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Dynamics
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Abstract A brief overview of mathematical modeling of pedestrian dynamics is
presented. Hereby, we focus on space-continuous models which include inter-
actions between the pedestrian by forces. Conceptual problems of such models
are addressed. Side-effects of spatially continuous force-based models, especially
oscillations and overlapping which occur for erroneous choices of the forces, are
analyzed in a quantitative manner. As a representative example of force-based
models the Generalized Centrifugal Force Model (GCFM) is introduced. Key
components of the model are presented and discussed. Finally, simulations with
the GCFM in corridors and bottlenecks are shown and compared with experimental
data.

2.1 Introduction

The study of pedestrian dynamics has gained special interest due to the increasing
number of mass events, where several thousand people gather in restricted areas.
In order to understand the laws that govern the dynamics of a crowd several
experiments were performed and evaluated. A brief overview can be found in
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Fig. 2.1 Left: Von-Neumann neighborhood. Middle: Moore neighborhood. Right: Hexagonal
neighborhood

[26]. Due to ethical and technical limitations, experimental studies with large
numbers of pedestrians are often restricted to controlled labor experiments in
specific geometries e.g., bottlenecks [3,10,12,14,15,28,29,35], T-junctions [37] and
corridors [1, 5, 31, 38, 39]. Nevertheless, those experiments are beneficial to study
quantitative and qualitative properties of pedestrian dynamics. Furthermore, they
provide an empirical basis for model development and validation. In fact, validated
models can be used to extrapolate the empirical knowledge to cover situations that
are difficult to produce with experiments.

Several mathematical models have been developed. Based on their properties,
existing models can be categorized into different classes [26]. An increasingly
important type of model is based on individual description of pedestrians by means
of intrinsic properties and spatial interactions between individuals. Those models
state that phenomena which emerge at a macroscopic level arise as a result of
interactions at a microscopic level.

Probably, the most investigated microscopic models are the Cellular Automata
models (CA), which are “mathematical idealizations of physical systems in which
space and time are discrete, and physical quantities take on finite set of discrete
values.” [34] In the simplest case, CA models decompose space into a rectangular or
hexagonal lattice with a cell size of 40×40cm2. The state of each cell is described
by a discrete variable; “1” for occupied and “0” for empty. It is updated in time
according to a set of predefined (stochastic) rules depending on the states of the cells
in a certain neighborhood. Depending on the system different neighborhoods can be
defined. Figure 2.1 depicts schematically three of the most common neighborhoods
used in CA applied to pedestrian dynamics. The full specification of the dynamics
of a CA model requires to specify the order in which cells are updated. The most
common update strategy is the parallel or synchronous update where all cells are
updated at the same time.

CA models describe properties of pedestrian traffic fairly well. However, the
discretization of space is not always possible in sensible way. For more details the
reader is referred to [27].

Another type of microscopic models which, contrary to CA models, is defined in
a continuous space, are force-based models. Force-based models describe the move-
ment of individuals by means of non-linear second-order differential equations.
In this chapter, we address properties of force-based models. The question of their
realism and ability to describe pedestrian dynamics is discussed in the following.
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2.2 Force-Based Models

As early as 1950s, several second-order models has been developed to study traffic
dynamics [21–23]. By means of differential equations the change of the system
with respect to time can be described microscopically by those models. Following
Newtonian dynamics, change of state results from the existence of exterior forces.
As such it can be concluded that the origin of force-based modeling can be traced
back to the beginning of the 1950s. An explicit formulation of this forced-based
principle in pedestrian dynamics was expressed in [11], who presented a CA-model
that “hypothesizes the existence of repulsive forces between pedestrians so that
as the subject approaches another pedestrian the ‘potential energy’ of his position
rises and the ‘kinetic energy’ of his speed drops” [11]. However, the first space-
continuous force-based model was introduced by Hirai et al. [8].

Further models for pedestrian dynamics that are based on this force-Ansatz
followed [6, 7, 13, 18, 30].

2.2.1 Definition and Issues

Given a pedestrian i with coordinates
−→
Ri one defines the set of all pedestrians that

influence pedestrian i at a certain moment as Ni and the set of walls or boundaries
that act on i as Wi. In general the forces defining the equation of motion are
split into driving and repulsive forces. The repulsive forces model the collision-
avoidance performed by pedestrians and should in principle guarantee a certain
volume exclusion for each pedestrian. The driving force, on the other hand, models
the intention of a pedestrian to move to a certain destination and walk with a desired
speed.

