Chapter 4
Peridynamics for Isotropic Materials

4.1 Material Parameters

The auxiliary parameters, C in Eq. 2.43 and A and B in Eq. 2.48, can be determined
by using the relationship between the force density vector and the strain energy
density, W), at material point £ given by Eq. 2.49 in the form,

W Yo —Yw

(4.1)
’Ym —y(@‘) ‘ym —y<k>’
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tw) (Wg) — v, Xg) — X, 1) = Voo (

in which V;) represents the volume of material point j, and the direction of the force
density vector is aligned with the relative position vector in the deformed configu-
ration. The material point j exerts the force density t(;);) on material point k.
Determination of the auxiliary parameters requires an explicit form of the strain
energy density function.

For an isotropic and elastic material, the explicit form of the strain energy
density, W), at material point Xy can be obtained by generalizing the expression
given by Eq. 3.15 as

Wiy = abfyy — a2 0 Ty + a3 Ty
N 2
5w (v = | = %o = xwl) = T [xg) = xw]) vy,
Jj=1
42)

where N represents the number of material points within the family of x,. The
nondimensional influence function, w;) = w(|X() — X()|), provides a means to
control the influence of material points away from the current material point at Xx).
The temperature change at material point is Ty), with arepresenting the coefficient
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of thermal expansion. Similarly, the explicit expression for 6 can be obtained
from Eq. 3.21 in a general form as

) Yo ~Yw

- (xg) = X@) Vi +3aTy), (43)
‘y 0~ Yw ‘

N
O =d Y wig) (Swm —aTw
=

in which the PD parameter d ensures that 6;) remains nondimensional. The PD
material parameters, a, a;, a3, and b, in Eq. 4.2 can be related to the engineering
material constants of shear modulus, x, bulk modulus, «, and thermal expansion
coefficient, a, of classical continuum mechanics by considering simple loading
conditions.

After substituting for 6 from Eq. 4.3 in the expression for W, given by
Eq. 4.2, and performing differentiation, the force density vector
t () (u@ — Uy, X() — X(k)s t) can be rewritten in terms of PD material parameters
as

LYo ~Yw
) (W) = U, Xg) = Xge:1) =3 sy~ 0] (4.42)
0~ Y
with
)~ ) — 1
A= dwid d O T <a9<k> 5% Tw
Vo — vl X0 = Xw] 2
Y (4.4b)

+b((’y<,> - Y(k)’ = [xg) = x) |) —aTy[xg - X<k>|)

Similarly, the force density vector t() (uw — w(),X@ — X)) can be
expressed as

LYo = Yw
) () — G, Xy = X)) = —5B———— (4.52)
’Y DIRAG! ‘
with
Yo =Y Xw —X() 1
B = 4w d Toe — x| ady) —5ax Ty
b =] o= (4.5b)

+b((‘y(k) - y@‘ =[x — X(i)D —aTy) [x@) — Xm\)
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Although Eqs. 4.4b and 4.5b appear to be similar, they are different because the
values of (9<k>, Tix) and (9(1), T;) for the material points at X(k) and X(j), respectively,
are not necessarily equal to each other. However, A and B must be equal to each
other for the bond-based PD theory. Therefore, the terms associated with ;) and
0(j in Egs. 4.4b and 4.5b must disappear, thus requiring that

ad = 0. (4.6)

Thus, the parameter C in Eq. 2.43 becomes

€= dbwy ((‘yﬁ/ (k)’ — |xp) - X(k)|) —aTw [xG) — x<k>‘). 4.7)

The force density vector can be rewritten as

twg) = 26w ((’ym - Y<k>’ = [xg) = xw \)
Yo = Yw (4.8)
—aTy) [xg = xp|) —7
’Ym - Y<k>‘

Based on Eq. 2.43, the bond-based force density vector between the material
points at X(;) and x(;) can be obtained as

Ym Y

4.9)
’-‘/ 0) >‘

fuyg) = 4wy [xg) — Xw (Swe — aTw

Comparing this expression with the bond-based definition of the force density
vector, Eq. 2.45 leads to the explicit form of the influence function as

c 1

Wi = &L 4.10
(©)() 4b X() — X(b) ( )

Performing dimensional analysis on Eq. 4.2 requires that parameter b have
dimensions Force / (Length)’ whereas the parameterc = c¢; in Eq. 2.45 has dimensions
Force/(Length)® . Therefore, the ratio of ¢/b has a dimension of Length,
rendering the influence function to be nondimensional. The horizon, §, can be
taken as the Length dimension to include the influence of other material points
within a family. Thus, the influence (weight) function for the state-based
peridynamics becomes

