
Chapter 13
Inferring Leadership from Group Dynamics
Using Markov Chain Monte Carlo Methods

Avishy Y. Carmi, Lyudmila Mihaylova, François Septier, Sze Kim Pang,
Pini Gurfil, and Simon J. Godsill

Abstract This chapter presents a novel framework for identifying and tracking
dominant agents in groups. The proposed approach relies on a causality detection
scheme that is capable of ranking agents with respect to their contribution in rec-
ognizing the system’s collective behavior based exclusively on the agents’ observed
trajectories. Further, the reasoning paradigm is made robust to multiple emissions
and clutter by employing a class of recently introduced Markov chain Monte
Carlo-based group tracking methods. Examples are provided that demonstrate the
strong potential of the proposed scheme in identifying actual leaders in swarms of
interacting agents and moving crowds.
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13.1 Introduction

Tracking interacting objects moving in a coordinated fashion and making inference
about the patterns of their behavior has been subject of an increased interest in
the last decade. Such problems occur in many areas, especially video surveillance,
cell tracking in biomedicine, pollutant clouds monitoring and people rescuing. The
common pattern of the whole group is of main interest, not the individual trajectories
on their own. In most of the multi-object tracking methods, as opposed to groups
tracking methods, tracking of individual objects is the common approach. This is
an especially challenging problem when the groups are composed of hundreds or
thousands elements and the inference needs to be done quickly, in real time, based
on heterogeneous multi-sensor data.

Groups can be considered as structured objects, a term which reflects the
interrelationships between their components. These endogenous forces give rise
to group hierarchies and are instrumental in producing emergent phenomena.
Fortunately, these are exactly the factors essential for maintaining coordination
within and between groups, a premise which to some extent allows us to treat them
as united entities in a high level tracking paradigm. Any knowledge of existence of
such interrelations facilitates sophisticated agent-based behavioral modeling which,
in practice, comprises of a set of local interaction rules or mutually interacting
processes (e.g., Boids system [31], causality models [17, 30]) – an approach
which by itself provides insightful justifications of characteristic behaviors in the
fundamental subsystem level and likewise of group hierarchies and emergent social
patterns (see [30]).

13.1.1 Reasoning About Behavioral Traits

Being the underlying driving mechanism for evoking emergent phenomena, hier-
archies and principal behavior patterns, the ingrained interactions between agents
are possibly the most pivotal factors that should be scrutinized in high level scene
understanding. Such interrelations can take the form of a causal chain in which
an agent’s decisions and behavior are affected by its neighbors and likewise have
either direct or indirect influence on other agents. The ability to fully represent
these interrelations based exclusively on passive observations such as velocity and
position, lays the ground for the development of sophisticated reasoning schemes
that can potentially be used in applications such as activity detection, intentionality
prediction, and artificial awareness.

In this work we demonstrate this concept by developing a causality reasoning
framework for ranking agents with respect to their cumulative contribution in
shaping the collective behavior of the system. In particular, our framework is able to
distinguish leaders and followers based exclusively on their observed trajectories.
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13.1.2 Novelties and Contributions

The contribution of this work is twofold. Firstly, a novel causality reasoning scheme
is derived for ranking agents with respect to their decision-making capabilities
(dominance) as substantiated by the observed emergent behavior. Dominant agents
in that sense are considered to have a prominent influence on the collective behavior
and are experimentally shown to coincide with actual leaders in groups. Secondly,
the causality scheme is consolidated with a recently introduced Markov chain
Monte Carlo (MCMC)-based particle method [9, 28] for tracking agents and group
hierarchies in potentially cluttered environments.

The subsequent Sects. 13.1.3–13.2 provide an overview of existing group track-
ing schemes with an emphasis on the underlying MCMC-based particle methods.

The remaining part of this chapter is organized in the following way. Section 13.3
develops the causality-driven agent ranking approach. Section 13.4 demonstrates the
performance of the causality identification scheme using a few illustrative examples.
Finally, concluding remarks and some open issues are discussed in Sect. 13.5.

13.1.3 Multiple Group Tracking

Over the past decade various methods have been developed for group track-
ing. These can be divided into two broad classes, depending on the underlying
complexities: (1) methods for a relatively small number of groups, with a small
number of group components [15, 24, 28], and (2) methods for groups comprised
of hundreds or thousands of objects (normally referred to as cluster/crowd tracking
techniques) [2, 9]. In the second case the whole group is usually considered as an
extended object (an ellipse or a circle) which center position is estimated, together
with the parameters of the extent.

Different models of groups of objects have been proposed in the literature,
such as particle models for flocks of birds [19], and leader-follower models [26].
However, estimating the dynamic evolution of the group structure has not been
widely studied in the literature, although there are similarities with methods used
in evolving network models [1, 11].

Typically tracking many objects (hundreds or thousands) can be solved by
clustering techniques or other methods where the aggregated motion is estimated, as
it is in the case of vehicular traffic flow prediction/estimation, with fluid dynamics
type of models combined with particle filtering techniques [27]. For thousands
of objects forming a group, the only possible solution is to consider them as an
extended object. The extended object tracking problem reduces then to joint state
and parameter estimation.

