparity map, d ∝ 1/h, which describes the pixel offset
of both camera views of the stereo camera for every pixel. The disparity map is
calculated with the semi-global block matching algorithm [43] implemented in the
computer vision library OpenCV [44]. The mask size for the matched blocks has
been set to 11 to get a smooth depth field. The drawback of this is a blurry depth field
where the shape of objects is less sharp. Figure 4.1 shows on the right an overlay of
the disparity map on the left picture. The disparity map is restricted to the distance
of the upper body part color coded from red to blue according to the distance of
570–735 cm to the camera. The greyed out part indicates the background, which
determination is described below.
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Background Subtraction

A prior background subtraction reduces the number of false positive detections. For
the background subtraction the camera distance h is used directly without generating
a rectified depth field. No laborious plan-view statistics is needed because of the
perpendicular view of the stereo recordings. Pixels with the coordinate u=(ux,uy)∈
R

2 at frame f are part of the background and thus are ignored in the detection
process, if

hbg(u)−h(u, f )< 40cm. (4.1)

The perspective depth field of the background hbg is captured once with the scene
deserted or is set to a cautiously adapted maximum distance during all frames

hbg(u)≈ max
f
(h(u, f )). (4.2)

The distance threshold of 40 cm cannot be increased for robustness, since people
near walls would be eliminated because of the omitted plan-view statistic. This
effect can already be seen in Fig. 4.1 at the walls forming the junction. Small regions
of missing values inside hbg are interpolated linearly within the row. Small regions
inside the segmented foreground are added to the background to erase noise and
regions that cannot be occupied by a person.

3D Position

To calculate the position in 3D real world a coordinate transformation from pixel
positions to real positions and an inverse perspective transformation have to be
performed. Therefor the distance to the camera is needed. For planar experiments,
where we used monocular cameras, the color of a part of the marker corresponds
to a height range [42]. But because we also made experiments at stairs within the
Hermes project this approach cannot be used anymore. The distance or the height
of the pedestrian for planar experiments, h′(ui) = a−h(ui), respectively is now set
according to the disparity of the center pixel of the black dot, ui ∈ R

2, i ∈ [1,N].
Only with the pedestrians’ height the correct position on the plane ground can
be calculated. Because of the perspective distortion the maximum error without
considering the height would be [42]

maxi(h′(ui))−mini(h′(ui))

2
tan

α◦

2
≈ 16cm. (4.3)

The height is oscillating according to the step frequency. The height is minimal at
the position where body shifting moves from one to the other leg [45].
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The distribution of the maximum height of each pedestrian matches exactly the
distribution of the height obtained by the evaluation of questionnaires handed out to
them.

4.2.2.2 Detection Without Markers

We are also developing a markerless detection, which facilitates field studies and
the easier realization of moderated experiments in real environments. Studying the
influence of group structures (e.g. football fan or visitor of a classical concert, sober
or drunken persons) realistically can only be accomplished there. With moderated
experiments in real environments, where we use independent gatherings which
happen anyway (e.g. works meetings) we can increase the amount of trajectory data
with less time and effort. Besides this, the markerless detection can further improve
the robustness of the marker based detection described below.

Related Work

Techniques for the detection without markers for single pedestrians in crowds
using monocular cameras are not as robust as techniques using stereo cameras.
Publications like [46–51] all report a false detection rate of more than 10 %.
Typically the decrease of the false detection rate induces the increase of false
positive detections. For our purpose this means a lot of manual work, because we
need nearly no error to get reliable data for further analysis.

Detection techniques, such as [52] or [53] for stereo cameras, depend on accurate
segmentation of foreground objects from the background. For dense crowds such as
in our experiments these methods would not be applicable or would only detect
groups of people. Other techniques use motion patterns of human beings [54, 55]
like periodic leg movement or additionally take skin colour [56] into account or use
a face detector [57], which is only applicable from side view because of visibility.
The side view is also needed by Hou and Pang [58], because they assign a region
to one person, if the region has the same distance to the camera. In our experiments
the video recordings were done overhead to avoid occlusions, because we want to
know the detailed position of every person at any time also in crowded scenes, so
that often no extremity or skin is visible. This perpendicular view also disengages
us from a decelerating plan-view statistic like in [59].