LGl R “4.11)
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Thus, the ratio of ¢/b is established as

c
—=46. 4.12
5 (4.12)

Substituting for the influence function results in the final form of the expressions
for the force density vectors

A (i 1
twg) = 25{07 B 10/ >(/>< ), (a6<k) — Eaz T(k)) + b(S(k)(,') — (ZT(k))}
k

[x() —x
RUAE N 4.13)
‘hn_yw
where the parameter, A (;), is defined as
Yoy X(;) — X

For the bond-based PD theory, the dilatation term 6;) must disappear, resulting in

y
twy ) = 2517(5‘(@0-) — aT M 4.15)
N

Based on Eq. 2.43 in conjunction with Eq. 4.12, the bond-based force density
vector, f *) () in Eq. 2.44, becomes

ym Y

‘ , (4.16)
Yo = Yw

fu) = c(swy —aTw

where Ty ) = (T(j) + T(x))/2- This expression is the same as that given by Silling
and Askari (2005), who comed the term “bond-constant” for the parameter ¢ for
bond-based peridynamics.

Although all structures are three dimensional in nature, they can be idealized under
certain assumptions as one dimensional or two dimensional in order to simplify the
computational effort. For instance, long bars can be treated as one-dimensional
structures. Similarly, thin plates can be treated as two-dimensional structures. The
PD material constants must reflect these idealizations. A two-dimensional plate can be
discretized with a single layer of material points in the thickness direction. The
spherical domain of integral H becomes a disk with radius 6 and thickness /.
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A one-dimensional bar can be discretized with a single row of material points.
The spherical domain of integral H becomes a line with a length 26 and cross-
sectional area of A.

4.1.1 Three-Dimensional Structures

For three-dimensional analysis, the strain energy density based on classical contin-
uum mechanics can be obtained from

(1) E(0); 4.17)

in which the stress and strain vectors ;) and g are defined as

6y ={0ut) Opw) Oz Ou Ok Tnw b (4.182)
and

T _

By = {Eal) Enk) Ex(0) Ty Te® Yok - (4.18b)

For an isotropic material with bulk modulus, x, and shear modulus, y, the stress
and strain components are related through the constitutive relation as

G(k) = CS(k), (419)

where the material property matrix C is defined as

k+ (4u/3) x—(2u/3) x—2u/3) 0 0 0

k— (2u/3) x+4u/3) x—2u/3) 0 0 0

_ | k= (2u/3) k= (2u/3) xk+(4u/3) 0 0 O
C— ; o 0 W0 ol (4.202)

0 0 0 0 u 0

0 0 0 00 u

with

= E du= 4.20b
K—m an ﬂ—m ( )

Two different loading cases resulting in isotropic expansion and simple shear
can be considered to determine the peridynamic parameters a, a», as, b, and d in
terms of engineering material constants of classical continuum mechanics.
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Fig. 4.1 A three-dimensional body subjected to isotropic expansion

As illustrated in Fig. 4.1, a loading case of isotropic expansion can be achieved
by applying a normal strain of { in all directions and a uniform temperature change
of T. Thus, the strain components in the body are

Ex(k) = Ey(t) = €=y = ¢ +aT (4.21a)
and

Vay(k) = Vaz(k) = Vyz(k) = 0, (4.21b)

for which the dilatation, 6 ;), and the strain energy density, W<k), within the realm of
classical continuum mechanics become

9(1() = Exk) T Epyk) T Exz(k) = 3 +3aT (4.22a)

and
9
Wy = EKCZ. (4.22b)

The relative position vector between the material points at X(;; and X() in the
deformed configuration becomes

‘y(’) — y(k)‘ = (1 + C-f— (ZT(k>) |X0) — X(k) s (423)

in which T(k) =T.

