
Chapter 3
Connection Between Microscopic
and Macroscopic Models

Jan-Frederik Pietschmann

Abstract This chapter is devoted to the detailed study of the relation between
a microscopic cellular automation and a macroscopic partial differential equation
model for the movement of pedestrians. We describe the mathematical tools
allowing to derive the macroscopic from the microscopic model. Such a connection
between discrete, particle based and continuous, density based models can help to
improve the understanding of basic properties of human crowds. We exemplify this
by applying our results to typical cases. The first one is the formation of lanes in
bi-directional flow. The second is the analysis of the fundamental diagram. Our
analysis provides (at least qualitatively) a connection between these phenomena and
model parameters. We conclude by pointing out a number of possible directions of
future research.

3.1 Introduction

A good understanding of the collective behavior of large human crowds (crowd
motion) is of importance for several reasons. First of all, a growing fraction of
humanity is living in urban regions. These regions especially include facilities such
as airports or shopping malls in which a large number of people is concentrated in a
relatively small place. Appropriate mathematical models can help to optimize these
buildings in order to avoid congestion and allow for faster operation. Even more
important, they can be used to create and validate (using numerical simulations)
evacuation plans which are of course of highest importance.

Therefore the ultimate goal in terms of mathematical modeling is to develop
a model which is able to describe (at least qualitatively) the behavior of human
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crowds over a large range of situations. Such a model does not yet exist and in
the following we shall outline the difficulties in creating it. A major issue here is
obviously the complexity of the humans involved. Their behavior depends on the
individual characteristics of each agent such as age, height, sex or even cultural
heritage [8]. Furthermore the behavior of each individual may change drastically
depending on the situation (e.g. normal walking versus panic). However, even if
it is assumed that all people behave exactly the same way, the situation remains
complicated. This becomes clearer by comparing a human crowd with a multi
particle system from physics (e.g. an electron gas or a plasma). The usual strategy
in physics to understand these complex systems is to start from a simple case, i.e.
the interaction between only two particles. This process is governed by a simple
physical law which then acts as a starting point for the understanding of the complete
system using certain mathematical tools. In crowd motion, however, the interaction
of a small number of people is already difficult to understand and therefore the
principle “from simple to complex” is not applicable. As a result, most existing
models are built upon simplified hypotheses and are mostly phenomenological.

3.2 Related Work

In crowd modelling, one can distinguish between two general approaches: micro-
scopic and macroscopic models. In the microscopic framework, people are treated
as individual entities (particles). The evolution of the particles in time is determined
by physical and social laws which describe the interaction among the particles as
well as their interactions with the physical surrounding. Examples for microscopic
methods are social force models (see [17] and the references therein), cellular
automata, [12, 28], queuing models, [40], or continuum dynamic approaches like
[37]. Social force models are also popular in computer vision, see [24, 27, 30, 39].
For an extensive review of different microscopic approaches we refer to [14]. In
contrast to microscopic models, macroscopic models treat the whole crowd as an
entity without considering the movement of single individuals. The crowd is often
represented by a density function depending on (‘continuous’) space and time.
Classical approaches use well known concepts from fluid or gas dynamics, see [18].
More recent models are based on optimal transportation methods [26], mean field
games, cf. [22] (see [23] for a general introduction) or non-linear conservation laws
[11]. In [31], an approach based on time-evolving measures is presented. We finally
note that crowd motion models share many features with traffic models, cf. [2].

We remark that, that due to the difficulties mentioned above, there is in many
cases no connection between microscopic and macroscopic models. However, such
an approach would be useful: While microscopic models are closest to observations
and are a very intuitive approach, many interesting quantities (such as density or
velocity) are macroscopic. Also collective self-organization phenomena (e.g. lane
formation) appears on a macroscopic scale.
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In this work we describe in detail how such a connection can be derived between
a cellular automaton model introduced in [21] and a system of partial differential
equations similar to the ones in [4, 6]. We will discuss lane formation and the
analysis of the fundamental diagram as two possible applications.

3.2.1 Notation

Throughout this chapter we use the following notation:
R Set of real numbers,
R
+ Set of positive real numbers,

N Set of positive integers,
∂t partial derivative with respect to t,
∇ Vector containing all partial derivatives with respect to the space variable x,

i.e. ∇ = (∂x1 ,∂x2 , . . . ,∂xn)
T for x ∈ R

n,
∇· divergence operator, i.e. for V = (V1, . . . ,Vn)

T ∈ R
n we have

∇ ·V (x) = ∑n
i=1 ∂xiVi(x), x ∈ R

n

∇2 The Laplace operator, i.e. ∇2u(x) = ∑n
i=1 ∂xixiu(x).

