
Chapter 11
Pedestrian Interaction in Tracking: The Social
Force Model and Global Optimization Methods

Laura Leal-Taixé and Bodo Rosenhahn

Abstract Multiple people tracking consists in detecting the subjects at each
frame and matching these detections to obtain full trajectories. In semi-crowded
environments, pedestrians often occlude each other, making tracking a challenging
task. Tracking methods mostly work with the assumption that each pedestrian moves
independently unaware of the objects or the other pedestrians around it. In the real
world though, it is clear that when walking in a crowd, pedestrians try to avoid
collisions, keep a close distance to a group of friends or avoid static obstacles in the
scene. In this chapter, we present an overview of methods that include pedestrian
interaction in a tracking framework. This interaction can be expressed in two ways:
first, including social and grouping behavior as a physical model within the tracking
system, and second, using a global optimization scheme which takes into account
all trajectories and all frames to solve the data association problem.

11.1 Introduction

Multiple people tracking is a key problem for many computer vision tasks, such as
surveillance, animation or activity recognition. In crowded environments occlusions
and false detections are common, and although there have been substantial advances
in the last years, tracking is still a challenging task. Tracking is often divided in two
steps: detection, finding the objects of interest on every frame, and data association,
matching the detections to form complete trajectories in time. Researchers have
presented improvements on the object detector [9, 13, 34, 36] as well as on the
optimization techniques [18, 23] and even specific algorithms have been developed
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Fig. 11.1 Terms of the social force model. (a) Constant velocity assumption. (b) Avoidance
forces. (c) Group attraction forces

for tracking in crowded scenes [2,32]. Though each object can be tracked separately,
recent works have proven that tracking objects jointly and taking into consideration
their interaction can give much better results in complex scenes. Current research
is mainly focused on two aspects to exploit the interaction between pedestrians: the
use of a global optimization strategy [7, 21, 40] and a social motion model [30, 38].
The focus of this chapter is to give a detailed overview of multiple people trackers
which include either a global optimization method or social behavior information
to improve tracking results in crowded scenarios. Finally, the chapter discusses
an approach to marry both concepts and include the social behaviors in a global
optimization tracking system (Fig. 11.1).

11.1.1 Related Work

Current research is mainly focused on two aspects to exploit the interaction between
pedestrians: the use of a global optimization strategy and a social motion model. In
this section, we discuss both research trends.

Global Optimization: The optimization strategy deals with the data association
problem, which is usually solved on a frame-by-frame basis or one track at a
time. Several methods can be used such as Markov Chain Monte Carlo (MCMC)
[19], multi-level Hungarian [20], inference in Bayesian networks [27] or the
Nash Equilibrium of game theory [39]. In [6] an efficient approximative Dynamic
Programming (DP) scheme is presented, in which trajectories are estimated one
after the other. This means that if a trajectory is formed using a certain detection,
the other trajectories which are computed later will not be able to use that detection
anymore. This obviously does not guarantee a global optimum for all trajectories.
Recent works show that global optimization can be more reliable in crowded scenes
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as it solves the matching problem jointly for all tracks. The multiple object tracking
problem is defined as a linear constrained optimization flow problem and Linear
Programming (LP) is commonly used to find the global optimum. The idea was first
used for people tracking in [16], although this method needs to know a priori the
number of targets to track, which limits its application in real tracking situations.
In [7], the scene is divided into identical cells, each represented by a node in the
constructed graph. Using the information of the Probability Occupancy Map, the
problem is formulated either as a max-flow and solved with Simplex, or as a min-
cost and solved using k-shortest paths, which is a more efficient solution. Both
methods show a far superior performance when compared to the same approach
with DP [6]. The authors of [3] also define the problem as a maximum flow on an
hexagonal grid, but instead of using matching individual detections, they make use
of tracklets. This has the advantage that they can precompute the social forces for
each of these tracklets, nonetheless, the fact that the tracklets are chosen locally,
means the overall matching is not truly global, and if errors occur during the
creation of the tracklets, these cannot be overcome by the global optimization.
In [40] the tracking problem is formulated as a Maximum A-Posteriori (MAP)
problem, which is mapped to a minimum-cost network flow and then efficiently
solved using LP. In this case, each node represents a detection, which means the
graph is much smaller compared to [3, 7]. Finally, [37] propose to combine global
and local methods to match trajectories across cameras and across time, while a
unique global formulation for the multi-view multi-object is presented in [22].

Social Behavior for Tracking: Most tracking systems work with the assumption
that the motion model for each target is independent. This simplifying assumption
is especially problematic in crowded scenes: imagine the chaos if every pedestrian
followed his or her chosen path and completely ignored the other pedestrians in
the scene. In order to avoid collisions and reach the chosen destination at the same
time, a pedestrian follows a series of social rules or social forces. These have been
defined in what is called the Social Force Model (SFM) [15], which has been used
for abnormal crowd behavior detection [26], crowd simulation [28] and has only
recently been applied to multiple people tracking: in [33], an energy minimization
approach is used to predict the future position of each pedestrian considering all the
terms of the social force model. In [30] and [24], the social forces are included in
the motion model of the Kalman or Extended Kalman filter, while the authors in [4]
discuss the type of energy needed to include information about the dynamic model,
repulsion, etc. and how to optimize it using the standard conjugate gradient method.
In [14] a method is presented to detect small groups of people in a crowd, but it is
only recently that grouping behavior has been included in a tracking framework [10,
29,38]. In [29] groups are included in a graphical model which contains cycles and,
therefore, Dual Decomposition [8] is needed to find the solution, which obviously is
computationally much more expensive than using Linear Programming. Moreover,
the results presented in [29] are only for short time windows. On the other hand, the
formulations of [10, 38] are predictive by nature and therefore too local and unable
to deal with trajectory changes (e.g. when people meet and stop to talk).
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Recently, a new approach [21] includes social and grouping models into a
global optimization framework, allowing for a better estimate of the true maximum
a-posteriori probability of the trajectories and therefore further improving tracking
results, especially in crowded scenes.