Formally the movement of each pedestrian is defined by the equation of motion

mi
d

dt2

−→
Ri =

−→
Fi =

−→
Fi

drv + ∑
j∈Ni

−→
Fi j

rep + ∑
w∈Wi

−→
Fiw

rep , (2.1)

where
−→
Fi j

rep denotes the repulsive force from pedestrian j acting on pedestrian i,−→
Fiw

rep is the repulsive force emerging from the obstacle w and
−→
Fi

drv is a driving
force and mi is the mass of pedestrian i. In [8] the equation of motion (2.1)
contains a coefficient of viscosity. However, the influence of this coefficient was
not investigated.
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For a system of n pedestrians we define the state vector
−→
X (t) as

−→
X (t) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−→
R1(t)

...−→
Rn(t)−→v1 (t)

...
−→vn (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.2)

According to Eq. (2.1) the change of
−→
X (t) over time is described by:

d
dt
−→
X (t) =

( −→v (t)−→
F (t)/m

)
, (2.3)

with

−→
F (t) =

⎛
⎜⎝

−→
F1
...−→

Fn

⎞
⎟⎠ , −→v (t) =

⎛
⎜⎝
−→v1
...
−→vn

⎞
⎟⎠ and mi = m ∀i ∈ [1, n]. (2.4)

The state vector at time t +Δ t is then obtained by integrating (2.3):

−→
X (t +Δ t) =

t+Δ t∫

t

( −→v (t̃)−→
F (t̃)/m

)
dt̃ +

−→
X (t). (2.5)

In general the integral in (2.5) may not be expressible in closed form and must be
solved numerically.

Force-based models are able to describe qualitatively and quantitatively some
aspects of pedestrian dynamics. Nevertheless, they have some conceptual problems.
The first problem is Newton’s third law. According to this principle two particles
interact by forces of equal magnitudes and opposite directions. For pedestrians this
law is unrealistic since e.g. normally a pedestrian does not react to pedestrians
behind him/her. Even if the angle of vision is taken into account, the forces mutually
exerted on each other are not of the same magnitude. In classical mechanics
the acceleration of a particle is linear in the force acting on it. Consequently
the acceleration resulting from several forces is summed up from accelerations
computed from each force. The superposition-principle however, leads to some side-
effects when modeling pedestrian dynamics, especially in dense situations where
unrealistic backwards movement or high velocities can occur.
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Further problems are related to the Newtonian equation of motion describing
particles with inertia. This could lead to overlapping and oscillations of the modeled
pedestrians.

On one hand, the particles representing pedestrians can excessively overlap and
thus violate the principle of volume exclusion. On the other hand, pedestrians can
be pushed backwards by repulsive forces and so perform an oscillating movement
towards the exit. This leads to unrealistic behavior especially in evacuation scenarios
where a forward movement is dominating. Depending on the strength of the
repulsive forces, overlapping and oscillations of pedestrians can be mitigated.
However, since both phenomena are related to the repulsive forces this can not
be achieved simultaneously in a satisfactory way. Reducing the overlapping-issue
by increasing the strength of the repulsive forces would lead to an increase of the
oscillations in the system. On the other hand, reducing the strength of the repulsive
forces may solve the problem of oscillations, but at the same time increase the
tendency of overlapping.

In order to solve this overlapping-oscillations duality one can introduce extra
rules. One possible solution may be avoiding oscillations by choosing adequate
values of the repulsive forces and deal with overlapping among pedestrians with an
“overlap-eliminating” algorithm [13]. In [36] a “collision detection technique” was
introduced to modify the state variables of the system each time pedestrians overlap
with each other. The other possible solution goes in the opposite direction, namely
avoiding overlapping by strong repulsive forces and simply eliminate oscillations
by setting the velocity to zero [7, 16].