Algorithms using motion like [60] cannot be adopted, because in our experiments
dense situations and thus stagnant flow often occur.

In [61] a method for people tracking in dense situations with multiple cameras
is suggested. The combined data from several views is used to calculate the height
and thus the position of peoples’ head.

A robust detection and tracking algorithm also for crowded scenes is described in
[62]. The detection process is based on a clustering procedure using bio-metrically
inspired constraints.
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In [63] the detection is done by searching for clusters inside the point cloud of
a depth map, which are arranged in a sphere that is proportional in size to human
heads. For people walking close together van Oosterhout et al. obtain a precision of
0.97 taking tracking into account, which is nearly as high as our precision.

Detection Process

For the following example we use the same recordings as for the detection with
markers, but ignore the markers.

To detect markerless pedestrians in dense crowds we utilize the depth field
described in Sect. 4.2.2.1. The identification of the people is done only using the
shape of the top part of their body especially the head and shoulders. If we want to
identify people only by their shape, the background subtraction has to be performed
previously as described before, because of the possible occurrence of similar formed
objects.

Directed Isolines and Approximating Ellipses

To extract features identifying pedestrians inside the depth field, directed isolines of
the same distance to the camera are used. The step size of the iso-value scanning
the depth field is 5 cm. Beforehand the depth field is adapted by replacing values
covered by the background mask with the furthest value which belongs to the
foreground.

In Fig. 4.2 red isolines surround regions further away. They can be ignored. Green
isolines encircle regions which are nearer to the camera. To improve the visibility
of the isolines the color coding of the disparity map is replaced by a grey scale one.

The remaining isolines enclosing a minimum and maximum of pixels and with
a small ratio between the length of the isoline and the enclosed area (to eliminate
isolines with big dents) are approximated by ellipses. The ellipses allow an easier
access to the global shape. Small ellipses with a large eccentricity are discarded.
Large ellipses can have a bigger eccentricity to enclose multiple people. The used
values for the selection of isolines and ellipses have been chosen heuristically
considering the number of pixel covered by one person.

Ellipses Pyramid

By scanning the depth field downwards in steps of 5 cm a pyramid of ellipses for
every person is build up (Fig. 4.3). Thus for every new depth level an ellipse is
assigned to that pyramid, whose center is inside the new ellipse. If no pyramid fits,
the new ellipse starts a new pyramid. For multiple ellipses on the same level covering
the identical pyramid that one is chosen, whose center is the closest to the nearest
pyramid center. New ellipses can cover multiple pyramids, if the pyramids have
already a substantial number of ellipses from previous depth levels. Otherwise the
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Fig. 4.2 (Color online) Left: Isolines of the same distance to the camera at intervals of 5 cm
(colored according to the orientation) drawn on the grey scaled perspective depth field. Right:
Pyramidal grouped ellipses identifying pedestrians. Green ellipses correspond to the isoline nearest
to the camera, following by red and blue

Fig. 4.3 Zoomed view of a part of Figs. 4.1 and 4.2: disparity, isolines and pyramid of approxi-
mating ellipses

small pyramids are rejected or, if there are only small ones, the pyramid with the
closest center is chosen.

At the end we neglect pyramids with a

• Small number of ellipses,
• Large second ellipse (corresponding to the head),
• Small third ellipse (to reject e.g. lifted arms),
• Small last ellipse (corresponding to the body).

We prefer a strict deletion to avoid false detections since it is not necessary to detect
a person every frame for tracking. The values again are chosen heuristically taking
peoples’ shape into account. The first ellipse is not analyzed, because the location
varies too much, especially because of the different depth the heads are detected the
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Fig. 4.4 Left: Tracked people by markers and their smooth path during the last second. Right:
Tracked people without markers and their more unsettled path during the last second

first time. This is also the reason why the center of the second ellipse represents
a pedestrian and thus is tracked. The resulting pyramids are shown on the right
of Fig. 4.2. The ellipses are colored according to their level in the pyramid. The
topmost ellipse has a green, the second a red and the third a blue color. The latter
ellipses can cover more than one person.