Estimation of parameters in general nonlinear non-Gaussian state-space models
is a long-standing problem. Since particle filters (PFs) are known with the challenges
they face for parameter estimation and for joint state and parameter estimation [4],
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most solutions in the literature split the problems into two parts: (i) state estimation,
followed by (ii) parameter estimation (see e.g., [3]). In [3] an extended object
tracking problem is solved when the static parameters are estimated using Monte
Carlo methods (data augmentation and particle filtering), whereas the states are
estimated with a Mixture Kalman filter or with an interacting multiple model
filter.

13.1.3.1 PFs for Tracking in Variable State Dimensions

An extension of the PF technique to a varying number of objects is introduced
in [28, 34] and [24]. In [34] a PF implementation of the probability hypothesis
density (PHD) filter is derived. This algorithm maintains a representation of
the filtering belief mass function using random set realizations (i.e., particles
of varying dimensions). The samples are propagated and updated based on a
Bayesian recursion consisting of set integrals. Both works of [28] and [24] develop
a MCMC PF scheme for tracking varying numbers of interacting objects. The
MCMC approach outperforms the conventional PF due to its efficient sampling
mechanism. Nevertheless, in its traditional non-sequential form it is inadequate for
sequential estimation. The techniques used by Pang et al. [28] and Khan et al. [24]
amend the MCMC for sequential filtering (see also [5]). The work in [24] copes
with inconsistencies in state dimension by utilizing the reversible jump MCMC
method introduced in [18]. In [28], on the other hand the computation of the
marginal filtering distribution is avoided as in [5]. The algorithm operates on a fixed
dimension state space through indicator variables for labeling of active object states
(the two approaches are essentially equivalent).

13.2 Models and Algorithms for Group Tracking

This section briefly reviews the fundamental concepts underlying the MCMC-based
group tracking approaches in [28] and [9].

13.2.1 Virtual Leader Model

The idea of group modeling is to adopt a behavioral model in which each member
of a group interacts with the other members of the group, typically making its
velocity and position more similar to that of others in the same group. In [28], this
idea has been conveniently formulated in continuous time through a multivariate
stochastic differential equation (SDE) and then derived in discrete time without
approximation errors, owing to the assumed linear and Gaussian form of the model.
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Fig. 13.1 Group model with virtual leader – illustration of the restoring forces (a) and of a single
realization showing a group of four objects that splits into two groups of two objects (b)

In particular, two different models have been proposed. In the first, the basic group
model, the group parameter is modeled as a deterministic function of the objects.
In the second, the group model with a virtual leader, an additional state variable is
introduced in order to model the bulk or group parameter. This second approach is
closer in spirit to the bulk velocity model and virtual leader-follower model [26].
Such model provides a more flexible behavior since the virtual leader is no longer a
deterministic function of the individual object states. Figure 13.1 gives a graphical
illustration of the restoring forces towards the virtual leader for a group of five
objects.

The spatio-temporal structure for the ith object in a group, as defined in [28], is
given by:

d�̇x
t,i =

{−α[μx
t,i − vx

t ]− γ1μ̇x
t,i −β [μ̇x

t,i − v̇x
t ]+ ri

}
dt +σxdW x

t,i (13.1)

dv̇x
t = −γ2v̇x

t dt +σgdGx
t (13.2)

Here μx
t,i is the Cartesian position in the X direction of the ith object in the group

at time t, with μ̇x
t,i the corresponding velocity. vx

t and v̇x
t represent respectively the

Cartesian position and the velocity both in the X direction of the unobserved virtual
leader of the group. W x

t,i and Gx
t are two independent standard Brownian motions.

W x
t,i is assumed to be independently generated for each object i in the group, whereas

Gx
t is a noise component common to all members of a group. The parameters α and

β are positive, and reflect the strength of the pull towards the group bulk. The “mean
reversion” terms γ1μ̇x

t,i and γ2v̇x
t simply prevent the velocities of the object and the

virtual leader drifting up to very large values with time. Finally, in order to reduce
or eliminate behavior in which objects become colocated or collide spatially, which
are clearly infeasible or highly unlikely in practice, an additional repulsive force ri

is introduced in (13.1) when objects become too close.
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13.2.2 Modeling Groups of Extended Objects

In practice, objects may produce more than a single emission, and in some cases
they may indeed consist of many individual entities moving in a coordinated fashion
(i.e., clusters). Such scenarios normally involve additional extent parameters that
embody the potentially dynamic physical boundary of an object. In this respect,
the fairly simple idea adopted in [9] represents a dynamically evolving group
of extended objects, which are otherwise referred to as clusters, by means of a
time-varying Gaussian mixture model (i.e., each mixture component corresponds
to an individual object). In what follows, we briefly review the essentials of this
approach.

Assume that at time k there are lk clusters, or targets at unknown locations.
Each cluster may produce more than one observation yielding the measurement
set realization zk = {yk(i)}mk

i=1, where typically mk >> lk. At this point we assume
that the observation concentrations (clusters) can be adequately represented by a
parametric statistical model.

