
Chapter 4

Peridynamics for Isotropic Materials

4.1 Material Parameters

The auxiliary parameters, C in Eq. 2.43 and A and B in Eq. 2.48, can be determined

by using the relationship between the force density vector and the strain energy

density, WðkÞ, at material point k given by Eq. 2.49 in the form,

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

VðjÞ

@WðkÞ

@ yðjÞ � yðkÞ
��� ���� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.1)

in whichVðjÞ represents the volume of material point j, and the direction of the force

density vector is aligned with the relative position vector in the deformed configu-

ration. The material point j exerts the force density tðkÞðjÞ on material point k .

Determination of the auxiliary parameters requires an explicit form of the strain

energy density function.

For an isotropic and elastic material, the explicit form of the strain energy

density, WðkÞ, at material point xðkÞ can be obtained by generalizing the expression

given by Eq. 3.15 as

WðkÞ ¼ aθ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ b
XN
j¼1

wðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �2
VðjÞ;

(4.2)

where N represents the number of material points within the family of xðkÞ . The
nondimensional influence function, wðkÞðjÞ ¼ wðjxðjÞ � xðkÞjÞ, provides a means to

control the influence of material points away from the current material point at xðkÞ.
The temperature change at material point k isTðkÞ, withα representing the coefficient
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of thermal expansion. Similarly, the explicit expression for θðkÞ can be obtained

from Eq. 3.21 in a general form as

θðkÞ ¼ d
XN
j¼1

wðkÞðjÞ sðkÞðjÞ � αTðkÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� � xðjÞ � xðkÞ

� �
VðjÞ þ 3 αTðkÞ; (4.3)

in which the PD parameter d ensures that θðkÞ remains nondimensional. The PD

material parameters, a, a2, a3, and b, in Eq. 4.2 can be related to the engineering

material constants of shear modulus, μ, bulk modulus, κ , and thermal expansion

coefficient, α , of classical continuum mechanics by considering simple loading

conditions.

After substituting for θðkÞ from Eq. 4.3 in the expression for WðkÞ , given by

Eq. 4.2, and performing differentiation, the force density vector

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� �

can be rewritten in terms of PD material parameters

as

tðkÞðjÞ uðjÞ � uðkÞ; xðjÞ � xðkÞ; t
� � ¼ 1

2
A

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.4a)

with

A ¼ 4wðkÞðjÞ d
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� �

xðjÞ � xðkÞ
xðjÞ � xðkÞ
�� �� aθðkÞ � 1

2
a2 TðkÞ

� �8<
:

þb yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �)
:

(4.4b)

Similarly, the force density vector tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� �

can be

expressed as

tðjÞðkÞ uðkÞ � uðjÞ; xðkÞ � xðjÞ; t
� � ¼ � 1

2
B

yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.5a)

with

B ¼ 4wðjÞðkÞ d
yðkÞ � yðjÞ

yðkÞ � yðjÞ
��� ��� �

xðkÞ � xðjÞ
xðkÞ � xðjÞ
�� �� aθðjÞ �

1

2
a2 TðjÞ

� �8<
:

þb yðkÞ � yðjÞ
��� ���� xðkÞ � xðjÞ

�� ��� �
� α TðjÞ xðkÞ � xðjÞ

�� ��� �)
:

(4.5b)
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Although Eqs. 4.4b and 4.5b appear to be similar, they are different because the

values of (θðkÞ, TðkÞ) and (θðjÞ, TðjÞ) for the material points at xðkÞ and xðjÞ, respectively,
are not necessarily equal to each other. However, A and B must be equal to each

other for the bond-based PD theory. Therefore, the terms associated with θðkÞ and
θðjÞ in Eqs. 4.4b and 4.5b must disappear, thus requiring that

ad ¼ 0: (4.6)

Thus, the parameter C in Eq. 2.43 becomes

C ¼ 4bwðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �
� α TðkÞ xðjÞ � xðkÞ

�� ��� �
: (4.7)

The force density vector can be rewritten as

tðkÞðjÞ ¼ 2bwðkÞðjÞ yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� ��
� α TðkÞ xðjÞ � xðkÞ

�� ��� yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� :

(4.8)