11.2 Multiple People Tracking

Tracking is commonly divided in two steps: object detection and data association.
First, the objects are detected in each frame of the sequence and second, the
detections are matched to form complete trajectories. In this section we define the
data association problem and describe how to convert it to a minimum-cost network
flow problem, which can be efficiently solved using Linear Programming.

The idea is to build a graph in which the nodes represent the pedestrian
detections. These nodes are fully connected to past and future observations by edges,
which determine the relation between two observations with a cost. Thereby, the
matching problem is equivalent to a minimum-cost network flow problem: finding
the optimal set of trajectories is equivalent to sending flow through the graph so as
to minimize the cost. This can be efficiently computed using the Simplex algorithm
or k-shortest paths [11].

11.2.1 Problem Statement

Let O = {okt} be a set of object detections with ot
k = (pk, t), where pk = (x,y,z) is

the 3D position and t is the time stamp. A trajectory is defined as a list of ordered
object detections Tk = {o1

k ,o
2
k , · · · ,oN

k }, and the goal of multiple object tracking is
to find the set of trajectories T ∗= {Tk} that best explains the detections.

This is equivalent to maximizing the a-posteriori probability of T given the
set of detections O , which is known as maximum posterior or MAP problem.

T ∗= argmax
T

P(T |O) (11.1)

Further assuming that detections are conditionally independent, the objective
function is expressed as:

T ∗= argmax
T

P(O|T )P(T ) = argmax
T

∏
k

P(ok|T )P(T ) (11.2)
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P(ok|T ) is the likelihood of the detection. Optimizing Eq. (11.2) directly is
intractable since the space of T is huge, nonetheless we make the assumption that
the trajectories cannot overlap (i.e., a detection cannot belong to two trajectories) to
obtain:

T ∗= argmax
T

∏
k

P(ok|T ) ∏
Tk∈T

P(Tk) (11.3)

where the trajectories are represented by a Markov chain:

P(T ) = ∏
Tk∈T

Pin(o1
k)P(o

2
k |o1

k) . . .P(o
t
k|ot−1

k ) . . .P(oN
k |oN−1

k )Pout(oN
k ) (11.4)

where Pin(ot
k) is the probability that a trajectory is initiated with detection ot

k,
Pout(ot

k) the probability that the trajectory is terminated at ot
k and P(ot

k|ot−1
k ) is the

probability that ot−1
k is followed by ot

k in the trajectory.

11.2.2 Tracking with Linear Programming

In this section, we explain how to convert the MAP problem into a Linear Program,
which is a particularly interesting since it can be efficiently solved in polynomial
time using any of the available techniques from the optimization community [1].

A linear programming problem consists in minimizing or maximizing a linear
function in the presence of linear constraints, which can be both equalities and
inequalities.

Minimize c1 f1 + c2 f2 + . . .+ cn fn (11.5)

Subject to a11 f1 +a12 f2 + . . .+a1n fn ≥ b1 (11.6)

a21 f1 +a22 f2 + . . .+a2n fn ≥ b2

...
...

...

am1 f1 +am2 f2 + . . .+amn fn ≥ bm

where Eq. (11.5) is the objective function and Eq. (11.6) are the constraints.

(continued)
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(continued)
c1,c2, . . . ,cn denote the known cost coefficients and f1, f2, . . . , fn are the
decision variables to be determined.

To convert our problem into a linear program, we linearize the objective function
by defining a set of flow flags fi, j = {0,1} which indicate if an edge (i, j) is in the
path of a trajectory or not.

In a minimum cost network flow problem, the objective is to find the values of
the variables that minimize the total cost of the flows over the network. Defining
the costs as negative log-likelihoods, and combining Eqs. (11.3) and (11.4), the
following objective function is obtained:

T ∗= argmin
T

∑
Tk∈T

− logP(Tk)−∑
k

logP(ok|T )

= argmin
T

∑
i

Cin,i fin,i +∑
i, j

Ci, j fi, j +∑
i

Ci fi +∑
i

Ci,out fi,out (11.7)

subject to the following constraints:

• Edge capacities: assuming each detection can only correspond to one trajectory,
the edge capacities have an upper bound of ui j ≤ 1 and:

fin,i + fi ≤ 1 fi,out + fi ≤ 1 (11.8)

• Flow conservation at the nodes:

fin,i + fi = ∑
j

fi, j ∑
j

f j,i = fi,out + fi (11.9)

• Exclusion property:

fi, j = {0,1} (11.10)

The condition in Eq. (11.10) requires us to solve an integer program, which is
known to be NP-complete. Nonetheless, we can relax the condition to have the
following linear equation:

0 ≤ fi, j ≤ 1. (11.11)

Now the problem is defined and can be solved as a linear program. If certain
conditions are fulfilled, the solution T ∗ will still be integer, and therefore will also
be the optimal solution to the initial integer program. We discuss the integrality of
the solution in more detail in Sect. 11.4.

