Chapter 5
Peridynamics for Laminated Composite
Materials

5.1 Basics

Fiber-reinforced laminated composites are generally constructed by bonding
unidirectional laminae in a particular sequence. Each lamina has its own material
properties and thickness. As shown in Fig. 5.1, the fiber orientation angle, 6, is
defined with respect to a reference axis, x. Fiber direction is commonly aligned with
the x; — axis, and transverse direction is aligned with the x, — axis. A unidirec-
tional lamina is specially orthotropic. Thus, a thin lamina has four independent
material constants of elastic modulus in the fiber direction, E, elastic modulus in
the transverse direction, Eyy, in-plane shear modulus, G, and in-plane Poisson’s
ratio, vqs.

For a unidirectional lamina, the stiffness matrix, Q , relates the stresses
and strains at material point X, in reference to the material (natural) coordinates,

(X],)Cz) as
o1 On O O 11
6 p= |01 0n 0 €2 ¢, (5.1a)
o2 0 0 Qs Y12
where
E v E E
O=—"—, 0n=—2 Op=—2— Qp=GCn, (5.1b)
1 —viovn 1 —vioun; 1 —viovn

with 1/12/E11 = 1/21/E22.

The stress, o;, and strain, &;;, components are referenced to the principal material
(natural) coordinate system, (xy,x;). The inverse of the lamina stiffness matrix, Q, is
referred to as the lamina compliance matrix, S, whose coefficients are given as
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Fig. 5.1 Natural and 2
reference coordinate \
systems for fiber-reinforced

lamina
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Note that the coefficients of the stiffness and compliance matrices recover the
relationship for an isotropic layer by specifying

Ou=0n=«x+u Qun=kK-—u), Q=4 (5.3a)
and
+ K —K 1
St =382 =£ , S = £ , Se6 = —, (5.3b)
4xp 4k u

where x and p are bulk and shear modulus, respectively. The dilatation for a lamina
based on classical continuum mechanics is

0= (e11 +€n). 5.4

The strain energy density, W, based on classical continuum mechanics can be
expressed as

1 1 1
W= FOnen + S 0nEn + F012r (5.5a)

or

W= (Q118%1 +20nene11 + Oty + 0ned,). (5.5b)

N —
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Under general loading conditions, the total deformation of a lamina cannot be
decomposed as dilatational and distortional parts. Depending on the fiber orienta-
tion angle, the lamina may exhibit coupling of stretch and in-plane shear
deformation.

5.2 Fiber-Reinforced Lamina

A lamina can be idealized as a two-dimensional structure, and is thus suitable for
discretization with a single layer of material points in the thickness direction. In the
case of an isotropic material, there is no directional dependence. However, the
directional dependency of the interactions between the material points in a fiber-
reinforced composite lamina must be included in the PD analysis.

As shown in Fig. 5.2, the material point g represents material points that interact
with material point k only along the fiber direction with an orientation angle of 8 in
reference to the x-axis. Similarly, material point r represents material points that
interact with material point £ only along the transverse direction. However, the
material point p represents material points that interact with material point £ in any
direction, including the fiber and transverse directions. The orientation of a PD
interaction between the material point £ and the material point p is defined by the
angle ¢ with respect to the x-axis. The domain of integral H in Eq. 2.22a is a disk
with radius 6 and thickness 4.

The force density-stretch relations given by Eq. 2.48 must reflect the directional
dependence of the PD material parameters for fiber-reinforced composite lamina.
They can be defined in the form

1 Yo —Yw
) (W) = W), XG) = X0:1) = 5400 T (5.62)
‘Y n -y (k>‘
and
1 MORRAY) (5.6b)

) (W) — UG X = XG):1) = = 5Bo) |

Yoy =¥

where Ay and By are auxiliary parameters. As in the case of isotropic
materials, these parameters can be determined by using Eq. 4.1, thus requiring an
explicit form of the PD strain energy density at material point X for a unidirec-
tional lamina.

In light of Eq. 4.2 and the directional dependency of a lamina, the PD strain
energy density can be expressed as
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Fig. 5.2 PD horizon for a ¥
fiber-reinforced lamina and
interaction of a family of
material points
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FT ;\Xm—xm)I( o~ Yw| — X0 (k)\) 0 (5.7)
2
+ by Z (‘YU (k)‘—|xo)—x<k>\) Vi,

in which the PD material parameter a is associated with the deformation involving
dilatation, 0(). The other material parameters, b, br, and brr, are associated with
deformation of material points in the fiber direction, transverse direction, and
arbitrary directions, respectively. The total number of material points within the
family of material point X, in either fiber or transverse directions is denoted by J.
The PD dilatation, G(k), for a unidirectional lamina can be expressed as

dZ]x(, - (‘y@ Yoo = %o = xa])Awo Ve, 58)

in which d is a PD parameter.

After substituting for 8;) from Eq. 5.8 in the expression for Wy, given by Eq. 5.7
and performing differentiation, the force density vector t) ;) () — W), X(j) — X(x), 1)
from Eq. 4.1 can be rewritten in terms of PD material parameters as

Yo T Y

1
) (W) = W), Xg) = X 1) = 5Aw0) ‘y . } (5.92)
o~ Y
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where
Ay(j) = 4ad Awyi)Ow) + 46(ppbr + bpr + ﬂTbT)S(k)(/)7 (5.9p)
[X() = X
with
_J 1 (x() — X)) //fiber direction
Hr = {O otherwise (5.9¢)
and

1 N — L fiber directi
sy :{ (X(j) — X)) Lfiber direction (5.9d)

0 otherwise .

Similarly, the force density vector ty)(uw) — u(), X@) — X(),7) can be
expressed as

1 Yo —Yw
) () — UG X = X():1) = =5BG) 7’ : (5.102)
Yo) = Y
with
5
B(]-)(k) = 4adm[\0)(’f)00) + 45(/1pr + bpr + ,“TbT)S(j)(k)- (5.10b)

Although Eqgs. 5.9b and 5.10b appear to be similar, they are different because the
dilatations ;) and ;) for the material points at X and X(;, respectively, are
different. This formulation can be extended to include the effect of thermal loading
as described in Chap. 4. Oterkus and Madenci (2012) presented such an extension
for the bond-based peridynamic formulation.