Based on Eq. 2.43, the bond-based force density vector between the material

points at xðkÞ and xðjÞ can be obtained as

fðkÞðjÞ ¼ 4bwðkÞðjÞ xðjÞ � xðkÞ
�� �� sðkÞðjÞ � α TðkÞ

� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� : (4.9)

Comparing this expression with the bond-based definition of the force density

vector, Eq. 2.45 leads to the explicit form of the influence function as

wðkÞðjÞ ¼
c

4b

1

xðjÞ � xðkÞ
�� �� : (4.10)

Performing dimensional analysis on Eq. 4.2 requires that parameter b have

dimensionsForce=ðLengthÞ7whereas the parameterc ¼ c1 inEq. 2.45 has dimensions

Force=ðLengthÞ6 . Therefore, the ratio of c b= has a dimension of Length ,
rendering the influence function to be nondimensional. The horizon, δ, can be

taken as the Length dimension to include the influence of other material points

within a family. Thus, the influence (weight) function for the state-based

peridynamics becomes

wðkÞðjÞ ¼ δ

xðjÞ � xðkÞ
�� �� : (4.11)
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Thus, the ratio of c b= is established as

c

b
¼ 4δ: (4.12)

Substituting for the influence function results in the final form of the expressions

for the force density vectors

tðkÞðjÞ ¼ 2δ d
ΛðkÞðjÞ

xðjÞ � xðkÞ
�� �� aθðkÞ � 1

2
a2 TðkÞ

� �
þ b sðkÞðjÞ � α TðkÞ
� �( )

� yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.13)

where the parameter, ΛðkÞðjÞ, is defined as

ΛðkÞðjÞ ¼
yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ���

0
B@

1
CA � xðjÞ � xðkÞ

xðjÞ � xðkÞ
�� ��

 !
: (4.14)

For the bond-based PD theory, the dilatation termθðkÞmust disappear, resulting in

tðkÞðjÞ ¼ 2δb sðkÞðjÞ � αTðkÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� : (4.15)

Based on Eq. 2.43 in conjunction with Eq. 4.12, the bond-based force density

vector, fðkÞðjÞ, in Eq. 2.44, becomes

fðkÞðjÞ ¼ c sðkÞðjÞ � αTðkÞðjÞ
� � yðjÞ � yðkÞ

yðjÞ � yðkÞ
��� ��� ; (4.16)

where TðkÞðjÞ ¼ ðTðjÞ þ TðkÞÞ=2. This expression is the same as that given by Silling

and Askari (2005), who coined the term “bond-constant” for the parameter c for

bond-based peridynamics.

Although all structures are three dimensional in nature, they can be idealized under

certain assumptions as one dimensional or two dimensional in order to simplify the

computational effort. For instance, long bars can be treated as one-dimensional

structures. Similarly, thin plates can be treated as two-dimensional structures. The

PDmaterial constants must reflect these idealizations. A two-dimensional plate can be

discretized with a single layer of material points in the thickness direction. The

spherical domain of integral H becomes a disk with radius δ and thickness h .
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A one-dimensional bar can be discretized with a single row of material points.

The spherical domain of integral H becomes a line with a length 2δ and cross-

sectional area of A.

4.1.1 Three-Dimensional Structures

For three-dimensional analysis, the strain energy density based on classical contin-

uum mechanics can be obtained from

WðkÞ ¼ 1

2
σT
ðkÞ εðkÞ; (4.17)

in which the stress and strain vectors σðkÞ and εðkÞ are defined as

σT
ðkÞ ¼ σxxðkÞ σyyðkÞ σzzðkÞ σyzðkÞ σxzðkÞ σxyðkÞ

	 

(4.18a)

and

εTðkÞ ¼ εxxðkÞ εyyðkÞ εzzðkÞ γyzðkÞ γxzðkÞ γxyðkÞ
	 


: (4.18b)

For an isotropic material with bulk modulus, κ, and shear modulus, μ, the stress
and strain components are related through the constitutive relation as

σðkÞ ¼ C εðkÞ; (4.19)

where the material property matrix C is defined as

C ¼

κ þ 4μ=3ð Þ κ � 2μ=3ð Þ κ � 2μ=3ð Þ 0 0 0

κ � 2μ=3ð Þ κ þ 4μ=3ð Þ κ � 2μ=3ð Þ 0 0 0

κ � 2μ=3ð Þ κ � 2μ=3ð Þ κ þ 4μ=3ð Þ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

