
Chapter 15
Anomaly Detection in Crowded Scenes: A Novel
Framework Based on Swarm Optimization
and Social Force Modeling

R. Raghavendra, M. Cristani, A. Del Bue, E. Sangineto, and V. Murino

Abstract This chapter presents a novel scheme for analyzing the crowd behavior
from visual crowded scenes. The proposed method starts from the assumption that
the interaction force, as estimated by the Social Force Model (SFM), is a significant
feature to analyze crowd behavior. We step forward this hypothesis by optimizing
this force using Particle Swarm Optimization (PSO) to perform the advection of
a particle population spread randomly over the image frames. The population of
particles is drifted towards the areas of the main image motion, driven by the PSO
fitness function aimed at minimizing the interaction force, so as to model the most
diffused, normal behavior of the crowd. We then use this proposed particle advection
scheme to detect both global and local anomaly events in the crowded scene. A large
set of experiments are carried out on public available datasets and results show the
consistent higher performances of the proposed method as compared to other state-
of-the-art algorithms.

15.1 Introduction

Recently, major research efforts are underway in the computer vision community
to develop robust algorithms for understanding the behavior of crowds in video
surveillance contexts. Anomaly detection in crowded scenes is an important social
problem far from being reliably solved. This is because conventional methods
designed for surveillance applications fail drastically for the following reasons:
(1) severe overlapping between individual subjects; (2) random variations in the
density of people over time; (3) low resolution videos with temporal variations of
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the scene background. Nowadays, crowds are viewed as the very outliers of the
social sciences [27]. Such an attitude is reflected by the remarkable paucity of
psychological research on crowd processes [27].

The main objective of crowd behavior analysis involves not only modeling of
people mass dynamics but also detecting or even predicting possible abnormal or
anomalous behaviors in the scene. In particular for surveillance scenarios, this task
is of paramount importance since early detection, or even prediction, may reduce
the possible dangerous consequences of a threatening event, or may alert a human
operator for inspecting more carefully the ongoing situation.

Anomaly detection in crowded scenes can be classified into two types: (1) local
abnormal event, indicating that a behavior in a specific local image (or frame) area
is different from that of its neighbors in spatio-temporal terms; (2) global abnormal
event, indicating that the whole frame is abnormal irrespective of the local regions.
In other words, a global abnormal event detection aims at classifying each frame
as either abnormal or normal, while in local detection we also want to localize the
parts of the given frame which likely contain the abnormal activity.

In this article we present both global [26] and local [25] anomaly detection
techniques which have been tested on different real-time scenarios. We developed
these techniques based on the assumption that people in the crowd behave in
ways like birds (also known as particles) in a swarm. Thus, we try to address
crowd behavior analysis by considering the crowd as mutually interacting birds in a
swarm.

In general, a crowd can be considered as a collection of mutually interacting
people, where random individuals’ motion, due to the influence of neighbors, spatial
physical structure of the scene, etc., will dominate the dynamics and the flow of
the crowd. With this primary idea, we make an attempt to reflect a visual crowd
behavior using the concept of Swarm Optimization. Typically, the idea of Swarm
Optimization derived from the flight control (defined by a fitness function) of
randomly dispersed birds (also referred to as particles) in a given space. In this
framework, both local and social behavior among the birds or particles in the swarm
is considered. Similarly, we represent people in a crowd as interacting particles
following an evolutionary dynamic. These dynamics are driven by a fitness function
and they are influenced by the interaction forces among the swarm particles. With
this motivation, we propose a novel framework for particle advection using PSO
[15] and Social Force Model (SFM) [13]. The proposed method belongs to the class
of particle advection schemes and it is based on the assumption that the evolving
interaction forces estimated using SFM is a significant feature for analyzing the
crowd behavior. Our scheme starts by initializing particles randomly on the initial
video frame, which are then optimized and drifted to the main regions of the motion
according to a fitness function suitably defined. The aim of the fitness function
is to minimize the interaction forces, so as to model the most diffused, normal
behavior of the crowd as suggested by behavioral studies. Hence, the anomalies are
identified by the particles whose force significantly deviates from the typical force
magnitude.
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We put forward this framework to detect two different kinds of anomalies
namely: global and local anomalies. In order to detect global anomalies, we process
the interaction force obtained using the PSO-SFM method by detecting the change
in its magnitude. On the other hand, local anomaly detection is carried out by
checking if some particles (i.e., their interaction forces) do not fit the estimated
“typical” distribution, and this is done using a RANSAC-like method followed by a
segmentation algorithm to finely localize the abnormal areas.

There are several characteristics which differentiate our approach with respect
to other related works. First, particles are spread randomly over the image and can
move in a continuous way according to an optimization criterion, differently from
other approaches which constrain the particles in a priori fixed grid. Second, we use
PSO for particle advection which considers not only the individual particles motion,
but also the global motion of the particles as a whole, i.e., social interactions.