3.3 The Microscopic Model for Two Species

We start from a cellular automaton model for human crowd motion introduced in
[21]. The model is based on an asymmetric simple exclusion process (ASEP) on
a two-dimensional grid of size mx · ny (the size of one cell is typically about 40×
40cm2, cf. [33], originating from a maximal density of 6.25 people per m2, cf. [38]).
Given a discrete time step, the model provides for each individual in a given cell
the probability to jump into a neighboring cell. This probability is determined by
several factors: First of all, individuals are not allowed to jump to an occupied cell
(size exclusion, cf. [36]). Furthermore, there exist two driving forces, called ”floor
fields”, cf. [7], a static field S and a dynamic field D on which the jump-probability
depends exponentially. The static field S provides individuals with a sense of their
environment, increasing towards locations they want to reach, such as doors. The
dynamic field D is created by the particles themselves and accounts for herding
effects. This is a key feature of the model and one goal of this chapter is to examine
its impact on the formation of lanes. Being zero at the initial time, the value of D
is increased whenever a particle leaves a cell, modeling the tendency of people to
follow others. Note that the concept of floor fields is also used in computer vision,
cf. [1]. It is straightforward to extend this model to multiple species, each of them
coupled to its own dynamic and static field. In the following, we consider the case of
two species (labeled red or r and blue or b). For simplicity, we shall only explain the
model for particles of group r with corresponding fields Dr and Sr. The probability
of a particle to jump into a neighboring cell i, j is given by
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(Pr)i, j = (Nr)i, j exp(kD (Dr)i, j)exp(kS(Sr)i, j)(1− ri, j −bi, j). (3.1)

The term (1 − ri, j − bi, j) accounts for the size exclusion effect rendering the
probability zero if a cell is occupied. The positive constants kD and kS regulate the
relative influence of the two floor fields. Finally, (Nr)i, j is a normalization factor
given by

(Nr)
−1
i, j = ∑

k={i−1,i+1}
∑

l={ j−1, j+1}
ekD(Dr)k,l ekS(Sr)k,l . (3.2)

The dynamic field Dr is zero at the beginning of a simulation. In every step, it is
updated using the following rules

• It is increased by one whenever a particle left a cell, i.e.

(Dr)
k+1
i, j =

{
(Dr)

k
i, j +1 if (rk

i, j − rk+1
i, j ) = 1

(Dr)
k
i, j otherwise

(3.3)

• If Dr ≥ 1, it decreases by a given probability δ > 0, i.e. given a random number p

(Dr)
k+1
i, j =

{
(Dr)

k
i, j −1 if p < δ

(Dr)
k
i, j otherwise

(3.4)

• The diffusion is implemented in the following way: With a probability of κ/4,
κ ∈R

+ a particle jumps to one of its neighboring fields. With probability (1−κ),
it stays at its place.

Note that these rules imply that the value of Dr is always a non-negative integer.

3.4 Derivation of the Macroscopic Model

In this section we describe the derivation of a (system of) partial differential
equations from the modified ASEP introduced above, cf. [4,36]. The resulting model
is macroscopic is the following sense: In the ASEP, pedestrians are represented
by particles and at each time step, the position of each particle is known. On the
contrary, the PDE model describes the evolution of densities. These densities can be
understood as the average number of pedestrians at a certain point in time and space.
Therefore, this model is not able to produce trajectories of individual pedestrian.
On the other hand, due to the intrinsic averaging, global quantities (which are for
example necessary to compute the fundamental diagram) can be extracted easily.

For the sake of clarity, we perform the derivation in one space dimension only. It
is analogous in higher dimensions.
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Fig. 3.1 The microscopic setting in one space dimension

3.4.1 Setup

In one space dimension, the model reduces to a row of N cells of width h, as shown
in Fig. 3.1. We scale the width of the cells such that the total length of the row is
one, i.e. chose h such that hN = 1. Furthermore, we denote by xi the midpoint of cell
i, i = 1, . . . ,N. In the microscopic model, all quantities are discrete: ri and bi denote
the number of red and blue particles in cell i, respectively. The values of the floor
fields are assumed to be constant in each cell resulting in a finite number of values
Si and Di. On the other hand, the densities appearing in the macroscopic model are
functions of continuous space and time variables (x ∈ [0,1], t ∈ R

+). Therefore, we
introduce the functions

S̃r : [0,1] → R
+ S̃b : [0,1] → R

+

D̃r : [0,1]×R
+ → R

+ D̃b : [0,1]×R
+ → R

+

r̃ : [0,1]×R
+ → [0,1] b̃ : [0,1]×R

+ → [0,1].
(3.5)

To connect these functions with their discrete analogues (i.e. S̃ with Si, D̃ with Di,
etc.), we define them as constant on each cell. For example

S̃r(x) =

⎧⎪⎪⎨
⎪⎪⎩

S1, if 0 ≤ x < h,
. . . ,

Si, if hi ≤ x < h(i+1),
. . . .