Letting z0:k = {z0, . . . ,zk} be the measurement history up to time tk, the cluster
tracking problem may be defined as follows. We are concerned with estimating
the posterior distribution of the random set of unknown parameters, i.e. p(xk |
z0:k), from which point estimates for xk and posterior confidence intervals can be
extracted.

For reasons of convenience we consider an equivalent formulation of the
posterior that is based on existence variables. Thus, following the approach adopted
in [9] the random set xk is replaced by a fixed dimension vector coupled to a set
of indicator variables ek = {e j

k}n
j=1 showing the activity status of elements (i.e.,

e j
k = 1, j ∈ [1,n] indicates the existence of the jth element where n stands for

the total number of elements). To avoid possible confusion, in what follows we
maintain the same notation for the descriptive parameter set xk which is now of
fixed dimension.

In [9], each cluster is modeled via a Gaussian pdf. Following this only the
first two moments, namely the mean and covariance, need to be specified for
each cluster (under these restrictions, the cluster tracking problem is equivalent to
that of tracking an evolving Gaussian mixture model with a variable number of
components). It is worth mentioning, that the approach itself does not rely on the
Gaussian assumption and other parameterized density functions could equally be
adopted in this framework. Thus,

x j
k = {�

j
k, μ̇

j
k,Σ

j
k ,w

j
k,ρ

j
k}, xk = {x j

k}n
j=1, (13.3)

where μ j
k, μ̇ j

k, Σ j
k and w j

k denote the jth cluster’s mean, velocity, covariance and
associated unnormalized mixture weight at time k, respectively. The additional
parameter ρ j

k denotes the local turning radius of the jth cluster’s mean at time k.
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13.2.3 Sequential Inference Using MCMC-Based PF

The group tracking problems discussed above can be efficiently solved via the
MCMC-based particle method initially proposed for solution of group tracking
problems in [28]. This method aims at sequentially approximating the following
joint posterior distribution

p(xk,xk−1|z0:k) ∝ p(zk|xk)p(xk|xk−1)p(xk−1|z0:k−1) (13.4)

where the state vector xk comprises of the objects’ instantaneous position, velocity
and extent parameters at time tk. In what follows we would refer to the (discrete)
time tk as simply k.

Since the closed form expression of the distribution p(xk−1|z0:k−1) is generally
unknown, the proposed scheme approximates it by using a set of unweighted
particles

p(xk−1|z0:k−1)≈ 1
N

N

∑
j=1

δ (xk−1 −x( j)
k−1) (13.5)

where N is the number of particles, δ (·) is the Dirac delta, and ( j) is the
particle index. Then, by plugging this particle approximation into (13.4), an
appropriate MCMC scheme can be used to draw from the joint posterior distribution
p(xk,xk−1|z0:k). The converged MCMC outputs are then extracted to give an
empirical approximation of the posterior distribution of interest at time k, thus
seeding the next step of the filtering at time k+1.

At the mth MCMC iteration, the following procedure is performed to obtain
samples from p(xk,xk−1|z0:k):

1. Make a joint draw for {xk,xk−1} using a Metropolis Hastings step,
2. Update successively some elements in xk by using a series of Metropolis

Hastings-within-Gibbs.

13.2.3.1 Metropolis Hastings Step for the Cluster Tracking Problem

The Metropolis Hastings (MH) algorithm generates samples from an aperiodic and
irreducible Markov chain with a predetermined (possibly unnormalized) stationary
distribution. This is a constructive method which specifies the Markov transition
kernel by means of acceptance probabilities based on the preceding time outcome.
As part of this, a proposal density is used for drawing new samples. In our case,
setting the stationary density as the joint filtering pdf of the object states xk,xk−1

and the corresponding indicator variables ek,ek−1, i.e., p(xk,ek,xk−1,ek−1 | z0:k)
(of which the marginal is the desired filtering pdf), a new set of samples from
this distribution can be obtained after the MH burn-in period. This procedure is
described next.
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Algorithm 3 MCMC particle filtering algorithm

1. Given previous time samples {x(i)k−1,e
(i)
k−1}N

i=1 perform the following steps
2. for i = 1, . . . ,N +NBurn−in

3. for j = 1, . . . ,n
4. Cluster evolution: Simulate

(μ̇ j,(i)
k−1 ,μ

j,(i)
k−1 ,Σ

j,(i)
k−1 ,w

j,(i)
k−1 ,ρ

j,(i)
k−1 )−→ (μ̇ j,(i)

k ,μ j,(i)
k ,Σ j,(i)

k ,w j,(i)
k ,ρ j,(i)

k )

5. end for
6. Perform MCMC move (Algorithm 4).

7. Draw a new set of indicators e j,(i)
k , j = 1, . . . ,n for the accepted move.

8. Perform Gibbs refinement (Algorithm 5).
9. end for

First, we simulate a sample from the joint propagated pdf p(xk,ek,xk−1,ek−1 |
z0:k−1) by drawing

(x′k,e
′
k)∼ p(xk,ek | x′k−1,e

′
k−1) (13.6)

where (x′k−1,e
′
k−1) is uniformly drawn from the empirical approximation

p̂(xk−1,ek−1 | z0:k−1) = N−1
N

∑
i=1

δ (x(i)k−1 −xk−1)δ (e
(i)
k−1 − ek−1) (13.7)

This sample is then accepted or rejected using the following Metropolis rule.