Defining & = X(;) — X(x), with & = |&|, and substituting for w(; from Eq. 4.11
and the relative position vector from Eq. 4.23, the strain energy density, W, at
material point X ;) that interacts with other material points within a sphere of radius,
6, from Eq. 4.2 can be evaluated as
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|

([(1+¢+aTw)é—¢]

el

o 2m
W(k) = ag%k) —ap 9<k) T(k) + as T(2k> + b J J
00

—aTy €)' & sin(¢) dpdode,
4.24)

in which (&, 0, ¢) serve as spherical coordinates. After invoking from Eq. 4.22a, its
evaluation leads to

W =a (3 +3aTw)’ —ar (3¢ +3aTw) Tuy +as Ty, +abl* 8. (4.25)

Equating the expressions for strain energy density from Eqgs. 4.22b and 4.25
provides the relationships between the PD parameters and engineering material
constants as

9
9a—%ﬂb55::§K, (4.262)
a;=6aa, (4.26b)
a3 =9ad%a. (4.26¢)

Similarly, the expression for 6;) from Eq. 4.3 can be recast as

o
0

2n

Jjg (1+C+aTy)éE—¢ —aTyé)
00

(4.27)
§ ¢
& sin(¢p)dpdOdg 4 3aT ),
£E
whose explicit evaluation leads to
4nd#
g(k) £+ 3a T (k) (4.28)

Equating the expressions for dilatation from Eqs. 4.22a and 4.28 permits the
determination of the peridynamic parameter d as

9
d=— (4.29)

As illustrated in Fig. 4.2, a loading case of simple shear can be achieved by
applying
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Fig. 4.2 A three-dimensional body subjected to simple shear
}/U C and SXX( () = Eyy(k) = Szz(k) = }/x_,(k) = }/yz(k) = T(k) = 0, (4.30)

for which the dilatation, 6 ;), and the strain energy density, W), within the realm of
classical continuum mechanics become

Oy =0 (431a)

and

u. (4.31b)

The relative position vector in the deformed state becomes

’ B { ¢ sin(2¢) sin(6

v — ¥ S } Ixg) — x| (4.32)

Therefore, the strain energy density, W(;), from Eq. 4.2 can be evaluated as

é 2rx
-]
00

whose evaluation leads to

[a([resmeg e f) & sin()dgdods, (433
0

brd &

Wiy =—3

(4.33b)

Equating the strain energy density expressions of Egs. 4.31b and 4.33b obtained
from classical continuum mechanics and the PD theory gives the relationship
between the peridynamic parameter b and shear modulus, y, as

15u
p—_—F 434
278 (4-34)
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Substituting from Eq. 4.34 into Eq. 4.26a results in the evaluation of the
peridynamic parameter a in terms of bulk modulus, , and shear modulus, y, as

_ L ok
a—2 (K 3 ) (4.35)

In summary, the PD parameters for a three-dimensional analysis can be
expressed as

1
a1 (K _ ?), @ = 6aa, (436a,b)

15 9
a3 =9da, b= o

= d=——. 4.36¢-
2728 475 ( c-¢)

In view of Egs. 4.6 and 4.12, a constraint condition of x = 5u/3 or v =1/4
emerges for bond-based peridynamics with a bond constant of ¢ = 30u/z6* or ¢
= 18k /nd".

4.1.2 Two-Dimensional Structures

Under two-dimensional idealization, the stress and strain vectors 6;) and &) are
defined as

oly = {ouw onw oo } (437a)
and
8(Tk> ={exw &) Tow - (4.37b)

The material property matrix C in Eq. 4.19 is reduced to

k+u xk—pu 0
C=|xk—pu x+p 0]. (4.38)
0 0 U

Due to two-dimensional idealization, the expression for bulk modulus differs
from that given in Eq. 4.20b and is given by

E



62 4 Peridynamics for Isotropic Materials

Fig. 4.3 PD horizon for a ¥
two-dimensional plate and
PD interactions between

material point x and other
material points within its T
horizon

\\_ 1 —/J

As shown in Fig. 4.3, a two-dimensional plate is discretized with a single layer of
material points in the thickness direction. The domain of integral H in Eq. 2.22a
becomes a disk with radius 6 and thickness /. As in the previous case, two different
loading cases to achieve isotropic expansion and simple shear are considered to
determine the peridynamic parameters.