Extensive experiments are carried out on different types of public available video
datasets to prove the effectiveness of the proposed scheme. In order to evaluate
the global anomaly scheme, we considered four different public available datasets,
namely: UMN, PETS 2009, UCF and also a challenging dataset that reflects the
prison riots, download by YouTube. In order to evaluate the proposed scheme for
local anomaly detection, we consider two different public datasets, namely UCSD
and MALL datasets.

The rest of this chapter is organized as follows: Sect. 15.2 shows the state-of-
the-art techniques for crowd behavior analysis from the computer vision point of
view. Section 15.3 describes the proposed particle advection approach based on
the PSO-SFM model and also discusses the global and local anomaly detection
schemes. Section 15.4 presents the experimental results. Finally, Sect. 15.5 draws
the conclusions.

15.2 Related Work

Several techniques have been proposed for the anomaly detection in visually
crowded scenes. State of the art methods can be coarsely classified into two different
types: model-based and particle advection-based approaches. Among these two
methods, the particle advection based approaches will more naturally represent the
holistic view of a crowd and they do not require the segmentation or detection of
individuals. On the contrary, the outcome of these algorithms may eventually result
in the detection of individuals when they are detected as an anomaly. Here, we first
review the literature on model based approaches which is then followed by particle
advection schemes.
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15.2.1 Model Based Approaches

In [29], a novel unsupervised framework is presented to model the pedestrian
activities and interactions in crowded scenes. Here, low level visual features are
computed by carrying out the intensity difference between successive frames of
a given video. Then, these low level features are labeled using their location and
motion direction to form a basic feature set. The features are then quantized into
visual words to construct a dictionary. Finally, the activities are classified using two
well know classifiers namely: Latent Dirichlet Allocation (LDA) mixture model and
Hierarchical Dirichlet Process (HDP) mixture model.

In [20], a dynamic texture model is employed to jointly model the appearance
and dynamics of the crowded scene. This method explicitly addresses the detection
of both temporal and spatial anomalies. Further, a new dataset of crowded scenes
with videos of the walkway of a college campus and crowd with naturally varying
densities are made available for the vision community. In [17], steady state motion
of the crowd behavior is exploited by analyzing the underlying structure formed by
the spatial and temporal variations in the motion. Then, a Hidden Markov Model
(HMM) is trained on the motion patterns at each spatial location of the video
to predict the motion pattern that is exhibited by the subjects as they transverse
through the video. Finally, anomalous activities are detected as low likelihood
motion patterns.

In [16], anomaly detection in the crowded scene is carried out using a space-time
Markov Random Field (MRF) model. Given a video, a MRF graph is constructed
by dividing each frame into a grid of spatio-temporal local regions. Each region
corresponds to a single node and neighboring nodes are connected with links.
Then, each node is associated with an optical flow observation to learn the atomic
motion patterns using a mixture of probabilistic principal component analysis.
Finally, inference on the graph is carried out to decide whether each node is
normal or abnormal. In [1], a histogram is used to measure the optical flow
probability in local patterns of the image and then an ambiguity based threshold
is selected to monitor and detect the anomalies in the input videos. Further, a
new video dataset with different anomaly scenarios is made available to the vision
community. In [3], a new technique based on video parsing is proposed for accurate
abnormality detection in the visual crowded scene. Each video frame is parsed
by establishing a set of hypotheses that jointly provide information on the entire
foreground. Finally, a probabilistic model is employed to localize the abnormality
using statistical inference. In [18], dense optical flow fields are computed between
two successive frames to obtain the low level motion information in terms of
direction and magnitude for each pixel. Then, 2D histograms of motion direction
and magnitude for all flow vectors are computed. A symmetry measure is computed
by summing the absolute difference between the 2D histogram and a flipped version
of itself to determine the anomaly in the scene. Extensive experiments are carried
out on the LoveParade 2010 dataset to prove the reliability of the method. In [9],
a sparse reconstruction cost is proposed to detect the presence of anomalies in
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crowded scenes. Here local spatio-temporal patches are used to construct the normal
dictionary. Further, to reduce the size of the dictionary, a new selection method is
proposed based on sparsity consistency constraints.

15.2.2 Particle Advection Based Approaches

In case of particle advection schemes, a grid of particles is usually considered in
each frame which are then advected using the underlying motion data [2,21,22,30].
The assumption here is that each particle is considered as an atomic entity in
the mass of people, and the trajectories generated from the particles’ advection
may portray significant information concerning representative properties of the
scene in terms of both characteristics of the physical area and the crowd behavior.
The first work using particle advection schemes for crowd behavior analysis was
introduced in [2]. Here, the particle flow is computed by moving a grid of particles
using the fourth-order Runge-Kutta-Fehlberg algorithm [19] along with the bilinear
interpolation of the optical flow field. This method is further extended in [30] using
chaotic invariants capable of analyzing both coherent and incoherent scenes. In [22],
streaklines are introduced and integrated with a particle advection scheme capable
of incorporating the spatial change in the particle flow.