5.3 Laminated Composites

The laminae are perfectly bonded in the construction of a laminate; thus, there
exists no slip among the laminae. Aside from the loading conditions, the deforma-
tion of a laminate is dependent on the lamina properties, thickness, and stacking
sequence. There exists usually a resin-rich layer between the laminae; an inherent
source for cracking and delamination. Therefore, transverse normal and shear
deformations especially play a critical role in the initiation and growth of delami-
nation. Also, in the presence of a nonsymmetric stacking sequence, the laminates
exhibit coupling between in-plane and out-of-plane deformation, resulting in
curvature.
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Fig. 5.3 Elevation of each lamina in laminate

As shown in Fig. 5.3, the reference coordinate system (x,y,z) is located on the
midplane of the laminate. The laminate thickness, #, is given by

N
hzzhn, (5.11)

n=1

where N is the total number of lamina in the stacking sequence, and £, is the

thickness of the n” lamina. With respect to the midplane, the position of each
lamina, z,, is defined as

hooal 1
zn:—§+’;hn,+§hn. (5.12)

The presence of the transverse normal and transverse shear deformations in a
laminate can be included in the derivation of the PD equation of motion under the
assumption that material points in a particular lamina interact with the other
material points of immediate neighboring laminae above and below it.

The total potential energy of a laminate with N layers can be expressed in the
form

N 00 N—-1 o N
U= > Wi+ Wi + Wiy =) bl -ufy,  (5.13)

n=1 i=1 n=1 i=1 n=1 i=1 n=1 i=1

T

where W(”i), W("i), and Wﬁ) represent the contributions from the in-plane, transverse
normal, and shear deformations, respectively, and bf’[) is the body load vector.
Using Eq. 5.7, the strain energy density, W€k>, of material point X’Zk) located on the
n™ layer , due to in-plane deformations, can be expressed as a summation of
micropotentials, w;, arising from the interaction of material point X?k) and the

other material points x’(’/) within its horizon in the form
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w . n ’ly noo oyt —+

RN (k)(/)(y(l‘) Yy Yooy = Yo ) .

Wio =523 W onon Vi G119
U RO (Y ) ~ Yoy Yoy = Yo )

in which w);) = 0 for k =j. Due to transverse normal deformation, the strain
energy density, W(”k), of material point x’(’k) located on the n'" layer can be expressed
as a summation of micropotentials, W(k>, arising from the interaction of material

(1) . o (n=1)

point x’(’k) and the adjacent material points, X(Z) and X<Z) ,located on (n + 1)’11 and

(n — 1)™ layers in the form

0 1 1 ~ m 7 1 - "
Wiy=5 > 5 [W<k> (Y&) - y(k))"&) +We (y?k> ~ Y )Vm SENCRN
m=n+1,n—1
Similarly, the strain energy density associated with transverse shear deforma-
tion, W("k), of material point X?k) can be expressed as a summation of micropotentials,
W(k)(j)» arising from the interaction of material point X?k) and the other material

points (within its family), XE;')—H) and x((/'.')_l), andw;(), arising from the interaction of

material point x’(‘].) and the other material points (within its family), XEZ;— D and XEZ)_ 1),
in the form
Wn _1 ilw . n+l1 _ n n+l _ on Vn+1
0= 21 &2 W0\Ye ~Yw-Yw Y0 e
=
<1
~ n n+1 _n n+1 n+1
+ 2370w (Yo = Y5 — ¥ )VJ
=1
1 ~ n—1 _n -1 n—1
+ 2500 (Yo — Y6 Y~ ¥i') Vi
=1
= 1 ~ n—1 n n—1 n n—1
+ 25 %w0 (Y6 = Yoo Yin' = ¥0)Vi
=1
J (5.16)
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Substituting for the strain energy densities, WZ.), WZ’i), and WZ’i), of material point
Xf’i) from Eqs. 5.14, 5.15 and 5.16, the potential energy of the laminate with N layers
can be rewritten as

= 1 - m n A n m m y/n
> ; 5 v (¥ = ) v (v — ¥ [ ViV
N—1 00 00

+1 Zl Zw . ( n+1 _ on n+l _ on )V11+1Vn

5 > 5 OO\YG Yo Yo —Y0) Ve Yo

o0

~ n n+l _n n+1 n+lymn

W0 (Yarym Yo ~ Y )Vo‘) Vi

o0
~ n n—1 n n—1 n—1ymn
+D W0 (y<,~>—y(j> Yo ~ Y )Vm Vi

j=1
(5.17a)
~ n—1 n n—1 n n—1y/n
+_Z;W<f><f> (Y ) Y@ Ya *Ym) 0) V(z‘)”
=

1N_1 1 > ~ n+1 n n+1 n n+lymn
+3 {ZZ[ZWW(M ~ YY) —ym)‘/(f) Vi
~ n n+l _n n+1 n+1y/n
+D W) (Yu>—y<f> Y T Y )Vm Vi)

~ n n—1 _n n—1 n—1y/mn
+D W00 (Yu> Yo Yo ~Y0) )Vo’) Vi)
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or exchanging the order of dummy indices i and j in the fourth summation of layers
results in

1 N—-1 oo 1
323 3 sl ) s ()] viv

| V=1 o o W(z)m(ym Y Yo yg))
=P o Vi Vi

n=li=t j=1 m=nt1n-1 +Wo><i)<y<z>_y<f>vyo> y(,))

N oo
—ZZ(bnw “'Zz)) (i

n=1 i=1

(5.17b)

As necessary for the derivation of equations of motion, the Lagrangian, Eq. 2.11,
can be written in an expanded form by showing only the terms associated with the
material point X’<’k) located on the n"” layer as

1 .
1 > n n n n n n
) Z {W<k>o‘> (Ym) Yy Yoo T Y ) Vi) V<k>} e
=1
1 - n n n n n n
3 > {Wo><k> (y<1f> — Yo Yoy ~ ¥ ')Vm V<k)} s
j=1
1 ~ n+1 n Vn+lvn 1 A n n+1 Vn Vn+1
" (y<k> *y<k>) ) Y T W <Y<k> ~ Y ) )" (k)
1. n — n—1 1. = n—1yn
—3%w (Y<k> Y )V<k)V<k> T W (Yu) y(k)) w Vi
N +1 +1 +1 (5.18)
= n n n n n n
T Zw(km (y@ = Yo Yx) ym)vo’) Vi
<
~ 1 1 1
- Z:Wuxk) (y'(b = Y5 Yo ~ Y )ka)VE’J
J=
o0
~ n n—1 _n —1 n n—1
—Z:Wo)(k) <y<k> —Y5) Yo ~ Y )V<k) )
<
[ee)
~ n—1 n n—1 n n—1yn
T Zw(mm (Y@ ~ Yo Yoy —Y@) 0 Vv
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Substituting from Eq. 5.18 into Eq 2.10 results in the Lagrange’s equation of the
material point x< % located on the n™ layer as

00 00 . 6 n.o__ yn
" _1_2% Z M) an) (YU) Y(k))