As illustrated in Fig. 4.4, isotropic expansion can be achieved by applying an
equal normal strain of ¢ in all directions and a uniform temperature change of 7.
Thus, the strain components in the body are

Exx(k) = Eyy(k) = C +aT and }/xy(k) = 07 (440)

for which the dilatation, 6 ;), and the strain energy density, W), within the realm of
classical continuum mechanics become

Ow) = Exx(i) + Epye) = 26 +2a Ty (4.41a)
and
Wy = 2c 8. (4.41b)

The relative position vector between the material points at X(; and X in the
deformed configuration becomes

bm—ym‘=(1+5+“T®)P@—xw7 (4.42)

in which Ty =T.
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Fig. 4.4 A two-dimensional plate subjected to isotropic expansion

The strain energy density, W), at material point X that interacts with other

material points within a disk of radius 6 and thickness # from Eq. 4.2 can be
evaluated as

Wiy = 619%> — a0y Ty +a3T(2k)

(4.43)

S
+th (1+¢+aTy) E— & —aTy &)’ édode
0

o%g’

o
ell

in which (&,0) serve as polar coordinates. While invoking from Eq. 4.41a, its
evaluation leads to

2
W =a (20 +2aTw) —ax (26 +2aTy) Ty + a3 TS + 37b h&'(* . (4.44)

Equating the expressions for strain energy density from Eqgs. 4.41b and 4.44
provides the relationships between the PD parameters and engineering material
constants as

2
4a + 5nbh & =2k, (4.45a)

a)y=4aa, (4.45b)
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a=4d%a. (4.45¢)

Similarly, the expression for 6;) from Eq. 4.3 can be recast as

o 2n
5
:dh” S((1+E+anE-9 - aTd
00 (4463.)
X <§ §) £ dOdé + 2al ),

¢ ¢

whose explicit evaluation leads to
Oy = nd h8*C + 2a T, (4.46b)

Equating the expressions for dilatation from Eqgs. 4.41a and 4.46b permits the
determination of the peridynamic parameter d as

2
d=—. (4.47)

As illustrated in Fig. 4.5, a loading case of simple shear can be achieved by
applying

yxy é’ and gxx( () = gyy(k) = T(k) = 07 (448)

for which the dilatation, 6 ;), and the strain energy density, W), within the realm of
classical continuum mechanics become

1
Ouy =0 and Wy =5p < (4.49a,b)
The relative position vector in the deformed state becomes
’y(j) - yW‘ = [1 + (sin O cos O)C] |x) — X |- (4.50)

Therefore, the strain energy density, W(;), from Eq. 4.2 can be evaluated as
2z

Jicrs

(sin@cos 0)] & — £)2EdOdE, (4.51a)

'J‘rrIQo

)
Wi =a (0) + bhj
0



4.1

65

Material Parameters
]
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Fig. 4.5 A two-dimensional plate subjected to simple shear

whose evaluation leads to
h 54 2
_ o€ (4.51b)

Wik 2

b.

Equating the strain energy density expressions of Eqs. 4.49a,b and 4.51b
obtained from classical continuum mechanics and the PD theory gives the relation-

ship between the peridynamic parameter b and shear modulus, u, as
by

bh=—. 4.52

mhé* (452)

Substituting from Eq. 4.52 into Eq. 4.45a results in the evaluation of the
peridynamic parameter a in terms of bulk modulus, «, and shear modulus, p, as
(4.53)

(k = 2u).

a =

| —

In summary, the PD parameters for a two-dimensional analysis can be expressed as
(k —2u), ay=4aa, (4.54a,b)

a =

N =



66 4 Peridynamics for Isotropic Materials

6 2
A d=—.
héd

a3 =4d%a, b= (4.54c-¢)

- xhs®’

In view of Egs. 4.6 and 4.12, a constraint condition of k = 2y orv = 1/3 emerges
for bond-based peridynamics with a bond constant of ¢ = 24u/zhé* orc = 12x/zhs>.

4.1.3 One-Dimensional Structures

Under one-dimensional idealization, the nonvanishing stress and strain components
are oy, (x) and e,,). They are related through the Young’s modulus as

Oxx(k) = Eexx(k) . (4.55)

As illustrated in Fig. 4.6, a bar can be subjected to a uniform stretch of s = £ and
thermal expansion of loading, a T. Thus, the strain component in the bar is

e =¢+aT, (4.56)

for which the dilatation, 6, and strain energy density, Wy, within the realm of
classical continuum mechanics become

Oy = eap) = +aly (4.57a)

and
L
Wy = EEC . (4.57b)

As shown in Fig. 4.6, a one-dimensional structure is discretized with a single row
of material points. The domain of integral H in Eq. 2.22a becomes a line with a
constant cross-sectional area, A.