In [21] the social force model (SFM) [13] is exploited to detect abnormal events.
After the superposition of a fixed grid of particles on each frame, the SFM is used
to estimate the interaction force. In turn, the interaction force is used to describe
(abnormal) crowd behavior. So, after estimating the so-called force flow, a bag of
words method [4] and a Latent Dirichlet Allocation (LDA) [5] are employed to
discriminate between normal and abnormal frames. Possible abnormal areas are
localized selecting those regions with the highest force magnitude. In [23] the
authors provide an excellent analysis of the above mentioned particle advection
schemes in which crowd is dealt with using hydrodynamics principles.

15.2.3 Discussion

In Fig. 15.1a we show the result obtained applying the state-of-the-art people
detector of Dalal and Triggs [11] to a crowd image. Only 5 out of 23 persons
are correctly detected. Moreover, two false positives (the big rectangles) are also
included in the outcome. The situation is even worse in the densely crowded image
shown in Fig. 15.1b, where the automatic people detection phase clearly fails in
localizing the huge number of persons here represented. These two examples show
why approaches based on detection or segmentation of individuals are barely robust
when applied to the analysis of non-sparsely crowded scenes.

Conversely, particle advection methods do not rely on people segmentation and
assume that a crowd can be represented by a set of particles influenced by the
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Fig. 15.1 Examples of common people detector errors on a low-crowded (a) and a high-crowded
(b) scenario. The large number of false positives and false negatives makes the use of people
detector-based techniques highly unreliably for crowd analysis

people’s movements. The particles’ flow is then analyzed trying to detect possible
anomalies. In Sect. 15.3.5 we will show that our anomaly detection approach is able
to localize an anomaly in the frame shown in Fig. 15.1a (i.e., a man on a bicycle
with a velocity higher than the surrounding pedestrians). In fact, we can detect the
person(s) in the scene with an anomaly behavior by back-projecting the particle
positions corresponding to the localized anomaly into the image.

Before concluding this section, we refer the reader interested in crowd behavior
analysis details to recent review papers. In [31], a survey on available techniques
for crowd modeling from both the computer vision and the crowd simulation
point of view are presented. Emphasis is drawn on discussing the techniques
available for crowd modeling using agent based models, nature based models and
physical models. In [14] a discussion on the available computer vision techniques
for crowd behavior analysis for video surveillance applications is presented. This
survey also reports a few computer vision schemes able to address problems like
crowd dynamics, crowd analysis and crowd synthesis. In [10] a summary of crowd
behavior techniques from a social signal perspective applied to video surveillance is
presented.

15.3 Proposed Particle Advection Using PSO-SFM

This section describes our proposed particle advection method using PSO-SFM. In
earlier attempts [2,21], the particle advection is carried out by placing a rectangular
grid of particles over each video frames. Then, the velocity for each particle
is calculated using fourth-order Runge-Kutta-Fehlberg algorithm [19] along with
the bilinear interpolation of the optical flow field. In general, a drawback of this
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approach is that it assumes that a crowd follows a fluid-dynamical model which is
too restrictive when modeling masses of people. The elements of the crowd may
also move with unpredictable trajectories that will result in an unstructured flow.
Moreover, the use of a rectangular grid for particles is a coarse approximation
with respect to the continuous evolution of the social force. To overcome these
drawbacks, we propose a novel particle advection scheme using PSO aiming at
modeling the crowd behavior. Before presenting the detailed description of our
proposed scheme, we first provide a brief introduction on PSO and SFM in the
following subsections.

15.3.1 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic, iterative, population-based optimiza-
tion technique aimed at finding a solution to an optimization problem in a search
space [15]. The main objective of PSO is to optimize a given criterion function
called fitness function f . PSO is initialized with a population, namely a swarm, of
N-dimensional particles distributed randomly over the search space (of dimension
N too): each particle is so considered as a point in this N-dimensional space and
the optimization process manages to move the particles according to the evaluation
of the fitness function in an iterative way. More specifically, at each iteration, each
particle is updated according to two “best” values, respectively called pbesti, which
depends on the i-th particle, and gbest which is independent from the specific
particle. pbesti is the position corresponding to the best (e.g., minimum) fitness
value of particle i obtained so far (i.e. taking into account the positions computed
from the first iteration to the current one). On the other hand, gbest is the best
position achieved by the whole swarm:

gbest = argmin
i

f (pbesti), (15.1)

The position change (called “velocity”) vi for the i-th particle is updated
according to the following equations [15]:

vnew
i = IA · vold

i +C1 · rand1 · (pbesti − xold
i )

+C2 · rand2 · (gbest − xold
i ); (15.2)

xnew
i = xold

i + vnew
i , (15.3)

where IA is the inertia weight, whose value should be tuned to provide a good
balance between global and local explorations, and it may result in fewer iterations
on average for finding near optimal results. The scalar values C1 and C2 are
acceleration parameters used to drive each particle towards pbesti and gbest. Low
values of C1 and C2 allow the particles to roam far from target regions, while high
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values result in abrupt movements towards the target regions. rand1 and rand2

are random numbers between 0 and 1. Finally, xold
i and xnew

i are the current and
updated particle positions, respectively, and the same applies for the deviation vold

i
and vnew

i .