2
6666664

3
7777775
; (4.20a)

with

κ ¼ E

3ð1� 2νÞ and μ ¼ E

2ð1þ νÞ : (4.20b)

Two different loading cases resulting in isotropic expansion and simple shear
can be considered to determine the peridynamic parameters a, a2, a3, b, and d in

terms of engineering material constants of classical continuum mechanics.
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As illustrated in Fig. 4.1, a loading case of isotropic expansion can be achieved

by applying a normal strain of ζ in all directions and a uniform temperature change

of T: Thus, the strain components in the body are

εxxðkÞ ¼ εyyðkÞ ¼ εzzðkÞ ¼ ζ þ α T (4.21a)

and

γxyðkÞ ¼ γxzðkÞ ¼ γyzðkÞ ¼ 0; (4.21b)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ þ εyyðkÞ þ εzzðkÞ ¼ 3ζ þ 3 αT (4.22a)

and

WðkÞ ¼
9

2
κ ζ2: (4.22b)

The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.23)

in which TðkÞ ¼ T:

Defining ξ ¼ xðjÞ � xðkÞ, with ξ ¼ jξj, and substituting for wðkÞðjÞ from Eq. 4.11

and the relative position vector from Eq. 4.23, the strain energy density, WðkÞ , at
material point xðkÞ that interacts with other material points within a sphere of radius,

δ, from Eq. 4.2 can be evaluated as

Undeformed

Deformed
x y

z

x( )k

x( )j

T

x( )k

y( )k

x( )j

y( )j
+ T

y( )j

x

+ T yy

+ T x

+ T z

z

Fig. 4.1 A three-dimensional body subjected to isotropic expansion
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WðkÞ ¼ a θ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ þ b

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� ��

�α TðkÞ ξ
�2
ξ2 sin ϕð Þ dϕdθdξ;

(4.24)

in which ðξ; θ;ϕÞ serve as spherical coordinates. After invoking from Eq. 4.22a, its

evaluation leads to

WðkÞ ¼ a 3ζ þ 3 α TðkÞ
� �2 � a2 3ζ þ 3 αTðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ π bζ2 δ5 : (4.25)

Equating the expressions for strain energy density from Eqs. 4.22b and 4.25

provides the relationships between the PD parameters and engineering material

constants as

9 aþ π b δ5 ¼ 9

2
κ; (4.26a)

a2 ¼ 6 α a; (4.26b)

a3 ¼ 9 α2 a: (4.26c)

Similarly, the expression for θðkÞ from Eq. 4.3 can be recast as

θðkÞ ¼ d

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ þ αTðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �

� ξ
ξ
� ξ
ξ

� �
ξ2 sin ϕð Þdϕdθdξþ 3αTðkÞ;

(4.27)

whose explicit evaluation leads to

θðkÞ ¼
4 π d δ4

3
ζ þ 3αTðkÞ: (4.28)

Equating the expressions for dilatation from Eqs. 4.22a and 4.28 permits the

determination of the peridynamic parameter d as

d ¼ 9

4 π δ4
: (4.29)

As illustrated in Fig. 4.2, a loading case of simple shear can be achieved by

applying
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γxyðkÞ ¼ ζ and εxxðkÞ ¼ εyyðkÞ ¼ εzzðkÞ ¼ γxzðkÞ ¼ γyzðkÞ ¼ TðkÞ ¼ 0; (4.30)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ 0 (4.31a)

and

WðkÞ ¼ 1

2
μ ζ2: (4.31b)

The relative position vector in the deformed state becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ sin 2ϕð Þ sin θð Þ

2

 �
xðjÞ � xðkÞ
�� ��: (4.32)

Therefore, the strain energy density, WðkÞ, from Eq. 4.2 can be evaluated as

WðkÞ ¼ b

ðδ
0

ð2π
0

ðπ
0

δ

ξ
1þ ζ sin 2ϕð Þ sin θð Þ

2

 �
ξ� ξ

� �2

ξ2 sin ϕð Þdϕdθdξ; (4.33a)

whose evaluation leads to

WðkÞ ¼ b π δ5 ζ2

15
: (4.33b)

