
Chapter 7

Numerical Solution Method

The peridynamic (PD) equation of motion is an integro-differential equation, which

is not usually amenable for analytical solutions. Therefore, its solution is

constructed by using numerical techniques for spatial and time integrations. The

spatial integration can be performed by using the collocation method of a meshless

scheme due to its simplicity. Hence, the domain can be divided into a finite number

of subdomains, with integration or collocation (material) points associated with

specific volumes (Sect. 7.1). Associated with a particular material point, numerical

implementation of spatial integration involves the summation of the volumes of

material points within its horizon. However, the volume of each material point may

not be embedded in the horizon in its entirety, i.e., the material points located near

the surface of the horizon may have truncated volumes. As a result, the volume

integration over the horizon may be incorrect if the entire volume of each material

point is included in the numerical implementation. Therefore, a volume correction

factor is necessary to correct for the extra volume. A volume correction procedure

required for such a case is described in Sect. 7.2.

Numerical time integration can be performed by using backward and forward

difference explicit integration schemes, although other techniques are also

applicable, such as the Adams-Bashforth method, Adams-Moulton method, and

Runge–Kutta method. If an explicit integration scheme is adopted, a stability

criterion on the value of the incremental time step is necessary to ensure conver-

gence. Details of the time integration scheme and stability criterion are given in

Sects. 7.3 and 7.4, respectively.

The PD equation of motion includes the inertial terms; it is not directly

applicable to static and quasi-static problems. Hence, a special treatment is

required so that the system will converge to a static condition in a short amount

of computational time. Although there are different techniques available for this

purpose, adaptive dynamic relaxation (ADR) can be utilized (Kilic and Madenci

2010), and it is described in detail in Sect. 7.5.

Another important concern when using a numerical technique is the conver-

gence of the results. It is important to use optimum values of parameters to
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achieve sufficient accuracy within a suitable amount of computational time.

The determination of such PD parameters is described in Sect. 7.6.

As described in Sect. 4.2, the interactions associated with material points close to

the free surfaces are truncated, and this causes a reduction of the stiffness of these

material points. In other words, these material points do not represent the accurate

bulk behavior and require a correction. The correction can be imposed by

introducing surface correction factors that can be directly inserted in the equation

of motion, as described in Sect. 7.7.

Solution to the PD equation of motion requires initial conditions on displace-

ment and velocity, as well as boundary conditions, as described in Sect. 2.7.

Numerical implementations of the initial and boundary conditions are given in

Sect. 7.8. If necessary, the introduction of a pre-existing crack is rather straightfor-

ward, as explained in Sect. 7.9. Moreover, as a result of extreme loading conditions,

such as high velocity boundary conditions, large displacement boundary

constraints, impact problems, etc., unexpected damage patterns may occur, espe-

cially close to the boundary region. This problem can be overcome by defining “no

fail zones” and is also explained in Sect. 7.9. The measure of local damage for crack

growth is explained in Sect. 7.10.

Each material point has its own particular family members defined by its

horizon. For domains including a large number of material points, it is important

to utilize an efficient process to search and establish the family members, and store

their information, as presented in Sect. 7.11. Utilization of parallel computing is a

crucial process to achieve significant computational efficiency. A brief discussion

on parallel computing is given in Sect. 7.12.

The development of a solution algorithm for the PD equation of motion may

involve the following steps:

• Specify the input parameters and initialize the matrices.

• Determine a stable time step size for the time integration. If the analysis involves

the adaptive dynamic relaxation technique, the time step size is equal to 1.

• Generate the material points.

• Determine the material points inside the horizon of each material point and

store them.

• In the case of a pre-existing crack problem, remove the PD interactions that are

passing through the crack surfaces.

• Compute the surface correction factor for each material point.

• Apply initial conditions.

• If the analysis involves the adaptive dynamic relaxation technique, construct the

stable mass matrix.

• Start time integration.

• Apply boundary conditions.

• Compute the total PD interaction forces acting on each material (collocation)

point.

• Terminate the PD interaction if its stretch exceeds the critical stretch.
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• If the analysis involves the adaptive dynamic relaxation technique, compute the

adaptive dynamic relaxation technique parameters.

• Perform time integration to obtain displacements and velocities.

7.1 Spatial Discretization

In order to solve Eq. 2.22, a collocation method is adopted and the numerical

treatment involves the discretization of the domain of interest into subdomains, as

shown in Fig. 7.1. The domain can be discretized into subdomains by employing

line subdomains for one-dimensional geometries, triangular and quadrilateral

subdomains for two-dimensional regions, and hexahedron, tetrahedron, and

wedge subdomains for three-dimensional regions, as shown in Fig. 7.2.