The relative position vector between the material points at X(; and X() in the

deformed configuration becomes

’Ym *Yu«)‘ = (1+{+aTw) |xg — Xl (4.58)

in which Ty = T.
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Fig. 4.6 A one-dimensional bar subjected to isotropic expansion

The strain energy density, W), at material point X that interacts with other
material points within a line of length 6 and area A from Eq. 4.2 can be evaluated as

W(k) = aG%k) —a QT(k) “+ az T(2k)

(4.59)
([(1+¢+aTy) e — & —aTy €) dt,

vl

s
+2bAJ
0

in which (£) serves as the coordinate. While invoking from Eq. 4.57a, its evaluation
leads to

2
Wi =a (C + OCT(k)) —ap (C + OtT(k)) Ty +as T(Zk) +b §253A. (4.60)
Assuming a = 0 due to the Poisson’s ratio being zero, and equating the

expressions for strain energy density from Eqgs. 4.57b and 4.60 provides the
relationships between the PD parameters and engineering material constants as

dy; = as :0, andbzw. (461)
Similarly, the expression for 6;), from Eq. 4.3 can be recast as
h 6
O) = 2dA Jg ([ +¢+aTw)E—¢] —aTy)
0 (4.62a)

whose explicit evaluations leads to

Oy = 2d5°CA + aT . (4.62b)
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Equating the expressions for dilatation from Egs. 4.57a and 4.62b permits the
determination of the peridynamic parameter d as

1

d=ss. (4.63)

In summary, the PD parameters for a one-dimensional structure can be expressed
as

E 1
= 5, d=-5
2A6 26°A

a=a=a3=0, b (4.64a-c)

In view of Eq. 4.12, a bond constant for bond-based peridynamics becomes
c=2E/A8.

4.2 Surface Effects

The peridynamic material parameters a, b, and d that appear in the peridynamic
force-stretch relations are determined by computing both dilatation and strain
energy density of a material point whose horizon is completely embedded in the
material. The values of these parameters, except for a, depend on the domain of
integration defined by the horizon. Therefore, the values of b and d require
correction if the material point is close to free surfaces or material interfaces
(Fig. 4.7). Since the presence of free surfaces is problem dependent, it is impractical
to resolve this issue analytically. The correction of the material parameters is
achieved by numerically integrating both dilatation and strain energy density at
each material point inside the body for simple loading conditions and comparing
them to their counterparts obtained from classical continuum mechanics.

For the first simple loading condition, the body is subjected to uniaxial stretch
loadings in the x-, y-, and z-directions of the global coordinate system, i.e., &, # 0,
€aa = Yqp = 0 (shown in Fig. 4.8), ey, # 0, €4a = 7,5 =0, and e,; # 0, €40 = Vp
=0, witha,f =x,y,z.

The applied uniaxial stretch in the x-, y-, and z-directions is achieved through the
constant displacement gradient, Ou),/0a = {, with a = x,y,z. The displacement
field at material point x resulting from this loading can be expressed as

() ={%x 0 o}, (4.652)

i ={o Gy o}, (4.65b)
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Fig. 4.7 Surface effects Surface
in the domain of interest

Interface

Deformed configuration Undeformed configuration

Deformed configuration Undeformed configuration

Fig. 4.8 Material point x with (a) a truncated horizon and (b) far away from external surfaces of a
material domain subjected to uniaxial stretch loading
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and
Wl ={0o 0 2} (4.65¢)
in which the subscripts (1, 2, 3) denote the x-, y-, and z-directions of uniaxial stretch,

respectively. Due to this displacement field, the corresponding PD dilatation term,
7P (x)) with (m = 1,2,3), at material point x; can be obtained from Eq. 4.3 as

W (Xw) =d 8 swipAwn Vo (4.66)

in which N represents the number of material points inside the horizon of material
point X(). The corresponding dilatation based on classical continuum mechanics,

92”’ (X()), is uniform throughout the domain and is determined as
05" () = ¢ (4.67)
The dilatation correction term can be defined as
0 (X@) 4

Dy = —5p =
O x) 5,le<k><j>/\<k>0)V0>
J=

(4.68)

Maximum values of dilatation occur in the loading directions that coincide with
the global coordinates x, y, and z, respectively.