Equating the strain energy density expressions of Eqs. 4.31b and 4.33b obtained

from classical continuum mechanics and the PD theory gives the relationship

between the peridynamic parameter b and shear modulus, μ, as

b ¼ 15 μ

2 π δ5
: (4.34)

UndeformedDeformed
x y

z

x ( )j

x ( )k y ( )k

x( )j
y ( )j

y ( )j

x

y

z

z

z sin( )sin( )

x ( )k

Fig. 4.2 A three-dimensional body subjected to simple shear
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Substituting from Eq. 4.34 into Eq. 4.26a results in the evaluation of the

peridynamic parameter a in terms of bulk modulus, κ, and shear modulus, μ, as

a ¼ 1

2
κ � 5 μ

3

� �
: (4.35)

In summary, the PD parameters for a three-dimensional analysis can be

expressed as

a ¼ 1

2
κ � 5 μ

3

� �
; a2 ¼ 6 α a; (4.36a,b)

a3 ¼ 9 α2 a; b ¼ 15 μ

2 π δ5
; d ¼ 9

4 π δ4
: (4.36c--e)

In view of Eqs. 4.6 and 4.12, a constraint condition of κ ¼ 5μ=3 or ν ¼ 1=4

emerges for bond-based peridynamics with a bond constant of c ¼ 30μ=πδ4 or c

¼ 18κ=πδ4.

4.1.2 Two-Dimensional Structures

Under two-dimensional idealization, the stress and strain vectors σðkÞ and εðkÞ are
defined as

σT
ðkÞ ¼ σxxðkÞ σyyðkÞ σxyðkÞ

	 

(4.37a)

and

εTðkÞ ¼ εxxðkÞ εyyðkÞ γxyðkÞ
	 


: (4.37b)

The material property matrix C in Eq. 4.19 is reduced to

C ¼
κ þ μ κ � μ 0

κ � μ κ þ μ 0

0 0 μ

2
4

3
5: (4.38)

Due to two-dimensional idealization, the expression for bulk modulus differs

from that given in Eq. 4.20b and is given by

κ ¼ E

2ð1� νÞ : (4.39)
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As shown in Fig. 4.3, a two-dimensional plate is discretized with a single layer of

material points in the thickness direction. The domain of integral H in Eq. 2.22a

becomes a disk with radius δ and thickness h. As in the previous case, two different
loading cases to achieve isotropic expansion and simple shear are considered to

determine the peridynamic parameters.

As illustrated in Fig. 4.4, isotropic expansion can be achieved by applying an

equal normal strain of ζ in all directions and a uniform temperature change of T:
Thus, the strain components in the body are

εxxðkÞ ¼ εyyðkÞ ¼ ζ þ α T and γxyðkÞ ¼ 0; (4.40)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ þ εyyðkÞ ¼ 2ζ þ 2 αTðkÞ (4.41a)

and

WðkÞ ¼ 2κ ζ2: (4.41b)

The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.42)

in which TðkÞ ¼ T.

x

y

x

H
x

Fig. 4.3 PD horizon for a

two-dimensional plate and

PD interactions between

material point x and other

material points within its

horizon
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The strain energy density, WðkÞ , at material point xðkÞ that interacts with other

material points within a disk of radius δ and thickness h from Eq. 4.2 can be

evaluated as

WðkÞ ¼ a θ2ðkÞ � a2 θðkÞ TðkÞ þ a3 T
2
ðkÞ

þ b h

ðδ
0

ð2π
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �2

ξdθdξ ;
(4.43)

in which ðξ; θÞ serve as polar coordinates. While invoking from Eq. 4.41a, its

evaluation leads to

WðkÞ ¼ a 2ζ þ 2 α TðkÞ
� �2 � a2 2ζ þ 2 α TðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ

2

3
π b hδ4ζ2 : (4.44)