After discretizing the domain, the collocation points are placed in the

subdomains, as shown in Fig. 7.1. With this meshless discretization scheme, the

volume integration in Eq. 2.22 can be approximated as
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Fig. 7.1 Discretization of the domain of interest for (a) one-dimensional, (b) two-dimensional,

and (c) three-dimensional regions
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ρ xðkÞ
� �

€u xðkÞ; t
� � ¼XN

e¼1

XNe

j¼1

wðjÞ t u xðjÞ; t
� �� u xðkÞ; t

� �
; xðjÞ � xðkÞ

� ��
�t u xðkÞ; t

� �� u xðjÞ; t
� �

; xðkÞ � xðjÞ
� ��

VðjÞ þ b xðkÞ; t
� �

;

(7.1)

where N is the number of subdomains within the horizon and Ne is the number of

collocation points in eth subdomain. The position vectors xðkÞ and xðjÞ represent

the locations of the kth and jth collocation (integration) points, respectively. The

parameter wðjÞ is the integration weight of point xðjÞ. The integration points can be

determined as described by Kilic (2008). For a uniform grid of cubic subdomains

with one integration point at the center, the weight, wðjÞ , is equal to unity. The

volume of the jth cubic subdomain is denoted by VðjÞ
For instance, in the case of a one-dimensional region, the discretization is

achieved with M cubic subdomains in which Gaussian integration (collocation)

points represent the material points, as shown in Fig. 7.3. Integration points are

located at the center of each cubic subdomain with a weight of unity. Note that the

truncation error in Eq. 7.1 for this particular case is on the order ofOðΔ2Þ, whereΔ
represents spacing between integration (material) points. If a discontinuity is

present in the structure, then the error becomes OðΔÞ (Silling and Askari 2005).
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7.2 Volume Correction Procedure

Associated with a material point, xðkÞ, the numerical integration over its horizon is

approximated by considering the entire volume of each material point, xðjÞ, within
its horizon. As illustrated in Fig. 7.4, in the case of a uniform spacing ofΔ between

the material points leading to cubic subdomains ðwðjÞ ¼ 1Þ, and for a horizon of

δ ¼ 3Δ , this numerical approximation leads to summation of the material point

volumes within the range of ξðkÞðjÞ ¼ jxðjÞ � xðkÞj < δ. As implemented in the EMU

code (Silling 2004), this approximation can be improved by considering the entire

volume of the material points within the range of ξðkÞðjÞ ¼ jxðjÞ � xðkÞj < δ� r, in

which r ¼ Δ=2, the distance from the surface of the horizon. For the material points

that are within the range of δ� r < ξðkÞðjÞ < δ, a volume correction factor of υcðjÞ
¼ ðδþ r � ξðkÞðjÞÞ=2r is introduced by using a linear variation between a factor of

1 and ½ depending on the family member’s location with respect to the horizon

boundary. For the material points that are located outside of this region, the volume

correction factor is υcðjÞ ¼ 1.

Thus, the discretized equation of motion, Eq. 7.1, for material point xðkÞ
including the volume correction can be rewritten as

ρ xðkÞ
� �

€u xðkÞ; t
� � ¼XN

e¼1

t u xðjÞ; t
� �� u xðkÞ; t

� �
; xðjÞ � xðkÞ

� ��
� t u xðkÞ; t

� �� u xðjÞ; t
� �

; xðkÞ � xðjÞ
� ��

υcðjÞVðjÞ
� �þ b xðkÞ; t

� �
:

(7.2)
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7.3 Time Integration

The time integration of the PD equation of motion in Eq. 7.2 can be performed by

using explicit forward and backward difference techniques (Silling 2004). If the

solution to Eq. 7.2 at the nth time step of Δt (i.e., t ¼ nΔt) is represented as unðkÞ
¼ uðkÞðt ¼ nΔtÞ, Eq. 7.2 can be rewritten for this time step in the form

ρðkÞ€u
n
ðkÞ ¼

XN
j¼1

tnðkÞðjÞ � tnðjÞðkÞ
� �

υcðjÞVðjÞ
� �þ bnðkÞ; (7.3)

where

tnðkÞðjÞ ¼ tnðkÞðjÞ unðjÞ � unðkÞ; xðjÞ � xðkÞ
� �

and

tnðjÞðkÞ ¼ tnðjÞðkÞ unðkÞ � unðjÞ; xðkÞ � xðjÞ
� �

represent the force density vectors between the material points located at xðkÞ and xðjÞ.
Using Eqs. 4.4 and 4.5, the force density vectors can be explicitly written as

tnðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ��� 2ad δ
Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� θnðkÞ þ 2bδsnðkÞðjÞ

0
B@

1
CA (7.4a)

and

tnðjÞðkÞ ¼ �
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ��� 2ad δ
Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� θnðjÞ þ 2bδsnðkÞðjÞ

0
B@

1
CA; (7.4b)

in which the relative position and relative displacement vectors are defined as ξðkÞðjÞ
¼ xðjÞ � xðkÞ and ηn