Let (x(i)k ,e(i)k ,x(i)k−1,e
(i)
k−1) be a sample from the realized chain of which the

stationary distribution is the joint filtering pdf. Then the MH algorithm accepts
the new candidate (x′k,e

′
k,x

′
k−1,e

′
k−1) as the next realization from the chain with

probability

γ = min

{

1,
p(zk | x′k,e

′
k,mk)

p(zk | x(i)k ,e(i)k ,mk)

}

(13.8)

where p(zk | x′k,e
′
k,mk) is the likelihood function. The converged output of this

scheme simulates the joint density p(xk,ek,xk−1,ek−1 | z0:k) of which the marginal
is the desired filtering pdf.

It has already been noted that the above sampling scheme may be inefficient
in exploring the sample space as the underlying proposal density of a well
behaved system (i.e., of which the process noise is of low intensity) introduces
relatively small moves. This drawback is alleviated here by using a secondary Gibbs
refinement stage [9].

A single cycle of the basic MCMC cluster tracking algorithm of [9] is summa-
rized in Algorithms 3, 4, and 5.
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Algorithm 4 MCMC move
1. Compute the MH acceptance probability γ of the new move using (13.8).
2. Draw u ∼U [0,1]
3. if u < γ
4. Accept s(i) = (x(i)k ,e(i)k ,x(i)k−1,e

(i)
k−1) as the next sample of the realized chain.

5. else
6. Retain s(i) = s(i−1).
7. end if

Algorithm 5 Particles refinement (Metropolis within Gibbs)
1. for j = 1, . . . ,n

2. if e j,(i)
k = 1

3. for l = 1, . . . ,NMH Steps

4. Propose a move μ̄ j
k.

5. Compute the MH acceptance probability γ̄ of the new move.
6. Draw u ∼U [0,1]
7. if u < γ̄
8. Accept the new move by setting μ j,(i)

k = μ̄ j
k.

9. else
10. Retain previous μ j,(i)

k .
11. end if
12. end for
13. end if
14. end for

13.2.3.2 Multiple Chain and Evolutionary MCMC

The theory of multiple chain MCMC grasps that a mixing mechanism for syn-
thesizing samples across chain realizations is necessary for improving robustness
to the well known practical problem of quasi-ergodicity otherwise known as poor
mixing. Existing multiple chain approaches, such as parallel tempering [13, 14],
evolving population particle filters [6–8,21,22,29] and population MCMC [23,25],
utilize exchange mechanisms to expedite convergence. The evolutionary MCMC
approach, on the other hand, incorporates an additional structure for generating
possibly improved candidates based on convergent chain realizations. This method
has been proved successful in high dimensional settings. An evolutionary extension
of the basic MCMC filtering scheme is provided in the Appendix part of this work.

13.3 Causality-Driven Agent Ranking

The so-called probabilistic approach to causality, which has reached maturity over
the past two decades (see for example Pearl [30], Geffner [12], and Shoam [32]
for an extensive overview), establishes a convenient framework for reasoning and
inference of causal relations in complex structural models.
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Fig. 13.2 From left to right: depiction of the causal hierarchies (based on out degrees) (X ,Y,Z),
(Y,X ,Z), and (Z,Y,X). The most influential agents in the causal diagrams from left to right are X ,
Y and Z, respectively

Many notions in probabilistic causality rely extensively on structural models
and in particular on causal Bayesian networks which are normally referred to as
simply causal networks (CN’s). A CN is a directed acyclic graph compatible with a
probability distribution that admits a Markovian factorization and certain structural
restrictions [30].

13.3.1 Causal Hierarchies

In this work the term causal hierarchies refers to ranking of agents with respect to
their cumulative effect on the actions of the remaining constituents in the system.
The word “causal” here reflects the fact that our measure of distinction embodies
the intensity of the causal relations between the agent under inspection and its
counterparts. Adopting the information-theoretic standpoint, in which the links of a
CN are regarded as information channels [10], one could readily deduce that the
total effect of an agent is directly related to the local information flow entailed
by its corresponding in and out degrees. To be more precise, the total effect of an
agent is computed by summing up the associated path coefficients (obtained by any
standard Bayesian network learning approach) of either inward or outward links.
This concept is further illustrated in Fig. 13.2.