To map this formulation into a cost-flow network, we define G = (N,E) to be
a directed network with a cost Ci, j and a capacity ui j associated with every edge
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Fig. 11.2 Example of a graph with the special source s and sink t nodes, six detections which are
represented by two nodes each: the beginning bi and the end ei

(i, j) ∈ E. An example of such a network is shown in Fig. 11.2; it contains two
special nodes, the source s and the sink t; all flow that goes through the graph starts
at the s node and ends at the t node. Thereby, each flow represents a trajectory Tk

and the path that each flow follows indicates which observations belong to each of
the trajectories. Each observation oi is represented with two nodes, the beginning
node bi ∈ N and the end node ei ∈ N (see Fig. 11.2). A detection edge connects bi

and ei.
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Below we detail the three types of edges present in the graphical model and the
cost for each type:

Link Edges: The edges (ei,b j) connect the end nodes ei with the beginning nodes
b j in following frames, with cost Ci, j and flow fi, j, defined as:

fi, j =

{
1, oi and o j belong to Tk and Δ f ≤ Fmax

0, otherwise
(11.12)

where Δ f is the frame number difference between nodes j and i and Fmax is the
maximum allowed frame gap.

The costs of the link edges represent the spatial relation between different
subjects. Assuming that a subject cannot move a lot from one frame to the next,
we define the costs to be a decreasing function of the distance between detections in
successive frames. The time gap between observations is also taken into account
in order to be able to work at any frame rate, therefore velocity measures are
used instead of distances. The velocities are mapped to probabilities with a Gauss
error function as shown in Eq. (11.13), assuming the pedestrians cannot exceed a
maximum velocity Vmax. The effect of parameter Vmax is detailed in Sect. 11.5.1.

E(Vt ,Vmax) =
1
2
+

1
2

erf

(
−Vt +

Vmax
2

Vmax
4

)
(11.13)

As we can see in Fig. 11.3, the advantage of using Eq. (11.13) over a linear
function is that the probability of lower velocities decreases more slowly, while
the probability for higher velocities decreases more rapidly. This is consistent with
the probability distribution of speed learned from training data.

Therefore, the cost of a link edge is defined as:

Ci, j =− log(P(o j|oi))+C(Δ f ) (11.14)

=− logE
( ‖p j−pi)‖

Δ t ,Vmax

)
+C(Δ f )

where C(Δ f ) = − log
(

BΔ f−1
j

)
is the cost depending on the frame difference

between detections.

Detection Edges: The edges (bi,ei) connect the beginning node bi and end node
ei, with cost Ci and flow fi, defined as:

fi =

{
1, oi belongs to Tk

0, otherwise
(11.15)
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Fig. 11.3 (Color online) Blue = normalized histogram of speeds learned from training data. Red
= probability distribution if cost depends linearly on the velocity. Green = probability distribution
if the relation of cost and velocities is expressed by Eq. (11.13). An Vmax = 7m/s is used in the
experiments

If all the costs of the edges are positive, the solution to the minimum-cost
problem is the trivial null flow. Consequently, we represent each observation with
two nodes and a detection edge with negative cost:

Ci = log(1−Pdet(oi))+ log

(
BBmin

‖pBB −pi)‖
)
. (11.16)

The higher the likelihood of a detection Pdet(oi) the more negative the cost of
the detection edge, hence, confident detections are likely to be in the path of the
flow in order to minimize the total cost. If a map of the scene is available, we can
also include this information in the detection cost. If a detection is far away from a
possible entry/exit point, we add an extra negative cost to the detection edge, in order
to favor that observation to be matched. The added cost depends on the distance to
the closest entry/exit point pBB, and is only computed for distances higher than
BBmin = 1.5m. This is a probabilistic simple way of including other information
present in the scene, such as obstacles or attraction points (shops, doors, etc.).

Entrance and Exit Edges: The edges (s,ei) connect the source s with all the end
nodes ei, with cost Cin,i and flow fin,i. Similarly, (bi, t) connects the end node bi with
sink t, with cost Ci,out and flow fi,out. The flows are defined as:

fin,i (or fi,out) =

{
1, Tk starts (or ends) at oi

0, otherwise
(11.17)
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Fig. 11.4 (a) Graph structure as used in [40], which requires the computation of Pin and Pout in
an Expectation-Maximization step during optimization. (b) Graph structure as used in [21] which
does not require the computation of these two parameters; the trajectories are found only with the
information of the link and detection edges

This connection, as shown in Fig. 11.4b, was proposed in [21] so that when a
track starts (or ends) it does not benefit from the negative cost of the detection edge.
Setting Cin = Cout = 0 and taking into account the flow constraints of Eqs. (11.8)
and (11.9), the trajectories are only created with the information of the link edges.

In contrast, the authors in [40] propose to create the opposite edges (s,bi) and
(ei, t), which means tracks entering and leaving the scene go through the detection
node and therefore benefiting from its negative cost (see Fig. 11.4a). If the costs Cin

and Cout are then set to zero, a track will be started at each detection of each frame,
because it will be cheaper to use the entrance and exit edges than the link edges. On
the other hand, if Cin and Cout are very high, it will be hard for the graph to create
any trajectory. Therefore, the choice of these two costs is extremely important. In
[40], the costs are set according to the entrance and exit probabilities Pin and Pout,
which are data dependent terms that need to be calculated during optimization.