Even if those extra rules may solve the problematic duality, it seems that they
are redundant since interactions among pedestrians are no longer expressed only by
repulsive forces. This redundancy adds an amount of complexity to the model and is
clearly in contradiction to the minimum description length principle [24]. Besides, it
is unclear how the modification of the state vector X(t) (2.2) influences the stability
of the Eq. (2.5). For those reasons, it is necessary to investigate solutions for the
overlapping-oscillations duality without dispensing with the simplicity of the model
as originally described with the equation of movement (2.3).

In order to understand the relation between overlapping and oscillations with the
repulsive force and hence investigate solutions for the aforementioned problem, we
first try to quantify those phenomena and study their behavior with respect to the
strength of the repulsive force.

2.2.2 Overlapping

Overlapping is a simulation-specific phenomenon that arises in some models. Unlike
CA-models, where volume exclusion is given with the discretization of the space, in
poorly calibrated force-based models, unrealistic overlapping between pedestrians
are not excluded (Fig. 2.2).
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Fig. 2.2 Evacuation through a bottleneck. The simulation screen-shot highlights the problem of
excessive overlapping

In order to measure the overlapping that arise during a simulation an
“overlapping-proportion” is defined as

o(v) =
1

nov

tend

∑
t=0

N

∑
i=1

N

∑
j>i

oi j , (2.6)

with

oi j =
Ai j

min(Ai,A j)
≤ 1, (2.7)

where N is the number of simulated pedestrians and tend the duration of the
simulation. Ai j is the overlapping area of the geometrical forms representing i and j
with areas Ai and A j, respectively. nov is the cardinality of the set

O := {oi j : oi j �= 0} . (2.8)

For nov = 0, o(v) is set to zero.

2.2.3 Oscillations

Oscillations are backward movements fulfilled by pedestrians when moving under
high repulsive forces. Figure 2.3 shows a simulation where pedestrians are force to
move in the opposite direction of the exit.

For a pedestrian with velocity −→vi and desired velocity
−→
v0

i the “oscillation-
proportion” is defined as

o(s) =
1

nos

tend

∑
t=0

N

∑
i=1

Si , (2.9)
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Fig. 2.3 Evacuation through a bottleneck. The simulation screen-shot highlights the problem of
oscillations. Note the pedestrians near the walls have the wrong orientation

where Si quantifies the oscillation-strength of pedestrian i and is defined as follows:

Si =
1
2
(−si + |si|) , (2.10)

with

si =
−→vi ·−→vi

0

‖ −→v0
i ‖2

, (2.11)

and nos is the cardinality of the set

S := {si : si �= 0}. (2.12)

Here again o(s) is set to zero if nos = 0. Note that Si in Eq. (2.10) is zero if the
angle between the velocity and the desired velocity is less that π/2. This means a
realistic deviation of the velocity from the desired direction is not considered as an
“oscillation”.

The proportions o(v) and o(s) are normalized to 1 and describe the evolution of
the overlapping and oscillations during a simulation. The change of o(v) and o(s) is
measured with respect to the strength of the repulsive force η . This dependence as
well as the overlapping-oscillation duality is showcased in Fig. 2.4.

Increasing the strength of the repulsive force (η) to make pedestrians “impen-
etrable” leads to a decrease of the overlapping-proportion o(v). Meanwhile, the
oscillation-proportion o(s) increases, thus the system tends to become unstable.
Large values of the oscillation-proportion o(s) imply less stability. For si = 1 one has−→vi = −−→vi

0, i.e., a pedestrian moves backwards with desired velocity. Even values
of si higher than 1 are not excluded and can occur during a simulation.

It should be mentioned that the proportions o(v) and o(s) introduced here are
diagnostic tools that help calibrating the strength of the repulsive force in order to
minimize overlapping as well as oscillations.
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Fig. 2.4 The change of the overlapping-proportion (2.6) and the oscillation-proportion (2.9) in
dependence of the repulsive force strength. For each η , 200 simulations were performed

2.3 The Generalized Centrifugal Force Model (GCFM)

The GCFM [2] describes the two-dimensional projection of the human body, by
means of ellipses with velocity-dependent semi-axes. It takes into account the
distance between the “edges” of the pedestrians as well as their relative velocities.
An elliptical volume exclusion has several advantages over a circular one. Because
a circle is symmetric with respect to its center, it is inconsistent with the asymmetric
space requirement of pedestrians in their direction of motion and transverse to it.
One possible remedy would be allowing the center of mass to be different from the
geometrical center of the circle. Whether this leads to realistic compliance with the
volume exclusion is not clear and should be studied in more detail.