13.3.2 Inferring Causal Hierarchies via PCA

To some extent, causal hierarchies can be inferred using the class of principal
component analysis (PCA)-based methods. Probably the most promising one in
the context of our problem is the multi-channel singular spectrum analysis (M-
SSA), which is otherwise known as extended empirical orthogonal function (EEOF)
analysis [16]. The novel approach we suggest has some relations with M-SSA.
The relevant details, however, are beyond the scope of this work. A performance
evaluation of both our method and M-SSA is provided in the numerical study part
in the following sections.
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13.3.3 Structural Dynamic Modeling Approach

Structural equation modeling is commonly used for representing the underlying
links of a CN [30]. In our case, this formulation assumes a rather dynamic form (i.e.,
comprising of multiple time series of the agents’ observed traits such as velocity and
position)

xi
k = ∑

j �=i

p

∑
m=1

α j→i(m)x j
k−m + ε i

k, i = 1, ..,n (13.9)

where {xi
k}∞

k=0 and {ε i
k}∞

k=0 denote the ith random process and a corresponding
white noise driving sequence, respectively. The coefficients {α j→i(m)}p

m=1 quantify
the causal influence of the jth process on the ith process. Notice that the Markovian
model (13.9) has a finite-time horizon of the order p (also referred to as the wake
parameter). In the standard multivariate formulation, the coefficients α j→i(m) are
square matrices of an appropriate dimension. For maintaining a reasonable level
of coherency we assume that these coefficients are scalars irrespectively of the
dimension of xi

k. Nevertheless, our arguments throughout this Section can be readily
extended to the standard multivariate case.

The methodology underlying the so-called Granger causality [17] considers an F-
test of the null hypothesis α j→i(m) = 0, m = 1, . . . , p for determining whether the
jth process G-causes the ith process. The key idea here follows the simple intuitive
wisdom that the more significant these coefficients are, the more likely they are
to reflect a causal influence. In the framework of CNs the causal coefficients are
related to the conditional dependencies within the probabilistic network, which in
turn implies that their values can be learned based on the realizations of the time
series {xi

k}∞
k=0, i = 1, . . . ,n. In what follows, we demonstrate how the knowledge

of these coefficients allows us to infer the fundamental role of individual agents
within the system. Before proceeding, however, we shall define the following key
quantity.

Definition 13.1 (Causation Matrix). The causal influence of the process x j on the
process xi can be quantified by

Ai j = ∑
m

[
α j→i(m)

]2 ≥ 0. (13.10)

In the above definition, Ai j denotes the coefficient relating the two processes
x j and xi so as to suggest an overall matrix structure that would provide a
comprehensive picture of the causal influences among the underlying processes.
The matrix A = [Ai j] ∈R

n×n, termed the causation matrix, essentially quantifies the
intensity of all possible causal influences within the system (note that according to
the definition of a CN, the diagonal entries in A vanish). It can be easily recognized
that a single row in this matrix exclusively represents the causal interactions
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affecting each individual process. Similarly, a specific column in A is comprised
of the causal influences of a single corresponding process on the entire system. This
premise motivates us to introduce the notion of total causal influence.

Definition 13.2 (Total Causal Influence Measure). The total causal influence
(TCI) Tj of the process x j

k is obtained as the l1-norm of the jth column in the
causation matrix A, that is

Tj =
n

∑
i=1

|Ai j|=
n

∑
i=1

Ai j (13.11)

Having formulated the above concepts we are now ready to elucidate the primary
contributions of this work, both of which rely on the TCI measure defined above.

13.3.4 Dominance and Similarity

A rather intuitive, but nonetheless striking, observation about the TCI is that it
essentially reflects the dominance of each individual process in producing the
underlying emergent behavior. This allows us to decompose any complex act into
its prominent behavioral building blocks (processes) using a hierarchical ordering
of the form

Least dominant Tj1 ≤ Tj2 ≤ . . .≤ Tjn Most dominant (13.12)

Equation (13.12) is given an interesting interpretation in the application part of
this work, where the underlying processes {x j

k}n
j=1 correspond to the motion of

individual agents within a group. In the context of this example, the dominance of
an agent is directly related to its leadership capabilities. By using the TCI measure
it is therefore possible to distinguish between leaders and followers.

Another interesting implication of the TCI is exemplified in the following
argument. Consider the two extreme processes in (13.12), one of which is the most
dominant, x jn

k , while the other is the least dominant, x j1
k . Now, suppose we are given

a new process xi
k, i �= j1, jn and are asked to assess its dominance based exclusively

on the two extremals, with respect to the entire system. Then, a common intuition
would suggest to categorize xi

k as a dominant process in the system whenever it

resembles x jn
k more than x j1

k in the sense of |Tjn − Ti| < |Tj1 − Ti| and vice versa.
This idea is summarized below.

Definition 13.3 (Causal Similarity). A process x j
k is said to resemble xi

k more than
xl

k if and only if |Tj −Ti|< |Tj −Tl |.
In the context of the previously–mentioned example, we expect that dominant agents
with high leadership capabilities would possess similar TCIs that would distinguish
them from the remaining agents, the followers.
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13.3.5 Bayesian MCMC Estimation of α j→i

In typical applications the coefficients α j→i(m), m = 1, . . . , p in (13.9) may be
unknown. Providing that the realizations of the underlying processes are available
it is fairly simple to estimate these coefficients by treating them as regressors.
Such an approach by no means guarantees an adequate recovery of the underlying
causal structure (see the discussion about the identifiability of path coefficients and
a related assertion concerning non-parametric functional modeling in [30] pp. 156–
157, both have a clear connotation to the “fundamental problem of causal inference”
[20]). Nevertheless, it provides a computationally efficient framework for making
inference in systems with exceptionally large number of components. This premise
is evident by noting from (13.9) that while fixing i the coefficients α j→i(m), ∀ j �= i,
m = 1, . . . , p are statistically independent of α j→l(m), ∀l �= i.