Equating the expressions for strain energy density from Eqs. 4.41b and 4.44

provides the relationships between the PD parameters and engineering material

constants as

4aþ 2

3
π bh δ4 ¼ 2κ; (4.45a)

a2 ¼ 4 α a; (4.45b)

x

y

y

x
H

L
( /2)( + )L T

x( )k

y( )k

x( )j

y( )j+ T

Deformed

Undeformed

T

+ T x

+ T y

( /2)( + )H T

y( )j

Fig. 4.4 A two-dimensional plate subjected to isotropic expansion
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a3 ¼ 4 α2 a : (4.45c)

Similarly, the expression for θðkÞ from Eq. 4.3 can be recast as

θðkÞ ¼ dh

ðδ
0

ð2π
0

δ

ξ
1þ ζ þ αTð Þ ξ� ξð Þ � αT ξð Þ

� ξ
ξ
� ξ
ξ

� �
ξ dθdξþ 2αTðkÞ;

(4.46a)

whose explicit evaluation leads to

θðkÞ ¼ π d hδ3ζ þ 2α TðkÞ: (4.46b)

Equating the expressions for dilatation from Eqs. 4.41a and 4.46b permits the

determination of the peridynamic parameter d as

d ¼ 2

π hδ3
: (4.47)

As illustrated in Fig. 4.5, a loading case of simple shear can be achieved by

applying

γxyðkÞ ¼ ζ and εxxðkÞ ¼ εyyðkÞ ¼ TðkÞ ¼ 0; (4.48)

for which the dilatation, θðkÞ, and the strain energy density,WðkÞ, within the realm of

classical continuum mechanics become

θðkÞ ¼ 0 and WðkÞ ¼ 1

2
μ ζ2: (4.49a,b)

The relative position vector in the deformed state becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ sin θ cos θð Þζ½ � xðjÞ � xðkÞ

�� ��: (4.50)

Therefore, the strain energy density, WðkÞ, from Eq. 4.2 can be evaluated as

WðkÞ ¼ a ð0Þ þ bh

ðδ
0

ð2π
0

δ

ξ
1þ sin θ cos θð Þζ½ � ξ� ξð Þ2ξdθdξ; (4.51a)
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whose evaluation leads to

WðkÞ ¼ πhδ4ζ2

12
b: (4.51b)

Equating the strain energy density expressions of Eqs. 4.49a,b and 4.51b

obtained from classical continuum mechanics and the PD theory gives the relation-

ship between the peridynamic parameter b and shear modulus, μ, as

b ¼ 6μ

πhδ4
: (4.52)

Substituting from Eq. 4.52 into Eq. 4.45a results in the evaluation of the

peridynamic parameter a in terms of bulk modulus, κ, and shear modulus, μ, as

a ¼ 1

2
ðκ � 2μÞ: (4.53)

In summary, the PD parameters for a two-dimensional analysis can be expressed as

a ¼ 1

2
ðκ � 2μÞ; a2 ¼ 4 α a; (4.54a,b)

x

y

y

x

H

L

L

( /2)H

y

ycos( )

x( )k

x( )j

y( )k

y( )jy( )j

Undeformed

Deformed

Fig. 4.5 A two-dimensional plate subjected to simple shear
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a3 ¼ 4 α2 a; b ¼ 6μ

πhδ4
; d ¼ 2

π hδ3
: (4.54c--e)

In view of Eqs. 4.6 and 4.12, a constraint condition of κ ¼ 2μ or ν ¼ 1=3 emerges

for bond-based peridynamics with a bond constant ofc ¼ 24μ=πhδ3 orc ¼ 12κ=πhδ3.

4.1.3 One-Dimensional Structures

Under one-dimensional idealization, the nonvanishing stress and strain components

are σxxðkÞ and εxxðkÞ. They are related through the Young’s modulus as

σxxðkÞ ¼ EεxxðkÞ: (4.55)

As illustrated in Fig. 4.6, a bar can be subjected to a uniform stretch of s ¼ ζ and
thermal expansion of loading, α T. Thus, the strain component in the bar is