(3.6)

In other words, the functions are piecewise constant and in each cell attain the value
of their discrete analogue. With these definitions, the probability of a particle to
jump into the cell with midpoint xi is given by

P̃c(xi, tk) = NekDc D̃c(xi,tk)ekSc S̃c(xi)(1− r̃i(xi, tk)− b̃i(xi, tk)), c = r, b, (3.7)

with

Ñc(xi, tk) =
1

∑i+1
k=i−1 ekDc D̃c(xi,tk)ekSc S̃c(xi)

, c = r, b.

Note that even though these expressions look very similar to (3.1) and (3.2) they are
different as they are valid for arbitrary x �= xi, i = 1, . . . ,N and t �= tk, k ∈ N+.



48 J.-F. Pietschmann

Closure Assumption A priori, only ni, j, i.e. the information whether cell (i, j)
is occupied or not is known. However, in (3.7) we replaced ni, j by r̃i(xi, tk)+
b̃i(xi, tk), i.e. the probability of the cell being occupied or not. This is needed
to obtain a closed equation and therefore called a “closure assumption”. In
cases in which the macroscopic limit can be justified rigorously, this closure
assumption turns out to be the right one, cf. [13], which motivates our choice.

3.4.2 Master Equation

We will now formulate the dynamics of the macroscopic model by using a so-called
master-equation, see for example [3]. This equation describes how the probabilities
to find a particle in a certain cell evolve in time. To increase readability, we will
neglect the tildes from the previous section and write r, b, S, D instead of r̃, b̃, S̃, D̃.
For red and blue particles, the corresponding master equations are given by

r(xi, tk+1) = Pr(xi, tk)(r(xi−1, tk)+ r(xi+1, tk)) (3.8)

+ r(xi, tk)(1−Pr(xi−1, tk)−Pr(xi+1, tk)),

b(xi, tk+1) = Pb(xi, tk)(b(xi−1, tk)+b(xi+1, tk)) (3.9)

+b(xi, tk)(1−P(xi−1, tk)−P(xi+1, tk)),

These equations states the probability of finding a particle at position xi at time tk+1

given the state of the system at time tk. Since the ASEP allows particles to jump only
one cell per time step, we only need to take the cells i, i−1 and i+1 into account.
Roughly speaking, the master equation consists of two terms: The probability of a
particle at cell i± 1 to jump into cell i (first term) and probability for a particle to
stay in cell i (i.e. one minus the probability to jump out of the cell, second term).
Note that since the probabilities are real numbers in [0,1], the values of r and b
do not need to be discrete integers anymore. For corresponding equations for the
dynamic fields read as

Dr(xi, tk+1) = Dr(xi, tk)+(Δ t)r(xi, tk)(Pr(xi−1, tk)+Pr(xi+1, tk)) (3.10)

−δDr(xi, tk),

Db(xi, tk+1) = Db(xi, tk)+(Δ t)b(xi, tk)(Pb(xi−1, tk)+Pb(xi+1, tk)) (3.11)

−δDb(xi, tk).

i.e. value of D increases, whenever a particle leaves an occupied field and decreases
with rate δ > 0.
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We are now ready to perform the limiting procedure which transforms the ASEP
into a system of partial differential equations. We will only consider red particles
from now on as the strategy is exactly the same for the blue ones. The mathematical
strategy to obtain the microscopic model is to perform the limit Δ t → 0, h → 0. In
other words: We let the width of the cells and the length of the discrete time steps
tend to zero. Since the total length is fixed by hN = 1 this means that the number of
cells tend to infinity. If we multiply the master equation for r, (3.8), by 1

Δ t we obtain

1
Δ t

(r(xi, tk+1)− r(xi, tk)) =
1

Δ t
(Pr(xi, tk)(r(xi−1, tk)+ r(xi+1, tk))

+ r(xi, tk)(1−Pr(xi−1, tk)−Pr(xi+1, tk))),

we see that in the limit Δ t → 0, the left hand side will converge to ∂t r. However,
the resulting equation is still discrete in space and it is not clear what happens to the
right hand side in the limit. We therefore perform a Taylor expansion of the right
hand side around xi. Remember that we are planing to let h tend to zero, therefore it
is reasonable to assume it to be small which justifies the Taylor expansion. We first
take a closer look at Eq. (3.12). Taylor expansion of the right hand side around the
point x = xi yields

r(xi, t +Δ t)− r(xi, t)

= h2P(xi, t)∂xr(xi+1, t)−h2r(xi, t)∂xP(xi+1, t)

= h2P(xi, t)∂xr(xi, t)−h2r(xi, t)

∂x

(
NekSr Sr ekDr Dr [(1− r(xi, t))(∂xD+∂xS)−∂xr(xi, t)]

)
= h2∂x

(
NekSr Sr ekDr Dr ∂xr(xi, t)

)
−h2∂x

(
NekSr Sr ekDr Dr r(xi, t)(1− r(xi, t))(∂xD+∂xS)

)
.