11.3 Modeling Social Behavior

If a pedestrian does not encounter any obstacles, the natural path to follow is a
straight line. But what happens when the space gets more and more crowded and
the pedestrian can no longer follow the straight path? Social interaction between
pedestrians is especially important when the environment is crowded. In this section
we consider how to include the social behavior [15], which we divide into the Social
Force Model (SFM) and the Group behavior (GR), into the minimum-cost network
flow problem.
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11.3.1 New MAP and Linear Programming Formulation

The original social force model [15] describes a physical system that predicts
the position of a pedestrian in a continuous way, which has been successfully
used for crowd simulation [28]. Nonetheless, we use the social information within
another paradigm: in our Linear Programming system, we have a set of hypothetical
pedestrian positions (in the form of nodes) and we apply the social forces to find
out the probability of a certain match (i.e. a certain trajectory being followed by a
pedestrian).

When including social and grouping information in the Linear Programming for-
mulation, we can no longer assume that the motion of each subject is independent,
which means we have to deal with a much larger search space of T .

We extend this space by including the following dependencies for each
trajectory Tk:

• Constant velocity assumption: the observation ot
k ∈ Tk depends on past

observations [ot−1
k ,ot−2

k ]
• Grouping behavior: If Tk belongs to a group, the set of members of the

group Tk,GR has an influence on Tk

• Avoidance term: Tk is affected by the set of trajectories Tk,SFM which are
close to Tk at some point in time and do not belong to the same group as Tk

The first and third dependencies are grouped into the SFM term. The sets Tk,SFM

and Tk,GR are disjoint, i.e., for a certain pedestrian k, the set of pedestrians that have
an attractive effect (the group to which pedestrian k belongs to), is different from the
pedestrians that have a repulsive effect on k. Therefore, we can assume that these
two terms are independent and decompose P(T ) as:

P(T ) = ∏
Tk∈T

P(Tk ∩Tk,SFM ∩Tk,GR) (11.18)

= ∏
Tk∈T

P(Tk,SFM|Tk)P(Tk,GR|Tk)P(Tk)

Let us assume that we are analyzing observation ot
k. In Fig. 11.5 we summarize

which observations influence the matching of ot
k. Typical approaches [40] only take

into account distance (DIST) information, that is, the observation in the previous
frame ot−1

k . We introduce the social dependencies (SFM) given by the constant
velocity assumption (green nodes) and the avoidance term (yellow nodes). In this
case, two observations, ot

q and ot
r that do not belong to the same group as ot

k, will be
considered to create a repulsion effect on ot

k. On the other hand, the orange nodes
which depict the grouping term (GR), are two other observations ot

m and ot
n which
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Fig. 11.5 Diagram of the
dependencies for each
observation ot

k

do belong to the same group as ot
k and therefore have an attraction effect on ot

k. Note
that all these dependencies can only be modeled by high order terms, which means
that either we use complex solvers [29] to find a solution in graphs with cycles, or
we keep the linearity of the problem by using an iterative approach as we explain
later on.

The objective function is accordingly updated:

T ∗= argmin
T

∑
Tk∈T

− logP(Tk)− logP(TSFM|Tk) (11.19)

− logP(TGR|Tk)+∑
k

− logP(ok|T )

= argmin
T

∑
i

Cin,i fin,i +∑
i

Ci,out fi,out

+∑
i, j
(Ci, j +CSFM,i, j +CGR,i, j) fi, j +∑

i
Ci fi

11.3.2 Social Force Model

The social force model states that the motion of a pedestrian can be described as
if they were subject to “social forces”. There are three main terms that need to be
considered: the desire of a pedestrian to maintain a certain speed, the desire to keep
a comfortable distance from other pedestrians and the desire to reach a destination.
Since we cannot know a priori the destination of the pedestrian in a real tracking
system, we focus on the first two terms.



11 Pedestrian Interaction in Tracking 279

Constant Velocity Assumption: The pedestrian tries to keep a certain speed and
direction, therefore we assume that in t +Δ t we have the same speed as in t and
predict the pedestrian’s position in t +Δ t accordingly.

p̃t+Δ t
i = pt

i +vt
iΔ t

Avoidance Term: The pedestrian also tries to avoid collisions and keep a comfort-
able distance from other pedestrians. This term is modeled as a repulsion field with
an exponential distance-decay function with value α learned from training data.

at+Δ t
i = ∑

gm �=gi

exp

(
−‖p̃t+Δ t

i − p̃t+Δ t
m ‖

αΔ t

)
(11.20)

To compute the cost of edge (i, j), the constant velocity assumption is used to
predict the position of oi and o j as well as the rest of pedestrians p̃t+Δ t

m , and the
repulsion acceleration each pedestrian has on i is also taken into account. The only
pedestrians that have this repulsion effect on subject i are the ones which do not
belong to the same group as i and ‖p̃t+Δ t

i − p̃t+Δ t
m ‖ ≤ 1m. The different avoidance

terms are combined linearly.
Now the prediction of the pedestrian’s next position is also influenced by the

avoidance term (acceleration) from all pedestrians:

p̃t+Δ t
i = pt

i +(vt
i +at+Δ t

i Δ t)Δ t (11.21)

The distance between prediction and real measurements is used to compute the
cost:

CSFM,i, j =− logE

(
‖p̃t+Δ t

i −pt+Δ t
j ‖

Δ t
,Vmax

)
(11.22)

where the function E is detailed in Eq. (11.13).
In Fig. 11.6 we plot the probability distribution computed using different terms.