ðkÞðjÞ ¼ unðjÞ � unðkÞ . Thus, the stretch between material points

located at xðkÞ and xðjÞ at this time step, snðkÞðjÞ, becomes

snðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ
��� ���� ξðkÞðjÞ

��� ���
ξðkÞðjÞ
��� ��� : (7.5)
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Furthermore, the dilatation at material points located at xðkÞ and xðjÞ can be

computed from

θnðkÞ ¼ dδ
XN
‘¼1

snðkÞð‘ÞΛ
n
ðkÞð‘Þ υcð‘ÞVð‘Þ

� �
(7.6a)

and

θnðjÞ ¼ dδ
XN
‘¼1

snðjÞð‘ÞΛ
n
ðjÞð‘Þ υcð‘ÞVð‘Þ

� �
: (7.6b)

As shown in Fig. 7.5, if the material point k interacts with other material points

within a horizon of δ ¼ 3Δ, the peridynamic equation becomes

ρðkÞ€u
n
ðkÞ ¼ tnðkÞðkþ1Þ � tnðkþ1ÞðkÞ

� �
υcðkþ1ÞVðkþ1Þ
� �

þ tnðkÞðkþ2Þ � tnðkþ2ÞðkÞ
� �

υcðkþ2ÞVðkþ2Þ
� �

þ tnðkÞðkþ3Þ � tnðkþ3ÞðkÞ
� �

υcðkþ3ÞVðkþ3Þ
� �

þ tnðkÞðk�1Þ � tnðk�1ÞðkÞ
� �

υcðk�1ÞVðk�1Þ
� �

þ tnðkÞðk�2Þ � tnðk�2ÞðkÞ
� �

υcðk�2ÞVðk�2Þ
� �

þ tnðkÞðk�3Þ � tnðk�3ÞðkÞ
� �

υcðk�3ÞVðk�3Þ
� �þ bnðkÞ:

(7.7)

After determining the acceleration of a material point at the nth time step from

Eq. 7.3, the velocity and displacement at the next time step can be obtained by
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employing explicit forward and backward difference techniques in two steps,

respectively. The first step determines the velocity at the ðnþ 1Þth time step using

the known acceleration and the known velocity at the nth time step as

_unþ1
ðkÞ ¼ €unðkÞΔtþ _unðkÞ: (7.8)

The second step determines the displacement at the ðnþ 1Þth time step using the

velocity at the ðnþ 1Þth time step from Eq. 7.8 and the known displacement at the

nth time step as

unþ1
ðkÞ ¼ _unþ1

ðkÞ Δtþ unðkÞ: (7.9)

The same procedure can be applied for other material points as well. For

instance, the displacement and velocity of the ðk þ 1Þth material point can be

obtained as

unþ1
ðkþ1Þ ¼ _unþ1

ðkþ1ÞΔtþ unðkþ1Þ (7.10a)

and

_unþ1
ðkþ1Þ ¼ €unðkþ1ÞΔtþ _unðkþ1Þ: (7.10b)

Note that the numerical error to obtain the displacement value by integrating the

computed acceleration value from Eq. 7.3 is on the order of OðΔt2Þ. Hence, the
overall numerical error becomes OðΔ2Þ þ OðΔt2Þ, including the error from spatial

integration (discretization). Furthermore, the overall error is OðΔÞ þ OðΔt2Þ , if
there is any discontinuity in the structure (Silling and Askari 2005).

7.4 Numerical Stability

Although the explicit time integration scheme is straightforward, it is only

conditionally stable. Therefore, a stability condition is necessary to obtain conver-

gent results. A stability condition for the time step size, Δ t, is derived based on the

approach by Silling and Askari (2005). According to this approach, the standard

von Neumann stability analysis can be performed by assuming a displacement

variation of

unðkÞ ¼ ζne κk
ffiffiffiffiffi�1

pð Þ; (7.11)
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where κ and ζ are positive real and complex numbers, respectively. The stability

analysis requires that jζj � 1 for all values of κ . Satisfaction of this condition is

necessary so the waves do not grow unboundedly over time. By using an explicit

central difference formula, Eq. 7.3 results in

ρðkÞ
unþ1
ðkÞ � 2unðkÞ þ un�1

ðkÞ
Δt2

 !
¼
X
j

2ad δ θnðkÞ þ θnðjÞ
� �

þ 4bδ unðjÞ � unðkÞ
� �

ξðkÞðjÞ
��� ��� υcðjÞVðjÞ;

(7.12)

where

θnðkÞ ¼ dδ
X
‘

unð‘Þ � unðkÞ

ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.13a)

and

θnðjÞ ¼ dδ
X
‘

unð‘Þ � unðjÞ

ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.13b)

