
Chapter 6

Damage Prediction

Material damage in peridynamics (PD) is introduced through elimination of

interactions (micropotentials) among the material points. It is assumed that when

the stretch, sðkÞðjÞ, between two material points, k and j, exceeds its critical value, sc,

the onset of damage occurs. Damage is reflected in the equations of motion by

removing the force density vectors between the material points in an irreversible

manner. As a result, the load is redistributed among the material points in the body,

leading to progressive damage growth in an autonomous fashion.

6.1 Critical Stretch

In order to create a new crack surface, A, all of the micropotentials (interactions)

between the material points xðkþÞ and xðj�Þ whose line of action crosses this new

surface must be terminated, as sketched in Fig. 6.1. The material points xðkþÞ and
xðj�Þ are located above and below the new crack surface, respectively.

The micropotentials for linear elastic deformation can be obtained from Eq. 2.17

as

wðkþÞðj�Þ ¼ 2tðkþÞðj�Þ � uðj�Þ � uðkþÞ
� �

; (6.1a)

wðj�ÞðkþÞ ¼ 2tðj�ÞðkþÞ � uðkþÞ � uðj�Þ
� �

; (6.1b)

or

wðkþÞðj�Þ ¼ A yðj�Þ � yðkþÞ
��� ���� ΛðkþÞðj�Þ

���xðj�Þ � xðkþÞ
���� �
; (6.2a)

wðj�ÞðkþÞ ¼ B yðkþÞ � yðj�Þ
��� ���� Λðj�ÞðkþÞ

���xðkþÞ � xðj�Þ
���� �
; (6.2b)
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with

A ¼ 4adδ

xðj�Þ � xðkþÞ
�� ��ΛðkþÞðj�ÞθðkþÞ þ 4δ bsðkþÞðj�Þ; (6.3a)

B ¼ 4adδ

xðkþÞ � xðj�Þ
�� �� Λðj�ÞðkþÞθðj�Þ þ 4δbsðj�ÞðkþÞ; (6.3b)

in which

θðkþÞ ¼ dδ
XN
i¼1

ΛðkþÞðiÞsðkþÞðiÞ VðiÞ; (6.4a)

θðj�Þ ¼ dδ
XN
i¼1

Λðj�ÞðiÞsðj�ÞðiÞ VðiÞ; (6.4b)

and

ΛðkþÞðj�Þ ¼
yðj�Þ � yðkþÞ

yðj�Þ � yðkþÞ
��� ��� �

xðj�Þ � xðkþÞ
xðj�Þ � xðkþÞ
�� �� ; (6.5a)

Λðj�ÞðkþÞ ¼
yðkþÞ � yðj�Þ

yðkþÞ � yðj�Þ
��� ��� �

xðkþÞ � xðj�Þ
xðkþÞ � xðj�Þ
�� �� : (6.5b)
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Fig. 6.1 Interaction

between material points xþðkÞ
and x�ðjÞ, whose line of action
crosses the crack surface
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Under the assumption of linear elastic deformation, i.e., Λðj�ÞðkþÞ � 1 and

ΛðkþÞðj�Þ � 1, the expressions for the micropotentials can be rewritten as

wðkþÞðj�Þ ¼ 4ad2δ2
XN�K �

i¼1

sðkþÞðiÞsðkþÞð j�Þ VðiÞ þ
XK �

i¼1

sðkþÞðiÞsðkþÞð j�Þ VðiÞ

 !

þ 4δ bs2ðkþÞðj�Þ xðj�Þ � xðkþÞ
�� ��;

(6.6a)

wðj�ÞðkþÞ ¼ 4ad2δ2
XN�Jþ

i¼1

sðj�ÞðiÞsð j�ÞðkþÞ VðiÞ þ
XJþ
i¼1

sðj�ÞðiÞsð j�ÞðkþÞ VðiÞ

 !

þ 4δbs2ðj�ÞðkþÞ xðkþÞ � xðj�Þ
�� ��;

(6.6b)

in which N represents the total number of material points within the family of xðkþÞ
and xðj�Þ.