Note, this is just for visualization purposes, since we do not compute the probability
for each point on the scene, but only for the positions where the detector has fired.
There are four pedestrians in the scene, the purple one and three green ones walking
in a group. As shown in Fig. 11.6b, if we only use the predicted positions (yellow
heads) given the previous speeds, there is a collision between the purple pedestrian
and the green marked with a 1 collide. The avoidance term shifts the probability
mode to a more plausible position.

11.3.3 Group Model

The social behavior [15] also includes an attraction force which occurs when a
pedestrian is attracted to a friend, shop, etc. In this section, we show how to model
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Fig. 11.6 (Color online) Three green pedestrians walk in a group, the predicted positions in the
next frame are marked by yellow heads. The purple pedestrian’s linearly predicted position (yellow
head) clearly interferes with the trajectory of the group. Representation of the probability (blue
is 0 red is 1) distribution for the purple’s next position using: (a) only distances, (b) only SFM
(constant velocity assumption and avoidance term), (c) only GR (considering the purple pedestrian
belongs to the group), (d) distances+SFM and (e) distances+SFM+GR

the attraction between members of a group. Before modeling group behavior we
need to determine which tracks form each group and at which frame the group
begins and ends (to deal with splitting and formation of groups). The idea is that if
two pedestrians are close to each other over a reasonable period of time, they are
likely to belong to the same group. From the training sequence in [30], the distance
and speed probability distributions of the members of a group Pg vs. individual
pedestrians Pi is learned. If m and n are two trajectories which appear on the scene
at t = [0,N], we compute the flag Gm,n that indicates if m and n belong to the same
group.

Gm,n =

⎧⎨
⎩1,

N
∑

t=0
Pg(m,n)>

N
∑

t=0
Pi(m,n)

0, otherwise
(11.23)

For every observation oi, we define a group label gi which indicates to which
group the observation belongs to, if any. If several pedestrians form a group, they
tend to keep a similar speed, therefore, if i belongs to a group, we can use the mean
speed of all the other members of the group to predict the next position for i:

p̃t+Δ t
i = pt

i + ∑
gm=gi

vt
mΔ t (11.24)

The distance between this predicted position and the real measurements is used
in (11.13) to obtain the cost for the grouping term.

An example is shown in Fig. 11.6c, where we can see that the maximum
probability provided by the group term keeps the group configuration. In Fig. 11.6d
we show the combined probability of the distance and SFM information, which
narrows the space of probable positions. Finally, Fig. 11.6e represents the combined
probability of DIST, SFM and GR. As we can see, the space of possible locations
for the purple pedestrian is considerably reduced as we add the social and grouping
behaviors, which means we have less ambiguities for data association. This is
specially useful to decrease identity switches as we present in Sect. 11.5.
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11.4 Optimization

To compute the SFM and grouping costs, we need to have information about
the velocities of the pedestrians, which can only be obtained if we already have
the trajectories. This chicken-and-egg problem is solved iteratively as shown in
Algorithm 3; on the first iteration, the trajectories are estimated only with the
information defined in Sect. 11.2.2, for the rest of iterations, the SFM and GR is also
used. The algorithm stops when the trajectories do not change or when a maximum
number of iterations Mi is reached.

Algorithm 1 Iterative optimization
while Ti �= Ti−1 and i ≤ Mi do

if i == 1 then

1.1. Create the graph using only DIST information

else

1.2. Create the graph using DIST, SFM and GR information

end if

2. Solve the graph to find Ti

3. Compute velocities and groups given Ti

end while

11.4.1 Linear Programming Solvers

The minimum cost solution is found using the Simplex algorithm [11], with
the implementation given in [25]. Though Simplex has an exponential worst-
case complexity, most sequences can be tracked in just a few seconds; this is
because each node represents one detection, and therefore the dimension of the
graph is quite small. For larger graphs [7] or more crowded environments, we
can use the k-shortest paths solver [7, 31] which has a worst case complexity of
O(k(m+ n · log(n))). For more details on network flows and Simplex we refer the
reader to [1], and to [35] for more information on the k-shortest path algorithm.

11.4.2 Integrality of the Solution

When defining the program to be solved, we saw that Eq. (11.10) defined an
integer program, which is known to be NP-complete. The condition is relaxed into
Eq. (11.11) in order to use efficient Linear Programming solvers to find the optimum
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solution to our problem. If the solution to the relaxed version of the program is
integer, then we know it is an optimal solution of the original problem [1]. The
question is, can we guarantee that the solution will be always integer?

Let us assume the conditions of the Linear Program are expressed as: Ax = b. If
all entries of A and b are integer, as it is our case, we can determine that Ax = b has
an integer solution by Cramer’s rule:

Ax = b ⇔ x = A−1b ⇔ ∀i : xi =
det(Ai)

det(A)
(11.25)

where Ai is equal to A except on the i-th column where it is equal to b. From here,
we can determine that x will be integer when det(A) is equal to +1 or −1. A matrix
A ∈ Zm×n is totally unimodular if the determinant of all the subsquare matrices of A
is either 0, +1 or −1.

Theorem 11.1. If A is totally unimodular, every vertex solution of Ax ≤ b is integer.