The final step before we actually pass to the limit is to chose the relation between Δ t
and h, the so-called scaling, [13]. If we divide again by Δ t, we see that the quantity
h2

Δ t appears on the right hand side. Thus we chose h2

Δ t =: P = const > 0. The constant
P acts as a diffusion coefficient. Then, the left hand side will converge to the time
derivative ∂t r, while the right hand side does not depend on h or Δ t anymore (up to
higher order terms which vanish as h → 0). Thus passing to the limit h, Δ t → 0 we
obtain

∂t r+
P
3

∂x (r(1− r)(kSr ∂xSr + kD∂xDr)) =
P
3

∂xxr. (3.12)

We made use of the fact that
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Fi(h
2) := ekDr Dr(xi)ekSr Sr(xi,t)Ni =

ekDr Dr(xi,t)ekSr Sr(xi)

3ekDr Dr(xi,t)ekSr Sr(xi) +O(h2)

h→0−→ 1
3
. (3.13)

For (3.10), we apply the same procedure yielding

Dr(xi, t +Δ t)−Dr(xi, t)
Δ t

= ri(t)(P(xi+1, t)+P(xi−1, t))−δDr(xi, tk)

= r(xi, t)(Fi+1(h
2)(1− r(xi+1, t)+Fi−1(h

2)(1− r(xi−1, t))−δDr(xi, tk)

= r(xi, t)
(
Fi+1(h

2)(1− r(xi, t)+Fi−1(h
2)(1− r(xi, t)

)−δDr(xi, tk)

+ r(xi, t)

(
h

(
Fi+1(h

2)
∂ r(xi, t)

∂x
−Fi−1(h

2)
∂ r(xi, t)

∂x

))
−δDr(xi, tk)

+O(h2)

In the limit Δ t, h2 → 0, the last term on the right hand side vanishes and we obtain

∂tDr =−δDr +
2
3

r(1−ρ).

As it is well known, cf. [9, 10], that the diffusion algorithm described in Sect. 3.3
yields, in the continuum limit a term κ∂xxDr, we arrive at

∂tDr = κ∂xxDr −δDr +
2
3

r(1−ρ). (3.14)

3.4.3 The Macroscopic PDE Limit

As the limiting procedure can be performed in arbitrary spatial dimensions,
we finally obtain the following non-linear Nernst-Planck type equations for the
densities r and b

∂t r =∇ ·P((1−ρ)∇r+ r∇ρ + r(1−ρ)∇(kSr Sr + kDr Dr)), (3.15)

∂tb =∇ ·P((1−ρ)∇b+b∇ρ +b(1−ρ)∇(kSr Sb + kDr Db)), (3.16)

coupled to

∂tDr =κ∇2Dr −δ1Dr + r(1−ρ), (3.17)

∂tDb =κ∇2Db −δ1Db +b(1−ρ), (3.18)
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with x ∈ Ω ⊂ R
n, t > 0. Appropriate initial and boundary conditions depend on the

application and will be discussed below. We remark that neglecting the dynamic
fields, this model has been analyzed extensively in [4, 5].

3.5 Application I: Linear Stability Analysis
and the Formation of Lanes

Video recordings of real crowds show that they exhibit a wide range of what is
called collective phenomena. One common example among them is lane formation,
see for example [15] and [17]. Pedestrians with the same desired walking direction
prefer to walk in lanes. Typically, the number of lanes depends on the width of the
street and on the density of pedestrians. One possible explanation for lane formation
is as follows: Pedestrians walking against the stream have a high relative velocity.
As a consequence, these pedestrians change their walking direction sideways to
avoid collisions, which finally leads to separation [16]. The formation of lanes
for two species (but without static field) has already been briefly demonstrated
numerically in [32]. In this section, we provide simulation results of the microscopic
model demonstrating the occurrence of lanes. This motivates the use linear stability
analysis of our macroscopic model (3.15)–(3.18) to obtain insight into the role of
the dynamic fields in this process.