After analyzing the complete video recording trajectories are rejected, which do
not cross the whole test area, or have only few frames where the supposed pedestrian
is identified. The right of Fig. 4.4 shows the tracked people and their unsettled path
during the last second in comparison to the left picture showing the path of the
people detected by marker.

4.2.2.3 Tracking

For tracking of detected pedestrians the robust pyramidal iterative Lucas Kanade
feature tracker [64] is used. This tracker extends the Lucas Kanade method
for calculating the optical flow by introducing successive Gaussian pyramids of
successive images B and propagating tracking results from a low resolution level
to the next higher level as an initial guess.

The tracker searches with sub-pixel accuracy in regions of same size in recursive
Gaussian pyramids

BL(ux,uy) =
1

∑
i=−1

1

∑
j=−1

2−(2+|i|+| j|)BL−1(2ux − i,2uy − j) (4.4)

with B0 = B and uL = 2−Lu, starting in BL−1 with uL−1 = 2uL.
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The size of the tracked region is adapted to the head size, which can be deduced
from the persons’ height or the distance to the camera. The number of pyramidal
level L is set to four. The size of the last level BL−1 is 50 % bigger than the head
length of around 21 cm, so that the region of the first level B0 has the size m of the
marker used: m = 1.5 ·21cm/23 ≈ 4cm.

If the result of a tracked head is not feasible we extrapolate the next position
and for the detection with marker adjust the position to the center of the marker
considering the pixel brightness.

Merging Trajectories

The precision of the trajectories considering markers is sufficiently high, so that
overlapping camera views allow a combination of trajectory sets. Since we use
stereo recordings we also synchronize all cameras. Thus we do not need a temporal
adjustment and have only to minimize the distance of the pedestrians’ positions for
every frame. By using the method of least squares we find the associated trajectory
pairs for each overlapping view and minimize the average distance error between
the two point clouds by adapting the extrinsic parameter set for one view. The
method for finding the least square solution and searching for the optimal translation
vector and rotation matrix is based on the single value decomposition [65]. After
applying the transformation the average error describing the distance between a
corresponding trajectory pair is 1± 0.4 cm and the maximum error 5± 2.6 cm for
all planar experiments measured in 2D. For experiments in 3D space, we get an
average error of 3 ± 0.5 cm and a maximum error of 8 ± 2.6 cm. The maximum
error appears towards the boundary of the camera’s view. To reduce the influence
of this error we interpolate linearly between two matching trajectories, so that the
trajectory to the respective boundary has less influence on the resulting behavior of
the combined trajectory. All trajectories in the Sect. 4.3 are combined results of two
camera views.

4.2.3 Results of Trajectory Extraction

Quantitative results of the detection with and without markers are shown in
Table 4.1. The one misleading match of the detection using markers traces back to
an area similar to the easy structured marker. The strict heuristic of the markerless
detection deletes three correct trajectories.

The combination of both methods has no false detection. It uses the detection
with markers and accepts the detection only, if the center of the dot is inside the
second highest ellipse of the pyramid of that pedestrian.

Figure 4.4 shows the way of each detected pedestrian during the last second
(left for the detection with and right without using markers). Even if the detection
result is good for both methods, the quality of the method using markers results
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Table 4.1 Comparative
results of the detection
methods

False False avg. acc.
Method Detected positive negative [m/s2]

With markers 304 1 0 1.2±0.7
Markerless 300 0 3 6.5±6.8
Combination 303 0 0 1.2±0.7
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Fig. 4.5 Side view of mean pyramids binning by the angle to the optical axis. The horizontal lines
representing the ellipses are surrounded by two lines at the major and minor radius. The middle
vertical lines show the pyramid axis concatenating the center of the ellipses stack

in smoother trajectories. The smoothness is important for the analysis, e.g. for
the microscopic velocity calculation. To quantify the smoothness the average
microscopic acceleration can be used (see Table 4.1). For successive detected points,
Xj, along a trajectory, pi, the microscopic acceleration at position Xj is

||(Xj+1 −Xj)− (Xj −Xj−1)||/(Δ t)2. (4.5)