A well-known case of totally unimodular matrices are the node arc incidence
matrices N of a directed network. Therefore, our defined constraint matrix is totally
unimodular, and the solutions we will obtain will always be integer.

11.4.3 Computationally Reduction

To reduce the computational cost, the graph can be pruned using the physical
constraints represented by the edge costs. If any of the costs Ci j, CSFM,i, j or CGR,i, j

is infinite, the two detections i and j are either two far away to belong to the same
trajectory or they do not match according to social and grouping rules, therefore the
edge (i, j) is erased from the graphical model. For long sequences, the video can be
divided into several batches and optimize for each batch. For temporal consistency,
the batches have an overlap of Fmax = 10 frames. The runtime of [21] for a sequence
of 800 frames (114 s), 4,837 detections, batches of 100 frames and 6 iterations is 30 s
on a 3 GHz machine.

11.5 Experimental Results

In this section we show the tracking results of several state-of-the-art methods on
three publicly available datasets and compare them using the CLEAR metrics [17],
which split the measuring scores into accuracy and precision:

• Detection Accuracy (DA): measures how many detections where correctly found
and therefore is based on the count of missed detections mt and false alarms ft
for each frame t.
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DA = 1− ∑
Nf
t=1 mt + ft

∑
Nf
t=1 Nt

G

where Nf is the number of frames of the sequence and Nt
G is the number of

ground truth detections in frame t. A detection is considered to be correct when
it is found within 50 pixels from the ground truth and the bounding boxes of both
ground truth and detection have some overlap.

• Tracking Accuracy (TA): similar to DA but also including the identity switches
it . In this case, the measure does not penalize identity switches as much as a
missing detection or a false alarm as we use a log10 weight.

DA = 1− ∑
Nf
t=1 mt + ft + log10(1+ it)

∑
Nf
t=1 Nt

G

• Detection Precision (DP): precision measurements represent how well the bound-
ing box detections match the ground truth. For this, an overlap measure between
bounding boxes is used:

Ovt =

Nt
mapped

∑
i=1

|Gt
i ∩Dt

i|∣∣Gt
i ∪Dt

i

∣∣
where Nt

mapped is the number of mapped objects in frame t, i.e., the number of
detections that are matched to some ground truth object. Gt

i is the ith ground truth
object of frame t and Dt

i the detected object matched to Gt
i . The DP measure is

then expressed as:

DP =

Nf

∑
t=1

Ovt

Nt
mapped

Nf

• Tracking Precision (TP): measures the spatiotemporal overlap between ground
truth trajectories and detected ones, taking into account also split and merged
trajectories.

T P =

Nt
mapped

∑
i=1

Nf

∑
t=1

|Gt
i∩Dt

i|
|Gt

i∪Dt
i|

Nf

∑
t=1

Nt
mapped
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11.5.1 Analysis of the Effect of the Parameters

All parameters defined in previous sections are learned from training data using one
sequence of the publicly available dataset [30]. In this section we study the effect of
the few parameters needed in [21], and show the method works well for a wide range
of these parameters and therefore no parameter tuning is needed to obtain a good
performance. The analysis is done on two publicly available datasets: a crowded
town center [5] and the well-known PETS2009 dataset [12], to see the different
effects of each parameters on each dataset.

11.5.2 Number of Iterations

The first parameter we analyze is the number of iterations Mi allowed. This deter-
mines how many times the loop between computing social forces and computing
trajectories is performed as explained in Algorithm 1. Looking at the results on the
PETS 2009 dataset in Fig. 11.7b, we can see that after just two iterations the results
remain very stable. Actually, the algorithm reports no changes in the trajectories
after three iterations, and therefore stops even though the maximum number of
iterations allowed is higher. The result with one and two iterations is also not
very different, which means the social and grouping behavior do not significantly
improve the results for this particular dataset. This is due to the fact that this
dataset is very challenging from a social behavior point of view, with subjects often
changing direction and groups forming and splitting frequently. More details and
comments on these results can be found in Sect. 11.5.6.2. On the other hand, we
observe a different effect on the TownCenter dataset, shown in Fig. 11.7a. In this
case, there is a clear improvement when using social and grouping behavior (i.e. the
result improves when we use more than one iteration. We also observe a pattern on
how the Tracking Accuracy of the dataset evolves: there is a cycle of three iterations
for which the accuracy increases and decreases in a similar pattern. This means that
the algorithm is jumping between two solutions and will not converge to neither one
of them. This happens when pedestrians are close together for a long period of time
but are not forming a group, which means that even with social forces, it is hard to
say which paths they will follow.

11.5.3 Maximum Speed

This is the parameter that determines the maximum speed of the pedestrians that we
are observing. In this case, we can see in Fig. 11.7c, d a clear trend in which the
results are very bad when we force the pedestrians to walk more slowly that they
actually do, since we are artificially splitting trajectories. The results converge when
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Fig. 11.7 (Color online) Tracking accuracy (black) and precision (magenta) obtained for the Town
Center dataset (left column) and the PETS 2009 dataset (right column) given varying parameter
values. (a) TownCenter: iterations Mi. (b) PETS2009: iterations Mi. (c) TownCenter: maximum
speed Vmax. (d) PETS2009: maximum speed Vmax. (e) TownCenter: B j Vmax. (f) PETS2009: B j
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the maximum speed allowed is around 3–5 m/s, which is the reported mean speed of
pedestrians in a normal situation. More interestingly, we observe that the results are
kept constant when using higher maximum speed values. This is a positive effect
of the global optimization framework, since we can use a much higher speed limit
and this will still give us good results and will allow us to track a person running
through the scene, a case of panic when people start running, etc.