3.5.1 Monte Carlo Simulations

We performed simulations of the above model on a 20× 100 cell grid. We used
a Mersenne twister, cf. [25], to create the pseudo-random numbers needed. The
main issue here is to deal with so-called “conflicts”, i.e. the case when two particles
want to jump into the same cell. In our implementation, we followed the strategy
described in [20]. The basic idea is the following: A new parameter λ ∈ [0,1]
in introduced. If two or more particles want to jump to the same cell, this new
parameter determines their behavior: With probability λ , none of the particles
jumps and the cell remains empty. With probability (1−λ ), one particle is chosen
randomly and jumps into the target cell. In our set-up, red particles enter the domain
from the left and blue particles from the right. Both species are supplemented
with a static field transporting them through the channel. For this simulation, we
chose the following parameters: δ = 0.05, kD = 1.0, kS = 7,κ = 0.5. The diffusion
coefficients of r and b are chosen as 0.0005 in x- and 0.1 in y-direction. The
boundary conditions are implemented as follows: In each step, for each cell on
the left boundary, a random number is generated. If this number is below a given
value bcl , a virtual particle is created. This particle evolves due to the usual
probabilities given by the model and can either jump into the domain or vanishes. On
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Fig. 3.2 (Color online) Results of the Monte Carlo simulations: Snapshot of a single simulation
after 1,000 steps (top); density of red particles after 2,000 steps, averages over 35 runs (bottom);
density of blue particles after 2,000 steps, averages over 35 runs (middle)

the right side, the boundary conditions are implemented in the same way with a cor-
responding boundary value bcr. In our experiment, we added small perturbations in
y-direction, i.e.

bcl = b̃cl +0.04sin

(
2kπ
nx

i

)
, i = 1, . . . ,nx, (3.19)

bcr = b̃cr +0.04sin

(
2kπ
nx

i+π
)
, i = 1, . . . ,nx. (3.20)

Here, we chose b̃cl = b̃cr = 0.06. In Fig. 3.2 (top), we show a snapshot of one
simulation demonstrating the formation of two lanes. Figure 3.2 (bottom), we show
the average density of red particles at step 2,000 averages over 35 simulations, in
Fig. 3.2 (middle), we same is shown for the blue species.

3.5.2 Linear Stability Analysis

The idea is as follows: We consider an equilibrium state of the system in which both
red and blue particles are uniformly distributed within the whole domain. Then,
we add a small, asymmetric perturbation and observe the system’s reaction as time
evolves. The question is under which conditions the perturbations do not smooth
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Fig. 3.3 Geometry of the
domain on which the linear
stability analysis is performed

out, but grow in time. The procedure is summarized in Fig. 3.4. We remark we do
not assume that individuals have a tendency to prefer a special walking site.

To be able to obtain an explicit condition, we make the following assumptions:

• The static floor fields are acting only in x-direction, we assume the special case

∇Sr = (1,0), ∇Sb = (−1,0), (3.21)

meaning that the red and blue individuals have opposite preferred walking
directions.

• The diffusion of particles in x-directions vanishes, which is reasonable in case of
pedestrians walking along a corridor, as it is unlikely for them to go randomly
forward or backward.

• The diffusion of the dynamic floor fields Dc, c = r,b vanishes in y-direction,
corresponding to small movements orthogonal to the walking direction.

• The evolution of the dynamic floor fields is slow compared to that of the densities
r and b. Therefore, we only consider the stationary version of (3.17) and (3.18).

• The coupling constants to static and dynamic field are equal for both species, i.e.

kSr = kSb = kS, kDr = kDb = kD.

• All calculations are performed on the two-dimensional domain Ω = [0,L]×
[0, l]⊂ R

2 depicted in Fig. 3.3.

Under these assumptions, Eqs. (3.15)–(3.18) reduce to

∂t r =P∂y ((1−b)∂yr+ r∂yb)+PkS∂x(r(1−ρ))+PkD∇(r(1−ρ)∇Dr) (3.22)

=∇ · (−Jr)

∂tb =P∂y ((1− r)∂yb+b∂yr)−PkS∂x(b(1−ρ))+PkD∇(b(1−ρ)∇Db) (3.23)

=∇ · (−Jb),

0 =κ∂xxDr −δ1Dr + r(1−ρ), (3.24)

0 =κ∂xxDb −δ1Db +b(1−ρ) (3.25)

Hence, the total flux of red and blue particles, respectively, is given by
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Fig. 3.4 (a) Constant densities req, beq, (b) small perturbations εξ and εη added

Jr =−P

(
kSr(1−b)+ kD(r(1−ρ)∂xDr

(1−b)∂yr− r∂yρ + kD(r(1−ρ)∂yDr

)
,

and

Jb =−P

(
kSb(1− r)+ kD(b(1−ρ)∂xDb

(1− r)∂yb−b∂yρ + kD(b(1−ρ)∂yDb

)
.

We supplement this system with the following boundary conditions: We assume
constant influxes of r and b at the left or right end of the corridor, respectively.
Furthermore, we say that the particles are leaving the domain at with a constant
velocity v0 and with a rate proportional to their density. This leads to

Jr ·
(−1

0

)
= Jin

r = const and Jb ·
(−1

0

)
= bv0.