Similarly, the strain energy density at any material point can be computed due to
simple shear loading in the (X' — '), (X' —2'), and (y' —Z’) planes, i.e., y,y # 0,
€aa = Yoqp = O (shown in Fig. 4.9), 7, # 0, €4a = 7o = 0, and vy, # 0, €40 = Vp
=0, with @, = x’,y', 7. This loading is achieved through constant displacement
gradientOu’,/0p = {, witha # fanda, f = x',y’, Z’. These planes are oriented by an
angle of — 45° in reference to the (x — y), (x — z), and (y — z) planes of the global
coordinate system. The loading on these planes is considered because the maximum
strain energy occurs in the x-, y-, and z-directions.

The displacement field at material point x resulting from the applied simple
shear loading in the (x' — y'), (x — Z’), and (y' — ') planes can be expressed in the
global coordinate system as

ou, ou,
uf() = {15 —1%%y o}, (4.692)
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Deformed configuration ~ Undeformed configuration

Deformed configuration ~ Undeformed configuration

Fig. 4.9 Material point x with (a) a truncated horizon and (b) far away from external surfaces of a
material domain subjected to simple shear loading

ul(x) = {0 12y %—Z} (4.69b)
ul(x) = { -1 %’f,’x 0 1 %Ij; z }, (4.69¢)

in which the subscripts (1,2,3) denote the applied simple shear loadings in the
(=), (yy —=7), and (¥’ — Z') planes, respectively.

Due to these applied displacement fields, the PD strain energy density at material
point Xy can be obtained from Eq. 4.2 as

WEP (xy) = a (0P (xwy))°

3 ! 2 (4.70)
+b5§ - ‘ o ‘_ o Ve,
= xg) — X ( Yo~ Y|~ xo) = xw |) 0

with (m = 1,2,3).
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Under simple shear loading, the dilatation and strain energy densities can be
computed by using classical continuum mechanics as

1
M (xp) =0, WM (xp) = 5 uc?, (4.71a,b)
with (m = 1,2,3).
The dilatation term, HZD (X)), is expected to vanish for this loading condition

because it is already corrected with a dilatation correction term, Eq. 4.68. Thus, the
strain energy density term reduces to

W (x) = bgz |X<; (‘yu w| — %0 - x<k>\)2v0>. 4.72)

Hence, the correction term is only necessary for the term including parameter b
and can be defined as

_ W () _ s

2
b52|xm (o =yl = ko —xwl) vy

(4.73)

With these expressions, a vector of correction factors for the integral terms in
dilatation and strain energy density at material point X;) can be written as

T
20 (X)) = {8 @)t &) k) &)k } = {Diw), Dag): D3} (4.74a)

= {&«0))> &) = {Siw, ) - (4.74b)

These correction factors are only valid in the x-, y-, and z-directions. However,
they can be used as the principal values of an ellipsoid, as shown in Fig. 4.10, in
order to approximate the surface correction factor in any direction. Arising from a
general loading condition, the correction factor for interaction between material
points X(k) and X(j), shown in Fig. 4.11a, can be obtained in the direction of their unit

relative position vector, n = (X — X)) /[X() — X | = {me, ny, n '
A vector of correction factors for the integrals in the dilatation and strain energy
density expressions at material point X; can be similarly written as

T T
2ai) (X)) = {80 S &i ) = 1P Do Dagyy s (4753)
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Fig. 4.10 Construction VA
of an ellipsoid for surface
correction factors
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Fig. 4.11 (a) PD interaction between material points at X and X;) and (b) the ellipsoid for the
surface correction factors

T T
20)0)(X0) = {&m)0) LB &0} = {S16)s S20):S30) ) - (4.75b)

These correction factors are, in general, different at material points X and X;).
Therefore, the correction factor for an interaction between material points X(;) and
X(j) can be obtained by their mean values as

g =18 g g T _Bpw T8y
Epw0) {gx(ﬁ)</<)(l')’ y(B)(k)(j)> gz(ﬁ)(k)(j)} S E—
(4.76)

with f = d, b,

which can be used as the principal values of an ellipsoid, as shown in Fig. 4.11b.
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The intersection of the ellipsoid and a relative position vector, n = (X — X))
/|X() — X()|, of material points X and X; provides the correction factors as

G = ([n.\‘/gx(ﬂ)(k)(/} |:ny/gy([j (,)} { /g k)(,} >_l/2 . @477

After considering the surface effects, the discrete forms of the dilatation and the
strain energy density can be corrected as

=ds Z G Awi)Vo) (4.782)

W(k) = aeﬁ - a29 + a3T( 3
1 2
+ b5zl: Gb)w6) g — %o (’ym - Y(k)’ = %) = xw) D Vi -
J=

(4.78b)
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