εxxðkÞ ¼ ζ þ α T; (4.56)

for which the dilatation, θðkÞ , and strain energy density, WðkÞ , within the realm of

classical continuum mechanics become

θðkÞ ¼ εxxðkÞ ¼ ζ þ αTðkÞ (4.57a)

and

WðkÞ ¼ 1

2
E ζ2: (4.57b)

As shown in Fig. 4.6, a one-dimensional structure is discretized with a single row

of material points. The domain of integral H in Eq. 2.22a becomes a line with a

constant cross-sectional area, A.
The relative position vector between the material points at xðjÞ and xðkÞ in the

deformed configuration becomes

yðjÞ � yðkÞ
��� ��� ¼ 1þ ζ þ αTðkÞ

� �
xðjÞ � xðkÞ
�� ��; (4.58)

in which TðkÞ ¼ T.
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The strain energy density, WðkÞ , at material point xðkÞ that interacts with other

material points within a line of length δ and area A from Eq. 4.2 can be evaluated as

WðkÞ ¼ a θ2ðkÞ � a2 θ TðkÞ þ a3 T
2
ðkÞ

þ 2bA

ðδ
0

δ

ξ
1þ ζ þ αTðkÞ
� �

ξ� ξ
� �� α TðkÞ ξ
� �2

dξ;
(4.59)

in which ðξÞ serves as the coordinate. While invoking from Eq. 4.57a, its evaluation

leads to

WðkÞ ¼ a ζ þ α TðkÞ
� �2 � a2 ζ þ α TðkÞ

� �
TðkÞ þ a3 T

2
ðkÞ þ b ζ2δ3A: (4.60)

Assuming a = 0 due to the Poisson’s ratio being zero, and equating the

expressions for strain energy density from Eqs. 4.57b and 4.60 provides the

relationships between the PD parameters and engineering material constants as

a2 ¼ a3 ¼ 0; and b ¼ E

2Aδ3
: (4.61)

Similarly, the expression for θðkÞ, from Eq. 4.3 can be recast as

θðkÞ ¼ 2dA

ðδ
0

δ

ξ
1þ ζ þ α TðkÞ
� �

ξ� ξ
� �� αTðkÞ ξ
� �

� ξ
ξ
� ξ
ξ

� �
dξþ αTðkÞ;

(4.62a)

whose explicit evaluations leads to

θðkÞ ¼ 2dδ2ζAþ αTðkÞ: (4.62b)

x

L( /2)( + )L T

x( )k x( )j y( )j

+ T

UndeformedT

y( )k

Deformed

y( )j

Fig. 4.6 A one-dimensional bar subjected to isotropic expansion

4.1 Material Parameters 67



Equating the expressions for dilatation from Eqs. 4.57a and 4.62b permits the

determination of the peridynamic parameter d as

d ¼ 1

2δ2A
: (4.63)

In summary, the PD parameters for a one-dimensional structure can be expressed

as

a ¼ a2 ¼ a3 ¼ 0; b ¼ E

2Aδ3
; d ¼ 1

2δ2A
: (4.64a--c)

In view of Eq. 4.12, a bond constant for bond-based peridynamics becomes

c ¼ 2E=Aδ2.

4.2 Surface Effects

The peridynamic material parameters a, b, and d that appear in the peridynamic

force-stretch relations are determined by computing both dilatation and strain

energy density of a material point whose horizon is completely embedded in the

material. The values of these parameters, except for a, depend on the domain of

integration defined by the horizon. Therefore, the values of b and d require

correction if the material point is close to free surfaces or material interfaces

(Fig. 4.7). Since the presence of free surfaces is problem dependent, it is impractical

to resolve this issue analytically. The correction of the material parameters is

achieved by numerically integrating both dilatation and strain energy density at

each material point inside the body for simple loading conditions and comparing

them to their counterparts obtained from classical continuum mechanics.

For the first simple loading condition, the body is subjected to uniaxial stretch

loadings in the x-, y-, and z-directions of the global coordinate system, i.e., εxx 6¼ 0;
εαα ¼ γαβ ¼ 0 (shown in Fig. 4.8), εyy 6¼ 0; εαα ¼ γαβ ¼ 0, and εzz 6¼ 0; εαα ¼ γαβ
¼ 0, with α; β ¼ x; y; z.