P Wk ¢
2 2. (yr&) B y}&)) 8u</<)
) il i o, 8(y<k> y u>)
5 . ., i) ou},
= 5(Y(k) - ym) .
m=n+1,n—1 2 a(y?llc) - y?")) 8u<k)
+ 5 n m 8]_]” (k)
m=n+1,n—1 6(Y(k) - y(’\)) ®
+2 > 3 ouf v
m=n+1,n—1 j=1 a(y(l) y(k)> W
, N 8(y<k) y(’)) v
oy oy g

n n
—bi }V<k> 0,
in which it is assumed that the interactions not involving material point X?k do not

have any effect on material point x( o With the interpretation that the derivatives of

the micropotentials represent the force densities that material points exert upon
each other, this equation can be rewritten as

Pl = i[‘"m)( u(j) — Uy, X'&')"‘?kwf)

—t(] )0 u ,Xk x'gj),z)}vg.)
p> [rézi“'” (uz’/s—u?k),xﬁ)—x("k),r)
+1,n—1
m)(n) m m
=g (e - X(k)vf)} Vib
+2 21: IZ[ (“o —ug “ﬁ)*“?/)”‘?%*"?k)v"?b*X'&)’f)
m=n+1,n—1 j
(m)(n) m e
S (“() UG, W) — ey X — X X() ~ )}Vm
+b, -

(5.20)
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Arising from in-plane deformation, tf’k)( ;) represents the force density that material

point XZ‘) exerts upon material point x’(“k). Similarly, t’Zm x) Tepresents the force density
that material point X?k> exerts upon material point X’(li)' The force density vectors,
rEZ)) ") and rgc"))(") with m = (n+ 1), (n — 1), develop due to the transverse normal
(n)(m)
()

represents the force exerted by material point XZ’}C) upon the material point X?k)’ and

rEZ))(") represents the opposite. The force density vectors SE:;E;? and smg), with

deformation between the material points X?k) and x'<’}<). The force density vectorr

m= (n+1),(n— 1), are associated with transverse shear deformation between

the material points x’g) and x’(’k). The force density vector SEZ;S’;) represents the force
(m)(n)

exerted by material point x’(';.) on the material point x?k>, and SU)I (k) represents the

other way around. These force density vectors are defined as

n fen oo LK Mon ow
‘<k><f>(“<f)—“<k>vxo>—x<k>v’>:QVT > — 0
b\ & (v~ viy)
. (521a)
" , LS e,
‘m(k)(“?w—“'Gw"fk)—"?f)v’):QVT > v — v Vi
WA= (y(k>_yo>)
(m) m n n _1 8W(k)
) (“<k>—“<k>’x<k>—x<k>’t>—5 )
o(vp) ~ ¥io)
i , (5.21b)
r(’”)(") ul. —u Xt —x™ ¢ _l W(k)
() =YX ~ X !) S5 o7
(y<k>*y<k))
and
S('l)(m) u’ —uhu? — X — X XM — Xt
®6) \ B0 ™ Wy Wy T UG XG) ™ X Xk T Xy
_ 1 9w
2
oy~ ¥in)
, (5.21¢)

(m)(n) m 7 m m
SG)(k) (% — U(j), Ul — G, Xy — XG), X — X, ’)
MW (j) k)

1
2 a(y'&a - y'@»)

with m = (n+ 1), (n — 1). As derived in Sect. 2.8, in order to satisfy the balance
of angular momentum, the equation of motion, Eq. 5.20 must satisfy the
requirements of
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(v = ¥i) =t (uty — i xGy = xGyr) ) att =0, (3.222)
H

(o = vte) ™ (ulty = vy Xy — Xty 1) )ttt =0, (5:220)
H

m n (n)(m) m n m n m
((Y I (k)) X S(0) (“m U Yy — UG)» X()
i (5.22¢)

—x?’k>7xz',’(> — X’EW t))dH =0.

It is apparent that these requirements are automatically satisfied if the force

tho) rgzg(m, and SEZ;E;;L), are aligned with the relative position vector of the

vectors,
material points in the deformed state, (y’(’j) - y’(’k)), (y'(’}{) - yz‘k>), and (y’('/’.) — y’(1k>),

respectively. Therefore, they can be expressed in the form

] L, Yo Y
tow =74007, ., 1’ (5.232)
Yo =Y
1 Yo — Y
thw = —5B0wT, —— 1’ (5.23b)
Yo =¥
and
m n
e _ 1 mem Yo " Yo 1 mym)
r(k) —E (k) 7'” o _Ep(k) s (524a)
Yo — Y
mm _ L mem Y0 Y0 1 ()
T =730 T, o 2Pw o (-240)
‘yac)_y(k)
and
W _ L omem Y0~V 1 ()
Swo = 2200 T, o 1 2900 (5.252)
Yo =Y
m n
me _ Lo Yo " Yo 1 mym)
Sow = ~3Pwo 7, —, 1= 290 - (5:25b)

*)) ‘ non
Yo) = Y
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where A’(lk)(j) s B’(Yi)(k) s CEZ))('"), and DEZ;E]'.';> are auxiliary parameters. With these
representations of the force density vectors, the equation of motion for material
point x< 0 located on the n™ layer can be further simplified as

= D [t (o = o ¥y~ i)
j=1
*’6)()( ?)‘“o) k) ~ X(): )]Vm (5.26)
O3 RVt 30 D iV b
m=n+1,n—1 m=n+1,n—1 j=
The auxiliary parameters, A( ) B’Z/)( )CE") m) dDE ;E” can be determined by

using the relationship between the force density vector and the strain energy
density, W,. The explicit expressions for the auxiliary parameters Af’k) 0 and B’(1/> ®)

(m)

are already given by Egs. 5.9b and 5.10b. The remaining auxiliary parameters, C EZ;

and DEZ; 8;0, can be determined by using the relationships

o 1 aWn ym _yn
ri)" = v 0~ (5.27a)
(.y >D Yo ~ Y
and
wey _ L OWh ¥ -
(m)(m) _ (k) UIRICN (5.27b)

R ) o -
Yo —Yw|) 1Yo — Y

in which VE’;() and V(’;.’) represent the volume of material points X?}c) and x’(’]’.)

respectively, and the direction of the force density vector is aligned with the relative
position vector in the deformed configuration. However, determination of the
auxiliary parameters requires an explicit form of the strain energy density function.
For transverse normal and shear deformations of an isotropic and elastic material

(resin-rich layer), the explicit form of the strain energy density functions, W&) and

W("k>, can be written as

2
= iy =XV 28

and
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x7n o o i/
Wiy =bs > Z—MY?})_Y&)’_"