15.3.2 Social Force Model

The SFM [13] provides a mathematical formalization to describe the movement of
each individual in a crowd on the basis of its interaction with the environment and
other obstacles. The SFM can be written as:

mi
dWi

dt
= mi

(
W p

i −Wi

τi

)
+Fint , (15.4)

where mi denotes the mass of the individual, Wi indicates its actual velocity which
varies given the presence of obstacles in the scene and τi is a relaxing parameter.
Fint indicates the interaction force experienced by the individual which is defined as
the sum of attraction and repulsive forces. Finally, W p

i is the desired velocity of the
individual.

Assuming mi = 1 and τi = 1, from Eq. (15.4) we obtain:

Fint =Wi −W p
i +

dWi

dt
. (15.5)

Equation (15.5) shows that the higher the difference between the actual and
the desired velocities of a particle, the stronger its interaction force. The intuitive
idea behind this is that an obstacle (e.g., a person or a group of persons) can
make a particle (representing an individual of the analyzed crowd) to deviate from
its desired path. The higher this deviation, the stronger the underlying interaction
force. Thus, estimating the interaction force of the particle swarm will give us an
instrument to assess the total amount of person-to-person interactions in a given
frame. Anomalies will be detected as outliers in the interaction force distribution.

In the next section we will see how the optical flow can be used for an operational
definition of the velocities involved in Eq. (15.5) and the how the PSO process can
be used to simulate the movement of a set of individuals who aim at minimizing
their respective interaction forces.

15.3.3 The Proposed Minimization Scheme

The PSO begins with a random initialization of the particles in the first frame.
From such initial stage, we obtain a first guess of pbesti, for each particle i, and the
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global gbest. The particles are defined by their 2-D positions corresponding to the
pixel coordinates in the frames. At each iteration, the pbesti value is updated only
if the present position of the particle is better than the previous position according
to fitness function evaluated on the model interaction force. Finally, the gbest is
updated with the position obtained from the best pbesti after reaching the maximum
number of iterations or if the desired fitness value is achieved. We then use the
final particle positions as the initial guess in the next frame and the same iterative
process is repeated until the end of the video sequence. Therefore, the movement of
the particles is updated according to the fitness function which drives the particles
toward the areas of minimum interaction force using SFM.

15.3.3.1 Computing the Fitness Function

The fitness function aims at capturing the interaction force exhibited by each
movement in the crowded scene. Each particle is evaluated according to its
interaction force calculated using SFM and optical flow [6]. In fact, the Optical
Flow (OF) is a good candidate to substitute the pedestrian velocities in the SFM
model.

Using OF, we define the actual velocity of particle i as:

Wi = Oavg(x
new
i ), (15.6)

where Oavg(xnew
i ) indicates the average OF at the particle coordinates xnew

i , which in
turn is estimated using Eq. (15.2). The average is computed over L previous frames.
The desired velocity of the particle is defined as:

W p
i = O(xnew

i ), (15.7)

where O(xnew
i ) represents the OF intensity (in the current frame) of the particle i.

Both O() and Oavg() are computed using interpolation in a small spatial neighbor-
hood to avoid numerical instabilities of the OF. Finally, we calculate the interaction
force Fint using Eq. (15.5):

Fint(x
new
i ) =

dWi

dt
− (

W p
i −Wi

)
, (15.8)

where the velocity derivative is approximated as the difference of the OF at
the current frame t and t − 1, that is dWi

dt = [O(xnew
i )|t − O(xnew

i )|t−1]. As above
mentioned, the interaction force (Eq. (15.5)) allows an individual to change its
movement from the desired path to the actual one. This process is in some way
mimicked by the particles which are driven by the OF toward the image areas of
larger motion. In this way, the more regular the pedestrians’ motion, the less the
interaction force, since the people motion flow varies smoothly. So, in a normal
crowded scenario the interaction force is expected to stabilize at a certain (low) value
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complying with the typical motion flow of the mass of people. It is then reasonable
to define a fitness function aimed at minimizing the interaction force and moving
particles toward these sinks of small interaction force, thereby allowing particles to
simulate a “normal” situation of the crowd.