Figure 4.5 shows six bins of all pyramids detected during the experiment
according to their angle to the optical axis from side view. The lowest ellipses are
neglected, if they cover more than one person. All pyramids have been adjusted to
one camera distance before a mean pyramid for each bin was calculated. The middle
lines concatenate the center of the ellipses of successive height level and depict the
pyramid axes. The outer two lines surround the ellipses stack at the major and minor
radius. One can see that the center line of the mean pyramids is tilted according to
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the angle, but less than one would expect from the perspective view, because the
based isolines of the latter ellipses have to cover the higher ones due to the not
performed plan view statistic. The radii increase slightly for larger angle. The size
of the radii can be read from the top diagram axis.

4.3 Experimental Setup of the Studied Experiments

Four pedestrian experiments will be introduced in this section. Experiments of
uni-, bidirectional and merging flow were performed in hall 2 of the fairground
Düsseldorf (Germany) in 2009 with up to 400 students (age: 25± 5.7 years old,
height: 1.76± 0.09m, free velocity: 1.55± 0.18m/s), whereas the experiment of
bottleneck flow were performed in 2006 in the wardroom of the “Bergische Kaserne
Düsseldorf” with a test group that was comprised of soldiers. For the Hermes
project an announcement was put in universities to recruit the people who would
like to participate in the experiments with 50 Euro per day. Consequently, most of
the participants were students. No selection of participants was undertaken. During
experiments, they were asked to move normally and purposely but without pushing.
They were free to speak and the sound was also recorded.

4.3.1 Unidirectional Flow

Figure 4.6 shows the sketch and a snapshot of the experiment to study unidirectional
flow in a straight corridor with open boundaries. Three corridor widths (1.8, 2.4 and
3.0 m) were chosen and 28 runs were carried out in all. To regulate the pedestrian
density in the corridor, the widths of the entrance bentrance and the exit bexit were
changed in each run. Figure 4.7 shows the trajectories extracted from two runs of
the experiment. For more details of the setup and data capturing we refer to [42,66].

4.3.2 Bidirectional Flow

Figure 4.8 shows the sketch and a snapshot of the experimental setup to study
bidirectional flow in a straight corridor. 22 runs were performed with corridor width
of 3.0 m and 3.6 m respectively. The width of the left entrance bl and the right
entrance br were changed in each run to regulate the density inside the corridor and
the ratio of the opposing streams. To vary the degree of disorder, the participants get
different instructions on which exit to choose. Three different types of setting were
adopted among these experiments:

bl = br, choose exits freely: In this type of experiment, the widths of entrance bl

and br were set as the same. The test persons were not given any instruction about
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Fig. 4.6 Setup and snapshot of unidirectional flow experiment. Note that the gray area in the
sketch shows the location of the measurement area in the analysis
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Fig. 4.7 Trajectories of pedestrians in two runs of unidirectional flow experiment. The distances
between the edge of trajectories and the boundary are not the same in various density situations

exit chosen and they can choose the exit freely. Five runs of experiment were carried
out with this conditions in a corridor with width of 3.6 m.

bl = br, specify exits in advance: Again the same width bl and br were chosen
in the experiments. But the instruction to the test persons at the beginning of the
experiments were changed. The participants were asked to choose an exit at the end
of the corridor according to a number given to them in advance. The persons with
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Fig. 4.8 Setup and snapshot of bidirectional flow experiment. Note that the gray area in the sketch
shows the locations of the measurement areas in the analysis. Lane formation can be observed from
the snapshot

odd numbers should choose the left exit in the end, while ones with even numbers
were asked to choose the exit in the right side.

bl �= br, specify exits in advance: In this case the widths of entrances bl and br

were different and the participants were instructed to choose an exit at the end of
the corridor according to a number as the last experiment.

Figure 4.9 shows the pedestrian paths for two runs of the experiment with and
without instruction. More details of the experiment setup can be found in [17].