)r%’

m=n+1n—1 j=1 ‘x’(’;) =Xy
in which the PD material parameters by and bg are associated with the transverse
normal and shear deformations of the matrix material, but are yet to be determined
in terms of Young’s modulus and shear modulus. The horizon size in the thickness

m n

0~ Xw

(i = v | = <t = =t

direction is 6, and & is defined as & = \/ 6% + 5" Note that IX(j) — X{| and [x{3) — x{, |
are equivalent quantities. Substituting for strain energy density from Eqgs. 5.28a, b
in Eqgs. 5.27a, b and performing differentiation result in

m n

Yoy — Yin| — ‘X'&» —X("@‘ Yoy — Yo

pgzi“”) — 4byd (5.292)
Xy ~ Xy ‘y ® ~ ¥
and
ym. _yn —|xm —xn
wom o x| [0 Y ’ 0 ~ X
Q) = bso P
X0 ~ X
(5.29b)
~ ¥ =i = e\ | v v
"‘?i) —X{) Yo Y

Comparisons of Egs. 5.24a and 5.29a and 5.25a and 5.29b lead to the determi-

nation of C EZ;W and D EZ;E;T)Z) as

) ‘y<k> - Y?k)‘ - "‘% - X?k)‘

Cli™ = dbys (5.30a)

Xy ~ X

ym ynv X X ym _ynA XM — x"
(n)(m) 0~ Y ’ ) (k)’ ’ ® ~ Y0 ’ )~ X()
Duggy = 4bs0 o B ¥

") (k) (k) ()

(5.30b)
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5.4 Peridynamic Material Parameters

The peridynamic material parameters that appear in force density vector-stretch
relations for in-plane and transverse normal and shear deformations can be deter-
mined in terms of engineering material constants of classical laminate theory by
considering simple loading conditions.

5.4.1 Material Parameters for a Lamina

The PD material parameters, a, d, br, br, and bgr, that appear in the force density
vector-stretch relations for in-plane deformation of a lamina, Eqgs. 5.9b and 5.10b,
are related to the engineering constants by considering four different simple loading
conditions as

1. Simple shear: y, = ¢

2. Uniaxial stretch in fiber direction: €1y = ¢, €3 =0

3. Uniaxial stretch in transverse direction: €;; = 0, €, =
4. Biaxial stretch: €17 = ¢, €3 =

5.4.1.1 Simple Shear: y, =¢

Using Eq. 5.1a, the stresses in the lamina due to this loading are obtained as

o1l Onu O O 0 o1l 0
6n p=|0n On O 0 or on p = 0 3. (531
o1 0 0 Oe] ¢ o1 Os64

Based on Egs. 5.4 and 5.5b, the corresponding dilatation and strain energy
density from the classical continuum mechanics at material point X?k) are

Oy =0 (5.32a)

and

1
Wi = 5 Qs6¢” (5.32b)

As illustrated in Fig. 5.4, the length of the relative position of material points
Yo and Y in the deformed state becomes

[y —y| = [1 + (singcos ¢)¢] X' — x| (5.33a)
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(HI2)¢

g

Undeformed

(5.33b)

n

X(j) = X(x)

Fig. 5.4 Simple shear

= {1 + (Si“‘f’oxk) C"S"’(f)“)M

or

Yo

H ~ Y
Note that if the material points y’(’].) and yf’k) are aligned with the fiber and
transverse directions, the angles become ¢ ;) = 0° and ¢ ;) ;) = 90°, respectively.
(5.34)

For this deformation, the dilatation, Eq. 5.8, is evaluated as
{[1 + (sin ¢ cos ¢){]¢ — £}aH,

5
0 :a’J °
®) L

in which & = [xt) = x{, |
As expected, this loading condition results in no dilatation. The strain energy

density, Eq. 5.7, is evaluated as
1) .
Wiy =a (0) + br(0) + brr J— ([1 + (singpcos p)¢] & — f)de + br(0) (5.35a)

H
(5.35b)

nhs*e? )
12 FT-

or

([1 + (singcos p)¢] & — &)*édédp =
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Equating the expressions for strain energy density from the classical and PD
formulations, Eqs. 5.32b and 5.35b, results in

0066
bpr = ——. 5.36
= (5.36)
5.4.1.2 Uniaxial Stretch in the Fiber Direction: ¢;; =, ¢, =0
Using Eq. 5.1a, the stresses in the lamina due to this loading becomes
o1l Ou¢
6 o =1 01 7. (5.37)
012 0

Based on Egs. 5.4 and 5.5b, the corresponding dilatation and strain energy
density from the classical continuum mechanics at material point x’(7k> are

g(k) = C (5383)
and
1 2
Wiy = EQHZ: . (5.38b)

As illustrated in Fig. 5.5, the length of the relative position of material points
y’('/.) and y’gk) in the deformed state becomes

¥ — ¥l = [1+ (cos* $)¢] ¥ — x| (5.392)
or
n n o 2 n n
Yo = Y| = [1 + (COS ¢g><k>)c5] \x@ = X{y|- (5.39b)
Due to this deformation, the dilatation is evaluated as
o 2
Ouy =d E{ [1+ (cos® )¢] & — &}dH (5.402)
H
or
dhs®
Oy = S (5.40b)
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Deformed

Undeformed

Fig. 5.5 Uniaxial stretch in fiber direction

Equating the expressions for dilatation from the classical and PD formulations,
Egs. 5.38a and 5.40b, results in

2
d=—=. 5.41
whs’® G4D
The strain energy density for this deformation is evaluated as
2 - 4 2 n n 2 n
W =al+bp ) ((COS ¢o><k>>4 ‘Xm ~ X D Vi)
0 2 .
+ brr JE ([1+ (cos® ¢)¢] & — &) dH + br(0)
H
or
2 2 ! n n ”h54€2
Wi = al®+be 38 Y ([xty =iy |) vy + 5 b (5.42b)
=1

After substituting for bpr from Eq. 5.36, it takes the final form

2
vm> e (5.43)

X() — Xy

J
W = al® + br 60 (Z

=1

2
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Equating the expressions for strain energy density from the classical and PD
formulations, Eqgs. 5.38b and 5.43, results in

J
1
ato (Z x5 =iy Vo>> br = 5 (Qu1 — 3Qs). (5.44)
=1

5.4.1.3 Uniaxial Stretch in the Transverse Direction: ¢ =0, ey =

Using Eq. 5.1, the stresses in the lamina due to this loading become

o11 012¢
06 p =1 00 ;. (5.45)
012 0

Based on Egs. 5.4 and 5.5b, the corresponding dilatation and strain energy
density from classical continuum mechanics at material point X are