Hence, we define our fitness function as:

f (xi) = Fint(xi), (15.9)

where xi denotes the i-th particle’s position. With the above definitions we can use
the PSO framework presented in Sect. 15.3.1 to minimize f ().

15.3.4 Global Anomaly Detection Scheme Using PSO-SFM

In Fig. 15.2 we show the stages of our global anomaly detection system, whose aim
is to classify every frame of a given video sequence as either “normal” or “abnor-
mal”. In the first stage we estimate the interaction force on each frame using the
PSO-SFM scheme described in Sect. 15.3.3. The interaction force associated with
each particle is then processed further to identify the global anomaly in the frame.

As an example, Fig. 15.3a–d show the computed interaction force with the
proposed particle advection using PSO-SFM for both normal (Fig. 15.3a, b) and
anomaly video frames (Fig. 15.3c, d). In these figures, we plotted on the image
the magnitude of the interaction forces assigned to every particle. As observed
in Fig. 15.3, the presence of the high magnitude interaction force over time can
provide useful information about the existence of an anomaly. This allow us to
formulate the detection of global anomalies as the detection of the changes in
the interaction force magnitude. This process is valid with the proposed particle
advection scheme since the presence of global abnormality can be recognized by
the presence of high magnitude of the interaction force associated with the particles
(see Fig. 15.3). Since all the available test videos contains a certain amount of frames
in which normal behavior is assumed, we take advantage of this information in
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Fig. 15.3 An illustration of the proposed scheme. (a) Input normal frame. (b) Interaction force
corresponding to (a). (c) Input anomaly frame. (d) Interaction force corresponding to (c)

the comparison process, like all the other previous algorithms [21]. In practice, we
carry out the following steps to decide whether a given frame contains an anomaly
or not:

1. First, compute the sum of the interaction forces of a reference frame Fr.
This reference frame(s) represents a normal behavior scene in the given video
sequence. Actually, all the public datasets considered have an initial (variable,
but at least one frame) set of frames representing a normal behavior which can
be used as a reference. If k is the number of particles (currently, k = 15,000), we
obtain Fr as follows:

Fr =
k

∑
i=1

Fint(x
new
i )|r (15.10)
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2. Compute the sum of the interaction forces corresponding to all the particles in
the current frame Ft as:

Ft =
k

∑
i=1

Fint(x
new
i )|t (15.11)

3. Compute the change in the magnitude force at each frame t as:

Ct = |Ft −Fr| (15.12)

4. Repeat steps 2–3 for all the frames to obtain the profile (values of Ct for all the
video frames) corresponding to the change of the force magnitude.

As an example, Fig. 15.4a shows the profile obtained from a sequence of the
UMN dataset after following the above mentioned steps 1–4.

5. Finally, we use the moving average filter to smooth out the short term fluctuations
that are present in the obtained profile at the previous step, so to get a smoothed
profile Cs

t (see Fig. 15.4b). The moving average is obtained by the simple mean
of a few temporally adjacent frames. Once Cs

t is computed, each frame is then
classified as either normal or abnormal according to a threshold as follows:

Lt =

{
Abnormal if Cs

t > th
Normal otherwise

where Cs
t represents the smoothed profile, th is a threshold value, and Lt holds

the final detection result of the given video sequence.

15.3.5 Local Anomaly Detection Scheme Using PSO-SFM

While in the previous section we showed how a frame is classified as either normal
or abnormal, the aim of this section is to show how a finer localization of the
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Fig. 15.6 (a) Input frame. (b) Interaction force

anomaly inside the frame is possible. Figure 15.5 summarizes the proposed scheme
for accurate localization of the anomaly in a crowd. The first step is the same
interaction force optimization approach presented in Sect. 15.3.3 and used for the
global case (see Fig. 15.2).

Figure 15.6a–b show the input frame and the corresponding interaction force,
respectively. It is interesting to observe that the highest magnitudes of the force
are located in the image regions that move differently from the overall image flow
(e.g., the man on the bicycle close to the street lamp). Although patterns of high
magnitude of the interaction force over a certain period of time can provide useful
information about the presence of an anomaly, not necessarily large magnitudes of
the force is a direct consequence of the presence of an anomaly. This is due to the
fact that particles are not associated to a whole person, but only to person’s parts,
so, for instance, legs motion can lead to a high interaction force which is obviously
not an anomaly. This motivates us to propose a scheme that can capture the high
magnitude patterns over a certain period of time and thereby localize the presence of
anomalies in the scene. In order to detect structured interaction forces over time, we
use an outlier detection scheme to eliminate isolated fluctuations of the social force
at each time instant. These “outliers” effects are in general due to the approximation



396 R. Raghavendra et al.

Fig. 15.7 Results of the RANSAC-like algorithm. (a) Obtained inliers. (b) Corresponding outliers

of the pedestrians velocities with a dense OF computation. For instance, as above
observed, we noted that the leg swinging of a walking pedestrian is a cause for
false positive (anomaly) detections. This occurs because the local optical flow in
this small areas is noisy and may cause some disturbances in the anomaly detection.