4.3.3 Merging Flow

Figure 4.10 shows the sketch of the experiment to study merging flow in a T-junction
and a snapshot. Two pedestrian streams from the opposite sides of T-shaped corridor
join together and form a single stream. In these experiments, all three parts of the
corridor were set to the same width bcor. 12 runs were carried out with bcor of 2.4
and 3.0 m respectively. To regulate the pedestrian density, the width of the entrance
was changed in each run. The left and right entrances were always set as the same
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Fig. 4.9 Trajectories of pedestrians in two runs of bidirectional flow experiment. Different types
of lane formation, stable separated lanes and dynamical multi-lanes, can be observed

width bentrance. In this way, we guarantee the symmetry of the two branches of the
stream. The number of pedestrians in the left and right branch of the T-junction was
approximately equal. The number was set to a value that the overall duration of all
experiments is similar and is long enough to assure a stationary state. Figure 4.11
shows the paths of the pedestrians in T-junction at low and high density conditions.

4.3.4 Bottleneck Flow

Figure 4.12 shows a still and a sketch of the setup. The experimental setup allows
to analyze the influence of the bottleneck width and length (Fig. 4.13). In one
experiment the width b was varied (from 0.9 to 2.5 m) at fixed corridor length. In
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Fig. 4.10 Setup and a snapshot of merging flow experiment in a T-junction. Note that the gray
areas in the sketch shows the locations of the measurement areas in the analysis

-3

-2

-1

 0

 1

 2

 3

 4

-5 -4 -3 -2 -1  0 1 2 3 4

y 
[m

]

-3

-2

-1

 0

 1

 2

 3

 4

y 
[m

]

x [m]
-5 -4 -3 -2 -1 0 1 2 3 4

x [m]

T-240-050 T-240-240
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utilizations of the space near the merging area are different under various densities
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Fig. 4.12 Setup and snapshot of bottleneck flow experiment. For this experiment the length l and
width b of the bottleneck were changed in each run to analyze the flow through it

Fig. 4.13 Trajectories of pedestrians in two runs of bottleneck flow experiment. The influence of
bottleneck length and width on pedestrian movement as well as lane formation can be observed

the other experiment the corridor length l was changed (0.06, 2.0, 4.0 m) while the
width was fixed at b = 1.2 m. For more details of the experimental setup and data
capturing we refer to [40, 67].

4.4 Measurement Methods

The trajectories gained by the methods described in Sect. 4.2.2 are the basis to
measure the fundamental diagram J(ρ) or v(ρ). In this section, we study how the
way of analyzing the trajectories influence the relation between v, ρ and J. To
determine these variables one can choose time-averaged density, velocity or flow.
However, various definition of methods may arouse different measurement errors.
Here we use four different definitions including macroscopic and microscopic
methods to measure observable like flow, velocity and density.
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Fig. 4.14 Illustration of different measurement methods. Method A is a kind of local measurement
at cross-section with position x averaged over a time interval Δ t, while Methods B–D measure at a
certain time and average the results over space Δx. Note that for Method D, the Voronoi diagrams
are generated according to the spatial distributions of pedestrians at a certain time

• Method A
For MethodA, a reference location x in the corridor is taken (as shown in

Fig. 4.14) and mean values of flow and velocity are calculated over time Δ t. We
refer to this average by 〈〉Δ t . The time ti and the velocity vi of each pedestrian
passing x can be determined directly. Thus, the flow over time 〈J〉Δ t and the time
mean velocity 〈v〉Δ t can be calculated as

〈J〉Δ t =
NΔ t

tNΔ t − t1Δ t

and 〈v〉Δ t =
1

NΔ t

NΔ t

∑
i=1

vi(t) (4.6)

where NΔ t is the number of persons passing the location x during the time interval
Δ t. t1Δ t and tNΔ t are the times when the first and last pedestrians pass the location
in Δ t. They could be different from Δ t. The time mean velocity 〈v〉Δ t is defined as
the mean value of the instantaneous velocities vi(t) of the NΔ t persons according
to equation (4.7). We calculate vi(t) by use of the displacement of pedestrian i in
a small time interval Δ t ′ (Note that Δ t 	 Δ t ′)around t:

vi(t) =
‖xi(t +Δ t ′/2)−xi(t −Δ t ′/2)‖

Δ t ′
(4.7)