In a Bayesian framework we confine the latent causal structure by imposing a
prior on the coefficients α j→i(m). Let pi

α and p j→i
α be the priors of {α j→i(m),∀ j �=

i}, and α j→i(m), respectively. Let also pi
ε be some prescribed (not necessarily

Gaussian) probability density of the white noise in (13.9). Then,

p({α j→i(m),∀ j �= i} | x1:n
0:k) ∝

pi
α

k

∏
t=p

p(xi
t | {α j→i(m),x j

t−p:t−1,∀ j �= i})

= pi
α

k

∏
t=p

pi
ε(x

i
t −∑

j �=i

p

∑
m=1

α j→i(m)x j
t−m), i = 1, . . . ,n (13.13)

where x1:n
0:k = {x1

0, . . . ,x
n
0, . . . ,x

1
k , . . . ,x

n
k}, and x j

t−p:t−1 = {x j
t−p, . . . ,x

j
t−1}. A viable

estimation scheme for α j→i(m) which works well in most generalized settings is a
Metropolis-within-Gibbs sampler that operates either sequentially or concurrently
on the conditionals

p(α j→i(m) | x1:n
0:k ,{α l→i,∀l �= j, i}) ∝

p j→i
α

k

∏
t=p

p(xi
t | {α l→i(m),xl

t−p:t−1,∀l �= i}) (13.14)

The obtained estimates at time k are then taken as the average of the converged chain
(i.e., subsequent to the end of some prescribed burn-in period).

13.3.6 Causal Reasoning in Cluttered Environments

In many practical applications the constituent underlying traits, which are repre-
sented here by the processes {x j

k}n
j=1, may not be perfectly known (in the context
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of our work these could be the object position and velocity, μ j
k, μ̇ j

k). Hence instead
of the actual traits one would be forced to use approximations that might not be
consistent estimates of the original quantities (e.g., μ̂ j

k, ˆ̇μ j
k). As a consequence,

the previously suggested structure might cease being an adequate representation
of the latent causal mechanism. A plausible approach for alleviating this problem is
to introduce a compensated causal structure that takes into account the exogenous
disturbances induced by the possibly inconsistent estimates. Such a model can be
readily formulated as a modified version of (13.9), that is

μ̂ i
k = ∑

j �=i

p

∑
m=1

α j→i(m)μ̂ j
k−m + ε i

k +ζ i
k, i = 1, ..,n, (13.15)

where the additional factor ζ i
k denotes an exogenous bias. Hence, one can use

(13.15) to predict the effects of interventions in ζ i
k directly from passive observa-

tions (which are taken as an output of a tracking algorithm, e.g., μ̂ j
k or ˆ̇μ j

k) without
adjusting for confounding factors. See [30] (p. 166) for further elaborations on the
subject.

13.4 Illustrative Examples

We demonstrate the performance of our suggested reasoning methodology and some
of the previously mentioned concepts using both synthetic and realistic examples.
All the scenarios considered here involve a group of dynamic agents, some of which
are leaders that behave independently of all others. The leaders themselves may
exhibit a highly nonlinear and non-predictive motion pattern which in turn affects
the group’s emergent behavior. We use a standard CN (13.9) with a predetermined
time horizon p for disambiguating leaders from followers based exclusively on
their instantaneous TCIs. In all cases the processes xi

k, i = 1, . . . ,n are taken as
either the increment μ̇ i

k or position μ i
k of each individual agent in the group. In

addition, the unified tracking and reasoning paradigm is demonstrated by replacing
the actual position and increment with the corresponding outputs of the MCMC
cluster tracking algorithm, ˆ̇μ i

k and μ̂ i
k.

The performance of the causality inference scheme is directly related to its
ability to classify leaders based on their TCI values. As leaders are, by definition,
more dominant than followers in some measure space, essentially shaping the
overall group behavior, we expect that their TCI values would reflect this fact.
Furthermore, the hierarchy (13.12) should allow us to disambiguate them from the
remaining agents according to the notion of causal similarity which was introduced
in Sect. 13.3.4. Following this argument we define a rather distinctive performance
measure which allows us to assess the aforementioned qualities.

Let G be a set containing the leaders indices, i.e.,

G = { j | x j
k is a leader’s instantaneous position or velocity}.
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Let also v be a vector containing the agents’ ordered indices according to the
instantaneous hierarchy at time k

Tj1 ≤ ·· · ≤ Tjn , (13.16)

i.e., v = [ jn, . . . , j1]T . Having stated this we can now define the following perfor-
mance index

e = max{i ∈ [1,n] | vi ∈ G} (13.17)

The above quantity indicates the worst TCI ranking of a leader. As an example,
consider a case with, say, five leaders. Then the best performance index we could
expect would be five, implying that all leaders have been identified and were
properly ranked according to their TCIs. If the performance index yields a value
greater than 5, say 10, it implies that all leaders are ranked among the top 10 agents
according to their TCIs. The performance index cannot go below the total number
of leaders and cannot exceed the total number of agents.