The outliers detection process is performed using a custom implementation of the
well-known RANdom SAmple Consensus (RANSAC) algorithm [12]. RANSAC is
an iterative method used to estimate the parameters of a mathematical model from
observed data containing outliers. This algorithm basically assumes that most of the
available data consists of inliers whose distribution can be explained by a known
parametric model. However, inliers are mixed with outliers which make the direct
model parameter estimation inaccurate. Our empirical observations showed that
the statistics of the interaction forces associated to a crowd situation in the video
datasets can be reasonably well approximated by a Gaussian distribution. Thus,
given the interaction force magnitude of the particles at each frame we perform
the following steps:

1. Randomly select 5,000 particles (out of 15,000 particles) and their corresponding
interaction force magnitude.

2. Estimate the Gaussian distribution using the interaction force magnitude asso-
ciated with only the selected particles. Let the estimated mean and standard
deviation be μ̂ and σ̂ .

3. Consider the remaining particles and evaluate those that are inliers and outliers.
Inliers are detected by checking if the particle’s force is within the typical 3σ̂ of
the estimated model, particles whose force is outside this interval are considered
outliers.

4. Repeat the steps 1–3 for R number of iterations, R = 1,000 iterations in our case.
5. Finally, choose the Gaussian model with the highest number of inliers.

Figure 15.7a–b show the inliers and outliers obtained using the RANSAC-like
algorithm. It is interesting to observe that all high magnitude interaction forces
are detected as outliers. In order to achieve a better localization, we perform
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Fig. 15.8 Results of mean-shift clustering. (a) Clusters. (b) Force magnitude of the largest
cluster’s particles

Fig. 15.9 An anomaly
moving person localized
using the positions of the
particles in the largest outlier
cluster

a spatial clustering of the detected outliers using mean-shift [7, 8] as it works
independently on the assumptions regarding the shape of the distribution and the
number of modes/clusters. In the end, we finally select the clusters with a number
of members larger than a certain threshold, discarding clusters having a small
number of particles. This threshold is fixed and kept constant in all the performed
experiments; further, assuming that the geometry of the scene is roughly known, this
threshold can be set to define the minimal (abnormal) event to be detected.

Figure 15.8a–b show the results of mean-shift clustering and the final anomaly
localization obtained after selecting the largest cluster. The positions of the particles
of this cluster are plotted on the original input frame in Fig. 15.9. These particles
correspond to a moving person on a bicycle, who has been correctly detected as
an anomaly because his/her movement does not conform with the movement of the
surrounding pedestrians.
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15.4 Experiments

In this section we present and discuss the experimental results obtained using
the proposed schemes for global and local anomaly detection. We first discuss the
results using the global approach and then the experiments performed using the local
anomaly scheme.

15.4.1 Experimental Results and Discussion on the Global
Anomaly Scheme

To validate the performance of the proposed approach for global anomaly detection,
we conducted an extensive set of experiments on four different datasets: UMN [28],
PETS 2009 [24], UCF [21], and prison riot dataset (collected by us from the web).
In the following experiments, all the video frames are resized to a fixed resolution
of 200× 200 pixels. For the particle advection scheme, the particle density (i.e.,
the number of particles) is kept constant at 25 % of number of pixels, and the
number of iterations is fixed to 100. To detect the changes of the interaction force
magnitude, we use the first frame as the reference frame. This is because in all
the datasets the initial (roughly) 40 % of the video frames represents the normal
behavior which is then followed by the abnormal behavioral frames. Finally, the
performance is validated by plotting the ROC curves obtained over all possible
values of the threshold th.

15.4.1.1 UMN Dataset

The UMN dataset consists of 11 video sequences acquired in three different crowded
scenarios including both indoor and outdoor scenes. All these sequences exhibit
an escape panic scenario: they start with the normal behavior frames followed
by the abnormal activity. Figure 15.10 illustrates the results of the proposed
scheme obtained on the UMN dataset. Figure 15.10a shows two examples of
normal and abnormal crowd behavior frames, respectively, and Fig. 15.10b indicates
the corresponding interaction force obtained using the proposed PSO-SFM based
particle advection approach. From this figure, it can be observed that the presence of
high magnitude of the majority of the particles’ interaction force is an evidence that
an abnormal frame has occurred. Figure 15.10c shows the detection results of the
normal and abnormal frames using step 5 of the global anomaly detection algorithm
presented in Sect. 15.3.4. Figure 15.11 shows the detection results obtained on two
different sequences of the same UMN dataset. Abnormal frames always correspond
to a higher interaction force of the particles.