The number of material points within the family of xðkþÞ below the crack surface

and intersecting with the crack is denoted by K� . Similarly, Jþ represents the

number of material points above the crack surface within the family of xðj�Þ and
intersecting with the crack. Even at the critical stretch, these micropotentials do not

completely vanish because of the contribution of the material points to the

micropotential through the first term arising from dilatation. Retaining only the

interactions crossing the crack surface, the critical values of these micropotentials

can be obtained by substituting the critical value, sc , of the stretch sðkþÞðj�Þ and

sðj�ÞðkþÞ as

wc
ðkþÞðj�Þ ¼ 4ad2δ2

XK �

i¼1

s2c VðiÞ

 !
þ 4δ bs2c xðj�Þ � xðkþÞ

�� �� !
(6.7a)

and

wc
ðj�ÞðkþÞ ¼ 4ad2δ2

XJþ
i¼1

s2c VðiÞ

 !
þ 4δbs2c xðkþÞ � xðj�Þ

�� �� !
: (6.7b)

Hence, the strain energy required to remove the interaction between two material

points, xðkþÞ and xðj�Þ, can be expressed as

Wc
ðkþÞðj�Þ ¼

1

2

wc
ðkþÞðj�Þ þ wc

ðj�ÞðkþÞ
2

VðkþÞVðj�Þ: (6.8)

Furthermore, the total strain energy required to remove all of the interactions

across the newly created crack surface A can be obtained as
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Wc ¼ 1

2

XKþ

k¼1

1

2

XJ�
j¼1

wc
ðkþÞðj�ÞVðkþÞVðj�Þ þ 1

2

XKþ

k¼1

1

2

XJ�
j¼1

wc
ðj�ÞðkþÞVðj�ÞVðkþÞ; (6.9)

for which the line of interaction defined by jxðkþÞ � xðj�Þj and the crack surface

intersect, and Kþ and J� indicate the number of material points, above and below

the crack surface, within the families of xðkþÞ and xðj�Þ, respectively. If this line of
interaction and crack surface intersect at the crack tip, only half of the critical

micropotential is considered in the summation. Substituting for micropotentials

given by Eqs. 6.7a, b in Eq. 6.9 results in the critical strain energy required to

eliminate all of the interactions across the newly created crack surface A as

Wc ¼ s2c
XKþ

k¼1

XJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

XK �

i¼1

VðiÞ þ
XJþ
i¼1

VðiÞ

 ! !
VðkþÞVðj�Þ:

(6.10)

The total work,Wc, required to eliminate all interactions across this new surface

can be equated to the critical energy release rate, Gc, in order to establish the value

of critical stretch, sc, as

Gc ¼
s2c
PKþ

k¼1

PJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

PK �

i¼1

VðiÞ þ
PJþ
i¼1

VðiÞ

� �� �
VðkþÞVðj�Þ

A
;

(6.11)

which yields the critical stretch, sc, expression of

sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GcAPKþ

k¼1

PJ�
j¼1

2δ b xðj�Þ � xðkþÞ
�� ��þ ad2δ2

PK �

i¼1

VðiÞ þ
PJþ
i¼1

VðiÞ

� �� �
VðkþÞVðj�Þ

vuuut :

(6.12)

Setting a ¼ 0 and 4δb ¼ c reduces this expression to bond-based peridynamics

Gc ¼ 1

2
cs2c

PKþ

k¼1

PJ�
j¼1

xðj�Þ � xðkþÞ
�� ��VðkþÞVðj�Þ

( )

A
: (6.13)

For three-dimensional analysis, the critical energy release rate for bond-based

peridynamics was derived by Silling and Askari (2005) in integral form as
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Gc ¼
ðδ
0

ð2π
0

ðδ
z

ðcos�1z ξ=

0

1

2
cξs2cξ

2

� �
sinϕdϕdξdθ

( )
dz ¼ 1

2
cs2c

δ5π

5

� �
: (6.14)