As a force-based model, the GCFM describes the time evolution of pedestrians
by a system of superposing short-range forces. Besides the geometrical shape of
modeled pedestrians, it emphasizes the relevance of clear model definition without
any hidden restrictions on the state variables. Furthermore, quantitative validation,
with help of experimental data taken from different scenarios, plays a key role in the
development of the model.

2.3.1 Volume Exclusion of Pedestrians

As mentioned earlier, one drawback of circles that impact negatively the dynamics
is their rotational symmetry with respect to their centers. Therefore, they occupy
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the same amount of space in all directions. In single file movement this is irrelevant
since the circles are projected to lines and only the required space in movement
direction matters. However, for two-dimensional movement, a rotational symmetry
has a negative impact on the dynamics of the system due to unrealistically large
lateral space requirements.

In [4] Fruin introduced the “body ellipse” to describe the plane view of the
average adult male human body. Pauls [19] presented ideas about an extension
of Fruin’s ellipse model to better understand and model pedestrian movement
as density increases. Templer [32] noticed that the so called “sensory zone”,
which can be interpreted as a “safety” space between pedestrians and other
objects in the environment to avoid physical conflicts and for “psychocultural
reasons”, varies in size and takes the shape of an ellipse. In fact, ellipses are
closer to the projection of required space of the human body on the plane,
including the extent of the legs during motion and the lateral swaying of the
body. Introducing an elliptical volume exclusion for pedestrians has the advantage
over circles (or points) to adjust independently the two semi-axes of the ellipse
such that one- and two-dimensional space requirement is described with higher
fidelity.

Given a pedestrian i, an ellipse with center (xi,yi), major semi-axis a and minor
semi-axis b can be defined. a models the space requirement in the direction of
movement,

a = amin + τavi (2.13)

with two parameters amin and τa.
Fruin [4] observed body swaying during both human locomotion and while

standing. Pauls [20] remarks that swaying laterally should be considered while
determining the required width of exit stairways. In [10], characteristics of lateral
swaying are determined experimentally. Observations of experimental trajectories
in [10] indicate that the amplitude of lateral swaying varies from a maximum bmax

for slow movement and gradually decreases to a minimum bmin for free movement
when pedestrians move with their free velocity. Thus with b the lateral swaying of
pedestrians is defined as

b = bmax − (bmax −bmin)
vi

v0
i

. (2.14)

Since a and b are velocity-dependent, the inequality

b ≤ a (2.15)

does not always hold for the ellipse i. In the rest of this work we denote the semi-axis
in the movement direction by a and its orthogonal semi-axis by b.
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−→vi

−→vj
Oi

Oj

ri

rj

αi

αj

−→eij

dij

Fig. 2.5 di j is the distance between the borders of the ellipses i and j along a line connecting their
centers

2.3.2 Repulsive Force

Assuming the direction connecting the positions of pedestrians i and j is given by

−→
Ri j =

−→
R j −−→

Ri ,
−→ei j =

−→
Ri j

‖ −→Ri j ‖
, (2.16)

the repulsive force reads

−→
Fi j

rep =−miki j
(η ‖ −→v0

i ‖+vi j)
2

di j

−→ei j, (2.17)

with the effective distance between pedestrians i and j

di j =‖ −→Ri j ‖ −ri(vi)− r j(v j). (2.18)

ri is the polar radius of pedestrian i (Fig. 2.5).
This definition of the repulsive force reflects several aspects. First, the force

between two pedestrians decreases with increasing distance. In the GCFM it is
inversely proportional to their distance (2.18). Furthermore, the repulsive force takes
into account the relative velocity vi j between pedestrians i and pedestrian j. The
following special definition ensures that for constant di j slower pedestrians are less
affected by the presence of faster pedestrians than by that of slower ones:

vi j =Θ
(
(−→vi −−→v j ) ·−→ei j

)
· (−→vi −−→v j ) ·−→ei j, (2.19)
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fm