Oy = ¢, (5.46a)
1 2
Wi = 2Q22§ . (5.46b)

As illustrated in Fig. 5.6, the length of the relative position of material points
Y and Yk in the deformed state becomes

Iy =yl = [1+ (sin’ ¢)¢] X' — x| (5.472)
or
Yo ~Yiy| = {1 + (Sin2 ‘f’o‘)(k))é“} X{() = X |- (5.47b)
For this deformation, the dilatation is evaluated as
o .
O =d] < ([1 + (sin*p)¢] & — &)dH (5.482)
H
or
dhs®
O = z g. (5.48b)
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T

(HI2)G |

Deformed

L Undeformed

Fig. 5.6 Uniaxial stretch in transverse direction

Equating the expressions for dilatation from the classical and PD formulations,
Egs. 5.46a and 5.48b, results in

2
d= — (5.49)

As expected, the PD parameter d obtained from the uniform stretch in the fiber
direction, Eq. 5.41, and that in the transverse direction, Eq, 5.49, are equal to each

other and are independent of material properties.
The strain energy density for this deformation is evaluated as

Wiy = a$® + bp(0) + brr Jg ([1+ (sin>p)] & — &)°aH

H
VC‘))

o, whs*e? 5 [
Wy =al” + ber ) +br 6 Z

J=1

(5.50a)

X() = X(x)

7
+ br 8¢ (Z
=

or

x’(’/-) — x’(“k> V&). (5.50b)
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After substituting for bpy from Eq. 5.36, it takes the final form

J
Wy =al®+ Q66§ ——+br 5(:2(

X)) - ‘vm> (5.51)

Equating the expressions for strain energy density from the classical and PD
formulations, Egs. 5.46b and 5.51, results in

1 J
5(022 = 306s) =a+ 5(2 ’xgj) —x{y ->> br. (5.52)
j=1

5.4.1.4 Biaxial Stretch: ¢;; =, e, =

Using Eq. 5.1a, the stresses in the lamina due to this loading become

o1 Oun O O ¢ o1l (Q11 + 012)¢
6 =0 On O pordon p =< (Qin+0n) . (5.53)
o12 0 0 Qs O o12 0

Based on Egs. 5.4 and 5.5b, the corresponding dilatation and strain energy
density from classical continuum mechanics at material point X are

Oy =2¢ (5.54a)

and

1
Wiy = 2 (Q11 +2012 + 00)2%. (5.54b)

As illustrated in Fig. 5.7, the length of the relative position of material points
Yo) and Y in the deformed state becomes

Iy —y| = [1+ (cos® ¢ + sin’¢)¢] [x' — x| (5.55a)

or

= [1 + (cos2 doyw + sin2¢(/)(k))4 (5.55b)

X() = X |-



96 5 Peridynamics for Laminated Composite Materials

(H2)C T

Deformed

| Undeformed
X |
|
__________________________________ :
Fig. 5.7 Biaxial stretch
For this deformation, the dilatation is evaluated as
1)
Ouw) = dJ ([T +¢]¢& = &)aH (5.56a)
né
or
Oy = ndhs*C. (5.56b)

Equating the dilatation contributions from the classical and PD formulations,
Egs. 5.54a and 5.56b, also results in the same value of the PD parameter

(5.57)

For this deformation given by Eq. 5.55b, the strain energy density is evaluated as

J=1

J
Wy = 4al® +bp £ (Z ("‘Z‘) = X{j ) V6‘>>
1 () =t )V'o">> :

(5.58)
2whs*¢?

7
brr

J

+ b (



5.4 Peridynamic Material Parameters 97

After substituting for bpy from Eq. 5.36, it takes the final form
J

Wi = 4al® +bp %5 (Z ( X() ~ X(v) ) 'G))
=1

x(/ — X D Vi >

J

+4Q66¢” + br(?s (Z <
j=1

Equating the expressions for strain energy density from the classical and PD

formulations, Egs. 5.54b and 5.59, results in

— X{) ) VC‘))

J
+br8 (Z (Jx) = xto)) VE’») :
J=1

The remaining peridynamic parameters in the strain energy density expression
can now be evaluated by using the previous two relations obtained from the uniform
stretch in the fiber and transverse directions, Eqs. 5.44 and 5.52, in conjunction with
Eq. 5.60, as

(5.59)

N —

J
(011 +2012 + 02 —80¢6) = 4a+brd <Z ( ’x’(’j)
= (5.60)

1
=5 (Q12 — Qes ) (5.61a)

by = (Q11 — Q12 — 20¢6) (5.61b)

N )
20 2 x 0
j=1

(022 — Q12 — 20¢0)

) (k)

br=— , (5.61¢)
25<4_ XG) ~ Xy m)
j=1
6066
bpr = —. 5.61d
L ( )

For bond-based peridynamics, the parameter a associated with dilatation and the
parameter by associated with the transverse direction should both vanish, thus leading
to constraint equations, previously derived by Oterkus and Madenci (2012), as

Q12 =06 and QO =30i. (5.62)
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Ply # m

1+ c)(/zm;r/zﬁ’)”

Ply # n

ndeformed Undeformed configuration Deformed configuration

Fig. 5.8 A composite laminate subjected to transverse normal stretch

The nonvanishing peridynamic parameters, by and bgr in the fiber and remaining
directions, respectively, also recover the expressions derived by Oterkus and
Madenci (2012) as

— 6
b]: = (Qll Q22) and bFT = %

N
26 (}2 ”"&) = Xy ‘ VU))

For isotropic materials with Q1; = Qxn =k +u, Q12 = (k — ), and Qgs = U,
these peridynamic parameters recover Eqgs. 4.52 and 4.53 as

(5.63)

a= (5.64)

(K—zﬂ),b]?:o, bT:Oand bFT:b:—
h

N —

and the parameter d is also equal to that of isotropic material given by Eq. 4.47.