This integral represents the summation of the work required to terminate all

interactions (micropotentials) between point xðj�Þ (below the fracture surface) and

all of the points xðkþÞ (above the fracture surface) within its horizon, as shown in

Fig. 6.2. The integration in spherical coordinates, ðξ; θ;ϕÞ, results in the volume of

all the points xðkþÞ that are above the fracture surface and within the horizon of point
xðj�Þ. The line integral includes the contribution of all the points xðj�Þ from 0 to the

horizon, δ.
In the case of two-dimensional analysis, the expression for the critical energy

release rate for bond-based peridynamics becomes

Gc ¼ 2h

ðδ
0

ðδ
z

ðcos�1z ξ=

0

1

2
cξs2cξ

� �
dϕdξ

( )
dz ¼ 1

2
cs2c

hδ4

2

� �
; (6.15)

in which h represents the thickness of the material. The integration is performed in

polar coordinates, ðξ;ϕÞ.
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Fig. 6.2 Integration

domain of the

micropotentials crossing

a fracture surface
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Comparing Eq. 6.13 with Eqs. 6.14 and 6.15 leads to

PKþ

k¼1

PJ�
j¼1

xðj�Þ � xðkþÞ
�� ��VðkþÞVðj�Þ

A
¼

δ5π

5
three dimensions

hδ4

2
two dimensions

8>><
>>: (6.16)

and the second term in Eq. 6.12 can be evaluated as

PKþ

k¼1

PJ�
j¼1

PK �

i¼1

Vði�Þ þ
PJþ
i¼1

VðiþÞ

� �
VðkþÞVðj�Þ

( )

A
¼

δ7π2

8
three dimensions

8h2δ5

9
two dimensions :

8>><
>>: (6.17)

Finally, the critical energy release rate can be expressed as

Gc ¼
2π

5
bδ6 þ π2

8
ad2δ9

� �
s2c three dimensions

bhδ5 þ 8

9
ad2h2δ7

� �
s2c two dimensions :

8>>><
>>>:

(6.18)

After substituting for the peridynamic parameters, a; b; and d; the critical stretch
can be expressed as

sc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc

3 μþ 3
4

� �4
κ � 5 μ

3

� �� �
δ

vuut three dimensions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gc

6
π μþ 16

9π2 ðκ � 2μÞ� �
δ

s
two dimensions :

8>>>>>><
>>>>>>:

(6.19)

It is worth noting that the critical stretch is a function of the horizon. The value of

the horizon brings in the effect of the physical material characteristics, nature of

loading, length scale, and the computational cut-off radius. This simple relationship

provides the value of critical stretch for a linear elastic brittle material with a known

critical energy release rate. If the material exhibits time-dependent nonlinear

behavior such as viscoplasticity, a single critical stretch value is not a viable failure

criterion. Foster et al. (2011) proposed the use of the critical energy density as a

failure criterion in rate-dependent situations. For complex material behavior, there

is no simple approach for determining the critical stretch value or critical energy.

An inverse approach can be adopted to extract their critical values by performing

PD simulations of the fracture experiments with measured failure loads. After each

PD simulation with a trial critical value, the PD failure load prediction is compared

with that of the measured value, and PD simulations continue with updated critical

values until the PD prediction and measured values are within an acceptable range.
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6.2 Damage Initiation

In order to include damage initiation in the material response, the force density

vector can be modified through a history-dependent scalar-valued function μ
(Silling and Bobaru 2005) as

tðkÞðjÞ ¼ 2δ ad
ΛðkÞðjÞ

xðjÞ � xðkÞ
�� �� θðkÞ þ bμ xðjÞ � xðkÞ; t

� �
sðkÞðjÞ

( )
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (6.20)

with the dilatation term

θðkÞ ¼ dδ
XN
‘¼1

ΛðkÞð‘Þμ xð‘Þ � xðkÞ; t
� �

sðkÞð‘ÞVð‘Þ; (6.21)

where μ can be written as

μ xðjÞ � xðkÞ; t
� � ¼ 1 if sðkÞðjÞ xðjÞ � xðkÞ; t0

� �
< sc for all 0 < t0

0 otherwise :



(6.22)

During the solution process, the displacements of each material point, as well as

the stretch, sðkÞðjÞ, between pairs of material points, xðkÞ and xðjÞ, are computed and

monitored. When the stretch between these material points exceeds its critical

stretch, failure occurs; thus, the history-dependent scalar-valued function μ is

zero, rendering the associated part of the force density vector to be zero.