repsl̃ r ′
c rcs0

dij

‖ −−→
F

rep
ij ‖

Fig. 2.6 The interpolation of the repulsive force between pedestrians i and j Eq. (2.17) depending
on di j and the distance of closest approach l̃ [40]. As the repulsive force also depends on the relative
velocity vi j , this figure depicts the curve of the force for vi j = const. The right and left dashed
curves are defined by a Hermite-interpolation at rc and r′eps. The wall-pedestrian interaction has an
analogous form

with Θ() is the Heaviside function.
As in general pedestrians react only to obstacles and pedestrians that are within

their perception, the reaction field of the repulsive force is reduced to the angle of
vision (180◦) of each pedestrian, by introducing the coefficient

ki j =Θ(−→vi ·−→ei j) · (−→vi ·−→ei j)/ ‖ −→vi ‖ . (2.20)

The coefficient ki j is maximal when pedestrian j is in the direction of movement of
pedestrian i and minimal when the angle between j and i is bigger than 90◦. Thus
the strength of the repulsive force depends on the angle.

The interaction of pedestrians with walls is similar to Eq. (2.17). In GCFM walls
are treated as three static pedestrians. The number of points is chosen to avoid
“going through” walls for pedestrians that are walking almost parallel to walls.

To enhance the numerical behavior of the function (2.17) at small distances
a Hermite-interpolation is performed. Furthermore, the force range is reduced to
a certain distance rc. This is especially necessary to avoid summing over distant
pedestrians. Figure 2.6 depicts a possible curve of the repulsive force extended by
the above mentioned right and left Hermite-interpolation (dashed curves).
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Fig. 2.7 Expected evolution of a pedestrian’s velocity with respect to time

2.3.3 Driving Force

From a mathematical standpoint the acceleration of pedestrians may be of different
nature e.g., Dirac-like, linear or exponential. According to [21], the later type is
more realistic and can take the following expression:

−→vi (t) =
−→
v0

i ·
(

1− exp

(
− t

τ

))
, (2.21)

with τ a time constant. Figure 2.7 shows the evolution of the velocity in time. See
Fig. 2.7.

Differentiation of Eq. (2.21) with respect to t yields

d
dt
−→vi (t) =

1
τ
·
−→
v0

i exp
(
− t

τ

)
. (2.22)

From Eq. (2.21) one gets

−→
v0

i exp
(
− t

τ

)
=
−→
v0

i −−→vi (t). (2.23)

Combining (2.22) and (2.23) and considering Newton’s second law, the force acting
on i with mass mi is

−→
Fi

drv = mi

−→
v0

i −−→vi

τ
. (2.24)
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This mathematical expression of the driving force, is systematically used in all
known force-based models and describes well the free movement of pedestrians.
In [33] is has been reported that evaluation of empirical data yields τ = 0.61 s. A
different value of 0.54 s was reported in [17].

2.4 Steering Mechanisms

In this section the effects of the desired direction on the dynamics by measuring the
outflow from a bottleneck with different widths is studied. Two different methods
for setting the direction of the desired velocity are discussed.

2.4.1 Directing Towards the Middle of the Exit

This is probably the most obvious mechanism. Herein, the desired direction
−→
e0

i for
pedestrian i is permanently directed towards a reference point that exactly lies on
the middle of the exit. In some situations it happens that pedestrians can not get to
the chosen reference point without colliding with walls. To avoid this and to make
sure that all pedestrians can “see” the middle of the exit the reference point e1 is
shifted by half the minimal shoulder length bmin = 0.2m (Fig. 2.8).

Figure 2.9 shows a simulation with 180 pedestrians with this steering mechanism.
Even if the entrance of the bottleneck is relatively wide, because of the steering the
pedestrians do not make optimal use of the full width and stay oriented towards the
middle of the bottleneck.

2.4.2 Mechanism with Directing Lines

In this section we introduce a mechanism that is, unlike the previous one, applicable
to all geometries even if the exit point is not visible. Three different lines are

e2
bmin

e1

Fig. 2.8 All pedestrians are directed towards the reference points e1 and e2
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Fig. 2.9 Screen-shot of a simulation. Width of the bottleneck w = 2.5m

e1

Fig. 2.10 Guiding line segments in front of the generated

defined (Fig. 2.10) which allow to “ease” the movement of pedestrians through the
bottleneck. The nearest point from each pedestrian to those lines define its desired
direction.