The applied uniaxial stretch in the x-, y-, and z-directions is achieved through the
constant displacement gradient, @u�α=@α ¼ ζ , with α ¼ x; y; z . The displacement

field at material point x resulting from this loading can be expressed as

uT1 xð Þ ¼ @u�x
@x x 0 0

n o
; (4.65a)

uT2 xð Þ ¼ 0
@u�y
@y y 0

n o
; (4.65b)
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Fig. 4.7 Surface effects
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Fig. 4.8 Material point xwith (a) a truncated horizon and (b) far away from external surfaces of a

material domain subjected to uniaxial stretch loading
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and

uT3 xð Þ ¼ 0 0
@u�z
@z z

n o
; (4.65c)

in which the subscripts (1, 2, 3) denote the x-, y-, and z-directions of uniaxial stretch,
respectively. Due to this displacement field, the corresponding PD dilatation term,

θPDm ðxðkÞÞ with ðm ¼ 1; 2; 3Þ, at material point xðkÞ can be obtained from Eq. 4.3 as

θPDm ðxðkÞÞ ¼ d δ
XN
j¼1

sðkÞðjÞΛðkÞðjÞVðjÞ; (4.66)

in which N represents the number of material points inside the horizon of material

point xðkÞ . The corresponding dilatation based on classical continuum mechanics,

θCMm ðxðkÞÞ, is uniform throughout the domain and is determined as

θCMm ðxðkÞÞ ¼ ζ : (4.67)

The dilatation correction term can be defined as

DmðkÞ ¼
θCMm ðxðkÞÞ
θPDm ðxðkÞÞ

¼ ζ

d δ
PN
j¼1

sðkÞðjÞΛðkÞðjÞVðjÞ

: (4.68)

Maximum values of dilatation occur in the loading directions that coincide with

the global coordinates x; y; and z, respectively.
Similarly, the strain energy density at any material point can be computed due to

simple shear loading in the ðx0 � y0Þ, ðx0 � z0Þ, and ðy0 � z0Þ planes, i.e., γx0y0 6¼ 0;

εαα ¼ γαβ ¼ 0 (shown in Fig. 4.9), γx0z0 6¼ 0; εαα ¼ γαβ ¼ 0, and γy0z0 6¼ 0; εαα ¼ γαβ
¼ 0, with α; β ¼ x0; y0; z0 . This loading is achieved through constant displacement

gradient@u�α=@β ¼ ζ, withα 6¼ β andα; β ¼ x0; y0; z0. These planes are oriented by an
angle of � 45� in reference to the ðx� yÞ, ðx� zÞ, and ðy� zÞ planes of the global
coordinate system. The loading on these planes is considered because the maximum

strain energy occurs in the x-, y-, and z-directions:
The displacement field at material point x resulting from the applied simple

shear loading in the ðx0 � y0Þ, ðx0 � z0Þ, and ðy0 � z0Þ planes can be expressed in the

global coordinate system as

uT1 xð Þ ¼ 1
2

@u�
x0

@y0 x � 1
2

@u�
x0

@y0 y 0

n o
; (4.69a)
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uT2 xð Þ ¼ 0 1
2

@u�
y0

@z0 y � 1
2

@u�
y0

@z0 z

n o
; (4.69b)

uT3 xð Þ ¼ � 1
2

@u�
z0

@x0 x 0 1
2

@u�
z0

@x0 z
n o

; (4.69c)

in which the subscripts ð1; 2; 3Þ denote the applied simple shear loadings in the

ðx0 � y0Þ, ðy0 � z0Þ, and ðx0 � z0Þ planes, respectively.
Due to these applied displacement fields, the PD strain energy density at material

point xðkÞ can be obtained from Eq. 4.2 as

WPD
m ðxðkÞÞ ¼ a θPDm ðxðkÞÞ

� �2
þ b δ

XN
j¼1

1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ;
(4.70)

with ðm ¼ 1; 2; 3Þ.
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Fig. 4.9 Material point xwith (a) a truncated horizon and (b) far away from external surfaces of a

material domain subjected to simple shear loading
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Under simple shear loading, the dilatation and strain energy densities can be

computed by using classical continuum mechanics as

θCMm ðxðkÞÞ ¼ 0; WCM
m ðxðkÞÞ ¼ 1

2
μζ2; (4.71a,b)

with ðm ¼ 1; 2; 3Þ.
The dilatation term, θPDm ðxðkÞÞ, is expected to vanish for this loading condition

because it is already corrected with a dilatation correction term, Eq. 4.68. Thus, the

strain energy density term reduces to

WPD
m ðxðkÞÞ ¼ b δ

XN
j¼1

1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ: (4.72)