Substituting Eqs. 7.11 in 7.12 yields

ρðkÞ
ζnþ1 � 2ζn þ ζn�1

Δt2


 �
e κk

ffiffiffiffiffi�1
pð Þ

¼
X
j

2ad δ
θnðkÞ þ θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

ζn e κj
ffiffiffiffiffi�1

pð Þ � e κk
ffiffiffiffiffi�1

pð Þ� �
ξðkÞðjÞ
��� ���

0
B@

1
CA υcðjÞVðjÞ
� �

;

(7.14)

where

θnðkÞ ¼ dδ
X
‘

ζne κ‘
ffiffiffiffiffi�1

pð Þ � ζne κk
ffiffiffiffiffi�1

pð Þ
ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.15a)

and

θnðjÞ ¼ dδ
X
‘

ζne κ‘
ffiffiffiffiffi�1

pð Þ � ζne κj
ffiffiffiffiffi�1

pð Þ
ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.15b)
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Rearranging Eq. 7.14 results in

ρðkÞ
ζ2 � 2ζ þ 1

Δt2


 �

¼
X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

e κðj�kÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξðkÞðjÞ
��� ���

0
B@

1
CAζ υcðjÞVðjÞ
� �

;

(7.16)

where

�θnðkÞ ¼ dδ
X
‘

e κð‘�kÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.17a)

and

�θnðjÞ ¼ dδ
X
‘

e κð‘�jÞ ffiffiffiffiffi�1
pð Þ � 1

� �
ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.17b)

Since exponential terms can be written in terms of sine and cosine functions, and

sine is an odd function, Eq. 7.16 can be rewritten as

ρðkÞ
ζ2 � 2ζ þ 1

Δt2


 �

¼
X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

cos κ j� kð Þð Þ � 1ð Þ
ξðkÞðjÞ
��� ���

0
B@

1
CAζ υcðjÞVðjÞ
� �

;

(7.18)

where

�θnðkÞ ¼ dδ
X
‘

cos κ ‘� kð Þð Þ � 1

ξð‘ÞðkÞ
��� ��� υcð‘ÞVð‘Þ

� �
(7.19a)

and

�θnðjÞ ¼ dδ
X
‘

cos κ ‘� jð Þð Þ � 1

ξð‘ÞðjÞ
��� ��� υcð‘ÞVð‘Þ

� �
: (7.19b)
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By defining

Mκ ¼�1

2

X
j

2ad δ
�θnðkÞ þ �θnðjÞ
� �

ξðkÞðjÞ
��� ��� þ 4bδ

cos κ j� kð Þð Þ � 1ð Þ
ξðkÞðjÞ
��� ���

0
B@

1
CA υcðjÞVðjÞ
� �

; (7.20)

Equation 7.18 takes the form

ζ2 � 2 1�MκΔt2

ρðkÞ

 !
ζ þ 1 ¼ 0: (7.21)

The solution to the quadratic equation results in

ζ ¼ 1�MκΔt2

ρðkÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�MκΔt2

ρðkÞ

 !2

� 1

vuut : (7.22)

Enforcing the condition jζj � 1 yields

Δt <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðkÞ=Mκ

q
; for all κ values: (7.23)

In order for this condition to be valid for all κ values implies

Mκ �
X
j

2ad δ

dδ
P
‘

1

ξð‘ÞðkÞj j þ
1

ξð‘ÞðjÞj j

 �

Vð‘Þ


 �

ξðkÞðjÞ
��� ��� þ 4bδ

ξðkÞðjÞ
��� ���

0
BB@

1
CCA υcðjÞVðjÞ
� �

: (7.24)

By using Eqs. 7.23 and 7.24, the stability criterion on the time step size can be

expressed as

Δt <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρðkÞ

P
j

2ad δ
dδ
P
‘

1

ξð‘ÞðkÞj jþ
1

ξð‘ÞðjÞj j

 �

Vð‘Þ


 �
ξðkÞðjÞj j þ 4bδ

ξðkÞðjÞj j

0
BB@

1
CCA υcðjÞVðjÞ
� �

vuuuuuuut
: (7.25)

The use of a safety factor that has a value of less than 1 is recommended as it

makes the analysis more stable in case of some type of nonlinearity in the structure.
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It is also worth noting that the stable time step size is dependent on the horizon size

rather than the grid size because of the dependency of the PD material parameters

on the horizon (Silling and Askari 2005).

7.5 Adaptive Dynamic Relaxation

Although the equation of motion of the peridynamic theory is in dynamic form, it

can still be applicable to solve quasi-static or static problems by using a dynamic

relaxation technique. As explained by Kilic and Madenci (2010), the dynamic

relaxation method is based on the fact that the static solution is the steady-state

part of the transient response of the solution. By introducing an artificial damping to

the system, the solution is guided to the steady-state solution as fast as possible.

However, it is not always possible to determine the most effective damping coeffi-

cient. Therefore, the damping coefficient is determined at each time step by using the

Adaptive Dynamic Relaxation (ADR) scheme introduced by Underwood (1983).