At x = L, we obtain

Jr ·
(

1
0

)
= rv0 and Jb ·

(
1
0

)
= Jin

b = const.

We assume no-flux boundary conditions in y-direction:

Jr ·
(

0
1

)
= Jb ·

(
0
1

)
= 0 for y = 0, l,
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meaning that particles can only enter or leave the corridor though the left or right
entrance. Now we are able to perform the linear stability analysis explained above:
We call the constant equilibrium states req and beq as well as Deq

r and Deq
b . Then we

add the following perturbations:

req → req + εξ , beq → beq + εη ,

Deq
r → Deq

r + εΨr, Deq
b → Deq

b + εΨb,

where ξ (x, t), η(x, t), Ψr(x, t) and Ψb(x, t) denote the time and space dependent
perturbations and ε � 1. If we insert this ansatz into the system of equations (3.22)–
(3.25) (with given external potentials) and neglect all terms of order ε2 and higher
(first order approximation), we obtain the following linear system describing the
evolution of the perturbations:

∂tξ =P((1−beq)∂yyξ − req∂yyη)+PkS∂x((1−ρeq)ξ − req(ξ −η))

+PkDreq(1−ρeq)(∂xx +∂yy)Ψr,

∂tη =P((1− req)∂yyη −beq∂yyξ )−PkS∂x((1−ρeq)η −beq(−ξ +η))

+PkDbeq(1−ρeq)(∂xx +∂yy)Ψb,

0 =κ∂xxΨr −δΨr +(1−ρeq − req)ξ + reqη ,

0 =κ∂xxΨb −δΨb +(1−ρeq −beq)η +beqξ .

The first two equations of this system can be written in the form

∂t

(
ξ
η

)
= A

(
ξ
η

)
,

with a 2× 2 matrix A that depends on P, req, beq, kSr , kSb ,kDr , kDb , κ and δ . From
this representation it is clear that the evolution of ξ and η is determined by the
largest eigenvalue of A: If it is negative, ξ and η will converge to zero as t → ∞
meaning that the system will return to its constant stationary state. If the eigenvalue
is positive, ξ and η will stay positive which corresponds to the formation of lanes. In
order to calculate an explicit condition for the sign of the eigenvalues, we consider
cosinusoidal shaped perturbation in the y direction (as depicted in Fig. 3.4), hence
the number of (possible) lanes is given by the mode of the cosine. We are able
to predict for several densities and geometries of the domain how many lanes are
formed.
The detailed derivation of this condition and the condition itself is stated in the
appendix. In the following, we will use it to analyze to interesting special cases.
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Fig. 3.5 Number of lanes versus density

3.5.3 Number of Lanes for Varying Density

We are able to predict instabilities, thus forming of lanes and the number of lanes,
depending on the equilibrium density req. In Fig. 3.5, the number of lanes k is plotted
versus the density. In this setup, we choose as length l in y-direction to be 7 m. The
length L in Fig. 3.5 is 100 m. The decay parameter δ is given by 0.05, and kD = 1.
We set kS = 7. Without the dynamic fields Dc, c = r, b, (i.e. kD = 0) the first lane
in each direction arises at densities of approximately 0.45 in each direction. If we
include the dynamic fields, the first lanes are formed at densities of approximately
0.35. Hence, the inclusion of the dynamic fields leads increases the tendencies to
follow others.

3.5.4 Number of Lanes for Varying Length

Figure 3.6 shows the number of lanes plotted versus channel length L. We chose
the same parameters as before, the density is set to req = 0.33. It is obvious that the
herding behavior does not lead to an increase in the number of lanes. As expected,
the tendency to follow others is more pronounced, resulting in less lanes.
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Fig. 3.6 Number of lanes versus length L

3.6 Application II: The Fundamental Diagram

The relation between density ρ and velocity v or total flux (or flow) j, also known
as fundamental diagram, is a key property of pedestrian movement, [34, 35]. In
particular, it can be used to estimate the capacity of facilities such as corridors
or streets. There is a lot of experimental data available for different situations,
starting from the classical review of Weidmann [38] up to many more recent studies
[8, 19, 35]. Thus, the fundamental diagram can also be used as a test to validate
crowd motion models. One advantage of our macroscopic model is that the density-
velocity relationship in encoded in the structure of the partial differential equation.
If we consider the model for one species, e.g. red particles, only and neglect the
dynamic field Eqs. (3.15)–(3.18) reduce to

∂t r = ∇2r−div(r(1− r)(kSr ∇Sr)). (3.26)

This corresponds to a uni-directional flow of one species. In this model, the total
flux j is given by

j := r(1− r)(kS∇S)−∇r.
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Fig. 3.7 Fundamental
diagram for uni-directional
flow as predicted by the
macroscopic model without
dynamic field

Using the relation r∇ ln(r) = ∇r, the flux can be rewritten in the form rv, i.e.

j = rv = r((1− r)(kS∇S)−∇ln(r)).