11.5.4 Cost for the Frame Difference

The last parameter, B j, appears in Eq. (11.15) and represents the penalization term
that we apply when the frame difference between two detections that we want to
match is larger than 1. This term is used in order to give preference to matches that
are close in time. Here we can again see different effects on the two datasets. In
Fig. 11.7e, we see that the results are stable until a value of 0.4. The lower the value,
the higher is the penalization cost for the frame difference, which means it is more
difficult to match those detections which are more than 1 frame apart. When the
value of B j is higher than 0.4, there are more ambiguities in the data association
process because it is easier to match detections which are many frames apart. In
the TownCenter dataset, there is no occluding object in the scene, which means
missing detections are sporadic within a given trajectory. In this scenario, a lower
value for B j is better, since small gaps can be filled and there are less ambiguities.
Nonetheless, we see different results in the PETS 2009 dataset in Fig. 11.7f, since
here there is a clear occluding object in the middle of the scene (see Fig. 11.8) which
occludes the pedestrians for longer periods of time. In this case, a higher value of B j

allows to overcome these large gaps of missing data, and that is why the best value
for this dataset is around 0.6.

11.5.5 Evaluation with Missing Data, Noise and Outliers

We evaluate the impact of every component of the approach in [21] with one of the
sequences of the dataset [30], which contains images from a crowded public place,
with several groups as well as walking and standing pedestrians. The sequence is
11,601 frames long and contains more than 300 trajectories. First of all, the group
detection method is evaluated on the whole sequence with ground truth detections:
61% are correctly detected, 26% are only partially detected, 13% are not found and
an extra 7% groups are detected wrongly. All experiments are performed with 6
iterations, a batch of 100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and B j = 0.3.



11 Pedestrian Interaction in Tracking 287

Fig. 11.8 Four frames of the PETS2009 sequence (separation of nine frames), showing several
occlusions, both created by the obstacle on the scene and between pedestrians. All the occlusions
can be recovered with the proposed method

Using the ground truth (GT) pedestrian positions as the baseline for our
experiments, we perform three types of tests, missing data, outliers and noise, and
compare the results obtained with:

• DIST: proposed network model with distances
• SFM: adding the Social Force Model (Sect. 11.3.2)
• SFM+GR: adding SFM and grouping behavior (Sect. 11.3.3)

Missing Data: This experiment shows the robustness of our approach given missed
detections. This is evaluated by randomly erasing a certain percentage of detections
from the GT set. The percentages evaluated are [0,4,8,12,16,20] from the total
number of detections over the whole sequence. As we can see in Fig. 11.9, both
SFM and SFM+GR increase the tracking accuracy when compared to DIST.

Outliers: With an initial set of detections of GT with 2% missing data, tests
are performed with [0,10,20,30,40,50] percentage of outliers added in random
positions over the ground plane. In Fig. 11.9, the results show that the SFM is
especially important when the tracker is dealing with outliers. With 50% of outliers,
the identity switches with SFM+GR are reduced 70% w.r.t the DIST results.

Noise: This test is used to determine the performance of our approach given
noisy detections, which are very common mainly due to small errors in the 2D-3D
mapping. From the GT set with 2% missing data, random noise is added to every
detection. The variances of the noise tested are [0,0.002,0.004,0.006,0.008,0.01]
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Fig. 11.9 (Color online) Experiments are repeated 50 times and average result, maximum and
minimum are plotted. Blue star = results with DIST, Green diamond = results with SFM, Red
square = results with SFM+GR. From left to right: Experiment with simulated missing data, with
outliers, and with random noise

of the size of the scene observed. As expected, group information is the most robust
to noise; if the position of pedestrian A is not correctly estimated, other pedestrians
in the group will contribute to the estimation of the true trajectory of A.

These results corroborate that having good behavioral models becomes more
important as the observations deteriorate. In Fig. 11.10 we plot the tracking results of
a sequence with 12% simulated missing data. Only using distance information can
see identity switches as shown in Fig. 11.10a. In Fig. 11.10b we can see how missing
data affects the matching results. The matches are shifted, this chain reaction is
due to the global optimization. In both cases, the use of SFM allows the tracker
to interpolate the necessary detections and find the correct trajectories. Finally,
in Fig. 11.10c we plot the wrong result which occurs because track 3 has two
consecutive missing detections. Even with SFM, track 2 is switched for 3, since
the switch does not create extreme changes in velocity. In this case, the grouping
information is key to obtaining good tracking results. More results are shown in
Fig. 11.13, first row.

11.5.6 Tracking Results

In this section, we compare results of several state-of-the-art methods on two pub-
licly available datasets: a crowded town center [5] and the well-known PETS2009
dataset [12]. We compare results obtained with:

• Benfold et al. [5]: using the results provided by the authors for full pedestrian
detections. The HOG detections are also given by the authors and used as input
for all experiments.

• Zhan et al. [40]: globally optimum tracking based on network flow linear
programming.