According to the ADR method, the PD equation of motion is written as a set of

ordinary differential equations for all material points in the system by introducing

new fictitious inertia and damping terms

D€U X; tð Þ þ cD _U X; tð Þ ¼ F U;U0;X;X0ð Þ; (7.26)

where D is the fictitious diagonal density matrix and c is the damping coefficient

whose values are determined by Greschgorin’s theorem (Underwood 1983) and

Rayleigh’s quotient, respectively. The vectors X and U contain the initial position

and displacement of the collocation (material) points, respectively, and they can be

expressed as

XT ¼ xð1Þ; xð2Þ; . . . ; xðMÞ
� 

(7.27a)

and

UT ¼ u xð1Þ; t
� �

; u xð2Þ; t
� �

; . . . ;u xðMÞ; t
� �� 

; (7.27b)

whereM is the total number of material points in the structure. Finally, the vector F

is composed of PD interaction and body forces and its ith component can be

expressed as

FðiÞ ¼
XN
j¼1

tðiÞðjÞ � tðjÞðiÞ
� �

υcjVðjÞ
� �þ bðiÞ: (7.28)
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By utilizing central-difference explicit integration, displacements and velocities

for the next time step can be obtained as

_U
nþ1 2= ¼

2� cnΔtð Þ _Un�1 2= þ 2ΔtD�1Fn
� �

2þ cnΔtð Þ (7.29a)

and

Unþ1 ¼ Un þ Δt _Unþ1 2=
; (7.29b)

where n indicates the nth iteration. Although Eq. 7.29a cannot be used to start the

iteration process due to an unknown velocity field at t�1 2= , it can be assumed that

U0 6¼ 0 and _U ¼ 0: Therefore, the integration can be started by

_U
1 2= ¼ ΔtD�1F0

2
: (7.30)

Note that the only physical term in this algorithm is the force vector, F . The

density matrix, D, damping coefficient, c, and time step size , Δt, do not have to be

physical quantities. Thus, their values can be chosen to obtain faster convergence.

In dynamic relaxation, a time step size of 1 (Δt ¼ 1) is a convenient choice. The

diagonal elements of the density matrix, D, can be chosen based on Greschgorin’s

theorem and can be expressed as

λii � 1

4
Δt2

X
j

Kij

�� ��; (7.31)

in whichKij is the stiffness matrix of the system under consideration. The inequality

sign ensures stability of the central-difference explicit integration; the derivation of

this stability condition is given by Underwood (1983). Although this approach

achieves near-optimal values, these values are coordinate frame dependent because

they depend on absolute values of the global stiffness matrix as stated in the context

of the finite element method of Lovie and Metzger (1999). Therefore, an alternative

way can be followed by choosing the values based on the minimum element

dimension to make the frame invariant, as suggested by Sauve and Metzger (1997).

This approach seems to reduce overshooting as compared to Greschgorin’s

theorem.
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Hence, the present solutions of the PD equations also utilize a frame-invariant

density matrix. The construction of the stiffness matrix requires determination of

the derivative of PD interaction forces with respect to the relative displacement

vector,η. Since the PD interaction forces given in Eq. 7.3 are nonlinear functions of

η, it is not always possible to determine its derivative. However, elements of the

stiffness matrix can be calculated by using a small displacement assumption as

X
j

Kij

�� �� ¼XN
j¼1

@ tðiÞðjÞ � tðjÞðiÞ
� �
@ uðjÞ � uðiÞ
�� ��� � � e

¼
XN
j¼1

ξðiÞðjÞ � e
��� ���
ξðiÞðjÞ
��� ���

4δ

ξðiÞðjÞ
��� ���

1

2

ad2δ

ξðiÞðjÞ
��� ��� υcðiÞVðiÞ þ υcðjÞVðjÞ

� �þ b

0
B@

1
CA;

(7.32)

in which e is the unit vector along the x-, y-, or z-direction. Note that the summation

given in Eq. 7.32 can be employed to determine the elements of the stiffness matrix

and it is frame invariant.

As described by Underwood (1983), the damping coefficient can be determined

by using the lowest frequency of the system. The lowest frequency can be obtained

by utilizing Rayleigh’s quotient, which is given as

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
UTKU

UTDU

s
: (7.33)

However, the elements of the density matrix given in Eq. 7.31 may have large

numerical values, which make the denominator in Eq. 7.33 numerically difficult to

compute. In order to overcome this problem, Eq. 7.26 can be written in a different

form at the nth iteration:

€U
n
X; tnð Þ þ cn _U

n
X; tnð Þ ¼ D�1Fn Un;U0n;X;X0� �

: (7.34)

The damping coefficient in Eq. 7.34 can be expressed by using Eq. 7.33 as

cn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Unð ÞT 1KnUn

� �
Unð ÞT Un

� �.r
; (7.35)
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in which 1Kn is the diagonal “local” stiffness matrix, which is given as

1Kn
ii ¼ � Fn

i λii= � Fn�1
i λii=

� �
Δt _un�1 2=

i

� �.
: (7.36)

7.6 Numerical Convergence

The spacing between material points (grid size),Δ, and the horizon size, δ, influence
the computational process. It is important to determine the optimum values of these

parameters in order to achieve high accuracy with sufficiently small amount of

computational time.