The blue line set (down the dashed line segment) is considered by pedestrians in
the lower half and the red line set by pedestrians in the upper half of the bottleneck.
For a pedestrian i at position pi we define the angle

θi = arccos

( −−→pie1 ·−−→pili j

‖ −−→pie1 ‖ · ‖ −−→pili j ‖

)
, (2.25)

with li j the nearest point of the line j to the pedestrian i.
The next direction is then chosen as

−→
e0

i =

−−→
pili j

‖ −−→pili j ‖
(2.26)

with j such that θ j = min{θ1,θ2,θ3}. The direction lines are shifted in x- and
y-direction by bmin to mitigate blocking in the corners.
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Fig. 2.11 Screenshot of a simulation with directing lines. Width of the bottleneck w = 2.5m

Figure 2.11 shows the form of the jam in front of the bottleneck for w = 2.5m.
In comparison to the first steering mechanism, where pedestrians were direction
towards the middle of the bottleneck, here pedestrians make better use of the whole
width, which influences the qualitative behavior of pedestrians positively.

2.5 Simulation Results

The free parameters of the model are systematically calibrated by considering single
file movement, two dimensional movement in corridors, bottlenecks and corners. In
this chapter only simulations results in wide corridors and bottlenecks are presented.

The initial value problem in Eq. (2.1) was solved using an Euler scheme with
fixed-step size Δ t = 0.01s. First the state variables of all pedestrians are determined.
Then the update to the next step is performed. Thus, the parallelism of the update is
ensured.

The desired speeds of pedestrians are Gaussian distributed with mean μ =
1.34m/s and standard deviation σ = 0.26m/s. Since there is no uniquely accepted
experimental value for the time constant τ in the driving force Eq. (2.24), we set
for simplicity τ = 0.5s, i.e. τ 
 Δ t. The mass mi is set to unity. In all following
simulations the set of parameters is not changed.

To compare the presented steering mechanisms several simulations in a bottle-
neck are performed. For each mechanisms only the width of the bottleneck is varied
from 1 to 2.4 m.

On the basis of a quantitative analysis, the importance of the steering of
pedestrians for the observed behavior can be estimated. In the following, for each
mechanism the flow through bottlenecks of varying width w is measured. The flow
is measured directly at the entrance of the bottleneck according to
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Fig. 2.12 Flow through a bottleneck with different widths

J =
NΔ t −1

Δ t
, (2.27)

with NΔ t = 180 pedestrians and Δ t the time necessary that all pedestrians pass the
measurement line. In Fig. 2.12 the resulting flow in comparison with experimental
data is presented.

Keeping the same values of model parameters, the fundamental diagram in a
corridor with closed boundary conditions is measured. Here again, for the sake of
comparison simulations with circles and ellipses are performed. Results are then
validated against experimental data (Figs. 2.13 and 2.14).

2.6 Conclusion and Outlook

In this chapter a brief overview of force-based modeling of pedestrian dynamics is
given. Force-based models continuously describe in space the movement of pedes-
trians by means of differential equations. One can track the origin of this Ansatz
back to early 1950s, where first models were developed to describe lane-movement
in traffic flow. Since then, force-based models have been successful in describing
fairly well the dynamics of pedestrians. Nevertheless, several problems arise from
the analogy to Newtonian dynamics. Therefore, principles like superposition, actio
et reactio should be revised when applied to pedestrian dynamic.
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Fig. 2.13 Density-velocity relation with ellipses in a corridor of dimensions 25 × 1m2 in
comparison with experimental data obtained in the HERMES-project [9, 25]

Fig. 2.14 Density-velocity relation with circles in a corridor of dimensions 25×1m2 in compar-
ison with experimental data obtained in the HERMES-project [9, 25]. In these simulations b is set
to be equal to a
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By considering the GCFM as an example for force-based models, several
important aspects of force-based models were addressed. First, the definition of the
repulsive force is presented. By means of a Hermite-interpolation it was possible
to overcome the instability of the force at small distances and restrict its range
to a maximum distance. Second, several steering mechanism in the driving force
are discussed. Finally, simulation results in corridors and bottlenecks are compared
to experimental data. It was shown, that it is possible to describe quantitatively
pedestrian dynamics in several geometries with one set of parameters.
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