• Pellegrini et al. [30]: tracker based on Kalman Filter which includes social
behavior.
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Fig. 11.10 (Color online) Top row: Tracking results with only DIST. Bottom row: Tracking results
with SFM+GR. Green = correct trajectories, Blue = observation missing from the set, Red = wrong
match. (a) Wrong match with DIST, corrected with SFM. (b) Missing detections cause the matches
to shift due the global optimization; correct result with SFM. (c) Missed detection for subject 3
on two consecutive frames. With SFM, subject 2 in the first frame (yellow arrow) is matched to
subject 3 in the last frame (yellow arrow), creating an identity switch; correct result with grouping
information

• Yamaguchi et al. [38]: tracker based on Kalman Filter which includes social and
grouping behavior.

• Leal-Taixé et al. [21]: globally optimum tracking based on network flow linear
programming and including social and grouping behavior.

For a fair comparison, we do not use appearance information for any method.
The methods [5,30,38] are online, while [21,40] processes the video in batches. For
these last two methods, all experiments are performed with six iterations, a batch of
100 frames, Vmax = 7m/s, Fmax = 10, α = 0.5 and B j = 0.3.

11.5.6.1 Town Center Dataset

We perform tracking experiments on a video of a crowded town center [5], using one
of every ten frames (simulating 2.5 fps). We show detection accuracy (DA), tracking
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Table 11.1 Town Center sequence

DA TA DP TP IDsw
HOG detections 63.1 – 71.9 – –

Benfold et al. [5] 64.9 64.8 80.5 80.4 259
Zhang et al. [40] 66.1 65.7 71.5 71.5 114
Pellegrini et al. [30] 64.1 63.4 70.8 70.7 183
Yamaguchi et al. [38] 64.0 63.3 71.1 70.9 196
Leal-Taixé et al. [21] 67.6 67.3 71.6 71.5 86

Fig. 11.11 Predictive approaches [30, 38] (first row) vs. Proposed method (second row)

accuracy (TA), detection precision (DP) and tracking precision (TP) measures as
well as the number of identity switches (IDsw).

Note, the precision reported in [5] is about 9% higher than the input detections
precision; this is because the authors use the motion estimation obtained with a
KLT feature tracker to improve the exact position of the detections, while we use
the raw detections. Still, our algorithm reports 64% less ID switches. As shown
in Table 11.1, [21] algorithm outperforms [30, 38], both of which include social
behavior information, by almost 4% in accuracy and with 50% less ID switches. In
Fig. 11.11 we can see an example where [30, 38] fail. The errors are created in the
greedy phase of predictive approaches, where people fight for detections. The red
false detection in the first frame takes the detection in the second frame that should
belong to the green trajectory (which ends in the first frame). In the third frame,
the red trajectory overtakes the yellow trajectory and a new blue trajectory starts
where the green should have been. None of the resulting trajectories violate the SFM
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Fig. 11.12 Results of the proposed method on the PETS2009 dataset views 1. (a) Detection
accuracy, DA. (b) Detection precision, DP. (c) Tracking accuracy, TA. (d) Tracking precision, TP

and GR conditions. On the other hand, a global optimization framework takes full
advantage of the SFM and GR information and correctly recovers all the trajectories.
More results of the proposed algorithm can be seen in Fig. 11.13, last row.

11.5.6.2 Results on the PETS2009 Dataset

In addition, we present results of monocular tracking on the PETS2009 sequence
L1, View 1 with the detections obtained using the Mixture of Gaussians (MOG)
background subtraction method. We compare the results with the previously
described methods plus the monocular result of View 1 presented in [7], where
the detections are obtained using the Probabilistic Occupancy Map (POM) and the
tracking is done using k-shortest paths (Fig. 11.12).

The first observation that we make is that the linear programming methods (LP
and LP+SFM+GR) clearly outperform predictive approaches in accuracy. This
is because this dataset is very challenging from a social behavior point of view,
because the subjects often change direction and groups form and split frequently.
Approaches based on a probabilistic framework [21, 40] are better suited for
unexpected behavior changes (like destination changes), where other predictive
approaches fail [30,38]. We can also see that the LP+SFM+GR method has a higher
accuracy than the LP method, which does not take into account social and grouping
behavior. The grouping term is specially useful to avoid identity switches between
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Fig. 11.13 First row: Results on the BIWI dataset (Sect. 11.5.5). The scene is heavily crowded,
social and grouping behavior are key to obtaining good tracking results. Second and third rows:
Results on the PETS2009 dataset (Sect. 11.5.6.2). Last two rows: Results on the Town Center
dataset (Sect. 11.5.6.1)

member of a group (see an example in Fig. 11.13, third row, the cyan and green
pedestrian who walk together). Precision is similar for all methods since the same
detections have been used for all the experiments and we do not apply smoothing or
correction of the bounding boxes.

11.6 Conclusions

In this chapter, we presented an overview of methods that integrate pedestrian
interaction into a tracking framework in two ways: using a globally optimum solver
or improving the dynamic model with social forces. Furthermore, we presented how
to combine the strength of both approaches by finding the MAP estimate of the
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trajectories total posterior including social and grouping models using a minimum-
cost network flow with an improved novel graph structure that outperforms existing
approaches. People interaction is persistent rather than transient, hence the prob-
abilistic formulation fully exploits the power of behavioral models as opposed to
standard predictive and recursive approaches such as Kalman filtering. Experiments
on three public datasets reveal the importance of using social interaction models
for tracking in difficult conditions such as in crowded scenes with the presence of
missed detections, false alarms and noise.
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