5.4.2 Material Parameters for Transverse Deformation

The peridynamic material parameters by and bg in the force density vector-stretch
relations, Egs. 5.29a, b associated with transverse deformation in a laminate are
determined by considering two simple loading conditions as

1. Transverse normal stretch: £33 = ¢
2. Simple transverse shear: y;3 = {

5.4.2.1 Transverse Normal Stretch: £33 = {

In order to obtain the peridynamic material parameter by, the laminate is subjected to
a uniform transverse normal strain of {, as shown in Fig. 5.8. The corresponding
strain energy density from the classical continuum mechanics at material point X ;) is

- 1

Wiy = 5 En &, (5.65)

with E,, representing the Young’s modulus of matrix material.


http://dx.doi.org/10.1007/978-1-4614-8465-3_4
http://dx.doi.org/10.1007/978-1-4614-8465-3_4
http://dx.doi.org/10.1007/978-1-4614-8465-3_4
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The relative distance between the material points at x% and xE’k>, before and after

deformation, can be expressed as

m n 1
‘X(k) - X(k)‘ =3 (A + ha) (5.66a)
and
‘yz’i) —¥Yp| = T+ OXG) — Xy ‘ (5.66b)

Defining & = Xﬁ) — Xf’k) and noting that its length is equal to half of the sum of

the two neighboring ply thicknesses, i.e., & = |&| = (h,, + h,)/2, withm = (n + 1),
(n—1), and substituting for the relative position vector, from Eq. 5.66a, in the

expression for the strain energy density, W;y, Eq. 5.28a, at material point xf’k) result in

N 1 . -
Wity = 38| (st + BVES + (ot + )V (5.67)

Equating the expressions for strain energy density from Egs. 5.65 and 5.67
provides the relationship between the PD parameters, by, and the Young’s modulus
of the matrix material as

Em
by = . (5.68)

3|:(h,,+1 —+ h")vzlk-;—l + (h,171 —+ /’ln)VZ'k—>1

5.4.2.2 Simple Transverse Shear: y;; =¢{

Similarly, the peridynamic material parameter bg is evaluated by subjecting
the laminate to a simple transverse shear loading of ¢, as shown in Fig. 5.9.
The corresponding strain energy density from classical continuum mechanics at
material point X is

- 1
Wiy =5 Gnl?, (5.69)
with G, representing the shear modulus of matrix material.
As shown in Fig. 5.10, the relative distance between the material points at x’(’})

and x;’k), before and after deformation, can be expressed as

(o + ha)*

R

x'('/'.) — X?k) (5.70a)
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Undeformed

Fig. 5.9 A composite laminate subjected to simple transverse shear

C(h,+h,)/2

e /—— Ply # m T '
TN Py A ——
(hm;hn) e _\,X;) (hn;hn) AN
— — Ply # n e Yo———
Xy = Yoo
Undeformed configuration Deformed configuration

Fig. 5.10 Position of material points before and after deformation due to simple transverse shear

o (i + hy)?
‘yr(',l-) = Y| =\t + %7 (5.70b)
in which £ can be obtained from the law of cosines as
2 o (et hy)®
=0+ T—Eg(hm—i—hn)cos(n—qﬁ). (5.71)

Thus, the distance between x'(';) and x?k) in the deformed state can be rewritten as

¥ - ¥%

2
= (42 + M) 4 ¢ (B + hy) cos(h). (5.72)
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In deriving this expression, the ¢ ?(h,, + hn)2 /4 term is disregarded with respect

to (hy, + hn)2 /4 because ¢ is much less than unity. Also, this expression can
be further simplified by using the square root approximation because ¢( h,, + hy)

cos(p) < (2 + (hy + hy)* /4), leading to

hm hﬂ ? 4 hm hn
2y U o)™ L8 (T 4 ha) cos() 573
4 B thy)
N
Thus, the extension between these material points is obtained as
m n m n 4 (hm + hn) COS(¢)
’y 0~ Yw|~ ‘X(;‘) —Xp| = : (5.74)

2/ 1 il

Similarly, the distance between the material points XE';C) and x’(’l.) before and after
deformation can be obtained as

2
x x| /e +M (5.752)
and
2
oy (it )" L (i + ) cos(9) (5.75b)

4 / ot )
2 EZ_’_( 7 )

in which the minus sign emerges due to the contraction between material points XE’;{)
and XE”.) in the deformed state, whereas extension occurs between material points x’('})

and x’(’k). Thus, the contraction between these material points is obtained as

m

Y<k>—y'fi>‘ — |

m n

| = &+ hy) cos(¢p)
) ~X() N

Prior to substituting for the stretch between the material points X'{;) and X’(’k) and x%

(5.76)

and X'Zi), the strain energy expression can be rewritten in a slightly different form as

_ B+ hn\*
Wi, = bs Z: 1(_2 >
m=n-+1,n—

2

O I 1 A B e T A B A O
x Z o =D - = Vi
=UXG) T X 2 2

(5.77)
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Fig. 5.11 Change in angle

after deformation
Deformed

Undeformed

in which the ratios in the summation can be interpreted as the change in angle from
/2 provided that |x{j — x?k)| > h and |x{) — XZL/‘)| > h, as depicted in Fig. 5.11.
With this interpretation, this expression can be rewritten as

W — b Z hy + hy, 2i 6 [(m)(n)+ (m)(n)rvm (5.78)
® =7 2 > T 1 1%0 TPow | Vi
m=n+1,n—1 Jj=1 ‘X(/) — X(k)

with

(m)(n) _ ‘y?;) B y?’c)‘ B ‘Xr(';) - X’(lk)

%)) (ot (5.79a)
2
o Wi Y0 5 -
i = (it = (5.79b)
2

The average change in angle, (pg;lg,g), corresponding to the shear strain in

classical continuum mechanics becomes
mm _ X )(k)
PG — 2

(o = vio| = e ==t |) = (v = | -

(o + n)
Substituting for the stretch between the material points, XE") and x?k) and x’(’,’c) and

J
x’('].), the average change in angle, (pEZé)é';), for the applied simple shear loading can be

(m)(n) |, alm)(n)
ny 1A

) (5.80)

Xl ~ X()

determined as
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) _ € cos(¢p)

Pwn = T
4

Therefore, the strain energy density function can be rewritten in terms of the
average change in angle as

(5.81)

[« 7}

(m)(m)]?
{%km } o (582

2 o
Wiy =4bs > <hm;h> 2

=t Ln—1 -1 |x" —x”
m=n+1,n J ’ () (k)

or
hn+1 + hy, & S (nt+1)(n) n+1
Wig) = 4bs ( 7 ) oo [ P () } Vi
=1 X X
(5.82b)
bt A\ &8 (=11
+( ) > DI e | OV AT
J=1 ’Xo‘) Xy
or
Put + hy\ > & 22 cos* ()
= 48%bgs ( + ) ynit
2 z_:[gz (lzn+1+hn)2r/2 W
2
(5.82¢)
n—1 + hy > - 22 cos?(¢)
Vi
< Z: |: (hn 1+/1) i|3/2 (/)
2
Converting summation to integration leads to
o 21
422 3 n+1+h : 2 cos? 20
Wiy = 4L"bso +1+h 2} 72 dldg
00
(5.83)