• Method B
The second method measures the mean value of velocity and density over

space and time. The spatial mean velocity and density are calculated by taking
a segment with length Δx in the corridor as the measurement area. The velocity
〈v〉i of each person is defined as the length Δx of the measurement area divided
by the time he or she needs to cross the area (see Eq. (4.8)),

〈v〉i =
Δx

ti,out − ti,in
(4.8)
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where ti,in and ti,out are the times a person i enters and exits the measurement area,
respectively. The density ρi for each person is calculated with equation (4.9):

〈ρ〉i =
1

ti,out − ti,in
·
∫ ti,out

ti,in

N′(t)
Δx ·Δy

dt (4.9)

bcor is the width of the measurement area while N′(t) is the number of person in
this area at a time t.

• Method C
With the third measurement method, let’s call it classical method, the density

〈ρ〉Δx is defined as the number of pedestrians divided by the area of the
measurement section:

〈ρ〉Δx =
N

Δx ·Δy
(4.10)

The spatial mean velocity is the average of the instantaneous velocities vi(t) for
all pedestrians in the measurement area at time t:

〈v〉Δx =
1
N

N

∑
i=1

vi(t) (4.11)

• Method D
This method is based on Voronoi diagrams [68] which are a special kind of

decomposition of a metric space determined by distances to a specified set of
objects in the space. To each such object one associates a corresponding Voronoi
cell. The distance from the set of all points in the Voronoi cell to the given object
is not greater than their distance to the other objects. At any time the positions
of the pedestrians can be represented as a set of objects, from which the Voronoi
diagrams (see Fig. 4.14) are generated. The cell area, Ai, can be thought as the
personal space belonging to each pedestrian i. Then, the density and velocity
distribution of the space ρxy and vxy are defined as

ρxy = 1/Ai and vxy = vi(t) if (x,y) ∈ Ai (4.12)

where vi(t) is the instantaneous velocity of each person, see Eq. (4.7). The
Voronoi density and velocity for the measurement area is then defined as [69]

〈ρ〉v =

∫∫
ρxydxdy

Δx ·Δy
(4.13)

〈v〉v =

∫∫
vxydxdy

Δx ·Δy
(4.14)
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4.5 Results of Analysis

4.5.1 Effects of Measurement Methods

To analyze the effect of measurement methods, we calculate the fundamental
diagram from unidirectional experiments with corridor width bcor = 1.8 m. For
Method A we choose the time interval Δ t = 10 s, Δ t ′ = 0.625 s (corresponding to
ten frames) and the measurement position at x = 0 (see Fig. 4.7). For the other three
methods a rectangle with a length of 2 m from x = −2 m to x = 0 and a width
of the corridor is chosen as the measurement area. We calculate the densities and
velocities each frame with a frame rate of 16 fps. All data presented below are
obtained from some set of trajectories. To determine the fundamental diagram only
data at the stationary state, which were selected manually by analyzing the time
series of density (see Fig. 4.15), were considered. For Method D we use one frame
per second to decrease the number of data points and to represent the data more
clearly.

Figure 4.16 shows the relationship between the density and flow obtained from
different methods. Using Method A the flow and mean velocity can be obtained
directly. To get the relationship between density and flow, the equation

ρ = 〈J〉Δ t/(〈v〉Δ t ·bcor) (4.15)

was adopted to calculate the density. For the Method B, C and D the mean density
and velocity can be obtained directly since they are mean values over space. There
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exists a similar trend of the fundamental diagram obtained using the different
methods. The pedestrian flow shows small fluctuations at low densities and high
fluctuations at high densities. The fluctuations for Method A and D are smaller than
that for other methods. However, there is a major difference between the results.
The fundamental diagrams obtained using Method A and C are smooth, while that
obtained with Method B and D show a clear discontinuity at a density of about
2m−2. The average over a time interval of Method A and the large scatter of Method
C blur this discontinuity. Method D can reduce the density and velocity scatter [69].
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The reduced fluctuation of Method D is combined with a good resolution in time
and space, which reveal a phenomenon that is not observable with Method A and C.
Consequently, we mainly use the Voronoi method to analyze these experiments in
the following part.