Hence, the correction term is only necessary for the term including parameter b
and can be defined as

SmðkÞ ¼
WCM

ðmÞ ðxðkÞÞ
WPD

ðmÞðxðkÞÞ
¼

1
2
μζ2

b δ
PN
j¼1

1

xðjÞ�xðkÞj j yðjÞ � yðkÞ
��� ���� xðjÞ � xðkÞ

�� ��� �2
VðjÞ

: (4.73)

With these expressions, a vector of correction factors for the integral terms in

dilatation and strain energy density at material point xðkÞ can be written as

gðdÞðxðkÞÞ ¼ gxðdÞðkÞ; gyðdÞðkÞ; gzðdÞðkÞ
	 
T ¼ D1ðkÞ; D2ðkÞ;D3ðkÞ

	 
T
; (4.74a)

gðbÞðxðkÞÞ ¼ gxðbÞðkÞ; gyðbÞðkÞ; gzðbÞðkÞ
	 
T ¼ S1ðkÞ; S2ðkÞ; S3ðkÞ

	 
T
: (4.74b)

These correction factors are only valid in the x-, y-, and z-directions. However,
they can be used as the principal values of an ellipsoid, as shown in Fig. 4.10, in

order to approximate the surface correction factor in any direction. Arising from a

general loading condition, the correction factor for interaction between material

points xðkÞ and xðjÞ, shown in Fig. 4.11a, can be obtained in the direction of their unit
relative position vector, n ¼ ðxðjÞ � xðkÞÞ=jxðjÞ � xðkÞj ¼ fnx; ny; nzgT .

A vector of correction factors for the integrals in the dilatation and strain energy

density expressions at material point xðjÞ can be similarly written as

gðdÞðjÞðxðjÞÞ ¼ gxðdÞðjÞ; gyðdÞðjÞ; gzðdÞðjÞ
	 
T ¼ D1ðjÞ; D2ðjÞ;D3ðjÞ

	 
T
; (4.75a)
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gðbÞðjÞðxðjÞÞ ¼ gxðbÞðjÞ; gyðbÞðjÞ; gzðbÞðjÞ
	 
T ¼ S1ðjÞ; S2ðjÞ; S3ðjÞ

	 
T
: (4.75b)

These correction factors are, in general, different at material points xðkÞ and xðjÞ.
Therefore, the correction factor for an interaction between material points xðkÞ and
xðjÞ can be obtained by their mean values as

�gðβÞðkÞðjÞ ¼ �gxðβÞðkÞðjÞ; �gyðβÞðkÞðjÞ; �gzðβÞðkÞðjÞ
n oT

¼ gðβÞðkÞ þ gðβÞðjÞ
2

;

with β ¼ d; b;

(4.76)

which can be used as the principal values of an ellipsoid, as shown in Fig. 4.11b.
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Fig. 4.11 (a) PD interaction between material points at xðkÞ and xðjÞ and (b) the ellipsoid for the

surface correction factors
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The intersection of the ellipsoid and a relative position vector, n ¼ ðxðjÞ � xðkÞÞ
=jxðjÞ � xðkÞj, of material points xðkÞ and xðjÞ provides the correction factors as

GðβÞðkÞðjÞ ¼ nx �gxðβÞðkÞðjÞ
.h i2

þ ny �gyðβÞðkÞðjÞ
.h i2�

þ nz �gzðβÞðkÞðjÞ
.h i2��1=2

: (4.77)

After considering the surface effects, the discrete forms of the dilatation and the

strain energy density can be corrected as

θðkÞ ¼ dδ
XN
j¼1

GðdÞðkÞðjÞsðkÞðjÞΛðkÞðjÞVðjÞ; (4.78a)

WðkÞ ¼ a θ2ðkÞ � a2θðkÞTðkÞ þ a3T
2
ðkÞ

þ bδ
XN
j¼1

GðbÞðkÞðjÞ
1

xðjÞ � xðkÞ
�� �� yðjÞ � yðkÞ

��� ���� xðjÞ � xðkÞ
�� ��� �2

VðjÞ :

(4.78b)
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