Figures 15.12 and 15.13 show the performance of the proposed scheme on three
different scenes of UMN and on the whole dataset, respectively. The quantitative
results in Table 15.1 indicate that the proposed scheme obtained the best perfor-
mance over different available state-of-the-art methods.
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Fig. 15.10 Results on the UMN dataset. (a) Input frame. (b) Force field. (c) Detection (N indicates
normal and A indicates abnormal frame)

15.4.1.2 Prison Riot Dataset

In order to evaluate the proposed method on real applications, we collected a set of
real videos from websites such as YouTube and ThoughtEquity.com. The collected
video dataset is composed of seven sequences representing riots in prisons that are
captured with different angles, resolutions, background and includes abnormality
like fighting with each other, clashing, etc. All the collected sequences start with
the normal behavior which is then followed by a sequence of abnormal behavior
frames. Figure 15.14 shows the interaction force obtained on some of the frames
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Fig. 15.11 Results of the proposed scheme on other sequences of the UMN dataset. (a) Normal
behavior in scene 2 with its corresponding interaction force and detection. (b) Abnormal behavior
in scene 2 with its corresponding interaction force and detection. (c) Normal behavior in scene 3
with its corresponding interaction force and detection. (d) Abnormal behavior in scene 3 with its
corresponding interaction force and detection

of this dataset. Figure 15.15 illustrates the performance of the proposed method
on some frames taken from different sequences in this datasets. The ROC curves
in Fig. 15.16 demonstrate that the proposed method outperforms the optical flow-
based method in distinguishing the abnormal sequences from the normal ones. The
quantitative results of this comparison are reported in Table 15.2.

15.4.2 Results on PETS 2009 Dataset

This section describes the results obtained on PETS 2009 ‘S3’ dataset. This dataset
is different from the other datasets used in this chapter, in the sense that abnormality
begins smoothly and this makes the detection more challenging because of the
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Fig. 15.12 ROC curves of abnormal behavior detection on different scenes in UMN dataset

Fig. 15.13 ROC performance on UMN dataset

gradual transaction from normal to abnormal activity. Figure 15.17 shows the
interaction force estimated using the proposed scheme on PETS 2009 and Fig. 15.18
shows the corresponding ROC curve. Table 15.3 shows the quantitative results of
the comparison, illustrating that the proposed scheme outperforms the optical flow
method also with this benchmark.

15.4.2.1 UCF Dataset

Finally, the effectiveness of the proposed algorithm is also evaluated on the UCF
dataset [21] composed of 12 video sequences representing normal and abnormal
scenes collected from the web. Also in this case, Fig. 15.19 demonstrates that
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Table 15.1 Performance of
the proposed scheme on the
UMN dataset

Method Area under ROC

Optical flow [21] 0.84
Social force [21] 0.96
Chaotic invariants [30] 0.99
NN [9] 0.93
Sparse reconstruction (scene 1) [9] 0.995
Sparse reconstruction (scene 2) [9] 0.975
Sparse reconstruction (scene 3) [9] 0.964
Sparse reconstruction (full dataset) [9] 0.978
Proposed scheme (scene 1) 0.9961
Proposed scheme (scene 2) 0.9932
Proposed scheme (scene 3) 0.9991
Proposed scheme (full dataset) 0.9961

the proposed scheme outperforms the optical flow procedure, and this is further
corroborated by the quantitative results reported in Table 15.4 and the qualitative
results reported in Fig. 15.20.

The experiments illustrated so far show that the proposed global anomaly
detection strategy outperforms the available state-of-the-art methods on realistic
datasets like UCF and Prison Riots, other than UMN and PETS 2009 benchmark
datasets. The next section is dedicated to testing the local strategy proposed in
Sect. 15.3.5.

15.4.3 Experimental Results and Discussion on the Local
Anomaly Scheme

To evaluate the performances of the local anomaly detection scheme and compare
it with state-of-the-art approaches, we consider two standard datasets used for
abnormal activities detection: UCSD [20] and MALL [1] datasets.

15.4.3.1 UCSD Dataset

The UCSD dataset contains two different sets of surveillance videos called PED1
and PED2. The dataset has a reasonable density of people and anomalies including
bikes, skaters, motor vehicles crossing the scenes. The PED1 has 34 training and
36 testing image sequence and PED2 has 16 training and 12 test image sequences.
These video sequences have two evaluation protocols as presented in [20], namely:
(1) frame-level anomaly detection, and (2) pixel-level anomaly detection. At frame-
level, we verify if the current frame contains a labeled abnormal pixel. In such a
case, the frame is considered containing an abnormal event and compared with
the annotated ground truth status (either normal or abnormal). At pixel-level, the
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Fig. 15.14 Results of the proposed scheme on the prison dataset. (a) A normal behavior frame
and its corresponding interaction force and detection result on video sequence 1. (b) An abnormal
behavior frame and its corresponding interaction force and detection result on sequence 1. (c) A
normal behavior frame and its corresponding interaction force and detection result on sequence 2.
(d) An abnormal behavior frame and its corresponding interaction force and detection result on
sequence 2

detection of abnormality is compared against the ground truth on a subset of 10 test
sequences. If at least 40 % of the detected abnormal pixels match the ground truth
pixels, it is presumed that anomaly has been localized otherwise it is treated as a
false positive.