As explained in Silling and Askari (2005), the horizon size can be chosen based

on the characteristic length dimensions. If dimensions are on the order of the

nanoscale, then the horizon may represent the maximum distance of physical

interactions between atoms or molecules. Therefore, it is important to specify its

actual value for an accurate outcome of the analysis. For macroscale analysis, the

horizon does not have a physical correspondence and its value can be chosen based

on convenience. To determine the most optimum value of the horizon, a benchmark

study of a one-dimensional bar with length L subjected to an initial strain loading of
@ux=@x ¼ 0:001HðΔt� tÞ is considered. The spatial integration is performed by

using a very fine grid, so the numerical error due to grid size is minimum. Six

different horizon sizes are considered, δ ¼ ð1; 3; 5; 10; 25; 50ÞΔ. For each of these

cases, the displacement versus time variation of a collocation point, which is

located close to the center of the bar, is monitored and compared against the

analytical solution given by Rao (2004). As demonstrated in Fig. 7.6a–f, the highest

accuracy is achieved for the horizon sizes of δ ¼ Δ and 3Δ . The discrepancy

between analytical and numerical solutions becomes larger when the horizon size

increases due the excessive wave dispersion (Silling and Askari 2005).

Furthermore, the computational time increases substantially as the horizon size

increases. It is recommended to choose a horizon size of δ ¼ 3Δ since δ ¼ Δ may

cause grid dependence on crack propagation and not be able to capture crack

branching behavior, as demonstrated in Fig. 7.7 for a square plate with a central

crack subjected to a velocity boundary condition of V0 ¼ 50m=s. The model with a

horizon size of δ ¼ 3Δ captures the expected crack branching behavior due to a

very high velocity boundary condition, whereas the model with a horizon size of

δ ¼ Δ can only capture the self-similar crack growth.

As mentioned in Sect. 7.1, the discretization error is on the order of OðΔ2Þ .
Therefore, it is important to use a sufficient number of grid points to reduce the

numerical error and at the same time achieve the desired numerical efficiency. By

considering the vibration of a bar, it is possible to visualize the effect of grid size on
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the accuracy for four different grid size values, Δ ¼ L=10, L=100, L=1000, and
L=10000 , as shown in Fig. 7.8a–d. The horizon size is specified as δ ¼ 3Δ .

Sufficient accuracy is obtained at a grid size value of Δ ¼ L=1000. Note that the

error in the very coarse grid size case ofΔ ¼ L=10 increases as the time progresses.
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Fig. 7.6 Variation of displacement with time at the center of the bar for horizon size values of (a)

δ ¼ Δ, (b) δ ¼ 3Δ, (c) δ ¼ 5Δ, (d) δ ¼ 10Δ, (e) δ ¼ 25Δ, and (f) δ ¼ 50Δ
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Fig. 7.7 Damage distribution in a square plate with a central crack subjected to a velocity

boundary condition of V0 ¼ 50 m=s for horizon values of (a) δ ¼ Δ and (b) δ ¼ 3Δ
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Fig. 7.8 Variation of displacement with time at the center of the bar for grid size values of (a)

Δ ¼ L=10, (b) Δ ¼ L=100, (c) Δ ¼ L=1000, and (d) Δ ¼ L=10000
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7.7 Surface Effects

The lack of interactions due to free surfaces may cause inaccuracies, especially for

the material points close to the surfaces. This problem can be largely overcome by

introducing surface correction factors. Detailed information about the surface

correction factors and their determination procedure are given in Chap. 4. The

surface corrections can be directly invoked in the equation of motion, Eq. 7.3, by

rewriting it in a slightly different form as

ρðkÞ€u
n
ðkÞ ¼

XN
j¼1

�tnðkÞðjÞ ��tnðjÞðkÞ
� �

υcðjÞVðjÞ
� �þ bnðkÞ; (7.37)

where the corrected PD interaction forces can be expressed as

�tnðkÞðjÞ ¼
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ���
� 2ad δGðdÞðkÞðjÞ

Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� �θnðkÞ þ 2bδGðbÞðkÞðjÞsðkÞðjÞ