13.4.1 Swarming of Multiple Interacting Agents (Boids)

Our first example pertains to identification of leaders and followers in a dynamical
system of multiple interacting agents, collectively performing in a manner usually
referred to as swarming or flocking.

In the current example, Reynolds-inspired flocking [31] is used to create a
complex motion pattern of multiple agents. Among these agents, there are leaders,
who independently determine their own position and velocity, and followers, who
interact among themselves and follow the leader agents.

The inference scheme performance over 100 Monte Carlo runs, in which the
agents initial state and velocity were randomly picked, is provided in Fig. 13.3. The
synthetic scenario considered consists of 30 agents, 4 of which are actual leaders.
The performance index cumulative distribution function (CDF) for this scenario,
which is illustrated via the 50, 70 and 90 percentile lines, is shown over the entire
time interval in the left panel in this figure. The percentiles indicate how many
runs out of 100 yielded a performance index below a certain value. Thus, 50 %
of the runs yielded a performance index below the 50 percentile, 70 % of the runs
attained values below the 70 percentile, and so on. Following this, it can be readily
recognized that from around k = 150 the inference scheme is able to accurately
identify the actual leaders in 50 % of the runs. A further examination of this figure
reveals that the 4 actual leaders are ranked among the top 6 from around k = 180 in
90 % of the runs.

A comparison of leaders ranking capabilities of the proposed approach with
that of the M-SSA method is provided in the right panel in Fig. 13.3. The
instantaneous CDFs of both techniques are shown when using either position or
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Fig. 13.3 Identification performance over time (abscissa) of the causality scheme (left) and the
ranking CDF at time t = 220 (right) of both the causality scheme and the M-SSA method (using
either velocity or position data) based on 100 Monte Carlo runs. (a) Causal ranking. (b) Causal
ranking CDF

velocity time series data. This figure clearly demonstrates the superiority of the
proposed approach with respect to the M-SSA.

13.4.2 Identifying Extended Leaders in Clutter

In the following example the actual agent tracks are replaced by the output of an
MCMC-based tracking approach that was initially derived in [9, 28] and is briefly
described in Sect. 13.2. The scenario consists of four agents out of which two are
leaders. As before we use the Boids system for simulating the entire system. This
time, however, the produced trajectories are contaminated with clutter and additional
points representing multiple emissions from possibly the same agent (i.e., agents are
assumed to be extended objects). These observations are then used by the MCMC
tracking algorithm of which the output is fed to the causality detection scheme, in a
fashion similar to the one described in Sect. 13.3.6.

The tracking performance of the MCMC algorithm is demonstrated both in
Fig. 13.4 and in the left panel in Fig. 13.5. In Fig. 13.4, the estimated tracks and
the cluttered observations are shown for a typical run. The averaged tracking
performance of the MCMC approach is further illustrated based on 20 Monte Carlo
runs using the Hausdorff distance [9] in Fig. 13.5. From this Figure it can be seen
that the mean tracking errors become smaller than 1 after approximately 50 time
steps in either cases of cluttered and non-cluttered observations.

The averaged leaders ranking performance in this example is illustrated for three
different scenarios in the right panel in Fig. 13.5. Hence, it can be readily recognized
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Fig. 13.5 Tracking performance and causality ranking over time (abscissa) averaged over 20
Monte Carlo runs. (a) Hausdorff distance. (b) Causality ranking

that the two leaders are accurately identified after approximately 10 time steps
when the agent positions are perfectly known. As expected, this performance is
deteriorated in the presence of clutter and multiple emissions, essentially attaining
an averaged ranking metric of nearly 2.5 after 60 time steps.

13.4.3 Identifying Group Leaders from Video Data

Our third, more practical example, deals with the following application. Consider
a group of people, among which there are subgroups of leaders and followers.
The followers coordinate their paths and motion with the leader. Using video
observations only of the group, determine who the group leaders are. To that end,
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Fig. 13.6 Reconstructed instantaneous causal diagrams shown with the corresponding video
frames (upper panel), and causality ranking performance over time (lower panel). (a) Video 1.
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one must first develop a procedure for estimating the trajectories of n people from
a given video sequence. The input to the described procedure is a movie with n
moving people, where n is known. The objective is to track each person along the
frame sequence, and then feed this information into the CN mechanism for inferring
the leaders and followers.

As we are dealing with a rather noiseless and non-cluttered scenario, a simple
k-means clustering was used to recover individual person tracks from SIFT (scale-
invariant feature transform) features. This approach was applied to two different
video sequences in which there were five followers and one leader. Snapshots are
shown in the upper panel in Fig. 13.6. In these videos, the actual leader (designated
by a red shirt) performs a random trajectory, and the followers loosely follow its
motion pattern. The clustering procedure described above is used to estimate the
trajectories of the objects (the trajectories were filtered using a simple moving-
average procedure to reduce the amount of noise contributed by the k-means
clustering method). These trajectories were fed into the causality inference scheme.