4.5.2 Comparison of Fundamental Diagrams for Various
Flows

Figure 4.17 shows the relationship between density specific flow obtained from
Voronoi method. The fundamental diagrams of unidirectional pedestrian flow in the
same type of corridor but with three different widths are compared. It can be seen
that they agree well with each other. The specific flow in the corridors is independent
on the corridor width. At about ρ = 2.0m−2, the specific flow reaches the maximum
value which is named the capacity of a facility. This result is in conformance with
Hankin’s findings [70]. He found that above a certain minimum of about 4 ft (about
1.22 m) the maximum flow in subways is directly proportional to the width of the
corridor. In the range of densities reached in the experiment, our results seem to
support the specific flow concept that the specific flow Js = J/b is independent on
the width of the facility.

Further, we compare the fundamental diagram of uni- and bidirectional flows
in Fig. 4.18. At densities of ρ < 1.0m−2, no significant difference exists. For ρ >
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1.0m−2, however, the difference between the uni- and bidirectional flow becomes
more pronounced and a qualitative difference can be observed. In the bidirectional
case a plateau is formed starting at a density ρ ≈ 1.0m−2 where the flow becomes
almost independent of the density. Such plateaus are typical for systems which
contain ‘defects’ which limit the flow and have been observed e.g. on bidirectional
ant trails [71] where they are a consequence of the interaction of the ants. In our
experiments the defects are conflicts of persons moving in the opposite direction.
These conflicts only happen between two persons but the reduction of the velocity
influences the following people. One of the remarkable things is that the data of the
unidirectional flow for ρ > 2.0m−2 are obtained by slide change of the experiment
setup. To reach densities ρ > 2.0m−2 for unidirectional experiment, a bottleneck at
the end of the corridor is builded. This may limit the comparability of fundamental
diagrams for ρ > 2.0m−2.

With the Voronoi method the measurement area could be chosen smaller than the
pedestrians. We calculate the Voronoi density, velocity and specific flow over small
regions (Δx×Δy= 10×10cm) for each frame and average them over the stationary
state separately. Then the profile of density, velocity and specific flow over the
experimental area are obtained (see Fig. 4.19). These profiles provide new insights
into the spatial characteristics and sensitivity of the quantities to other potential
factors. The density profile shows conspicuous high densities at the corner of the
T-junction, indicating critical spots under crowded conditions. The region with the
highest density is located at a small triangle area, where the left and right branches
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a b

c

Fig. 4.19 The profiles of density, velocity and flow in T-junction for one run of the experiments.
(a) Density profile. (b) Velocity profile. (c) Specific flow profile

merge. Moreover the density profile shows obvious boundary effects. Except for
the merging area at the corner, the densities in the middle of the corridors are
significantly higher than near the boundaries. The spatial variation of the velocity
is different. Boundary effect does not occur for the velocity and the profile is
independent from the corridor width especially in the exit corridor. But the velocity
becomes larger after the merging of the streams and increases persistently along the
movement direction. The specific flow profile shows that the highest flow occurs at
the center of the exit corridor. The region of highest flow protrudes from the exit
corridor into the area where the two branches start to merge. This indicates that
the merging process in front of the exit corridor leads to a flow restriction. Causes
for the restriction of the flow must be located outside the region of highest flow.
These profiles demonstrate that density and velocity measurements are sensitive to
the size and location of the measurement area. For the comparison of measurements
(e.g. for model validation or calibration) it is necessary to specify precisely the size
and position of the measurement area.