0
B@

1
CA (7.38a)

and

�tnðjÞðkÞ ¼ �
ξðkÞðjÞ þ ηn

ðkÞðjÞ

ξðkÞðjÞ þ ηn
ðkÞðjÞ

��� ���
� 2ad δGðdÞðkÞðjÞ

Λn
ðkÞðjÞ

ξðkÞðjÞ
��� ��� �θnðjÞ þ 2bδGðbÞðkÞðjÞsðkÞðjÞ

0
B@

1
CA: (7.38b)

Similarly, the corrected dilatation terms in Eqs. 7.38a, 7.38b are defined as

�θnðkÞ ¼ dδ
XN
‘¼1

GðdÞðkÞð‘ÞsnðkÞð‘ÞΛ
n
ðkÞð‘Þ υcð‘ÞVð‘Þ

� �
(7.39a)

and

�θnðjÞ ¼ dδ
XN
‘¼1

GðdÞðjÞð‘ÞsnðjÞð‘ÞΛ
n
ðjÞð‘Þ υcð‘ÞVð‘Þ

� �
: (7.39b)
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Note that surface correction factors are consistently required in the time integration

process. Therefore, they should be computed prior to the start of time integration.

Since the determination of the correction factors requires a test loading condition on

the actual structure, it is important to initialize the displacement and velocity values of

collocation (material) points before starting the time integration process.

7.8 Application of Initial and Boundary Conditions

The PD equation of motion yields the acceleration of the collocation points. The

displacement and velocity of collocation points can be obtained by integrating the

acceleration; it requires the initial condition values of these quantities. Therefore,

all of the collocation points should be subjected to initial displacement and velocity

conditions. Various ways of specifying the initial conditions are explained in detail

in Chap. 2. The initial conditions can be specified either in the form of displacement

and velocity values on all material points as given in Eqs. 2.23a, b or in terms of

displacement and velocity gradients as given in Eqs. 2.25a, b.

As also explained in Chap. 2, the displacement and velocity constraints can be

applied in the peridynamic theory by following a different approach than in

classical continuum mechanics. The constraint conditions can be imposed to mate-

rial points inside a fictitious boundary region,Rc, as demonstrated in Fig. 7.9, with a

width equivalent to the horizon size,δ. Displacement and velocity constraints can be

applied by using Eqs. 2.26 and 2.28, respectively. On the other hand, the external

loads can be applied as body loads through a material layer ofR‘, with a width ofΔ,
as shown in Fig. 7.9. The magnitude of body force applied to collocation points

inside this region can be obtained by using Eqs. 2.34a, b, depending on the nature of

the applied loading condition, i.e., distributed pressure or point force.

7.9 Pre-existing Crack and No-Fail Zone

In many practical applications, cracks may initially exist in the structure and be

located at various sites of the structure. The PD approach to create these initial

cracks is rather straightforward. Any interaction between two material points

R

Rc Rl

δ Δ

Fig. 7.9 Boundary regions

for (a) displacement and

velocity constraints and

(b) external loads
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passing through a crack surface is terminated permanently, as shown in Fig. 7.10.

Therefore, an entire set of terminated interactions represents a crack surface. If

multiple cracks exist in the structure, the same procedure can be repeated for each

crack surface.

For some applications under extreme loading conditions, unexpected failure

may occur between collocation points located close to the external boundaries. In

such cases, a region with a suitable width can be chosen as a “no fail zone,”Rnf , as

shown in Fig. 7.11. The interactions associated with the collocation points located

in this region are not allowed to fail. The thickness of the “no fail zone” should be

chosen in such a way that it will have no adverse effect on the overall fracture

behavior of the structure.

7.10 Local Damage for Crack Growth

The measure of local damage is dependent on the relationship between the horizon

and the material point spacing. For computational efficiency, a horizon is com-

monly defined by three times the material point spacing, Δ, i.e., δ ¼ 3Δ.

Initial
crack

Unbroken PD interactions

Broken PD interactions

Fig. 7.10 Termination

of PD interactions that pass

through a crack surface

R

Rnf

Fig. 7.11 No-fail zones
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As shown in Fig. 7.12a, the elimination of interaction between the material point

xðj�Þ and the others, xðkþÞ , above the dashed line representing the crack surface

results in a local damage of φ � 0:38 for the material point xðj�Þ: Although

computationally not feasible, the local damage at material point xðj�Þ approaches
one-half as the horizon approaches infinity. If the material point xðj�Þ is located

immediately ahead of the dashed line representing the crack surface, as shown in

Fig. 7.12b, its interactions are still intact with the material points xðkþÞ above the

dashed line and directly aligned with xðj�Þ . Thus, the local damage at xðj�Þ is

calculated as φ � 0:14. If the material point xðj�Þ is located immediately behind the

dashed line representing the crack surface, as shown in Fig. 7.12c, its interactions

are no longer intact with the material points xðkþÞ above the dashed line and directly
aligned with xðj�Þ. Thus, the local damage at xðj�Þ is calculated as φ � 0:24.