2z

S
RN A
+<’ L ) ” “cos’(¢) 5 ldtdg
b0 h,, 1+h )2i|
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Performing the integration results in

- (hn+1 + hn)

hnst + h> 8 oty

WP = 4%bgns <
(k) 2 X 2
52 + (’11-12+hn)

(5.84)

2
) - (hnfl +hn)

82 4 (11,1,|2+h,1)2

+(/’l”1 +h”>3 52 _"_2(}'[”7[2“1’}7”
2

Equating the expressions for strain energy density from Eqgs. 5.69 and 5.84
provides the relationship between the PD parameter by and the shear modulus of
the matrix material as

bs = G . (5.85)

(hn+1 + hn>3 52 + 2(h71+l+h”)2 _ (hn-H + hn>
2 & 4 (st n+12+h,,)2

87d

hn h 3 52 2 (hu= EVAY
+< LT ) i ( ) - n 1+h

52 iy l+h

5.5 Surface Effects

The peridynamic material parameters a, d, br, br, bgr, by, and bg that appear in the
peridynamic force-stretch relations are determined by computing both dilatation
and strain energy density of a material point whose horizon is completely embedded
in the material. The values of these parameters, except for @, depend on the accuracy
of integration and domain of integration defined by the horizon. Therefore, the
values of these parameters will be different for a material point located near a
boundary, Fig. 5.12. Thus, these parameters need to be corrected near the free
surfaces.

Since the presence of free surfaces is problem dependent, it is impractical to
resolve this issue analytically. The correction of the material parameters is achieved
by numerically integrating both dilatation and strain energy density at each material
point inside the body for simple loading conditions and comparing them to their
counterparts obtained from classical continuum mechanics. After determining the
correction factor for each parameter, the force density vector is modified in the PD
equations of motion.
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Fig. 5.12 Surface effects in Surface
the domain of interest

o Point 2-5
ééo

In order to determine the surface correction factors for the peridynamic
parameters d and by (¢ = F,T,FT), two simple loading conditions are achieved
by applying uniaxial stretch first in the fiber direction, and then in the transverse
direction, i.e.,e11 # 0,2 = ¥, = O(showninFig. 5.13) and e, # 0, €11 =y, = 0.
The fiber and transverse directions coincide with the axes of the natural (material)
coordinate system, (1,2).

The applied uniaxial stretch in the fiber and transverse directions is achieved
through a constant displacement gradient, Oul/0x, = ¢ with (a=1,2). The
displacement field at material point x arising from these two loading conditions
can be expressed as

u{(x):{g—jjx1 0} and ug(x):{o ‘Z—xz} (5.86a,b)

Due to these displacement fields, the peridynamic dilatation term, 0§D (xf’i)), at

material point X?i) can be obtained from Eq. 5.8 as

n

N
5
07 () = Y —— |y = | =[xty — ¥y

X() ~ X0

)A;’,.) GV 68D

=1

in which N represents the number of material points inside the horizon of material
point X?). The corresponding dilatation based on classical continuum mechanics,

i

HgM (X?i))’ is uniform throughout the domain, and is determined as

0 (X)) = €aa = ¢, with (@ = 1,2), (5.88)

l
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_____ -

Deformed configuration

Undeformed configuration

_____ -

Deformed configuration

Undeformed configuration

Fig. 5.13 Material point x in lamina subjected to uniaxial stretch: (a) a truncated horizon, and (b)
far away from external surfaces

The dilatation correction term can be defined as

GgM x”.
Dagy — Spit) : : (5.89)
95 (XE’,)) d 5%: s A" \
WG O W

Maximum values of dilatation occur in the loading directions that coincide with
the natural coordinates 1 and 2, respectively.
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The peridynamic strain energy density at material point X?i) can be obtained from
Eq. 5.7 as

PD PD PD PD PD
W, (Xni)) =W (X?i)) + Wor (Xni)) + WaFT(Xni)) + Wer (Xni))7 (5.90)
where (a = 1,2), W(fé) is associated with the dilatation term, and W(ZQ , Wg? , and
WZQT represent contributions from the deformation in the fiber direction, transverse
direction, and arbitrary directions, respectively. Based on Eq. 5.7, each of these
terms is expressed as

2
Wag (X)) = a(ei’)(x'(,«))) : (5.91a)
PD
Wor (X(y) = br ” (’yU ), ‘xm >) Vi, (5.91b)
I
2
Wer (X(y) —bT5Z (|9 =¥t = oy =] ) Vi 5910
XG) ~ X
PD n n n n 2 n
WaFT Xz - bFT‘SZ e ( Yo = Yo | — ‘Xw — X)) ) V(I) (5.914d)
X() — X0

Based on classical continuum mechanics, the strain energy density
corresponding to uniaxial stretch in the fiber, W (x ()) and transverse directions,

WEM (x (i)), is uniform, and can be determined from

1
WM (x) = 5 Qual® (a = 1,2), (5.92)
which can be decomposed as

WEM(Xni )= W(%w( X ) + ngy(xni)) + Wg;w(xni)) + W%(X”g% (5.93)
where Wgé” is associated with the dilatation terms, and W(f,é” s WSYM , and W(f%
represent strain energy densities arising from the deformation in the fiber direc-
tion, transverse direction, and arbitrary directions, respectively. From Eq. 5.42b in
conjunction with Eqgs. 5.61a, b, d for uniaxial stretch in the fiber direction, i.e.,
(a = 1), each strain energy density component can be expressed as

chéw(xz ) == (012 — Q66) %, (5.94a)

NI»—‘
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1
chéu("(l )= E(Qll — Q12 — 2066)¢%, (5.94b)
Wi (x(y) =0, (5.94¢)
WL (x()) = Qeaé (5.94d)

From Eq. 5.51 in conjunction with Eqs. 5.61a, c, for uniaxial stretch in the
transverse direction, i.e., (@ = 2), each strain energy component can be expressed as

W' (xy) = %(le — Q66)C%, (5.952)
W5 (x() = 0, (5.95b)
W' (x) = %(sz 012 — 2066)%, (5.95¢)
Wi (x(y) =5 Qsae“ (5.95d)

Because the dilatation term, 677 ( ) is corrected with a dilatation correction

term in the peridynamic computation, 1t is expected that Eq. 5.91a is automatically
corrected for this loading condition. Hence, the correction is only necessary for the
terms including parameter by, with ¢ = F, FT, T. For the uniaxial stretch in the fiber
direction, the correction terms for these parameters can be defined as

(011 — Q12 — 20Q66)2 (5.96a)

)'viy

N—

)| = Ity = %

Sirgy = 1, (5.96b)

%Q66:2 (5.96¢)

) Vi
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For the uniaxial stretch in the transverse direction, the correction terms for these
parameters can be defined as

Sariy = 1, (5.97a)
ch;vz (Xn,))
0= W)
_ 100 — 012 — 2066)8° (5.97b)
N S
bro o, x,(,/_)l% (s =¥t =ty =) v

SaFr(i
O = WIB (x];)
B %Q66§2 (5970)
= 7 2 ’
1 n n n n i
bFT512W< Yo =Yool = X0 _X<f>) Vi
[0

With these correction factors, a vector of correction factors for the integral and
summation terms that appear in dilatation and the strain energy density at material
point X?) can be written as

i

=

n n r T
8y (X(y) = {81<d>(x 1)s 82(a) (X ,-))} = {Diw: Do} (5.982)

—

¥ T T
gy (X(y) = {gl(b)é(x?j))7 gz(b)e(X'(’,»>)} = {Swp), S} (5.98b)

with ¢ = F, FT,T.