If we assume a constant density r and a constant preferred walking direction ∇S, we
recover a linear fundamental diagram v ∼ (1− r) and the density-flow relationship
is given by r(1− r) as shown in Fig. 3.7. Even though this is far away from detailed
experimental results, the key properties are still present: The flow increases with
the density until it reaches a maximum. When the density increases further, i.e.
the situation becomes more crowded, the individuals are not able to move at their
preferred walking speed anymore and the flux decreases until the critical density, at
which no movement is possible anymore, is reached. This is of particular interest
since situations involving high densities are hard to realize experimentally.

Recent experimental results for bi-directional flow (i.e. two species of people
walking in opposite directions), have shown to exhibit a significantly different
fundamental diagram compared to uni-directional flow, cf. [41, Fig. 6]. In particular,
the maximum is lower but shifted to higher densities. In fact, there seems to be a
flat region. One possible explanation is that individuals that are walking towards
each other have a stronger dependency to avoid the other. This can easily be
incorporated into the microscopic ASEP model by allowing red and blue particles
to “switch” their places, as sketched in Fig. 3.8. Such a mechanism is also known
from models for intracellular transport, cf. [29]. Thus a rewarding direction of
future research is to derive and analyze the corresponding macroscopic formulation
for this modified model and compare the resulting fundamental diagram with the
experimental results. Another extension is to include the dynamical floor fields and
produce fundamental diagrams using numerical simulations.

3.7 Conclusion and Future Work

We established a link between an extended floor field model and a system of
non-linear partial differential equations. Using this connection, we were able to
give conditions on the formation of lanes depending on the density of particles
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Fig. 3.8 Two particles switching there places in the cellular automata model

as well as the geometry on the domain. The effect of the floor field presenting
herding behavior is that lanes are formed at lower densities. A logical next
step would be to systematically verify these conditions using the Monte Carlo
simulations described above. Also, it would be worthwhile to perform detailed
simulations on the macroscopic model (using, e.g. a finite difference scheme) and
to compare these results with the microscopic simulations. This would lead to a
unified understanding of lane formation in these kind of models. Furthermore, we
used the macroscopic description to extract fundamental properties of pedestrian
movement, namely the fundamental diagram. We explained how the density-flow
relationship can easily be obtained from the macroscopic and briefly mentioned
possible extensions to cover recent experimental results regarding bi-directional
flow.
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Appendix

The linear stability approach described in Sect. 3.5 yields the following linear
system for the perturbations
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∂tξ =P((1−beq)∂yyξ − req∂yyη)+PkS∂x((1−ρeq)ξ − req(ξ −η)) (3.27)

+PkDreq(1−ρeq)(∂xx +∂yy)Ψr,

∂tη =P((1− req)∂yyη −beq∂yyξ )−PkS∂x((1−ρeq)η −beq(−ξ +η)) (3.28)

+PkDbeq(1−ρeq)(∂xx +∂yy)Ψb,

0 =κ∂xxΨr −δΨr +(1−ρeq − req)ξ + reqη , (3.29)

0 =κ∂xxΨb −δΨb +(1−ρeq −beq)η +beqξ . (3.30)

We denote length of the domain in y-direction by l, the length in x-direction is
denoted by L, see Fig. 3.3. The perturbations are assumed as

ξ =U(x)cos

(
kπ
l

y

)
exp(λ t), (3.31)

η =V (x)cos

(
kπ
l

y

)
exp(λ t), (3.32)

Ψr = Yr(x)cos

(
kπ
l

y

)
exp(λ t), (3.33)

Ψb = Yb(x)cos

(
kπ
l

y

)
exp(λ t). (3.34)

where U(x), V (x), Yr(x) and Yb(x) denote perturbations in the x-direction, and k
denotes the mode of the perturbation in y-direction. From now on, we assume req =
beq. Inserting this ansatz into Eqs. (3.27) and (3.28) we obtain

λ/PU =− (1− req)γU + reqγV + kS(1−3req)U ′+ kSreqV ′

− kDreq(1−2req)(γ +Γ )Yr (3.35)

λ/PV =− (1− req)γV + reqγU − kS(1−3req)V ′ − kSreqU ′

− kDreq(1−2req)(γ +Γ )Yb, (3.36)

where we used γ = k2π2

l2 , ′ denotes the derivative with respect to x, Γ = π2

L2 and
we assume perturbations Yi of a sinusoidal or cosinusoidal type Y ′′

i = −ΓYi. The
equations for U and V finally read, using (3.29) and (3.30):