In Fig. 4.20, we compare the fundamental diagrams of merging flow in T-junction
with corridor width bcor = 2.4 m. The data assigned with ‘T-left’ and ‘T-right’ are
measured in the areas where the streams prepare to merge, while the data assigned
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with ‘T-front’ are measured in the region where the streams have already merged.
The locations of the measurement areas are illustrated in Fig. 4.10. For ease of
comparison, we choose these measurement areas with the same size (4.8m−2).
One finds that the fundamental diagrams of the left and right branches match
well. That means, the right or left turning of the stream dose not have influence
on the fundamental diagram. However, for densities ρ > 0.5m−2 the velocities
in the ‘right’ and ‘left’ part of the T-junction (T-left and T-right) are significantly
lower than the velocities measured after the merging of the streams (T-front). This
discrepancy becomes more distinct in the relation between density and specific
flow. In the main stream (T-front), the specific flow increases with the density ρ till
2.5m−2. While in the branches, the specific flow nearly remains constant for density
ρ between 1.5 and 3.5m−2. Thus, there seems no unique fundamental diagram
which describes the relation between velocity and density for the complete system.
For this difference, we can only offer assumptions regarding the causes. One is
based on behavior of pedestrians. Congestion occurs at the end of the branches,
where the region of maximum density appears. Pedestrians stand in a jam in front
of the merging and could not perceive where the congestion disperse or whether the
jam lasts after the merging. In such situation, it is questionable whether an urge or
a push will lead to a benefit. Thus an optimal usage of the available space becomes
unimportant. Otherwise, the situation totally changes if the location of dissolution
becomes apparent. Then a certain urge or an optimal usage of the available space
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makes sense and could lead to a benefit. They will move in a relatively active way.
That’s maybe the reason why the velocities after merging are higher than that in
front of merging at the same density. Whether this explanation is plausible could be
answered by a comparison of these data with experimental data at a corner without
the merging.

In Fig. 4.21, the flow from bottleneck experiment is compared with previous
measurements using Method A. The black line in Fig. 4.21b represents a constant
specific flow of 1.9 (ms)−1. The difference between the flow at l = 0.06 and
l = 2.0,4.0 m is ΔJ � 0.5 s−1. The data points of Müller’s experiments [72] lie
significantly above the black line. The Müller experimental setup features a large
initial density of around 6 m−2 and an extremely short corridor. The discrepancy
between the Müller data and the empirical J = 1.9b line is roughly ΔJ � 0.5 s−1.
This difference can be accounted to the short corridor length, but may also be due
to the higher initial density in the Müller experiment.

4.6 Conclusion

We have performed a large series of experiments to selectively analyze parameters
independent of undesired influences.

Different strategies with and without markers for collecting precise trajectories
out of overhead video recordings of these experiments and for future field studies
have been discussed. Using the perspective depth field directly from stereo record-
ings is a fast method for the perpendicular view. The automatic extraction of all
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trajectories which we need especially to verify microscopic models and to analyze
the movement microscopically has small error.

To obtain smoother trajectories without markers a subsequent smoothing could
be performed or the axes of the pyramidal ellipses stack could be taken into account
to get more stable points along the pedestrians’ routes.

Experiments of uni- and bidirectional flow in a straight corridor, merging flow in
a T-junction and pedestrian flow through bottlenecks have been presented in more
detail. Four different measurement methods for obtaining quantities from pedestrian
trajectories are adopted and their influences on the fundamental diagram have been
investigated. It is found that the results obtained from different methods agree well
in the density ranges observed in the experiment. The main differences are the
range of the fluctuations and the resolution in time and space. However, the Voronoi
method permits the deepest and most precise insight into the temporal progress and
spatial distribution of the velocity, density and flow.

Some selected analysis results are presented. It is shown that fundamental
diagrams for the same type of facility but different corridor widths agree well and
can be unified in one diagram for the specific flow. From the comparison of the
fundamental diagrams between straight corridor and T-junction, it is indicated that
the fundamental diagrams for different facilities are not comparable. Besides, the
measurement of density and velocity strongly depends on the size and location of the
measurement area, which can be observed form the profiles of the density, velocity
and specific flow measured with the Voronoi method. The influence of the length
and width of a bottleneck on the flow is shown and compared with previous studies.
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