Figure 15.21 shows the ROC curve of our method for the frame-level anomaly
detection criteria for PED1 and PED2 datasets. We then compare the performance
against the state-of-the-art approaches such as the SFM based method [21], MPPCA
[16], Adam et al. [1] and Mixture of dynamic textures (MDT) [20]. Table 15.5
shows the quantitative results of the proposed method on frame-level anomaly
detection on PED1 and PED2 datasets and Table 15.6 shows the results on anomaly
localization. The Equal Error Rate (EER) in Tables 15.5 and 15.6 is defined as
the point where false positive rate is equal to false negative rate. Remarkably, the
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Fig. 15.15 ROC curve of abnormal behavior detection in the different sequences of the prison
dataset

Fig. 15.16 ROC curves showing the comparison of the proposed scheme over the optical flow
method on the prison dataset

Table 15.2 Performance
of the proposed scheme on
the prison dataset

Method Area under ROC

Optical flow 0.5801
Proposed scheme (full dataset) 0.8903

proposed method outperforms all the previous approaches on both frame-level and
pixel-level detection, reaching the best performances in the frame-level anomaly
detection on the PED2 dataset.

Figure 15.22 shows a few frame samples with anomaly detection and localization
for the PED1 and PED2 datasets. It can be observed that the proposed method is
capable of detecting anomalies even in the far end of the scene (see Fig. 15.22a, last
two frames).
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Fig. 15.17 Sample frames from the PETS 2009 dataset (left column: input frames, middle column:
the corresponding interaction force, right column: the classification result). (a)–(b) Sample frames
from S3 (14–16). (c)–(d) sample frames from S3 (14–33)

15.4.3.2 Mall Dataset

The Mall dataset [1] consists of a set of video sequences recorded using three
cameras placed in different locations of a shopping mall during working days.
The annotated anomalies in such dataset are individuals running erratically in the
scene. The evaluation protocol uses only the frame-level anomaly detection criteria.
Figure 15.23 shows some frame samples from this dataset in which the anomaly is
detected using the proposed method. Table 15.7 shows that the proposed method
is extremely accurate in detecting all the frames with an anomaly. Moreover, our
approach outperforms the state-of-the-art schemes with respect to the best Rate of
Detection (RD) and fewer False Alarm (FA).



406 R. Raghavendra et al.

Fig. 15.18 The ROC curves of abnormal behavior detection in the PETS 2009 database

Table 15.3 Performance
of the proposed scheme on
PETS 2009 dataset

Method Area under ROC

Optical flow scene 1 0.8834
Proposed scheme scene 1 0.9414
Optical flow scene 2 0.9801
Proposed scheme scene 2 0.9914

Fig. 15.19 The ROC curves of abnormal behavior detection in the UCF dataset

15.5 Conclusion

We proposed a new particle advection scheme for both global and local anomaly
detection in crowded scenes. The main contribution of this work lies in introducing
the optimization of the evolving interaction force and performing particle advection
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Table 15.4 Performance
of the proposed scheme on
UCF dataset

Method Area under ROC

Optical flow 0.884
Proposed scheme (full dataset) 0.986

Table 15.5 Equal error rates for frame level anomaly detection on PED1 and PED2
datasets

SF [21] MPPCA [16] Adam et al. [1] MDT [20] Proposed
Approach (%) (%) (%) (%) method (%)

PED1 31 40 38 25 21
PED2 42 30 42 25 14
Average 37 35 40 25 17

Table 15.6 Anomaly localization: detection rate at the EER

SF [21] MPPCA [16] Adam et al. [1] MDT [20] Proposed
Method (%) (%) (%) (%) method (%)

Localization 21 18 24 45 52

Table 15.7 Performances
on the Mall dataset Dataset Methods RD FA

Mall Cam 1 Adam et al. [1] 95% (19/20) 1
Proposed method 100% (20/20) 2

Mall Cam 2 Adam et al. [1] 100% (17/17) 6
Proposed method 100% (17/17) 4

Mall Cam 3 Adam et al. [1] 95% (20/21) 4
Proposed method 100% (21/21) 3

to capture the optimized interaction force according to the underlying optical
flow. The main advantage of the proposed scheme is that the whole anomaly
detection/localization process is carried out without any learning phase. This further
justifies the applicability of our proposed scheme for real world applications.
Finally, empirical results have also indicated that our method is robust and highly
performing in detecting abnormal activities on very different types of crowded
scenes.

Acknowledgements This article summarizes and incorporates two earlier publications concern-
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