These correction factors are only based on loading in the fiber and transverse
directions. However, they can be used as the principal values of an ellipse as shown
in Fig. 5.14 in order to approximate the surface correction factor in any direction.
Arising from a general loading condition, the correction factor for interaction
between material points xf’,.) and x’(;), shown in Fig. 5.15a, can be obtained in the

direction of their unit relative position vector, n = (x(; —X{;))/[x{; — X[ =
{n1, m}".

A vector of correction factors for the integrals in the dilatation and strain energy
density expressions at material point x’(’/.) can be similarly written as

n n n T T
8a)() (X)) = {gl(d)(x(j))a gz(d)(X(;))} = {Diy, Dayy} (5.99a)
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’<
/ !

£20) 1)

Fig. 5.14 Construction of an ellipse for surface correction factors

gl
o) \/

Fig. 5.15 (a) PD interaction between material points at x'(’l.) and x’gj), and (b) the ellipse for the

surface correction factors

n n n T T
8y (X()) = {gl(b)l(xg))a gz(b)e(xm)} = {S1), S0} (5.99b)

These correction factors are, in general, different at material points x’(’l.> and x'(’].>.

Therefore, the correction factor for an interaction between material points x?i) and

X'Zj) can be obtained by their mean values as

_ e _ T 8an + 8w
Ba)iG) = {g<d><i>o>1vg<d><f>u>z} - 2 (5.1002)
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and

_ _ _ T 8wy + 8wy
Bowon = {Evwon Eorone) = 3 ) (5.1000)

which can be used as the principal values of an ellipse for the interactions other than
in the fiber and transverse directions, as shown in Fig. 5.15b. The intersection of the
ellipse and a relative position vector, n, of material points X’<’l.) and x’(’/,), provides the

correction factors as
B 2 - o\ —1/2
Gy = (|:n1/g(d)(i)(j)l:| + {nZ/g(d)(,’)(/)z} ) (5.101a)
and
—1/2

2 2
Gy = ([m / g(h)[(i)(i)l} + {nz / g@,)(g(,-)(,-)z} ) : (5.101b)

After considering the surface effects, the discrete forms of the dilatation and the
strain energy density are corrected as

P
1 5 n n n n
Oy =dY_Gawy 7 ( Yo — ¥ "‘0) —X() )
= X~ X0
(5.102a)
o0 " Yo X T Xe v,
Yo ~ Yol o~ X6
2 G 1
Wiy = adty +brd Y _Goro
= X0 X0
n n n n 2 n
x (Ym Yo |~ X0 — X ) ()
N 1
+b16 Y _ Gy T
=1 Xo X0 (5.102b)
2
x (Ym Yo~ X0 — X0 ) )
a 1
+ brrd Z G n)Fr()() - -
= o X0
n n n n 2 n
x ( Yo Yo | ~ X6 ~ X0 ) Vi) -
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The peridynamic material parameters by and bg for a material point located on
the bounding laminae, such asn = 1 orn = N, also require correction. However, the
correction factors for by and bg are not necessary for material points X'Zi) forn # 1,N
because they are imbedded in the laminate, as shown in Fig. 5.3.

Simple loading conditions of uniform transverse stretch, du}/0x3 =, and
simple transverse shear, Ju}/0x3 = {, are applied to the laminate separately to
determine the correction factors.

The corresponding displacement fields at material point x as a result of these
loading conditions can be expressed as

i ={0 0 Jx} (5.103a)
and
u§:{§%x3 0 0}. (5.103b)

The PD strain energy density of material point X?l.) with n = 1, N due to these

loading conditions, respectively, can be expressed as

1
() = ot h 4
1
PD N 1 2 2vn—1 (5 0 a)
W (x(,.)) = 2wl + bV
and
Buit + B\ > = £2 cos? ()
PD 1 _ 2 n+1 n n+1
Ws (X@) =% bS( 2 ) ;WJF (hn+1+hn)zv(1'>
! 2 (5.104b)

N

PD o 2 hnfl + hn g 62 COSZ(d)) n—1
Ws (Xl(\f)) =4 bS( 2 > ;gz N (h,,,|2+h,,)2 Vo)

The corresponding strain energy density expressions based on classical contin-
uum mechanics can be expressed as

1
WM (x'g,.>) =3E.¢ n=1N (5.1052)
and

1
WM (xf’i)) =3Gu®  n=1N (5.105b)
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Therefore, the correction factors associated with the material parameters, by and
bs, at material point x’(’l.> for n = 1, N can be defined as

s w (5.1062)
3(i) W?D (’%‘)) ’
and
g W) (X?i)) (5.106b)
S(i) W§D (X?I)) ’ ’

Correction factors for by and by are not necessary for material points X?i) for

n 7é 1, N. Therefore, the correction factor for an interaction between material points
for n=1,N and x for m # 1,N can be obtained by their mean values as

gg’g)(’” (S" )/2 forn=1,Nandm # 1,N

DN , (5.107a)
S;Zi)m =1 forn,m#1,N

cn)(m) _

st (s +1)/2 for n = 1,Nandm # 1,N

j)’(“)) 50 (5.107b)
S"i>”,' =1 forn,m#I1,N

After considering the surface effects, the discrete form of the strain energy
density functions WE’I.) and W?i) are corrected as

on a(n)(m) m n m n 2 m
Wiy = bv 21: 530 (’y<,ry,> *”‘(fr"m) Vi (5.108a)
m=n+1,n—
and
. o cln)(m)
Wiy=bs > > S50 Myﬁ) Yo ’Xm X?z’)D
m=n+1,n—1 j=1 (5108b)
m n n 2 m
(‘Ya)—ym —‘Xm—"w )} ()
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