Unbroken PD interactions
Broken PD interactions

Crack

Unbroken PD interactions
Broken PD interactions

Crack

Unbroken PD interactions
Broken PD interactions

Crack

a b

c

Fig. 7.12 Local damage at a material point (a) on the crack plane, (b) in front of the crack tip, and

(c) behind the crack tip
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According to these local damage values, a crack path can be established in PD

calculations with a horizon size of δ ¼ 3Δ. However, the local damage does not

provide any information to determine the specific broken interactions. Therefore,

the local damage values at neighboring points should also be considered in the

determination of a crack path.

As the material point is located farther away from a crack surface, its degree of

local damage decreases. For example, the local damage values for a material point

xðj�Þ located at a distance of 0:5Δ, 1:5Δ, and 2:5Δ from the dashed line (crack

surface) are calculated as φ � 0:38, φ � 0:16, and φ � 0:02, respectively. A crack

surface results in discernible local damage values only for material points within a

distance of 2Δ away from the crack. Therefore, the local damage values can be used

to identify crack path and tip with an error of less than 2Δ. Figure 7.13 shows the

local damage in a plate with a crack in a peridynamic model. Both the path of the

crack and the tip are clearly visible.

7.11 Spatial Partitioning

In the PD theory, the number of interactions is limited by defining a region called

the horizon. The horizon makes the computations tractable; otherwise, the number

of interactions that needs to be taken into account at each time step is N2 for N
material points inside the body. This is especially very time consuming if the

number of material points is large. According to the continuity assumption of the

body, a material point must have the same neighbors during the deformation

Fig. 7.13 Local damage

measure indicating crack

path in a PD model
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process. Therefore, it is sufficient to determine the family members of a material

point within its horizon only once during the computation process.

While establishing the family members, it may be computationally advanta-

geous to split the domain into equally sized cells, as shown in Fig. 7.14a. The size of

the cells should be larger than the horizon size. During the search process of the

family members, it is only necessary to examine the collocation points in the

neighboring cells, as shown in Fig. 7.14b.

Another important issue is following an efficient process for storing the family

members of the collocation points in order to overcome possible memory

limitations. For this purpose, two different arrays can be utilized. The first array

(see Array #1 in Fig. 7.15) can store all family members of material points

sequentially in a single column. The second array (see Array #2 in Fig. 7.15) can

be utilized as an indicator for the first array, so that the family members of a

particular material point can be easily extracted from the first array. Each element of

Array #2 corresponds to the location of the first material point within the family of a

Collocation Points

δ

a

b

Fig. 7.14 Uniform grid and

interaction of collocation

points

7.11 Spatial Partitioning 147



particular point in Array #1. For instance, as shown in Fig. 7.15, the second element

of Array #2 (i.e., 4) associated with material point #2 indicates the fourth element of

Array #1 as the first material point number within the family of material point #2.

7.12 Utilization of Parallel Computing and Load Balancing

The structure of the PD meshless scheme is very suitable for parallel computing.

Therefore, significant time efficiency can be achieved, depending on the number of

processors to be utilized. There are various tools available for parallel computing,

such as central processing units (CPU) and graphics processing units (GPU). The

most important aspect of parallel programming is the load balancing, so that full

advantage of the parallel programming can be realized. Efficient load balancing can

be obtained by distributing an approximately equal number of collocation points to

each processor. Otherwise if a processor finishes its job earlier than others at the end

of the time step, then it has to wait for other processors to finish their jobs to proceed

to the next time step. The other important issue is to keep the number of PD

interactions between collocation points that are assigned to different processors at

a minimum level, since the computation of these interactions is carried out by a

single processor to avoid a race condition. A race condition occurs when multiple

processors try to access the same shared memory.

The computational domain can be divided into subunits and each of these

subunits can be assigned to a specific processor by using binary space decomposi-

tion, as shown in Fig. 7.16 (Berger and Bokhari 1987). This method can handle

variations in the collocation point concentration at different regions of the domain.

The decomposition process continues in multiple steps, where each subunit is

divided into two new rectangular subunits in every step. Based on the number of
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collocation points assigned to each subunit, a workload estimate can be calculated.

For instance, if there are p number of available processors, where p is not necessar-
ily an even number, the domain is split into two, each having s1 and s2 collocation
points. Partitioning is performed such that the ratio of s1 and s2 is equal or close to
ðp=2Þ ðp� p=2Þ= . The partition direction is chosen to be the longest side of the

domain in order to reduce the number of interactions between subunits. Then, p=2
processors are assigned to the subunit having s1 collocation points and p� p=2
processors are assigned to subunit with s2 collocation points. Each subunit is then

divided into other subunits as long as the assigned number of processors is greater

than one. Figures 7.17 and 7.18 demonstrate a tree structure of a two-step binary

decomposition by using four processors and the subunits that are assigned to these

four processors, respectively.

Processor 0

Processor 1

Processor 2

Processor 3

Fig. 7.16 Processor distribution

0 1 2 3Processors

Decomposition 1

Decomposition 0

Fig. 7.17 Tree structure

to construct decomposition

Fig. 7.18 Binary space decomposition
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