6.3 Local Damage

Local damage at a point is defined as the weighted ratio of the number of eliminated

interactions to the total number of initial interactions of a material point with its

family members. The local damage at a point can be quantified as (Silling and

Askari 2005)

φ x; tð Þ ¼ 1�

Ð
H

μðx0 � x; tÞdV0

Ð
H

dV0 : (6.23)

The local damage ranges from 0 to 1. When the local damage is one, all the

interactions initially associated with the point have been eliminated, while a local

damage of zero means that all interactions are intact. The measure of local damage
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is an indicator of possible crack formation within a body. For example, initially a

material point interacts with all materials in its horizon, as shown in Fig. 6.3a; thus,

the local damage has a value of zero. However, the creation of a crack terminates

half of the interactions within its horizon, resulting in a local damage value of

one-half, as shown in Fig. 6.3b.

6.4 Failure Load and Crack Path Prediction

The applicability of the critical stretch as a failure parameter is demonstrated for a

linear elastic material by considering the experimental study conducted by

Ayatollahi and Aliha (2009). They considered diagonally loaded square plate

specimens, shown in Fig. 6.4, to investigate the effect of mode mixity ranging

from pure mode I to pure mode II. They provided the failure loads, crack propaga-

tion paths for each of the specimens, and fracture toughness of the material, KIC .

The edge length of the diagonal square is 2W ¼ 0:15 m and its thickness is h ¼
0:005 m. The length of the crack is 2a ¼ 0:045 m; with an orientation angle of α.
The material has an elastic modulus of E ¼ 2940 MPa, Poisson’s ratio of ν ¼ 0:38,

and fracture toughness ofKIC ¼ 1:33 MPa
ffiffiffiffi
m

p
. This corresponds to a critical stretch

value of 0.089. They also reported the failure loads for varying crack orientation

angles of α ¼ 0� ðMode IÞ; 15�; 30�; 45�; and 62:5� ðMode IIÞ. The center of the
crack coincides with the origin of the Cartesian coordinate system.

The applied load is introduced through a velocity constraint of 10�9 m=s along
the circular regions in opposite directions. The initial crack is inserted in the PD

model by removing the interactions across the crack surface. The force is monitored

by summing the forces between the interactions crossing the dotted black line.

As demonstrated in Fig. 6.5, the crack propagation paths obtained from the

peridynamic simulations and those of the experimental results agree well with each

other for all crack orientation angles. Crack growth initiation angles are also

compared between the predictions and measurements. Again a good comparison

is obtained, as shown in Fig. 6.6. Finally, the failure loads are compared and it is

observed that the failure loads obtained from the peridynamic simulations are

within 15 % of the experimental values for all crack inclination angles, as depicted

in Fig. 6.7. While the peridynamic simulations closely match the experimental

(x,t) 0.5
a bFig. 6.3 (a) All

interactions are intact

(no damage); (b) half
of the terminated

interactions create a crack
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Fig. 6.5 Comparison of experimental and peridynamic crack propagation paths
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Fig. 6.6 Comparison of crack growth initiation angle between peridynamic and experimental

results as a function of crack inclination angle
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results for the pure Mode I and pure Mode II cases, the mixed mode peridynamic

failure loads are higher than the experimental values. A possible reason could be

due to specimen preparation, which does not ensure a sharp crack tip. The inclined

angle of the crack coupled with the shape of the crack tip could in effect change the

crack’s tip orientation, causing the offset observed in the results. Despite this offset,

there exist very good agreement between the peridynamic predictions and those

observed in the experiments, which validates the critical stretch values.
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