The results of this procedure are shown in the bottom panel in Fig. 13.6, which
depicts the causality performance index for two values of the finite-time horizon
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(wake parameter), p. It is clearly seen that from a certain time point the algorithm
identifies the actual leader in both videos irrespective to the value of p.

13.5 Concluding Remarks

A novel causal reasoning framework has been proposed for ranking agents with
respect to their contribution in shaping the collective behavior of the system. The
proposed scheme copes with clutter and multiple emissions from extended agents
by employing a Markov chain Monte Carlo group tracking method. This approach
has been successfully applied for identifying leaders in groups in both synthetic and
realistic scenarios.

Appendix

Evolutionary MCMC Implementation

The basic MH scheme can be used to produce several chain realizations each starting
from a different (random) state. In that case, the entire population of the converged
MH outputs (i.e., subsequent to the burn-in period) approximates the stationary
distribution. Using a population of chains enjoys several benefits compared to a
single-chain scheme. The multiple-chain approach can dramatically improve the
diversity of the produced samples as different chains explore various regions that
may not be reached in a reasonable time when using a single chain realization
[23, 25]. Furthermore, having a population of chains facilitates the implementation
of interaction operators that manipulate information from different realizations for
improving the next generation of samples.

Following the approach of [33], the evolutionary MCMC cluster tracking
algorithm uses genetic operators to generate new samples. The decoding scheme
used here simply transforms the samples into their binary representations.

Let Gl = {x(i)k ,e(i)k ,x(i)k−1,e
(i)
k−1}N

i=1 be the lth realization of the converged chain at
time k. Define by

G := {G1, . . . ,GL} (13.18)

the entire population set consisting of L chain realizations. In order to produce
an improved generation of N samples from the joint filtering pdf, members of the
population G undergo two successive genetic operations: crossover and mutation.
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Chromosomes and Sub-chromosomes

Any genetic manipulation act on a unique data structure known as a chromosome
which usually takes the form of a string. Here, a chromosome refers to a binary

representation of a particle (x(i)k ,e(i)k ). Since every particle consists of several

clusters endowed with their own individual properties, μ j,(i)
k , μ̇ j,(i)

k ,Σ j,(i)
k ,w j,(i)

k and

ρ j,(i)
k , in practice a chromosome consists of several concatenated binary strings each

corresponding to a distinct property of a certain cluster. In this work, we term sub-
chromosomes, the strings pertaining to individual properties. Assuming there are no
more than n clusters for which there are exactly 5 properties yields a chromosome
that is built up of 5n sub-chromosomes. The active sub-chromosomes within a

chromosome are those that belong to active clusters, i.e., clusters for which e j,(i)
k = 1,

j = 1, . . . ,n.

The Crossover Operator

The crossover works by switching genetic material between two parent samples
taken from two different chain realizations for producing an offspring. The two
parents, (xk,ek)1 and (xk,ek)2 are independently drawn from p̂(xk,ek | z0:k), i.e., they
are picked uniformly at random from the population G . The sub-chromosomes A
and B corresponding to the same property in the chosen parents are then manipulated
as follows. For every r ∈ [1,rs], where rs denotes the string length of either A
or B, the bits Ar and Br are swapped with some predetermined probability β .
The resulting offspring sub-chromosomes are then encoded to produce two new
candidates (x′k,e

′
k)1 and (x′k,e

′
k)2. At this point an additional MH step is performed

for deciding whether the new offspring will be a part of the improved population.
This step is crucial for maintaining an adequate approximation of the target
distribution. In order to ensure that the resulting chain is reversible, on acceptance
both new candidates should replace their parents, otherwise both parents should be
retained [33].

Following the above argument, it can be easily verified that the acceptance
probability of both offspring is [33]

min

{
1,

(
1−β

β

)a p̂((x′k,e
′
k)1 | z0:k) p̂((x′k,e

′
k)2 | z0:k)

p̂((xk,ek)1 | z0:k) p̂((xk,ek)2 | z0:k)

}
(13.19)

where a denotes the total number of swapped bits.

The Mutation Operator

The mutation operator flips the rth bit within a given chromosome with probability
βm. Let (xk,ek) be a sample drawn from p̂(xk,ek | z0:k) (i.e., picked uniformly
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Algorithm 6 Evolutionary MCMC cluster tracking
1. Execute Algorithm 3 for L chains in parallel.
2. Subsequent to the end of the burn in period proceed as follows for every chain sample.
3. Interaction: Perform genetic operations to obtain an improved offspring

a. Picking uniformly at random two distinct chain realizations perform crossover between their
latest accepted samples.

b. Compute the acceptance probability of the two offspring using (13.19).
c. Accept the new offspring accordingly or retain both parent samples.
d. Mutate the accepted samples of either chains and compute the associated acceptance

probability (13.20).
e. Accept the mutated sample accordingly.

at random from the population G ). Then, it can be verified that the acceptance
probability of a mutated candidate (x′k,e

′
k) is [33]

min

{
1,

(
1−βm

βm

)a p̂(x′k,e
′
k | z0:k)

p̂(x,ek | z0:k)

}
(13.20)

where a denotes the total number of bits changed.
A single cycle of the evolutionary MCMC filtering scheme is summarized in

Algorithm 6.
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