[λ/P +(1− req)γ ]U − reqγV + kDreq(1−2req)
γ +Γ

κΓ +δ
[(1−3req)U + reqV ]

= kS(1−3req)U ′+μreqV ′, (3.37)
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[λ/P +(1− req)γ ]V − reqγU + kDreq(1−2req)
γ +Γ

κΓ +δ
[(1−3req)V + reqU ]

= −kS(1−3req)V ′ −μreqU ′. (3.38)

We denote Θ = γ+Γ
κΓ+δ . The summation of (3.37) and (3.38) is given by

[λ/P+(1−2req)γ + kDreq(1−2req)2Θ ](U +V ) = kS(1−4req)(U ′ −V ′).
(3.39)

The derivatives of (3.37) and (3.38) are given by

[λ/P+(1− req)γ ]U ′ − reqγV ′+ kDreq(1−2req)Θ
[
(1−3req)U ′+ reqV ′]

= kS(1−3req)U ′′+μreqV ′′, (3.40)

[λ/P+(1− req)γ ]V ′ − reqγU ′+ kDreq(1−2req)Θ
[
(1−3req)V ′+ reqU ′]

=− kS(1−3req)V ′′ −μreqU ′′. (3.41)

Subtracting these equation yields

[λ/P+ γ + kDreq(1−2req)(1−4req)Θ ](U ′ −V ′)

= kS(1−2req)(U ′′+V ′′). (3.42)

Combining (3.39) and (3.42) leads to

[λ/P+(1−2req)γ + kDreq(1−2req)2Θ ](U +V ) = (3.43)

k2
S

(1−4req)(1−2req)

λ/P+ γ + kDreq(1−2req)(1−4req)Θ
(U ′′+V ′′).

In the following, we assume perturbations U and V in x-direction of a sinusoidal
type, due to the homogeneous boundary conditions. This leads to

U ′′ =−m2π2

L2 U, V ′′ =−m2π2

L2 V,

where L denotes the length of the domain in x direction. In the following, we take
m = 1, as we are only interested in lanes forming along the x-direction. We finally
arrive at

0 = [λ 2/P2 +2λ/P[γ(1− req)+ kDreq(1−2req)(1−3req)Θ ]

+ γ2(1−2req)+2γkDreq(1−2req)3Θ

+ k2
D(r

eq)2(1−2req)3(1−4req)Θ 2
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+ k2
SΓ (1−4req)(1−2req)](U +V ). (3.44)

Accordingly, the equation for λ is given by

λ1/2 =−P[(1− req)γ + kDreq(1−2req)(1−3req)Θ ]

±P
√
(req)2[γ − kDreq(1−2req)Θ ]2 − k2

SΓ (1−4req)(1−2req). (3.45)

The parameter λ is supposed to be real-valued for all k, particularly for k = 1. From
that we conclude

(req)2[γ − kDreq(1−2req)Θ ]2 ≥ k2
SΓ (1−4req)(1−2req). (3.46)

As req ≤ 1/2, (3.46) is always fulfilled in case that req ≥ 1/4. This means that
instabilities arise only in case req ≥ 1/4. To obtain instabilities increasing in time,
λ > 0 has to be satisfied. This means

[(1− req)γ + kDreq(1−2req)(1−3req)Θ ]2

< (req)2γ2 −2γkD(r
eq)3(1−2req)Θ

+ k2
D(r

eq)4(1−2req)2Θ 2 − k2
SΓ (1−4req)(1−2req) (3.47)

Assuming (1−2req)> 0, which means that the overall density is below maximum,
we obtain

γ2 +2γkDreq(1−2req)2Θ

+ k2
D(r

eq)2(1−2req)2(1−4req)Θ 2 + k2
SΓ (1−4req)< 0. (3.48)

The mode of the cosinusoidal perturbation in y-direction is given by k, hence it gives
the number of lanes of particles moving in opposite direction which are amplified
during time. If k = 1, we obtain one lane in each direction. Accordingly, we obtain
as inequality for γ = k2π2

l2

γ2
[

1+2kDreq(1−2req)2 1
κΓ +δ

+k2
Dreq2(1−2req)2(1−4req)

1
(κΓ +δ )2

]

+ γ
[

2kDreq(1−2req)2 Γ
κΓ +δ

+2k2
Dreq2(1−2req)2(1−4req)

Γ
(κΓ +δ )2

]
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+ k2
Dreq2(1−2req)2(1−4req)

Γ 2

(κΓ +δ )2 + k2
SΓ (1−4req)

< 0. (3.49)

The evaluation of (3.49) leads to a condition on k which determines under which
conditions instabilities, which lead to lane formation, appear.
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